Sample records for annihilation lifetime study

  1. Positron Annihilation Ratio Spectroscopy Study of Electric Fields Applied to Positronium at Material Interfaces

    DTIC Science & Technology

    2011-03-01

    from 142 ns to a few ns [3:3]. Through the application of positron annihilation lifetime spectroscopy (PALS) on a material, the o-Ps lifetime can be...Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. POSITRON ANNIHILATION RATIO SPECTROSCOPY STUDY OF ELECTRIC FIELDS APPLIED TO...protection in the United States. AFIT/GNE/ENP/11-M19 POSITRON ANNIHILATION RATIO SPECTROSCOPY STUDY OF ELECTRIC FIELDS APPLIED TO POSITRONIUM AT

  2. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2007-01-01

    positron source for positron annihilation lifetime spectroscopy Final Report Report Title...Development of an Electron- Positron Source for Position Annihilation Lifetime Spectroscopy DAAD19-03-1-0287 Final Report 2/17/2007... annihilation lifetime spectroscopy REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION ON THIS PAGE UNCLASSIFIED 2. REPORT DATE: 12b. DISTRIBUTION

  3. Positron annihilation lifetime study of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Krsjak, V.; Szaraz, Z.; Hähner, P.

    2012-09-01

    A comparative positron annihilation lifetime study has been performed on various commercial ferritic and ferritic/martensitic oxide dispersion strengthened (ODS) steels. Both as-extruded and recrystallized materials were investigated. In the materials with recrystallized coarse-grained microstructures, only the positron trapping at small vacancy clusters and yttria nanofeatures was observed. Materials which had not undergone recrystallization treatment clearly showed additional positron trapping which is associated with dislocations. Dislocation densities were calculated from a two-component decomposition of the positron lifetime spectra by assuming the first component to be a superposition of the bulk controlled annihilation rate and the dislocation controlled trapping rate. The second component (which translates into lifetimes of 240-260 ps) was found to be well separated in all those ODS materials. This paper presents the potentialities and limitations of the positron annihilation lifetime spectroscopy, and discusses the results of the experimental determination of the defect concentrations and sensitivity of this technique to the material degradation due to thermally induced precipitation of chromium-rich α' phases.

  4. Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals.

    PubMed

    Shpotyuk, O; Bujňáková, Z; Baláž, P; Ingram, A; Shpotyuk, Y

    2016-01-05

    Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  6. Human Tissues Investigation Using PALS Technique

    NASA Astrophysics Data System (ADS)

    Jasińska, B.; Zgardzińska, B.; Chołubek, G.; Gorgol, M.; Wiktor, K.; Wysogląd, K.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Hiesmayr, B.; Jodłowska-Jędrych, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krawczyk, N.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Shopa, R.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Wiktor, H.; Wiślicki, W.; Zieliński, M.; Moskal, P.

    Samples of uterine leiomyomatis and normal tissues taken from patients after surgery were investigated using the Positron Annihilation Lifetime Spectroscopy (PALS). Significant differences in all PALS parameters between normal and diseased tissues were observed. For all studied patients, it was found that the values of the free annihilation and ortho-positronium lifetime are larger for the tumorous tissues than for the healthy ones. For most of the patients, the intensity of the free annihilation and ortho-positronium annihilation was smaller for the tumorous than for the healthy tissues. For the first time, in this kind of studies, the $3\\gamma$ fraction of positron annihilation was determined to describe changes in the tissue porosity during morphologic alteration.

  7. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Kinomura, A.; Suzuki, R.; Oshima, N.; O'Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-01

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO2 layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  8. Tomographic Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Anwand, W.; Butterling, M.; Fiedler, F.; Fritz, F.; Kempe, M.; Cowan, T. E.

    2014-04-01

    Positron annihilation lifetime spectroscopy serves as a perfect tool for studies of open-volume defects in solid materials such as vacancies, vacancy agglomerates, and dislocations. Moreover, structures in porous media can be investigated ranging from 0.3 nm to 30 nm employing the variation of the Positronium lifetime with the pore size. While lifetime measurements close to the material's surface can be performed at positron-beam installations bulk materials, fluids, bio-materials or composite structures cannot or only destructively accessed by positron beams. Targeting those problems, a new method of non-destructive positron annihilation lifetime spectroscopy has been developed which features even a 3-dimensional tomographic reconstruction of the spatial lifetime distribution. A beam of intense bremsstrahlung is provided by the superconducting electron linear accelerator ELBE (Electron Linear Accelerator with high Brilliance and low Emittance) at Helmholtz-Zentrum Dresden-Rossendorf. Since the generation of bremsstrahlung and the transport to the sample preserves the sharp timing of the electron beam, positrons generated inside the entire sample volume by pair production feature a sharp start time stamp for lifetime studies. In addition to the existing technique of in-situ production of positrons inside large (cm3) bulk samples using high-energy photons up to 16 MeV from bremsstrahlung production, granular position-sensitive photon detectors have been employed. The detector system will be described and results for experiments using samples with increasing complexity will be presented. The Lu2SiO5:Ce scintillation crystals allow resolving the total energy to 5.1 % (root-mean-square, RMS) and the annihilation lifetime to 225 ps (RMS). 3-dimensional annihilation lifetime maps have been created in an offline-analysis employing well-known techniques from PET.

  9. Investigation on the porosity of zeolite NU-88 by means of positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Consolati, G.; Mariani, M.; Millini, R.; Quasso, F.

    2009-08-01

    Seven well characterized zeolites were investigated by positron annihilation lifetime spectroscopy. The lifetime spectra were analysed in four discrete components. The third one was associated with ortho-positronium annihilation in the channels, framed in terms of infinite cylinders. Differences between the radii determined from the positron annihilation technique and X-ray diffraction data were found and explained in terms of the physical structure of the channel. An analogous study on a high-silica NU-88 zeolite gave a value of 0.33 nm for the corresponding radius, in agreement with Ar and N 2 adsorption data as well as with the catalytic behaviour of this zeolite in several acid catalyzed reactions. The longest lifetime component in NU-88 reveals the existence of mesopores, with average radius of about 1.8 nm, which could explain the importance of hydrogen transfer reactions in this zeolite.

  10. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    NASA Astrophysics Data System (ADS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-12-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<˜0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  11. A General Quantum Mechanical Method to Predict Positron Spectroscopy

    DTIC Science & Technology

    2007-06-01

    7 2.1 Positron Annihilation Spectroscopy . . . . . . . . . . . . . 7 2.1.1 Positron Transport and Annihilation in Condensed Matter...8 2.1.2 Traditional Positron Annihilation Spectroscopy . . 10 2.1.3 Vibrational Feshbach Resonances of Positrons with... positron annihilation lifetime spectroscopy system . . . 63 11. Tungsten positron lifetime spectrum . . . . . . . . . . . . . . . . . . 66 12. K2B12H12

  12. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinomura, A., E-mail: a.kinomura@aist.go.jp; Suzuki, R.; Oshima, N.

    2014-12-15

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at amore » pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.« less

  13. Positron lifetime beam for defect studies in thin epitaxial semiconductor structures

    NASA Astrophysics Data System (ADS)

    Laakso, A.; Saarinen, K.; Hautojärvi, P.

    2001-12-01

    Positron annihilation spectroscopies are methods for direct identification of vacancy-type defects by measuring positron lifetime and Doppler broadening of annihilation radiation and providing information about open volume, concentration and atoms surrounding the defect. Both these techniques are easily applied to bulk samples. Only the Doppler broadening spectroscopy can be employed in thin epitaxial samples by utilizing low-energy positron beams. Here we describe the positron lifetime beam which will provide us with a method to measure lifetime in thin semiconductor layers.

  14. The study of synthetic food dyes by positron annihilation lifetime spectroscopy.

    NASA Astrophysics Data System (ADS)

    Pivtsaev, A. A.; Razov, V. I.

    2015-06-01

    By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established.

  15. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakrabarti, Mahuya; Ray, S. K.; Bhowmick, D.; Sanyal, D.

    2011-04-01

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~ 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  16. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO.

    PubMed

    Sarkar, A; Chakrabarti, Mahuya; Ray, S K; Bhowmick, D; Sanyal, D

    2011-04-20

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  17. Positron Annihilation Ratio Spectroscopy (PsARS) Applied to Positronium Formation Studies

    DTIC Science & Technology

    2010-03-01

    POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES THESIS...AFIT/GNE/ENP/10-M07 POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES ...lifetime studies in local electric field experiments. High local electric fields can polarize a positron -electron pair, which may result in an extended

  18. Positron annihilation study of the high- Tc (Bi,Pb) 2Sr 2Ca 2Cu 3O x superconductor

    NASA Astrophysics Data System (ADS)

    Lim, H. J.; Byrne, J. G.

    1997-03-01

    Positron lifetime spectroscopy (PLS) and positron Doppler-broadening spectroscopy (PDBS) were applied to the high- Tc lead-doped Bi 2Sr 2Ca 2Cu 3O x (BPSCCO 2223) superconductor as a function of temperature. Neither positron lifetimes nor Doppler parameters ( S, W, and{S}/{W}) showed significant change through Tc. This may result from having the highest positron density in the open BiO 2 double layers and no significant positron density in the superconducting CuO 2 layers where positrons, if mainly present, are known to be sensitive to the transition in other high- Tc superconductors. Doppler parameters showed that the probability of positron annihilations with core electrons in the lattice slightly increased and that the probability of positron annihilations with conduction electrons slightly decreased as temperature decreased from ambient temperature to 20 K. The lifetime associated with positron annihilations in the perfect lattice of the sample ( τ1) was 209 ps and, due to the annihilations at internal surfaces or voids in the sample ( τ2) was about 540 ps, independent of temperature. Finally, the mean lifetime for BSCCO 2223 was about 307 ps.

  19. Measurements of defect structures by positron annihilation lifetime spectroscopy of the tellurite glass TeO2-P2O5-ZnO-LiNbO3 doped with ions of rare earth elements: Er3+, Nd3+ and Gd3+

    NASA Astrophysics Data System (ADS)

    Golis, E.; Yousef, El. S.; Reben, M.; Kotynia, K.; Filipecki, J.

    2015-12-01

    The objective of the study was the structural analysis of the TeO2-P2O5-ZnO-LiNbO3 tellurite glasses doped with ions of the rare-earth elements: Er3+, Nd3+ and Gd3+ based on the PALS (Positron Annihilation Lifetime Spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, such as vacancies, mono-vacancies, dislocations or pores, the sizes of which range from a few angstroms to a few dozen nanometres. Experimental positron lifetime spectrum revealed existence of two positron lifetime components τ1 and τ2. Their interpretation was based on two-state positron trapping model where the physical parameters are the annihilation velocity and positron trapping rate.

  20. Positron lifetime in vanadium oxide bronzes

    NASA Astrophysics Data System (ADS)

    Dryzek, J.; Dryzek, E.

    2003-09-01

    The positron lifetime (PL) and Doppler broadening (DB) of annihilation line measurements have been performed in vanadium oxide bronzes MxV2O5. The dependence of these annihilation characteristics on the kind and concentration of the metal M donor has been observed. In the PL spectrum only one lifetime component has been detected in all studied bronzes. The results indicate the positron localization in the structural tunnels present in the crystalline lattice of the vanadium oxide bronzes. (

  1. Materials characterization of free volume and void properties by two-dimensional positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin; Van Horn, J. David; Jean, Y. C.; Hung, Wei-Song; Lee, Kueir-Rarn

    2013-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been widely used to determine the free volume and void properties in polymeric materials. Recently, a two dimensional positron annihilation lifetime spectroscopy (2DPALS) system has been developed for membrane applications. The system measures the coincident signals between the lifetime and the energy which could separate the 2γ and 3γ annihilations and improve the accuracy in the determination of the free volume and void properties. When 2D-PALS is used in coupling with a variable mono-energy slow positron beam, it could be applied to a variety of material characterization. Results of free volumes and voids properties in a multi-layer polymer membrane characterized using 2D-PALS are presented.

  2. Utility of positron annihilation lifetime technique for the assessment of spectroscopic data of some charge-transfer complexes derived from N-(1-Naphthyl)ethylenediamine dihydrochloride

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Adam, Abdel Majid A.; Sharshar, T.; Saad, Hosam A.; Eldaroti, Hala H.

    2014-03-01

    In this work, structural, thermal, morphological, pharmacological screening and positron annihilation lifetime measurements were performed on the interactions between a N-(1-Naphthyl)ethylenediamine dihydrochloride (NEDA·2HCl) donor and three types of acceptors to characterize these CT complexes. The three types of acceptors include π-acceptors (quinol and picric acid), σ-acceptors (iodine) and vacant orbital acceptors (tin(IV) tetrachloride and zinc chloride). The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, the power of acceptors and molecular weight of the CT complexes. The positron annihilation lifetime spectroscopy can be used as a probe for the formation of charge-transfer (CT) complexes.

  3. Structure and Bonding in Noncrystalline Solids Abstracts

    DTIC Science & Technology

    1983-06-02

    displacement cascades are unlikely. Related damage studies as diffuse X- ray scattering, magnetic susceptibility and positron - annihilation lifetime...the positron annihilation lifetime data; diffuse X-ray scattering studies give evidence for "amorphized" clusters in neutron but not in elec-ron...feldspar glasses and glasses in the system CaO- MgO -SiO 2 . These results indicate that the nearest-neighbor and next- nearest-neighbor environments are very

  4. Voids in mixed-cation silicate glasses: Studies by positron annihilation lifetime and Fourier transform infrared spectroscopies

    NASA Astrophysics Data System (ADS)

    Reben, M.; Golis, E.; Filipecki, J.; Sitarz, M.; Kotynia, K.; Jeleń, P.; Grelowska, I.

    2014-08-01

    PALS in comparison with FTIR studies have been applied to investigate the structure of different oxide glasses. Three components of the positron lifetime τ (τ1 para- and τ3 ortho-positronium and τ2 intermediate lifetime component) and their intensities were obtained. The results of the calculation of mean values of positron lifetimes for the investigated glasses showed the existence of a long-living component on the positron annihilation lifetime spectra. From the Tao-Eldrup formula we can estimate the size of free volume. On the basis of the measurements we can conclude that the size and fraction of free volume reaches the biggest value for the fused silica glass. The degree of network polymerisation increases void size.

  5. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  6. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3 : A positron annihilation lifetime spectroscopy study

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Singh, S.; Mackie, R. A.; Morozov, M.; McGuire, S.; Damjanovic, D.

    2007-10-01

    Positron annihilation lifetime spectroscopy measurements identify A - and B -site cation vacancies in ferroelectric perovskite oxides (ABO3) . Crystal PbTiO3 and ceramic lead zirconium titanate (PZT) were studied and gave consistent values for the lifetime resulting from positron localization at lead vacancies VPb . Positron trapping to B -site vacancies was inferred in PZT. Temperature dependent studies showed that the defect specific trapping rate was higher for VB compared to VPb , consistent with the larger negative charge. Doping PZT with Fe increased the fraction positron trapping to VB compared to VPb -type defects.

  7. Positron annihilation lifetime spectroscopy study of Kapton thin foils

    NASA Astrophysics Data System (ADS)

    Kanda, G. S.; Ravelli, L.; Löwe, B.; Egger, W.; Keeble, D. J.

    2016-01-01

    Variable energy positron annihilation lifetime spectroscopy (VE-PALS) experiments on polyimide material Kapton are reported. Thin Kapton foils are widely used in a variety of mechanical, electronic applications. PALS provides a sensitive probe of vacancy-related defects in a wide range of materials, including open volume in polymers. Varying the positron implantation energy enables direct measurement of thin foils. Thin Kapton foils are also commonly used to enclose the positron source material in conventional PALS measurements performed with unmoderated radionuclide sources. The results of depth-profiled positron lifetime measurements on 7.6 μm and 25 μm Kapton foils are reported and determine a dominant 385(1) ps lifetime component. The absence of significant nanosecond lifetime component due to positronium formation is confirmed.

  8. Nano sulfide and oxide semiconductors as promising materials for studies by positron annihilation

    NASA Astrophysics Data System (ADS)

    Nambissan, P. M. G.

    2013-06-01

    A number of wide band gap sulfide and oxide semiconducting nanomaterial systems were investigated using the experimental techniques of positron lifetime and coincidence Doppler broadening measurements. The results indicated several features of the nanomaterial systems, which were found strongly related to the presence of vacancy-type defects and their clusters. Quantum confinement effects were displayed in these studies as remarkable changes in the positron lifetimes and the lineshape parameters around the same grain sizes below which characteristic blue shifts were observed in the optical absorption spectra. Considerable enhancement in the band gap and significant rise of the positron lifetimes were found occurring when the particle sizes were reduced to very low sizes. The results of doping or substitutions by other cations in semiconductor nanosystems were also interesting. Variously heat-treated TiO2 nanoparticles were studied recently and change of positron annihilation parameters across the anatase to rutile structural transition are carefully analyzed. Preliminary results of positron annihilation studies on Eu-doped CeO nanoparticles are also presented.

  9. Application of positron annihilation lifetime technique to the study of deep level transients in semiconductors

    NASA Astrophysics Data System (ADS)

    Deng, A. H.; Shan, Y. Y.; Fung, S.; Beling, C. D.

    2002-03-01

    Unlike its conventional applications in lattice defect characterization, positron annihilation lifetime technique was applied to study temperature-dependent deep level transients in semiconductors. Defect levels in the band gap can be determined as they are determined by conventional deep level transient spectroscopy (DLTS) studies. The promising advantage of this application of positron annihilation over the conventional DLTS is that it could further extract extra microstructure information of deep-level defects, such as whether a deep level defect is vacancy related or not. A demonstration of EL2 defect level transient study in GaAs was shown and the EL2 level of 0.82±0.02 eV was obtained by a standard Arrhenius analysis, similar to that in conventional DLTS studies.

  10. Positron annihilation studies in ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Pujari, P. K.; Sudarshan, K.; Dutta, D.; Mahapatra, M.; Godbole, S. V.; Jayakumar, O. D.; Tyagi, A. K.

    2009-04-01

    We report results on positron annihilation spectroscopic (PAS) studies using lifetime and coincidence Doppler broadening techniques in zinc oxide (ZnO) nanoparticles (4 to 40 nm) synthesized by solid state pyrolytic reaction followed by annealing in the temperature range of 200 ∘C to 800 ∘C. Positron lifetime in the nanoparticles are observed to be higher than bulk lifetime in all the cases. Theoretical calculation of lifetime indicates the presence of either Zn or (Zn, O) vacancy clusters which migrate and anneal out at high temperature. Comparison of ratio spectra from coincidence Doppler broadening measurement and calculated electron momentum distribution indicates the presence of either Zn or (Zn, O) vacancies. In addition, photoluminescence (PL) measurements have been carried out to examine the role of defects on the intensity of emission in the visible region.

  11. Application Of Positron Beams For The Characterization Of Nano-scale Pores In Thin Films

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Ito, K.; Kobayashi, Y.; Suzuki, R.; Ohdaira, T.; Eijt, S. W. H.; Schut, H.; van Veen, A.

    2003-08-01

    We applied three positron annihilation techniques, positron 3γ-annihilation spectroscopy, positron annihilation lifetime spectroscopy, and angular correlation of annihilation radiation, to the characterization of nano-scale pores in thin films by combining them with variable-energy positron beams. Characterization of pores in thin films is an important part of the research on various thin films of industrial importance. The results of our recent studies on pore characterization of thin films by positron beams will be reported here.

  12. Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO

    NASA Astrophysics Data System (ADS)

    Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.

    2018-05-01

    The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.

  13. INSTRUMENTS AND METHODS OF INVESTIGATION: Positron annihilation spectroscopy in materials structure studies

    NASA Astrophysics Data System (ADS)

    Grafutin, Viktor I.; Prokop'ev, Evgenii P.

    2002-01-01

    A relatively new method of materials structure analysis — positron annihilation spectroscopy (PAS) — is reviewed. Measurements of positron lifetimes, the determination of positron 3γ- and 2γ-annihilation probabilities, and an investigation of the effects of different external factors on the fundamental characteristics of annihilation constitute the basis for this promising method. The ways in which the positron annihilation process operates in ionic crystals, semiconductors, metals and some condensed matter systems are analyzed. The scope of PAS is described and its prospects for the study of the electronic and defect structures are discussed. The applications of positron annihilation spectroscopy in radiation physics and chemistry of various substances as well as in physics and chemistry of solutions are exemplified.

  14. Dispersion of nano-nickel into γ-Al 2O 3 studied by positron

    NASA Astrophysics Data System (ADS)

    Jun, Zhu; Wang, S. J.; Luo, X. H.

    2003-10-01

    The positron annihilation lifetime spectra were measured as a function of the content of the nano-nickel, of temperature, as well as of the heating time for the supported nano-nickel catalyst that was prepared by mechanical mixture nano-metal nickel particles with gamma-alumina ( γ-Al 2O 3). The lifetime spectra were well resolved into four lifetime components. The longest lifetime τ4 was assigned to ortho-positronium annihilating in the secondary pore of the γ-Al 2O 3. The results showed that part of the nano-nickel had entered into γ-Al 2O 3 by thermal diffusion at heating above 200°C and had interacted with the face of the γ-Al 2O 3, but the length of diffusion is not very large.

  15. Applications of positron annihilation spectroscopy in materials research

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1988-01-01

    Positron Annihilation Spectroscopy (PAS) has emerged as a powerful technique for research in condensed matter. It has been used extensively in the study of metals, ionic crystals, glasses and polymers. The present review concentrates on applications of positron lifetime measurements for elucidation of the physicochemical structure of polymers.

  16. Positron lifetime setup based on DRS4 evaluation board

    NASA Astrophysics Data System (ADS)

    Petriska, M.; Sojak, S.; Slugeň, V.

    2014-04-01

    A digital positron lifetime setup based on DRS4 evaluation board designed at the Paul Scherrer Institute has been constructed and tested in the Positron annihilation laboratory Slovak University of Technology Bratislava. The high bandwidth, low power consumption and short readout time make DRS4 chip attractive for positron annihilation lifetime (PALS) setup, replacing traditional ADCs and TDCs. A software for PALS setup online and offline pulse analysis was developed with Qt,Qwt and ALGLIB libraries.

  17. Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Ching, W. Y.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.

    1990-08-01

    The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across Tc, in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO2 layers. In the Tl2Ba2Ca2Cu3O10 system, an increase in lifetime is observed below Tc, whereas in Tl2Ba2CaCu2O8, a decrease in lifetime is seen below Tc. In the Tl2Ba2CuO6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO2 layer in the superconducting state.

  18. Positron annihilation study on ZnO-based scintillating glasses

    NASA Astrophysics Data System (ADS)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  19. A study of inter-crystallite spaces in some polycrystalline inorganic systems using positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shantarovich, V. P.; Suzuki, T.; Ito, Y.; Kondo, K.; Gustov, V. W.; Melikhov, I. V.; Berdonosov, S. S.; Ivanov, L. N.; Yu, R. S.

    2007-02-01

    Positron annihilation lifetime spectroscopy (PALS) was used for calculation of number density and effective sizes of free volume holes (inter-crystallite spaces) in polycrystal CaSO 4, CaCO 3 (vaterit) and Ca 10(PO 4) 6(OH) 2 (apatite). The effect of substitution of two-valence Ca(II) for three-valence Eu(III) on annihilation characteristics of apatite, studied together with the data on thermo-stimulated luminescence (TSL) and low-temperature sorption of gas (N 2), helped to elucidate mechanism of positronium atom (Ps) localization in the free volume holes and perform corresponding calculations. It came out that PALS is more sensitive to inter-crystallite sites (10 16 cm -3) in polycrystallites than to the free volume holes in polymer glasses (10 19 cm -3). This is due to higher mobility of the precursor of localized Ps in crystallites.

  20. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2009-12-19

    REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE

  1. Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility

    NASA Astrophysics Data System (ADS)

    Wagner, Andreas; Butterling, Maik; Liedke, Maciej O.; Potzger, Kay; Krause-Rehberg, Reinhard

    2018-05-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA with bunch charges up to 120 pC. The electron beam is employed to produce several secondary beams including X-rays from bremsstrahlung production, coherent IR light in a Free Electron Laser, superradiant THz radiation, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films. Bulk materials, fluids, gases, and even radioactive samples can be studied at the unique Gamma-induced Positron Source (GiPS) where an intense bremsstrahlung source generates positrons directly inside the material under study. A 22Na-based monoenergetic positron beam serves for offline experiments and additional depth-resolved Doppler-broadening studies complementing both accelerator-based sources.

  2. Free volume dependent fluorescence property of PMMA composite: Positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Ravindrachary, V.; Praveena, S. D.; Bhajantri, R. F.; Ismayil, Crasta, Vincent

    2013-02-01

    The free volume related fluorescence properties of chalcone chromophore [1-(4-methylphenyl)-3-(4-N, N, dimethylaminophenyl)-2-propen-1-one doped Poly(methyl methacrylate) have been studied using fluorescence spectroscopy and Positron Annihilation lifetime spectroscopy techniques. The fluorescence spectra show that the fluorescence behavior depends on the free volume dependent polymer microstructure and varies with dopant concentration with in the composite. The origin and variation of fluorescence is understood by twisted internal charge transfer state as well as free volume. The Positron annihilation study shows that the free volume related microstructure of the composite is vary with doping level.

  3. Study on defect properties of nanocrystalline TiO2 during phase transition by positron annihilation lifetime

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Liu, Y.; Liu, Z.; Dai, Y.-Q.; Fang, P.-F.; Wang, S.-J.

    2012-08-01

    The defect properties of nanocrystalline TiO2 were investigated by positron annihilation lifetime spectroscopy (PALS) and X-ray diffraction (XRD) as a function of annealed temperature that ranged from 300 to 850 °C. Below 500 °C, the measured positron lifetimes of τ1 (200-206 ps) and τ2 (378-402 ps) revealed the existence of mono-vacancy and vacancy-clusters at grain surface and in the micro-void of intergranular region. Between 500 and 750 °C, the phase transition from anatase to rutile was probed by the variations of positron lifetime and XRD pattern. With the increasing temperature from 500 to 850 °C, the positron lifetime τ1, τ2 and its intensity I2 sharply decreased from 200 ps, 378 ps, and 60% to 135 ps, 274 ps, and 33%, respectively. The results clearly indicate that the mono-vacancy or vacancy-clusters at grain surface and micro-voids between the grains were annealed out during the phase transition.

  4. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    PubMed

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  5. A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Wada, Ken; Hyodo, Toshio

    2013-06-01

    Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.

  6. Exciton dynamics and annihilation in WS2 2D semiconductors.

    PubMed

    Yuan, Long; Huang, Libai

    2015-04-28

    We systematically investigate the exciton dynamics in monolayered, bilayered, and trilayered WS2 two-dimensional (2D) crystals by time-resolved photoluminescence (TRPL) spectroscopy. The exciton lifetime when free of exciton annihilation was determined to be 806 ± 37 ps, 401 ± 25 ps, and 332 ± 19 ps for WS2 monolayer, bilayer, and trilayer, respectively. By measuring the fluorescence quantum yields, we also establish the radiative and nonradiative lifetimes of the direct and indirect excitons. The exciton decay in monolayered WS2 exhibits a strong excitation density-dependence, which can be described using an exciton-exciton annihilation (two-particle Auger recombination) model. The exciton-exciton annihilation rate for monolayered, bilayered, and trilayered WS2 was determined to be 0.41 ± 0.02, (6.00 ± 1.09) × 10(-3) and (1.88 ± 0.47) × 10(-3) cm(2) s(-1), respectively. Notably, the exciton-exciton annihilation rate is two orders of magnitude faster in the monolayer than in the bilayer and trilayer. We attribute the much slower exciton-exciton annihilation rate in the bilayer and trilayer to reduced many-body interaction and phonon-assisted exciton-exciton annihilation of indirect excitons.

  7. Positron annihilation lifetime spectroscopy (PALS) study of the as prepared and calcined MFI zeolites

    NASA Astrophysics Data System (ADS)

    Bosnar, Sanja; Vrankić, Martina; Bosnar, Damir; Ren, Nan; Šarić, Ankica

    2017-11-01

    The synthesis of high silica zeolites in many cases implies the usage of organic structural direction agents (SDA). However, to manifest their functionalities, the SDA occluded inside the channels of the as-synthesized structure should be removed, usually by a high temperature treatment (calcination). In this paper, the positron annihilation lifetime spectroscopy (PALS) was used to monitor the development of accessible spaces, their sizes and distributions in MFI zeolites, ZSM-5 and silicalite-1 in order to give an additional insight in the process of the SDA removal. For that purpose, a conventional PALS setup with 22Na positron source was applied. It was established that there is a pronounced difference between positron annihilation data for these two zeolites of the same structural type. The samples were additionally analysed by X-ray powder diffraction at room temperature with a crystal structure refinement and thermogravimetry.

  8. Chemical Quenching of Positronium in CuO/Al2O3 Catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Jun; Liu, Zhe-Wen; Chen, Zhi-Quan; Wang, Shao-Jie

    2011-01-01

    CuO/Al2O3 catalysts were prepared by mixing CuO and γ-Al2O3 nanopowders. Microstructure and chemical environment of the catalysts are characterized by positron annihilation spectroscopy. The positron annihilation lifetime measurements reveal two long lifetime components τ3 and τ4, which correspond to ortho-positronium (o-Ps) annihilating in microvoids and large pores, respectively. With increasing CuO content from 0 to 40 wt%, both τ4 and its intensity I4 show significant decrease, which indicates quenching effect of o-Ps. The para-positronium (p-Ps) intensities derived from multi-Gaussian fitting of the coincidence Doppler broadening spectra also decreases gradually with increasing CuO content. This excludes the possibility of spin-conversion of positronium. Therefore, the chemical quenching by CuO is probably responsible for the decrease of o-Ps lifetime. Variation in the o-Ps annihilation rate λ4 (1/τ4) as a function of CuO content can be well fitted by a straight line, and the slope of the fitting line is (1.83 ± 0.05) × 10-7 s-1.

  9. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shpotyuk, O.; Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru; Shpotyuk, M.

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  10. Temperature Dependence of Positron Annihilation in beta-Cyclodextrin and beta-Cyclodextrin Complexes

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Hsu Hadley, F. H., Jr.; Trinh, T.

    1996-11-01

    The effects of temperature on positron annihilation in beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate, benzyl acetate, ethyl salicylate, geraniol, linalool and nerol were studied. Samples were prepared by slurry, air-dried and freeze-dried methods. Lifetime spectra were measured as a function of temperature for each sample. Comparison of the annihilation rate and intensity of the longer-lived component showed that positronium formation was affected by guest molecules, preparation methods and temperature variations. Results can be used to explain beta-cyclodextrin complex formation with different guest molecules.

  11. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    PubMed

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  12. Positronium formation in SiO2 films grown on Si substrates studied by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Kawano, T.; Ohji, Y.

    1994-04-01

    The annihilation characteristics of positrons in SiO2 films grown on Si substrates were studied by using monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured as a function of incident positron energy for SiO2 (166 nm)/Si specimens fabricated by thermal oxidation. From the measurements, it was found that about 90% of positrons implanted into the SiO2 film annihilate from positronium (Ps) states. This fact was due to the trapping of positrons by open-space defects and a resultant enhanced formation of Ps in such regions. For the SiO2 film grown at 650 °C, the lifetime of ortho-Ps was found to be shorter than that in the film grown at 1000 °C. This result suggests that the volume of open-space defects in the SiO2 film decreased with decreasing the growth rate of the SiO2 film.

  13. Detection of Atomic Scale Changes in the Free Volume Void Size of Three-Dimensional Colorectal Cancer Cell Culture Using Positron Annihilation Lifetime Spectroscopy

    PubMed Central

    Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro. PMID:24392097

  14. Free-volume Study in GeS2-Ga2S3-CsCl Chalcohalide Glasses Using Positron Annihilation Technique

    NASA Astrophysics Data System (ADS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Szatanik, R.

    Positron annihilation lifetime spectroscopy combined with Doppler broadening of annihilation radiation was applied to study free-volume entities in Ge-Ga-S glasses having different amount of CsCl additives. It is shown that the structural changes caused by CsCl additives can be adequately described by positron trapping modes determined within two-state model. The results testify in a favor of rather unchanged nature of corresponding free-volume voids responsible for positron trapping in the studied glasses, when mainly concentration of these traps is a subject to most significant changes with composition.

  15. The Correlation Between Dislocations and Vacancy Defects Using Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Jinbiao; Li, Hui; Zhou, Kai; Wang, Zhu

    2012-07-01

    An analysis program for positron annihilation lifetime spectra is only applicable to isolated defects, but is of no use in the presence of defective correlations. Such limitations have long caused problems for positron researchers in their studies of complicated defective systems. In order to solve this problem, we aim to take a semiconductor material, for example, to achieve a credible average lifetime of single crystal silicon under plastic deformation at different temperatures using positron life time spectroscopy. By establishing reasonable positron trapping models with defective correlations and sorting out four lifetime components with multiple parameters, as well as their respective intensities, information is obtained on the positron trapping centers, such as the positron trapping rates of defects, the density of the dislocation lines and correlation between the dislocation lines, and the vacancy defects, by fitting with the average lifetime with the aid of Matlab software. These results give strong grounds for the existence of dislocation-vacancy correlation in plastically deformed silicon, and lay a theoretical foundation for the analysis of positron lifetime spectra when the positron trapping model involves dislocation-related defects.

  16. A study of vacancy defects related to gray tracks in KTiOPO{sub 4} (KTP) using positron annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Li, Jing; Wang, Jiyang, E-mail: hdjiang@sdu.edu.cn

    For the first time to our knowledge, positron annihilation spectroscopy (PAS) was used to study vacancy defects in KTiOPO{sub 4} (KTP) single crystals. Positron annihilation lifetime spectroscopy combined with dielectric measurements identified the existence of oxygen vacancies and reflected the concentration of vacancy defects in three samples. The vacancy defects in KTP do not consist of monovacancies, but rather vacancy complexes. Doppler broadening indicates that the vacancy defects are distributed uniformly. A relationship is established where a crystal with a low oxygen vacancy concentration and a highly balanced stoichiometry has a higher resistance to gray track formation.

  17. Low-temperature positron annihilation study of B+-ion implanted PMMA

    NASA Astrophysics Data System (ADS)

    Kavetskyy, T. S.; Tsmots, V. M.; Voloshanska, S. Ya.; Šauša, O.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Y. N.; Stepanov, A. L.

    2014-08-01

    Temperature dependent positron annihilation lifetime spectroscopy (PALS) measurements in the range of 50-300 K are carried out to study positronium formation in 40 KeV B+-ion implanted polymethylmethacrylate (B:PMMA) with two ion doses of 3.13 × 1015 and 3.75 × 1016 ions/cm2. The investigated samples show the various temperature trends of ortho-positronium (o-Ps) lifetime τ3 and intensity I3 in PMMA before and after ion implantation. Two transitions in the vicinity of ˜150 and ˜250 K, ascribed to γ and β transitions, respectively, are observed in the PMMA and B:PMMA samples in consistent with reference data for pristine sample. The obtained results are compared with room temperature PALS study of PMMA with different molecular weight (Mw) which known from literature. It is found that B+-ion implantation leads to decreasing Mw in PMMA at lower ion dose. At higher ion dose the local destruction of polymeric structure follows to broadening of lifetime distribution (hole size distribution).

  18. Positron annihilation studies of zirconia doped with metal cations of different valence

    NASA Astrophysics Data System (ADS)

    Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.

    2013-06-01

    New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3γ-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3γ-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.

  19. The electronic properties of high (Tc) superconductors probed by positron annihilation

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Jean, Y. C.; Hinks, D. G.; Dabrowski, B.; Zheng, Y.; Mitchell, A. W.; Ho, J. C.; Howell, K. H.; Wachs, A. L.

    1989-06-01

    The discovery of superconductivity at 30 K in Ba(.6)K(.4) BiO3 has generated considerable excitement in view of the contrasting properties of the Ba-K-Bi-O system when compared to the well known Cu-O based high temperature superconductors. Positron annihilation spectroscopy, which is a sensitive local probe of the electronic and defect properties of a solid, was extensively applied in the study of Cu-O based superconductors. The results of positron lifetime as a function of temperature in Ba-K-Bi-O are presented and compared with the known results in the cuprate superconductors. Plausible reasons for the observed temperature dependence of positron lifetime are presented.

  20. Characterization of Al-ALLOYS (50xx) by Using Positron Annihilation, X-Ray Diffraction and Vibrating Reed Techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Uday; Badawi, Emad; Mukhopadhyay, P. K.

    A series of Al-Mgx alloys, with x = 0.82, 2.09, 2.28, 2.49 and 4.47 wt.%, respectively were characterized by using positron annihilation lifetime studies (PAL), X-ray diffraction (XRD), and sound velocity and internal friction using a vibrating reed technique (VRT). PAL lifetime values increase linearly as the composition is varied, but texturing or preferential orientation is maximum at an intermediate value of composition (x = 2.49%). The internal friction shows a minimum at the same composition, and the sound velocity changes show the maximum value here too. This means that at this composition the sample is the most ordered and defect free.

  1. Positron annihilation spectroscopy in doped p-type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Sanyal, D.

    2011-07-01

    Positron annihilation lifetime (PAL) spectroscopy has been used to investigate the vacancy type defect of the Li and N doped ZnO. The mono-vacancies, shallow -vacancies and open volume defects have been found in both the Li and N doped ZnO. The mono-vacancies, shallow-vacancies and open volume defects increase in N-doped ZnO as the size of N is quite high compared to Li. Positron annihilation study showed that the doping above 1-3% Li and 3-4% N in ZnO are not required in order to achieve low resistivity, high hole concentration and good mobility.

  2. Mathematical modeling of elementary trapping-reduction processes in positron annihilation lifetime spectroscopy: methodology of Ps-to-positron trapping conversion

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya; Cebulski, J.; Ingram, A.; Shpotyuk, O.

    2017-12-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy in application to nanostructurized substances treated within three-term fitting procedure are reconsidered to parameterize their atomic-deficient structural arrangement. In contrast to conventional three-term fitting analysis of the detected PAL spectra based on admixed positron trapping and positronium (Ps) decaying, the nanostructurization due to guest nanoparticles embedded in host matrix is considered as producing modified trapping, which involves conversion between these channels. The developed approach referred to as x3-x2-coupling decomposition algorithm allows estimation free volumes of interfacial voids responsible for positron trapping and bulk lifetimes in nanoparticle-embedded substances. This methodology is validated using experimental data of Chakraverty et al. [Phys. Rev. B71 (2005) 024115] on PAL study of composites formed by guest NiFe2O4 nanocrystals grown in host SiO2 matrix.

  3. Photoluminescence and positron annihilation spectroscopic investigation on a H+ irradiated ZnO single crystal

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakrabarti, Mahuya; Sanyal, D.; Bhowmick, D.; Dechoudhury, S.; Chakrabarti, A.; Rakshit, Tamita; Ray, S. K.

    2012-08-01

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H+ ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a ‘hydrogen at oxygen vacancy’ type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ˜4 × 1017 cm-3 (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ˜175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  4. New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Shi, W.; Mannheim, A.; Butterling, M.; Schut, H.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R. W.; Callewaert, V.; Saniz, R.; Partoens, B.; Barbiellini, B.; Bansil, A.; Melskens, J.; Zeman, M.; Smets, A. H. M.; Kulbak, M.; Hodes, G.; Cahen, D.; Brück, E.

    2017-01-01

    Recent studies showed that positron annihilation methods can provide key insights into the nanostructure and electronic structure of thin film solar cells. In this study, positron annihilation lifetime spectroscopy (PALS) is applied to investigate CdSe quantum dot (QD) light absorbing layers, providing evidence of positron trapping at the surfaces of the QDs. This enables one to monitor their surface composition and electronic structure. Further, 2D-Angular Correlation of Annihilation Radiation (2D-ACAR) is used to investigate the nanostructure of divacancies in photovoltaic-high-quality a-Si:H films. The collected momentum distributions were converted by Fourier transformation to the direct space representation of the electron-positron autocorrelation function. The evolution of the size of the divacancies as a function of hydrogen dilution during deposition of a-Si:H thin films was examined. Finally, we present a first positron Doppler Broadening of Annihilation Radiation (DBAR) study of the emerging class of highly efficient thin film solar cells based on perovskites.

  5. Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons.

    PubMed

    Shpotyuk, Olha; Ingram, Adam; Shpotyuk, Oleh

    2016-12-01

    Positron annihilation spectroscopy in lifetime measuring mode exploring conventional fast-fast coincidence ORTEC system is employed to characterize free volume structure of commercially available acrylic-type dental restorative composite Charisma® (Heraeus Kulzer GmbH, Germany). The measured lifetime spectra for uncured and light-cured composites are reconstructed from unconstrained x3-term fitting and semi-empirical model exploring x3-x2-coupling decomposition algorithm. The governing channel of positron annihilation in the composites studied is ascribed to mixed positron-Ps trapping, where Ps decaying in the third component is caused entirely by input from free-volume holes in polymer matrix, while the second component is defined by free positron trapping in interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix. Microstructure scenario of the photopolymerization shrinkage includes cross-linking of structural chains in polymer matrix followed by conversion of bound positron-electron (positronium) traps in positron-trapping interfacial free-volume voids in a vicinity of agglomerated filler nanoparticles.

  6. ANTICOOL: Simulating positron cooling and annihilation in atomic gases

    NASA Astrophysics Data System (ADS)

    Green, D. G.

    2018-03-01

    The Fortran program ANTICOOL, developed to simulate positron cooling and annihilation in atomic gases for positron energies below the positronium-formation threshold, is presented. Given positron-atom elastic scattering phase shifts, normalised annihilation rates Zeff, and γ spectra as a function of momentum k, ANTICOOL enables the calculation of the positron momentum distribution f(k , t) as a function of time t, the time-varying normalised annihilation rate Z¯eff(t) , the lifetime spectrum and time-varying annihilation γ spectra. The capability and functionality of the program is demonstrated via a tutorial-style example for positron cooling and annihilation in room temperature helium gas, using accurate scattering and annihilation cross sections and γ spectra calculated using many-body theory as input.

  7. Self-trapping limited exciton diffusion in a monomeric perylene crystal as revealed by femtosecond transient absorption microscopy.

    PubMed

    Yago, Tomoaki; Tamaki, Yoshiaki; Furube, Akihiro; Katoh, Ryuzi

    2008-08-14

    Self-trapping and singlet-singlet annihilation of the free excitons in a monomeric (beta) perylene crystal were studied by using femtosecond transient absorption microscopy. The free exciton generated by the photo-excitation of the beta-perylene crystal relaxed to the self-trapped exciton with a rate constant of 7 x 10(10) s(-1). The singlet-singlet annihilation of the free exciton observed under the high excitation density conditions was competed with the self-trapping of the free exciton; we estimated the annihilation rate constant for the free exciton to be 1 x 10(-8) cm(3) s(-1) from the excitation density dependence of the free exciton decay. After self-trapping of the free exciton, no annihilation was observed in the 100 ps time range, suggesting that the diffusion coefficient was reduced drastically by self-trapping. The results show that the major factor limiting the exciton diffusion in the beta-perylene crystal is a relaxation of the free exciton to the self-trapped exciton, and not the lifetime of the exciton. Though the singlet-singlet annihilation rate constants and fluorescence lifetime of the beta-perylene crystal are similar to those of the anthracene crystal, the estimated exciton diffusion length (2 nm) in the beta-perylene crystal is much smaller than that (100 nm) in the anthracene crystal as a result of the exciton self-trapping.

  8. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy.

    PubMed

    Merino, P; Große, C; Rosławska, A; Kuhnke, K; Kern, K

    2015-09-29

    Exciton creation and annihilation by charges are crucial processes for technologies relying on charge-exciton-photon conversion. Improvement of organic light sources or dye-sensitized solar cells requires methods to address exciton dynamics at the molecular scale. Near-field techniques have been instrumental for this purpose; however, characterizing exciton recombination with molecular resolution remained a challenge. Here, we study exciton dynamics by using scanning tunnelling microscopy to inject current with sub-molecular precision and Hanbury Brown-Twiss interferometry to measure photon correlations in the far-field electroluminescence. Controlled injection allows us to generate excitons in solid C60 and let them interact with charges during their lifetime. We demonstrate electrically driven single-photon emission from localized structural defects and determine exciton lifetimes in the picosecond range. Monitoring lifetime shortening and luminescence saturation for increasing carrier injection rates provides access to charge-exciton annihilation dynamics. Our approach introduces a unique way to study single quasi-particle dynamics on the ultimate molecular scale.

  9. Two-component density functional theory calculations of positron lifetimes for small vacancy clusters in silicon

    NASA Astrophysics Data System (ADS)

    Makhov, D. V.; Lewis, Laurent J.

    2005-05-01

    The positron lifetimes for various vacancy clusters in silicon are calculated within the framework of the two-component electron-positron density functional theory. The effect of the trapped positron on the electron density and on the relaxation of the structure is investigated. Our calculations show that, contrary to the usual assumption, the positron-induced forces do not compensate in general for electronic inward forces. Thus, geometry optimization is required in order to determine positron lifetime accurately. For the monovacancy and the divacancy, the results of our calculations are in good agreement with the experimental positron lifetimes, suggesting that this approach gives good estimates of positron lifetimes for larger vacancy clusters, required for their correct identification with positron annihilation spectroscopy. As an application, our calculations show that fourfold trivacancies and symmetric fourfold tetravacancies have positron lifetimes similar to monovacancies and divacancies, respectively, and can thus be confused in the interpretation of positron annihilation experiments.

  10. Chemical quenching of positronium in Fe 2O 3/Al 2O 3 catalysts

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhang, H. J.; Chen, Z. Q.

    2010-09-01

    Fe 2O 3/Al 2O 3 catalysts were prepared by solid state reaction method using α-Fe 2O 3 and γ-Al 2O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al 2O 3 grain and between the grains, respectively. With increasing Fe 2O 3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  11. Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys

    NASA Astrophysics Data System (ADS)

    Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi

    2011-10-01

    The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.

  12. Probing the defects in nano-semiconductors using positrons

    NASA Astrophysics Data System (ADS)

    Nambissan, P. M. G.

    2011-01-01

    Positron annihilation spectroscopy (PAS) is a very useful tool to study the defect properties of nanoscale materials. The ability of thermalized positrons to diffuse over to the surfaces of nanocrystallites prior to annihilation helps to explore the disordered atomic arrangement over there and is very useful in understanding the structure and properties of nanomaterials. As examples, the results of studies on FeS2 nanorods and ZnS nanoparticles are presented. In semiconductor nanoparticles, there are positron trapping sites within the grains also and these are characterised by using appropriate models on the measured positron lifetimes. We have observed vivid changes in the measured positron lifetimes and Doppler broadened gamma ray spectral lineshapes during structural transformations prompted by substitutional effects in Mn2+-doped ZnS nanorods. Interestingly, the nanoparticles did not exhibit the transformation, implying the morphologies of the nanosystems playing a decisive role. Quantum confinement effect in CdS nanoparticles was another phenomenon that could be seen through positron annihilation experiments. Coincidence Doppler broadening measurements have been useful to identify the elemental environment around the vacancy clusters that trap positrons. Recent studies on nanocrystalline oxide and sulphide semiconductors are also discussed.

  13. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  14. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    NASA Astrophysics Data System (ADS)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  15. Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Mitchell, Sharon; Gerchow, Lars; Cooke, David; Crivelli, Paolo; Pérez-Ramírez, Javier

    2017-03-03

    Positron annihilation spectroscopy (PAS) is a powerful method to study the size and connectivity of pores in zeolites. The lifetime of positronium within the host material is commonly described by the Tao-Eldrup model. However, one of its largest limitations arises from the simple geometries considered for the shape of the pores, which cannot describe accurately the complex topologies in zeolites. Here, an atomic model that combines the Tao potential with the crystallographic structure is introduced to calculate the distribution and lifetime of Ps intrinsic to a given framework. A parametrization of the model is undertaken for a set of widely applied zeolite framework types (*BEA, FAU, FER, MFI, MOR, UTL), before extending the model to all known structures. The results are compared to structural and topological descriptors, and to the Tao-Eldrup model adapted for zeolites, demonstrating the intricate dependence of the lifetime on the pore architecture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Positron Annihilation Measurements of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Jung, Kang

    1995-01-01

    The temperature dependence of positron annihilation parameters has been measured for basic YBCO, Dy-doped, and Pr-doped superconducting compounds. The physical properties, such as crystal structure, electrical resistance, and critical temperature, have been studied for all samples. In the basic YBCO and Dy-doped samples, the defect -related lifetime component tau_{2 } was approximately constant from room temperature to above the critical temperature and then showed a step -like decrease in the temperature range 90K { ~} 40K. No significant temperature dependence was found in the short- and long-lifetime components, tau_{1} and tau_{3}. The x-ray diffraction data showed that the crystal structure of these two samples was almost the same. These results indicated that the electronic structure changed below the critical temperature. No transition was observed in the Pr-doped YBCO sample. The advanced computer program "PFPOSFIT" for positron lifetime analysis was modified to run on the UNIX system of the University of Utah. The destruction of superconductivity with Pr doping may be due to mechanisms such as hole filling or hole localization of the charge carriers and may be related to the valence state of the Pr ion. One-parameter analyses like the positron mean lifetime parameter and the Doppler line shape parameter S also have been studied. It was found that a transition in Doppler line shape parameter S was associated with the superconducting transition temperature in basic YBCO, Dy -doped, and 0.5 Pr-doped samples, whereas no transition was observed in the nonsuperconducting Pr-doped sample. The Doppler results indicate that the average electron momentum at the annihilation sites increases as temperature is lowered across the superconducting transition range and that electronic structure change plays an important role in high temperature superconductivity.

  17. Photoluminescence and positron annihilation spectroscopic investigation on a H(+) irradiated ZnO single crystal.

    PubMed

    Sarkar, A; Chakrabarti, Mahuya; Sanyal, D; Bhowmick, D; Dechoudhury, S; Chakrabarti, A; Rakshit, Tamita; Ray, S K

    2012-08-15

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H(+) ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a 'hydrogen at oxygen vacancy' type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ∼4 × 10(17) cm(-3) (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ∼175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  18. Nanoporosity studies of novel catalysts through positronium annihilation

    NASA Astrophysics Data System (ADS)

    Félix, M. V.; Rodríguez-Rojas, R. A.; Castañeda-Contreras, J.; Nava, R.; Consolati, G.; Castaño, V. M.

    2006-10-01

    Eight novel hybrid silica gel-succinic acid-zinc acetate samples were analyzed through Positron annihilation lifetime spectroscopy in order to study average free volume quantities and free volume distributions. The aim of this work was to understand the type of porosity within these species and its relationship with surface textural properties (tested by the BET method) and catalytic activity. We found a noticeable dependence of o-Ps lifetimes on the nature of each modifier agent (succinic acid, Zn acetate, succinic acid-Zn acetate) fixed on the surface of SiO 2 and SiO 2-Al 2O 3 particles. We observed the trend of the Zinc acetate to create mesopores among silica particles, while succinic acid acts as a positronium quencher and a nanoporosity performer. Long o-Ps lifetimes were decomposed into two components accounting for the existence of interparticle and intraparticle holes, however discrepancies beyond elementary facts between the BET method measurements and our positronium calculations were found. A discussion of the kind of open spaces analysis necessary to fully understand the porosity in these hybrid materials is also presented.

  19. Free volume of mixed cation borosilicate glass sealants elucidated by positron annihilation lifetime spectroscopy and its correlation with glass properties

    NASA Astrophysics Data System (ADS)

    Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.

    2015-01-01

    The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.

  20. Miscibility and crystallization behavior of poly (3-hydroxybutyrate) and poly (ethylene glycol) blends studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Abdel-Hady, E. E.; Abdel-Hamed, M. O.; Hammam, A. M.

    2011-01-01

    Positron annihilation Lifetime (PAL) spectroscopy has been used to study the effect of PEG concentrations on the free volume properties of PHB. The data revealed that the ortho-positronium (o-Ps) lifetime τPs increases with 20% increase in concentration, decrease as the concentration increases to 40%, then rapid increase at 50% concentration of PEG. The o-Ps intensity, I3, shows a linear dependence as the concentration increases with a discontinuity at 20% concentration of PEG. Furthermore, the results presented and discussed in this work show that the PHB and PEG are miscible up to 40% of PEG but greater than 40%, the blend is immiscible. In addition, the mechanical properties of PHB are well improved by the addition of PEG with a low concentration up to 20%, while at higher concentration the blend becomes waxy.

  1. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-03-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  2. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study.

    PubMed

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-12-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  3. Monolayer dispersion of CoO on Al2O3 probed by positronium atom

    NASA Astrophysics Data System (ADS)

    Liu, Z. W.; Zhang, H. J.; Chen, Z. Q.

    2014-02-01

    CoO/Al2O3 catalysts were prepared by wet impregnation method with CoO contents ranging from 0 wt% to 24 wt%. X-ray diffraction and X-ray photoelectron spectroscopy measurements suggest formation of CoO after calcined in N2. Quantitative X-ray diffraction analysis indicates monolayer dispersion capacity of CoO in CoO/Al2O3 catalysts to be about 3 wt%. Positron annihilation lifetime and coincidence Doppler broadening measurements were performed to study the dispersion state of CoO on Al2O3. The positron lifetime measurements reveal two long lifetime components τ3 and τ4, which correspond to ortho-positronium annihilation lifetime in microvoids and large pores, respectively. It was found that the positronium atom is very sensitive to the dispersion state of CoO on Al2O3. The presence of CoO significantly decreases both the lifetime and the intensity of τ4. Detailed analysis of the coincidence Doppler broadening measurements suggests that with the CoO content lower than the monolayer dispersion, spin conversion reaction of positronium is induced by CoO. When the cobalt content is higher than the monolayer dispersion capacity, inhibition of positronium formation becomes the dominate effect.

  4. Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterne, P A; Pask, J E

    2003-02-13

    Positron annihilation lifetime spectroscopy is a sensitive probe of vacancies and voids in materials. This non-destructive measurement technique can identify the presence of specific defects in materials at the part-per-million level. Recent experiments by Asoka-Kumar et al. have identified two lifetime components in aged plutonium samples--a dominant lifetime component of around 182 ps and a longer lifetime component of around 350-400ps. This second component appears to increase with the age of the sample, and accounts for only about 5 percent of the total intensity in 35 year-old plutonium samples. First-principles calculations of positron lifetimes are now used extensively to guidemore » the interpretation of positron lifetime data. At Livermore, we have developed a first-principles finite-element-based method for calculating positron lifetimes for defects in metals. This method is capable of treating system cell sizes of several thousand atoms, allowing us to model defects in plutonium ranging in size from a mono-vacancy to helium-filled bubbles of over 1 nm in diameter. In order to identify the defects that account for the observed lifetime values, we have performed positron lifetime calculations for a set of vacancies, vacancy clusters, and helium-filled vacancy clusters in delta-plutonium. The calculations produced values of 143ps for defect-free delta-Pu and 255ps for a mono-vacancy in Pu, both of which are inconsistent with the dominant experimental lifetime component of 182ps. Larger vacancy clusters have even longer lifetimes. The observed positron lifetime is significantly shorter than the calculated lifetimes for mono-vacancies and larger vacancy clusters, indicating that open vacancy clusters are not the dominant defect in the aged plutonium samples. When helium atoms are introduced into the vacancy cluster, the positron lifetime is reduced due to the increased density of electrons available for annihilation. For a mono-vacancy in Pu containing one helium atom, the calculated lifetime is 190 ps, while a di-vacancy containing two helium atoms has a positron lifetime of 205 ps. In general, increasing the helium density in a vacancy cluster or He-filled bubble reduces the positron lifetime, so that the same lifetime value can arise fi-om a range of vacancy cluster sizes with different helium densities. In order to understand the variation of positron lifetime with vacancy cluster size and helium density in the defect, we have performed over 60 positron lifetime calculations with vacancy cluster sizes ranging from 1 to 55 vacancies and helium densities ranging fi-om zero to five helium atoms per vacancy. The results indicate that the experimental lifetime of 182 ps is consistent with the theoretical value of 190 ps for a mono-vacancy with a single helium atom, but that slightly better agreement is obtained for larger clusters of 6 or more vacancies containing 2-3 helium atoms per vacancy. For larger vacancy clusters with diameters of about 3-5 nm or more, the annihilation with helium electrons dominates the positron annihilation rate; the observed lifetime of 180ps is then consistent with a helium concentration in the range of 3 to 3.5 Hehacancy, setting an upper bound on the helium concentration in the vacancy clusters. In practice, the single lifetime component is most probably associated with a family of helium-filled bubbles rather than with a specific unique defect size. The longer 350-400ps lifetime component is consistent with a relatively narrow range of defect sizes and He concentration. At zero He concentration, the lifetime values are matched by small vacancy clusters containing 6-12 vacancies. With increasing vacancy cluster size, a small amount of He is required to keep the lifetime in the 350-400 ps range, until the value saturates for larger helium bubbles of more than 50 vacancies (bubble diameter > 1.3 nm) at a helium concentration close to 1 He/vacancy. These results, taken together with the experimental data, indicate that the features observed in TEM data by Schwartz et al are not voids, but are in fact helium-filled bubbles with a helium pressure of around 2-3 helium atoms per vacancy, depending on the bubble size. This is consistent with the conclusions of recently developed models of He-bubble growth in aged plutonium.« less

  5. Positron Annihilation in Polycrystalline Silver Samples Subjected to the Stretching Force

    NASA Astrophysics Data System (ADS)

    Pajak, J.; Rudzińska, W.; Pietrzak, R.; Szymański, Cz.; Smiatek, W.

    Angular distributions of the positron annihilation quanta, positron lifetime and resistivity were measured for polycrystalline silver samples deformed by uniaxial tension up to different deformation degrees. The S parameter as a function of deformation degree of the sample has been determined. The data obtained for silver samples elongated up to different elongation degrees indicate the dominant role of vacancies and larger defects type clusters created during the deformation process. The positron annihilation data are corrob-orated by results obtained by resistivity measurements.

  6. Positron annihilation study of Y 1- xPr xBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Zhao, Y. G.; Cao, B. S.; Yu, W. Z.; Du, Z. H.; Wang, Y. J.; Luo, C. Y.; Hu, H.; Wang, S.; Yang, J. H.; He, A. S.; Gu, B. L.

    1995-02-01

    A positron annihilation study of Y 1- xPr xBa 2Cu 3O 7 was performed. The results showed that charge transfer between the CuO 2 planes and 1D CuO chains upon Pr doping, as proposed in the literature, did not occur. Pr doping suppressed the anomaly of positron annihilation lifetime near and below Tc which has been observed in YBa 2Cu 3O 7. The perfection of the 1D CuO chains was reduced by Pr doping and this may be partly responsible for the increase of resistivity with Pr doping, and finally the semiconducting behaviour of DC resistivity in Y 1- xPr xBa 2Cu 3O 7 with x > 0.6.

  7. Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Longo Proper, M.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zhou, H.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV–100 TeV gamma-rays and cosmic rays. It can also perform diverse indirect searches for dark matter annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma-rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma-rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the field of view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC. We also present the HAWC flux upper limits of the 15 dwarf spheroidal galaxies in half-decade energy bins.

  8. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Li, Ying; Liu, Gaung; Chen, Hongmin; Zhang, Junjie; Gadzia, Joseph E.

    2006-02-01

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.

  9. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghoshal, Tandra; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra; Nambissan, P. M. G.

    2008-02-01

    Zinc oxide (ZnO) samples in the form of hexagonal-based bipyramids and particles of nanometer dimensions were synthesized through solvothermal route and characterized by x-ray diffraction and transmission electron microscopy. Positron annihilation experiments were performed to study the structural defects such as vacancies and surfaces in these nanosystems. From coincidence Doppler broadening measurements, the positron trapping sites were identified as Zn vacancies or Zn-O-Zn trivacancy clusters. The positron lifetimes, their relative intensities, and the Doppler broadened lineshape parameter S all showed characteristic changes across the nanobipyramid size corresponding to the thermal diffusion length of positrons. In large nanobipyramids, vacancies within the crystallites also trapped positrons and the effects of agglomeration of such vacancies due to increased temperatures of synthesis were reflected in the variation of the annihilation parameters with their base diameters. The sizes of the nanoparticles used were all in the limit of thermal diffusion length of positrons and the annihilation characteristics were in accordance with the decreasing contribution from surfaces with increasing particle size.

  10. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles.

    PubMed

    Ghoshal, Tandra; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra; Nambissan, P M G

    2008-02-21

    Zinc oxide (ZnO) samples in the form of hexagonal-based bipyramids and particles of nanometer dimensions were synthesized through solvothermal route and characterized by x-ray diffraction and transmission electron microscopy. Positron annihilation experiments were performed to study the structural defects such as vacancies and surfaces in these nanosystems. From coincidence Doppler broadening measurements, the positron trapping sites were identified as Zn vacancies or Zn-O-Zn trivacancy clusters. The positron lifetimes, their relative intensities, and the Doppler broadened lineshape parameter S all showed characteristic changes across the nanobipyramid size corresponding to the thermal diffusion length of positrons. In large nanobipyramids, vacancies within the crystallites also trapped positrons and the effects of agglomeration of such vacancies due to increased temperatures of synthesis were reflected in the variation of the annihilation parameters with their base diameters. The sizes of the nanoparticles used were all in the limit of thermal diffusion length of positrons and the annihilation characteristics were in accordance with the decreasing contribution from surfaces with increasing particle size.

  11. Annihilation of positronium atoms confined in mesoporous and macroporous SiO2 films

    NASA Astrophysics Data System (ADS)

    Cooper, B. S.; Boilot, J.-P.; Corbel, C.; Guillemot, F.; Gurung, L.; Liszkay, L.; Cassidy, D. B.

    2018-05-01

    We report experiments in which positronium (Ps) atoms were created in thin, porous silica films containing isolated voids with diameters ranging from 5 to 75 nm. Ps lifetimes in the pore structures were measured directly via time-delayed laser excitation of 13S1→23PJ transitions. In a film containing 5-nm pores Ps was predominantly emitted into vacuum, with a small component of confined Ps with a lifetime of 75 ns also observed. In films with larger pores Ps atoms were not emitted into vacuum except from the film surface, and confined Ps lifetimes of ≈90 ns were measured with no dependence on the pore size. However, for such large pores, extended Tao-Eldrup (ETE)-type models predict Ps lifetimes close to the 142-ns vacuum value. Moreover, 13S1→23PJ excitation of Ps atoms inside the pores was found to result in annihilation and exhibited an extremely broad (≈10 THz) linewidth. We attribute these observations to a process in which nonthermal Ps atoms in the isolated voids become temporarily trapped in a series of surface states that dissociate following excitation. The occurrence of this mechanism is not necessarily apparent from ground-state Ps decay rates without some prior knowledge of the sample structure, and it precludes the application of ETE-type models as they do not take into account surface interactions other than pickoff annihilation.

  12. Positron annihilation in the high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bulbul

    1989-01-01

    A model for positron annihilation in the high-Tc oxides is constructed based on the strongly correlated nature of the electrons in these systems. It is shown that the change in positron lifetime as a function of temperature in superconducting, nearly defect-free YBa2Cu3O7 and La1.85Sr0.15CuO4 can be understood on the basis of this model assuming that real hole-pair formation takes place in the superfluid state. The observed positron-lifetime changes in YBa2Cu3O7-x as a function of x is also found to be consistent with this model.

  13. Reaction of positronium with doped ions in silica-based glasses in the size determination of subnanometer structural open spaces

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Kataoka, H.; Nagai, Y.; Hasegawa, M.; Kobayashi, Y.

    2013-10-01

    Positron annihilation spectroscopy is employed to estimate the size of subnanometer-scale open spaces in insulating materials. In most cases, the size is estimated from the lifetime of long-lived ortho-positronium (o-Ps) by pickoff annihilation using a simplified model. However, reactions of Ps with surrounding electrons other than the pickoff reaction, such as spin conversion or chemical reaction, could give a substantially underestimated size using the simplified model. In the present paper, we report that the size of the open spaces can be evaluated correctly by the angular correlation of positron annihilation radiation (ACAR) with a magnetic field using the spin-polarization effect on Ps formation, even if such reactions of Ps occur in the material. This method is applied to the subnanometer-scale structural open spaces of silica-based glass doped with Fe. We demonstrate the influence of the Ps reaction on size-estimation of the open spaces from the o-Ps lifetime. Furthermore, the type of reaction, whether spin conversion or chemical, is distinguished from the magnetic field dependence of the Ps self-annihilation component intensity in the ACAR spectra. The Ps reaction in silica-based glass doped with Fe is a chemical reaction (most likely oxidation) rather than spin conversion, with Fe ions. The chemical quenching rate with Fe ions is determined from the dependence of the o-Ps lifetime on the Fe content.

  14. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixedmore » in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.« less

  15. Probing vacancy-type free-volume defects in Li2B4O7 single crystal by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shpotyuk, O.; Adamiv, V.; Teslyuk, I.; Ingram, A.; Demchenko, P.

    2018-01-01

    Vacancy-type free-volume defects in lithium tetraborate Li2B4O7 single crystal, grown by the Czochralski technique, are probed with positron annihilation spectroscopy in the lifetime measuring mode. The experimental positron lifetime spectrum is reconstructed within the three-component fitting, involving channels of positron and positronium Ps trapping, as well as within the two-component fitting with a positronium-compensating source input. Structural configurations of the most efficient positron traps are considered using the crystallographic specificity of lithium tetraborate with the main accent on cation-type vacancies. Possible channels of positron trapping are visualized using the electronic structure calculations with density functional theory at the basis of structural parameters proper to Li2B4O7. Spatially-extended positron-trapping complexes involving singly-ionized lithium vacancies, with character lifetime close to 0.32 ns, are responsible for positron trapping in the nominally undoped lithium tetraborate Li2B4O7 crystal.

  16. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  17. Positron annihilation spectroscopy investigation of vacancy defects in neutron-irradiated 3 C -SiC

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Katoh, Yutai; ...

    2017-03-10

    We described positron annihilation spectroscopy characterization results for neutron-irradiated 3 C -SiC, with a specific focus on explaining the size and character of vacancy clusters as a complement to the current understanding of the neutron irradiation response of 3 C -SiC. Positron annihilation lifetime spectroscopy was used to capture the irradiation temperature and dose dependence of vacancy defects in 3 C -SiC following neutron irradiation from 0.01 to 31 dpa in the temperature range from 380C °to 790C .° The neutral and negatively charged vacancy clusters were identified and quantified. The results suggest that the vacancy defects that were measuredmore » by positron annihilation spectroscopy technique contribute very little to the transient swelling of SiC. Additionally, we used coincidence Doppler broadening measurement to investigate the chemical identity surrounding the positron trapping sites.Finally, we found that silicon vacancy-related defects dominate in the studied materials and the production of the antisite defect C Si may result in an increase in the probability of positron annihilation with silicon core electrons.« less

  18. Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay

    NASA Astrophysics Data System (ADS)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.

    2014-04-01

    A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).

  19. Probing the amphiphile micellar to hexagonal phase transition using Positron Annihilation Lifetime Spectroscopy.

    PubMed

    Dong, Aurelia W; Fong, Celesta; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2013-07-15

    Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Systematics in position annihilation lifetime analysis of high T c superconducting transitions

    NASA Astrophysics Data System (ADS)

    Howell, R. H.; Radousky, H. B.; Wachs, A. L.; Fluss, M. J.; Turchi, P. E. A.; Jean, Y. C.; Sundar, C. S.; Chu, C. W.; Peng, J. L.; Folkerts, T. J.; Shelton, R. N.; Hinks, D. G.

    1989-12-01

    Values of the positron lifetime have previously been observed to change with temperature below T c in high T c superconducting oxides. We report new measurements on Ba .6K .4BiO 3 and Nd 1.85Ce .15CuO 4.

  1. Gadolinium substitution induced defect restructuring in multiferroic BiFeO3: case study by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.

    2013-12-01

    Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.

  2. Porous glasses as a matrix for incorporation of photonic materials. Pore determination by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Reisfeld, Pore determination by positron annihilation lifetime spectroscopy R.; Saraidarov, T.; Jasinska, B.

    2004-07-01

    Porous glasses prepared by the sol-gel technique have a variety of applications when incorporated by photonic materials: tunable lasers, sensors, luminescence solar concentrators, semiconductor quantum dots, biological markers. The known methods of pore size determinations, the nitrogen adsorption and mercury porosimetry allow to determine the sizes of open pores. Positron annihilation lifetime spectroscopy (PALS) allows to determine pore sizes also of closed pores. As an example we have performed measurements of non-doped zirconia-silica-polyurethane (ZSUR) ormocer glasses and the same glasses doped with lead sulfide quantum dots. The pore radii range between 0.25-0.38 nm, total surface area 15.5-23.8 m 2/g.

  3. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, B D; Asoka-Kumar, P; Howell, R H

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs andmore » VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime ({approx}500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.« less

  4. Lifetime of excess electrons in Cu–Zn–Sn–Se powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, G. F., E-mail: ngf@icp.ac.ru; Gapanovich, M. V.; Gremenok, V. F.

    2017-01-15

    The method of time-resolved microwave photoconductivity at a frequency of 36 GHz in the range of temperatures of 200–300 K is used to study the kinetics of the annihilation of charge carriers in Cu–Zn–Sn–Se powders obtained by the solid-phase method of synthesis in cells. The lifetime of excess electrons at room temperature is found to be shorter than 5 ns. The activation energy for the process of recombination amounted to E{sub a} ~ 0.054 eV.

  5. Positron Interactions with Oriented Polymers and with Chiral Quartz Crystals

    NASA Astrophysics Data System (ADS)

    Wu, Fei

    Positron annihilation in various materials has been applied to characterize microstructure for decades. In this work, PALS was used to study material nanostructure, with a focus on the size and density of free volume and hole relaxation properties in polycarbonate (PC) and polymethylmethacrylate (PMMA); fundamental studies of polarized positron interaction with chiral crystals were also studied. Free volume relaxation in PC and PMMA with different levels of simple shear orientation was studied by PALS. Effects of applied pressure on the free volume recovery were evaluated. Combining the bulk- and pressure-dependent PALS analyses, the removal of applied pressure led to free-volume relaxation in all samples studied. The alignment of the polymer chains and free-volume holes imposes molecular restrictions on the molecular mobility of both PC and PMMA in their glassy states. Results indicated that the relaxation of the free volume holes at temperatures below glass transition is mostly reversible. Longitudinally polarized positron particles were used to reveal asymmetric interactions in chiral quartz crystals. Experimental results showed a significant intensity difference in free positronium annihilation for left handed (LH) and right handed (RH) chiral quartz crystals. Doppler broadening energy spectra (DBES) of z-cut LH or RH quartz disks at different angles were also measured by an "S parameter" to probe the observed difference. It was found that obtained annihilation energy difference of DBES was in agreement with the result of positron annihilation in bulk chiral crystals. PALS was used to compare different orientations and confirm asymmetric interactions in natural versus synthetic quartz LH and RH crystals in z and non-z orientations. Significant lifetime and intensity differences in free positronium annihilation for LH and RH quartz crystals were observed. The trend was found to be same in the related crystallographic orientations of the LH or RH crystals; the direction of incident positrons, z or non-z, did not affect the observed differences in lifetime and intensity trends. The results confirmed the existence of differential interactions of positronium with the asymmetric lattice structures of LH and RH quartz crystals.

  6. Positron Annihilation Gamma Ray Lineshape Studies of Defects in Solids.

    DTIC Science & Technology

    1980-06-24

    of R. Waki in the development of anneal probably polygonized the zinc more completely the computer programs and for other experimental than did the...positron lifetime measurements. The assistance of R. Waki was greatly appreciated. References /1/ B.D. BOGGS and J.G. BYRNE, Metallurg.Trans. 4, 2153

  7. Defect studies in copper-based p-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt to study the effect of the size of the MIII cation in the delafossites starting from Cu2O. Comparison of the formation energies between Cu2O and delafossite oxides clearly showed that the equilibrium concentration of the vacancies depended strongly on the structural parameters varied by the presence of different MIII cations. In particular, the size of the MIII cation greatly influenced the defect formation energies of VCu. It was observed from our calculations, as the size increases the formation energy decreases.

  8. Positron Spectroscopy of Nanodiamonds after Hydrogen Sorption

    PubMed Central

    Laptev, Roman; Abzaev, Yuri; Lider, Andrey; Ivashutenko, Alexander

    2018-01-01

    The structure and defects of nanodiamonds influence the hydrogen sorption capacity. Positronium can be used as a sensor for detecting places with the most efficient capture of hydrogen atoms. Hydrogenation of carbon materials was performed from gas atmosphere. The concentration of hydrogen absorbed by the sample depends on the temperature and pressure. The concentration 1.2 wt % is achieved at the temperature of 243 K and the pressure of 0.6 MPa. The hydrogen saturation of nanodiamonds changes the positron lifetime. Increase of sorption cycle numbers effects the positron lifetime, as well as the parameters of the Doppler broadening of annihilation line. The electron-positron annihilation being a sensitive method, it allows detecting the electron density fluctuation of the carbon material after hydrogen saturation. PMID:29324712

  9. Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms

    NASA Astrophysics Data System (ADS)

    Lin, Hou-Yu; Hsu, Hsu Chen; Lu, I.-Chung; Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2014-10-01

    Matrix-assisted laser desorption ionization (MALDI) has been widely used in the mass analysis of biomolecules; however, there are a lot of debates about the ionization mechanisms. Previous studies have indicated that S1-S1 annihilation might be a key process in the generation of primary ions. This study investigates S1-S1 annihilation by examining the time-resolved fluorescence spectra of 12 matrices. No S1-S1 annihilation was observed in six of these matrices (3-hydroxy-picolinic acid, 6-aza-2-thiothymine, 2,4-dihydroxy-acetophenone, 2,6-dihydroxy-acetophenone, 2,4,6-trihydroxy-acetophenone, and ferulic acid). We observed two matrix molecules reacting in an electronically excited state (S1) in five of these matrices (2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxy-acetophenone, 2,3-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid), and S1-S1 annihilation was a possible reaction. Among these five matrices, no S1-S1 annihilation was observed for 2,3-dihydroxybenzoic acid in typical peak power region of nanosecond laser pulses in MALDI, but a very small value of reaction rate constant was observed only in the high peak power region. The excited-state lifetime of sinapinic acid was too short to determine whether the molecules reacted in an electronically excited state. No correlation was observed between the ion generation efficiency of MALDI and S1-S1 annihilation. The results indicate that the proposal of S1-S1 annihilation is unnecessary in MALDI and energy pooling model for MALDI ionization mechanism has to be modified.

  10. Antimatter rockets and interstellar propulsion

    NASA Astrophysics Data System (ADS)

    Cassenti, B. N.

    1993-06-01

    Propulsions systems based on the annihilation of matter can not only open up the solar system for human colonization but can reach the nearer stars. The nearest star to the sun, Alpha-Centauri C, is four light years distant (about 40 trillion km). Completing round trips to the nearer stars within the working lifetime of the crew will require velocities in excess of 20 percent of the speed of light. Of the rockets being considered today only rockets based on the annihilation of mass can complete these interstellar missions. This paper reviews the special theory of relativity and mass annihilation rockets and demonstrate the potential performance of antimatter rockets.

  11. Measurement of positron annihilation lifetimes for positron burst by multi-detector array

    NASA Astrophysics Data System (ADS)

    Wang, B. Y.; Kuang, P.; Liu, F. Y.; Han, Z. J.; Cao, X. Z.; Zhang, P.

    2018-03-01

    It is currently impossible to exploit the timing information in a gamma-ray pulse generated within nanoseconds when a high-intensity positron burst annihilation event occurs in a target using conventional single-detector methods. A state-of-the-art solution to the problem is proposed in this paper. In this approach, a multi-detector array composed of many independent detection cells mounted spherically around the target is designed to detect the time distribution of the annihilated gamma rays generated following, in particular, a positron burst emitting huge amounts of positrons in a short pulse duration, even less than a few nano- or picoseconds.

  12. Positron Annihilation and Complementary Studies of Copper Sandblasted with Alumina Particles at Different Pressures

    PubMed Central

    Horodek, Paweł; Dryzek, Jerzy; Wróbel, Mirosław

    2017-01-01

    Positron annihilation spectroscopy and complementary methods were used to detect changes induced by sandblasting of alumina particles at different pressures varying from 1 to 6 bar in pure well-annealed copper. The positron lifetime measurements revealed existence of dislocations and vacancy clusters in the adjoined surface layer. The presence of retained alumina particles in the copper at the depth below 50 µm was found in the SEM pictures and also in the annihilation line shape parameter profiles measured in the etching experiment. The profiles show us that the total depth of damaged zones induced by sandblasting of alumina particles ranges from 140 µm up to ca. 800 µm and it depends on the applied pressure. The work-hardening of the adjoined surface layer was found in the microhardness measurements at the cross-section of the sandblasted samples. PMID:29168749

  13. Understanding the effect of nanoporosity on optimizing the performance of self-healing materials for anti-corrosion applications

    NASA Astrophysics Data System (ADS)

    Sellaiyan, S.; Smith, S. V.; Hughes, A. E.; Miller, A.; Jenkins, D. R.; Uedono, A.

    2011-01-01

    The chromate-based epoxy primer film was prepared on glass and metal surfaces using various graded doctor blades. The quality and consistency of the films was assessed using scanning electron microscopy and the porosity within the film characterized by positron annihilation lifetime spectroscopy. The positron lifetime (τ) distribution for the epoxy polymer matrix was resolved using the CONTIN program. The free volume was found from the ortho-positronium component. The optimum thickness for the films was established for future structure/activity studies.

  14. Model Studies of CBES Decomposition (FN3/BiF Chemical Laser)

    DTIC Science & Technology

    1990-10-01

    Schatte G.; Willer, H . Chm. Be,. (43) Heidner. R. F.; Helvajian H .. Hoflaway. J. S.: Koffend. J. 8. BiF(A) 196 121, 555. Radiative Lifetimes and Rate...of Physical Chemistry, vol. 93, pp. 4790-4796, 1989. 3. R.H. Heidner, H . Helvajian , 3.S. Holloway, and 3.B. Koffend, "BiF(A) Radiative Lifetimes and...Hd [FN I + H k [NF(a)I 2 (3) dt 3 q q 6 where kd and kq are the dissociation and self-annihilation (quenching) rate constants, To is the barrier

  15. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    NASA Astrophysics Data System (ADS)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  16. Positron accumulation effect in particles embedded in a low-density matrix

    NASA Astrophysics Data System (ADS)

    Dryzek, Jerzy; Siemek, Krzysztof

    2015-02-01

    Systematic studies of the so-called positron accumulation effect for samples with particles embedded in a matrix are reported. This effect is related to energetic positrons which penetrate inhomogeneous medium. Due to differences in the linear absorption coefficient, different amounts of positrons are accumulated and annihilate in the identical volume of both materials. Positron lifetime spectroscopy and Doppler broadening of the annihilation line using Na-22 positrons were applied to the studies of the epoxy resin samples with embedded micro-sized particles of transition metals, i.e., Ni, Sn, Mo, W, and nonmetal particles, i.e., Si and NaF. The significant difference between the determined fraction of positrons annihilating in the particles and the particle volume fraction indicates the positron accumulation effect. The simple phenomenological model and Monte Carlo simulations are able to describe the main features of the obtained dependencies. The aluminum alloy with embedded Sn nanoparticles is also considered for demonstration differences between the accumulation and another related effect, i.e., the positron affinity.

  17. Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hou-Yu; Hsu, Hsu Chen; Lu, I-Chung

    2014-10-28

    Matrix-assisted laser desorption ionization (MALDI) has been widely used in the mass analysis of biomolecules; however, there are a lot of debates about the ionization mechanisms. Previous studies have indicated that S{sub 1}-S{sub 1} annihilation might be a key process in the generation of primary ions. This study investigates S{sub 1}-S{sub 1} annihilation by examining the time-resolved fluorescence spectra of 12 matrices. No S{sub 1}-S{sub 1} annihilation was observed in six of these matrices (3-hydroxy-picolinic acid, 6-aza-2-thiothymine, 2,4-dihydroxy-acetophenone, 2,6-dihydroxy-acetophenone, 2,4,6-trihydroxy-acetophenone, and ferulic acid). We observed two matrix molecules reacting in an electronically excited state (S{sub 1}) in five of thesemore » matrices (2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxy-acetophenone, 2,3-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid), and S{sub 1}-S{sub 1} annihilation was a possible reaction. Among these five matrices, no S{sub 1}-S{sub 1} annihilation was observed for 2,3-dihydroxybenzoic acid in typical peak power region of nanosecond laser pulses in MALDI, but a very small value of reaction rate constant was observed only in the high peak power region. The excited-state lifetime of sinapinic acid was too short to determine whether the molecules reacted in an electronically excited state. No correlation was observed between the ion generation efficiency of MALDI and S{sub 1}-S{sub 1} annihilation. The results indicate that the proposal of S{sub 1}-S{sub 1} annihilation is unnecessary in MALDI and energy pooling model for MALDI ionization mechanism has to be modified.« less

  18. Influence of O-Co-O layer thickness on the thermal conductivity of Na{sub x}Co{sub 2}O{sub 4} studied by positron annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H. Q.; Zhao, B.; Zhang, T.

    2015-07-21

    Nominal stoichiometric Na{sub x}Co{sub 2}O{sub 4} (x = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0) polycrystals were synthesized by a solid-state reaction method. They were further pressed into pellets by the spark plasma sintering. The crystal structure and morphology of Na{sub x}Co{sub 2}O{sub 4} samples were characterized by X-ray diffraction and scanning electron microscopy measurements. Good crystallinity and layered structures were observed for all the samples. Positron annihilation measurements were performed for Na{sub x}Co{sub 2}O{sub 4} as a function of Na content. Two lifetime components are resolved. τ{sub 1} is attributed mainly to positron annihilation in the O-Co-O layers and shifts tomore » Na layers only in the H3 phase. The second lifetime τ{sub 2} is due to positron annihilation in vacancy clusters which may exist in the Na layers or grain boundary region. The size of vacancy clusters grow larger but their concentration decreases with increasing Na content in the range of 1.0 < x < 1.8. The thickness of O-Co-O layer also shows continuous increase with increasing Na content, which is reflected by the increase of τ{sub 1}. The thermal conductivity κ, on the other hand, shows systematic decrease with increasing Na content. This suggests that the increasing spacing of O-Co-O layer could effectively reduce the thermal conductivity of Na{sub x}Co{sub 2}O{sub 4}.« less

  19. Femtosecond to nanosecond excited state dynamics of vapor deposited copper phthalocyanine thin films.

    PubMed

    Caplins, Benjamin W; Mullenbach, Tyler K; Holmes, Russell J; Blank, David A

    2016-04-28

    Vapor deposited thin films of copper phthalocyanine (CuPc) were investigated using transient absorption spectroscopy. Exciton-exciton annihilation dominated the kinetics at high exciton densities. When annihilation was minimized, the observed lifetime was measured to be 8.6 ± 0.6 ns, which is over an order of magnitude longer than previous reports. In comparison with metal free phthalocyanine (H2Pc), the data show evidence that the presence of copper induces an ultrafast relaxation process taking place on the ca. 500 fs timescale. By comparison to recent time-resolved photoemission studies, this is assigned as ultrafast intersystem crossing. As the intersystem crossing occurs ca. 10(4) times faster than lifetime decay, it is likely that triplets are the dominant excitons in vapor deposited CuPc films. The exciton lifetime of CuPc thin films is ca. 35 times longer than H2Pc thin films, while the diffusion lengths reported in the literature are typically quite similar for the two materials. These findings suggest that despite appearing to be similar materials at first glance, CuPc and H2Pc may transport energy in dramatically different ways. This has important implications on the design and mechanistic understanding of devices where phthalocyanines are used as an excitonic material.

  20. Spin conversion of positronium in NiO/Al2O3 catalysts observed by coincidence Doppler broadening technique

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Chen, Z. Q.; Wang, S. J.; Kawasuso, A.; Morishita, N.

    2010-07-01

    High-purity NiO/Al2O3 catalysts were prepared by mixing NiO and γ-Al2O3 nanopowders. X-ray diffraction patterns were measured to characterize the grain size and crystalline phase of the nanopowders. Positron-annihilation spectroscopy was used to study the microstructure and surface properties of the pores inside the NiO/Al2O3 catalysts. The positron lifetime spectrum comprises two short and two long lifetime components. The two long lifetimes τ3 and τ4 correspond to ortho-positronium (o-Ps) annihilated in microvoids and large pores, respectively. With increasing NiO content in the NiO/Al2O3 catalysts, both τ4 and its intensity I4 show continuous decrease. Meanwhile, the para-positronium (p-Ps) intensity, obtained from coincidence Doppler broadening spectra, increases gradually with NiO content. The different variation in o-Ps and p-Ps intensity suggests the ortho-para conversion of positronium in NiO/Al2O3 catalysts. X-ray photoelectron spectroscopy shows that Ni mainly exists in the form of NiO. The electron-spin-resonance measurements reveal that the ortho-para conversion of Ps is induced by the unpaired electrons of the paramagnetic centers of NiO.

  1. Positron Lifetime Modulation by Electric Field Induced Positronium Formation on a Gold Surface

    DTIC Science & Technology

    2012-03-22

    Angular Momentum (3) ......................................................................... 11 Stopping Power (4...isotope from which it was born, diffused into the material before annihilation occurred. 6 The radioisotope used in this experiment is Na-22 which...that positrons may be useful in studying the internal structure of a wide variety of materials. The radioisotope positron source used in this

  2. Application of positron annihilation lifetime spectroscopy (PALS) to study the nanostructure in amphiphile self-assembly materials: phytantriol cubosomes and hexosomes.

    PubMed

    Dong, Aurelia W; Fong, Celesta; Waddington, Lynne J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-01-21

    Self-assembled amphiphile nanostructures of colloidal dimensions such as cubosomes and hexosomes are of interest as delivery vectors in pharmaceutical and nanomedicine applications. Translation would be assisted through a better of understanding of the effects of drug loading on the internal nanostructure, and the relationship between this nanostructure and drug release profile. Positron annihilation lifetime spectroscopy (PALS) is sensitive to local microviscosity and is used as an in situ molecular probe to examine the Q2 (cubosome) → H2 (hexosome) → L2 phase transitions of the pharmaceutically relevant phytantriol-water system in the presence of a model hydrophobic drug, vitamin E acetate (VitEA). It is shown that the ortho-positronium lifetime (τ) is sensitive to molecular packing and mobility and this has been correlated with the rheological properties of individual lyotropic liquid crystalline mesophases. Characteristic PALS lifetimes for L2 (τ4∼ 4 ns) ∼ H2 (τ4∼ 4 ns) > Q(2 Pn3m) (τ4∼ 2.2 ns) are observed for the phytantriol-water system, with the addition of VitEA yielding a gradual increase in τ from τ∼ 2.2 ns for cubosomes to τ∼ 3.5 ns for hexosomes. The dynamic chain packing at higher temperatures and in the L2 and H2 phases is qualitatively less "viscous", consistent with rheological measurements. This information offers increased understanding of the relationship between internal nanostructure and species permeability.

  3. Surfaces of nanomaterials for sustainable energy applications: thin-film 2D-ACAR and PALS studies

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Chai, L.; Al-Sawai, W.; Eijt, S. W. H.; Mijnarends, P. E.; Schut, H.; Gao, Y.; Houtepen, A. J.; Ravelli, L.; Egger, W.; van Huis, M. A.; Bansil, A.

    2013-03-01

    Positron (e+) annihilation spectroscopy is one of only a few techniques to probe the surfaces of nanoparticles. We investigated thin films of PbSe colloidal semiconductor nanocrystals (NCs) in the range 2-10 nm as prospective highly efficient absorbers for solar cells. We compare and contrast our findings with previous studies on CdSe NCs. Evidence obtained from our e+ lifetime spectroscopy study using the PLEPS spectrometer shows that 90-95% of the implanted positrons are effectively trapped and confined at the surfaces of these NCs. The remaining 5-10% of the e+ annihilate in the relatively large oleic acid ligands, in fair agreement with the estimated positron stopping power of the PbSe nanoparticle ``core'' relative to the ligand ``shell.'' 2D-ACAR measurements on the same set of films using the low-energy e+ beam POSH showed that the e+ wavefunction at the surfaces of the PbSe NCs is more localized than for the case of CdSe NCs. Comparison with calculated e+ - e- momentum densities indicates a Pb deficiency at the surfaces of the PbSe NCs, which correlates with e+ lifetime and the NCs morphology. Work supported in part by the US Department of Energy.

  4. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  5. Exploiting the benefit of S0 → T1 excitation in triplet-triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2'-bipyridine) osmium(ii) complex.

    PubMed

    Liu, Dongyi; Zhao, Yingjie; Wang, Zhijia; Xu, Kejing; Zhao, Jianzhang

    2018-03-07

    Os(ii) complexes are particularly interesting for triplet-triplet annihilation (TTA) upconversion, due to the strong direct S 0 → T 1 photoexcitation, as in this way, energy loss is minimized and large anti-Stokes shift can be achieved for TTA upconversion. However, Os(bpy) 3 has an intrinsic short T 1 state lifetime (56 ns), which is detrimental for the intermolecular triplet-triplet energy transfer (TTET), one of the crucial steps in TTA upconversion. In order to prolong the triplet state lifetime, we prepared an Os(ii) tris(bpy) complex with a Bodipy moiety attached, so that an extended T 1 state lifetime is achieved by excited state electronic configuration mixing or triplet state equilibrium between the coordination center-localized state ( 3 MLCT state) and Bodipy ligand-localized state ( 3 IL state). With steady-state and time-resolved transient absorption/emission spectroscopy, we proved that the 3 MLCT is slightly above the 3 IL state (by 0.05 eV), and the triplet state lifetime was prolonged by 31-fold (from 56 ns to 1.73 μs). The TTA upconversion quantum yield was increased by 4-fold as compared to that of the unsubstituted Os(ii) complex.

  6. Positron Annihilation Spectroscopy during physical aging of carbon-black filled rubber composites

    NASA Astrophysics Data System (ADS)

    Jobando, Vincent; Wang, Jingyi; Quarles, C. A.

    2004-10-01

    We have used positron annihilation spectroscopy to investigate the relaxation behavior of vulcanized and un-vulcanized rubber-carbon black composites. The samples were studied at temperatures above their glassy transitions. Changes in o-Ps intensity and S-parameter are indicative of the structural relaxation process. We have found that at room temperature, both vulcanized and un-vulcanized rubber showed no changes after ageing for about two months. While within the same period, un-vulcanized samples heated at 60^oC and allowed to age at room -temperature showed a decrease in o-Ps intensity and S-parameter. The o-Ps lifetime also decreased after this heat treatment for the un-vulcanized samples while the vulcanized ones remained unchanged. The changes seen were reversible however when we stopped heating the samples. We proposed that heat disordered the system and on cooling, rubber molecules formed more ordered regions, which we interpreted as crystallization. Vulcanized samples remained unchanged. We also found out that free volume decreases during physical deformation of pure rubber, but rubber with carbon black showed a significant rise in free volume. The lifetimes however remained unchanged.

  7. Tracking of the micro-structural changes of levonorgestrel-releasing intrauterine system by positron annihilation lifetime spectroscopy.

    PubMed

    Patai, Kálmán; Szente, Virág; Süvegh, Károly; Zelkó, Romána

    2010-12-01

    The morphology and the micro-structural changes of levonorgestrel-releasing intrauterine systems (IUSs) were studied in relation to the duration of their application. The morphology of the removed IUSs was examined without pre-treatment by scanning electron microscopy. The micro-structural changes of the different layers of IUSs were tracked by positron annihilation lifetime spectroscopy. Besides the previously found incrustation formation, the free volume of the hormone containing reservoir was remarkably increased after 3 years of application, thus increasing the real volume of the core of the systems. Although the free volume of the membrane encasing the core was not significantly changed in the course of the application, as a result of the core expansion, microcracks could be formed on the membrane surface. Along these cracks, deposits of different compositions can be formed, causing inflammatory complications and influencing the drug release of IUSs. Stability tests in combination with micro-structural screening of such IUSs could be required during their development phase to avoid the undesired side effects. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Positron annihilation studies of vacancy related defects in ceramic and thin film Pb(Zr,Ti)O3 materials

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Krishnan, A.; Umlor, M. T.; Lynn, K. G.; Warren, W. L.; Dimos, D.; Tuttle, B. A.

    Preliminary positron annihilation studies of ceramic and thin film Pb(Zr,Ti)O3 (PZT) materials have been completed. This paper examines effects of processing conditions on vacancy related defects. Positron lifetime measurements on bulk PLZT plates showed an increase in positron trapping to a defect state with increasing grain size consistent with trapping to lead vacancy related defects formed through lead oxide loss during processing. Variable energy positron beam measurements were completed on bulk PLZT plates, sol-gel PZT thin films, and laser ablated PLZT thin films. Films processed in a reduced oxygen atmosphere were found to give a higher S-parameter, due to an increase in concentration of neutral or negatively charged vacancy type defects, compared with material processed in an oxidizing ambient.

  9. Inhibition and quenching effect on positronium formation in metal salt doped polymer blend

    NASA Astrophysics Data System (ADS)

    Praveena, S. D.; Ravindrachary, V.; Ismayil, Bhajantri, R. F.; Harisha, A.; Guruswamy, B.; Hegde, Shreedatta; Sagar, Rohan N.

    2018-04-01

    Sodium Bromide (NaBr) doped PVA/PVP (50:50) polymer blend composites were prepared using solution casting technique. Pure PVA/PVP blend and PVA/PVP:NaBr composites were studied using XRD and Positron Annihilation Lifetime Spectroscopy (PALS). XRD study shows increase in amorphous nature of the blend due to the NaBr dopant and PALS studies reveal that the o-Ps lifetime (τ3) and intensity (I3) decreases with increase in NaBr doping level. This shows chemical quenching and inhibition process of positronium (Ps) formation in the composite. Here the electron acceptor (Br-) acts as a strong chemical quencher for positronium formation and same is understood based on the spur model.

  10. Synthesis and characterization of highly conductive charge-transfer complexes using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Sharshar, T.; Heiba, Z. K.

    Molecular charge-transfer complexes of the tetramethylethylenediamine (TMEDA) with picric acid (Pi-OH), benzene-1,4-diol (QL), tin(IV) tetrachloride (SnCl4), iodine, bromine, and zinc chloride (ZnCl2) have been synthesized and investigated by elemental and thermal analysis, electronic, infrared, Raman and proton-NMR, energy-dispersive X-ray spectroscopy, X-ray powder diffraction and positron annihilation lifetime spectroscopy, and scanning electron microscopy. In this work, three types of acceptors π-acceptors (Pi-OH and QL), σ-acceptors (iodine and bromine), and vacant orbital acceptors (SnCl4 and ZnCl2) were covered. The results of elemental analysis indicated that the CT complexes were formed with ratios 1:1 and 1:2 for QL, SnCl4, and ZnCl2 acceptors and iodine, Pi-OH, and Br2 acceptors, respectively. The type of chelating between the TMEDA donor and the mentioned acceptors depends upon the behavior of both items. The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, and the power of acceptors. The correlation between these parameters and the molecular weight and biological activities of studied complexes was also observed. Regarding the electrical properties, the AC conductivity and the dielectric coefficients were measured as a function of frequency at room temperature. The TMEDA charge-transfer complexes were screened against antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa) and antifungal (Aspergillus flavus and Candida albicans) activities.

  11. Positron annihilation studies in the Nd-Ce-Cu-O superconductor

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.

    1990-07-01

    In the superconducting Nd1.85Ce0.15CuO3.98, the positron lifetime is observed to decrease from 211 to 205 ps in the temperature range of 150-50 K, whereas in the nonsuperconducting Nd1.85Ce0.15CuO4, having a lifetime value of 231 ps, no significant temperature dependence of lifetime is observed. The difference in the lifetimes of the superconducting and nonsuperconducting samples and their temperature dependencies are understood in terms of positron interaction with the vacancies in the system. Doppler-broadened line shapes of energy spectra are found to show similar results as lifetime measurements. Theoretical calculations are used to show that the oxygen vacancies are weaker traps compared with the vacancies at the Cu and Nd sites. The observed decrease in lifetime in the superconducting sample is interpreted in terms of an increase in the fraction of positrons trapped at the oxygen vacancies as the temperature is lowered. Plausible reasons for the temperature independence of lifetime across Tc in the superconducting sample are discussed.

  12. Abnormal temperature dependent behaviors of intersystem crossing and triplet-triplet annihilation in organic planar heterojunction devices

    NASA Astrophysics Data System (ADS)

    Xiang, Jie; Chen, Yingbing; Yuan, De; Jia, Weiyao; Zhang, Qiaoming; Xiong, Zuhong

    2016-09-01

    Anomalous temperature dependent magneto-electroluminescence was observed at low and high magnetic field strength from organic planar heterojunction devices incorporated common phosphorescent host materials of N,N'-dicarbazolyl-3,5-benzene (mCP) or 4,4'-N,N'-dicarbazole-biphenyl (CBP) as an emissive layer. We found that intersystem crossing became stronger with decreasing temperature and that triplet-triplet annihilation (TTA) occurred at room temperature but ceased at low temperature. Analyses of the electroluminescence spectra of these devices and their temperature dependences indicated that the population of exciplex states increased at low temperature, which caused the abnormal behavior of intersystem crossing. Additionally, long lifetime of the excitons within mCP or CBP layer may allow TTA to occur at room temperature, while the reduced population of excitons at low temperature may account for the disappearance of TTA even though the excitons had increased lifetime.

  13. Li-doped MgO as catalysts for oxidative coupling of methane: A positron annihilation study

    NASA Astrophysics Data System (ADS)

    Dai, G. H.; Yan, Q. J.; Wang, Y.; Liu, Q. S.

    1991-08-01

    Magnesium oxides intentionally doped with lithium (with a maximum Li content of 40 tool%) for use as catalysts for oxidative coupling of methane were characterized by means of positron annihilation. The positron lifetime spectra, which could be reasonably well interpreted within the framework of the well-known trapping model, depend on the amount of Li doping of the MgO suggesting that positrons are trapped at dispersed small Li 2CO 3 precipitates. Very similar dependencies on lithium doping of the C 2 selectivity and the positron trapping rate ϰ imply an intimate relationship between the concentration of [Li] 0-centers (also referred to as [Li +O -] centers) and the selective activity of Li/MgO during catalytic reactions.

  14. Role of Se vacancies on Shubnikov-de Haas oscillations in Bi2Se3: A combined magneto-resistance and positron annihilation study

    NASA Astrophysics Data System (ADS)

    Devidas, T. R.; Amaladass, E. P.; Sharma, Shilpam; Rajaraman, R.; Sornadurai, D.; Subramanian, N.; Mani, Awadhesh; Sundar, C. S.; Bharathi, A.

    2014-12-01

    Magneto-resistance measurements coupled with positron lifetime measurements, to characterize the vacancy-type defects, have been carried out on the topological insulator (TI) system Bi2Se3 of varying Se/Bi ratio. Pronounced Shubnikov-de Haas (SdH) oscillations are seen in nominal Bi2Se3.1 crystals for measurements performed in magnetic fields up to 15 T in the 4 K-10 K temperature range, with field applied perpendicularly to the (001) plane of the crystal. The quantum oscillations, characteristic of 2D electronic structure, are seen only in the crystals that have a lower concentration of Se vacancies, as inferred from positron annihilation spectroscopy.

  15. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  16. Positron annihilation in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  17. Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study.

    PubMed

    Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina

    2017-12-01

    Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.

  18. Dispersion and interaction of graphene oxide in amorphous and semi-crystalline nano-composites: a PALS study

    NASA Astrophysics Data System (ADS)

    Maurer, Frans H. J.; Arza, Carlos R.

    2015-06-01

    The influence of dispersion and interaction of Graphene Oxide (GO) in semicrystalline Polyhydroxy butyrate (PHB) and glassy amorphous Poly(tBP-oda) is explored by Positron Annihilation Lifetime Spectroscopy (PALS). The ortho-Positronium lifetimes which represent the main free volume hole size of both polymers are mainly affected by the large differences in internal stresses built up by the shrinkage of the polymers during their preparation, restricted by the platelet structure of GO. The ortho-Positronium intensities, which represent the ortho-Positronium formation probabilities, suggest a strong dependency of on the dispersion of the nano-particles and their aspect ratio.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Hamish A.; Iwanus, Nikolas; Lewis, Geraint F.

    The existence of substructure in halos of annihilating dark matter would be expected to substantially boost the rate at which annihilation occurs. Ultracompact minihalos of dark matter (UCMHs) are one of the more extreme examples of this. The boosted annihilation can inject significant amounts of energy into the gas of a galaxy over its lifetime. Here we determine the impact of the boost factor from UCMH substructure on the heating of galactic gas in a Milky Way-type galaxy, by means of N-body simulation. If 1% of the dark matter exists as UCMHs, the corresponding boost factor can be of ordermore » 10{sup 5}. For reasonable values of the relevant parameters (annihilation cross section 3×10{sup −26} cm{sup 3} s{sup −1}, dark matter mass 100 GeV, 10% heating efficiency), we show that the presence of UCMHs at the 0.1% level would inject enough energy to eject significant amounts of gas from the halo, potentially preventing star formation within ∼1 kpc of the halo centre.« less

  20. Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shpotyuk, O.; Ingram, A.; Shpotyuk, Ya.

    2018-02-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy are examined to parameterize free-volume structural evolution processes in some nanostructurized substances obeying conversion from positronium (Ps) decaying to positron trapping. Unlike conventional x3-term fitting analysis based on admixed positron trapping and Ps decaying, the effect of nanostructurization is considered as occurring due to conversion from preferential Ps decaying in initial host matrix to positron trapping in modified (nanostructurized) host-guest matrix. The developed approach referred to as x3-x2-CDA (coupling decomposition algorithm) allows estimation defect-free bulk and defect-specific positron lifetimes of free-volume elements responsible for nanostructurization. The applicability of this approach is proved for some nanostructurized materials allowing free-volume changes through Ps-to-positron trapping conversion, such as (i) metallic Ag nanoparticles embedded in polymer matrix, (ii) structure-modification processes caused by swift heavy ions irradiation in polystyrene, and (iii) host-guest chemistry problems like water immersion in alumomagnesium spinel ceramics. This approach is considered to be used as test-indicator, separating processes of host-matrix nanostructurization due to embedded nanoparticles from uncorrelated changes in positron-trapping and Ps-decaying channels.

  1. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Wang, Ke-Fan; Zhang, Yang; Guo, Feng-Li; Weng, Hui-Min; Ye, Bang-Jiao

    2009-05-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies.

  2. Supramolecular interactions between triphenylphosphine oxide and benzamide evaluated by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F.; Oliveira, A. M.; Andrade, A. C. A.; Melo, A. C. A.; Yoshida, M. I.; Windmöller, D.; Magalhães, W. F.

    2017-04-01

    In the present work, intermolecular interactions between triphenylphosphine oxide (TPPO) and benzamide (BZM) has been studied in solid state by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques (in solid state and in solution) and by computational modeling (in gaseous phase). Isothermal Titration Calorimetry (ITC) in ethyl acetate solvent showed that complexation is a stepwise process, with 2:1 and 1:1 TPPO/BZM stoichiometries, both driven by entropy. HPLC analysis of isolated single crystal confirmed the existence of a 2:1 TPPO/BZM crystalline complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complexes are relatively weaker than those found in pure precursors. Finally, PALS showed higher positronium formation probability (I3) at [TPPO0.62·BZM0.38] and [TPPO0.25·BZM0.75] molar fractions, corroborating the existence of two stoichiometries for the TPPO/BZM system and suggesting greater electronic availability of n- and π-electrons in heterosynton complexes, as resulting of interactions, bring forward new evidences of the participation of electronic excited states on the positronium formation mechanism.

  3. Characterization of free volume during vulcanization of styrene butadiene rubber by means of positron annihilation lifetime spectroscopy and dynamic mechanical test.

    PubMed

    Marzocca, A J; Cerveny, S; Salgueiro, W; Somoza, A; Gonzalez, L

    2002-02-01

    An experimental investigation was performed to study the effect on the free volume of the advance of the cross-linking reaction in a copolymer of styrene butadiene rubber by sulfur vulcanization. The dynamic modulus and loss tangent were evaluated over samples cured for different times at 433 K by dynamic mechanical tests over a range of frequencies between 5 and 80 Hz at temperatures between 200 and 300 K. Using the William-Landel-Ferry relationship, master curves were obtained at a reference temperature of 298 K and the coefficients c(0)(1) and c(0)(2) were evaluated. From these parameters the dependence of the free volume on the cure time is obtained. Positron annihilation lifetime spectroscopy was also used to estimate the size and number density of free volume sites in the material. The spectra were analyzed in terms of continuous distributions of free volume size. The results suggest an increase of the lower free volume size when cross linking takes place. Both techniques give similar results for the dependence of free volume on the time of cure of the polymer.

  4. Positron annihilation study of the vacancy clusters in ODS Fe-14Cr alloys

    NASA Astrophysics Data System (ADS)

    Domínguez-Reyes, R.; Auger, M. A.; Monge, M. A.; Pareja, R.

    2017-04-01

    Oxide dispersion strengthened Fe14Cr and Fe14CrWTi alloys produced by mechanical alloying and hot isostatic pressing were subjected to isochronal annealing up to 1400 °C, and the evolution and thermal stability of the vacancy-type defects were investigated by positron annihilation spectroscopy (PAS). The results were compared to those from a non-oxide dispersion strengthened Fe14Cr alloy produced by following the same powder metallurgy route. The long lifetime component of the PAS revealed the existence of tridimensional vacancy clusters, or nanovoids, in all these alloys. Two recovery stages are found in the oxide dispersion strengthened alloys irrespective of the starting conditions of the samples. The first one starting at T > 750 °C is attributed to thermal shrinkage of large vacancy clusters, or voids. A strong increase in the intensity of the long lifetime after annealing at temperatures in the 800-1050 °C range indicates the development of new vacancy clusters. These defects appear to be unstable above 1050 °C, but some of them remain at temperatures as high as 1400 °C, at least for 90 min.

  5. Temperature and depth dependence of positron annihilation parameters in YBa2Cu3O7-x and La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.; Usmar, S. G.; Nielsen, B.; van der Kolk, G. J.; Kanazawa, I.; Sferlazzo, P.; Moodenbaugh, A. R.

    1988-02-01

    The temperature dependence of the positron annihilation parameters for YBa2Cu3O7-x x=0.7, 0.4 and 0.0 and La1.85Sr0.15CuO4 were measured. The depth dependence of the YBa2Cu3O7 was studied using a variable-energy positron beam showing a strong depth dependence in the Doppler line-shape extending up to an average depth of ˜5.0 μm. It was found that a transition in the Doppler line-shape parameter, ``S'', was associated with the superconducting transition temperature (Tc) in YBa2Cu3O7-x x=0.4 and 0.0 while no transition was observed in the nonsuperconducting YBa2Cu3O6.3. Positron lifetime parameters in YBa2Cu3O7 were found to be consistent with positrons localized at open volume regions (probably unoccupied crystallographic sites) in this material with a lifetime of 210 psec at 300 K. These results indicate that the electron density at these unoccupied sites increases, using a free electron model, approximately 9% between 100 and 12 K.

  6. Spectroscopic, Elemental and Thermal Analysis, and Positron Annihilation Studies on Ca(II), Sr(II), Ba(II), Pb(II), and Fe(III) Penicillin G Potassium Complexes

    NASA Astrophysics Data System (ADS)

    Refat, M. S.; Sharshara, T.

    2015-11-01

    The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.

  7. DLTPulseGenerator: A library for the simulation of lifetime spectra based on detector-output pulses

    NASA Astrophysics Data System (ADS)

    Petschke, Danny; Staab, Torsten E. M.

    2018-01-01

    The quantitative analysis of lifetime spectra relevant in both life and materials sciences presents one of the ill-posed inverse problems and, hence, leads to most stringent requirements on the hardware specifications and the analysis algorithms. Here we present DLTPulseGenerator, a library written in native C++ 11, which provides a simulation of lifetime spectra according to the measurement setup. The simulation is based on pairs of non-TTL detector output-pulses. Those pulses require the Constant Fraction Principle (CFD) for the determination of the exact timing signal and, thus, the calculation of the time difference i.e. the lifetime. To verify the functionality, simulation results were compared to experimentally obtained data using Positron Annihilation Lifetime Spectroscopy (PALS) on pure tin.

  8. Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Saddeek, Yasser B.; Mohamed, Hamdy F. M.; Azooz, Moenis A.

    2004-07-01

    Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B2O3 + 10 Al2O3 + 40 RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size.

  9. Cyclic softening in annealed Zircaloy-2: Role of edge dislocation dipoles and vacancies

    NASA Astrophysics Data System (ADS)

    Sudhakar Rao, G.; Singh, S. R.; Krsjak, Vladimir; Singh, Vakil

    2018-04-01

    The mechanism of cyclic softening in annealed Zircaloy-2 at low strain amplitudes under strain controlled fatigue at room temperature is rationalized. The unusual softening due to continuous decrease in the phenomenological friction stress is found to be associated with decrease in the resistance against movement of dislocations because of the formation and easy glide of pure edge dislocation dipoles and consequent decrease in friction stress from reduction in the shear modulus. Positron annihilation spectroscopy data strongly support the increase in edge dislocation density containing jogs, from increased positron trapping and increase in annihilation lifetime.

  10. Subnanopore filling during water vapor adsorption on microporous silica thin films as seen by low-energy positron annihilation

    NASA Astrophysics Data System (ADS)

    Ito, Kenji; Yoshimoto, Shigeru; O'Rourke, Brian E.; Oshima, Nagayasu; Kumagai, Kazuhiro

    2018-02-01

    Positron annihilation lifetime spectroscopy (PALS) using a low-energy positron microbeam extracted into air was applied to elucidating molecular-level pore structures formed in silicon-oxide-backboned microporous thin films under controlled humidity conditions; as a result, a direct observation of the interstitial spaces in the micropores filled with water molecules was achieved. It was demonstrated that PALS using a microbeam extracted into air in combination with water vapor adsorption is a powerful tool for the in-situ elucidation of both open and closed subnanoscaled pores of functional thin materials under practical conditions.

  11. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.

    PubMed

    Hassan, H E; Refat, Moamen S; Sharshar, T

    2016-04-15

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Systematic investigation on Cadmium-incorporation in Li₂FeSiO₄/C cathode material for lithium-ion batteries.

    PubMed

    Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming

    2014-05-27

    Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li(+)-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material.

  13. Systematic investigation on Cadmium-incorporation in Li2FeSiO4/C cathode material for lithium-ion batteries

    PubMed Central

    Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming

    2014-01-01

    Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li+-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material. PMID:24860942

  14. Vacancy-fluorine complexes and their impact on the properties of metal-oxide transistors with high-k gate dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Inumiya, S.; Matsuki, T.; Aoyama, T.; Nara, Y.; Ishibashi, S.; Ohdaira, T.; Suzuki, R.; Miyazaki, S.; Yamada, K.

    2007-09-01

    Vacancy-fluorine complexes in metal-oxide semiconductors (MOS) with high-k gate dielectrics were studied using a positron annihilation technique. F+ ions were implanted into Si substrates before the deposition of gate dielectrics (HfSiON). The shift of threshold voltage (Vth) in MOS capacitors and an increase in Fermi level position below the HfSiON/Si interface were observed after F+ implantation. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured before and after HfSiON fabrication processes. From a comparison between Doppler broadening spectra and those obtained by first-principles calculation, the major defect species in Si substrates after annealing treatment (1050 °C, 5 s) was identified as vacancy-fluorine complexes (V3F2). The origin of the Vth shift in the MOS capacitors was attributed to V3F2 located in channel regions.

  15. Further search for selectivity of positron annihilation in the skin and cancerous systems

    NASA Astrophysics Data System (ADS)

    Liu, Guang; Chen, Hongmin; Chakka, Lakshmi; Cheng, Mei-Ling; Gadzia, Joseph E.; Suzuki, R.; Ohdaira, T.; Oshima, N.; Jean, Y. C.

    2008-10-01

    Positronium annihilation lifetime (PAL) spectroscopy and Doppler broadening energy spectra (DBES) have been used to search for selectivity and sensitivity for cancerous skin samples with and without cancer. This study is to further explore the melanoma cancerous system and other different types of skin samples. We found that the S parameter in melanoma skin samples cut at 0.39 mm depth from the same patient's skin is smaller than near the skin surface. However in 10 melanoma samples from different patients, the S parameters vary significantly. Similarly, among 10 normal skin samples without cancer, the S parameters also vary largely among different patients. To understand the sensitivity of PAS as a tool to detect cancer formation at the early stage, we propose a controlled and systematic study of in vivo experiments using UV-induced cancer skin from living animals.

  16. Correlation of the superconducting transition to oxygen stoichiometry in single-crystal Ba1-xKxBiO3-y

    NASA Astrophysics Data System (ADS)

    Mosley, W. D.; Dykes, J. W.; Klavins, P.; Shelton, R. N.; Sterne, P. A.; Howell, R. H.

    1993-07-01

    Temperature-dependent positron-lifetime experiments have been performed from room temperature to 15 K on single crystals of the oxide superconductor Ba1-xKxBiO3-y. Results indicate that the filling of oxygen vacancies has a marked impact on the superconducting properties of this system. Cation defect concentrations were below the detectable limit of positron-annihilation-analysis techniques in this material, which is in sharp contrast to identical studies on polycrystalline samples. We find that the positron lifetime in these electrochemically deposited single crystals is determined by the oxygen stoichiometry of the lattice, but there is no experimental signature of strong positron localization. By performing a subsequent oxygen anneal on the crystals, the superconducting transition is sharpened and the onset is raised. The observed change in positron lifetime associated with this annealing procedure is in quantitative agreement with theory.

  17. EL2 deep-level transient study in semi-insulating GaAs using positron-lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shan, Y. Y.; Ling, C. C.; Deng, A. H.; Panda, B. K.; Beling, C. D.; Fung, S.

    1997-03-01

    Positron lifetime measurements performed on Au/GaAs samples at room temperature with an applied square-wave ac bias show a frequency dependent interface related lifetime intensity that peaks around 0.4 Hz. The observation is explained by the ionization of the deep-donor level EL2 to EL2+ in the GaAs region adjacent to the Au/GaAs interface, causing a transient electric field to be experienced by positrons drifting towards the interface. Without resorting to temperature scanning or any Arrhenius plot the EL2 donor level is found to be located 0.80+/-0.01+/-0.05 eV below the conduction-band minimum, where the first error estimate is statistical and the second systematic. The result suggests positron annihilation may, in some instances, act as an alternative to capacitance transient spectroscopies in characterizing deep levels in both semiconductors and semi-insulators.

  18. Semi-Classical Models for Virtual Antiparticle Pairs

    NASA Technical Reports Server (NTRS)

    Batchelor, David; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Virtual particle-antiparticle pairs of massive elementary particle& are predicted in Quantum Field Theory (QFT) to appear from the vacuum and annihilate each other again within their Heisenberg lifetimes h/4mc(exp 2). In this work, semiclassical models of this process - for the cases of massive leptons, quarks, and the massive weak bosons W and Z - are constructed. It is shown that the dynamical lifetime of the particle- antiparticle system in each case equals the Heisenberg lifetime to good approximation, and obeys appropriate quantization conditions on the field fluctuation action. In other words, the dynamical lifetime of the semiclassical model agrees with QED and QCD to good approximation. But the formula for the dynamical lifetime in each model includes the force strength coupling constant (e in the lepton case, alpha(sup s) (q(exp 2)) in the quark cases), while the Heisenberg lifetime formula does not. Observing the agreement of the Heisenberg and dynamical lifetimes, we may derive the QED and QCD coupling constants in terms of h, c, and numerical factors only.

  19. Lifetime of heavy hypernuclei and its implications on the weak ΛN interaction

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Jarczyk, L.; Kamys, B.; Kulessa, P.; Ohm, H.; Pysz, K.; Rudy, Z.; Schult, O. W. B.; Ströher, H.

    The lifetime of the Λ-hyperon in heavy hypernuclei measured in proton-Au, -Bi and -U collisions by the COSY-13 Collaboration at COSY-Jülich has been analyzed to yield τΛ = (145+/-11) ps. This value for τΛ is compatible with the lifetime extracted from antiproton annihilation on Bi and U targets, albeit much more accurate. Theoretical models based on the meson exchange picture and assuming the validity of the phenomenological ΔI = 1/2 rule predict the lifetime of heavy hypernuclei to be significantly larger (2-3 standard deviations). Such large differences indicate that at least one of the assumptions in these models is not fulfilled. A much better reproduction of the lifetimes of heavy hypernuclei is achieved in the phase space model, if the ΔI = 1/2 rule is discarded in the nonmesonic Λ decay.

  20. Desorption of water from hydrophilic MCM-41 mesopores: positron annihilation, FTIR and MD simulation studies.

    PubMed

    Maheshwari, Priya; Dutta, D; Muthulakshmi, T; Chakraborty, B; Raje, N; Pujari, P K

    2017-02-08

    The desorption mechanism of water from the hydrophilic mesopores of MCM-41 was studied using positron annihilation lifetime spectroscopy (PALS) and attenuated total reflection Fourier transform infrared spectroscopy supplemented with molecular dynamics (MD) simulation. PALS results indicated that water molecules do not undergo sequential evaporation in a simple layer-by-layer manner during desorption from MCM-41 mesopores. The results suggested that the water column inside the uniform cylindrical mesopore become stretched during desorption and induces cavitation (as seen in the case of ink-bottle type pores) inside it, keeping a dense water layer at the hydrophilic pore wall, as well as a water plug at both the open ends of the cylindrical pore, until the water was reduced to a certain volume fraction where the pore catastrophically empties. Before being emptied, the water molecules formed clusters inside the mesopores. The formation of molecular clusters below a certain level of hydration was corroborated by the MD simulation study. The results are discussed.

  1. High-temperature studies of grain boundaries in ultrafine grained alloys by means of positron lifetime

    NASA Astrophysics Data System (ADS)

    Würschum, R.; Shapiro, E.; Dittmar, R.; Schaefer, H.-E.

    2000-11-01

    Atomic free volumes and vacancies in the ultrafine grained alloys Pd84Zr16, Cu 0.1 wt % ZrO2, and Fe91Zr9 were studied by means of positron lifetime. The thermally stable microstructures serve as a novel type of model system for studying positron trapping and annihilation as well as the thermal behavior of vacancy-sized free volumes over a wide temperature range up to ca. 1200 K by making use of a metallic 58Co positron source. In ultrafine grained Cu the thermal formation of lattice vacancies could be observed. In Pd84Zr16 an increase of the specific positron trapping rate of nanovoids and, in addition, detrapping of positrons from free volumes with a mean size slightly smaller than one missing atom in the grain boundaries contributes to a reversible increase of the positron lifetime of more than 60 ps with measuring temperature. In Fe91Zr9 similar linear high-temperature increases of the positron lifetime are observed in the nanocrystalline and the amorphous state. The question of thermal vacancy formation in grain boundaries is addressed taking into account the different types of interface structures of the present alloys.

  2. Positron annihilation spectroscopy of vacancy-related defects in CdTe:Cl and CdZnTe:Ge at different stoichiometry deviations

    PubMed Central

    Šedivý, L.; Čížek, J.; Belas, E.; Grill, R.; Melikhova, O.

    2016-01-01

    Positron annihilation spectroscopy (PAS) was used to examine the effect of defined Cd-rich and Te-rich annealing on point defects in Cl-doped CdTe and Ge-doped CdZnTe semi-insulating single crystals. The as-grown crystals contain open-volume defects connected with Cd vacancies . It was found that the Cd vacancies agglomerate into clusters coupled with Cl in CdTe:Cl, and in CdZnTe:Ge they are coupled with Ge donors. While annealing in Cd pressure reduces of the density, subsequent annealing in Te pressure restores . The CdTe:Cl contains negatively-charged shallow traps interpreted as Rydberg states of A-centres and representing the major positron trapping sites at low temperature. Positrons confined in the shallow traps exhibit lifetime, which is shorter than the CdTe bulk lifetime. Interpretation of the PAS data was successfully combined with electrical resistivity, Hall effect measurements and chemical analysis, and allowed us to determine the principal point defect densities. PMID:26860684

  3. Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems.

    PubMed

    Fong, Celesta; Dong, Aurelia W; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-07-21

    Positron annihilation lifetime spectroscopy (PALS) has been shown to be highly sensitive to conformational, structural and microenvironmental transformations arising from subtle geometric changes in molecular geometry in self-assembling biomimetic systems. The ortho-positronium (oPs) may be considered an active probe that can provide information on intrinsic packing and mobility within low molecular weight solids, viscous liquids, and soft matter systems. In this perspective we provide a critical overview of the literature in this field, including the evolution of analysis software and experimental protocols with commentary upon the practical utility of PALS. In particular, we discuss how PALS can provide unique insight into the macroscopic transport properties of several porous biomembrane-like nanostructures and suggest how this insight may provide information on the release of drugs from these matrices to aid in developing therapeutic interventions. We discuss the potentially exciting and fruitful application of this technique to membrane dynamics, diffusion and permeability. We propose that PALS can provide novel molecular level information that is complementary to conventional characterisation techniques.

  4. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Lee, Jaesang; Forrest, Stephen R.

    2014-09-01

    Organic light-emitting diodes are a major driving force of the current information display revolution due to their low power consumption and potentially long operational lifetime. Although electrophosphorescent organic emitters have significantly lower power consumption than fluorescent emitters, the short lifetime of electrophosphorescent blue devices has prevented their application in displays for more than a decade. Here, we demonstrate a novel blue electrophosphorescent device with a graded dopant concentration profile in a broadened emissive layer, leading to a lower exciton density compared with a conventional device. Thus, triplet-polaron annihilation that leads to long-term luminescent degradation is suppressed, resulting in a more than threefold lifetime improvement. When this strategy is applied to a two-unit stacked device, we demonstrate a lifetime of 616±10 h (time to 80% of the 1,000 cd m-2 initial luminance) with chromaticity coordinates of [0.15, 0.29], representing a tenfold lifetime improvement over a conventional blue electrophosphorescent device.

  5. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-10-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 °C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 °C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 °C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F2 2+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F2 2+ to F+ and this F+ is converted into F centers at 416 nm.

  6. Dynamics of optical matter creation and annihilation in colloidal liquids controlled by laser trapping power.

    PubMed

    Liu, Jin; Dai, Qiao-Feng; Huang, Xu-Guang; Wu, Li-Jun; Guo, Qi; Hu, Wei; Yang, Xiang-Bo; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A

    2008-11-15

    We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.

  7. Fermi large area telescope search for photon lines from 30 to 200 GeV and dark matter implications.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto E Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Edmonds, Y; Essig, R; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hadasch, D; Harding, A K; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Llena Garde, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ripken, J; Ritz, S; Rodriguez, A Y; Roth, M; Sadrozinski, H F-W; Sander, A; Parkinson, P M Saz; Scargle, J D; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Tibaldo, L; Torres, D F; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2010-03-05

    Dark matter (DM) particle annihilation or decay can produce monochromatic gamma rays readily distinguishable from astrophysical sources. gamma-ray line limits from 30 to 200 GeV obtained from 11 months of Fermi Large Area Space Telescope data from 20-300 GeV are presented using a selection based on requirements for a gamma-ray line analysis, and integrated over most of the sky. We obtain gamma-ray line flux upper limits in the range 0.6-4.5x10{-9} cm{-2} s{-1}, and give corresponding DM annihilation cross-section and decay lifetime limits. Theoretical implications are briefly discussed.

  8. Frequency domain kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics

    NASA Astrophysics Data System (ADS)

    Fl'unt, Orest; Klym, Halyna; Ingram, Adam

    2018-03-01

    In this work, the kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics sintered at different temperatures (1100, 1200 and 1400 °C) has been calculated and analyzed in a frequency domain. The spectra of real (in-phase) and imaginary (quadrature) components of positron-electron annihilation kinetic have been obtained numerically from usual temporal characteristics using integral Fourier transform. The numerical calculations were carried out using cubic spline interpolation of the pulse characteristics of MgO-Al2O3 ceramics in time domain with following analytical calculations of integrals. The obtained spectra as real so imaginary part of MgO-Al2O3 ceramics in frequency domain almost good obey a Debye law denying correlation between elementary positron annihilation processes. Complex diagrams of frequency domain responses of as-prepared samples have a shape of semicircles with close characteristic frequencies. Some deviation on low-frequency side of the semicircles is observed confirming an availability of longer time kinetic processes. Sintering temperature dependencies of the relaxation times and characteristic frequencies of positron-electron annihilation processes have been obtained. It is shown that position of large maxima on the frequency dependencies of imaginary part corresponds to fast average relaxation lifetime representing the most intensive interaction process of positrons with small cavity traps in solids.

  9. Identification and Carrier Dynamics of the Dominant Lifetime Limiting Defect in n(-) 4H-SiC Epitaxial Layers

    DTIC Science & Technology

    2009-01-01

    defects, measured by DLTS, and vacancies, detected by positron annihilation studies, as a function of thermal annealing temperature. The similarity in... applications and materials science a st a tu s so li d i www.pss-a.comp h y si ca Feature Article Identification and carrier dynamics of the dominant...stability and chemical inertness – make them ideal for applications that demand high power and/or high fre- quency operation that is well beyond the

  10. Positron Annihilation in Superconducting 123 Compounds

    NASA Astrophysics Data System (ADS)

    Peter, M.; Manuel, A. A.; Erb, A.

    After a brief review of the theory of angular correlation of positron annihilation radiation (ACAR), we illustrate experimental principles and give examples of successful determination of electron momentum density (EMD) and of positron lifetime in solids. The central question which we try to answer concerns the contribution of positron spectroscopy to the knowledge and understanding of the new high temperature superconducting oxides. We find that in these oxides also, partially filled bands exist and we can observe parts of their Fermi surface and measure lifetimes in accordance with band theoretical calculations. There are characteristic differences, however. The intensity of the anisotropy of the ACAR signal is below theoretical expectation and signals depend on sample preparation. Recent studies by the Geneva group have concerned dependence of the signals on impurities, on oxygen content and on the thermal history of preparation. Of particular interest are correlations between the variations of these signals and between the variations of structural and transport properties in these substances. Besides deliberate additions of impurities, the Geneva group also reports progress in the preparations of samples of highest purity (barium zirconate crucibles). The alloy series PrxY1-xBa2Cu3O7-δ is of special interest because of exceptional transport properties. The recent positron results on these materials will be presented and commented in the light of theoretical models and in the light of the reported superconductivity of the Pr-compound.

  11. Studies of surface states in zinc oxide nanopowders

    NASA Astrophysics Data System (ADS)

    Peters, Raul Mugabe

    The surface of ZnO semiconductor nanosystems is a key performance-defining factor in numerous applications. In this work we present experimental results for the surface defect-related properties of ZnO nanoscale systems. Surface photovoltage spectroscopy was used to determine the defect level energies within the band gap, the conduction vs. valence band nature of the defect-related transitions, and to probe key dynamic parameters of the surface on a number of commercially available ZnO nanopowders. In our experimental setup, surface photovoltage characterization is conducted in high vacuum in tandem with in situ oxygen remote plasma treatments. Surface photovoltage investigations of the as-received and plasma-processed samples revealed a number of common spectral features related to surface states. Furthermore, we observed significant plasma-induced changes in the surface defect properties. Ex situ positron annihilation and photoluminescence measurements were performed on the studied samples and correlated with surface photovoltage results. The average positron lifetimes were found to be substantially longer than in a bulk single crystalline sample, which is consistent with the model of grains with defect-rich surface and subsurface layers. Compression of the powders into pellets yielded reduction of the average positron lifetimes. Surface photovoltage, positron annihilation, and photoluminescence spectra consistently showed sample-to-sample differences due to the variation in the overall quality of the nanopowders, which partially obscures observation of the scaling effects. However, the results demonstrated that our approach is efficient in detecting specific surface states in nanoscale ZnO specimens and in elucidating their nature.

  12. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Milina, Maria; Mitchell, Sharon; Crivelli, Paolo; Cooke, David; Pérez-Ramírez, Javier

    2014-05-01

    Deactivation due to coking limits the lifetime of zeolite catalysts in the production of chemicals and fuels. Superior performance can be achieved through hierarchically structuring the zeolite porosity, yet no relation has been established between the mesopore architecture and the catalyst lifetime. Here we introduce a top-down demetallation strategy to locate mesopores in different regions of MFI-type crystals with identical bulk porous and acidic properties. In contrast, well-established bottom-up strategies as carbon templating and seed silanization fail to yield materials with matching characteristics. Advanced characterization tools capable of accurately discriminating the mesopore size, distribution and connectivity are applied to corroborate the concept of mesopore quality. Positron annihilation lifetime spectroscopy proves powerful to quantify the global connectivity of the intracrystalline pore network, which, as demonstrated in the conversions of methanol or of propanal to hydrocarbons, is closely linked to the lifetime of zeolite catalysts. The findings emphasize the need to aptly tailor hierarchical materials for maximal catalytic advantage.

  13. Structure and charge transfer correlated with oxygen content for a Y0.8Ca0.2Ba2Cu3Oy (y = 6.84 6.32) system: a positron study

    NASA Astrophysics Data System (ADS)

    Cao, Shixun; Li, Lingwei; Liu, Fen; Li, Wenfeng; Chi, Changyun; Jing, Chao; Zhang, Jincang

    2005-05-01

    The structure and charge transfer correlated with oxygen content are studied by measuring the positron lifetime parameters of the Y0.8Ca0.2Ba2Cu3Oy system with a large range of oxygen content (y = 6.84-6.32). The local electron density ne is evaluated from the positron lifetime data. The positron lifetime parameters show a clear change around y = 6.50 where the compounds undergo the orthorhombic-tetragonal phase transition. The effect of ne and oxygen content on the structure, charge transfer and superconductivity are discussed. With the decrease of oxygen content y, O(4) tends to the Cu(1) site, causing carrier localization, and accordingly, the decrease of ne. This would prove that the localized carriers (electrons and holes) in the Cu-O chain region have great influence on the superconductivity by affecting the charge transfer between the reservoir layers and the conducting layers. The positron annihilation mechanism and its relation with superconductivity are also discussed.

  14. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  15. Effect of TiO2 nano fillers on the electrical conductivity of PSAN/TiO2 polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ningaraju, S.; Munirathnamma, L. M.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    The microstructural characterization of Polystyrene co-acrylonitrile and Titanium dioxide (PSAN/TiO2) nanocomposites has been performed by Positron Annihilation Lifetime Spectroscopy. The decrease of positron lifetime parameters viz. o-Ps lifetime (τ3) and free volume size (Vf) up to 0.6 wt% of TiO2 is attributed to the filling of free volume holes by TiO2 nanoparticles. The increased free volume size (Vf) after 0.6 wt% of TiO2 indicates the formation of interface due to TiO2 nanoclusters. The variation of electrical conductivity at the lower and higher concentration of TiO2 in (PSAN/TiO2) nanocomposites is attributed to the blocking effect and space charge effect respectively.

  16. Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes.

    PubMed

    Yin, Chongshan; Wang, Lingtao; Li, Jingjing; Zhou, Yawei; Zhang, Haining; Fang, Pengfei; He, Chunqing

    2017-06-21

    The free volumes and proton conductivities of Nafion membranes were investigated at different humidities by positron annihilation lifetime spectroscopy (PALS) and using an electrochemical workstation, respectively. The results showed that the variation in o-Ps lifetime τ o-Ps was closely associated with the microstructure evolution and the development of hydrophilic ion clusters in Nafion membranes as a function of water uptake, regardless of metal oxide additives. In particular, with increasing relative humidity, the maximum value of τ o-Ps in the Nafion membranes corresponded to the formation of numerous water channels for proton transportation. Numerous well-connected water channels in Nafion-TiO 2 hybrid membranes could be formed at a much lower relative humidity (∼40% RH) than in the pristine one (∼75% RH), due to the better water retention ability of the Nafion-TiO 2 membranes. Further, a percolation behavior of proton conductivity at high water uptake in Nafion membranes was observed, which showed that the percolation of ionic-water clusters occurred at the water uptake of ∼4.5 wt%, and ∼6 wt% was basically enough for the formation of a well-connected water channel network.

  17. X-ray lines from dark matter: the good, the bad, and the unlikely

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frandsen, Mads T.; Sannino, Francesco; Shoemaker, Ian M.

    2014-05-01

    We consider three classes of dark matter (DM) models to account for the recently observed 3.5 keV line: metastable excited state DM, annihilating DM, and decaying DM. We study two examples of metastable excited state DM. The first, millicharged composite DM, has both inelasticity and photon emission built in, but with a very constrained parameter space. In the second example, up-scattering and decay come from separate sectors and is thus less constrained. The decay of the excited state can potentially be detectable at direct detection experiments. However we find that CMB constraints are at the border of excluding this asmore » an interpretation of the DAMA signal. The annihilating DM interpretation of the X-ray line is found to be in mild tension with CMB constraints. Lastly, a generalized version of decaying DM can account for the data with a lifetime exceeding the age of the Universe for masses ∼<10{sup 6} GeV.« less

  18. Annealing properties of open volumes in HfSiOx and HfAlOx gate dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Ikeuchi, K.; Yamabe, K.; Ohdaira, T.; Muramatsu, M.; Suzuki, R.; Hamid, A. S.; Chikyow, T.; Torii, K.; Yamada, K.

    2005-07-01

    Thin Hf0.6Si0.4Ox and Hf0.3Al0.7Ox films fabricated by metal-organic chemical-vapor deposition and atomic-layer-deposition techniques were characterized using monoenergetic positron beams. Measurements of the Doppler broadening spectra of annihilation radiation and the lifetime spectra of positions indicated that positrons annihilated from the trapped state by open volumes that exist intrinsically in amorphous structures of the films. For HfSiOx, the mean size of the open volumes and their size distribution decreased with increasing postdeposition annealing (PDA) temperature. For HfAlOx, although the overall behavior of the open volumes in response to annealing was similar to that for HfSiOx, PDA caused a separation of the mean size of the open volumes. When this separation occurred, the value of the line-shape parameter S increased, suggesting an oxygen deficiency in the amorphous matrix. This fragmentation of the amorphous matrix can be suppressed by decreasing the annealing time.

  19. Indirect signals from solar dark matter annihilation to long-lived right-handed neutrinos

    DOE PAGES

    Allahverdi, Rouzbeh; Gao, Yu; Knockel, Bradley; ...

    2017-04-04

    In this paper, we study indirect detection signals from solar annihilation of dark matter (DM) particles into light right-handed (RH) neutrinos with a mass in a 1–5 GeV range. These RH neutrinos can have a sufficiently long lifetime to allow them to decay outside the Sun, and their delayed decays can result in a signal in gamma rays from the otherwise “dark” solar direction, and also a neutrino signal that is not suppressed by the interactions with solar medium. We find that the latest Fermi-LAT and IceCube results place limits on the gamma ray and neutrino signals, respectively. Combined photonmore » and neutrino bounds can constrain the spin-independent DM-nucleon elastic scattering cross section better than direct detection experiments for DM masses from 200 GeV up to several TeV. Finally, the bounds on spin-dependent scattering are also much tighter than the strongest limits from direct detection experiments.« less

  20. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); St.clair, Terry L. (Inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  1. Free volume study on the miscibility of PEEK/PEI blend using positron annihilation and dynamic mechanical thermal analysis

    NASA Astrophysics Data System (ADS)

    Ramani, R.; Alam, S.

    2015-06-01

    High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behaviour using positron annihilation lifetime spectroscopy and dynamic mechanical thermal analysis methods. The fractional free volume obtained from PALS shows a negative deviation from linear additivity rule implying good miscibility between PEEK and PEI. The dynamic modulus and loss tangent were obtained for the blends at three different frequencies 1, 10 and 100 Hz at temperatures close to and above their glass transition temperature. Applying Time-Temperature-Superposition (TTS) principle to the DMTA results, master curves were obtained at a reference temperature To and the WLF coefficients c01 and c02 were evaluated. Both the methods give similar results for the dependence of fractional free volume on PEI content in this blend. The results reveal that free volume plays an important role in determining the visco-elastic properties in miscible polymer blends.

  2. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool.

    PubMed

    Shpotyuk, Oleh; Filipecki, Jacek; Ingram, Adam; Golovchak, Roman; Vakiv, Mykola; Klym, Halyna; Balitska, Valentyna; Shpotyuk, Mykhaylo; Kozdras, Andrzej

    2015-01-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media. This algorithm was well justified at the example of thermally induced nanostructurization occurring in 80GeSe2-20Ga2Se3 glass.

  3. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Oleh; Filipecki, Jacek; Ingram, Adam; Golovchak, Roman; Vakiv, Mykola; Klym, Halyna; Balitska, Valentyna; Shpotyuk, Mykhaylo; Kozdras, Andrzej

    2015-02-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media. This algorithm was well justified at the example of thermally induced nanostructurization occurring in 80GeSe2-20Ga2Se3 glass.

  4. Positron and nanoindentation study of helium implanted high chromium ODS steels

    NASA Astrophysics Data System (ADS)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  5. Positronium hydride in hydrogen-laden thermochemically reduced MgO single crystals

    NASA Astrophysics Data System (ADS)

    Pareja, R.; de La Cruz, R. M.; Pedrosa, M. A.; González, R.; Chen, Y.

    1990-04-01

    Thermochemical reduction of hydrogen-laden MgO single crystals at T~2400 K results in a large concentration of both hydride (H-) ions and anion vacancies (>1024 m-3). Positron-lifetime experiments of these crystals provide evidence for bound positronium hydride states also referred to as [e+-H-] or PsH states. The presence of the anion vacancies was found to inhibit the formation of these states. After thermally annealing out these vacancies, such that H- concentration remains intact, two long-lived components appear in the lifetime spectrum. Furthermore, these two components correlate with the presence of the H-ions. These results suggest the existence of bound [e+-H-] states when positrons are trapped by the H- ions, and the subsequent formation of positronium (Ps) states by the dissociation of the [e+-H-] states. From the values of the intermediate lifetime component, a value of (570+/-50) ps is obtained for the lifetime of the PsH state located in an anion vacancy in MgO. The longest lifetime component ~(1-3) ns is attributed to pick-off annihilation of ortho-Ps states.

  6. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes

    DOE PAGES

    Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini; ...

    2017-05-31

    Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (46.0 eV) that lead to molecular dissociation. We introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334±5 h (timemore » to 80% of the 1,000 cd m -2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6±0.1 times improvement in a lifetime compared to conventional, unmanaged devices. We believe that, this significant improvement results in the longest lifetime for such a blue PHOLED.« less

  7. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini

    Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (46.0 eV) that lead to molecular dissociation. We introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334±5 h (timemore » to 80% of the 1,000 cd m -2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6±0.1 times improvement in a lifetime compared to conventional, unmanaged devices. We believe that, this significant improvement results in the longest lifetime for such a blue PHOLED.« less

  8. Development of a Simple Positron Age-Momentum Setup

    NASA Astrophysics Data System (ADS)

    Sheffield, Thomas; Quarles, C. A.

    2009-04-01

    A positron age-momentum setup that uses NIM Bin electronic modules and a conventional multichannel analyzer (MCA) is described. The essential idea is to accumulate a Doppler broadened spectrum (sensitive to the annihilation electron momentum) using a high purity Germanium detector in coincidence with a BaF2 scintillation counter, which also serves as the stop signal in a conventional positron lifetime setup. The MCA that collects the Doppler spectrum is gated by a selected region of the lifetime spectrum. Thus we can obtain Doppler broadening spectra as a function of positron lifetime: an age-momentum spectrum. The apparatus has been used so far to investigate a ZnO sample where the size of different vacancy trapping sites may affect the positron lifetime and the Doppler broadening spectrum. We are also looking at polymer and rubber carbon-black composite samples where differences in the Doppler spectrum may arise from positron trapping or positronium formation in the samples. Correction for background and contribution from the positron source itself to the Doppler spectrum will be discussed.

  9. Application of novel low-intensity nonscanning fluorescence lifetime imaging microscopy for monitoring excited state dynamics in individual chloroplasts and living cells of photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Eckert, Hann-Jörg; Petrášek, Zdeněk; Kemnitz, Klaus

    2006-10-01

    Picosecond fluorescence lifetime imaging microscopy (FLIM) provides a most valuable tool to analyze the primary processes of photosynthesis in individual cells and chloroplasts of living cells. In order to obtain correct lifetimes of the excited states, the peak intensity of the exciting laser pulses as well as the average intensity has to be sufficiently low to avoid distortions of the kinetics by processes such as singlet-singlet annihilation, closing of the reaction centers or photoinhibition. In the present study this requirement is achieved by non-scanning wide-field FLIM based on time- and space-correlated single-photon counting (TSCSPC) using a novel microchannel plate photomultiplier with quadrant anode (QA-MCP) that allows parallel acquisition of time-resolved images under minimally invasive low-excitation conditions. The potential of the wide-field TCSPC method is demonstrated by presenting results obtained from measurements of the fluorescence dynamics in individual chloroplasts of moss leaves and living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.

  10. PAL spectroscopy of rare-earth doped Ga-Ge-Te/Se glasses

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya.; Ingram, A.; Shpotyuk, O.

    2016-04-01

    Positron annihilation lifetime (PAL) spectroscopy was applied for the first time to study free-volume void evolution in chalcogenide glasses of Ga-Ge-Te/Se cut-section exemplified by glassy Ga10Ge15Te75 and Ga10Ge15Te72Se3 doped with 500 ppm of Tb3+ or Pr3+. The collected PAL spectra reconstructed within two-state trapping model reveal decaying tendency in positron trapping efficiency in these glasses under rare-earth doping. This effect results in unchanged or slightly increased defect-related lifetimes τ2 at the cost of more strong decrease in I2 intensities, as well as reduced positron trapping rate in defects and fraction of trapped positrons. Observed changes are ascribed to rare-earth activated elimination of intrinsic free volumes associated mainly with negatively-charged states of chalcogen atoms especially those neighboring with Ga-based polyhedrons.

  11. Photon energy upconverting nanopaper: a bioinspired oxygen protection strategy.

    PubMed

    Svagan, Anna J; Busko, Dmitry; Avlasevich, Yuri; Glasser, Gunnar; Baluschev, Stanislav; Landfester, Katharina

    2014-08-26

    The development of solid materials which are able to upconvert optical radiation into photons of higher energy is attractive for many applications such as photocatalytic cells and photovoltaic devices. However, to fully exploit triplet-triplet annihilation photon energy upconversion (TTA-UC), oxygen protection is imperative because molecular oxygen is an ultimate quencher of the photon upconversion process. So far, reported solid TTA-UC materials have focused mainly on elastomeric matrices with low barrier properties because the TTA-UC efficiency generally drops significantly in glassy and semicrystalline matrices. To overcome this limit, for example, combine effective and sustainable annihilation upconversion with exhaustive oxygen protection of dyes, we prepare a sustainable solid-state-like material based on nanocellulose. Inspired by the structural buildup of leaves in Nature, we compartmentalize the dyes in the liquid core of nanocellulose-based capsules which are then further embedded in a cellulose nanofibers (NFC) matrix. Using pristine cellulose nanofibers, a sustainable and environmentally friendly functional nanomaterial with ultrahigh barrier properties is achieved. Also, an ensemble of sensitizers and emitter compounds are encapsulated, which allow harvesting of the energy of the whole deep-red sunlight region. The films demonstrate excellent lifetime in synthetic air (20.5/79.5, O2/N2)-even after 1 h operation, the intensity of the TTA-UC signal decreased only 7.8% for the film with 8.8 μm thick NFC coating. The lifetime can be further modulated by the thickness of the protective NFC coating. For comparison, the lifetime of TTA-UC in liquids exposed to air is on the level of seconds to minutes due to fast oxygen quenching.

  12. Mild degradation processes in ZnO-based varistors: the role of Zn vacancies

    NASA Astrophysics Data System (ADS)

    Ponce, M. A.; Macchi, C.; Schipani, F.; Aldao, C. M.; Somoza, A.

    2015-03-01

    The effects of a degradation process on the structural and electrical properties of ZnO-based varistors induced by the application of dc bias voltage were analysed. Capacitance and resistance measurements were carried out to electrically characterize the polycrystalline semiconductor before and after different degrees of mild degradation. Vacancies' changes in the varistors were studied with positron annihilation lifetime spectroscopy. Variations on the potential barrier height and effective doping concentration were determined by fitting the experimental data from impedance spectroscopy measurements. These results indicate two different stages in the degradation process consistent with vacancy-like concentration changes.

  13. Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Kunz, A. B.; Waber, J. T.

    1981-08-01

    Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.

  14. Evaluation of structural vacancies for 1/1-Al-Re-Si approximant crystals by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Suzuki, H.; Kitahata, H.; Matsushita, Y.; Nozawa, K.; Komori, F.; Yu, R. S.; Kobayashi, Y.; Ohdaira, T.; Oshima, N.; Suzuki, R.; Takagiwa, Y.; Kimura, K.; Kanazawa, I.

    2018-01-01

    The size of structural vacancies and structural vacancy density of 1/1-Al-Re-Si approximant crystals with different Re compositions were evaluated by positron annihilation lifetime and Doppler broadening measurements. Incident positrons were found to be trapped at the monovacancy-size open space surrounded by Al atoms. From a previous analysis using the maximum entropy method and Rietveld method, such an open space is shown to correspond to the centre of Al icosahedral clusters, which locates at the vertex and body centre. The structural vacancy density of non-metallic Al73Re17Si10 was larger than that of metallic Al73Re15Si12. The observed difference in the structural vacancy density reflects that in bonding nature and may explain that in the physical properties of the two samples.

  15. Characterization of interfaces in Binary and Ternary Polymer Blends by Positron Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ranganathaiah, C.

    2015-06-01

    A miscible blend is a single-phase system with compact packing of the polymeric chains/segments due configuration/conformational changes upon blending. Differential Scanning Calorimetry (DSC) is the most employed method to ascertain whether the blend is miscible or immiscible. Positron Lifetime Spectroscopy (PLS) has been employed in recent times to study miscibility properties of polymer blends by monitoring the ortho-Positronium annihilation lifetimes as function of composition. However, just free volume monitoring and the DSC methods fail to provide the composition dependent miscibility of blends. To overcome this limitation, an alternative approach based on hydrodynamic interactions has been developed to derive this information using the same o-Ps lifetime measurements. This has led to the development of a new method of measuring composition dependent miscibility level in binary and ternary polymer blends. Further, the new method also provides interface characteristics for immiscible blends. The interactions between the blend components has a direct bearing on the strength of adhesion at the interface and hence the hydrodynamic interaction. Understanding the characteristic of interfaces which decides the miscibility level of the blend and their end applications is made easy by the present method. The efficacy of the present method is demonstrated for few binary and ternary blends.

  16. Spinor Bose-Einstein Condensates of Positronium

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Hsieh; Anderson, Brandon; Clark, Charles

    2014-05-01

    Bose-Einstein condensates (BECs) of positronium (Ps) have been of experimental and theoretical interest due to their potential application as the gain medium of a γ-ray laser. Ps BECs are intrinsically spinor due to the presence of ortho-positronium (o-Ps) and para-positronium (p-Ps), whose annihilation lifetimes differ by three orders of magnitude. In this paper, we study the spinor dynamics and annihilation processes in the p-Ps/o-Ps system using both solutions of the time-dependent Gross-Pitaevskii equations and a semiclassical rate-equation approach. The spinor interactions have an O (4) symmetry which is broken to SO (3) by an internal energy difference between o-Ps and p-Ps. For an initially unpolarized condensate, there is a threshold density of ~1019 cm-3 at which spin mixing between o-Ps and p-Ps occurs. Beyond this threshold, there are unstable spatial modes accompanied by spin mixing. To ensure a high production yield above the critical density, a careful choice of external field must be made to avoid the spin mixing instability. NSF Physics Frontiers Center, ARO Atomtronics MURI, DARPA OLE.

  17. Direct Evidence of Exciton-Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies.

    PubMed

    Ma, Ying-Zhong; Lin, Haoran; Du, Mao-Hua; Doughty, Benjamin; Ma, Biwu

    2018-05-03

    Excitons in low-dimensional organic-inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton-phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6 H 13 N 4 ) 3 Pb 2 Br 7 . Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton-exciton annihilation process, a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. We further identify a fast and dominant PL decay component with a lifetime of ∼2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.

  18. Direct Evidence of Exciton–Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies

    DOE PAGES

    Ma, Ying -Zhong; Lin, Haoran; Du, Mao -Hua; ...

    2018-04-11

    Excitons in low-dimensional organic–inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton–phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6H 13N 4) 3Pb 2Br 7. Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton–exciton annihilation process,more » a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. As a result, we further identify a fast and dominant PL decay component with a lifetime of ~2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.« less

  19. Direct Evidence of Exciton–Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ying -Zhong; Lin, Haoran; Du, Mao -Hua

    Excitons in low-dimensional organic–inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton–phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6H 13N 4) 3Pb 2Br 7. Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton–exciton annihilation process,more » a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. As a result, we further identify a fast and dominant PL decay component with a lifetime of ~2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.« less

  20. Ping-Pong Energy Transfer in a Boron Dipyrromethane Containing Pt(II)-Schiff Base Complex: Synthesis, Photophysical Studies, and Anti-Stokes Shift Increase in Triplet-Triplet Annihilation Upconversion.

    PubMed

    Razi, Syed S; Koo, Yun Hee; Kim, Woojae; Yang, Wenbo; Wang, Zhijia; Gobeze, Habtom; D'Souza, Francis; Zhao, Jianzhang; Kim, Dongho

    2018-05-07

    A boron dipyrromethane (BDP)-containing Pt(II)-Schiff base complex (Pt-BDP), showing ping-pong singlet-triplet energy transfer, was synthesized, and the detailed photophysical properties were investigated using various steady-state and time-resolved transient spectroscopies. Femtosecond/nanosecond transient absorption spectroscopies demonstrated that, upon selective excitation of the BDP unit in Pt-BDP at 490 nm, Förster resonance energy transfer from the BDP unit to the Pt(II) coordination center occurred (6.7 ps), accompanied by an ultrafast intersystem crossing at the Pt(II) coordination center (<1 ps) and triplet-triplet energy transfer back to the BDP moiety (148 ps). These processes generated a triplet state localized at BDP, and the lifetime was 103.2 μs, much longer than the triplet-state lifetime of Pt-Ph (3.5 μs), a complex without the BDP moiety. Finally, Pt-BDP was used as a triplet photosensitizer for triplet-triplet annihilation (TTA) upconversion through selective excitation of the BDP unit or the Pt(II) coordination center at lower excitation energy. An upconversion quantum yield of up to 10% was observed with selective excitation of the BDP moiety, and a large anti-Stokes shift of 0.65 eV was observed upon excitation of the lower-energy band of the Pt(II) coordination center. We propose that using triplet photosensitizers with the ping-pong energy-transfer process may become a useful method for increasing the anti-Stokes shift of TTA upconversion.

  1. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Boltz, Marilyne; Cooke, David; Crivelli, Paolo; Gidley, David; Pérez-Ramírez, Javier; Mitchell, Sharon

    2016-04-07

    Recent studies demonstrated the power of positron annihilation lifetime spectroscopy (PALS) to characterise the connectivity and corresponding effectiveness of hierarchical pore networks in zeolites. This was based on the fractional escape of ortho-positronium (Ps), formed within the micropore framework, to vacuum. To further develop this technique, here we assess the impact of the positron implantation energy and of the zeolite crystal size and the particle morphology. Conventional measurements using fast positrons and beam measurements applying moderated positrons both readily distinguish purely microporous ZSM-5 zeolites comprised of single crystals or crystal aggregates. Unlike beam measurements, however, conventional measurements fail to discriminate model hierarchical zeolites with open or constricted mesopore architectures. Several steps are taken to rationalise these observations. The dominant contribution of Ps diffusion to the PALS response is confirmed by capping the external surface of the zeolite crystals with tetraethylorthosilicate, which greatly enhances the sensitivity to the micropore network. A one-dimensional model is constructed to predict the out-diffusion of Ps from a zeolite crystal, which is validated experimentally by comparing coffin-shaped single crystals of varying size. Calculation of the trends expected on the application of fast or moderated positrons indicates that the distinctions in the initial distribution of Ps at the crystal level cannot explain the limited sensitivity of the former to the mesopore architecture. Instead, we propose that the greater penetration of fast positrons within the sample increases the probability of Ps re-entry from intercrystalline voids into mesopores connected with the external surface of zeolite crystals, thereby reducing their fractional escape.

  2. Evaluation of defect formation in helium irradiated Y2O3 doped W-Ti alloys by positron annihilation and nanoindentation

    NASA Astrophysics Data System (ADS)

    Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman

    2017-10-01

    Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.

  3. Investigation of nanoscopic free volume and interfacial interaction in an epoxy resin/modified clay nanocomposite using positron annihilation spectroscopy.

    PubMed

    Patil, Pushkar N; Sudarshan, Kathi; Sharma, Sandeep K; Maheshwari, Priya; Rath, Sangram K; Patri, Manoranjan; Pujari, Pradeep K

    2012-12-07

    Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho-positronium lifetime (τ(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P., Jr.; Suzuki, R.; Ishibashi, S.

    2001-09-01

    Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects.

  5. Effect of broad recombination zone in multiple quantum well structures on lifetime and efficiency of blue organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Seok Jae; Lee, Song Eun; Lee, Dong Hyung; Koo, Ja Ryong; Lee, Ho Won; Yoon, Seung Soo; Park, Jaehoon; Kim, Young Kwan

    2014-10-01

    Blue phosphorescent organic light-emitting diodes with multiple quantum well (MQW) structures (from one to four quantum wells) within an emitting layer (EML) are fabricated with charge control layers (CCLs) to control carrier movement. The distributed recombination zone and balanced charge carrier injection within EML are achieved through the MQW structure with CCLs. Remarkably, the half-decay lifetime of a blue device with three quantum wells, measured at an initial luminance of 500 cd/m2, is 3.5 times longer than that using a conventional structure. Additionally, the device’s efficiency improved. These results are explained with the effects of triplet exciton confinement and triplet-triplet annihilation within each EML.

  6. Four-dimensional positron age-momentum correlation

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther

    2016-11-01

    We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.

  7. Formation of vacancy-impurity complexes in heavily Zn-doped InP

    NASA Astrophysics Data System (ADS)

    Slotte, J.; Saarinen, K.; Salmi, A.; Simula, S.; Aavikko, R.; Hautojärvi, P.

    2003-03-01

    Positron annihilation spectroscopy has been applied to observe the spontaneous formation of vacancy-type defects by annealing of heavily Zn-doped InP at 500 700 K. The defect is identified as the VP-Zn pair by detecting the annihilation of positrons with core electrons. We conclude that the defect is formed through a diffusion process; a phosphorus vacancy migrates until trapped by a Zn impurity and forms a negatively charged VP-Zn pair. The kinetics of the diffusion process is investigated by measuring the average positron lifetime as a function of annealing time and by fitting a diffusion model to the experimental results. We deduce a migration energy of 1.8±0.2 eV for the phosphorus vacancy. Our results explain both the presence of native VP-Zn pairs in Zn-doped InP and their disappearance in post-growth annealings.

  8. Near-Infrared-to-Visible Photon Upconversion Enabled by Conjugated Porphyrinic Sensitizers under Low-Power Noncoherent Illumination.

    PubMed

    Olivier, Jean-Hubert; Bai, Yusong; Uh, Hyounsoo; Yoo, Hyejin; Therien, Michael J; Castellano, Felix N

    2015-06-04

    We report four supermolecular chromophores based on (porphinato)zinc(II) (PZn) and (polypyridyl)metal units bridged via ethyne connectivity (Pyr1RuPZn2, Pyr1RuPZnRuPyr1, Pyr1RuPZn2RuPyr1, and OsPZn2Os) that fulfill critical sensitizer requirements for NIR-to-vis triplet-triplet annihilation upconversion (TTA-UC) photochemistry. These NIR sensitizers feature: (i) broad, high oscillator strength NIR absorptivity (700 nm < λ(max(NIR)) < 770 nm; 6 × 10(4) M(-1) cm(-1) < extinction coefficient (λ(max(NIR))) < 1.6 × 10(5) M(-1) cm(-1); 820 cm(-1) < fwhm < 1700 cm(-1)); (ii) substantial intersystem crossing quantum yields; (iii) long, microsecond time scale T1 state lifetimes; and (iv) triplet states that are energetically poised for exergonic energy transfer to the molecular annihilator (rubrene). Using low-power noncoherent illumination at power densities (1-10 mW cm(-2)) similar to that of terrestrial solar photon illumination conditions, we demonstrate that Pyr1RuPZn2, Pyr1RuPZn2RuPyr1, and Pyr1RuPZnRuPyr1 sensitizers can be used in combination with the rubrene acceptor/annihilator to achieve TTA-UC: these studies represent the first examples whereby a low-power noncoherent NIR light source drives NIR-to-visible upconverted fluorescence centered in a spectral window within the bandgap of amorphous silicon.

  9. High T c superconductivity in YBa2Cu3O7- x studied by PAC and PAS

    NASA Astrophysics Data System (ADS)

    Zhu, Shengyun; Li, Anli; Zheng, Shengnan; Huang, Hanchen; Li, Donghong; Din, Honglin; Du, Hongshan; Sun, Hancheng

    1993-03-01

    High T c superconductivity has been investigated in YBaCuO by both perturbed angular correlation and positron annihilation spectroscopy techniques as a function of temperature from 77 to 300 K. An abrupt change has been observed in the positron lifetime and Doppler broadening and the electric field gradient and its asymmetry parameter across T c, indicating a transition of two- to one-dimensional Cu-O-Cu chain structure and a charge transfer from CuO layers to CuO chains. An anomaly of the normal state has been demonstrated around 125 K, which is attributed to the structural instability.

  10. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in; Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{supmore » 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.« less

  11. Orthopositronium study of positron-irradiation-induced surface defects in alumina powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauwe, C.; Mbungu-Tsumbu

    1992-01-01

    Three-quantum-yield measurements and orthopositronium ({ital o}-Ps)-lifetime spectrometry at low temperatures are used to study the interaction of positronium with the surface in fine powders of aluminum oxide. It is found that electron and/or positron irradiation of the specimen induces surface defects which influence the positronium in three ways: (1) A surface positroniumlike bound state is created, (2) the fraction of {ital o}-Ps escaping from the particles is slightly inhibited, and (3) the escaped {ital o}-Ps is quenched into two-quantum decay upon collisions with the surface defects. It is found that the surface Ps state is not populated at the expensemore » of the interparticle Ps. The most likely surface defects are Al{sup 2+} or Al{sup 0} due to the migration of irradiation-induced interstitials. The techniques of long-lifetime spectrometry and of three-quantum-annihilation-rate measurement could be used to study both the diffusion of bulk defects to the surfaces, and the interactions of {ital o}-Ps to surface defects.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adrián-Martínez, S.; Albert, A.; André, M.

    A search for Secluded Dark Matter annihilation in the Sun using 2007–2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detection from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator.

  13. Decreasing luminescence lifetime of evaporating phosphorescent droplets

    NASA Astrophysics Data System (ADS)

    van der Voort, D. D.; Dam, N. J.; Sweep, A. M.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.; van de Water, W.

    2016-12-01

    Laser-induced phosphorescence has been used extensively to study spray dynamics. It is important to understand the influence of droplet evaporation in the interpretation of such measurements, as it increases luminescence quenching. By suspending a single evaporating n-heptane droplet in an acoustic levitator, the properties of lanthanide-complex europium-thenoyltrifluoroacetone-trioctylphosphine oxide (Eu-TTA-TOPO) phosphorescence are determined through high-speed imaging. A decrease was found in the measured phosphorescence decay coefficient (780 → 200 μs) with decreasing droplet volumes (10-9 → 10-11 m3) corresponding to increasing concentrations (10-4 → 10-2 M). This decrease continues up to the point of shell-formation at supersaturated concentrations. The diminished luminescence is shown not to be attributable to triplet-triplet annihilation, quenching between excited triplet-state molecules. Instead, the pure exponential decays found in the measurements show that a non-phosphorescent quencher, such as free TTA/TOPO, can be attributable to this decay. The concentration dependence of the phosphorescence lifetime can therefore be used as a diagnostic of evaporation in sprays.

  14. Effect of rare-earth ion size on local electron structure in RBa 2Cu 3O 7- δ (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors: A positron study

    NASA Astrophysics Data System (ADS)

    Chen, Zhenping; Zhang, Jincang; Su, Yuling; Xue, Yuncai; Cao, Shixun

    2006-02-01

    The effects of rare-earth ionic size on the local electron structure, lattice parameters and superconductivity have been investigated by positron annihilation technique (PAT) and related experiments for RBa 2Cu 3O 7- δ (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors. The local electron density ne is evaluated as a function of the rare-earth radius. The results show that both the bulk-lifetime τB and the defect lifetime τ2 increase with increasing rare-earth ionic radius, while the local electron density ne decrease with increasing rare-earth ionic radius. These results prove that the changes of ne, the degree of orthorhombic distortion and the coupling between the Cu-O chains and the CuO 2 planes all have an effect on the superconductivity of RBa 2Cu 3O 7- δ systems.

  15. A Scintillation Counter System Design To Detect Antiproton Annihilation using the High Performance Antiproton Trap(HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Stanojev, Boris

    2003-01-01

    The High Performance Antiproton Trap (HiPAT), a system designed to hold up to l0(exp 12) charge particles with a storage half-life of approximately 18 days, is a tool to support basic antimatter research. NASA's interest stems from the energy density represented by the annihilation of matter with antimatter, 10(exp 2)MJ/g. The HiPAT is configured with a Penning-Malmberg style electromagnetic confinement region with field strengths up to 4 Tesla, and 20kV. To date a series of normal matter experiments, using positive and negative ions, have been performed evaluating the designs performance prior to operations with antiprotons. The primary methods of detecting and monitoring stored normal matter ions and antiprotons within the trap includes a destructive extraction technique that makes use of a micro channel plate (MCP) device and a non-destractive radio frequency scheme tuned to key particle frequencies. However, an independent means of detecting stored antiprotons is possible by making use of the actual annihilation products as a unique indicator. The immediate yield of the annihilation event includes photons and pie mesons, emanating spherically from the point of annihilation. To "count" these events, a hardware system of scintillators, discriminators, coincident meters and multi channel scalars (MCS) have been configured to surround much of the HiPAT. Signal coincidence with voting logic is an essential part of this system, necessary to weed out the single cosmic ray events from the multi-particle annihilation shower. This system can be operated in a variety of modes accommodating various conditions. The first is a low-speed sampling interval that monitors the background loss or "evaporation" rate of antiprotons held in the trap during long storage periods; provides an independent method of validating particle lifetimes. The second is a high-speed sample rate accumulating information on a microseconds time-scale; useful when trapped antiparticles are extracted against a target, providing an indication of quantity. This paper details the layout of this system, setup of the hardware components around HiPAT, and applicable checkouts using normal matter radioactive sources.

  16. Development and Optimization of a Positron Annihilation Lifetime Spectrometer to Measure Nanoscale Defects in Solids and Borane Cage Molecules in Aqueous Nitrate Solutions

    DTIC Science & Technology

    2008-03-01

    will be accomplished by the day prior to the sample transfer operation. i. The radiation hood lab bench tops where radioactive material will be...source container to a sample container in a single syringe transfer. (All other non- radioactive solutions will have been previously added to this... radioactive spill. 4. Procedure Checklist: a. Setup □ Tape down plastic liner and locate absorbent □ Lay out sample container holder, sample

  17. Probing the electronic and defect structure of perovskite superconductors

    NASA Astrophysics Data System (ADS)

    Fluss, M. J.; Wachs, A. L.; Turchi, P. E. A.; Howell, R. H.; Jean, Y. C.; Kyle, J.; Nakanishi, H.; Chu, C. W.; Meng, R. L.; Hor, H. P.

    1988-02-01

    Positrons, either localized or delocalized, in the perovskite superconductors are sensitive to changes in electron density accompanying the normal-to-superconducting transition. We have been using this probe in our laboratory to study the nature of this new phenomena. Our work to date, which is briefly reviewed here, has consisted of a series of lifetime studies on La(sub 1.85)Sr(sub 0.15)CuO4 and YBa2Cu3O(sub 7-d) superconducting samples, the determination of the positron wave function in the perfect crystal, and a direct measurement of the electron momentum density in single crystal La2CuO4. Several important observations have resulted from this early work: the similar response of the positron annihilation lifetime to superconductivity in both La(sub 1.85)Sr(sub 0.15)CuO4 and YBa2Cu3O7, and a quantitative description of the electronic structure for La(sub 1.85)Sr(sub 0.15)CuO4 in terms of a linear combination of atomic orbital-molecular orbital (LCAO-MO) model.

  18. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

  19. Positron annihilation spectroscopic study of high performance semi-interpenetrating network polyimids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, A.K.

    1995-12-01

    Semi-interpenetrating (S-IPN) network polyimids were made from different proportions of LaRC RP46 (a thermosetpolyimid) and LaRC BDTA-ODA (a thermoplastic polyimid). The ultimate goal of this networking is to improve the mechanical properties of the thermoset polyimid. Positron lifetime study was made to calculate lifetime based on second component of the life time spectra and the free volume & microvoid size. All these properties tend to decrease steadily with increasing thermoset content except at the 50 percent thermoset level where these properties show sudden drop. This result contradicts with the initial expectation that the blend properties should change gradually if itmore » were a solid solution of thermoset (TSP) and thermoplastic (TPP) components. Thermal analyses (TMA, DSC, DMA & TGA) were run to complement the positron life time studies. The TMA and DSC studies confirm the contradiction mentioned above. Further experimentation with S-IPN polymers made at TSP/TTP content around 50/50 level are being conducted to explain this anomaly. Scanning electron microscope study of the S-IPN polyimid samples is under way in order to detect morphological differences which might help explain the phenomenon mentioned above.« less

  20. Positron annihilation study of vacancy-type defects in fast-neutron-irradiated MgO·nAl2O3

    NASA Astrophysics Data System (ADS)

    Rahman, Abu Zayed Mohammad Saliqur; Li, Zhuoxin; Cao, Xingzhong; Wang, Baoyi; Wei, Long; Xu, Qiu; Atobe, Kozo

    2014-09-01

    The positron lifetimes of fast-neutron-irradiated MgO·nAl2O3 single crystals were measured to investigate the formation of cation vacancies. Al monovacancy was possibly observed in samples irradiated by fast neutrons at ultra-low temperatures. Additionally, vacancy-oxygen complex centers were possibly observed in samples irradiated at higher temperatures and fast neutron fluences. Coincidence Doppler broadening (CDB) spectra were measured to obtain information regarding the vicinity of vacancy-type defects. A peak at approximately 11 × 10-3 m0c was observed, which may be due to the presence of oxygen atoms in the neighborhood of the vacancies.

  1. Laser excitation of the n =3 level of positronium for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kellerbauer, A.; Kimura, M.; Koettig, T.; Krasnicky, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zmeskal, J.; Zurlo, N.; AEgIS Collaboration

    2016-07-01

    We demonstrate the laser excitation of the n =3 state of positronium (Ps) in vacuum. A combination of a specially designed pulsed slow positron beam and a high-efficiency converter target was used to produce Ps. Its annihilation was recorded by single-shot positronium annihilation lifetime spectroscopy. Pulsed laser excitation of the n =3 level at a wavelength λ ≈205 nm was monitored via Ps photoionization induced by a second intense laser pulse at λ =1064 nm. About 15% of the overall positronium emitted into vacuum was excited to n =3 and photoionized. Saturation of both the n =3 excitation and the following photoionization was observed and explained by a simple rate equation model. The positronium's transverse temperature was extracted by measuring the width of the Doppler-broadened absorption line. Moreover, excitation to Rydberg states n =15 and 16 using n =3 as the intermediate level was observed, giving an independent confirmation of excitation to the 3 3P state.

  2. To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens

    NASA Astrophysics Data System (ADS)

    Bokov, A. V.; Byakov, V. M.; Kulikov, L. A.; Perfiliev, Yu. D.; Stepanov, S. V.

    2017-11-01

    Being the main cause of cancer, almost all chemical carcinogens are strong electrophiles, that is, they have a high affinity for the electron. We have shown that positron annihilation lifetime spectroscopy (PALS) is able to detect chemical carcinogens by their inhibition of positronium (Ps) formation in liquid media. Electrophilic carcinogens intercept thermalized track electrons, which are precursors of Ps, and as a result, when they are present Ps atom does not practically form. Available biophysical data seemingly indicate that frozen solutions model better an intracellular medium than the liquid ones. So it is reasonable to use emission Mössbauer spectroscopy (EMS) to detect chemical carcinogens, measuring the yield of 57Fe2+ions formed in reactions of Auger electrons and other secondary electrons they produced with 57Fe3+. These reactions are similar to the Ps formation process in the terminal part the positron track: e++ e- =>Ps. So EMS and PALS are complementary methods for detection of carcinogenic compounds.

  3. PALS, MIR and UV-vis-NIR spectroscopy studies of pHEMA hydrogel, silicon- and fluoro-containing contact lens materials

    NASA Astrophysics Data System (ADS)

    Filipecka, Katarzyna; Budaj, Mariusz; Chamerski, Kordian; Miedziński, Rafał; Sitarz, Maciej; Miskowiak, Bogdan; Makowska-Janusik, Małgorzata; Filipecki, Jacek

    2017-11-01

    Studies on polymeric materials used in contactology for manufacturing of contact lenses are presented in the paper. Different types of brand new contact lenses were investigated: hydrogel, silicone-hydrogel and rigid gas permeable. Positron annihilation lifetime spectroscopy (PALS) was used to characterize geometrical sizes and fraction of the free volume holes in the investigated samples. Measurements reveal significant differences between the materials. Namely differences in size and fraction of free volume were observed. These changes are strongly correlated with oxygen permeability in contact lenses. Middle infrared (MIR) spectroscopy was carried out in order to investigate the internal structure of materials. Furthermore, UV-vis-NIR studies were performed in order to determine the transmittance properties of contact lenses.

  4. Investigations on the structure of Pb-Ge-Se glasses

    NASA Astrophysics Data System (ADS)

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Abhaya, S.; Murugavel, S.; Amarendra, G.

    2016-05-01

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on PbxGe42-xSe58 with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalphy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  5. Positron deep level transient spectroscopy — a new application of positron annihilation to semiconductor physics

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Fung, S.; Au, H. L.; Ling, C. C.; Reddy, C. V.; Deng, A. H.; Panda, B. K.

    1997-05-01

    Recent positron mobility and lifetime measurements made on ac-biased metal on semi-insulating GaAs junctions, which have identified the native EL2 defect through a determination of the characteristic ionization energy of the donor level, are reviewed. It is shown that these measurements point towards a new spectroscopy, tentatively named positron-DLTS (deep level transient spectroscopy), that is the direct complement to conventional DLTS in that it monitors transients in the electric field of the depletion region rather than the inversely related depletion width, as deep levels undergo ionization. In this new spectroscopy, which may be applied to doped material by use of a suitable positron beam, electric field transients are monitored through the Doppler shift of the annihilation radiation resulting from the drift velocity of the positron in the depletion region. Two useful extensions of the new spectroscopy beyond conventional capacitance-DLTS are suggested. The first is that in some instances information on the microstructure of the defect causing the deep level may be inferred from the sensitivity of the positron to vacancy defects of negative and neutral charge states. The second is that the positron annihilation technique is intrinsically much faster than conventional DLTS with the capability of observing transients some 10 6 times faster, thus allowing deep levels (and even shallow levels) to be investigated without problems associated with carrier freeze-out.

  6. Free volumes and gas transport in polymers: amine-modified epoxy resins as a case study.

    PubMed

    Patil, Pushkar N; Roilo, David; Brusa, Roberto S; Miotello, Antonio; Aghion, Stefano; Ferragut, Rafael; Checchetto, Riccardo

    2016-02-07

    The CO2 transport process was studied in a series of amine-modified epoxy resins having different cross-linking densities but the same chemical environment for the penetrant molecules. Positron Annihilation Lifetime Spectroscopy (PALS) was used to monitor the free volume structure of the samples and experimentally evaluate their fractional free volume fh(T) and its temperature evolution. The analysis of the free volume hole size distribution showed that all the holes have a size large enough to accommodate the penetrant molecules at temperatures T above the glass transition temperature Tg. The measured gas diffusion constants at T > Tg have been reproduced in the framework of the free volume theory of diffusion using a novel procedure based on the use of fh(T) as an input experimental parameter.

  7. On the empirical determination of positron trapping coefficient at nano-scale helium bubbles in steels irradiated in spallation target

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Kuriplach, Jan; Vieh, Christiane; Peng, Lei; Dai, Yong

    2018-06-01

    In the present work, the specific positron trapping rate of small helium bubbles was empirically derived from positron annihilation lifetime spectroscopy (PALS) and transmission electron microscopy (TEM) studies of Fe9Cr martensitic steels. Both techniques are well known to be sensitive to nanometer-sized helium-filled cavities induced during irradiation in a mixed proton-neutron spectrum of spallation target. Complementary TEM and PALS studies show that positrons are being trapped to these defects at a rate of 1.2 ± 0.8 × 10-14 m3s-1. This suggests that helium bubbles in ferritic/martensitic steels are attractive traps for positrons comparable to mono-vacancies and quantitative analysis of the bubbles by PALS technique is plausible.

  8. Positron transport studies at the Au - (InP:Fe) interface

    NASA Astrophysics Data System (ADS)

    Au, H. L.; Lee, T. C.; Beling, C. D.; Fung, S.

    1996-03-01

    Positron mobility and lifetime measurements have been carried out on semi-insulating Fe-doped InP samples with Au contacts used for electric field application. The lifetime measurements, with electric fields directed towards the Au - InP:Fe interface, reveal no component associated with interfacial open-volume sites and thus give no evidence of any positron mobility. The mobility measurements, made using the Doppler-shifted annihilation radiation technique, however, reveal a temperature independent positron mobility of about 0953-8984/8/10/012/img1 in the range 150 - 300 K. These observations, together with results from I - V analysis, are discussed with reference to two possible band-bending schemes. The first, which requires an ionized shallow donor region adjacent to the Au - InP interface, seems less plausible on a number of grounds. In the second, however, an 0953-8984/8/10/012/img2 negative space charge produces an adverse diffusion barrier for positrons approaching the interface together with a non-uniform electric field in the samples capable of explaining the observed mobility results.

  9. Micro- and macrostructural characterization of polyvinylpirrolidone rotary-spun fibers.

    PubMed

    Sebe, István; Kállai-Szabó, Barnabás; Kovács, Krisztián Norbert; Szabadi, Enikő; Zelkó, Romána

    2015-01-01

    The application of high-speed rotary spinning can offer a useful mean for either preparation of fibrous intermediate for conventional dosage forms or drug delivery systems. Polyvinylpyrrolidone (PVP) and poly(vinylpyrrolidone-vinylacetate) (PVP VA) micro- and nanofibers of different polymer concentrations and solvent ratios were prepared with a high-speed rotary spinning technique. In order to study the influence of parameters that enable successful fiber production from polymeric viscous solutions, a complex micro- and macrostructural screening method was implemented. The obtained fiber mats were subjected to detailed morphological analysis using scanning electron microscope (SEM), and rheological measurements while the microstructural changes of fiber samples, based on the free volume changes, was analyzed by positron annihilation lifetime spectroscopy (PALS) and compared with their mechanical characteristics. The plasticizing effect of water tracked by ortho-positronium lifetime changes in relation to the mechanical properties of fibers. A concentration range of polyvinylpyrrolidone solutions was defined for the preparation of fibers of optimum fiber morphology and mechanical properties. The method enabled fiber formulation of advantageous functionality-related properties for further formulation of solid dosage forms.

  10. Defect identification in semiconductors with positron annihilation: experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  11. Evolution of microstructural defects of TiO2 nanocrystals by Zr4+ or/and Ge4+ doping lead to high disinfection efficiency for CWAs

    NASA Astrophysics Data System (ADS)

    Shen, Zhong; Zhong, Jin-Yi; Chai, Na-Na; He, Xin; Zang, Jian-Zheng; Xu, Hui; Han, Xiao-Yuan; Zhang, Peng

    2017-06-01

    Zr4+, Ge4+ doped and co-doped TiO2 nanoparticles were prepared by a 'one-pot' homogeneous precipitation method. The photocatalytic reaction kinetics of DMMP and the disinfection efficiency of HD, GD and VX on the samples were investigated. By means of a variety of characterization methods, especially the positron annihilation lifetime spectroscopy, the changes in structure and property of TiO2 across doping were studied. The results show that the reasonable engineering design of novel photocatalysts in the field of CWAs decontamination can be realized by adjusting the bulk-to-surface defects ratio, except for crystal structure, specific surface area, pore size distribution and light utilization.

  12. Morphological and textural characterization of functionalized particulate silica xerogels

    NASA Astrophysics Data System (ADS)

    de Miranda, Lazaro A.; Mohallem, Nelcy D. S.; de Magalhães, Welington F.

    2006-03-01

    The functionalization of xerogels for use in chromatography and catalysis was carried out by solubilization of amorphous silica using a soxhlet extractor. Xerogels were prepared by sol-gel method using tetraethoxysilane, TEOS, ethanol, and water in a 1/3/10 molar ratio with HCl and HF as catalysts. The samples were prepared in monolithic form and dried at 70 °C and 550 °C for 1 h each. After functionalization, changes in textural and morphological characteristics of xerogels were investigated by means of nitrogen gas adsorption, positron annihilation lifetime spectroscopy (PALS), and scanning electron microscopy (SEM). As the analysis methods are based on different physical principles, the results are complementary, leading to a good knowledge of the texture of the samples studied.

  13. PALS: A unique probe for the molecular organisation of biopolymer matrices

    NASA Astrophysics Data System (ADS)

    Roussenova, M.; Alam, M. A.

    2013-06-01

    This short review aims to illustrate the versatility of Positron Annihilation Lifetime Spectroscopy (PALS) when utilized for the characterization of biopolymers (e.g.: starch, fractionated maltooligomers, gelatin and cellulose derivatives) commonly used for the formulation of pharmaceutical encapsulants. By showing examples from a number of recent PALS studies, we illustrate that this technique can be used to probe the changes in thermodynamic state and molecular packing for a wide range of biopolymer matrices as a function of temperature, matrix composition and water content. This provides a basis for establishing composition-structure-property relationships for these materials, which would eventually enable the rational control of their macroscopic properties and the design of optimal encapsulating matrices and intelligent drug delivery systems.

  14. Native point defects in GaSb

    NASA Astrophysics Data System (ADS)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.

    2014-10-01

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.

  15. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-01

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e+-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e+-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  16. Leaching behaviour of and Cs disposition in a UMo powellite glass-ceramic

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Davis, J.; Olufson, K.; Gregg, D. J.; Blackford, M. G.; Griffiths, G. R.; Farnan, I.; Sullivan, J.; Sprouster, D.; Campbell, C.; Hughes, J.

    2014-05-01

    A UMo powellite glass-ceramic designed by French workers to immobilise Mo-rich intermediate-level waste was found to be quite leach resistant in water at 90 °C with the dissolution of Cs, Mo, Na, B and Ca not exceeding 2 g/L in normalised PCT tests. 133Cs solid state nuclear magnetic resonance and scanning electron microscopy (SEM) showed the Cs to inhabit the glass phase. The microstructures were not greatly affected by cooling rates between 1 and 5 °C/min or by introducing 10 times as much Cs and Sr. Protracted leach tests at 90 °C showed surface alteration as evidenced by SEM and particularly transmission electron microscopy; the main alteration phase was a Zn aluminosilicate but several other alteration phases were evident. Voidage in the alteration layers was indicated from enhanced lifetimes in positron annihilation lifetime spectroscopy.

  17. Application of the weighted-density approximation to the accurate description of electron-positron correlation effects in materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Saniz, Rolando; Barbiellini, Bernardo; Bansil, Arun; Partoens, Bart

    2017-08-01

    We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.

  18. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy.

    PubMed

    Ji, J; Colosimo, A M; Anwand, W; Boatner, L A; Wagner, A; Stepanov, P S; Trinh, T T; Liedke, M O; Krause-Rehberg, R; Cowan, T E; Selim, F A

    2016-08-23

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  19. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  20. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    PubMed Central

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-01-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials. PMID:27550235

  1. Microstructure of thermally grown and deposited alumina films probed with positrons

    NASA Astrophysics Data System (ADS)

    Somieski, Bertram; Hulett, Lester D.; Xu, Jun; Pint, Bruce A.; Tortorelli, Peter F.; Nielsen, Bent; Asoka-Kumar, Palakkal; Suzuki, Ryoichi; Ohdaira, Toshiyuki

    1999-03-01

    Aluminum oxide films used for corrosion protection of iron and nickel aluminides were generated by substrate oxidation as well as plasma and physical vapor depositions. The films grown by oxidation were crystalline. The others were amorphous. Defect structures of the films were studied by positron spectroscopy techniques. Lifetimes of the positrons, and Doppler broadening of the γ photons generated by their annihilation, were measured as functions of the energies with which they were injected. In this manner, densities and sizes of the defects were determined as functions of depths from the outer surfaces of the films. Alumina films generated by oxidation had high densities of open volume defects, mainly consisting of a few aggregated vacancies. In the outer regions of the films the structures of the defects did not depend on substrate compositions. Positron lifetime measurements, and the S and W parameters extracted from Doppler broadening spectra, showed uniform distributions of defects in the crystalline Al2O3 films grown on nickel aluminide substrates, but these data indicated intermediate layers of higher defect contents at the film/substrate interfaces of oxides grown on iron aluminide substrates. Amorphous films generated by plasma and physical vapor deposition had much larger open volume defects, which caused the average lifetimes of the injected positrons to be significantly longer. The plasma deposited film exhibited a high density of large cavities.

  2. A search for dark matter in the Galactic halo with HAWC

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; Garfias, F.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hueyotl-Zahuantitla, F.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis-Raya, G.; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rodd, N. L.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Safdi, B. R.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.; Zepeda, A.; Zhou, H.; Álvarez, J. D.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Here we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.

  3. A search for dark matter in the Galactic halo with HAWC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Heremore » we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.« less

  4. A search for dark matter in the Galactic halo with HAWC

    DOE PAGES

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; ...

    2018-02-23

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Heremore » we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.« less

  5. Absolute measurements of the triplet-triplet annihilation rate and the charge-carrier recombination layer thickness in working polymer light-emitting diodes based on polyspirobifluorene

    NASA Astrophysics Data System (ADS)

    Rothe, C.; Al Attar, H. A.; Monkman, A. P.

    2005-10-01

    The triplet exciton densities in electroluminescent devices prepared from two polyspirobifluorene derivatives have been investigated by means of time-resolved transient triplet absorption as a function of optical and electrical excitation power at 20 K. Because of the low mobility of the triplet excitons at this temperature, the triplet generation profile within the active polymer layer is preserved throughout the triplet lifetime and as a consequence the absolute triplet-triplet annihilation efficiency is not homogeneously distributed but depends on position within the active layer. This then gives a method to measure the charge-carrier recombination layer after electrical excitation relative to the light penetration depth, which is identical to the triplet generation layer after optical excitation. With the latter being obtained from ellipsometry, an absolute value of 5 nm is found for the exciton formation layer in polyspirobifluorene devices. This layer increases to 11 nm if the balance between the electron and the hole mobility is improved by chemically modifying the polymer backbone. Also, and consistent with previous work, triplet diffusion is dispersive at low temperature. As a consequence of this, the triplet-triplet annihilation rate is not a constant in the classical sense but depends on the triplet excitation dose. At 20 K and for typical excitation doses, absolute values of the latter rate are of the order of 10-14cm3s-1 .

  6. Nanostructure and Dynamics of Polymers and Thin Polymer Films: Studies by Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yee, Albert F.

    1997-03-01

    The relaxational, mechanical and transport properties of glassy polymers are strongly influenced by the nanostructural and dynamical characteristics of each material. In very thin polymer films such characteristics may be affected by the presence of a free surface or a substrate. Positron Annihilation Lifetime Spectroscopy (PALS) is a useful and in some ways unique tool for probing these important characteristics. Conventional PALS on several bulk polymers over an extended temperature range are used to illustrate how these characteristics are obtained(HA Hristov, B Bolan, AF Yee, L Xie, and DW Gidley, accepted by Macromolecules.). A new technique, which we shall call "beam-PALS", and the results of its application on nm-thick polystyrene films supported on one side by a Si substrate are described. In beam-PALS the lifetime, τ _3, and formation fraction, I_3, of triplet positronium decaying in the void volume near the polymer surface are measured versus the positron implantation energy, E. The strong E dependence of I3 supports a spur-electron capture model of Ps formation with deduced spur sizes ranging from 200 to 660 ÅThin film measurements indicate that the mean probe depth can be much smaller, given mainly by the average positron implantation distance, Z(E)(L Xie, GB DeMaggio, WE Frieze, J DeVries, DW Gidley, HA Hristov and AF Yee, PRL 74, 4947 (1995).). The thermal expansion behaviors of thin, Si-supported polystyrene films near the glass transition temperature, Tg were also measured. A reduction in void volume expansion is correlated with a reduction in the apparent Tg as film thickness decreases. Our results can be fitted using a 3-layer model incorporating a 50 Åconstrained layer at the Si interface and a 20 Åsurface region with reduced T_g(GB DeMaggio, WE Frieze, DW Gidley, M Zhu, HA Hristov, and AF Yee, accepted by PRL.).

  7. Target depth dependence of damage rate in metals by 150 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ishi, Y.; Kuriyama, Y.; Mori, Y.; Sato, K.; Uesugi, T.; Xu, Q.

    2015-01-01

    A series of irradiation experiments with 150 MeV protons was performed. The relationship between target depth (or shield thickness) and displacement damage during proton irradiation was obtained by in situ electrical resistance measurements at 20 K. Positron annihilation lifetime measurements were also performed at room temperature after irradiation, as a function of the target thickness. The displacement damage was found to be high close to the beam incident surface area, and decreased with increasing target depth. The experimental results were compared with damage production calculated with an advanced Monte Carlo particle transport code system (PHITS).

  8. Measuring θ13 in the Double Chooz experiment

    NASA Astrophysics Data System (ADS)

    Crum, Keith

    2013-04-01

    Double Chooz measures θ13 by searching for the disappearance of reactor electron antineutrinos (νe) interacting via inverse beta decay (IBD) in a liquid scintillator-based detector. The signature of IBD is the coincidence of positron annihilation followed by the capture of a neutron. Although Double Chooz was primarily designed to detect νe by searching for neutron capture on gadolinium, we can also search for neutron capture on hydrogen. We developed separate analyses for neutron capture on hydrogen and gadolinium as the two elements have different capture energies, capture lifetimes, and spatial distributions within our detector.

  9. Oxygen vacancy-induced room-temperature ferromagnetism in D—D neutron irradiated single-crystal TiO2 (001) rutile

    NASA Astrophysics Data System (ADS)

    Xu, Nan-Nan; Li, Gong-Ping; Pan, Xiao-Dong; Wang, Yun-Bo; Chen, Jing-Sheng; Bao, Liang-Man

    2014-10-01

    Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D—D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the contracted lattice has been clearly identified in irradiated TiO2, where Ti4+ ions can be easily reduced to the state of Ti3+. As there were no magnetic impurities that could contaminate the samples during the whole procedure, some Ti3+ ions reside on interstitial or substituted sites accompanied by oxygen vacancies should be responsible for the ferromagnetism.

  10. Defect interactions in GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.

  11. Native point defects in GaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.

    2014-10-14

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude.more » We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.« less

  12. Vacancy-hydrogen complexes in ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.

    2014-10-01

    We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.

  13. Positron Annihilation Studies of High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Peter, M.; Manuel, A. A.

    1989-01-01

    First we present the principles involved in the study of the two-photon momentum distribution: The method requires deconvolution of the positron wavefunction and the estimation of matrix elements effects. Single crystal samples must be of sufficient quality to avoid positron trapping (tested by positron lifetime measurements). In ordinary metals (alkalis, transition- and rare earth metals and compounds) two-photon momentum distribution studies have given results in close agreement with relevant band structure calculations. Discrepancies have been successfully described as enhancement effects due to correlations. In the superconducting oxides, measurements are more difficult because there are fewer conduction electrons and more trapping. Correlation effects of a different nature are expected to be important and might render the band picture inappropriate. Two-photon momentum distribution measurements have now been made by several groups, but have been interpreted in different ways. We relate the current state of affairs, and our present interpretation, to the latest available results.

  14. Characterisation of irradiation-induced defects in ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Prochazka, I.; Cizek, J.; Lukac, F.; Melikhova, O.; Valenta, J.; Havranek, V.; Anwand, W.; Skuratov, V. A.; Strukova, T. S.

    2016-01-01

    Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe26+ ions to fluences ranged from 3×1012 to 1×1014 cm-2. The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments.

  15. Free-Volume Nanostructurization in Ga-Modified As2Se3 Glass.

    PubMed

    Shpotyuk, Ya; Ingram, A; Shpotyuk, O; Dziedzic, A; Boussard-Pledel, C; Bureau, B

    2016-12-01

    Different stages of intrinsic nanostructurization related to evolution of free-volume voids, including phase separation, crystalline nuclei precipitation, and growth, were studied in glassy As2Se3 doped with Ga up to 5 at. %, using complementary techniques of positron annihilation lifetime spectroscopy, X-ray powder diffraction, and scanning electron microscopy with energy-dispersive X-ray analysis. Positron lifetime spectra reconstructed in terms of a two-state trapping model testified in favor of a native void structure of g-As2Se3 modified by Ga additions. Under small Ga content (below 3 at. %), the positron trapping in glassy alloys was dominated by voids associated with bond-free solid angles of bridging As2Se4/2 units. This void agglomeration trend was changed on fragmentation with further Ga doping due to crystalline Ga2Se3 nuclei precipitation and growth, these changes being activated by employing free volume from just attached As-rich glassy matrix with higher content of As2Se4/2 clusters. Respectively, the positron trapping on free-volume voids related to pyramidal AsSe3/2 units (like in parent As2Se3 glass) was in obvious preference in such glassy crystalline alloys.

  16. Using positron 2D-ACAR as a probe of point defects in GaAs: The As vacancy as a case study

    NASA Astrophysics Data System (ADS)

    Ambigapathy, R.; Corbel, C.; Hautojärvi, P.; Manuel, A. A.; Saarinen, K.

    1996-06-01

    Two-Dimensional Angular Correlation of positron Annihilation Radiation (2D-ACAR) experiments have been performed on n-type GaAs. By combining these results with those from positron lifetime experiments, the momentum distribution of the arsenic vacancy in its neutral ( V {aAs/0}) and negative ( V {As/-}) charge states have been extracted. These distributions were all normalized to the respective positron lifetime that characterizes them. The first thing to be noticed is that the momentum distributions of the vacancies, as seen by the positron, are fairly isotropic and structureless. The distribution for V {As/0} is more peaked than that of V {As/-} while the latter is more intense in the large momentum regions of the spectra. From this, it can be inferred that VA. has a smaller open volume than V {As/0} A closer look at the momentum distribution of the vacancies reveals that they are not entirely isotropic, but, in fact, have a bulk-like component. Finally, the experimental results for bulk GaAs and V {As/-} compare well in a qualitative manner with the momentum distributions that result from an ab-initio molecular dynamics calculation.

  17. Stress-relaxation heat treatment in FeSiBNb amorphous alloy: Thermal, microstructure, nanomechanical and magnetic texture measurements

    NASA Astrophysics Data System (ADS)

    Lashgari, H. R.; Cadogan, J. M.; Kong, C.; Tang, C.; Doherty, C.; Chu, D.; Li, S.

    2018-06-01

    In the present study, the effect of stress-relaxation treatment (Tstress-relaxation < Tglass transition) on the magnetic texture, nanomechanical properties, and variation of free-volume in FeSiBNb amorphous alloy was investigated using Mössbauer spectroscopy, nanoindentation, dynamic mechanical analysis (DMA), and positron annihilation lifetime spectroscopy (PALS) techniques. It was shown that stress-relaxation treatment slightly improved the magnetic texture by 6% at T ≪Tg due to small-scale displacement of atoms whereas the magnetic texture was deteriorated due to thermal treatment at temperatures around the glass transition point (large-scale displacement of atoms). According to nanoindentation results, the hardness (H) and reduced modulus (Er) of the amorphous ribbon increased by 15% and 13%, respectively, after stress-relaxation treatment at 716 K for 5 min. Increasing the stress-relaxation time from 5 min to 60 min at 716 K resulted in decreases in the hardness and reduced modulus which are attributed to the increase of free-volume defects (increase of τ2 lifetime measured by PALS). Transmission electron microscopy (TEM) showed the formation of extremely fine embryos of α-Fe (3-5 nm in size) after stress-relaxation treatment.

  18. Probing Sub-atomistic Free-Volume Imperfections in Dry-Milled Nanoarsenicals with PAL Spectroscopy.

    PubMed

    Shpotyuk, Oleh; Ingram, Adam; Bujňáková, Zdenka; Baláž, Peter; Shpotyuk, Yaroslav

    2016-12-01

    Structural transformations caused by coarse-grained powdering and fine-grained mechanochemical milling in a dry mode were probed in high-temperature modification of tetra-arsenic tetra-sulfide known as β-As4S4. In respect to X-ray diffraction analysis, the characteristic sizes of β-As4S4 crystallites in these coarse- and fine-grained powdered pellets were 90 and 40 nm, respectively. Positron annihilation lifetime spectroscopy was employed to characterize transformations occurred in free-volume structure of these nanoarsenicals. Experimentally measured positron lifetime spectra were parameterized in respect to three- or two-term fitting procedures and respectively compared with those accumulated for single crystalline realgar α-As4S4 polymorph. The effect of coarse-grained powdering was found to result in generation of large amount of positron and positronium Ps trapping sites inside arsenicals in addition to existing ones. In fine-grained powdered β-As4S4 pellets, the positron trapping sites with characteristic free volumes close to bi- and tri-atomic vacancies were evidently dominated. These defects were supposed to originate from grain boundary regions and interfacial free volumes near aggregated β-As4S4 crystallites. Thus, the cumulative production of different positron traps with lifetimes close to defect-related lifetimes in realgar α-As4S4 polymorph was detected in fine-grained milled samples.

  19. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, Katharina, E-mail: katharina.strobel@aol.com; Lay, Matthew D.H., E-mail: mlay@fbrice.com; Easton, Mark A., E-mail: mark.easton@rmit.edu.au

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated withmore » the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.« less

  20. Orientational order of motile defects in active nematics

    DOE PAGES

    DeCamp, Stephen J.; Redner, Gabriel S.; Baskaran, Aparna; ...

    2015-08-17

    The study of equilibrium liquid crystals has led to fundamental insights into the nature of ordered materials, as well as many practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, which are driven away from equilibrium by the autonomous motion of their constituent rodlike particles. This internally-generated activity powers the continuous creation and annihilation of topological defects, leading to complex streaming flows whose chaotic dynamics appear to destroy long-range order. Here, we study these dynamics in experimental and computational realizations of active nematics. By tracking thousands of defects over centimeter distances in microtubule-basedmore » active nematics, we identify a non-equilibrium phase characterized by system-spanning orientational order of defects. This emergent order persists over hours despite defect lifetimes of only seconds. Lastly, similar dynamical structures are observed in coarse-grained simulations, suggesting that defect-ordered phases are a generic feature of active nematics.« less

  1. Characterization of Neutron Transmutation Doped (NTD) Ge for low temperature sensor development

    NASA Astrophysics Data System (ADS)

    Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Pal, S.; Ramakrishnan, S.; Shrivastava, A.; Maheshwari, Priya; Pujari, P. K.; Ojha, S.; Kanjilal, D.; Jagadeesan, K. C.; Thakare, S. V.

    2015-02-01

    Development of NTD Ge sensors has been initiated for low temperature (mK) thermometry in The India-based TIN detector (TIN.TIN). NTD Ge sensors are prepared by thermal neutron irradiation of device grade Ge samples at Dhruva reactor, BARC, Mumbai. Detailed measurements have been carried out in irradiated samples for estimating the carrier concentration and fast neutron induced defects. The Positron Annihilation Lifetime Spectroscopy (PALS) measurements indicated monovacancy type defects for all irradiated samples, while Channeling studies employing RBS with 2 MeV alpha particles, revealed no significant defects in the samples exposed to fast neutron fluence of ∼ 4 ×1016 /cm2 . Both PALS and Channeling studies have shown that vacuum annealing at 600 °C for ∼ 2 h is sufficient to recover the damage in the irradiated samples, thereby making them suitable for the sensor development.

  2. Positron trapping in Y1-xPrxBa2Cu3O7-δ and the Fermi surface of YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Hoffmann, L.; Manuel, A. A.; Walker, E.; Barbiellini, B.; Peter, M.

    1995-03-01

    Temperature-dependent positron lifetime measurements in ceramic Y1-xPrxBa2Cu3O7-δ samples reveal positron trapping, in particular at low temperature and for small x. Positrons appear to be completely delocalized for T~400 K and higher. At high temperatures the lifetime for YBa2Cu3O7-δ and PrBa2Cu3O7-δ is identical (~165 ps) and close to the theoretical value. For these reasons a two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectrum was measured in YBa2Cu3O7 at T=400 K. The spectrum width confirms the delocalization of the positron and the 2D-ACAR shows, apart from the one-dimensional Fermi surface due to CuO chains, a smaller Fermi surface sheet centered around the S point, in the first Brillouin zone.

  3. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Li, Dong-Xiang; Qin, Xiu-Bo; Zheng, Li-Rong; Li, Yu-Xiao; Cao, Xing-Zhong; Li, Zhuo-Xin; Yang, Jing; Wang, Bao-Yi

    2013-03-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti3+—VO defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments.

  4. Penrose pair production as a power source of quasars and active galactic nuclei. [black hole mechanisms

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Leiter, D.

    1979-01-01

    Penrose pair production in massive canonical Kerr black holes (those with a/M equal to 0.998) is proposed as a way to explain the nature of the vast fluctuating energy production associated with active galactic nuclei and quasars. It is assumed that a Kerr black hole with a mass of the order of 100 million solar masses lies at the center of an active nucleus and that an accretion disk is formed. Penrose pair production in the inner ergosphere of such a massive canonical Kerr black hole is analyzed. The results indicate that: (1) particle pairs are ejected within a 40 deg angle relative to the equator; (2) the particle energy is of the order of 1 GeV per pair; (3) the pressure of the electron-positron relativistic gas is proportional to the electron-positron number density; (4) pair production may occur in bursts; and (5) the overall lifetime of an active nucleus would depend on the time required to exhaust the disk of its matter content. A test of the theory is suggested which involves observation of the 0.5-MeV pair-annihilation gamma rays that would be generated by annihilating particle pairs.

  5. Improved Si0.5Ge0.5/Si interface quality achieved by the process of low energy hydrogen plasma cleaning and investigation of interface quality with positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liao, M.-H.; Chen, C.-H.

    2013-04-01

    The Positron Annihilation Spectra (PAS), Raman, and Photoluminescence spectroscopy reveal that Si0.5Ge0.5/Si interface quality can be significantly improved by the low energy plasma cleaning process using hydrogen. In the PAS, the particularly small value of lifetime and intensity near the Si0.5Ge0.5/Si interface in the sample with the treatment indicate that the defect concentration is successfully reduced 2.25 times, respectively. Fewer defects existed in the Si0.5Ge0.5/Si interface result in the high compressive strain about 0.36% in the top epi-Si0.5Ge0.5 layer, which can be observed in Raman spectra and stronger radiative recombination rate about 1.39 times for the infrared emission, which can be observed in the photoluminescence spectra. With better Si0.5Ge0.5/Si interface quality, the SiGe-based devices can have better optical and electrical characteristics for more applications in the industry. The PAS is also demonstrated that it is the useful methodology tool to quantify the defect information in the SiGe-based material.

  6. Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Huse, T.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienaecker, B.; RØhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Vamosi, S.; Vladymyrov, M.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2017-04-01

    The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.

  7. A study of fast ionic conductors by positron annihilation

    NASA Astrophysics Data System (ADS)

    Wang, Yung-Yu; Yang, Ju-Hua; Pan, Xiao-Liang; Lei, Zhen-Xi

    1988-06-01

    New fast ionic conductor systems of LiCl-LiF-B2O3 and LiF-B2O3 were studied by using the positron annihilation technique. It was found that the mid-life intensity I2 in positron annihilation has a linear relationship with the material's electrical conductivity log sigma. This result, combined with the measurement result on the linear annihilation parameter, indicated that the voids between microcrystals and network phases provided more transfer paths in the micro-crystalline LiF-LiCl-B2O3 system, which led to improved electrical conductivity in this type of material.

  8. Investigation of matter-antimatter interaction for possible propulsion applications

    NASA Technical Reports Server (NTRS)

    Morgan, D. L., Jr.

    1974-01-01

    Matter-antimatter annihilation is discussed as a means of rocket propulsion. The feasibility of different means of antimatter storage is shown to depend on how annihilation rates are affected by various circumstances. The annihilation processes are described, with emphasis on important features of atom-antiatom interatomic potential energies. A model is developed that allows approximate calculation of upper and lower bounds to the interatomic potential energy for any atom-antiatom pair. Formulae for the upper and lower bounds for atom-antiatom annihilation cross-sections are obtained and applied to the annihilation rates for each means of antimatter storage under consideration. Recommendations for further studies are presented.

  9. A Study of the Vacancy-Impurity Interaction in Dilute Nickel Alloys by Core Electron Annihilation

    NASA Astrophysics Data System (ADS)

    Arbuzov, V. L.; Danilov, S. E.; Druzhkov, A. P.

    1997-08-01

    It is shown that the angular correlation of annihilation radiation can be used to identify vacancy-impurity complexes in dilute alloys. Annihilation of trapped positrons with core electrons bears information about the chemical environment of a vacancy defect. The method is especially effective for d-matrices doped with sp-impurities since annihilation parameters of positrons with d- and sp-shell electrons differ considerably. The potentialities of the method of core-electron annihilation of positrons are demonstrated taking electron-irradiated dilute Ni-P and Ni-Si alloys as an example. It is shown that the interaction between the vacancies, which migrate at the III stage of annealing, and P atoms in Ni-P causes a considerable change in the annihilation parameters of positrons with core electrons compared to pure Ni. In Ni-Si alloys the annihilation parameters of trapped positrons with core electrons do not differ from those in Ni. This fact is an evidence that Si atoms do not interact with vacancies in Ni.

  10. J/Ψ resonant formation and mass measurement in antiproton-proton annihilations

    NASA Astrophysics Data System (ADS)

    Baglin, C.; Bassompierre, G.; Brient, J. C.; Broll, C.; Bussiere, A.; Guillaud, J. P.; Morch, C.; Poulet, M.; Baird, S.; Khan-Aronsen, E.; Leistam, L.; Lundby, A.; Mouellic, B.; Poole, J.; Buzzo, A.; Ferroni, S.; Gracco, V.; Macri', M.; Mattera, L.; Pia, M. G.; Pozzo, A.; Santroni, A.; Tomasini, F.; Valbusa, U.; Burq, J. P.; Chemarin, M.; Chevallier, M.; Fay, J.; Ille, B.; Lambert, M.; Bugge, L.; Buran, T.; Kirsebom, K.; Skjevling, G.; Stapnes, S.; Stugu, B.; Petrillo, L.; Severi, M.; Brom, J. M.; Escoubes, B.; Biino, C.; Borreani, G.; Cester, R.; Marchetto, F.; Menichetti, E.; Pastrone, N.; Rinaudo, G.

    Experiment R704, the last to be performed at the CERN-ISR, has successfully applied a new method to study ( overlinecc ) states formed directly in antiproton-proton annihilations. The novelty of the method rests on the capability to build a highly performing annihilation source by letting a cold

  11. Studies of the oxidized Cu(100) surface using positron annihilation induced Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Maddox, W.; Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.

    2008-03-01

    We discuss recent progress in studies of an oxidized Cu(100) single crystal subjected to vacuum annealing over a temperature range from 293K to 1073K using positron annihilation induced Auger electron spectroscopy (PAES). The PAES measurements show a large monotonic increase in the intensity of the positron annihilation induced Cu M2,3 VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 573 K. The intensity then decreases monotonically as the annealing temperature is increased to 873 K. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption and surface reconstruction on localization of positron surface state wave functions and annihilation characteristics are analyzed. Possible explanations are provided for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature.

  12. The effects of Dark Matter annihilation on cosmic reionization

    DOE PAGES

    Kaurov, Alexander A.; Hooper, Dan; Gnedin, Nickolay Y.

    2016-12-15

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons that ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM, however, begins to efficiently annihilate with the formation of primordial microhalos atmore » $$z\\sim100-200$$, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval $$z \\sim 20-100$$, it can leave a significant imprint on the global optical depth, $$\\tau$$. Moreover, we show that cosmic microwave background (CMB) polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. Here, we show that future measurements could make it possible to place constraints on the dark matter's annihilation cross section that are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic ray measurements, and studies of recombination.« less

  13. Escape and finite-size scaling in diffusion-controlled annihilation

    DOE PAGES

    Ben-Naim, Eli; Krapivsky, Paul L.

    2016-12-16

    In this paper, we study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions d>2 where a finite number of particles typically survive the annihilation process. Using scaling techniques we investigate the average number of surviving particles, M, as a function of the initial number of particles, N. In three dimensions, for instance, we find the scaling law M ~ N 1/3 in the asymptotic regime N»1. We show that two time scales govern the reaction kinetics: the diffusionmore » time scale, T ~ N 2/3, and the escape time scale, τ ~ N 4/3. The vast majority of annihilation events occur on the diffusion time scale, while no annihilation events occur beyond the escape time scale.« less

  14. Triplet-triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook.

    PubMed

    Kondakov, Denis Y

    2015-06-28

    Studies of delayed electroluminescence in highly efficient fluorescent organic light-emitting diodes (OLEDs) of many dissimilar architectures indicate that the triplet-triplet annihilation (TTA) significantly increases yield of excited singlet states-emitting molecules in this type of device thereby contributes substantially to their efficiency. Towards the end of the 2000s, the essential role of TTA in realizing highly efficient fluorescent devices was widely recognized. Analysis of a diverse set of fluorescent OLEDs shows that high efficiencies are often cor-related to TTA extents. It is therefore likely that it is the long-term empirical optimization of OLED efficiencies that has resulted in fortuitous emergence of TTA as a large and ubiquitous contributor to efficiency. TTA contributions as high as 20-30% are common in the state-of-the-art OLEDs, and even become dominant in special cases, where TTA is shown to substantially exceed the spin-statistical limit. The fundamental features of OLED efficiency enhancement via TTA-molecular structure-dependent contributions, current density-dependent intensities in practical devices and frequently observed antagonistic relationships between TTA extent and OLED lifetime-came to be understood over the course of the next few years. More recently, however, there was much less reported progress with respect to all-important quantitative details of the TTA mechanism. It should be emphasized that, to this day and despite the decades of work on improving blue phosphorescent OLEDs as well as the recent advent of thermally activated delayed fluorescence OLEDs, the majority of practical blue OLEDs still rely on TTA. Considering such practical importance of fluorescent blue OLEDs, the design of blue OLED-compatible materials capable of substantially exceeding the spin-statistical limit in TTA, elimination of the antagonistic relationship between TTA-related efficiency gains and lifetime losses, and designing devices with an extended range of current densities producing near-maximum TTA electroluminescence are the areas where future improvements would be most beneficial. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Porosity in plasma enhanced chemical vapor deposited SiCOH dielectrics: A comparative study

    NASA Astrophysics Data System (ADS)

    Grill, A.; Patel, V.; Rodbell, K. P.; Huang, E.; Baklanov, M. R.; Mogilnikov, K. P.; Toney, M.; Kim, H.-C.

    2003-09-01

    The low dielectric constant (k) of plasma enhanced chemical vapor deposited SiCOH films has been attributed to porosity in the films. We have shown previously that the dielectric constant of such materials can be extended from the typical k values of 2.7-2.9 to ultralow-k values of k=2.0. The reduction in the dielectric constants has been achieved by enhancing the porosity in the films through the addition of an organic material to the SiCOH precursor and annealing the films to remove the thermally less-stable organic fractions. In order to confirm the relation between dielectric constant and film porosity the latter has been evaluated for SiCOH films with k values from 2.8 to 2.05 using positron annihilation spectroscopy, positron annihilation lifetime spectroscopy, small angle x-ray scattering, specular x-ray reflectivity, and ellipsometric porosimetry measurements. It has been found that the SiCOH films with k=2.8 had no detectable porosity, however the porosity increased with decreasing dielectric constant reaching values of 28%-39% for k values of 2.05. The degree of porosity and the pore size determined by the dissimilar techniques agreed within reasonable limits, especially when one takes into account the small pore size in these films and the different assumptions used by the different techniques. The pore size increases with decreasing k, however the diameter remains below 5 nm for k=2.05, most of the pores being smaller than 2.5 nm.

  16. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    PubMed

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  17. Influence of processing conditions on point defects and luminescence centers in ZnO

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Kitai, A. H.; Mascher, P.

    1993-12-01

    Positron lifetime spectroscopy and cathodoluminescence were employed to study luminescence centers in ZnO. The samples were high-purity polycrystalline ceramics sintered at temperatures ranging from 800 to 1400 C for 2 to 40 h. Scanning electron microscopy shows that as annealing temperatures and/or times increase, the average grain size increases and can reach 30 micron for samples sintered at 1200 C. At the same time, the positron bulk lifetime approaches theoretically estimated single-crystal values, while the integrated luminescence intensity increase significantly. A further increase of the sintering temperature beyond 1200 C results in a decrease in the luminescence intensity, in good agreement with the only weak luminescence observed in single-crystalline material. The positron lifetime spectra clearly show the existence of the dominant vacancy-type defect, most likely a complex involving V(sub Zn), or the divacancy, V(sub Zn)V(sub O), independent of sample thermal history. The concentration of this center steadily decreases with increasing sintering temperatures. It is concluded that the yellow luminescence centers are related to charged zinc vacancies trapped in the grain boundary regions. We propose that the observed broadness of the spectra likely originates from the modification of the electronic configuration of the luminescence centers due to their complex environment. A direct connection between the positron and the luminescence results could not be established; instead, they appear to reflect two relatively independent aspects of the samples. It could be shown, however, that positron annihilation measurements can be used effectively to monitor the evolution of the microstructure of the samples, in good agreement with scanning electron micrographs.

  18. Effect of noise on defect chaos in a reaction-diffusion model.

    PubMed

    Wang, Hongli; Ouyang, Qi

    2005-06-01

    The influence of noise on defect chaos due to breakup of spiral waves through Doppler and Eckhaus instabilities is investigated numerically with a modified Fitzhugh-Nagumo model. By numerical simulations we show that the noise can drastically enhance the creation and annihilation rates of topological defects. The noise-free probability distribution function for defects in this model is found not to fit with the previously reported squared-Poisson distribution. Under the influence of noise, the distributions are flattened, and can fit with the squared-Poisson or the modified-Poisson distribution. The defect lifetime and diffusive property of defects under the influence of noise are also checked in this model.

  19. Fermi LAT Search for Dark Matter in Gamma-Ray Lines and the Inclusive Photon Spectrum

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Barbiellini, G.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Flux upper limits are presented for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray background from 4.8 GeV to 264 GeV obtained from two years of Fermi Large Area Telescope data integrated over most of the sky. We give cross section upper limits and decay lifetime lower limits for dark matter models that produce gamma-ray lines or contribute to the diffuse spectrum, including models proposed as explanations of the PAMELA and Fermi cosmic-ray data.

  20. Generation and characterization of point defects in SrTiO3 and Y3Al5O12

    NASA Astrophysics Data System (ADS)

    Selim, F. A.; Winarski, D.; Varney, C. R.; Tarun, M. C.; Ji, Jianfeng; McCluskey, M. D.

    Positron annihilation lifetime spectroscopy (PALS) was applied to characterize point defects in single crystals of Y3Al5O12 and SrTiO3 after populating different types of defects by relevant thermal treatments. In SrTiO3, PALS measurements identified Sr vacancy, Ti vacancy, vacancy complexes of Ti-O (vacancy) and hydrogen complex defects. In Y3Al5O12 single crystals the measurements showed the presence of Al-vacancy, (Al-O) vacancy and Al-vacancy passivated by hydrogen. These defects are shown to play the major role in defining the electronic and optical properties of these complex oxides.

  1. Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum

    DOE PAGES

    Ackermann, M.

    2012-07-05

    Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Furthermore, we present the flux upper limits for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray background from 4.8 GeV to 264 GeV obtained from two years of Fermi Large Area Telescope data integrated over most of the sky. Here, we give cross-section upper limits and decay lifetime lower limits for dark matter models that produce gamma-ray lines or contribute to the diffuse spectrum, including models proposed as explanations of the PAMELA and Fermi cosmic-ray data.

  2. Correlation between free-volume parameters and physical properties of polyethylene-nitrile rubber blend

    NASA Astrophysics Data System (ADS)

    Gomaa, E.; Mostafa, N.; Mohsen, M.; Mohammed, M.

    2004-10-01

    Positron annihilation lifetime spectroscopy (PALS) was used to study the immiscibility of a polar nitrile rubber (NBR) that had been blended with pure and waste, low- and high-density polyethylene (PE). The effect of the weight percent of the rubber added to the PE was also investigated. It was found that a complicated variation (positive and negative) in both free-volume parameters (τ3 and I 3) from the values of the initial polymers forms an immiscible blend. These results are supported by a significant broadening in the free-volume hole size distributions. This has been interpreted in terms of interfacial spaces created between the boundaries of the two phases. Furthermore, a correlation was established between the free-volume parameters (τ3 and I 3) and the electrical and mechanical properties of the before mentioned polymer blends as a function of the weight percent of waste PE.

  3. Nanostructured polymer-titanium composites and titanium oxide through polymer swelling in titania precursor.

    PubMed

    Kierys, A; Zaleski, R; Buda, W; Pikus, S; Dziadosz, M; Goworek, J

    2013-06-01

    Polymer (XAD7HP)/Ti 4+ nanocomposites were prepared through the swelling of polymer in titanium (IV) ethoxide as a titanium dioxide precursor. The nanocomposite beads exhibit relatively high porosity different than the porosity of the initial polymer. Thermal treatment of composite particles up to 200 °C in vacuum causes the change of their internal structure. At higher temperature, the components of composite become more tightly packed. Calcination at 600 °C and total removal of polymer produce spherically shaped TiO 2 condensed phase as determined by XRD. Thermally treated composites show the substantial change of pore dimensions within micro- and mesopores. The presence of micropores and their transformation during thermal processing was studied successfully by positron annihilation lifetime spectroscopy (PALS). The results derived from PALS experiment were compared with those obtaining from low-temperature nitrogen adsorption data.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahverdi, Rouzbeh; Gao, Yu; Knockel, Bradley

    In this paper, we study indirect detection signals from solar annihilation of dark matter (DM) particles into light right-handed (RH) neutrinos with a mass in a 1–5 GeV range. These RH neutrinos can have a sufficiently long lifetime to allow them to decay outside the Sun, and their delayed decays can result in a signal in gamma rays from the otherwise “dark” solar direction, and also a neutrino signal that is not suppressed by the interactions with solar medium. We find that the latest Fermi-LAT and IceCube results place limits on the gamma ray and neutrino signals, respectively. Combined photonmore » and neutrino bounds can constrain the spin-independent DM-nucleon elastic scattering cross section better than direct detection experiments for DM masses from 200 GeV up to several TeV. Finally, the bounds on spin-dependent scattering are also much tighter than the strongest limits from direct detection experiments.« less

  5. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature,more » and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.« less

  6. Atomic-deficient nanostructurization in water-sorption alumomagnesium spinel ceramics MgAl2O4

    NASA Astrophysics Data System (ADS)

    Ingram, A.

    2018-02-01

    Atomic-deficient nanostructurization in alumomagnesium MgAl2O4 ceramics sintered at 1100-1400 °C caused by water sorption are studied employing positron annihilation lifetime spectroscopy. Detected PAL spectra are reconstructed from unconstrained x4-term decomposition, and further transformed to x3-term form to be applicable for analysis with x3-x2-CDA (coupling decomposition algorithm). It is proved that water-immersion processes reduce positronium (Ps) decaying in large-size holes of ceramics (1.70-1.84 nm in radius) at the expense of enhanced trapping in tiny ( 0.2 nm in radius) Ps-traps. The water sorption is shown to be more pronounced in structurally imperfect ceramics sintered at T s = 1100-1200 °C due to irreversible transformations between constituting phases, while reversible physical-sorption processes are dominated in structurally uniform ceramics composed of main spinel phase.

  7. Oxidation and thermal reduction of the Cu(1 0 0) surface as studied using positron annihilation induced Auger electron spectroscopy (PAES)

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Mukherjee, S.; Rajeshwar, K.; Weiss, A. H.

    2010-01-01

    Changes in the surface of an oxidized Cu(1 0 0) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the annihilation induced Cu M 2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600 °C. Experimental probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons are estimated from the measured intensities of the positron annihilation induced Cu M 2,3VV and O KLL Auger transitions. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption on localization of positron surface state wave function and annihilation characteristics are also analyzed. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M 2,3VV and O KLL Auger peaks and probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.

  8. Positron annihilation response and broadband dielectric spectroscopy: salol.

    PubMed

    Bartoš, J; Iskrová, M; Köhler, M; Wehn, R; Sauša, O; Lunkenheimer, P; Krištiak, J; Loidl, A

    2011-09-01

    A phenomenological analysis of the ortho-positronium (o-Ps) annihilation from positron annihilation lifetime spectroscopy (PALS) and the dynamics from broadband dielectric spectroscopy (BDS) are reported on a small molecular glass former of intermediate H-bonding and fragility: salol. The dielectric spectra extend over a very broad frequency range of about 2 × 10(-2)-3.5 × 10(11) Hz, providing information on the α-relaxation, the secondary relaxation giving rise to the excess wing, and the shallow high-frequency minimum in the micro- to milli-meter wave range. A number of empirical correlations between the o-Ps lifetime, τ(3)(T), and the various spectral and relaxation features have been observed. Thus, the phenomenological evaluation of the τ(3)(T) dependence of the PALS response of the amorphous sample reveals three characteristic PALS temperatures: T(g)(PALS), T(b1)(L) = 1.15T(g)(PALS) and T(b2)(L) = 1.25T(g)(PALS), which are discussed in relation to similar findings for some typical small molecular vdW- and H-bonded glass formers. A slighter change of the slope at T(b1)(L) appears to be related to the transition from excess wing to the primary α-process-dominated behavior, with the secondary process dominating in the deeply supercooled liquid state below T(b1)(L). The high-temperature plateau effect in the τ (3)(T) plot occurs at T(b2)(L) and agrees with the characteristic Stickel temperature, T(B)(ST), marking a qualitative change of the primary α process, but it does not follow the relation T(b2)(L) < T(α) [τ(3)(T(b2)) < τ(α)]. Both effects at T(b1)(L) and T(b2)(L) correlate with two crossovers in the spectral shape and related non-exponentiality parameter of the structural relaxation, β (KWW). Finally, the application of the two-order parameter (TOP) model to the structural relaxation as represented by the primary α relaxation times from BDS leads to the characteristic TOP temperature, T(m)(c), close to T(b1) from PALS. Within this model the phenomenological interpretation is offered based on changes in the probability of occurrence of solid-like and liquid-like domains to explain the dynamic as well as PALS responses. In summary, all the empirical correlations support further very close connections between the PALS response and the dielectric relaxation behavior in small molecule glass formers.

  9. Microstructure Hierarchical Model of Competitive e+-Ps Trapping in Nanostructurized Substances: from Nanoparticle-Uniform to Nanoparticle-Biased Systems.

    PubMed

    Shpotyuk, Oleh; Ingram, Adam; Bujňáková, Zdenka; Baláž, Peter

    2017-12-01

    Microstructure hierarchical model considering the free-volume elements at the level of interacting crystallites (non-spherical approximation) and the agglomerates of these crystallites (spherical approximation) was developed to describe free-volume evolution in mechanochemically milled As 4 S 4 /ZnS composites employing positron annihilation spectroscopy in a lifetime measuring mode. Positron lifetime spectra were reconstructed from unconstrained three-term decomposition procedure and further subjected to parameterization using x3-x2-coupling decomposition algorithm. Intrinsic inhomogeneities due to coarse-grained As 4 S 4 and fine-grained ZnS nanoparticles were adequately described in terms of substitution trapping in positron and positronium (Ps) (bound positron-electron) states due to interfacial triple junctions between contacting particles and own free-volume defects in boundary compounds. Compositionally dependent nanostructurization in As 4 S 4 /ZnS nanocomposite system was imagined as conversion from o-Ps trapping sites to positron traps. The calculated trapping parameters that were shown could be useful to characterize adequately the nanospace filling in As 4 S 4 /ZnS composites.

  10. Controlled Synthesis and Understanding of Growth Mechanism – Parameters for Atmospheric Pressure Hydrothermal Synthesis of Ultrathin Secondary ZnO Nanowires

    DOE PAGES

    Jiao, Mingzhi; Nguyen, Duc; Nguyen, Van; ...

    2015-11-10

    We measured luminescence and scintillation in ZnO single crystals by photoluminescence and X-ray-induced luminescence (XRIL). XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. In the origin of green emission, the dominant trap emission in ZnO, was investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials or the surroundings. Moreover, the measurements showed the absence of positron traps inmore » the crystals and yielded a bulk positron lifetime value that is in complete agreement with the predicted theoretical value = thereby confirming the advantage of the GIPS method. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE.« less

  11. Indirect and direct signatures of Higgs portal decaying vector dark matter for positron excess in cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Seungwon; Ko, P.; Park, Wan-Il

    2014-06-01

    We investigate the indirect signatures of the Higgs portal U(1){sub X} vector dark matter (VDM) X{sub μ} from both its pair annihilation and decay. The VDM is stable at renormalizable level by Z{sub 2} symmetry, and thermalized by Higgs-portal interactions. It can also decay by some nonrenormalizable operators with very long lifetime at cosmological time scale. If dim-6 operators for VDM decays are suppressed by 10{sup 16} GeV scale, the lifetime of VDM with mass ∼ 2 TeV is just right for explaining the positron excess in cosmic ray observed by PAMELA and AMS02 Collaborations. The VDM decaying into μ{supmore » +}μ{sup −} can fit the data, evading various constraints on cosmic rays. We give one UV-complete model as an example. This scenario for Higgs portal decaying VDM with mass around ∼ 2 TeV can be tested by DM direct search at XENON1T, and also at the future colliders by measuring the Higgs self-couplings.« less

  12. Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Féry, C.; Racine, B.; Vaufrey, D.; Doyeux, H.; Cinà, S.

    2005-11-01

    The main process responsible for the luminance degradation in organic light-emitting diodes (OLEDs) driven under constant current has not yet been identified. In this paper, we propose an approach to describe the intrinsic mechanisms involved in the OLED aging. We first show that a stretched exponential decay can be used to fit almost all the luminance versus time curves obtained under different driving conditions. In this way, we are able to prove that they can all be described by employing a single free parameter model. By using an approach based on local relaxation events, we will demonstrate that a single mechanism is responsible for the dominant aging process. Furthermore, we will demonstrate that the main relaxation event is the annihilation of one emissive center. We then use our model to fit all the experimental data measured under different driving condition, and show that by carefully fitting the accelerated luminance lifetime-curves, we can extrapolate the low-luminance lifetime needed for real display applications, with a high degree of accuracy.

  13. Kinetics of Schottky defect formation and annihilation in single crystal TlBr.

    PubMed

    Bishop, Sean R; Tuller, Harry L; Kuhn, Melanie; Ciampi, Guido; Higgins, William; Shah, Kanai S

    2013-07-28

    The kinetics for Schottky defect (Tl and Br vacancy pair) formation and annihilation in ionically conducting TlBr are characterized through a temperature induced conductivity relaxation technique. Near room temperature, defect generation-annihilation was found to take on the order of hours before equilibrium was reached after a step change in temperature, and that mechanical damage imparted on the sample rapidly increases this rate. The rate limiting step to Schottky defect formation-annihilation is identified as being the migration of lower mobility Tl (versus Br), with an estimate for source-sink density derived from calculated diffusion lengths. This study represents one of the first investigations of Schottky defect generation-annihilation kinetics and demonstrates its utility in quantifying detrimental mechanical damage in radiation detector materials.

  14. Exciplex-exciplex energy transfer and annihilation in solid films of porphyrin-fullerene dyads.

    PubMed

    Lehtivuori, Heli; Lemmetyinen, Helge; Tkachenko, Nikolai V

    2006-12-20

    Exciplex-exciplex annihilation was observed for the first time in porphyrin-fullerene molecular films. The films were prepared using Langmuir-Blodgett and drop casting methods. The exciplex-exciplex interactions were studied using femtosecond pump-probe method. The exciplex-exciplex annihilation can be seen as a fast (within few picoseconds) decay of the transient absorption at excitation densities higher than 0.4 mJ/cm2. Analysis of the excitation density dependences indicates that in average four dyads are involved in the exciplex-exciplex interaction, suggesting that an exciplex-exciplex energy transfer may precede the annihilation.

  15. Synthesis and characterization of single-phase Mn-doped ZnO

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-05-01

    Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

  16. Positron annihilation study of cavities in black Au films

    NASA Astrophysics Data System (ADS)

    Melikhova, O.; Čížek, J.; Hruška, P.; Vlček, M.; Procházka, I.; Anwand, W.; Novotný, M.; Bulíř, J.

    2017-01-01

    Defects in a black Au film were studied using variable energy positron annihilation spectroscopy. Black Au films exhibit porous morphology similar to cauliflower. This type of structure enhances the optical absorption due to a multiple reflections in the micro-cavities. A nanostructured black Au film was compared with conventional smooth Au films with high reflectivity. The black Au film exhibited a remarkably enhanced S-parameter in sub-surface region. This is caused by a narrow para-Positronium contribution to the annihilation peak.

  17. International Conference on Positron Annihilation (6th) held at the University of Texas at Arlington, April 3-7, 1982. Program and Collected Abstracts.

    DTIC Science & Technology

    1983-02-23

    Annihilation Techniques SONIA MIIAN S., R. ZANA , J.CH. ABBE, and G. DUPLATRE - xxviii P-80 Study of Microemulsion Systems by Positron Annihilation...California, Berkeley CA 94720, U.S.A. Primary considerations for the design of positron emission tomographs for medical studies in humans are high...imaging system for medical applications is to produce an image in as short as time as possible which represents as accurately Ias possible the

  18. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; hide

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  19. Optical-vortex pair creation and annihilation and helical astigmatism of a nonplanar ring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckenberg, N.R.; Vaupel, M.; Malos, J.T.

    1996-09-01

    The creation and annihilation of pairs of optical vortices have been studied in transitions between patterns produced in a photorefractive oscillator. Smooth metamorphosis between stable patterns occurs through pair creation or annihilation but can be modeled using superposition of modes taking into account lifting of degeneracy of helical modes by helical astigmatism of the resonator. {copyright} {ital 1996 The American Physical Society.}

  20. Positron annihilation induced Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, A.

    1991-02-01

    A review is given on the results of PAES (positron annihilation induced Auger Electron Spectroscopy) studies to data, with a concentration on those results obtained at the University of Texas at Arlington. Low energy positions, trapped in a surface localized state annihilate with core electrons resulting in the emission of Auger electrons. The advantages of PEAS include: (i) the elimination of the very large secondary electron background, and (ii) increased surface selectivity. (AIP)

  1. Studies of the Ge(100) Surface Using a Low Energy Positron Beam: The Effects of Surface Reconstructions on Positron Trapping and Annihilation Characteristics

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2008-03-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(100) surface. The PAES spectrum from the Ge(100) surface displays several strong Auger peaks corresponding to M4,5N1N2,3 , M2,3M4,5M4,5 , M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. The experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the reconstructed Ge(100)-p(2x1), Ge(100)-p(2x2), and Ge(100)-c(4x2) surfaces. Estimates of positron binding energy, work function, and annihilation characteristics reveal their sensitivity to surface reconstruction of the topmost layers of clean Ge(100). These results are compared to the ones obtained for the reconstructed Si(100)-(2x1) and Si(100)-p(2x2) surfaces. A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  2. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayedh, H. M.; Svensson, B. G.; Hallén, A.

    The carbon vacancy (V{sub C}) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the V{sub C}-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (C{sub i}'s) and annihilation of V{sub C}'s in the epi-layer “bulk”. Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the V{sub C} annihilation. Actually, employing normalized implantation conditions with respect to displaced Cmore » atoms, other heavier ions like Al and Si are found to be more efficient in annihilating V{sub C}'s. Concentrations of V{sub C} below ∼2 × 10{sup 11} cm{sup −3} can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the V{sub C}-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote C{sub i}-clustering and reduce dynamic defect annealing. These C{sub i}-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced C{sub i} injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the V{sub C}-concentration, which limit the net effect of the C{sub i} injection, and a competition between the two processes occurs.« less

  3. Magnetic properties of a stainless steel irradiated with 6 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Xu, Chaoliang; Liu, Xiangbing; Qian, Wangjie; Li, Yuanfei

    2017-11-01

    Specimens of austenitic stainless steel were irradiated with 6 MeV Xe ions at room temperature to 2, 7, 15 and 25 dpa. The vibrating sample magnetometer (VSM), grazing incidence X-ray diffraction (GIXRD) and positron annihilation lifetime spectroscopy (PLS) were carried out to analysis the magnetic properties and microstructural variations. The magnetic hysteresis loops indicated that higher irradiation damage causes more significant magnetization phenomenon. The equivalent saturated magnetization Mes and coercive force Hc were obtained from magnetic hysteresis loops. It is indicated that the Mes increases with irradiation damage. While Hc increases first to 2 dpa and then decreases continuously with irradiation damage. The different contributions of irradiation defects and ferrite precipitates on Mes and Hc can explain these phenomena.

  4. Feasibility of antihydrogen atom containment in helium: a problem of electron-positron correlation investigated by the Monte Carol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackman, T.M.

    1987-01-01

    A theoretical investigation of the interaction potential between the helium atom and the antihydrogen atom was performed for the purpose of determining the feasibility of antihydrogen atom containment. The interaction potential showed an energy barrier to collapse of this system. A variational estimate of the height of this energy barrier and estimates of lifetime with respect to electron-positron annihilation were determined by the Variational Monte Carlo method. This calculation allowed for an improvement over an SCF result through the inclusion of explicit correlation factors in the trial wave function. An estimate of the correlation energy of this system was determinedmore » by the Green's Function Monte Carlo (GFMC) method.« less

  5. Ultrapermeable, reverse-selective nanocomposite membranes.

    PubMed

    Merkel, T C; Freeman, B D; Spontak, R J; He, Z; Pinnau, I; Meakin, P; Hill, A J

    2002-04-19

    Polymer nanocomposites continue to receive tremendous attention for application in areas such as microelectronics, organic batteries, optics, and catalysis. We have discovered that physical dispersion of nonporous, nanoscale, fumed silica particles in glassy amorphous poly(4-methyl-2-pentyne) simultaneously and surprisingly enhances both membrane permeability and selectivity for large organic molecules over small permanent gases. These highly unusual property enhancements, in contrast to results obtained in conventional filled polymer systems, reflect fumed silica-induced disruption of polymer chain packing and an accompanying subtle increase in the size of free volume elements through which molecular transport occurs, as discerned by positron annihilation lifetime spectroscopy. Such nanoscale hybridization represents an innovative means to tune the separation properties of glassy polymeric media through systematic manipulation of molecular packing.

  6. Positron-annihilation 2D-ACAR studies of disordered and defected alloys

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Prasad, R.; Smedskjaer, L. C.; Benedek, R.; Mijnarends, P. E.

    1987-09-01

    Theoretical and experimental progess in connection with 2D-ACAR positron annihilation studies of ordered, disordered, and defected alloys is discussed. We present, in particular, some of the recent developments concerning the electronic structure of disordered alloys, and the work in the area of annihilation from positrons trapped at vacancy-type defects in metals and alloys. The electronic structure and properties of a number of compounds are also discussed briefly; we comment specifically on high T sub c ceramic superconductors, Heusler alloys, and transition-metal aluminides.

  7. Ab-initio study of dilute nitride substitutional and split-interstitial impurities in gallium antimonide (N-GaSb)

    NASA Astrophysics Data System (ADS)

    Jadaun, Priyamvada; Nair, Hari P.; Bank, Seth R.; Banerjee, Sanjay K.

    2012-02-01

    We present an ab-initio density functinal theory study of dilute-nitride GaSb. Adding dilute quantities of nitrogen causes rapid reduction in bandgap of GaSb (˜300 meV for 2% N). Due to this rapid reduction in bandgap, dilute-nitrides provide a pathway for extending the emission of GaSb based type-I diode lasers into the mid-infrared wavelength region (3-5 micron). In this study we look at the effect of substitutional N impurity on the electronic properties of our system and compare it with the band-anticrossing model, a phenomenological model, which has been used to explain giant band bowing observed in dilute-nitride alloys. We also study the effect of Sb-N split interstitials which are known to be non-radiative recombination centers. Furthermore we also discuss the stability of the Sb-N split interstitial relative to substitutional nitrogen to determine if the split interstitials can be annihilated using post-growth annealing to improve the radiative lifetime of the material which essential for laser operation.

  8. Spectroscopic studies of the silicone oil impact on the ophthalmic hydrogel based materials conducted in time dependent mode

    NASA Astrophysics Data System (ADS)

    Chamerski, Kordian; Stopa, Marcin; Jelen, Piotr; Lesniak, Magdalena; Sitarz, Maciej; Filipecki, Jacek

    2018-03-01

    Silicone oil is the one of the artificial materials used in vitreoretinal surgery for retinal detachment treatment. Since the silicone oil is sometimes applied along with intraocular lens (IOL) implantation the direct influence of silicone oil on the artificial implant should be taken into account. Presented study was performed in order to determine the time-dependent impact of silicone oil on hydrogel based ophthalmic materials. Two kinds of IOLs based on hydroxyethyl 2-methacrylate (HEMA) hydrogel material were immersed in silicone oil based on linear poly(dimethylsiloxane) (PDMS). Incubation in oil medium was performed in 37 °C for 1, 3 and 6 months. After appropriate period of the incubation samples were examined by means of FTIR-ATR method as the technique of surface study as well as Positron Annihilation Lifetime Spectroscopy (PALS) as the method of internal structure investigation. Results obtained during the study revealed that silicone oil is not capable to penetrate the internal structure of investigated materials and its impact has come down to interaction with the samples surfaces only.

  9. Defect Characterization in Semiconductors with Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    Positron annihilation spectroscopy is an experimental technique that allows the selective detection of vacancy defects in semiconductors, providing a means to both identify and quantify them. This chapter gives an introduction to the principles of the positron annihilation techniques and then discusses the physics of some interesting observations on vacancy defects related to growth and doping of semiconductors. Illustrative examples are selected from studies performed in silicon, III-nitrides, and ZnO.

  10. Identification of Zn-vacancy-hydrogen complexes in ZnO single crystals: A challenge to positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Brauer, G.; Anwand, W.; Grambole, D.; Grenzer, J.; Skorupa, W.; Čížek, J.; Kuriplach, J.; Procházka, I.; Ling, C. C.; So, C. K.; Schulz, D.; Klimm, D.

    2009-03-01

    A systematic study of various, nominally undoped ZnO single crystals, either hydrothermally grown (HTG) or melt grown (MG), has been performed. The crystal quality has been assessed by x-ray diffraction, and a comprehensive estimation of the detailed impurity and hydrogen contents by inductively coupled plasma mass spectrometry and nuclear reaction analysis, respectively, has been made also. High precision positron lifetime experiments show that a single positron lifetime is observed in all crystals investigated, which clusters at 180-182 ps and 165-167 ps for HTG and MG crystals, respectively. Furthermore, hydrogen is detected in all crystals in a bound state with a high concentration (at least 0.3at.% ), whereas the concentrations of other impurities are very small. From ab initio calculations it is suggested that the existence of Zn-vacancy-hydrogen complexes is the most natural explanation for the given experimental facts at present. Furthermore, the distribution of H at a metal/ZnO interface of a MG crystal, and the H content of a HTG crystal upon annealing and time afterward has been monitored, as this is most probably related to the properties of electrical contacts made at ZnO and the instability in p -type conductivity observed at ZnO nanorods in literature. All experimental findings and presented theoretical considerations support the conclusion that various types of Zn-vacancy-hydrogen complexes exist in ZnO and need to be taken into account in future studies, especially for HTG materials.

  11. Nanostructural Free-Volume Effects in Humidity-Sensitive MgO-Al2O3 Ceramics for Sensor Applications

    NASA Astrophysics Data System (ADS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Hadzaman, I.; Hotra, O.; Kostiv, Yu.

    2016-03-01

    Technologically modified spinel MgO-Al2O3 ceramics were prepared from Al2O3 and 4MgCO3·Mg(OH)2·5H2O powders at sintering temperatures of 1200, 1300, and 1400 °C. Free-volume structural effects in MgO-Al2O3 ceramics and their electrophysical properties were studied using combined x-ray diffraction, scanning electron microscopy, Hg-porosimetry, and positron annihilation lifetime spectroscopy. It is shown that increasing of sintering temperature from 1200 to 1400 °C results in the transformation of pore size distribution in ceramics from tri- to bi-modal including open macro- and meso(micro)pores with sizes from ten to hundreds nm and nanopores with sizes up to a few nm. Microstructure of these ceramics is improved with the increase of sintering temperature, which results in decreased amount of additional phases located near grain boundaries. These phase extractions serve as specific trapping centers for positrons penetrating the ceramics. The positron trapping and ortho-positronium decaying components are considered in the mathematical treatment of the measured spectra. Classic Tao-Eldrup model is used to draw the correlation between the ortho-positronium lifetime and the size of nanopores, which is complementary to porosimetry data. The studied ceramics with optimal nanoporous structure are highly sensitive to humidity changes in the region of 31-96% with minimal hysteresis in adsorption-desorption cycles.

  12. Dark matter annihilation with s-channel internal Higgsstrahlung

    DOE PAGES

    Kumar, Jason; Liao, Jiajun; Marfatia, Danny

    2016-05-31

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Finally, since the s-channel mediator can be a standard model singlet, collider searches for the mediator aremore » easily circumvented.« less

  13. Dark matter annihilation with s-channel internal Higgsstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jason; Liao, Jiajun; Marfatia, Danny

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Finally, since the s-channel mediator can be a standard model singlet, collider searches for the mediator aremore » easily circumvented.« less

  14. Studies of Positrons Trapped at Quantum-Dot Like Particles Embedded in Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.

    2009-03-01

    Experimental studies of the positron annihilation induced Auger electron (PAES) spectra from the Fe-Cu alloy surfaces with quantum-dot like Cu nanoparticles embedded in Fe show that the PAES signal from Cu increase rapidly as the concentration of Cu is enhanced by vacuum annealing. These measurements indicate that almost 75% of positrons that annihilate with core electrons due so with Cu even though the surface concentration of Cu as measured by EAES is only 6%. This result suggests that positrons become localized at sites at the surface containing high concentration of Cu atoms before annihilation. These experimental results are investigated theoretically by performing calculations of the "image-potential" positron surface states and annihilation characteristics of the surface trapped positrons with relevant Fe and Cu core-level electrons for the clean Fe(100) and Cu(100) surfaces and for the Fe(100) surface with quantum-dot like Cu nanoparticles embedded in the top atomic layers of the host substrate. Estimates of the positron binding energy and positron annihilation characteristics reveal their strong sensitivity to the nanoparticle coverage. Computed core annihilation probabilities are compared with experimental ones estimated from the measured Auger peak intensities. The observed behavior of the Fe and Cu PAES signal intensities is explained by theoretical calculations as being due to trapping of positrons in the regions of Cu nanoparticles embedded in the top atomic layers of Fe.

  15. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2009-03-01

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2×1), (2×2), and (4×2) reconstructions, and for Ge(111) surface with c(2×8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2×1) and Si(111)-(7×7) surfaces.

  16. Study of Silicon/silicon, Silicon/silicon Dioxide, and Metal-Oxide

    NASA Astrophysics Data System (ADS)

    Leung, To Chi

    A variable-energy positron beam is used to study Si/Si, Si/SiO_2, and metal-oxide -semiconductor (MOS) structures. The capability of depth resolution and the remarkable sensitivity to defects have made the positron annihilation technique a unique tool in detecting open-volume defects in the newly innovated low temperature (300^circC) molecular-beam-epitaxy (MBE) Si/Si. These two features of the positron beam have further shown its potential role in the study of the Si/SiO_2. Distinct annihilation characteristics has been observed at the interface and has been studied as a function of the sample growth conditions, annealing (in vacuum), and hydrogen exposure. The MOS structure provides an effective way to study the electrical properties of the Si/SiO_2 interface as a function of applied bias voltage. The annihilation characteristics show a large change as the device condition is changed from accumulation to inversion. The effect of forming gas (FG) anneal is studied using positron annihilation and the result is compared with capacitance-voltage (C -V) measurements. The reduction in the number of interface states is found correlated with the changes in the positron spectra. The present study shows the importance of the positron annihilation technique as a non-contact, non-destructive, and depth-sensitive characterization tool to study the Si-related systems, in particular, the Si/SiO_2 interface which is of crucial importance in semiconductor technology, and fundamental understanding of the defects responsible for degradation of the electrical properties.

  17. Photophysics of Zinc Porphyrin Aggregates in Dilute Water-Ethanol Solutions.

    PubMed

    Stevens, Amy L; Joshi, Neeraj K; Paige, Matthew F; Steer, Ronald P

    2017-12-14

    Dimeric and multimeric aggregates of a model metalloporphyrin, zinc tetraphenylporphyrin (ZnTPP), have been produced in a controlled manner by incrementally increasing the water content of dilute aqueous ethanol solutions. Steady state absorption, fluorescence emission, and fluorescence excitation spectra have been measured to identify the aggregates present as a function of solvent composition. The dynamics of the excited states of the aggregates produced initially by excitation in the Soret region have been measured by ultrafast fluorescence upconversion techniques. Only the monomer produces measurable emission from S 2 with a picosecond lifetime; all Soret-excited aggregates, including the dimer, decay radiationlessly on a femtosecond time scale. The S 1 state is the only significant product of the radiationless decay of the S 2 state of the excited monomer, and the aggregates also produce substantial quantum yields of S 1 fluorescence when initially excited in the Soret region. The resulting fluorescent aggregates all decay on a subnanosecond time scale, likely by a mechanism that involves dissociation of the excited monomer from the excitonic multimer. The ZnTPP dimers excited at their ground state geometries in the Soret region exhibit a dynamic behavior that is quite different from those produced following noncoherent triplet-triplet annihilation under the same conditions. The important implications of these observations in determining the aggregation conditions promoting efficient photon upconversion by excitonic annihilation in a variety of media are thoroughly discussed.

  18. Positron-Electron Annihilation Process in (2,2)-Difluoropropane Molecule

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Xiao-Guang; Zhu, Ying-Hao

    2016-04-01

    The positron-electron annihilation process in (2,2)-difluoropropane molecule and the corresponding gamma-ray spectra are studied by quantum chemistry method. The positrophilic electrons in (2,2)-difluoropropane molecule are found for the first time. The theoretical predictions show that the outermost 2s electrons of fluoride atoms play an important role in positron-electron annihilation process of (2,2)-difiuoropropane. In the present scheme, the correlation coefficient between the theoretical gamma-ray spectra and the experiments can be 99%. The present study gives an alternative annihilation model for positron-electron pair in larger molecules. Supported by the National Natural Science Foundation of China under Grant No. 11347011 and the Natural Science Foundation Project of Shandong Province under Grant No. ZR2011AM010 and 2014 Technology Innovation Fund of Ludong University under Grant Nos. 1d151007 and ld15l016

  19. Instellar Exploration: Propulsion Options for Precursors and Beyond

    NASA Technical Reports Server (NTRS)

    Johnson, Charles Les; Leifer, Stephanie

    1999-01-01

    NASA is considering a mission to explore near-interstellar space early in the next decade as the first step toward a vigorous interstellar exploration program. A key enabling technology for such an ambitious science and exploration effort is the development of propulsion systems capable of providing fast trip times; mission duration should not exceed the professional lifetime of the investigative team. Advanced propulsion technologies that might support an interstellar precursor mission early in the next century include some combination of solar sails, nuclear electric propulsion systems, and aerogravity assists. Follow-on missions to far beyond the heliopause will require the development of propulsion technologies that are only at the conceptual stage today. These include 1) matter-antimatter annihilation, 2) beamed-energy sails, and 3) fusion systems. For years, the scientific community has been interested in the development of solar sail technology to support exploration of the inner and outer planets. Progress in thin-film technology and the development of technologies that may enable the remote assembly of large sails in space are only now maturing to the point where ambitious interstellar precursor missions can be considered. Electric propulsion is now being demonstrated for planetary exploration by the Deep Space 1 mission. The primary issues for it's adaptation to interstellar precursor applications include the nuclear reactor that would be required and the engine lifetime. For further term interstellar missions, matter-antimatter annihilation propulsion system concepts have the highest energy density of any propulsion systems using onboard propellants. However, there are numerous challenges to production and storage of antimatter that must be overcome before it can be seriously considered for interstellar flight. Off-board energy systems (laser sails) are candidates for long-distance interstellar flight but development of component technologies and necessary infrastructure have not begun.. Fusion propulsion has been studied extensively. However, fusion technology is still considered immature, even after many decades of well-funded research. Furthermore, fusion alone does not offer high enough energy density to make it a viable candidate for interstellar propulsion unless propellant can be collected in situ, as was considered by R. Bussard for his interstellar ramjet concept. The current research in investigating these propulsion systems will be described, and the range of application of each technology will be explored.

  20. Impact of semi-annihilation of ℤ{sub 3} symmetric dark matter with radiative neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Mayumi; Toma, Takashi

    2014-09-08

    We investigate a ℤ{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken ℤ{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter inmore » ℤ{sub 2} symmetric models.« less

  1. Impact of semi-annihilation of Z{sub 3} symmetric dark matter with radiative neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@durham.ac.uk

    2014-09-01

    We investigate a Z{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken Z{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter inmore » Z{sub 2} symmetric models.« less

  2. SiO 2/SiC interface proved by positron annihilation

    NASA Astrophysics Data System (ADS)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Itoh, H.

    2003-06-01

    We have studied positron annihilation in a Silicon carbide (SiC)-metal/oxide/semiconductor (MOS) structure using a monoenergetic positron beam. The Doppler broadening of annihilation quanta were measured as functions of the incident positron energy and the gate bias. Applying negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards SiO 2/SiC interface and annihilation at open-volume type defects. The behavior of S-parameters depending on the bias voltage was well correlated with the capacitance-voltage ( C- V) characteristics. We observed higher S-parameters and the interfacial trap density in MOS structures fabricated using the dry oxidation method as compared to those by pyrogenic oxidation method.

  3. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  4. Abstracts: Sagmore 9 Conference on Charge, Spin and Momentum Densities Held in Luso-Bussaco, Portugal on 26 June-2 July 1988

    DTIC Science & Technology

    1988-07-01

    other calculation. These results confirm the analy- sis of positron annihilation data made by Genoud at &1 (*1988) which requires a parametrized band...calculate the Compton-profile and the positron annihilation angular correlation of this coexisting system. We discuss the extent of appearance of metallic...momentum distributiom and spin density of forromsnetic Iron studied by spin polarised positron annihilation Abstract. We report dew first sbady of the

  5. Positron annihilation at the Si/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Leung, T. C.; Weinberg, Z. A.; Asoka-Kumar, P.; Nielsen, B.; Rubloff, G. W.; Lynn, K. G.

    1992-01-01

    Variable-energy positron annihilation depth-profiling has been applied to the study of the Si/SiO2 interface in Al-gate metal-oxide-semiconductor (MOS) structures. For both n- and p-type silicon under conditions of negative gate bias, the positron annihilation S-factor characteristic of the interface (Sint) is substantially modified. Temperature and annealing behavior, combined with known MOS physics, suggest strongly that Sint depends directly on holes at interface states or traps at the Si/SiO2 interface.

  6. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  7. Probing the nanostructure of polymers via cryogenic Positron Annihilation Lifetime Spectroscopy (PALS)

    NASA Astrophysics Data System (ADS)

    Bolan, B. A.; Soles, C. L.; Hristov, H. A.; Gidley, D. W.; Yee, A. F.

    1996-03-01

    A new method is proposed for the evaluation of the hole volume in amorphous polymers based upon PALS data measured over a temperature of 110 to 480 K. Extrapolation of the "open hole" volume to 0 K allows its separation into that attributed to the segmental motions of the polymer chains (dynamic) and that due to inefficient packing (static). The dynamic hole volume is correlated to thermodynamic volume/density fluctuations and its temperature dependencies are in good agreement with SAXS data. Several thermosetting epoxy materials are also studied over a similar temperature range with the "open hole" volume being separated into its dynamic and static components. How these two components affect diffusional properties of these systems is examined in detail. It is also shown that the o-Ps can localize in a nearly 100material (PET), we therefore conclude that PALS measures more than the "free volume" necessary for segmental motion. Work supported by the Air Force Office of Scientific Research (AFOSR) grant # F49620-95-1-0037.

  8. Zn-vacancy related defects in ZnO grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ling, F. C. C.; Luo, C. Q.; Wang, Z. L.; Anwand, W.; Wagner, A.

    2017-02-01

    Undoped and Ga-doped ZnO (002) films were grown c-sapphire using the pulsed laser deposition (PLD) method. Znvacancy related defects in the films were studied by different positron annihilation spectroscopy (PAS). These included Doppler broadening spectroscopy (DBS) employing a continuous monenergetic positron beam, and positron lifetime spectroscopy using a pulsed monoenergetic positron beam attached to an electron linear accelerator. Two kinds of Znvacancy related defects namely a monovacancy and a divacancy were identified in the films. In as-grown undoped samples grown with relatively low oxygen pressure P(O2)≤1.3 Pa, monovacancy is the dominant Zn-vacancy related defect. Annealing these samples at 900 oC induced Zn out-diffusion into the substrate and converted the monovacancy to divacancy. For the undoped samples grown with high P(O2)=5 Pa irrespective of the annealing temperature and the as-grown degenerate Ga-doped sample (n=1020 cm-3), divacancy is the dominant Zn-vacancy related defect. The clustering of vacancy will be discussed.

  9. Surface and bulk investigations at the high intensity positron beam facility NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Dollinger, G.; Egger, W.; Kögel, G.; Löwe, B.; Mayer, J.; Pikart, P.; Piochacz, C.; Repper, R.; Schreckenbach, K.; Sperr, P.; Stadlbauer, M.

    2008-10-01

    The NEutron-induced POsitron source MUniCh (NEPOMUC) at the research reactor FRM II delivers a low-energy positron beam ( E = 15-1000 eV) of high intensity in the range between 4 × 10 7 and 5 × 10 8 moderated positrons per second. At present four experimental facilities are in operation at NEPOMUC: a coincident Doppler-broadening spectrometer (CDBS) for defect spectroscopy and investigations of the chemical vicinity of defects, a positron annihilation-induced Auger-electron spectrometer (PAES) for surface studies and an apparatus for the production of the negatively charged positronium ion Ps -. Recently, the pulsed low-energy positron system (PLEPS) has been connected to the NEPOMUC beam line, and first positron lifetime spectra were recorded within short measurement times. A positron remoderation unit which is operated with a tungsten single crystal in back reflection geometry has been implemented in order to improve the beam brilliance. An overview of NEPOMUC's status, experimental results and recent developments at the running spectrometers are presented.

  10. Observation of a shape resonance of the positronium negative ion

    PubMed Central

    Michishio, Koji; Kanai, Tsuneto; Kuma, Susumu; Azuma, Toshiyuki; Wada, Ken; Mochizuki, Izumi; Hyodo, Toshio; Yagishita, Akira; Nagashima, Yasuyuki

    2016-01-01

    When an electron binds to its anti-matter counterpart, the positron, it forms the exotic atom positronium (Ps). Ps can further bind to another electron to form the positronium negative ion, Ps− (e−e+e−). Since its constituents are solely point-like particles with the same mass, this system provides an excellent testing ground for the three-body problem in quantum mechanics. While theoretical works on its energy level and dynamics have been performed extensively, experimental investigations of its characteristics have been hampered by the weak ion yield and short annihilation lifetime. Here we report on the laser spectroscopy study of Ps−, using a source of efficiently produced ions, generated from the bombardment of slow positrons onto a Na-coated W surface. A strong shape resonance of 1Po symmetry has been observed near the Ps (n=2) formation threshold. The resonance energy and width measured are in good agreement with the result of three-body calculations. PMID:26983496

  11. Identification of vacancy-oxygen complexes in oxygen-implanted silicon probed with slow positrons

    NASA Astrophysics Data System (ADS)

    Fujinami, M.; Miyagoe, T.; Sawada, T.; Suzuki, R.; Ohdaira, T.; Akahane, T.

    2004-04-01

    Defects and their annealing behavior for low (2×1015/cm2) and high (1.7×1018/cm2) doses of 180 keV oxygen-implanted silicon have been investigated by the coincidence Doppler broadening (CDB) and lifetime measurements in variable-energy positron annihilation spectroscopy. In the low-dose sample, divacancies are induced throughout the entire implantation region. In the vacancy-oxygen coexisting region (300-500 nm depths), by raising the annealing temperature to 600 °C, vacancy-oxygen VxOy complexes with one vacant site are formed and, simultaneously, the migration of oxygen begins to takes place. In the vacancy-rich region (-200 nm depths), the evolution of simple vacancy clusters to V4 is mainly observed below 600 °C. From CDB and lifetime measurements, it has been proven that after annealing at 800 °C, the VxOy complexes are formed throughout the implanted region and they contain four vacant sites and a high ratio of y to x. On the other hand, high-dose implantation at 550 °C produces the VxOy complexes with a lifetime of a 430 ps in the near-surface region (less than 200 nm deep) and annealing at 1100 °C leads to the highest ratio of y to x. These complexes cannot be annealed out even by annealing at 1350 °C, and their structure is found to be very similar to that for the electron-irradiated amorphous SiO2.

  12. Constraint on the velocity dependent dark matter annihilation cross section from gamma-ray and kinematic observations of ultrafaint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Bi, Xiao-Jun; Yin, Peng-Fei; Zhang, Xinmin

    2018-03-01

    Searching for γ rays from dwarf spheroidal galaxies (dSphs) is a promising approach to detect dark matter (DM) due to the high DM densities and low baryon components in dSphs. The Fermi-LAT observations from dSphs have set stringent constraints on the velocity independent annihilation cross section. However, the constraints from dSphs may change in velocity dependent annihilation scenarios because of the different velocity dispersions in galaxies. In this work, we study how to set constraints on the velocity dependent annihilation cross section from the combined Fermi-LAT observations of dSphs with the kinematic data. In order to calculate the γ ray flux from the dSph, the correlation between the DM density profile and velocity dispersion at each position should be taken into account. We study such correlation and the relevant uncertainty from kinematic observations by performing a Jeans analysis. Using the observational results of three ultrafaint dSphs with large J-factors, including Willman 1, Reticulum II, and Triangulum II, we set constraints on the p-wave annihilation cross section in the Galaxy as an example.

  13. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo

    2016-08-25

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. As a result, we show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectorsmore » not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang

    The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  15. On the chemical reaction of matter with antimatter.

    PubMed

    Lodi Rizzini, Evandro; Venturelli, Luca; Zurlo, Nicola

    2007-06-04

    A chemical reaction between the building block antiatomic nucleus, the antiproton (p or H- in chemical notation), and the hydrogen molecular ion (H2+) has been observed by the ATHENA collaboration at CERN. The charged pair interact via the long-range Coulomb force in the environment of a Penning trap which is purpose-built to observe antiproton interactions. The net result of the very low energy collision of the pair is the creation of an antiproton-proton bound state, known as protonium (Pn), together with the liberation of a hydrogen atom. The Pn is formed in a highly excited, metastable, state with a lifetime against annihilation of around 1 micros. Effects are observed related to the temperature of the H2+ prior to the interaction, and this is discussed herein.

  16. Initial stage of physical ageing in network glasses

    NASA Astrophysics Data System (ADS)

    Golovchak, R.; Ingram, A.; Kozdras, A.; Vlcek, M.; Roiland, C.; Bureau, B.; Shpotyuk, O.

    2012-11-01

    An atomistic view on Johari-Goldstein secondary β-relaxation processes responsible for structural relaxation far below the glass transition temperature (Tg ) in network glasses is developed for the archetypal chalcogenide glass, As20Se80, using positron annihilation lifetime, differential scanning calorimetry, Raman scattering and nuclear magnetic resonance techniques. Increased density fluctuations are shown to be responsible for the initial stage of physical ageing in these materials at the temperatures below Tg . They are correlated with changes in thermodynamic parameters of structural relaxation through the glass-to-supercooled liquid transition interval. General shrinkage, occurred during the next stage of physical ageing, is shown to be determined by the ability of system to release these redundant open volumes from the glass bulk through the densification process of glass network.

  17. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  18. The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Honorez, Laura; Mena, Olga; Moliné, Ángeles

    2016-08-01

    Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, asmore » well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-α pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of ∼100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21 cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21 cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from ∼100 MeV.« less

  19. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Nadesalingam, M. P.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAESmore » results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.« less

  20. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Jung, E.

    2009-03-10

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M{sub 4,5}N{sub 1}N{sub 2,3}, M{sub 2,3}M{sub 4,5}M{sub 4,5}, M{sub 2,3}M{sub 4,5}V, and M{sub 1}M{sub 4,5}M{sub 4,5} Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculationsmore » of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.« less

  1. Investigation of the surface sensitivity of positron-annihilation-induced Auger-electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehl, D.R.

    1990-01-01

    The first surface sensitivity studies of positron-annihilation-induced Auger-electron spectroscopy (PAES) are presented. Preliminary measurements on polycrystalline Al with adsorbates indicate that PAES is more selective of the surface than conventional electron-induced Auger electron spectroscopy (EAES). PAES and EAES studies of well-defined overlayer-metal systems of Cu(110)+S and Cu(110)+Cs verify that PAES is selective of the top atomic layer. This surface selectivity is accounted for by theoretical calculations which indicate that the positron surface state is displaced away from the substrate by the over-layer, decreasing the annihilation rate of positrons with substrate core electrons.

  2. Positron studies of metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Au, H. L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-03-01

    Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.

  3. Control of cardiac alternans by mechanical and electrical feedback.

    PubMed

    Yapari, Felicia; Deshpande, Dipen; Belhamadia, Youssef; Dubljevic, Stevan

    2014-07-01

    A persistent alternation in the cardiac action potential duration has been linked to the onset of ventricular arrhythmia, which may lead to sudden cardiac death. A coupling between these cardiac alternans and the intracellular calcium dynamics has also been identified in previous studies. In this paper, the system of PDEs describing the small amplitude of alternans and the alternation of peak intracellular Ca(2+) are stabilized by optimal boundary and spatially distributed actuation. A simulation study demonstrating the successful annihilation of both alternans on a one-dimensional cable of cardiac cells by utilizing the full-state feedback controller is presented. Complimentary to these studies, a three variable Nash-Panfilov model is used to investigate alternans annihilation via mechanical (or stretch) perturbations. The coupled model includes the active stress which defines the mechanical properties of the tissue and is utilized in the feedback algorithm as an independent input from the pacing based controller realization in alternans annihilation. Simulation studies of both control methods demonstrate that the proposed methods can successfully annihilate alternans in cables that are significantly longer than 1 cm, thus overcoming the limitations of earlier control efforts.

  4. Study of SiO2-Si and metal-oxide-semiconductor structures using positrons

    NASA Astrophysics Data System (ADS)

    Leung, T. C.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-01-01

    Studies of SiO2-Si and metal-oxide-semiconductor (MOS) structures using positrons are summarized and a concise picture of the present understanding of positrons in these systems is provided. Positron annihilation line-shape S data are presented as a function of the positron incident energy, gate voltage, and annealing, and are described with a diffusion-annihilation equation for positrons. The data are compared with electrical measurements. Distinct annihilation characteristics were observed at the SiO2-Si interface and have been studied as a function of bias voltage and annealing conditions. The shift of the centroid (peak) of γ-ray energy distributions in the depletion region of the MOS structures was studied as a function of positron energy and gate voltage, and the shifts are explained by the corresponding variations in the strength of the electric field and thickness of the depletion layer. The potential role of the positron annihilation technique as a noncontact, nondestructive, and depth-sensitive characterization tool for the technologically important, deeply buried interface is shown.

  5. Observation of interface defects in thermally oxidized SiC using positron annihilation

    NASA Astrophysics Data System (ADS)

    Dekker, James; Saarinen, Kimmo; Ólafsson, Halldór; Sveinbjörnsson, Einar Ö.

    2003-03-01

    Positron annihilation has been applied to study thermally oxidized 4H- and 6H-SiC. The SiC/SiO2 interface is found to contain a high density of open-volume defects. The positron trapping at the interface defects correlates with the charge of the interface determined by capacitance-voltage experiments. For oxides grown on n-SiC substrates, the positron annihilation characteristics at these defects are nearly indistinguishable from those of a silicon/oxide interface, with no discernable contribution from C-related bonds or carbon clusters. These results indicate that those defects at the SiC/oxide interface, which are visible to positrons, are similar to those at the Si/oxide interface. The positron annihilation characteristics suggest that these defects are vacancies surrounded by oxygen atoms.

  6. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses.

    PubMed

    Sato, K; Hatta, T

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  7. Gamma irradiation induced effects of butyl rubber based damping material

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bing; Wang, Pu-Cheng; Liu, Bo; Zhang, Feng-Shun; Ao, Yin-Yong

    2018-04-01

    The effects of gamma irradiation on the butyl rubber based damping material (BRP) at various doses in nitrogen were investigated in this study. The results show that irradiation leads to radiolysis of BRP, with extractives increasing from 14.9 ± 0.8% of control to 37.2 ± 1.2% of sample irradiated at 350 kGy, while the swelling ratio increasing from 294 ± 3% to 766 ± 4%. The further investigation of the extractives with FTIR shows that the newly generated extractives are organic compounds containing C-H and C˭C bonds, with molecular weight ranging from 26,500 to 46,300. SEM characterization shows smoother surface with holes disappearing with increasing absorbed doses, consistent with "softer" material because of radiolysis. Dynamic mechanical study of BRP show that tan δ first slightly then obviously increases with increasing absorbed dose, while storage modulus slightly decreases. The tensile testing shows that the tensile strength decreases while the elongation at break increases with increasing dose. The positron annihilation lifetime spectroscopy show no obvious relations between free volume parameters and the damping properties, indicating the complicated influencing factors of damping properties.

  8. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uedono, Akira; Yoshihara, Nakaaki; Mizushima, Yoriko

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements ofmore » dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.« less

  9. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  10. Enhanced positron trapping by Ag nanoclusters at low temperatures: A challenge of positron sensitivity to quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, B.; Qi, N.; Liu, Z. W.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.; Tang, Z.

    2017-03-01

    Microstructure evolution of three Al-Ag alloys with different Ag contents (1 wt. % Ag, 5 wt. % Ag, and 15 wt. % Ag) was studied by positron annihilation spectroscopy during the aging process. In situ measurements of the positron lifetime and Doppler broadening of annihilation radiation indicate the fast formation of Ag-rich clusters during natural aging of the alloys. The formation of Ag-rich clusters was further confirmed by coincidence Doppler broadening measurements. The Ag signal reflected by the Coincidence Doppler broadening spectrum increases with increasing Ag content and is further enhanced after subsequent artificial aging at 140 °C. This might be due to the increase in the size of Ag clusters. The temperature dependence of the Doppler broadening spectra between 10 K and 290 K was measured for the Al-Ag alloys after natural and artificial aging. Detrapping of positrons from Ag clusters with increasing temperature was observed for all the three Al-Ag alloys after natural aging and for the Al-1 wt. % Ag after artificial aging. This indicates that Ag clusters act as shallow positron trapping centers. The thermal detrapping of positrons becomes ambiguous with increasing Ag content in the alloy and is nearly invisible in the artificially aged Al-5 wt. % Ag and Al-15 wt. % Ag. The positron binding energy of the Ag cluster is roughly estimated to be about 18.8 meV and 50 meV in the Al-1 wt. % Ag sample after natural aging and artificial aging at 140 °C, respectively, which suggests that the confinement of positrons in the quantum-dot like state depends on the size or chemical composition of clusters. Theoretical calculations confirm positron trapping by Ag nanoclusters, and the confinement of positrons is enhanced with increasing Ag cluster size.

  11. Search for 100 MeV to 10 GeV γ-ray lines in the Fermi-LAT data and implications for gravitino dark matter in the μνSSM

    DOE PAGES

    Albert, Andrea; Gómez-Vargas, Germán A.; Grefe, Michael; ...

    2014-10-13

    We present that dark matter decay or annihilation may produce monochromatic signals in the γ-ray energy range. In this work we argue that there are strong theoretical motivations for studying these signals in the framework of gravitino dark matter decay and we perform a search for γ-ray spectral lines from 100 MeV to 10 GeV with Fermi-LAT data. In contrast to previous line searches at higher energies, the sensitivity of the present search is dominated by systematic uncertainties across most of the energy range considered. We estimate the size of systematic effects by analysing the flux from a number ofmore » control regions, and include the systematic uncertainties consistently in our fitting procedure. We have not observed any significant signals and present model-independent limits on γ-ray line emission from decaying and annihilating dark matter. We apply the former limits to the case of the gravitino, a well-known dark matter candidate in supersymmetric scenarios. In particular, the R-parity violating ''μ from ν'' Supersymmetric Standard Model μνSSM) is an attractive scenario in which including right-handed neutrinos solves the μ problem of the Minimal Supersymmetric Standard Model while simultaneously explaining the origin of neutrino masses. At the same time, the violation of R-parity renders the gravitino unstable and subject to decay into a photon and a neutrino. Finally, as a consequence of the limits on line emission, μνSSM gravitinos with masses larger than about 5 GeV, or lifetimes smaller than about 1028 s, are excluded at 95% confidence level as dark matter candidates.« less

  12. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    NASA Astrophysics Data System (ADS)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  13. Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys

    NASA Astrophysics Data System (ADS)

    Jin, Shuoxue; Cao, Xingzhong; Cheng, Guodong; Lian, Xiangyu; Zhu, Te; Zhang, Peng; Yu, Runsheng; Wang, Baoyi

    2018-04-01

    We have studied the effect of isothermal annealing on the evolution of the open-volume defect and the Cu precipitate in deformed Fe0.15Cu, Fe0.3Cu and Fe0.6Cu alloys. Using the coincidence Doppler broadening, positron annihilation lifetime and the S-W couples, the evolution of local electronic circumstance around the annihilation sites, open-volume defects and interaction between open-volume defects and Cu precipitates were measured as a function of the isothermal annealing temperatures. Cold rolling deformation induced an obvious increment in S parameters due to the formation of open-volume defects. Annealing not only resulted in gradual recovery of open-volume defects and Cu thermal precipitation, but also promoted the combination and interaction between defects and Cu precipitates. The interaction between open-volume defects and Cu precipitates was revealed clearly by the view point of S-W relationship. The S-W interaction for the different CumVn complexes was also calculated theoretically by MIKA-Doppler, which supports our experimental observations qualitatively. The results indicate that open-volume defects were formed first after cold rolling, followed by the Cu precipitation and recovery of open-volume defects, Cu precipitates recovered at the end. It is interesting that the trajectory of (S, W) points with increasing annealing temperature formed a similar closed "Parallelogram" shape. It is benefit for revealing the behavior of Cu thermal precipitation and their evolution in various Cu-bearing steels under thermal treatment. In addition, we also investigated the Cu content effect on the Cu precipitation in FeCu alloys, and the Cu precipitate phenomenon was enhanced in higher Cu content alloys.

  14. Reflection, transmutation, annihilation, and resonance in two-component kink collisions

    NASA Astrophysics Data System (ADS)

    Alonso-Izquierdo, A.

    2018-02-01

    In this paper, the study of collisions between kinks arising in the family of MSTB models is addressed. Phenomena such as elastic kink reflection, mutual annihilation, kink-antikink transmutation and inelastic reflection are found and depend on the impact velocity.

  15. Antiproton-Hydrogen Atom Annihilation.

    DTIC Science & Technology

    1986-05-01

    Morgan, Jr., Concepts for the Design of an Antimatter Annihilation ’Rocket, Journal of the British Interplanetary Society 35, 405 (1982). 2. D.L. Morgan...Matter- Antimatter Annihilation, Phys. Rev. D 2, 1389 (1970). (Notes: results for p - H are equivalent to 5 -H; the bare + p annihilation cross section is

  16. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  17. Annihilation of Domain Walls in a Ferromagnetic Wire

    NASA Astrophysics Data System (ADS)

    Ghosh, Anirban; Huang, Kevin; Tchernyshyov, Oleg

    We study the annihilation of topological solitons in one of the simplest systems that support them: a one-dimensional ferromagnetic wire with an easy axis along its length. In the presence of energy dissipation due to viscous losses, two solitons (domain walls) on the wire, when released from afar, approach each other and eventually annihilate to create a uniformly magnetized state. Starting from a class of exact solutions for stationary two-domain-wall configurations in the absence of dissipation, we develop an effective theory that describes this annihilation in terms of four collective coordinates: a) the two zero modes corresponding to the location of the center and the average azimuthal angle of the full structure and b) their two conjugate momenta which describe the relative twist and the relative separation of the two domain walls respectively. Comparison with micromagnetic simulation on OOOMF confirms that this theory captures well the essential physics of the process. We believe this work will be a good starting point for studying the annihilation of more complicated topological solitons like vortices and skyrmions in ferromagnetic thin films. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-08ER46544.

  18. Mitigating direct detection bounds in non-minimal Higgs portal scalar dark matter models

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Subhaditya; Ghosh, Purusottam; Maity, Tarak Nath; Ray, Tirtha Sankar

    2017-10-01

    The minimal Higgs portal dark matter model is increasingly in tension with recent results form direct detection experiments like LUX and XENON. In this paper we make a systematic study of simple extensions of the Z_2 stabilized singlet scalar Higgs portal scenario in terms of their prospects at direct detection experiments. We consider both enlarging the stabilizing symmetry to Z_3 and incorporating multipartite features in the dark sector. We demonstrate that in these non-minimal models the interplay of annihilation, co-annihilation and semi-annihilation processes considerably relax constraints from present and proposed direct detection experiments while simultaneously saturating observed dark matter relic density. We explore in particular the resonant semi-annihilation channel within the multipartite Z_3 framework which results in new unexplored regions of parameter space that would be difficult to constrain by direct detection experiments in the near future. The role of dark matter exchange processes within multi-component Z_3× Z_3^' } framework is illustrated. We make quantitative estimates to elucidate the role of various annihilation processes in the different allowed regions of parameter space within these models.

  19. Surface states and annihilation characteristics of positrons trapped at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-06-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Oxidation of the Cu(100) surface has been studied by performing an ab-initio investigation of the stability and electronic structure of the Cu(100) missing row reconstructed surface at various on-surface and subsurface oxygen coverages ranging from 0.5 to 1.5 monolayers using density functional theory (DFT). All studied structures have been found to be energetically more favorable as compared to structures formed by purely on-surface oxygen adsorption. The observed decrease in the positron work function when oxygen atoms occupy on-surface and subsurface sites has been attributed to a significant charge redistribution within the first two layers, buckling effects within each layer and an interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of the surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). The results presented provide an explanation for the changes observed in the probability of annihilation of surface trapped positrons with Cu 3p core-level electrons as a function of annealing temperature.

  20. Anapole dark matter annihilation into photons

    NASA Astrophysics Data System (ADS)

    Latimer, David C.

    2017-05-01

    In models of anapole dark matter (DM), the DM candidate is a Majorana fermion whose primary interaction with standard model (SM) particles is through an anapole coupling to off-shell photons. As such, at tree-level, anapole DM undergoes p-wave annihilation into SM charged fermions via a virtual photon. But, generally, Majorana fermions are polarizable, coupling to two real photons. This fact admits the possibility that anapole DM can annihilate into two photons in an s-wave process. Using an explicit model, we compute both the tree-level and diphoton contributions to the anapole DM annihilation cross section. Depending on model parameters, the s-wave process can either rival or be dwarfed by the p-wave contribution to the total annihilation cross section. Subjecting the model to astrophysical upper bounds on the s-wave annihilation mode, we rule out the model with large s-wave annihilation.

  1. Soliton creation, propagation, and annihilation in aeromechanical arrays of one-way coupled bistable elements

    NASA Astrophysics Data System (ADS)

    Rosenberger, Tessa; Lindner, John F.

    We study the dynamics of mechanical arrays of bistable elements coupled one-way by wind. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Soliton-like waves propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in even arrays where adjacent elements are attracted to opposite stable states. Solitons propagate indefinitely in odd arrays where pairing is frustrated. Large noise spontaneously creates soliton- antisoliton pairs, as predicted by prior computer simulations. Soliton annihilation times increase quadratically with initial separations, as expected for random walk models of soliton collisions.

  2. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less

  3. Concepts for the design of an antimatter annihilation rocket

    NASA Technical Reports Server (NTRS)

    Morgan, D. L., Jr.

    1982-01-01

    Matter-antimatter annihilation is considered for spacecraft propulsion. Annihilation produces considerably more energy per unit mass of propellant than any other known means of energy production. An antimatter annihilation rocket requires several systems and components that are unique to its nature. Among these are an antimatter storage system, a means to extract the antimatter from storage, a system to transport the antimatter to the rocket engine, and the engine wherein annihilation occurs and thrust is produced. Design concepts of these systems and components are presented and discussed.

  4. Nuclear annihilation by antinucleons

    DOE PAGES

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2016-01-25

    We examine the momentum dependence ofmore » $$\\bar{p}$$p and $$\\bar{n}$$p annihilation cross sections by considering the transmission through a nuclear potential and the $$\\bar {p}$$p Coulomb interaction. Compared to the $$\\bar{n}$$p annihilation cross section, the $$\\bar{p}$$p annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below p lab < 500 MeV/c, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP 30, 423 (1956)] at p lab ~500 MeV/c. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $$\\bar{n}$$ and $$\\bar{p}$$ interaction with nuclei and the results compare well with experimental data.« less

  5. Measurement of the spectra of low energy electrons resulting from Auger transitions induced by the annihilation of low energy positrons implanted at The Ag (100) surface

    NASA Astrophysics Data System (ADS)

    Shastry, Karthik; Joglekar, Prasad; Weiss, A. H.; Fazleev, N. G.

    2013-04-01

    A few percent of positrons bound to a solid surface annihilate with core electrons resulting in highly excited atoms containing core holes. These core holes may be filled in an auto-ionizing process in which a less tightly bound electron drops into the hole and the energy difference transferred to an outgoing "Auger electron." Because the core holes are created by annihilation and not impact it is possible to use very low energy positron beams to obtain annihilation induced Auger signals. The Auger signals so obtained have little or none of the large impact induced secondary electron background that interferes with measurements of the low energy Auger spectra obtained using the much higher incident energies necessary when using electron or photon beams. Here we present the results of measurements of the energy spectrum of low energy electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission [1] from a clean Ag (100) surface. The measurements were performed using the University of Texas Arlington Time of Flight Positron Annihilation induced Auger Electron Spectrometer (T-O-F-PAES) System [2]. A strong double peak was observed at ˜35eV corresponding to the N2VV and N3VV Auger transitions in agreement with previous PAES studies [3].

  6. Positron Annihilation Induced Auger Electron Spectroscopic Studies Of Reconstructed Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Reed, J. A.; Starnes, S. G.; Weiss, A. H.

    2011-06-01

    The positron annihilation induced Auger spectrum from GaAs(100) displays six As and three Ga Auger peaks below 110 eV corresponding to M4,5VV, M2M4V, M2,3M4,5M4,5 Auger transitions for As and M2,3M4,5M4,5 Auger transitions for Ga. The integrated Auger peak intensities have been used to obtain experimental annihilation probabilities of surface trapped positrons with As 3p and 3d and Ga 3p core level electrons. PAES data is analyzed by performing calculations of positron surface and bulk states and annihilation characteristics of surface trapped positrons with relevant Ga and As core level electrons for both Ga- and As-rich (100) surfaces of GaAs, ideally terminated, non-reconstructed and with (2×8), (2×4), and (4×4) reconstructions. The orientation-dependent variations of the atomic and electron densities associated with reconstructions are found to affect localization of the positron wave function at the surface. Computed positron binding energy, work function, and annihilation characteristics demonstrate their sensitivity both to chemical composition and atomic structure of the topmost layers of the surface. Theoretical annihilation probabilities of surface trapped positrons with As 3d, 3p, and Ga 3p core level electrons are compared with the ones estimated from the measured Auger peak intensities.

  7. On the effective operators for Dark Matter annihilations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simone, Andrea De; Thamm, Andrea; Monin, Alexander

    2013-02-01

    We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.

  8. GRO: Studies of high energy pulsars with EGRET

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1995-01-01

    A reported e(+/-) annihilation line from the Crab pulsar is described on in this annual report, along with a astronomical model that was investigated theoretically and that displays all of the following properties discovered about this line:very strong (approximately 10(exp 40)e(+/-) annihilations/sec); redshifted (by about 70 KeV relative to mc(exp 2) = 511 KeV); and very narrow (width approximately 10 KeV). A draft of the paper based on this research entitled, 'Pair production in the magnetosphere of the Crab pulsar and a pulsed e(+/-) annihilation gamma-ray line' is included.

  9. Polarization of photons in matter–antimatter annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskaliuk, S.S.

    2015-03-10

    In this work we demonstrate the possibility of generation of linear polarization of the electromagnetic field (EMF) due to the quantum effects in matter-antimatter annihilation process for anisotropic space of the I type according to Bianchi. We study the dynamics of this process to estimate the degree of polarisation of the EMF in the external gravitational field of the anisotropic Bianchi I model. It has been established that the quantum effects in matter-antimatter annihilation process in the external gravitational field of the anisotropic Bianchi I model provide contribution to the degree of polarisation of the EMF in quadrupole harmonics.

  10. Unpredictable adsorption and visible light induced decolorization of nano rutile for the treatment of crystal violet

    NASA Astrophysics Data System (ADS)

    Dong, Yanling; Liu, Yang; Lu, Dingze; Zheng, Feng; Fang, Pengfei; Zhang, Haining

    2017-04-01

    Photocatalysts containing different ratios of anatase and rutile are prepared via heat treatment of Degussa P-25 titania. X-ray diffraction (XRD), Bruuauer-Emmett-Teller (BET), ultraviolet-visible light diffuse reflectance spectra (DRS), Raman spectra (Raman), positron annihilation lifetime spectra (PAL) and temperature-programmed desorption (TPD) are applied to investigate the phase composition of the synthesized catalysts. Using crystal violet (CV) as the target pollutant, the unexpected visible light decolorization of rutile is observed. Despite the decreased specific surface area, the as-synthesized rutile samples exhibit much higher adsorption capability of CV than P-25 does, which in turn leads to improved photoreaction efficiency. Since the rutile samples can't absorb the visible light, the degradation under visible light irradiation is attributed to self-sensitization of CV on the surface of rutile.

  11. Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate

    NASA Astrophysics Data System (ADS)

    Kojima, Kazunobu; Takashima, Shinya; Edo, Masaharu; Ueno, Katsunori; Shimizu, Mitsuaki; Takahashi, Tokio; Ishibashi, Shoji; Uedono, Akira; Chichibu, Shigefusa F.

    2017-06-01

    The photoluminescences of ion-implanted (I/I) and epitaxial Mg-doped GaN (GaN:Mg) are compared. The intensities and lifetimes of the near-band-edge and ultraviolet luminescences associated with a MgGa acceptor of I/I GaN:Mg were significantly lower and shorter than those of the epilayers, respectively. Simultaneously, the green luminescence (GL) became dominant. These emissions were quenched far below room temperature. The results indicate the generation of point defects common to GL and nonradiative recombination centers (NRCs) by I/I. Taking the results of positron annihilation measurement into account, N vacancies are the prime candidate to emit GL and create NRCs with Ga vacancies, (VGa) m (VN) n , as well as to inhibit p-type conductivity.

  12. INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Jean, P.; Knoedlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; vonBallmoos, P.; Weidenspointner, G.; Bazzano, A.

    2005-01-01

    The center of our Galaxy is a known strong source of electron-positron 511- keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| greater than 40 degrees) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.

  13. Studies of Oxidation of the Cu(100) Surface Using Low Energy Positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Nadesalingam, M.; Rajeshwar, K.; Weiss, A. H.

    2009-03-01

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300° C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600° C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature is proposed.

  14. Studies of oxidation of the Cu(100) surface using low energy positrons.

    NASA Astrophysics Data System (ADS)

    Maddox, W. B.; Fazleev, N. G.; Weiss, A. H.

    2009-03-01

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300^o C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600^o C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature is proposed.

  15. Positron annihilation induced Auger electron emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, A.; Jibaly, M.; Lei, Chun

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  16. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  17. Prospects for indirect dark matter searches with MeV photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartels, Richard; Gaggero, Daniele; Weniger, Christoph, E-mail: r.t.bartels@uva.nl, E-mail: d.gaggero@uva.nl, E-mail: c.weniger@uva.nl

    2017-05-01

    Over the past decade, extensive studies have been undertaken to search for photon signals from dark matter annihilation or decay for dark matter particle masses above ∼1 GeV. However, due to the lacking sensitivity of current experiments at MeV–GeV energies, sometimes dubbed the 'MeV gap', dark matter models with MeV to sub-GeV particle masses have received little attention so far. Various proposed MeV missions (like, e.g., e-ASTROGAM or AMEGO) are aimed at closing this gap in the mid- or long-term future. This, and the absence of clear dark matter signals in the GeV–TeV range, makes it relevant to carefully reconsidermore » the expected experimental instrumental sensitivities in this mass range. The most common two-body annihilation channels for sub-GeV dark matter are to neutrinos, electrons, pions or directly to photons. Among these, only the electron channel has been extensively studied, and almost exclusively in the context of the 511 keV line. In this work, we study the prospects for detecting MeV dark matter annihilation in general in future MeV missions, using e-ASTROGAM as reference, and focusing on dark matter masses in the range 1 MeV–3 GeV. In the case of leptonic annihilation, we emphasise the importance of the often overlooked bremsstrahlung and in-flight annihilation spectral features, which in many cases provide the dominant gamma-ray signal in this regime.« less

  18. Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroupa, Daniel M.; Arias, Dylan H.; Blackburn, Jeffrey L.

    We have prepared a series of samples with the ligand 6,13-bistri(iso-propyl)silylethynyl tetracene 2-carboxylic acid (TIPS-Tc-COOH) attached to PbS quantum dot (QD) samples of three different sizes in order to monitor and control the extent and time scales of energy flow after photoexcitation. Fast energy transfer (~1 ps) to the PbS QD occurs upon direct excitation of the ligand for all samples. The largest size QD maintains the microsecond exciton lifetime characteristic of the as-prepared oleate terminated PbS QDs. However, two smaller QD sizes with lowest exciton energies similar to or larger than the TIPS-Tc-COO- triplet energy undergo energy transfer betweenmore » QD core and ligand triplet on nanosecond to microsecond timescales. For the intermediate size QDs in particular, energy can be recycled many times between ligand and core, but the triplet remains the dominant excited species at long times, living for ~3 us for fully exchanged QDs and up to 30 us for partial ligand exchange, which is revealed as a method for controlling the triplet lifetime. A unique upconverted luminescence spectrum is observed that results from annihilation of triplets after exclusive excitation of the QD core.« less

  19. Positronium signature in organic liquid scintillators for neutrino experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, D.; Consolati, G.; Trezzi, D.

    2011-01-15

    Electron antineutrinos are commonly detected in liquid scintillator experiments via inverse {beta} decay by looking at the coincidence between the reaction products: neutrons and positrons. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean lifetime of a few nanoseconds. Even if the o-Ps decay is speeded up by spin-flip or pick-off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in antineutrino experiments. Reversing the problem, the o-Ps-induced time distortion represents a new signature for tagging antineutrinos in liquid scintillator. In thismore » article, we report the results of measurements of the o-Ps formation probability and lifetime for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength shifter. In the second part of the article, we demonstrate that the o-Ps-induced distortion of the scintillation photon emission time distributions represent an optimal signature for tagging positrons on an event by event basis, potentially enhancing the antineutrino detection.« less

  20. Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage

    DOE PAGES

    Kroupa, Daniel M.; Arias, Dylan H.; Blackburn, Jeffrey L.; ...

    2018-01-24

    We have prepared a series of samples with the ligand 6,13-bistri(iso-propyl)silylethynyl tetracene 2-carboxylic acid (TIPS-Tc-COOH) attached to PbS quantum dot (QD) samples of three different sizes in order to monitor and control the extent and time scales of energy flow after photoexcitation. Fast energy transfer (~1 ps) to the PbS QD occurs upon direct excitation of the ligand for all samples. The largest size QD maintains the microsecond exciton lifetime characteristic of the as-prepared oleate terminated PbS QDs. However, two smaller QD sizes with lowest exciton energies similar to or larger than the TIPS-Tc-COO- triplet energy undergo energy transfer betweenmore » QD core and ligand triplet on nanosecond to microsecond timescales. For the intermediate size QDs in particular, energy can be recycled many times between ligand and core, but the triplet remains the dominant excited species at long times, living for ~3 us for fully exchanged QDs and up to 30 us for partial ligand exchange, which is revealed as a method for controlling the triplet lifetime. A unique upconverted luminescence spectrum is observed that results from annihilation of triplets after exclusive excitation of the QD core.« less

  1. Effects of excipients on the tensile strength, surface properties and free volume of Klucel® free films of pharmaceutical importance

    NASA Astrophysics Data System (ADS)

    Gottnek, Mihály; Süvegh, Károly; Pintye-Hódi, Klára; Regdon, Géza

    2013-08-01

    The physicochemical properties of polymers planned to be applied as mucoadhesive films were studied. Two types of Klucel® hydroxypropylcellulose (LF and MF) were used as film-forming polymers. Hydroxypropylcellulose was incorporated in 2 w/w% with glycerol and xylitol as excipients and lidocaine base as an active ingredient at 5, 10 or 15 w/w% of the mass of the film-forming polymer. The free volume changes of the films were investigated by positron annihilation lifetime spectroscopy, the mechanical properties of the samples were measured with a tensile strength tester and contact angles were determined to assess the surface properties of the films. It was found that the Klucel® MF films had better physicochemical properties than those of the LF films. Klucel® MF as a film-forming polymer with lidocaine base and both excipients at 5 w/w% exhibited physicochemical properties and good workability. The excipients proved to exert strong effects on the physicochemical properties of the tested systems and it is very important to study them intensively in preformulation studies in the pharmaceutical technology in order to utilise their benefits and to avoid any disadvantageous effects.

  2. Constraints on Resonant Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Backovic, Mihailo

    Resonant dark matter annihilation drew much attention in the light of recent measurements of charged cosmic ray fluxes. Interpreting the anomalous signal in the positron fraction as a sign of dark matter annihilation in the galactic halo requires cross sections orders of magnitudes higher than the estimates coming from thermal relic abundance. Resonant dark matter annihilation provides a mechanism to bridge the apparent contradiction between thermal relic abundance and the positron data measured by PAMELA and FERMI satellites. In this thesis, we analyze a class of models which allow for dark matter to annihilate through an s-channel resonance. Our analysis takes into account constraints from thermal relic abundance and the recent measurements of charged lepton cosmic ray fluxes, first separately and then simultaneously. Consistency of resonant dark matter annihilation models with thermal relic abundance as measured by WMAP serves to construct a relationship between the full set of masses, couplings and widths involved. Extensive numerical analysis of the full four dimensional parameter space is summarized by simple analytic approximations. The expressions are robust enough to be generalized to models including additional annihilation channels. We provide a separate treatment of resonant annihilation of dark matter in the galac- tic halo. We find model-independent upper limits on halo dark matter annihilation rates and show that the most efficient annihilation mechanism involves s-channel resonances. Widths that are large compared to the energy spread in the galactic halo are capable of saturating unitarity bounds without much difficulty. Partial wave unitarity prevents the so called Sommerfeld factors from producing large changes in cross sections. In addition, the approximations made in Sommerfeld factors break down in the kinematic regions where large cross section enhancements are often cited. Simultaneous constraints from thermal relic abundance and halo annihilation serve to produce new limits on dark matter masses and couplings. Past considerations of only a part of the resonant annihilation parameter set to motivate large annihilation cross section enhancements in the halo while maintaining correct relic abundance are generally incomplete. Taking into account only the resonance mass and width to show that large cross section enhancements are possible does not in principle guarantee that the enhancement will be achieved. We extend the calculation to include the full resonant parameter set. As a result, we obtain new limits on dark matter masses and couplings.

  3. Properties of excited states in organic light emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Giebink, Noel C.

    The field of organic semiconductors has grown rapidly over the past decade with the development of light emitting diodes, solar cells, and lasers that promise a new generation of low-cost, flexible optoelectronic devices. In each case, the behavior of molecular excited states, or excitons, is of fundamental importance. The present study explores the nature and interactions of such excited states in the attempt to develop an electrically pumped organic semiconductor laser, and to improve the performance and operational stability of organic light emitting diodes. We begin by investigating intrinsic loss processes in optically pumped organic semiconductor lasers and demonstrate that exciton annihilation implies a fundamental limit that will prevent lasing by electrical injection in currently known materials. Searching for an alternative approach to reach threshold leads us to study metastable geminate charge pairs, where we find that optically generated excitons can be accumulated over time in an external electric field via these intermediate states. Upon field turn-off, the excitons are immediately restored, leading to a sudden burst of excitation density over 30 times higher than that generated by the pump alone. Unfortunately, we identify limitations that have thus far prevented reaching laser threshold with this technique. In a parallel push toward high power density, we investigate the origins of quantum efficiency roll-off in organic light emitting diodes (OLEDs) and find that it is dominated by loss of charge balance in the majority of fluorescent and phosphorescent devices. The second major theme of this work involves understanding the intrinsic modes of OLED operational degradation. Based on extensive modeling and supported directly by experimental evidence, we identify exciton-charge carrier annihilation reactions as a principle degradation pathway. Exploiting the diffusion of triplet excitons, we show that fluorescence and phosphorescence can be combined to increase the operational lifetime of white OLEDs and still retain the potential for unity internal quantum efficiency.

  4. Search for Dark Matter Annihilation in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.

    2018-03-01

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z ≲0.03 . We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O (1 ) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ˜30 GeV to 95% confidence in the b b ¯ annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  5. Study of PRIMAVERA steel samples by a positron annihilation spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Grafutin, V.; Ilyukhina, O.; Krsjak, V.; Burcl, R.; Hähner, P.; Erak, D.; Zeman, A.

    2010-11-01

    In the present article, a positron annihilation spectroscopy investigation of VVER-440/230 weld materials is discussed. Important characteristics of metals such as Fermi energy, concentration of electrons in the conduction band, size and concentration of defects were experimentally determined for three model materials with higher level of copper (0.16 wt.%) and phosphorus (0.027-0.038 wt.%). The impact of neutron irradiation and subsequent annealing on crystal lattice parameters was investigated. The experiments with the angular correlation of positron annihilation radiation (ACAR) complement the published positron annihilation spectroscopy (PAS) studies of the radiation treated VVER materials as well as previous experiments on PRIMAVERA materials. The availability of the experimental reactor to prepare strong 64Cu positron sources provided for unique experimental conditions, such as good resolution of spectra (0.4 mrad) and reasonable short time of measurement (36 h). The present paper aims to contribute to further understanding of RPV (reactor pressure vessel) steels behaviour under irradiation conditions as well as annealing recovery procedures, which have already been applied at several VVER NPP units in Europe.

  6. Search for Dark Matter Annihilation in Galaxy Groups.

    PubMed

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L; Safdi, Benjamin R

    2018-03-09

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z≲0.03. We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O(1) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ∼30  GeV to 95% confidence in the bb[over ¯] annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  7. Direct detection of antiprotons with the Timepix3 in a new electrostatic selection beamline

    NASA Astrophysics Data System (ADS)

    Pacifico, N.; Aghion, S.; Alozy, J.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Campbell, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jordan, E.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lawler, G.; Lebrun, P.; Llopart, X.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Tlustos, L.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.; Zurlo, N.

    2016-09-01

    We present here the first results obtained employing the Timepix3 for the detection and tagging of annihilations of low energy antiprotons. The Timepix3 is a recently developed hybrid pixel detector with advanced Time-of-Arrival and Time-over-Threshold capabilities and has the potential of allowing precise kinetic energy measurements of low energy charged particles from their time of flight. The tagging of the characteristic antiproton annihilation signature, already studied by our group, is enabled by the high spatial and energy resolution of this detector. In this study we have used a new, dedicated, energy selection beamline (GRACE). The line is symbiotic to the AEgIS experiment at the CERN Antiproton Decelerator and is dedicated to detector tests and possibly antiproton physics experiments. We show how the high resolution of the Timepix3 on the Time-of-Arrival and Time-over-Threshold information allows for a precise 3D reconstruction of the annihilation prongs. The presented results point at the potential use of the Timepix3 in antimatter-research experiments where a precise and unambiguous tagging of antiproton annihilations is required.

  8. Electroweak bremsstrahlung for wino-like Dark Matter annihilations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciafaloni, Paolo; Comelli, Denis; Simone, Andrea De

    2012-06-01

    If the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, its main annihilation channel is into W{sup +}W{sup −}, while the annihilation into light fermions is helicity suppressed. As pointed out recently, the radiation of gauge bosons from the initial state of the annihilation lifts the suppression and opens up an s-wave contribution to the cross section. We perform the full tree-level calculation of Dark Matter annihilations, including electroweak bremsstrahlung, in the context of an explicit model corresponding to the supersymmetric wino. We find that the fermionmore » channel can become as important as the di-boson one. This result has significant implications for the predictions of the fluxes of particles originating from Dark Matter annihilations.« less

  9. Positron line radiation from halo WIMP annihilations as a dark matter signature

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1989-01-01

    We suggest a new signature for dark matter annihilation in the halo: high energy positron line radiation. Because the cosmic ray positron spectrum falls rapidly with energy, e+'s from halo WIMP annihilations can be a significant, clean signal for very massive WIMP's (approx. greater than 30 GeV). In the case that the e+e- annihilation channel has an appreciable branch, the e+ signal should be above background in a future detector, such as have been proposed for ASTROMAG, and of potential importance as a dark matter signature. A significant e+e- branching ratio can occur for neutralinos or Dirac neutrinos. High-energy, continuum positron radiation may also be an important signature for massive neutralino annihilations, especially near or above the threshold of the W+W- and ZoZo annihilation channels.

  10. Method for on-line evaluation of materials using prompt gamma ray analysis

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2009-12-08

    A method for evaluating a material specimen comprises: Mounting a neutron source and a detector adjacent the material specimen; bombarding the material specimen with neutrons from the neutron source to create prompt gamma rays within the material specimen, some of the prompt gamma rays being emitted from the material specimen, some of the prompt gamma rays resulting in the formation of positrons within the material specimen by pair production; collecting positron annihilation data by detecting with the detector at least one emitted annihilation gamma ray resulting from the annihilation of a positron; storing the positron annihilation data on a data storage system for later retrieval and processing; and continuing to collect and store positron annihilation data, the continued collected and stored positron annihilation data being indicative of an accumulation of lattice damage over time.

  11. The cosmic-ray antiproton spectrum from dark matter annihilation and its astrophysical implications - A new look

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Tylka, A. J.

    1989-01-01

    The spectrum of antiprotons from dark matter annihilation are calculated using the Lund Monte Carlo program, and simple analytic expressions for the spectrum and low-energy antiproton/proton ratio are derived. Comparing the results with recent upper limits on low energy antiprotons, it is concluded that the reported 4-13 GeV antiproton flux cannot be accounted for by dark matter annihilation. The new upper limits do not provide useful constraints on dark matter particles. They restrict the annihilation rate and imply that annihilation gamma ray and e(+) fluxes would be far below the fluxes produced by cosmic-ray collisions. It may be possible to look for a dark matter halo annihilation signal at antiprotons energies below 0.5 GeV, where the flux from cosmic-ray collisions is expected to be negligible.

  12. A New Target Object for Constraining Annihilating Dark Matter

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2017-07-01

    In the past decade, gamma-ray observations and radio observations of our Milky Way and the Milky Way dwarf spheroidal satellite galaxies put very strong constraints on annihilation cross sections of dark matter. In this paper, we suggest a new target object (NGC 2976) that can be used for constraining annihilating dark matter. The radio and X-ray data of NGC 2976 can put very tight constraints on the leptophilic channels of dark matter annihilation. The lower limits of dark matter mass annihilating via {e}+{e}-, {μ }+{μ }-, and {τ }+{τ }- channels are 200 GeV, 130 GeV, and 110 GeV, respectively, with the canonical thermal relic cross section. We suggest that this kind of large nearby dwarf galaxy with a relatively high magnetic field can be a good candidate for constraining annihilating dark matter in future analyses.

  13. Positron annihilation in the nuclear outflows of the Milky Way

    NASA Astrophysics Data System (ADS)

    Panther, Fiona H.; Crocker, Roland M.; Birnboim, Yuval; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2018-02-01

    Observations of soft gamma rays emanating from the Milky Way from SPI/INTEGRAL reveal the annihilation of ˜2 × 1043 positrons every second in the Galactic bulge. The origin of these positrons, which annihilate to produce a prominent emission line centred at 511 keV, has remained mysterious since their discovery almost 50 yr ago. A plausible origin for the positrons is in association with the intense star formation ongoing in the Galactic centre. Moreover, there is strong evidence for a nuclear outflow in the Milky Way. We find that advective transport and subsequent annihilation of positrons in such an outflow cannot simultaneously replicate the observed morphology of positron annihilation in the Galactic bulge and satisfy the requirement that 90 per cent of positrons annihilate once the outflow has cooled to 104 K.

  14. Positron probes of the Ge(1 0 0) surface: The effects of surface reconstructions and electron positron correlations on positron trapping and annihilation characteristics

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2007-08-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(1 0 0) surface. The high-resolution PAES spectrum from the Ge(1 0 0) surface displays several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the non-reconstructed and reconstructed Ge(1 0 0)-p(2 × 1), Ge(1 0 0)-p(2 × 2) and Ge(1 0 0)-c(4 × 2) surfaces. It is found that the positron surface state wave function extends into the Ge lattice in the regions where atoms are displaced from their ideal terminated positions due to reconstructions. Estimates of the positron binding energy and the positron annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of Ge(1 0 0). A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  15. Electron–Positron Pair Creation Close to a Black Hole Horizon: Redshifted Annihilation Line in the Emergent X-Ray Spectra of a Black Hole. I.

    NASA Astrophysics Data System (ADS)

    Laurent, Philippe; Titarchuk, Lev

    2018-06-01

    We consider a Compton cloud (CC) surrounding a black hole (BH) in an accreting BH system, where electrons propagate with thermal and bulk velocities. In that cloud, soft (disk) photons may be upscattered off these energetic electrons and attain energies of several MeV. They could then create pairs due to photon–photon interactions. In this paper, we study the formation of the 511 keV annihilation line due to this photon–photon interaction, which results in the creation of electron–positron pairs, followed by the annihilation of the created positrons with the CC electrons. The appropriate conditions for annihilation-line generation take place very close to a BH horizon within (103–104)m cm from it, where m is the BH hole mass in solar units. As a result, the created annihilation line should be seen by the Earth observer as a blackbody bump, or the so-called reflection bump at energies around (511/20) (20/z) keV, where z ∼ 20 is a typical gravitational redshift experienced by the created annihilation-line photons when they emerge. This transient feature should occur in any accreting BH system, either galactic or extragalactic. Observational evidences for this feature in several galactic BH systems is detailed in an accompanying paper. An extended hard tail of the spectrum up to 1 MeV may also be formed due to X-ray photons upscattering off created pairs.

  16. Triplet exciton diffusion in fac-tris(2-phenylpyridine) iridium(III)-cored electroluminescent dendrimers

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Ruseckas, Arvydas; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.

    2005-02-01

    We have studied triplet-triplet annihilation in neat films of electrophosphorescent fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3]-cored dendrimers containing phenylene- and carbazole-based dendrons with 2-ethylhexyloxy surface groups using time-resolved photoluminescence. From measured annihilation rates, the limiting current densities above which annihilation would dominate in dendrimer light-emitting devices are found to be >1A/cm2. The triplet exciton diffusion length varies in the range of 2-10 nm depending on the dendron size. The distance dependence of the nearest-neighbor hopping rate shows that energy transfer is dominated by the exchange mechanism.

  17. An interpretation of the narrow positron annihilation feature from X-ray nova Muscae 1991

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1993-01-01

    The physical mechanism responsible for the narrow redshifted positron annihilation gamma-ray line from the X-ray nova Muscae 1991 is studied. The orbital inclination angle of the system is estimated and its black hole mass is constrained under the assumptions that the annihilation line centroid redshift is purely gravitational and that the line width is due to the combined effect of temperature broadening and disk rotation. The large black hole mass lower limit of 8 solar and the high binary mass ratio it implies raise a serious challenge to theoretical models of the formation and evolution of massive binaries.

  18. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.

    1992-06-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.

  19. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO( 1 0 0 ) and MgO( 1 1 0 )

    NASA Astrophysics Data System (ADS)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W. H.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -26Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  20. The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC

    DOE PAGES

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    2017-02-09

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less

  1. The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less

  2. Directed motion of vortices and annihilation of vortex-antivortex pairs in finite-gap superconductors via hot-lattice routes

    NASA Astrophysics Data System (ADS)

    Gulian, Ellen D.; Melkonyan, Gurgen G.; Gulian, Armen M.

    2017-07-01

    Using finite gap, time-dependent Ginzburg-Landau equations, generalized to include non-thermal phonons, we report numerical simulations of vortex nucleation, propagation, and annihilation in thin, finite strips of magnetic-impurity free, perfectly homogeneous superconductors. When a steady electric current passes through the strip with either surface defects or nonequilibrium phonon sources (e.g., local ;hotspots;), periodic vortex generation and annihilation is observed even in the absence of external magnetic fields. Local pulses of electric field are produced upon annihilation. The injected phonon lines steer the vortices during their motion within the strip, potentially allowing control of the annihilation site.

  3. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1)-S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n).02) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt-OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  4. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1) - S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n) central dot O2) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt.OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  5. Influence of Nb addition on vacancy defects and magnetic properties of the nanocrystalline Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Szwaja, Małgorzata; Gębara, Piotr; Filipecki, Jacek; Pawlik, Katarzyna; Przybył, Anna; Pawlik, Piotr; Wysłocki, Jerzy J.; Filipecka, Katarzyna

    2015-05-01

    In present work, influence of Nb addition on vacancy defects and magnetic properties of nanocrystalline Nd-Fe-B permanent magnets, was investigated. Samples with composition (Nd,Fe,B)100-xNbx (where x=6,7,8) were studied in as-cast state and after annealing. Samples were prepared by arc-melting with high purity of constituent elements under Ar atmosphere. Ribbons were obtained by melt-spinning technique under low pressure of Ar. Ribbon samples in as-cast state had amorphous structure and soft magnetic properties. Positron annihilation lifetime spectroscopy PALS has been applied to detection of positron - trapping voids (vacancy defects). With increase of Nb in alloy increasing of vacancy defects concentration was observed. Heat treatment of the samples was carried out at various temperatures (from 923 K to 1023 K) for 5 min, in order to obtain nanocrystalline structure. The aim of present work was to determine the influence of Nb addition and annealing conditions on the vacancy defects and magnetic properties of the Nd-Fe-B- type alloys in as-cast state and after heat treatment.

  6. Present and future experiments using bright low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2017-01-01

    Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.

  7. Concepts, Problems and Opportunities for Use of Annihilation Energy: An annotated Briefing on Near-Term RDT&E to Assess Feasibility,

    DTIC Science & Technology

    1985-06-01

    released when matter and antimatter annihilate. It reviews some of the funiamental ’lifficulties in producing antimatter and moans for storing it. If...summer of 1983 Rand examined the possibilities for exploiting the high energy release resulting from matter -antimatter annihilation. The resultant...several issues inherent in exploiting the energy released when matter and antimatter annihilate. Some of the fundamental difficulties in producing

  8. Proposed method to construct Boolean functions with maximum possible annihilator immunity

    NASA Astrophysics Data System (ADS)

    Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit

    2017-07-01

    Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.

  9. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  10. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sitesmore » of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.« less

  11. Theoretical calculations of positron annihilation characteristics in inorganic solids -- Recent advances and problems

    NASA Astrophysics Data System (ADS)

    Sob, M.; Sormann, H.; Kuriplach, J.

    Principles and applications of positron annihilation spectroscopy to electronic structure and defect studies are briefly reviewed and some recent advances and pending problems are illustrated by specific examples. In particular, it turns out that the sensitivity of calculated momentum densities of electron-positron annihilation pairs (MDAP) to the choice of electron crystal potential is higher or comparable to its sensitivity with respect to the choice of description of the electron-positron interaction. As a result, it is very hard to distinguish between various electron-positron interaction theories on the basis of the comparison of theoretical and experimental MDAPs. Furthermore, the positron affinity is determined theorttically for several systems having a band gap (semiconductors, insulators). It appears that the calculated positron affinities are significantly underestimated when compared to experimental data and, apparently, electron-positron interactions in such systems are not described satisfactorily by contemporary theoretical approaches. The above examples are related rather to electronic structure studies, but positrons are often used to investigate various open-volume defects in solids, which is dealt with in the last illustration. A non-selfconsistent computational technique suitable for the theoretical examination of configurations having large number (thousands) of non-equivalent atoms has been updated recently to treat non-periodic solids. It is based on the superposition of atomic densities in order to approximate the electronic density of the system studied. Though the charge redistribution due to selfconsistency effects is neglected, positron annihilation characteristics are determined quite reasonably. This allows for studying properties of extended defects like grain boundaries (and other interfaces), dislocations, precipitates, etc., which is very helpful when interpreting experimental positron annihilation data. Our technique is demonstrated for the case of nanocrystalline Ni where realistic atomic configurations are taken from large-scale molecular dynamics simulations.

  12. The annihilation of galactic positrons

    NASA Technical Reports Server (NTRS)

    Bussard, R.; Rematy, R.

    1978-01-01

    The probabilities of various channels of galactic positron annihilation were evaluated and the spectrum of the resulting radiation was calculated. The narrow width (FWHM less than 3.2 keV) of the 0.511 MeV line observed from the galactic center implies that a large fraction of positrons should annihilate in a medium of temperature less than 100,000 K and ionization fraction greater than 0.05. HII regions at the galactic center could be possible sites of annihilation.

  13. Stimulation of Cysteine-Coated CdSe/ZnS Quantum Dot Luminescence by meso-Tetrakis (p-sulfonato-phenyl) Porphyrin

    NASA Astrophysics Data System (ADS)

    Parra, Gustavo G.; Ferreira, Lucimara P.; Gonçalves, Pablo J.; Sizova, Svetlana V.; Oleinikov, Vladimir A.; Morozov, Vladimir N.; Kuzmin, Vladimir A.; Borissevitch, Iouri E.

    2018-02-01

    Interaction between porphyrins and quantum dots (QD) via energy and/or charge transfer is usually accompanied by reduction of the QD luminescence intensity and lifetime. However, for CdSe/ZnS-Cys QD water solutions, kept at 276 K during 3 months (aged QD), the significant increase in the luminescence intensity at the addition of meso-tetrakis (p-sulfonato-phenyl) porphyrin (TPPS4) has been observed in this study. Aggregation of QD during the storage provokes reduction in the quantum yield and lifetime of their luminescence. Using steady-state and time-resolved fluorescence techniques, we demonstrated that TPPS4 stimulated disaggregation of aged CdSe/ZnS-Cys QD in aqueous solutions, increasing the quantum yield of their luminescence, which finally reached that of the fresh-prepared QD. Disaggregation takes place due to increase in electrostatic repulsion between QD at their binding with negatively charged porphyrin molecules. Binding of just four porphyrin molecules per single QD was sufficient for total QD disaggregation. The analysis of QD luminescence decay curves demonstrated that disaggregation stronger affected the luminescence related with the electron-hole annihilation in the QD shell. The obtained results demonstrate the way to repair aged QD by adding of some molecules or ions to the solutions, stimulating QD disaggregation and restoring their luminescence characteristics, which could be important for QD biomedical applications, such as bioimaging and fluorescence diagnostics. On the other hand, the disaggregation is important for QD applications in biology and medicine since it reduces the size of the particles facilitating their internalization into living cells across the cell membrane.

  14. Revisit of cosmic ray antiprotons from dark matter annihilation with updated constraints on the background model from AMS-02 and collider data

    NASA Astrophysics Data System (ADS)

    Cui, Ming-Yang; Pan, Xu; Yuan, Qiang; Fan, Yi-Zhong; Zong, Hong-Shi

    2018-06-01

    We study the cosmic ray antiprotons with updated constraints on the propagation, proton injection, and solar modulation parameters based on the newest AMS-02 data near the Earth and Voyager data in the local interstellar space, and on the cross section of antiproton production due to proton-proton collisions based on new collider data. We use a Bayesian approach to properly consider the uncertainties of the model predictions of both the background and the dark matter (DM) annihilation components of antiprotons. We find that including an extra component of antiprotons from the annihilation of DM particles into a pair of quarks can improve the fit to the AMS-02 antiproton data considerably. The favored mass of DM particles is about 60~100 GeV, and the annihilation cross section is just at the level of the thermal production of DM (langleσvrangle ~ O(10‑26) cm3 s‑1).

  15. Weak annihilation and new physics in charmless [Formula: see text] decays.

    PubMed

    Bobeth, Christoph; Gorbahn, Martin; Vickers, Stefan

    We use currently available data of nonleptonic charmless 2-body [Formula: see text] decays ([Formula: see text]) that are mediated by [Formula: see text] QCD- and QED-penguin operators to study weak annihilation and new-physics effects in the framework of QCD factorization. In particular we introduce one weak-annihilation parameter for decays related by [Formula: see text] quark interchange and test this universality assumption. Within the standard model, the data supports this assumption with the only exceptions in the [Formula: see text] system, which exhibits the well-known "[Formula: see text] puzzle", and some tensions in [Formula: see text]. Beyond the standard model, we simultaneously determine weak-annihilation and new-physics parameters from data, employing model-independent scenarios that address the "[Formula: see text] puzzle", such as QED-penguins and [Formula: see text] current-current operators. We discuss also possibilities that allow further tests of our assumption once improved measurements from LHCb and Belle II become available.

  16. Modeling of charged particles trajectories in order to optimize the design of a new, higher resolution, Time of flight- Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) System

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, L.; Satyal, Suman; Kalaskar, Sushant; Shastry, K.; Weiss, Alex

    2011-03-01

    Time of Flight Positron Annihilation Induced~Auger Electron Spectroscopy~(TOF PAES) is a surface analytical technique with high surface selectivity. TOF PAES is used to study elemental composition, surface defects, and various energy loss mechanisms. Positrons incident on the sample surface at low energies can be trapped in an image-potential well just above the surface Prior to annihilation. Consequently it is possible to use positron annihilation related signals to selectively probe the top-most atomic layer. This poster presents the results of modeling of the charge particle beam transport system performed in connection with the optimization of the the design of the new TOF-PAES system currently under construction at U T Arlington. The system will incorporate a 2 m long drift tube in order to achieve better energy resolution than our previous TOF-PAES system design which used a 1 m long drift tube NSF DMR 0907679, Welch Foundation Y 1100.

  17. Studies of Oxidation of the Cu(100) Surface Using Low Energy Positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Kazan State University, Kazan 420008; Maddox, W. B.

    2009-03-10

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M{sub 2,3}VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The intensity then decreases monotonically as the annealing temperature is increased to {approx}600 deg. C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant coremore » electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M{sub 2,3}VV Auger peak with changes of the annealing temperature is proposed.« less

  18. Oscillation of neutrinos produced by the annihilation of dark matter inside the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaili, Arman; School of Physics, Institute for Research in Fundamental Sciences; Farzan, Yasaman

    2010-06-01

    The annihilation of dark matter particles captured by the Sun can lead to a neutrino flux observable in neutrino detectors. Considering the fact that these dark matter particles are nonrelativistic, if a pair of dark matter annihilates to a neutrino pair, the spectrum of neutrinos will be monochromatic. We show that in this case, even after averaging over the production point inside the Sun, the oscillatory terms of the oscillation probability do not average to zero. This leads to interesting observable features in the annual variation of the number of muon track events. We show that smearing of the spectrummore » due to thermal distribution of dark matter inside the Sun is too small to wash out this variation. We point out the possibility of studying the initial flavor composition of neutrinos produced by the annihilation of dark matter particles via measuring the annual variation of the number of {mu}-track events in neutrino telescopes.« less

  19. Mechanical and microstructural changes in tungsten due to irradiation damage

    NASA Astrophysics Data System (ADS)

    Uytdenhouwen, I.; Schwarz-Selinger, T.; Coenen, J. W.; Wirtz, M.

    2016-02-01

    Stress-relieved pure tungsten received three damage levels (0.10, 0.25 and 0.50 dpa) by self-tungsten ion beam irradiation at room temperature. Positron annihilation spectroscopy showed the formation of mono-vacancies and vacancy clusters after ion beam exposure. In the first irradiation step (0-0.10 dpa) some splitting up of large vacancy clusters occurred which became more numerous. For increasing dose to 0.25 dpa, growth of the vacancy clusters was seen. At 0.50 dpa a change in the defect formation seems to occur leading to a saturation in the lifetime signal obtained from the positrons. Nano-indentation on the cross-sections showed a flat damage depth distribution profile. The nano-indentation hardness increased for increasing damage dose without any saturation up to 0.50 dpa. This means that other defects such as dislocation loops and large sized voids seem to contribute.

  20. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; ...

    2015-10-20

    The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  1. Ultrafast switching of valence and generation of coherent acoustic phonons in semiconducting rare-earth monosulfides

    NASA Astrophysics Data System (ADS)

    Punpongjareorn, Napat; He, Xing; Tang, Zhongjia; Guloy, Arnold M.; Yang, Ding-Shyue

    2017-08-01

    We report on the ultrafast carrier dynamics and generation of coherent acoustic phonons in YbS, a semiconducting rare-earth monochalcogenide, using two-color pump-probe reflectivity. Compared to the carrier relaxation processes and lifetimes of conventional semiconductors, recombination of photoexcited electrons with holes in localized f orbitals is found to take place rapidly with a density-independent time constant of <500 fs in YbS. Such carrier annihilation signifies the unique and ultrafast nature of valence restoration of ytterbium ions after femtosecond photoexcitation switching. Following transfer of the absorbed energy to the lattice, coherent acoustic phonons emerge on the picosecond timescale as a result of the thermal strain in the photoexcited region. By analyzing the electronic and structural dynamics, we obtain the physical properties of YbS including its two-photon absorption and thermooptic coefficients, the period and decay time of the coherent oscillation, and the sound velocity.

  2. Stability of Matter-Antimatter Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Cheuk-Yin; Lee, Teck-Ghee

    2011-01-01

    We examine the stability of matter-antimatter molecules by reducing the four-body problem into a simpler two-body problem with residual interactions. We find that matter-antimatter molecules with constituents (m{sub 1}{sup +}, m{sub 2}{sup -}, {bar m}{sub 2}{sup +}, {bar m}{sub 1}{sup -}) possess bound states if their constituent mass ratio m{sub 1}/m{sub 2} is greater than about 4. This stability condition suggests that the binding of matter-antimatter molecules is a rather common phenomenon. We evaluate the binding energies and eigenstates of matter-antimatter molecules ({mu}{sup +}e{sup 0})-(e{sup +}{mu}{sup -}), ({pi}{sup +}e{sup -})-(e{sup +}{pi}{sup -}), (K{sup +}e{sup -})-(e{sup +}K{sup -}), (pe{sup -})-(e{sup +}{barmore » p}), (p{mu}{sup -})-({mu}{sup +}{bar p}), and (K{sup +}{mu}{sup -})-({mu}{sup +}K{sup -}), which satisfy the stability condition. We estimate the molecular annihilation lifetimes in their s states.« less

  3. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  4. Large bandgap narrowing in rutile TiO2 aimed towards visible light applications and its correlation with vacancy-type defects history and transformation

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Gayathri, P. K.; Siva Gummaluri, Venkata; Nambissan, P. M. G.; Vijayan, C.

    2018-01-01

    Extension of photoactivity of TiO2 to the visible region is achievable via effective control over the intrinsic defects such as oxygen and Ti vacancies, which has several applications in visible photocatalysis and sensing. We present here the first observation of an apparent bandgap narrowing and bandgap tuning effect due to vacancy cluster transformation in rutile TiO2 structures to 1.84 eV from the bulk bandgap of 3 eV. A gradual transformation of divacancies (V Ti-O) to tri vacancies ({{V}Ti-O-T{{i-}}} ) achieved through a controlled solvothermal scheme appears to result in an apparent narrowing bandgap and tunability, as supported by positron annihilation lifetime and electron paramagnetic resonance spectroscopy measurements. Visible photocatalytic activity of the samples is demonstrated in terms of photodegradation of rhodamine B dye molecules.

  5. Positron trapping at defects in copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    McMullen, T.; Jena, P.; Khanna, S. N.; Li, Yi; Jensen, Kjeld O.

    1991-05-01

    Positron states and lifetimes at defects in the copper oxide superconductors La2-xSrxCuO4, YBa2Cu3O7-x, and Bi2Sr2CaCu2O8+x are calculated with use of the superposed-atom model. In the Bi2Sr2CaCu2O8+x compound, we find that the smaller metal-ion vacancies appear to only bind positrons weakly, while missing oxygens do not trap positrons. In contrast, metal-ion vacancies in La2-xSrxCuO4 and YBa2Cu3O7-x bind positrons by ~1 eV, and oxygen-related defects appear to be the weak-binding sites in these materials. The sites that bind positrons only weakly, by energies ~kBT, are of particular interest in view of the complex temperature dependences of the annihilation characteristics that are observed in these materials.

  6. Pick-off annihilation of positronium in matter using full correlation single particle potentials: solid He.

    PubMed

    Zubiaga, A; Tuomisto, F; Puska, M J

    2015-01-29

    We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smallest entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules, and yet the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pairwise full-correlation single-particle potential for the Ps-He interaction, and the total potential in solids is obtained as a superposition of the pairwise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyze experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyze ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.

  7. Tachyon Condensation and Brane Annihilation in Bose-Einstein Condensates: Spontaneous Symmetry Breaking in Restricted Lower-Dimensional Subspace

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2013-05-01

    In brane cosmology, the Big Bang is hypothesized to occur by the annihilation of the brane-anti-brane pair in a collision, where the branes are three-dimensional objects in a higher-dimensional Universe. Spontaneous symmetry breaking accompanied by the formation of lower-dimensional topological defects, e.g. cosmic strings, is triggered by the so-called `tachyon condensation', where the existence of tachyons is attributable to the instability of the brane-anti-brane system. Here, we discuss the closest analogue of the tachyon condensation in atomic Bose-Einstein condensates. We consider annihilation of domain walls, namely branes, in strongly segregated two-component condensates, where one component is sandwiched by two domains of the other component. In this system, the process of the brane annihilation can be projected effectively as ferromagnetic ordering dynamics onto a two-dimensional space. Based on this correspondence, three-dimensional formation of vortices from a domain-wall annihilation is considered to be a kink formation due to spontaneous symmetry breaking in the two-dimensional space. We also discuss a mechanism to create a `vorton' when the sandwiched component has a vortex string bridged between the branes. We hope that this study motivates experimental researches to realize this exotic phenomenon of spontaneous symmetry breaking in superfluid systems.

  8. Account of the intratrack radiolytic processes for interpretation of the AMOC spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Zvezhinskiy, D. S.; Butterling, M.; Wagner, A.; Krause-Rehberg, R.; Stepanov, S. V.

    2013-06-01

    Recent development of the Gamma-induced Positron Spectroscopy (GiPS) setup significantly extends applicability of the Age-Momentum Correlation technique (AMOC) for studies of the bulk samples. It also provides many advantages comparing with conventional positron annihilation experiments in liquids, such as extremely low annihilation fraction in vessel walls, absence of a positron source and positron annihilations in it. We have developed a new approach for processing and interpretation of the AMOC-GiPS data based on the diffusion recombination model of the intratrack radiolytic processes. This approach is verified in case of liquid water, which is considered as a reference medium in the positron and positronium chemistry.

  9. Constraints on small-scale primordial power by annihilation signals from extragalactic dark matter minihalos

    NASA Astrophysics Data System (ADS)

    Nakama, Tomohiro; Suyama, Teruaki; Kohri, Kazunori; Hiroshima, Nagisa

    2018-01-01

    We revisit constraints on small-scale primordial power from annihilation signals from dark matter minihalos. Using gamma rays and neutrinos from extragalactic minihalos and assuming the delta-function primordial spectrum, we show the dependence of the constraints on annihilation modes, the mass of dark matter, and the annihilation cross section. We report conservative constraints by assuming minihalos are fully destructed when becoming part of halos originating from the standard almost-scale invariant primordial spectrum and optimistic constraints by neglecting destruction.

  10. Positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Olenga, Antoine; Weiss, A. H.

    2013-03-01

    The process by which oxide layers are formed on metal surfaces is still not well understood. In this work we present the results of theoretical studies of positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Cu(110) has been performed on the basis of density functional theory and using DMOl3 code. The changes in the positron work function and the surface dipole moment when oxygen atoms occupy on-surface and sub-surface sites have been attributed to charge redistribution within the first two layers, buckling effects within each layer and interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidized transition metal surfaces using positron annihilation induced Auger electron spectroscopy. This work was supported in part by the National Science Foundation Grant DMR-0907679.

  11. Study of positron annihilation with core electrons at the clean and oxygen covered Ag(001) surface

    NASA Astrophysics Data System (ADS)

    Joglekar, P.; Shastry, K.; Olenga, A.; Fazleev, N. G.; Weiss, A. H.

    2013-03-01

    In this paper we present measurements of the energy spectrum of electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission from a clean and oxygen covered Ag (100) surface using a series of incident beam energies ranging from 20 eV down to 2 eV. A peak was observed at ~ 40 eV corresponding to the N23VV Auger transition in agreement with previous PAES studies. Experimental results were investigated theoretically by calculations of positron states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the clean and oxygen covered Ag(100) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Ag(100) has been performed on the basis of density functional theory and using DMOl3 code. The computed positron binding energy, positron surface state wave function, and positron annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data. This work was supported in part by the National Science Foundation Grant # DMR-0907679.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yizhou, E-mail: yliu062@ucr.edu; Yin, Gen; Lake, Roger K., E-mail: rlake@ece.ucr.edu

    Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resultingmore » from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes.« less

  13. Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states: Non-classical and non-Gaussian properties

    NASA Astrophysics Data System (ADS)

    Xu, Xue-Xiang; Yuan, Hong-Chun; Wang, Yan

    2014-07-01

    We investigate the nonclassical properties of arbitrary number photon annihilation-then-creation operation (AC) and creation-then-annihilation operation (CA) to the thermal state (TS), whose normalization factors are related to the polylogarithm function. Then we compare their quantum characters, such as photon number distribution, average photon number, Mandel Q-parameter, purity and the Wigner function. Because of the noncommutativity between the annihilation operator and the creation operator, the ACTS and the CATS have different nonclassical properties. It is found that nonclassical properties are exhibited more strongly after AC than after CA. In addition we also examine their non-Gaussianity. The result shows that the ACTS can present a slightly bigger non-Gaussianity than the CATS.

  14. Physical Selectivity of Molecularly Imprinted polymers evaluated through free volume size distributions derived from Positron Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Ranganathaiah, C.

    2015-06-01

    The technique of imprinting molecules of various sizes in a stable structure of polymer matrix has derived multitudes of applications. Once the template molecule is extracted from the polymer matrix, it leaves behind a cavity which is physically (size and shape) and chemically (functional binding site) compatible to the particular template molecule. Positron Annihilation Lifetime Spectroscopy (PALS) is a well known technique to measure cavity sizes precisely in the nanoscale and is not being used in the field of MIPs effectively. This method is capable of measuring nanopores and hence suitable to understand the physical selectivity of the MIPs better. With this idea in mind, we have prepared molecular imprinted polymers (MIPs) with methacrylicacid (MAA) as monomer and EGDMA as cross linker in different molar ratio for three different size template molecules, viz. 4-Chlorophenol (4CP)(2.29 Å), 2-Nephthol (2NP) (3.36 Å) and Phenolphthalein (PP) (4.47Å). FTIR and the dye chemical reactions are used to confirm the complete extraction of the template molecules from the polymer matrix. The free volume size and its distribution have been derived from the measured o-Ps lifetime spectra. Based on the free volume distribution analysis, the percentage of functional cavities for the three template molecules are determined. Percentage of functional binding cavities for 4-CP molecules has been found out to be 70.2% and the rest are native cavities. Similarly for 2NP it is 81.5% and nearly 100% for PP. Therefore, PALS method proves to be very precise and accurate for determining the physical selectivity of MIPs.

  15. Exciton-exciton annihilation in a disordered molecular system by direct and multistep Förster transfer

    NASA Astrophysics Data System (ADS)

    Fennel, Franziska; Lochbrunner, Stefan

    2015-10-01

    Exciton annihilation dynamics in a disordered organic model system is investigated by ultrafast absorption spectroscopy. We show that the temporal evolution of the exciton density can be quantitatively understood by applying Förster energy transfer theory to describe the diffusion of the excitons as well as the annihilation step itself. To this end, previous formulations of Förster theory are extended to account for the inhomogeneous distribution of the S0-S1 transition energies resulting in an effective exciton diffusion constant. Two annihilation pathways are considered, the direct transfer of an exciton between two excited molecules and diffusive motion by multiple transfer steps towards a second exciton preceding the annihilation event. One pathway can be emphasized with respect to the other by tuning the exciton diffusion constant via the chromophore concentration. The investigated system allows one to extract all relevant parameters for the description and provides in this way a proof that the annihilation dynamics can be entirely understood and modeled by Förster energy transfer.

  16. Bright gamma-ray Galactic Center excess and dark dwarfs: Strong tension for dark matter annihilation despite Milky Way halo profile and diffuse emission uncertainties

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork N.; Keeley, Ryan E.

    2016-04-01

    We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, two of the most precise empirical determinations of the Milky Way halo's local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses for single-channel dark matter annihilation models. The GCE and dwarf tension can be alleviated if: one, the halo is very highly concentrated or strongly contracted; two, the dark matter annihilation signal differentiates between dwarfs and the GC; or, three, local stellar density measures are found to be significantly lower, like that from recent stellar counts, increasing the local dark matter density.

  17. Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldes, Iason; Petraki, Kalliopi, E-mail: iason.baldes@desy.de, E-mail: kpetraki@lpthe.jussieu.fr

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of themore » annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s -wave and p -wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.« less

  18. An Experiment to Demonstrate the Energy Broadening of Annihilation Gamma Rays

    ERIC Educational Resources Information Center

    Ouseph, P. J.; DuBard, James L.

    1978-01-01

    Shows that when positions annihilate in solid materials the energy distribution of the annihilation gamma rays is much broader than that of a 0.511-Mev gamma peak. This broadening is caused by the momentum distribution of the electrons in the material. (Author/GA)

  19. Constraining antimatter domains in the early universe with big bang nucleosynthesis.

    PubMed

    Kurki-Suonio, H; Sihvola, E

    2000-04-24

    We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of 4He. For larger domains, the limit comes from 3He overproduction. Since most of the 3He from &pmacr; 4He annihilation are themselves annihilated, the main source of primordial 3He is the photodisintegration of 4He by the electromagnetic cascades initiated by the annihilation.

  20. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide.

    PubMed

    Sun, Dezheng; Rao, Yi; Reider, Georg A; Chen, Gugang; You, Yumeng; Brézin, Louis; Harutyunyan, Avetik R; Heinz, Tony F

    2014-10-08

    Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.

  1. JPRS Report, Science & Technology USSR: Physics & Mathematics

    DTIC Science & Technology

    1991-07-01

    12 Collective Annihilation of Electron- Positron Plasma in Strong Magnetic Field [A. A. Belyanin, V. V. Kocharovskiy, et...621.378.3.826.038.825 [Abstract] An experimental study of a rotating YAG:Nd3+ ring laser with a uniformly broadened ampli- fication line and with self...metals deposited on a tungsten filament influ- ence its thermoemission power. Figures 2; references 6. Collective Annihilation of Electron- Positron

  2. Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s -wave dark matter annihilation from Planck results

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Recent measurements of the cosmic microwave background (CMB) anisotropies by Planck provide a sensitive probe of dark matter annihilation during the cosmic dark ages, and specifically constrain the annihilation parameter feff⟨σ v ⟩/mχ. Using new results (paper II) for the ionization produced by particles injected at arbitrary energies, we calculate and provide feff values for photons and e+e- pairs injected at keV-TeV energies; the feff value for any dark matter model can be obtained straightforwardly by weighting these results by the spectrum of annihilation products. This result allows the sensitive and robust constraints on dark matter annihilation presented by the Planck collaboration to be applied to arbitrary dark matter models with s -wave annihilation. We demonstrate the validity of this approach using principal component analysis. As an example, we integrate over the spectrum of annihilation products for a range of Standard Model final states to determine the CMB bounds on these models as a function of dark matter mass, and demonstrate that the new limits generically exclude models proposed to explain the observed high-energy rise in the cosmic ray positron fraction. We make our results publicly available at http://nebel.rc.fas.harvard.edu/epsilon.

  3. Studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2012-02-01

    The study of oxidation of single crystal metal surfaces is important in understanding the corrosive and catalytic processes associated with thin film metal oxides. The structures formed on oxidized transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which result from the diffusion of oxygen into subsurface regions. In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. The results of calculations of positron binding energy, positron work function, and annihilation characteristics of surface trapped positrons with relevant core electrons as function of oxygen coverage are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES).

  4. Annihilation of p-bar + p {yields} e{sup +} + e{sup -} + {pi}{sup 0} and p-bar + p {yields} {gamma} + {pi}{sup 0} through an {omega}-Meson intermediate state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuraev, E. A., E-mail: kuraev@theor.jinr.ru; Bystritskiy, Yu. M., E-mail: bystr@theor.jinr.ru; Bytev, V. V., E-mail: bvv@jinr.ru

    2012-07-15

    The s-channel annihilation of a proton and an antiproton into a neutral pion and a real or virtual photon followed by lepton pair emission is studied. Such a mechanism is expected to play a role at moderate values of the total energy {radical}s, when the pion is emitted in the angular region around 90 Degree-Sign in the center-of-mass system. A fair comparison with the existing data is obtained taking scattering and annihilation channels into account. The cross section is calculated and numerical results are given in the kinematical range accessible in the PANDA experiment at FAIR.

  5. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    PubMed Central

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-01-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration. PMID:27877712

  6. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-10-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration.

  7. On dark matter interactions with the Standard Model through an anomalous Z'

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Katz, Andrey; Racco, Davide

    2017-10-01

    We study electroweak scale Dark Matter (DM) whose interactions with baryonic matter are mediated by a heavy anomalous Z'. We emphasize that when the DM is a Majorana particle, its low-velocity annihilations are dominated by loop suppressed annihilations into the gauge bosons, rather than by p-wave or chirally suppressed annihilations into the SM fermions. Because the Z ' is anomalous, these kinds of DM models can be realized only as effective field theories (EFTs) with a well-defined cutoff, where heavy spectator fermions restore gauge invariance at high energies. We formulate these EFTs, estimate their cutoff and properly take into account the effect of the Chern-Simons terms one obtains after the spectator fermions are integrated out. We find that, while for light DM collider and direct detection experiments usually provide the strongest bounds, the bounds at higher masses are heavily dominated by indirect detection experiments, due to strong annihilation into W + W -, ZZ, Zγ and possibly into gg and γγ. We emphasize that these annihilation channels are generically significant because of the structure of the EFT, and therefore these models are prone to strong indirect detection constraints. Even though we focus on selected Z' models for illustrative purposes, our setup is completely generic and can be used for analyzing the predictions of any anomalous Z'-mediated DM model with arbitrary charges.

  8. Exciton Dynamics in Alternative Solar Cell Materials: Polymers, Nanocrystals, and Small Molecules

    NASA Astrophysics Data System (ADS)

    Pundsack, Thomas J.

    To keep fossil fuel usage in 2040 even with 2010 usage, 50% of global energy will need to come from alternative sources such as solar cells. While the photovoltaic market is currently dominated by crystalline silicon, there are many low-cost solar cell materials such as conjugated polymers, semiconductor nanocrystals, and organic small molecules which could compete with fossil fuels. To create cost-competitive devices, understanding the excited state dynamics of these materials is necessary. The first section of this thesis looks at aggregation in poly(3-hexylthiophene) (P3HT) which is commonly used in organic photovoltaics. The amount of aggregation in P3HT thin films was controlled by using a mixture of regioregular and regiorandom P3HT. Even with few aggregates present, excited states were found to transfer from amorphous to aggregate domains in <50 fs which could indicate efficient long-range energy transfer. To further study P3HT aggregation, a triblock consisting of two P3HT chains with a coil polymer between them was investigated. By changing solvents, aggregation was induced in a stable and reversible manner allowing for spectroscopic studies of P3HT aggregates in solution. The polarity of the solvent was adjusted, and no change in excited state dynamics was observed implying the excited state has little charge-transfer character. Next, the conduction band density of states for copper zinc tin sulfide nanocrystals (CZTS NCs) was measured using pump-probe spectroscopy and found to be in agreement with theoretical results. The density of states shifted and dilated for smaller NCs indicative of quantum confinement. The excited state lifetime was found to be short (<20 ps) and independent of NC size which could limit the efficiency of CZTS photovoltaic devices. Finally, triplet-triplet annihilation (TTA) was studied in platinum octaethylporphyrin (PtOEP) thin films. By analyzing pump-probe spectra, the product of TTA in PtOEP thin films was assigned to a long-lived metal-centered state. To elucidate the mechanism of TTA, the annihilation dynamics were modeled using second order kinetics as well as Forster and Dexter energy transfer. Dexter energy transfer provided the best fits and the most reasonable fitting parameters.

  9. Spectral study of the HESS J1745-290 gamma-ray source as dark matter signal

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Gammaldi, V.; Maroto, A. L.

    2013-04-01

    We study the main spectral features of the gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source during the years 2004, 2005 and 2006. In particular, we show that these data are well fitted as the secondary gamma-rays photons generated from dark matter annihilating into Standard Model particles in combination with a simple power law background. We present explicit analyses for annihilation in a single standard model particle-antiparticle pair. In this case, the best fits are obtained for the uū and dbar d quark channels and for the W+W- and ZZ gauge bosons, with background spectral index compatible with the Fermi-Large Area Telescope (LAT) data from the same region. The fits return a heavy WIMP, with a mass above ~ 10 TeV, but well below the unitarity limit for thermal relic annihilation.

  10. Commissioning of the J-PET Detector for Studies of Decays of Positronium Atoms

    NASA Astrophysics Data System (ADS)

    Czerwiński, E.; Dulski, K.; Białas, P.; Curceanu, C.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kisielewska, D.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krawczyk, N.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pałka, M.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Shopa, R. Y.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    The Jagiellonian Positron Emission Tomograph (J-PET) is a detector for medical imaging of the whole human body as well as for physics studies involving detection of electron-positron annihilation into photons. J-PET has high angular and time resolution and allows for measurement of spin of the positronium and the momenta and polarization vectors of annihilation quanta. In this article, we present the potential of the J-PET system for background rejection in the decays of positronium atoms.

  11. Low energy positrons as probes of reconstructed semiconductor surfaces.

    NASA Astrophysics Data System (ADS)

    Fazleev, Nail G.; Weiss, Alex H.

    2007-03-01

    Positron probes of semiconductor surfaces that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of the reconstructed Si(100), Si(111), Ge(100), and Ge(111) surfaces, clean and exposed to hydrogen and oxygen, using a surface characterization technique, Positron-Annihilation-Induced Auger-Electron Spectroscopy (PAES). Experimental PAES results are analyzed by performing first-principles calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons for the reconstructed surfaces, taking into account discrete lattice effects, the electronic reorganization due to bonding, and charge redistribution effects at the surface. Effects of the hydrogen and oxygen adsorption on semiconductor surfaces on localization of positron surface state wave functions and annihilation characteristics are also analyzed. Theoretical calculations confirm that PAES intensities, which are proportional to annihilation probabilities of the surface trapped positrons that results in a core hole, are sensitive to the crystal face, surface structure and elemental content of the semiconductors.

  12. Formation of the 0.511.-MeV line in solar flares. [statistical mechanics of line spectra for gamma rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.

  13. Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Johnson, Evan; Zhang, Hong

    2018-05-01

    Near a critical value of the wino mass where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold, low-energy winos can be described by a zero-range effective field theory (ZREFT) in which the winos interact nonperturbatively through a contact interaction and through Coulomb interactions. The effects of wino-pair annihilation into electroweak gauge bosons are taken into account through the analytic continuation of the real parameters for the contact interaction to complex values. The parameters of ZREFT can be determined by matching wino-wino scattering amplitudes calculated by solving the Schrödinger equation for winos interacting through a real potential due to the exchange of electroweak gauge bosons and an imaginary potential due to wino-pair annihilation into electroweak gauge bosons. ZREFT at leading order gives an accurate analytic description of low-energy wino-wino scattering, inclusive wino-pair annihilation, and a wino-pair bound state. ZREFT can also be applied to partial annihilation rates, such as the Sommerfeld enhancement of the annihilation rate of wino pairs into monochromatic photons.

  14. Impact of Sommerfeld enhancement on helium reionization via WIMP dark matter

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Bidisha; Schleicher, Dominik R. G.

    2018-03-01

    Dark matter annihilation can have a strong impact on many astrophysical processes in the Universe. In the case of Sommerfeld-enhanced annihilation cross sections, the annihilation rates are enhanced at late times, thus enhancing the potential annihilation signatures. We here calculate the Sommerfeld-enhanced annihilation signatures during the epoch of helium reionization, the epoch where helium becomes fully ionized due to energetic photons. When considering the upper limits on the energy injection from the CMB, we find that the resulting abundance of He++ becomes independent of the dark matter particle mass. The resulting enhancement compared to a standard scenario is thus 1-2 orders of magnitude higher. For realistic scenarios compatible with CMB constraints, there is no significant shift in the epoch of helium reionization, which is completed between redshifts 3 and 4. While it is thus difficult to disentangle dark matter annihilation from astrophysical contributions (active galactic nuclei), a potential detection of dark matter particles and its interactions using the Large Hadron Collider (LHC) would allow one to quantify the dark matter contribution.

  15. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  16. Experimental studies of irradiated and hydrogen implantation damaged reactor steels

    NASA Astrophysics Data System (ADS)

    Slugeň, Vladimír; Pecko, Stanislav; Sojak, Stanislav

    2016-01-01

    Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40 %) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed in the irradiated specimens resulting in 2-3 vacancies. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to the implantation of hydrogen ions with energies of 100 keV (up to the depth <500 nm).

  17. Comparative study of irradiated and hydrogen implantation damaged German RPV steels from PAS point of view

    NASA Astrophysics Data System (ADS)

    Pecko, Stanislav; Sojak, Stanislav; Slugeň, Vladimír

    2014-09-01

    Commercial German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was also in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40%) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed at a level of 2-3 vacancies in the irradiated specimens. The size and intensity of defects reached a similar level as in the specimens irradiated in nuclear reactor due to hydrogen ions implantation with energy of 100 keV (up to the depth <500 nm). This could confirm the ability to simulate neutron damage by ion implantation.

  18. Studies of oxidation and thermal reduction of the Cu(100) surface using a slow positron beam

    NASA Astrophysics Data System (ADS)

    Maddox, W. B.; Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.

    2007-10-01

    Positron probes of surfaces of oxides that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of oxidation and thermal reduction of the Cu(100) surface using positron-annihilation-induced Auger-electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 C. The intensity then decreases monotonically as the annealing temperature is increased to 600 C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and surface reconstruction. The effects of oxygen adsorption and defects on localization of the positron surface state wave function and positron annihilation characteristics are also analyzed. Possible explanations are provided for the observed behavior of the intensity of the positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature.

  19. Simplified models of dark matter with a long-lived co-annihilation partner

    NASA Astrophysics Data System (ADS)

    Khoze, Valentin V.; Plascencia, Alexis D.; Sakurai, Kazuki

    2017-06-01

    We introduce a new set of simplified models to address the effects of 3-point interactions between the dark matter particle, its dark co-annihilation partner, and the Standard Model degree of freedom, which we take to be the tau lepton. The contributions from dark matter co-annihilation channels are highly relevant for a determination of the correct relic abundance. We investigate these effects as well as the discovery potential for dark matter co-annihilation partners at the LHC. A small mass splitting between the dark matter and its partner is preferred by the co-annihilation mechanism and suggests that the co-annihilation partners may be long-lived (stable or meta-stable) at collider scales. It is argued that such long-lived electrically charged particles can be looked for at the LHC in searches of anomalous charged tracks. This approach and the underlying models provide an alternative/complementarity to the mono-jet and multi-jet based dark matter searches widely used in the context of simplified models with s-channel mediators. We consider four types of simplified models with different particle spins and coupling structures. Some of these models are manifestly gauge invariant and renormalizable, others would ultimately require a UV completion. These can be realised in terms of supersymmetric models in the neutralino-stau co-annihilation regime, as well as models with extra dimensions or composite models.

  20. The Antiproton-Nucleon Annihilation Process (Antiproton Collaboration Experiment)

    DOE R&D Accomplishments Database

    Barkas, W. H.; Birge, R. W.; Chupp, W. W.; Ekspong, A. G.; Goldhaber, G.; Goldhaber, S.; Heckman, H. H.; Perkins, D. H.; Sandweiss, J.; Segre, E.; Smith, F. M.; Stork, D. H.; Rossum, L. Van; Amaldi, E.; Baroni, G.; Castagnoli, C.; Franzinetti, C.; Manfredini, A.

    1956-09-10

    In the exposure to a 700-MeV/c negative particle beam, 35 antiproton stars have been found. Of these antiprotons, 21 annihilate in flight and three give large-angle scatters ({Theta} > 15 , T{sub P-} > 50 Mev), while 14 annihilate at rest. From the interactions in flight we obtain the total cross section for antiproton interaction.

  1. Design and building of new spin polarized Positron Annihilation Induced Auger Electron Spectrometer

    NASA Astrophysics Data System (ADS)

    Lim, Zheng Hui; Mishler, Michael; Joglekar, Prasad; Shastry, Karthik; Koymen, Ali; Sharma, Suresh; Weiss, Alexander

    2014-03-01

    We propose to develop a next generation high flux variable energy spin-polarized position beam facility for materials studies. This new system will have a higher efficiency than our current system, and it will also be the first in the world to combine spin polarization with a time of flight Positron Annihilation induced Auger Electron Spectroscopy (PAES). The spin polarized positrons are electromagnetically guided towards the sample with an axial magnetic field and perpendicular electric fields. These incident positrons get annihilated at the surface of the sample creating two gamma rays and auger electrons via Auger transitions. These signals are useful in characterizing material surface, surface magnetization, and energy sharing in valence band. This new spectrometer, which is currently under construction, will be a next generation positron system. NSF.

  2. Monte Carlo investigation of positron annihilation in medical positron emission tomography

    NASA Astrophysics Data System (ADS)

    Chin, P. W.; Spyrou, N. M.

    2007-09-01

    A number of Monte Carlo codes are available for simulating positron emission tomography (PET), however, physics approximations differ. A number of radiation processes are deemed negligible, some without rigorous investigation. Some PET literature quantify approximations to be valid, without citing the data source. The radiation source is the first step in Monte Carlo simulations, for some codes this is 511 keV photons 180° apart, not polyenergetic positrons with radiation histories of their own. Without prior assumptions, we investigated electron-positron annihilation under clinical PET conditions. Just before annihilation, we tallied the positron energy and position. Right after annihilation, we tallied the energy and separation angle of photon pairs. When comparing PET textbooks with theory, PENELOPE and EGSnrc, only the latter three agreed. From 10 6 radiation histories, a positron source of 15O in a chest phantom annihilated at as high as 1.58 MeV, producing photons with energies 0.30-2.20 MeV, 79-180° apart. From 10 6 radiation histories, an 18F positron source in a head phantom annihilated at energies as high as 0.56 MeV, producing 0.33-1.18 MeV photons 109-180° apart. 2.5% and 0.8% annihilation events occurred inflight in the chest and the head phantoms, respectively. PET textbooks typically either do not mention any deviation from 180°, or state a deviation of 0.25° or 0.5°. Our findings are founded on the well-established Heitler cross-sections and relativistic kinematics, both adopted unanimously by PENELOPE, EGSnrc and GEANT4. Our results highlight the effects of annihilation in-flight, a process sometimes forgotten within the PET community.

  3. Examining the Fermi-LAT third source catalog in search of dark matter subhalos

    DOE PAGES

    Bertoni, Bridget; Hooper, Dan; Linden, Tim

    2015-12-17

    Dark matter annihilations taking place in nearby subhalos could appear as gamma-ray sources without detectable counterparts at other wavelengths. In this study, we consider the collection of unassociated gamma-ray sources reported by the Fermi Collaboration in an effort to identify the most promising dark matter subhalo candidates. While we identify 24 bright, high-latitude, non-variable sources with spectra that are consistent with being generated by the annihilations of ~ 20–70 GeV dark matter particles (assuming annihilations to bbar b), it is not possible at this time to distinguish these sources from radio-faint gamma-ray pulsars. Deeper multi-wavelength observations will be essential tomore » clarify the nature of these sources. It is notable that we do not find any such sources that are well fit by dark matter particles heavier than ~100 GeV. We also study the angular distribution of the gamma-rays from this set of subhalo candidates, and find that the source 3FGL J2212.5+0703 prefers a spatially extended profile (of width ~ 0.15°) over that of a point source, with a significance of 4.2σ (3.6σ after trials factor). Although not yet definitive, this bright and high-latitude gamma-ray source is well fit as a nearby subhalo of m χ ≃ 20–50 GeV dark matter particles (annihilating to bb¯) and merits further multi-wavelength investigation. As a result, based on the subhalo distribution predicted by numerical simulations, we derive constraints on the dark matter annihilation cross section that are competitive to those resulting from gamma-ray observations of dwarf spheroidal galaxies, the Galactic Center, and the extragalactic gamma-ray background.« less

  4. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2.

    PubMed

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-08

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  5. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  6. High-resolution Auger-electron spectroscopy induced by positron annihilation on Fe, Ni, Cu, Zn, Pd, and Au

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Mayer, J.; Schreckenbach, K.

    2010-04-01

    Positron annihilation induced Auger electron spectroscopy (PAES) enables almost background free, non-destructive surface analysis with high surface selectivity. The Auger-spectrometer at the high intense positron source NEPOMUC now allows to record positron annihilation induced Auger spectra within a short data acquisition time of 10-80 minutes. With a new hemispherical electron energy analyzer and due to the exceptional peak to noise ratio, we succeeded to measure Auger-transitions such as the M2,3V V double peak of nickel with high energy resolution. The relative Auger-electron intensities are obtained by the analysis of the recorded positron annihilation induced Auger spectra for the surfaces of Fe, Ni, Cu, Pd and Au. It is demonstrated, that high-resolution PAES allows to determine experimentally the relative surface core annihilation probability of various atomic levels.

  7. Probing dark matter annihilation in the Galaxy with antiprotons and gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael

    2017-10-01

    A possible hint of dark matter annihilation has been found in Cuoco, Korsmeier and Krämer (2017) from an analysis of recent cosmic-ray antiproton data from AMS-02 and taking into account cosmic-ray propagation uncertainties by fitting at the same time dark matter and propagation parameters. Here, we extend this analysis to a wider class of annihilation channels. We find consistent hints of a dark matter signal with an annihilation cross-section close to the thermal value and with masses in range between 40 and 130 GeV depending on the annihilation channel. Furthermore, we investigate in how far the possible signal is compatiblemore » with the Galactic center gamma-ray excess and recent observation of dwarf satellite galaxies by performing a joint global fit including uncertainties in the dark matter density profile. As an example, we interpret our results in the framework of the Higgs portal model.« less

  8. Magnetic Field Effects on Triplet-Triplet Annihilation in Solutions: Modulation of Visible/NIR Luminescence.

    PubMed

    Mani, Tomoyasu; Vinogradov, Sergei A

    2013-08-06

    Photon upconversion based on sensitized triplet-triplet annihilation (TTA) presents interest for such areas as photovoltaics and imaging. Usually energy upconversion is observed as p -type delayed fluorescence from molecules whose triplet states are populated via energy transfer from a suitable triplet donor, followed by TTA. Magnetic field effects (MFE) on delayed fluorescence in molecular crystals are well known; however, there exist only a few examples of MFE on TTA in solutions, and all of them are limited to UV-emitting materials. Here we present MFE on TTA-mediated visible and near infrared (NIR) emission, sensitized by far-red absorbing metalloporphyrins in solutions at room temperature. In addition to visible delayed fluorescence from annihilator, we also observed NIR emission from the sensitizer, occurring as a result of triplet-triplet energy transfer back from annihilator, termed "delayed phosphorescence". This emission also exhibits MFE, but opposite in sign to the annihilator fluorescence.

  9. Spherical cows in dark matter indirect detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R., E-mail: nicolas.bernal@uan.edu.co, E-mail: lnecib@mit.edu, E-mail: tslatyer@mit.edu

    2016-12-01

    Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated wellmore » outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.« less

  10. Spherical cows in dark matter indirect detection

    NASA Astrophysics Data System (ADS)

    Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R.

    2016-12-01

    Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated well outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.

  11. Gamma-Ray background spectrum and annihilation rate in the baryon-symmetric big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to extract experimental data on baryon symmetry by observing annihilation products. Specifically, gamma rays and neutrons with long mean free paths were analyzed. Data cover absorption cross sections and radiation background of the 0.511 MeV gamma rays from positron annihilations and the 70 MeV gamma rays from neutral pion decay.

  12. Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.

    2009-05-01

    A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

  13. Dark matter annihilation in the circumgalactic medium at high redshifts

    NASA Astrophysics Data System (ADS)

    Schön, S.; Mack, K. J.; Wyithe, J. S. B.

    2018-03-01

    Annihilating dark matter (DM) models offer promising avenues for future DM detection, in particular via modification of astrophysical signals. However, when modelling such potential signals at high redshift, the emergence of both DM and baryonic structure, as well as the complexities of the energy transfer process, needs to be taken into account. In the following paper, we present a detailed energy deposition code and use this to examine the energy transfer efficiency of annihilating DM at high redshift, including the effects on baryonic structure. We employ the PYTHIA code to model neutralino-like DM candidates and their subsequent annihilation products for a range of masses and annihilation channels. We also compare different density profiles and mass-concentration relations for 105-107 M⊙ haloes at redshifts 20 and 40. For these DM halo and particle models, we show radially dependent ionization and heating curves and compare the deposited energy to the haloes' gravitational binding energy. We use the `filtered' annihilation spectra escaping the halo to calculate the heating of the circumgalactic medium and show that the mass of the minimal star-forming object is increased by a factor of 2-3 at redshift 20 and 4-5 at redshift 40 for some DM models.

  14. Investigation of Oxygen-Induced Quenching of Phosphorescence in Photoexcited Aromatic Molecules by Positron Annihilation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe

    1996-01-01

    Platinum OctaEthyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state P(T(Sup 1)) is readily quenched by the oxygen O2 molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the P(T(Sup 1) approaches P(S(Sub O)) transitions is still unknown. The diamagnetic singlet states P(S(Sub n)), which feed P(T(Sub 1)) states via intersystem crossings, would presumably not be affected by O2. It must be only the magnetic P(T(Sub 1)) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of O2P(S(Sub n)), complexes which can also eventually reduce the population of the P(T(Sub 1)) states (i.e., quench phosphorescence). This reduction is possible because higher triplet states in (Pt.OEP) are admixed with the P(S(Sub 1)), states via spin orbit interactions. The experimental procedures and the results of various measurements are presented in this paper.

  15. Lattice distortion mechanism study of TiO2 nanoparticles during photocatalysis degradation and reactivation

    NASA Astrophysics Data System (ADS)

    Wu, Wenhui; Xue, Xudong; Jiang, Xudong; Zhang, Yupeng; Wu, Yichu; Pan, Chunxu

    2015-05-01

    In this paper, the photocatalytic process of TiO2 (P25) is directly characterized by using a positron annihilation lifetime spectroscopy (PALS), high-resolution transmission electron microscopy (HRTEM), Photoluminescence spectroscopy (PL) and UV Raman spectroscopy (Raman). The experimental results reveal that: 1) From PALS measurements, because τ1 and τ2 values and their intensity (I1 and I2) assigned to the different size and amounts of defects, respectively, their variations indicate the formation of different types and amounts of defects during the absorption and degradation. 2) HRTEM observations show that the lattice images become partly blurring when the methylene blue is fully degradated, and clear again after exposed in the air for 30 days. According to the results, we propose a mechanism that the lattice distortion induces the defects as electron capture sites and provides energy for improving photocatalytic process. Meanwhile, the lattice distortion relaxation after exposing in the air for 30 days perfectly explains the gradual deactivation of TiO2, because the smaller vacancy defects grow and agglomerate through the several photocatalytic processes. The instrumental PL and Raman are also used to analyze the samples and approved the results of PALS and HRTEM.

  16. Hydrogen-induced strain localisation in oxygen-free copper in the initial stage of plastic deformation

    NASA Astrophysics Data System (ADS)

    Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu

    2018-03-01

    Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.

  17. Dark matter, proton decay and other phenomenological constraints in F-SU(5)

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.

    2011-07-01

    We study gravity mediated supersymmetry breaking in F-SU(5) and its low-energy supersymmetric phenomenology. The gaugino masses are not unified at the traditional grand unification scale, but we nonetheless have the same one-loop gaugino mass relation at the electroweak scale as minimal supergravity (mSUGRA). We introduce parameters testable at the colliders to measure the small second loop deviation from the mSUGRA gaugino mass relation at the electroweak scale. In the minimal SU(5) model with gravity mediated supersymmetry breaking, we show that the deviations from the mSUGRA gaugino mass relations are within 5%. However, in F-SU(5), we predict the deviations from the mSUGRA gaugino mass relations to be larger due to the presence of vector-like particles, which can be tested at the colliders. We determine the viable parameter space that satisfies all the latest experimental constraints and find it is consistent with the CDMS II experiment. Further, we compute the cross-sections of neutralino annihilations into gamma-rays and compare to the first published Fermi-LAT measurement. Finally, the corresponding range of proton lifetime predictions is calculated and found to be within reach of the future Hyper-Kamiokande and DUSEL experiments.

  18. Photoluminescence properties of polystyrene-hosted fluorophore thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Harris, Katherine; Huang, Mengbing

    2016-12-01

    We report on a photo-luminescence study of four different fluorophores: Coumarin 6, 2,5-Diphenyloxazole (PPO), 1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOP) and Para-terpehnyl (PTP), doped in a polystyrene-based thin film. All of the samples are prepared by spin coating from a non-polar polymer solution at various concentrations. Their emission spectra and transient properties are characterized by photoluminescence measurements. Red-shifts in the emission spectra are observed for all four types of fluorophores as their concentration increases. We explain this phenomenon based on concentration dependence of solvatochromic effects and the results show good agreement with existing literature. We also show that the singlet-singlet annihilation processes are possibly a prevalent mechanism in the high concentration regime that affects the steady state and transient emission characteristics of the fluors. With the exception of PTP, photoluminescence quenching occurs as the fluorophore concentration in the polymer is increased. Rate equations for excited state decay mechanisms are analysed by considering different radiative and non-radiative energy transfer mechanisms. The results show consistency with our experimental observations. PTP shows the best photoluminescence results as an efficient fluor in the thin film, whereas PPO shows the strongest concentration dependent quenching and an anomalous lifetime distribution.

  19. Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei

    According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.

  20. J-PET detector system for studies of the electron-positron annihilations

    NASA Astrophysics Data System (ADS)

    Pawlik-Niedźwiecka, M.; Khreptak, O.; Gajos, A.; Wieczorek, A.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzmień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-11-01

    Jagiellonian Positron Emission Tomograph (J-PET) has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.

  1. Defect dynamics in Li substituted nanocrystalline ZnO: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nambissan, P. M. G.; Thapa, S.; Mandal, K.

    2014-12-01

    Very recently, vacancy-type defects have been found to play a major role in stabilizing d0 ferromagnetism in various low dimensional ZnO systems. In this context, the evolution of vacancy-type defects within the ZnO nanocrystals due to the doping of ZnO by alkali metal lithium (Li) is investigated using X-ray photoelectron (XPS), photoluminescence (PL) and positron annihilation spectroscopy (PAS). Li-doping is found to have significant effects in modifying the vacancy-type defects, especially the Zn vacancy (VZn) defects within the ZnO lattice. XPS measurement indicated that initially the Li1+ ions substitute at Zn2+ sites, but when Li concentration exceeds 7 at%, excess Li starts to move through the interstitial sites. The increase in positron lifetime components and the lineshape S-parameter obtained from coincident Doppler broadening spectra with Li-doping indicated an enhancement of VZn defect concentration within the doped ZnO lattice. The vacancy type defects, initially of the predominant configuration VZn+O+Zn got reduced to neutral ZnO divacancies due to the partial recombination by the doped Li1+ ions but, when the doping concentration exceeded 7 at% and Li1+ ions started migrating to the interstitials, positron diffusion is partly impeded and this results in reduced probability of annihilation. PL spectra have shown intense green and yellow-orange emission due to the stabilization of a large number of VZn defects and Li substitutional (LiZn) defects respectively. Hence Li can be a very useful dopant in stabilizing and modifying significant amount of Zn vacancy-defects which can play a useful role in determining the material behavior.

  2. Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector

    DOE PAGES

    Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar

    2017-06-12

    Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less

  3. Triplet photosensitizers: from molecular design to applications.

    PubMed

    Zhao, Jianzhang; Wu, Wanhua; Sun, Jifu; Guo, Song

    2013-06-21

    Triplet photosensitizers (PSs) are compounds that can be efficiently excited to the triplet excited state which subsequently act as catalysts in photochemical reactions. The name is originally derived from compounds that were used to transfer the triplet energy to other compounds that have only a small intrinsic triplet state yield. Triplet PSs are not only used for triplet energy transfer, but also for photocatalytic organic reactions, photodynamic therapy (PDT), photoinduced hydrogen production from water and triplet-triplet annihilation (TTA) upconversion. A good PS should exhibit strong absorption of the excitation light, a high yield of intersystem crossing (ISC) for efficient production of the triplet state, and a long triplet lifetime to allow for the reaction with a reactant molecule. Most transition metal complexes show efficient ISC, but small molar absorption coefficients in the visible spectral region and short-lived triplet excited states, which make them unsuitable as triplet PSs. One obstacle to the development of new triplet PSs is the difficulty in predicting the ISC of chromophores, especially of organic compounds without any heavy atoms. This review article summarizes some molecular design rationales for triplet PSs, based on the molecular structural factors that facilitate ISC. The design of transition metal complexes with large molar absorption coefficients in the visible spectral region and long-lived triplet excited states is presented. A new method of using a spin converter to construct heavy atom-free organic triplet PSs is discussed, with which ISC becomes predictable, C60 being an example. To enhance the performance of triplet PSs, energy funneling based triplet PSs are proposed, which show broadband absorption in the visible region. Applications of triplet PSs in photocatalytic organic reactions, hydrogen production, triplet-triplet annihilation upconversion and luminescent oxygen sensing are briefly introduced.

  4. Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar

    Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less

  5. Effect of W self-implantation and He plasma exposure on early-stage defect and bubble formation in tungsten

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Drummond, D.; Sullivan, J.; Elliman, R.; Kluth, P.; Kirby, N.; Riley, D.; Corr, C. S.

    2018-06-01

    To determine the effect of pre-existing defects on helium-vacancy cluster nucleation and growth, tungsten samples were self-implanted with 1 MeV tungsten ions at varying fluences to induce radiation damage, then subsequently exposed to helium plasma in the MAGPIE linear plasma device. Positron annihilation lifetime spectroscopy was performed both immediately after self-implantation, and again after plasma exposure. After self-implantation vacancies clusters were not observed near the sample surface (<30 nm). At greater depths (30–150 nm) vacancy clusters formed, and were found to increase in size with increasing W-ion fluence. After helium plasma exposure in the MAGPIE linear plasma device at ~300 K with a fluence of 1023 He-m‑2, deep (30–150 nm) vacancy clusters showed similar positron lifetimes, while shallow (<30 nm) clusters were not observed. The intensity of positron lifetime signals fell for most samples after plasma exposure, indicating that defects were filling with helium. The absence of shallow clusters indicates that helium requires pre-existing defects in order to drive vacancy cluster growth at 300 K. Further samples that had not been pre-damaged with W-ions were also exposed to helium plasma in MAGPIE across fluences from 1  ×  1022 to 1.2  ×  1024 He-m‑2. Samples exposed to fluences up to 1  ×  1023 He-m‑2 showed no signs of damage. Fluences of 5  ×  1023 He-m‑2 and higher showed significant helium-cluster formation within the first 30 nm, with positron lifetimes in the vicinity 0.5–0.6 ns. The sample temperature was significantly higher for these higher fluence exposures (~400 K) due to plasma heating. This higher temperature likely enhanced bubble formation by significantly increasing the rate interstitial helium clusters generate vacancies, which is we suspect is the rate-limiting step for helium-vacancy cluster/bubble nucleation in the absence of pre-existing defects.

  6. Studies of oxidation and thermal reduction of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2010-03-01

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600 C. In contrast, the O KLL PAES intensity is the lowest at 300 C and it starts to increase again as the temperature is increased further. PAES results are analyzed by performing calculations of positron surface states and annihilation characteristics taking into account the charge redistribution at the surface, surface reconstructions, and changes of electronic properties of the surfaces with adsorbed oxygen. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV and O KLL Auger peaks and probabilities of annihilation of surface trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.

  7. Low-Energy Positron-Matter Interactions Using Trap-Based Beams

    DTIC Science & Technology

    2002-06-24

    qualitatively by the recent exploitation of nonneutral plasma physics techniques to produce antimatter plasmas and beams in new regimes of parameter space...a quantitative antimatter - matter chemistry, important not only in obtaining a fundamental understanding of nature, but also in using antimatter in...ANNIHILATION MEASUREMENTS The fate of all antimatter in our world is annihilation with ordinary matter. Thus understanding the details of these annihilation

  8. Pair creation, motion, and annihilation of topological defects in two-dimensional nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola B.

    2018-02-01

    We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish. Topological charge conservation then requires that there is always an equal number of q =1 /2 and q =-1 /2 charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also provide an estimate for the critical density at which production and annihilation rates are balanced.

  9. Prospects to verify a possible dark matter hint in cosmic antiprotons with antideuterons and antihelium

    NASA Astrophysics Data System (ADS)

    Korsmeier, Michael; Donato, Fiorenza; Fornengo, Nicolao

    2018-05-01

    Cosmic rays are an important tool to study dark matter (DM) annihilation in our Galaxy. Recently, a possible hint for dark matter annihilation was found in the antiproton spectrum measured by AMS-02, even though the result might be affected by theoretical uncertainties. A complementary way to test its dark matter interpretation would be the observation of low-energy antinuclei in cosmic rays. We determine the chances to observe antideuterons with GAPS and AMS-02 and the implications for the ongoing AMS-02 antihelium searches. We find that the corresponding antideuteron signal is within the GAPS and AMS-02 detection potential. If, more conservatively, the putative signal was considered as an upper limit on DM annihilation, our results would indicate the highest possible fluxes for antideuterons and antihelium compatible with current antiproton data.

  10. Depth profiling of hydrogen passivation of boron in Si(100)

    NASA Astrophysics Data System (ADS)

    Huang, L. J.; Lau, W. M.; Simpson, P. J.; Schultz, P. J.

    1992-08-01

    The properties of SiO2/p-Si were studied using variable-energy positron-annihilation spectroscopy and Raman spectroscopy. The oxide film was formed by ozone oxidation in the presence of ultraviolet radiation at room temperature. Both the positron-annihilation and Raman analyses show that chemical cleaning of boron-doped p-type Si(100) using concentrated hydrofluoric acid prior to the oxide formation leads to hydrogen incorporation in the semiconductor. The incorporated hydrogen passivates the boron dopant by forming a B-H complex, the presence of which increases the broadening of the line shape in the positron-annihilation analysis, and narrows the linewidth of the Raman peak. Annealing of the SiO2/Si sample at a moderate temperature of 220 °C in vacuum was found sufficient to dissociate the complex and reactivate the boron dopant.

  11. CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD

    DOE PAGES

    Lü, Gang; Lu, Ye; Li, Sheng-Tao; ...

    2017-08-04

    In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process ofmore » $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π - induced by the ρ and ω double resonance effect.Generally, the CP violation is small in the pure annihilation type decay process. But, we find that the CP violation can be enhanced by doubleinterference when the invariant masses of the π + π - pairs are in the vicinity of the ω resonance. For the decay process of $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -, the CP violation can reach ACP($$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -)=27.20$$+0.05+0.28+7.13\\atop{-0.15-0.31-6.11}$$%.« less

  12. Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors.

    PubMed

    Yuan, Long; Wang, Ti; Zhu, Tong; Zhou, Mingwei; Huang, Libai

    2017-07-20

    Large binding energy and unique exciton fine structure make the transition metal dichalcogenides (TMDCs) an ideal platform to study exciton behaviors in two-dimensional (2D) systems. While excitons in these systems have been extensively researched, there currently lacks a consensus on mechanisms that control dynamics. In this Perspective, we discuss extrinsic and intrinsic factors in exciton dynamics, transport, and annihilation in 2D TMDCs. Intrinsically, dark and bright exciton energy splitting is likely to play a key role in modulating the dynamics. Extrinsically, defect scattering is prevalent in single-layer TMDCs, which leads to rapid picosecond decay and limits exciton transport. The exciton-exciton annihilation process in single-layer TMDCs is highly efficient, playing an important role in the nonradiative recombination rate in the high exciton density regime. Future challenges and opportunities to control exciton dynamics are discussed.

  13. CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Gang; Lu, Ye; Li, Sheng-Tao

    In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process ofmore » $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π - induced by the ρ and ω double resonance effect.Generally, the CP violation is small in the pure annihilation type decay process. But, we find that the CP violation can be enhanced by doubleinterference when the invariant masses of the π + π - pairs are in the vicinity of the ω resonance. For the decay process of $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -, the CP violation can reach ACP($$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -)=27.20$$+0.05+0.28+7.13\\atop{-0.15-0.31-6.11}$$%.« less

  14. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    PubMed

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  15. Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: Structural, optical and magnetization studies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, A.; Pati, S. P.; Mishra, A. K.; Kumar, S.; Das, D.

    2013-06-01

    Fe3O4/ZnO nanocomposites (NCs) are prepared by a wet chemical route. X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy studies confirm the coexistence of Fe3O4 and ZnO phases in the NCs. The UV-vis absorption spectra show a red shift of the absorption peak with increase in Fe3O4 content indicating a modification of the band structure of ZnO in the NCs. Photoluminescence emission spectra of the NCs display strong excitonic emission in the UV region along with weak emission bands in the visible range caused by electronic transitions involving defect-related energy levels in the band gap of ZnO. Positron annihilation lifetimes indicate that cation vacancies in the ZnO structure are the strong traps for positrons and the overall defect concentration in the NCs decreases with increase in Fe3O4 content. Dc magnetization measurements reveal an anomalous temperature dependence of the coercivity of the NCs that is argued to be due to the anomalous variation of magnetocrystalline anisotropy at lower temperature. The irreversibility observed in the temperature dependent ZFC-FC magnetization points to the presence of a spin-glass phase in the NCs.

  16. Characterization of a transmission positron/positronium converter for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, T.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Povolo, L.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.; Andersen, S. L.; Chevallier, J.; Uggerhøj, U. I.; Lyckegaard, F.

    2017-09-01

    In this work a characterization study of forward emission from a thin, meso-structured silica positron/positronium (Ps) converter following implantation of positrons in light of possible antihydrogen production is presented. The target consisted of a ∼1 μm thick ultraporous silica film e-gun evaporated onto a 20 nm carbon foil. The Ps formation and emission was studied via Single Shot Positron Annihilation Lifetime Spectroscopy measurements after implantation of pulses with 3 - 4 ·107 positrons and 10 ns temporal width. The forward emission of implanted positrons and secondary electrons was investigated with a micro-channel plate - phosphor screen assembly, connected either to a CCD camera for imaging of the impinging particles, or to a fast photomultiplier tube to extract information about their time of flight. The maximum Ps formation fraction was estimated to be ∼10%. At least 10% of the positrons implanted with an energy of 3.3 keV are forward-emitted with a scattering angle smaller than 50° and maximum kinetic energy of 1.2 keV. At least 0.1-0.2 secondary electrons per implanted positron were also found to be forward-emitted with a kinetic energy of a few eV. The possible application of this kind of positron/positronium converter for antihydrogen production is discussed.

  17. Chemically sensitive free-volume study of amorphization of Cu60Zr40 induced by cold rolling and folding

    NASA Astrophysics Data System (ADS)

    Puff, Werner; Rabitsch, Herbert; Wilde, Gerhard; Dinda, Guru P.; Würschum, Roland

    2007-06-01

    With the aim to contribute to a microscopical understanding of the processes of solid-state amorphization, the chemically sensitive technique of background—reduced Doppler broadening of positron-electron annihilation radiation in combination with positron lifetime spectroscopy and microstructural characterization is applied to a free volume study of the amorphization of Cu60Zr40 induced by consecutive folding and rolling. Starting from the constituent pure metal foils, a nanosale multilayer structure of elemental layers and amorphous interlayers develops in an intermediate state of folding and rolling, where free volumes with a Zr-rich environment occur presumably located in the hetero-interfaces between the various layers or in grain boundaries of the Cu layers. After complete intermixing and amorphization, the local chemical environment of the free volumes reflects the average chemical alloy composition. In contrast to other processes of amorphization, free volumes of the size of few missing atoms occur in the rolling-induced amorphous state. Self-consistent results from three different methods for analyzing the Doppler broadening spectra, i.e., S-W-parameter correlation, multicomponent fit, and the shape of ratio curves, demonstrate the potential of the background-reduced Doppler technique for chemically sensitive characterization of structurally complex materials on an atomic scale.

  18. Understanding of Materials State and its Degradation using Non-Linear Ultrasound (NLU) Approaches - Phase 3

    DTIC Science & Technology

    2013-05-31

    j] (11) A MATLAB code was written for finding the displacement at each node for all time steps. Material selected for the study was steel with 1 m...some of the dislocations are annihilated or rearranged. Various stages in the recovery are, entanglement of dislocations, cell formation, annihilation...frequency domain using an in-house pro- gram written in MATLAB . A time-domain signal obtained from nonlinear measurement and its corresponding fast

  19. Model-independent constraints on dark matter annihilation in dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-05-01

    We present a general, model-independent formalism for determining bounds on the production of photons in dwarf spheroidal galaxies via dark matter annihilation, applicable to any set of assumptions about dark matter particle physics or astrophysics. As an illustration, we analyze gamma-ray data from the Fermi Large Area Telescope to constrain a variety of nonstandard dark matter models, several of which have not previously been studied in the context of dwarf galaxy searches.

  20. Efficient kinetic Monte Carlo method for reaction-diffusion problems with spatially varying annihilation rates

    NASA Astrophysics Data System (ADS)

    Schwarz, Karsten; Rieger, Heiko

    2013-03-01

    We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.

Top