Science.gov

Sample records for annual absorbed gamma

  1. A portable absorbed dose measuring instrument with gamma discrimination

    NASA Technical Reports Server (NTRS)

    Quam, W. M.; Wilde, W. I.

    1972-01-01

    The characteristics of an electronic instrument for measuring the radiation dose absorbed by tissues are presented. The detector is a sphere of tissue-equivalent plastic with a single wire located on a diameter of the sphere. The electronic circuits and method of operation of the detector are described. Advantages are the small size and easy portability plus ability to selectively measure neutron and gamma plus neutron events.

  2. Prompt-gamma detection towards absorbed energy monitoring during hadrontherapy

    SciTech Connect

    Krimmer, J.; Balleyguier, L.; Dauvergne, D.; Mathez, H.; Pinto, M.; Testa, E.; Zoccarato, Y.; Herault, J.; Amblard, R.; Angellier, G.

    2015-07-01

    Hadrontherapy is an emerging technique which exploits the fact that a large quantity of the energy of the incident particles is deposited at the end of their flight path. This allows a conformation of the applied dose to the tumor volume and a simultaneous sparing of surrounding healthy tissue. A real-time control of the ion range during the treatment is possible via the detection of prompt secondary radiation (gamma rays or charged particles). Besides a monitoring of the ion range, the knowledge of the total energy absorbed inside the patient is also of importance for an improvement of the treatment quality. It has been shown that the ambient dose in a treatment room is correlated to the monitoring units, i.e. the number of protons of the beam delivery system. The present study consists in applying time-of-flight (TOF) information to identify prompt gamma-rays generated by interactions inside the patient which provides a direct information on the energy imparted. Results from test measurements will be given, which show that events generated in the nozzle and the target phantom can be discriminated. Furthermore, a standalone detection system is being developed which will be read out by a standard PC. The status of the developments for the corresponding electronics will be presented. (authors)

  3. Absorbed Dose Rates in Tissue from Prompt Gamma Emissions from Near-thermal Neutron Absorption.

    PubMed

    Schwahn, Scott O

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency's Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  4. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    SciTech Connect

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  5. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  6. Analytical functions for beta and gamma absorbed fractions of iodine-131 in spherical and ellipsoidal volumes.

    PubMed

    Mowlavi, Ali Asghar; Fornasier, Maria Rossa; Mirzaei, Mohammd; Bregant, Paola; de Denaro, Mario

    2014-10-01

    The beta and gamma absorbed fractions in organs and tissues are the important key factors of radionuclide internal dosimetry based on Medical Internal Radiation Dose (MIRD) approach. The aim of this study is to find suitable analytical functions for beta and gamma absorbed fractions in spherical and ellipsoidal volumes with a uniform distribution of iodine-131 radionuclide. MCNPX code has been used to calculate the energy absorption from beta and gamma rays of iodine-131 uniformly distributed inside different ellipsoids and spheres, and then the absorbed fractions have been evaluated. We have found the fit parameters of a suitable analytical function for the beta absorbed fraction, depending on a generalized radius for ellipsoid based on the radius of sphere, and a linear fit function for the gamma absorbed fraction. The analytical functions that we obtained from fitting process in Monte Carlo data can be used for obtaining the absorbed fractions of iodine-131 beta and gamma rays for any volume of the thyroid lobe. Moreover, our results for the spheres are in good agreement with the results of MIRD and other scientific literatures.

  7. Gamma-ray spectrometers using a bulk Sn absorber coupled to a Mo/Cu multilayer superconducting transition edge sensor

    SciTech Connect

    Chow, D T; Lindeman, M A; Cunningham, M F; Frank, M; Barbee, T W Jr; Labov, S E

    1999-09-21

    We are developing gamma-ray detectors with a bulk absorber and a superconducting transition-edge sensor. The absorber is high purity Sn and the transition-edge sensor is a Mo/Cu multilayer thin film. We have characterized the detector, and will discuss x-ray and gamma-ray results.

  8. Differential absorbed dose distributions in lineal energy for neutrons and gamma rays at the mono-energetic neutron calibration facility.

    PubMed

    Takada, M; Baba, M; Yamaguchi, H; Fujitaka, K

    2005-01-01

    Absorbed dose distributions in lineal energy for neutrons and gamma rays of mono-energetic neutron sources from 140 keV to 15 MeV were measured in the Fast Neutron Laboratory at Tohoku University. By using both a tissue-equivalent plastic walled counter and a graphite-walled low-pressure proportional counter, absorbed dose distributions in lineal energy for neutrons were obtained separately from those for gamma rays. This method needs no knowledge of energy spectra and dose distributions for gamma rays. The gamma-ray contribution in this neutron calibration field >1 MeV neutron was <3%, while for <550 keV it was >40%. The measured neutron absolute absorbed doses per unit neutron fluence agreed with the LA150 evaluated kerma factors. By using this method, absorbed dose distributions in lineal energy for neutrons and gamma rays in an unknown neutron field can be obtained separately.

  9. A geochemical assessment of terrestrial gamma-ray absorbed dose rates.

    PubMed

    Wollenberg, H A; Smith, A R

    1990-02-01

    A survey of the geochemical literature and unpublished data has resulted in the classification of the concentrations of the naturally occurring radioelements U, Th, and K by their associated rock types. A data base of over 2500 entries has been compiled, permitting calculation of terrestrial gamma-ray absorbed dose rates. The general lithology of terrains may be distinguished by their radioelement ratios, relative abundances, and total gamma radioactivities. The gamma-ray absorbed dose rates in air above igneous rocks generally vary with their silica contents, and with the exception of shale, sedimentary rocks have lower K:U and K:Th ratios than most igneous rocks. The appreciable difference between the overall mean terrestrial gamma-ray dose rate for rock of the continental surface (approximately 7 X 10(-8) Gy h-1) and the mean dose rate from field measurements over soil (approximately 5 X 10(-8) Gy h-1) is explained by the substantial differences between radioelement concentrations of soil and rock, differences that may vary markedly with rock type.

  10. Investigation of Annual Modulation Signal from Radon Induced Gamma Rays

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mei, Dongming

    2015-10-01

    The phenomenon of annual modulation is believed to be one of the signatures induced by Weakly Interacting Massive Particles(WIMPs) through elastic scattering off nucleus in the target for direct dark matter searches. Both DAMA and CoGeNT experiments have claimed the discovery of dark matter in terms of annual modulation while many other experiments have ruled out the entire claimed region. However, the sources that caused the annual modulation in DAMA and CoGeNT are still unknown which need to be investigated. Annual modulations of Radon at underground sites are reported by many experiments. As a potential source, we investigate (alpha, gamma) reactions, induced by radon decay chain, occurring on the surface of those common shielding materials and explain how this background annual modulation may mimic dark matter signature. This work is supported by NSF in part by the NSF PHY-0758120, DOE Grant DE-FG02-10ER46709, and the State of South Dakota.

  11. Effect of low-Z absorber's thickness on gamma-ray shielding parameters

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh; Heer, Manmohan Singh; Rani, Asha

    2015-10-01

    Gamma ray shielding behaviour of any material can be studied by various interaction parameters such as total mass attenuation coefficient (μm); half value layer (HVL); tenth value layer (TVL); effective atomic number (Zeff), electron density (Nel), effective atomic weight (Aeff) and buildup factor. For gamma rays, the accurate measurements of μm (cm2 g-1) theoretically require perfect narrow beam irradiation geometry. However, the practical geometries used for the experimental investigations deviate from perfect-narrowness thereby the multiple scattered photons cause systematic errors in the measured values of μm. Present investigation is an attempt to find the optimum value of absorber thickness (low-Z) for which these errors are insignificant and acceptable. Both experimental and theoretical calculations have been performed to investigate the effect of absorber's thickness on μm of six low-Z (10gamma-ray energies 661.66 keV, 1173.24 keV and 1332.50 keV. A computer program (GRIC2-toolkit) was designed for theoretical evaluation of shielding parameters of any material. Good agreement of theoretical and measured values of μm was observed for all absorbers with thickness ≤0.5 mean free paths, thus considered it as optimum thickness for low-Z materials in the selected energy range. White cement was found to possess maximum shielding effectiveness for the selected gamma rays.

  12. Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra

    NASA Astrophysics Data System (ADS)

    Campana, S.; Bernardini, M. G.; Braito, V.; Cusumano, G.; D'Avanzo, P.; D'Elia, V.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2014-07-01

    We investigate the scaling relation between the observed amount of absorption in the X-ray spectra of gamma-ray burst afterglows and the absorber redshift. Through dedicated numerical simulations of an ideal instrument, we establish that this dependence has a power-law shape with index 2.4. However, for real instruments, this value depends on their low-energy cut-off, spectral resolution and on the detector spectral response in general. We thus provide appropriate scaling laws for specific instruments. Finally, we discuss the possibility to measure the absorber redshift from X-ray data alone. We find that 105-106 counts in the 0.3-10 keV band are needed to constrain the redshift with 10 per cent accuracy. As a test case, we discuss the XMM-Newton observation of GRB 090618 at z = 0.54. We are able to recover the correct redshift of this burst with the expected accuracy.

  13. Development of a Transition Edge Sensor Gamma Ray Microcalorimeter with an Epoxy Coupled Bulk Lead Absorber

    SciTech Connect

    Damayanthi, R. M. T.; Iyomoto, N.; Takahashi, H.; Minamigawa, Y.; Nishimura, K.; Ohno, M.

    2009-12-16

    Transition edge sensor (TES)-based gamma ray detectors have been developed primarily for use up to energies of {approx}100 keV. However, there are many interesting applications at higher energies. We have started to develop a TES gamma-ray detector to apply to Positron Annihilation Spectroscopy analysis at 511 keV. Our detector is composed of a bulk lead absorber, which is coupled to a thin-film TES using a small amount of epoxy. The response of our first detector showed a very long decay tail of {approx}135 ms. To improve the device response time we have designed a new detector in which the response time is improved by a factor of five.

  14. The Distribution of Neutron Absorbing Time in the Neutron Detector of the GAMMA-400 Space Observatory

    NASA Astrophysics Data System (ADS)

    Gnezdilov, I. I.; Mukhin, V. I.; Demichev, M. A.

    The neutron detectors (ND) have been designed for the future GAMMA-400 space observatory with 3He-counters and 6LiF/ZnS(Ag) scintillation screens. The ND contribution in the rejection factor for protons in the GAMMA-400 is considered with significantly different number of neutrons generated in the electromagnetic and hadronic cascades. The ND is predominantly made from polyethylene, it has sizes of 100×100×10 cm3. GEANT4 simulation was obtained by the differential distribution of neutron absorbing time as the function of the registration time for different 3He, 6Li concentration. Nomograms were constructed for determining neutrons miscount depending on the number of neutrons crossing the ND and time resolution of the ND. The simulation results showed that the ND with 33 3He-counters detected the neutron fluence 0.23 n/cm2 without neutrons miscount.

  15. Absorber-coupled lumped element kinetic inductance detectors for gamma-rays

    NASA Astrophysics Data System (ADS)

    Naruse, Masato; Miyamoto, Noriaki; Taino, Tohru; Myoren, Hiroaki

    2017-10-01

    We propose gamma-ray detectors based on superconducting resonators that can be largely multiplexed and show potential for quick response time, high spatial resolution, and high energy resolution. The resonators were fabricated with a niobium film on a silicon wafer. Eight out of ten detectors could be operated at 0.3 K. The detectors were coupled to a 2-mm-thick lead absorber and examined with a cesium 137 source. The pulse decay time was 3.6 μs and energy resolution was 3.8 keV at 662 keV. We also describe the resonant properties of each detector. The proposed detectors are suitable for use as food-screening systems.

  16. Study of natural radionuclide and absorbed gamma dose in Ukhimath area of Garhwal Himalaya, India.

    PubMed

    Rautela, B S; Yadav, M; Bourai, A A; Joshi, V; Gusain, G S; Ramola, R C

    2012-11-01

    Natural radiation is the largest contributor to the collective radiation dose of the world population. It is widely distributed in different geological formations such as soil, rocks, air and groundwater. In the present investigation, (226)Ra, (232)Th and (40)K were measured in soil samples of the Ukhimath region of Garhwal Himalaya, India using NaI(Tl) gamma-ray spectrometry. The activity concentrations of naturally occurring radionuclides (226)Ra, (232)Th and (40)K were found to vary from 38.4 ± 6.1 to 141.7 ± 11.9 Bq kg(-1) with an average of 80.5 Bq kg(-1), 57.0 ± 7.5 to 155.9 ± 12.4 Bq kg(-1) with an average of 118.9 Bq kg(-1) and 9.0 ± 3.0 to 672.8 ± 25.9 Bq kg(-1) with an average of 341 Bq kg(-1), respectively. The total absorbed gamma dose rate varies from 70.4 to 169.1 nGy h(-1) with an average of 123.4 nGy h(-1). This study is important to generate a baseline data of radiation exposure in the area. Health hazard effects due to natural radiation exposure are discussed in details.

  17. Identification of QTL affecting a piglet’s ability to acquire and absorb gamma-immunoglobulin from colostrum

    USDA-ARS?s Scientific Manuscript database

    Consumption of an adequate amount of colostrum is critical to a piglet’s survival and productivity. The immunocrit is an inexpensive rapid measurement of the amount of gamma-immunoglobulin absorbed by a piglet. Genetic analysis of immunocrits on 5,312 piglets indicated that the heritabilities (se) f...

  18. Assessment of indoor absorbed gamma dose rate from natural radionuclides in concrete by the method of build-up factors.

    PubMed

    Manić, Vesna; Nikezic, Dragoslav; Krstic, Dragana; Manić, Goran

    2014-12-01

    The specific absorbed gamma dose rates, originating from natural radionuclides in concrete, were calculated at different positions of a detection point inside the standard room, as well as inside an example room. The specific absorbed dose rates corresponding to a wall with arbitrary dimensions and thickness were also evaluated, and appropriate fitting functions were developed, enabling dose rate calculation for most realistic rooms. In order to make calculation simpler, the expressions fitting the exposure build-up factors for whole (238)U and (232)Th radionuclide series and (40)K were derived in this work, as well as the specific absorbed dose rates from a point source in concrete. Calculated values of the specific absorbed dose rates at the centre point of the standard room for (238)U, (232)Th and (40)K are in the ranges of previously obtained data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Discovery of Rapidly Moving Partial X-ray Absorbers within Gamma Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.; Petre, R.; Enoto, T.; Morihana, K.; Ishida, M.

    2016-12-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually strong hard X-ray emission. The Suzaku observatory detected six rapid X-ray spectral hardening events called “softness dips” in a ˜100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either ˜40% or ˜70% partial covering absorption to kT ˜ 12 keV plasma emission by matter with a neutral hydrogen column density of ˜(2-8) × 1021 cm-2, while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the γ Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT ˜ 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; γ Cas may have experienced such activity in the past.

  20. ON THE SIGNIFICANCE OF THE EXCESS NUMBER OF STRONG Mg II ABSORBERS OBSERVED TOWARD GAMMA-RAY BURSTS

    SciTech Connect

    Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Wyithe, J. Stuart B.; Thygesen, Anders O.

    2013-03-20

    The number of strong (equivalent width >1 A) Mg II absorbers observed toward gamma-ray bursts (GRBs) has been found to be statistically larger than the number of strong absorbers toward quasi-stellar objects (QSOs). We formalize this 'Mg II problem' and present a detailed explanation of the statistical tools required to assess the significance of the discrepancy. We find that the problem exists at the 4{sigma} level for GRBs with high-resolution spectra. It has been suggested that the discrepancy can be resolved by the combination of a dust obscuration bias toward QSOs, and a strong gravitational lensing bias toward GRBs. We investigate one of the two most probable lensed GRBs that we presented in our previous work (GRB020405) and find that it is not strongly gravitationally lensed, constraining the percentage of lensed GRBs to be <35% (2{sigma}). Dust obscuration of QSOs has been estimated to be a significant effect with dusty Mg II systems removing {approx}20% of absorbed objects from flux-limited QSO samples. We find that if {approx}30% of the strong Mg II systems toward QSOs are missing from the observed samples, then GRBs and QSOs would have comparable numbers of absorbers per unit redshift. Thus, strong gravitational lensing bias is likely to make only a modest contribution to solving the Mg II problem. However, if the dust obscuration bias has been slightly underestimated, the Mg II problem would no longer persist.

  1. A dosimetric evaluation of tissue equivalent phantom prepared using 270 Bloom gelatin for absorbed dose imaging in Gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Cavinato, C. C.; Rodrigues, O., Jr.; Cervantes, J. H.; Rabbani, S. R.; Campos, L. L.

    2009-05-01

    Tissue equivalent gel phantoms have been widely studied in radiation therapy for both relative and reference dosimetry. A Fricke xylenol gel (FXG) spherical phantom was evaluated by means of magnetic resonance image method (MRI) to measure absorbed dose distribution resulted from gamma knife irradiation. The FXG phantom was prepared using 270 Bloom gelatin. The gelatin is a tissue equivalent material, of easy preparation, can be used to mold phantoms into different shapes and volumes, is commercially available and inexpensive. The results show that the Fricke gel phantom prepared with 270 Bloom gelatin satisfy the requirements to be used for the quality control in stereotactic radiosurgery using Gamma Knife technique and may constitute one more option of dosimeter in radiation therapy applications.

  2. Computational determination of absorbed dose distributions from multiple volumetric gamma ray sources

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanyu; Inanc, Feyzi

    2002-05-01

    Determination of absorbed dose distributions is very important in brachytherapy procedures. The typical computation involves superposition of absorbed dose distributions from a single seed to compute the combined absorbed dose distribution formed by multiple seeds. This approach does not account for the shadow effect caused by the metallic nature of volumetric radioactive seeds. Since this shadow effect will cause deviations from the targeted dose distribution, it may have important implications on the success of the procedures. We demonstrated accuracy of our deterministic algorithms for isotropic point sources in the past. We will show that we now have the capability of computing absorbed dose distributions from multiple volumetric seeds and demonstrate that our results are quite close to the results published in the literature.

  3. Determination of the absorbed dose rate to water for the 18-mm helmet of a gamma knife.

    PubMed

    Chung, Hyun-Tai; Park, Youngho; Hyun, Sangil; Choi, Yongsoo; Kim, Gi Hong; Kim, Dong Gyu; Chun, Kook Jin

    2011-04-01

    To measure the absorbed dose rate to water of (60)Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm(-1). After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife

    SciTech Connect

    Chung, Hyun-Tai; Park, Youngho; Hyun, Sangil; Choi, Yongsoo; Kim, Gi Hong; Kim, Dong Gyu; Chun, Kook Jin

    2011-04-01

    Purpose: To measure the absorbed dose rate to water of {sup 60}Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials: Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. Results: The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm{sup -1}. After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Conclusions: Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent.

  5. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    SciTech Connect

    Aguiar, Vitor A. P.; Medina, Nilberto H.; Moreira, Ramon H.; Silveira, Marcilei A. G.

    2010-05-21

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely {sup 40}K, {sup 232}Th and {sup 238}U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  6. High-Resolution Gamma-Ray Spectrometers using Bulk Absorbers Coupled to Mo/Cu Multilayer Superconducting Transition-Edge Sensors

    SciTech Connect

    Chow, D.T.; Loshak, A.; Van Den Berg, M.L.; Frank, M.; Barbee Jr., T.W.; Labov, S.E.

    2000-07-04

    In x-ray and gamma-ray spectroscopy, it is desirable to have detectors with high energy resolution and high absorption efficiency. At LLNL, we have developed superconducting tunnel junction-based single photon x-ray detectors with thin film absorbers that have achieved these goals for photon energies up to 1 keV. However, for energies above 1 keV, the absorption efficiency of these thin-film detectors decreases drastically. We are developing the use of high-purity superconducting bulk materials as microcalorimeter absorbers for high-energy x-rays and gamma rays. The increase in absorber temperature due to incident photons is sensed by a superconducting transition-edge sensor (TES) composed of a Mo/Cu multilayer thin film. Films of Mo and Cu are mutually insoluble and therefore very stable and can be annealed. The multilayer structure allows scaling in thickness to optimize heat capacity and normal state resistance. We measured an energy resolution of 70 eV for 60 keV incident gamma-rays with a 1 x 1 x 0.25 mm{sup 3} Sn absorber. We present x-ray and gamma-ray results from this detector design with a Sn absorber. We also propose the use of an active negative feedback voltage bias to improve the performance of our detector and show preliminary results.

  7. Assessment of Annual Effective Dose for Natural Radioactivity of Gamma Emitters in Biscuit Samples in Iraq.

    PubMed

    Abojassim, Ali Abid; Al-Alasadi, Lubna A; Shitake, Ahmed R; Al-Tememie, Faeq A; Husain, Afnan A

    2015-09-01

    Biscuits are an important type of food, widely consumed by babies in Iraq and other countries. This work uses gamma spectroscopy to measure the natural radioactivity due to long-lived gamma emitters in children's biscuits; it also estimates radiation hazard indices, that is, the radium equivalent activity, the representative of gamma level index, the internal hazard index, and the annual effective dose in children. Ten samples were collected from the Iraqi market from different countries of origin. The average specific activities for (226)Ra, (232)Th, and (40)K were 9.390, 3.1213, and 214.969 Bq/kg, respectively, but the average of the radium equivalent activity and the internal hazard index were 33.101 Bq/kg and 0.107, respectively. The total average annual effective dose from consumption by adults, children, and infants is estimated to be 0.655, 1.009, and 0.875 mSv, respectively. The values found for specific activity, radiation hazard indices, and annual effective dose in all samples in this study were lower than worldwide median values for all groups; therefore, these values are found to be safe.

  8. Simulation and Measurement of Absorbed Dose from 137 Cs Gammas Using a Si Timepix Detector

    NASA Technical Reports Server (NTRS)

    Stoffle, Nicholas; Pinsky, Lawrence; Empl, Anton; Semones, Edward

    2011-01-01

    The TimePix readout chip is a hybrid pixel detector with over 65k independent pixel elements. Each pixel contains its own circuitry for charge collection, counting logic, and readout. When coupled with a Silicon detector layer, the Timepix chip is capable of measuring the charge, and thus energy, deposited in the Silicon. Measurements using a NIST traceable 137Cs gamma source have been made at Johnson Space Center using such a Si Timepix detector, and this data is compared to simulations of energy deposition in the Si layer carried out using FLUKA.

  9. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    NASA Astrophysics Data System (ADS)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients ( R2) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables ( chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated.

  10. Assessment of absorbed dose to thyroid, parotid and ovaries in patients undergoing Gamma Knife radiosurgery.

    PubMed

    Hasanzadeh, H; Sharafi, A; Allah Verdi, M; Nikoofar, A

    2006-09-07

    Stereotactic radiosurgery was originally introduced by Lars Leksell in 1951. This treatment refers to the noninvasive destruction of an intracranial target localized stereotactically. The purpose of this study was to identify the dose delivered to the parotid, ovaries, testis and thyroid glands during the Gamma Knife radiosurgery procedure. A three-dimensional, anthropomorphic phantom was developed using natural human bone, paraffin and sodium chloride as the equivalent tissue. The phantom consisted of a thorax, head and neck and hip. In the natural places of the thyroid, parotid (bilateral sides) and ovaries (midline), some cavities were made to place TLDs. Three TLDs were inserted in a batch with 1 cm space between the TLDs and each batch was inserted into a single cavity. The final depth of TLDs was 3 cm from the surface for parotid and thyroid and was 15 cm for the ovaries. Similar batches were placed superficially on the phantom. The phantom was gamma irradiated using a Leksell model C Gamma Knife unit. Subsequently, the same batches were placed superficially over the thyroid, parotid, testis and ovaries in 30 patients (15 men and 15 women) who were undergoing radiosurgery treatment for brain tumours. The mean dosage for treating these patients was 14.48 +/- 3.06 Gy (10.5-24 Gy) to a mean tumour volume of 12.30 +/- 9.66 cc (0.27-42.4 cc) in the 50% isodose curve. There was no significant difference between the superficial and deep batches in the phantom studies (P-value < 0.05). The mean delivered doses to the parotid, thyroid, ovaries and testis in human subjects were 21.6 +/- 15.1 cGy, 9.15 +/- 3.89 cGy, 0.47 +/- 0.3 cGy and 0.53 +/- 0.31 cGy, respectively. The data can be used in making decisions for special clinical situations such as treating pregnant patients or young patients with benign lesions who need radiosurgery for eradication of brain tumours.

  11. Assessment of absorbed dose to thyroid, parotid and ovaries in patients undergoing Gamma Knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Hasanzadeh, H.; Sharafi, A.; Allah Verdi, M.; Nikoofar, A.

    2006-09-01

    Stereotactic radiosurgery was originally introduced by Lars Leksell in 1951. This treatment refers to the noninvasive destruction of an intracranial target localized stereotactically. The purpose of this study was to identify the dose delivered to the parotid, ovaries, testis and thyroid glands during the Gamma Knife radiosurgery procedure. A three-dimensional, anthropomorphic phantom was developed using natural human bone, paraffin and sodium chloride as the equivalent tissue. The phantom consisted of a thorax, head and neck and hip. In the natural places of the thyroid, parotid (bilateral sides) and ovaries (midline), some cavities were made to place TLDs. Three TLDs were inserted in a batch with 1 cm space between the TLDs and each batch was inserted into a single cavity. The final depth of TLDs was 3 cm from the surface for parotid and thyroid and was 15 cm for the ovaries. Similar batches were placed superficially on the phantom. The phantom was gamma irradiated using a Leksell model C Gamma Knife unit. Subsequently, the same batches were placed superficially over the thyroid, parotid, testis and ovaries in 30 patients (15 men and 15 women) who were undergoing radiosurgery treatment for brain tumours. The mean dosage for treating these patients was 14.48 ± 3.06 Gy (10.5-24 Gy) to a mean tumour volume of 12.30 ± 9.66 cc (0.27-42.4 cc) in the 50% isodose curve. There was no significant difference between the superficial and deep batches in the phantom studies (P-value < 0.05). The mean delivered doses to the parotid, thyroid, ovaries and testis in human subjects were 21.6 ± 15.1 cGy, 9.15 ± 3.89 cGy, 0.47 ± 0.3 cGy and 0.53 ± 0.31 cGy, respectively. The data can be used in making decisions for special clinical situations such as treating pregnant patients or young patients with benign lesions who need radiosurgery for eradication of brain tumours.

  12. Galaxy counterparts of intervening high-z sub-DLAs/DLAs and Mg ii absorbers towards gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Schulze, S.; Fynbo, J. P. U.; Milvang-Jensen, B.; Rossi, A.; Jakobsson, P.; Ledoux, C.; De Cia, A.; Krühler, T.; Mehner, A.; Björnsson, G.; Chen, H.-W.; Vreeswijk, P. M.; Perley, D. A.; Hjorth, J.; Levan, A. J.; Tanvir, N. R.; Ellison, S.; Møller, P.; Worseck, G.; Chapman, R.; Dall'Aglio, A.; Letawe, G.

    2012-10-01

    We present the first search for galaxy counterparts of intervening high-z (2 < z < 3.6) sub-damped Lyα absorbers (sub-DLAs) and DLAs towards gamma-ray bursts (GRBs). Our final sample comprises five intervening sub-DLAs and DLAs in four GRB fields. To identify candidate galaxy counterparts of the absorbers we used deep optical- and near-infrared imaging, and low-, mid- and high-resolution spectroscopy acquired with 6-m to 10-m class telescopes, the Hubble and the Spitzer Space Telescopes. Furthermore, we used the spectroscopic information and spectral-energy-distribution fitting techniques to study them in detail. Our main result is the detection and spectroscopic confirmation of the galaxy counterpart of the intervening DLA at z = 3.096 in the field of GRB 070721B (zGRB = 3.6298) as proposed by other authors. We also identify good candidates for the galaxy counterparts of the two strong Mg ii absorbers at z = 0.6915 and 1.4288 towards GRB 050820A (zGRB = 2.615). The properties of the detected DLA galaxy are typical for Lyman-break galaxies (LBGs) at similar redshifts; a young, highly star-forming galaxy that shows evidence for a galactic outflow. This supports thehypothesis that a DLA can be the gaseous halo of an LBG. In addition, we report a redshift coincidence of different objects associated with metal lines in the same field, separated by 130-161 kpc. The high detection rate of three correlated structures on a length scale as short as ~150 kpc in two pairs of lines of sight is intriguing. The absorbers in each of these are most likely not part of the same gravitationally bound structure. They more likely represent groups of galaxies. Based in part on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, as part of the programs 075.A-0603, 075.A-0385, 077.A-0312, 084.A-0303, 177.A-0591 and 275.D-5022. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space

  13. 'Self-absorbed' GeV light curves of gamma-ray burst afterglows

    SciTech Connect

    Panaitescu, A.; Vestrand, W. T.; Woźniak, P.

    2014-06-10

    We investigate the effect that the absorption of high-energy (above 100 MeV) photons produced in gamma-ray burst afterglow shocks has on the light curves and spectra of Fermi Large Area Telescope (LAT) afterglows. Afterglows produced by the interaction of a relativistic outflow with a wind-like medium peak when the blast wave deceleration sets in, and the afterglow spectrum could be hardening before that peak, as the optical thickness to pair formation is decreasing. In contrast, in afterglows produced in the interaction with a homogeneous medium, the optical thickness to pair formation should increase and yield a light curve peak when it reaches unity, followed by a fast light curve decay, accompanied by spectral softening. If energy is injected in the blast wave, then the accelerated increase of the optical thickness yields a convex afterglow light curve. Other features, such as a double-peak light curve or a broad hump, can arise from the evolution of the optical thickness to photon-photon absorption. Fast decays and convex light curves are seen in a few LAT afterglows, but the expected spectral softening is rarely seen in (and difficult to measure with) LAT observations. Furthermore, for the effects of photon-photon attenuation to shape the high-energy afterglow light curve without attenuating it too much, the ejecta initial Lorentz factor must be in a relatively narrow range (50-200), which reduces the chance of observing those effects.

  14. High-Resolution Hard X-Ray and Gamma-Ray Spectrometers Based on Superconducting Absorbers Coupled to Superconducting Transition Edge Sensors

    SciTech Connect

    van den Berg, M.; Chow, D.; Loshak, A.; Cunningham, M.F.; Barbee, T.W.; Matthias, F.; Labov, S.E.

    2000-09-21

    We are developing detectors based on bulk superconducting absorbers coupled to superconducting transition edge sensors (TES) for high-resolution spectroscopy of hard X-rays and soft gamma-rays. We have achieved an energy resolution of 70 eV FWHM at 60 keV using a 1 x 1 x 0.25 mm{sup 3} Sn absorber coupled to a Mo/Cu multilayer TES with a transition temperature of 100 mK. The response of the detector is compared with a simple model using only material properties data and characteristics derived from IV-measurements. We have also manufactured detectors using superconducting absorbers with a higher stopping power, such as Pb and Ta. We present our first measurements of these detectors, including the thermalization characteristics of the bulk superconducting absorbers. The differences in performance between the detectors are discussed and an outline of the future direction of our detector development efforts is given.

  15. [Development of the 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water (N(D,w))].

    PubMed

    Fukumura, Akifumi; Mizuno, Hideyuki; Fukahori, Mai; Sakata, Suoh

    2012-01-01

    A primary standard for the absorbed dose rate to water in a 60Co gamma-ray field was established at National Metrology Institute of Japan (NMIJ) in fiscal year 2011. Then, a 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water was developed at National Institute of Radiological Sciences (NIRS) as a secondary standard dosimetry laboratory (SSDL). The results of an IAEA/WHO TLD SSDL audit demonstrated that there was good agreement between NIRS stated absorbed dose to water and IAEA measurements. The IAEA guide based on the ISO standard was used to estimate the relative expanded uncertainty of the calibration factor for a therapy-level Farmer type ionization chamber in terms of absorbed dose to water (N(D,w)) with the new field. The uncertainty of N(D,w) was estimated to be 1.1% (k = 2), which corresponds to approximately one third of the value determined in the existing air kerma field. The dissemination of traceability of the calibration factor determined in the new field is expected to diminish the uncertainty of dose delivered to patients significantly.

  16. TESTING THE POSSIBLE INTRINSIC ORIGIN OF THE EXCESS VERY STRONG Mg II ABSORBERS ALONG GAMMA-RAY BURST LINES-OF-SIGHT

    SciTech Connect

    Cucchiara, A.; Jones, T.; Charlton, J. C.; Fox, D. B.; Einsig, D.; Narayanan, A. E-mail: tjones@astro.psu.edu E-mail: charlton@astro.psu.edu E-mail: anand@astro.wisc.edu

    2009-05-20

    The startling discovery by Prochter et al. that the frequency of very strong (W{sub r} (2796)>1 A) Mg II absorbers along gamma-ray burst (GRB) lines of sight ([dN/dz]{sub GRB} = 0.90) is more than three times the frequency along quasar lines of sight ([dN/dz]{sub QSO} = 0.24), over similar redshift ranges, has yet to be understood. In particular, explanations appealing to dust antibias in quasar samples, partial covering of the quasar sources, and gravitational-lensing amplification of the GRBs have all been carefully examined and found wanting. We therefore reconsider the possibility that the excess of very strong Mg II absorbers toward GRBs is intrinsic either to the GRBs themselves or to their immediate environment, and associated with bulk outflows with velocities as large as v {sub max} {approx} 0.3c. In order to examine this hypothesis, we accumulate a sample of 27 W{sub r} (2796)>1 A absorption systems found toward 81 quasars, and compare their properties to those of 8 W{sub r} (2796) > 1 A absorption systems found toward six GRBs; all systems have been observed at high spectral resolution (R = 45, 000) using the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. We make multiple comparisons of the absorber properties across the two populations, testing for differences in metallicity, ionization state, abundance patterns, dust abundance, kinematics, and phase structure. We find no significant differences between the two absorber populations using any of these metrics, implying that, if the excess of absorbers along GRB lines of sight are indeed intrinsic, they must be produced by a process which has strong similarities to the processes yielding strong Mg II systems associated with intervening galaxies. Although this may seem a priori unlikely, given the high outflow velocities required for any intrinsic model, we note that the same conclusion was reached, recently, with respect to the narrow absorption line systems seen in some quasars.

  17. Attenuation coefficients and absorbed gamma radiation energy of different varieties of potato, mango and prawn at different storage time and physiological condition.

    PubMed

    Ghosh, Sayanti; Das, M K

    2014-02-15

    Attenuation coefficients of different varieties of gamma irradiated potato (Kufri Chandramukhi, Kufri Jyoti, and Kufri Sindhuri), mango (Himsagar, Langra, Dashehri and Fazli) and prawn (Tiger prawn and Fresh water prawn) of different storage time and physiological stages were determined. After six months storage attenuation coefficient of Kufri Chandramukhi was decreased by 30.8% with decrease of density and moisture content. Decreasing trend of attenuation coefficient during storage was more prominent (almost 50%) in other two varieties of potato. On the other hand in all four varieties, unripe mango consisted of significantly less (p ≤ 0.05) attenuation coefficient (around 11-14%) than the ripe one due to changes in physiological properties and density. Different varieties of prawn had different attenuation coefficients due to subtle differences in their proximate composition. Due to having different attenuation coefficients, different food components, even different varieties of same food component absorbed different gamma radiation energy though exposed to same radiation dose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS

    SciTech Connect

    Fynbo, J. P. U.; Malesani, D.; Vreeswijk, P. M.; Hjorth, J.; Sollerman, J.; Thoene, C. C.; Jakobsson, P.; Bjoernsson, G.; De Cia, A.; Prochaska, J. X.; Nardini, M.; Chen, H.-W.; Bloom, J. S.; Castro-Tirado, A. J.; Gorosabel, J.; Christensen, L.; Fruchter, A. S.

    2009-12-01

    We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Ly{alpha} covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e.g., {gamma}-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher {gamma}-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope {beta}{sub OX} < 0.5, is 14% in group (1), 38% in group (2), and >39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due

  19. A radiochromic folm dosimeter for gamma radiation in the absorbed-dose range 0.1-10 kGy

    NASA Astrophysics Data System (ADS)

    Khan, Hasan M.; Farahani, Mahnaz; William L., McLaughlin

    A commercially available leuco-dye film (FWT-63-02), having a thickness of 0.55 mm, has been investigated spectrophotometrically for its characteristics as a radiochromic dosimeter and for its potential use in food-irradiation applications. The γ-ray irradiation of the nearly colorless, transparent film induces blue color with an absorption maximum at 600 nm. The increase in absorbance at 600 nm per unit thickness of film (Δ A mm -1) is linear with dose in the dose range up to 8 kGy, with a slope of 0.91 mm -1·kGy -1. After a modest additional increase during the first day following irradiation, the radiation-induced color is stable when stored at room temperature at least for 5 weeks. The response slope is 16% higher when stored at 60°C, however, after the initial 1-day increase it is stable for several weeks when stored at that temperature. The response of the dosimeter is independent of dose rate in the range 0.5-170 Gy min -1.

  20. AN INDEPENDENT MEASUREMENT OF THE INCIDENCE OF Mg II ABSORBERS ALONG GAMMA-RAY BURST SIGHT LINES: THE END OF THE MYSTERY?

    SciTech Connect

    Cucchiara, A.; Prochaska, J. X.; Fynbo, J. P. U.; Fox, D. B.; Chen, H.-W.; Cooksey, K. L.; Cenko, S. B.; Bloom, J. S.; Perley, D.; Berger, E.; Chornock, R.; Tanvir, N. R.; D'Elia, V.; Lopez, S.; De Jaeger, T.

    2013-08-20

    In 2006, Prochter et al. reported a statistically significant enhancement of very strong Mg II absorption systems intervening the sight lines to gamma-ray bursts (GRBs) relative to the incidence of such absorption along quasar sight lines. This counterintuitive result has inspired a diverse set of astrophysical explanations (e.g., dust, gravitational lensing) but none of these has obviously resolved the puzzle. Using the largest set of GRB afterglow spectra available, we reexamine the purported enhancement. In an independent sample of GRB spectra with a survey path three times larger than Prochter et al., we measure the incidence per unit redshift of {>=}1 A rest-frame equivalent width Mg II absorbers at z Almost-Equal-To 1 to be l(z) = 0.18 {+-} 0.06. This is fully consistent with current estimates for the incidence of such absorbers along quasar sight lines. Therefore, we do not confirm the original enhancement and suggest those results suffered from a statistical fluke. Signatures of the original result do remain in our full sample (l(z) shows an Almost-Equal-To 1.5 enhancement over l(z){sub QSO}), but the statistical significance now lies at Almost-Equal-To 90% c.l. Restricting our analysis to the subset of high-resolution spectra of GRB afterglows (which overlaps substantially with Prochter et al.), we still reproduce a statistically significant enhancement of Mg II absorption. The reason for this excess, if real, is still unclear since there is no connection between the rapid afterglow follow-up process with echelle (or echellette) spectrographs and the detectability of strong Mg II doublets. Only a larger sample of such high-resolution data will shed some light on this matter.

  1. An Independent Measurement of the Incidence of Mg II Absorbers along Gamma-Ray Burst Sight Lines: The End of the Mystery?

    NASA Astrophysics Data System (ADS)

    Cucchiara, A.; Prochaska, J. X.; Zhu, G.; Ménard, B.; Fynbo, J. P. U.; Fox, D. B.; Chen, H.-W.; Cooksey, K. L.; Cenko, S. B.; Perley, D.; Bloom, J. S.; Berger, E.; Tanvir, N. R.; D'Elia, V.; Lopez, S.; Chornock, R.; de Jaeger, T.

    2013-08-01

    In 2006, Prochter et al. reported a statistically significant enhancement of very strong Mg II absorption systems intervening the sight lines to gamma-ray bursts (GRBs) relative to the incidence of such absorption along quasar sight lines. This counterintuitive result has inspired a diverse set of astrophysical explanations (e.g., dust, gravitational lensing) but none of these has obviously resolved the puzzle. Using the largest set of GRB afterglow spectra available, we reexamine the purported enhancement. In an independent sample of GRB spectra with a survey path three times larger than Prochter et al., we measure the incidence per unit redshift of >=1 Å rest-frame equivalent width Mg II absorbers at z ≈ 1 to be l(z) = 0.18 ± 0.06. This is fully consistent with current estimates for the incidence of such absorbers along quasar sight lines. Therefore, we do not confirm the original enhancement and suggest those results suffered from a statistical fluke. Signatures of the original result do remain in our full sample (l(z) shows an ≈1.5 enhancement over l(z)QSO), but the statistical significance now lies at ≈90% c.l. Restricting our analysis to the subset of high-resolution spectra of GRB afterglows (which overlaps substantially with Prochter et al.), we still reproduce a statistically significant enhancement of Mg II absorption. The reason for this excess, if real, is still unclear since there is no connection between the rapid afterglow follow-up process with echelle (or echellette) spectrographs and the detectability of strong Mg II doublets. Only a larger sample of such high-resolution data will shed some light on this matter.

  2. FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)

    SciTech Connect

    Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Sundaram, S. K.; Henager, Charles H.; Zhang, Yanwen; Shutthanandan, V.

    2007-01-01

    We describe progress in the development of new materials for portable, room-temperature, gamma-radiation detection at Pacific Northwest National Laboratory at the Hanford Site in Washington State. High Z, high resistivity, amorphous semiconductors are being designed for use as solid-state detectors at near ambient temperatures; principles of operation are analogous to single-crystal semiconducting detectors. Amorphous semiconductors have both advantages and disadvantages compared to single crystals, and this project is developing methods to mitigate technical problems and design optimized material for gamma detection. Several issues involved in the fabrication of amorphous semiconductors are described, including reaction thermodynamics and kinetics, the development of pyrolytic coating, and the synthesis of ingots. The characterization of amorphous semiconductors is described, including sectioning and polishing protocols, optical microscopy, X-ray diffraction, scanning electron microscopy, optical spectroscopy, particle-induced X-ram emission, Rutherford backscattering, and electrical testing. Then collaboration with the University of Illinois at Urbana-Champaign is discussed in the areas of Hall-effect measurements and current voltage data. Finally, we discuss the strategy for continuing the program.

  3. Radon loss from encapsulated sediments in Ge gamma-ray spectrometry for the annual radiation dose determination in luminescence dating

    NASA Astrophysics Data System (ADS)

    de Corte, F.; Vandenberghe, D.; de Wispelaere, A.; Buylaert, J.-P.; van den Haute, P.

    2006-01-01

    In Ge gamma-ray spectrometry for the annual radiation dose determination in the luminescence dating of sediments, the picture of 226Ra enrichment or depletion (in the 238U decay series) obtained via measurement of its 214Pb and 214Bi daughters may be disturbed by the 222Rn-content of the sample being decreased due to manipulations such as drying and pulverizing. Therefore, it is common practice to start the measurement only about 1 month after encapsulating the material, after which the 226Ra(1600 a)- 222Rn(3.82 d) mother-daughter equilibrium is re-established. Evidently, this only holds on condition that no significant escape of Rn occurs out of the sediment after making it up for counting. In order to experimentally investigate this effect, in the present work measurements were carried out with various types of dried and pulverized sediments that were either encapsulated in screw-cap polystyrene vials or in sealed glass containers, or that were mixed with molten wax followed by solidification in a cylindrical geometry. From the results obtained, it could be concluded that preparation and counting of the sediment-wax mixture is the method of choice.

  4. High Levels of Dietary Supplement Vitamins A, C and E are Absorbed in the Small Intestine and Protect Nutrient Transport Against Chronic Gamma Irradiation.

    PubMed

    Roche, Marjolaine; Neti, Prasad V S V; Kemp, Francis W; Azzam, Edouard I; Ferraris, Ronaldo P; Howell, Roger W

    2015-11-01

    We examined nutrient transport in the intestines of mice exposed to chronic low-LET 137Cs gamma rays. The mice were whole-body irradiated for 3 days at dose rates of 0, 0.13 and 0.20 Gy/h, for total dose delivery of 0, 9.6 or 14.4 Gy, respectively. The mice were fed either a control diet or a diet supplemented with high levels of vitamins A, C and E. Our results showed that nutrient transport was perturbed by the chronic irradiation conditions. However, no apparent alteration of the macroscopic intestinal structures of the small intestine were observed up to day 10 after initiating irradiation. Jejunal fructose uptake measured in vitro was strongly affected by the chronic irradiation, whereas uptake of proline, carnosine and the bile acid taurocholate in the ileum was less affected. D-glucose transport did not appear to be inhibited significantly by either 9.6 or 14.4 Gy exposure. In the 14.4 Gy irradiated groups, the diet supplemented with high levels of vitamins A, C and E increased intestinal transport of fructose compared to the control diet (day 10; t test, P = 0.032), which correlated with elevated levels of vitamins A, C and E in the plasma and jejunal enterocytes. Our earlier studies with mice exposed acutely to 137Cs gamma rays demonstrated significant protection for transport of fructose, glucose, proline and carnosine. Taken together, these results suggest that high levels of vitamins A, C and E dietary supplements help preserve intestinal nutrient transport when intestines are irradiated chronically or acutely with low-LET gamma rays.

  5. High Levels of Dietary Supplement Vitamins A, C and E are Absorbed in the Small Intestine and Protect Nutrient Transport Against Chronic Gamma Irradiation

    PubMed Central

    Azzam, Edouard I.; Ferraris, Ronaldo P.; Howell, Roger W.

    2015-01-01

    We examined nutrient transport in the intestines of mice exposed to chronic low-LET 137Cs gamma rays. The mice were whole-body irradiated for 3 days at dose rates of 0, 0.13 and 0.20 Gy/h, for total dose delivery of 0, 9.6 or 14.4 Gy, respectively. The mice were fed either a control diet or a diet supplemented with high levels of vitamins A, C and E. Our results showed that nutrient transport was perturbed by the chronic irradiation conditions. However, no apparent alteration of the macroscopic intestinal structures of the small intestine were observed up to day 10 after initiating irradiation. Jejunal fructose uptake measured in vitro was strongly affected by the chronic irradiation, whereas uptake of proline, carnosine and the bile acid taurocholate in the ileum was less affected. D-glucose transport did not appear to be inhibited significantly by either 9.6 or 14.4 Gy exposure. In the 14.4 Gy irradiated groups, the diet supplemented with high levels of vitamins A, C and E increased intestinal transport of fructose compared to the control diet (day 10; t test, P = 0.032), which correlated with elevated levels of vitamins A, C and E in the plasma and jejunal enterocytes. Our earlier studies with mice exposed acutely to 137Cs gamma rays demonstrated significant protection for transport of fructose, glucose, proline and carnosine. Taken together, these results suggest that high levels of vitamins A, C and E dietary supplements help preserve intestinal nutrient transport when intestines are irradiated chronically or acutely with low-LET gamma rays. PMID:26484399

  6. Key comparison BIPM.RI(I)-K4 of the absorbed dose to water standards of the PTB, Germany and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D. T.; Kapsch, R.-P.; Krauss, A.

    2016-01-01

    An indirect comparison has been made of the standards for absorbed dose to water in 60Co radiation of the Physikalisch-Technische Bundesanstalt, (PTB), Germany and of the Bureau International des Poids et Mesures (BIPM). The measurements at the BIPM were carried out in October 2015. The comparison result, based on the calibration coefficients for two transfer standards and evaluated as a ratio of the PTB and the BIPM standards for absorbed dose to water, is 0.9977 with a combined standard uncertainty of 3.8 × 10-3. The results are analysed and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  8. The depth-dependence of the biological effectiveness of 60Co gamma rays in a large absorber determined by dicentric chromosomes in human lymphocytes.

    PubMed

    Schmid, Ernst; Roos, Hartmut; Kramer, Hans-Michael

    2008-01-01

    Radiobiological evidence is shown concerning a significant depth-dependence of the maximum relative biological effectiveness at limiting low doses (RBE(M)) of (60)Co gamma rays in a cubic polymethylmethacrylate (PMMA) phantom of 30 cm edge length. Using the dose-response curve for the dicentric data in human lymphocytes obtained in the present experiment at a depth of 20 cm, together with the comprehensive and consistent data set determined earlier at smaller depths of the PMMA phantom, there is an increase in the RBE(M) value by a factor of 2.18 +/- 1.25 at a depth of 20 cm relative to 1 cm in the phantom. All the dicentric data are based on identical exposure durations and irradiation temperatures as well as identical culture and evaluation conditions, with blood from the same donor.

  9. Three-dimensional assessment of the effects of high-density embolization material on the absorbed dose in the target for Gamma Knife radiosurgery of arteriovenous malformations.

    PubMed

    Watanabe, Yoichi; Sandhu, Divyajot; Warmington, Leighton; Moen, Sean; Tummala, Ramachandra

    2016-12-01

    OBJECTIVE Arteriovenous malformation (AVM) is an intracranial vascular disorder. Gamma Knife radiosurgery (GKRS) is used in conjunction with intraarterial embolization to eradicate the nidus of AVMs. Clinical results indicate that patients with prior embolization tend to gain less benefit from GKRS. The authors hypothesized that this was partly caused by dosimetric deficiency. The actual dose delivered to the target may be smaller than the intended dose because of increased photon attenuation by high-density embolic materials. The authors performed a phantom-based study to quantitatively evaluate the 3D dosimetric effect of embolic material on GKRS. METHODS A 16-cm-diameter and 12-cm-long cylindrical phantom with a 16-cm-diameter hemispherical dome was printed by a 3D printer. The phantom was filled with radiologically tissue-equivalent polymer gel. To simulate AVM treatment with embolization, phantoms contained Onyx 18. The material was injected into an AVM model, which was suspended in the polymer gel. The phantom was attached to a Leksell frame by standard GK fixation method, using aluminum screws, for imaging. The phantom was scanned by a Phillips CT scanner with the standard axial-scanning protocol (120 kV and 1.5-mm slice thickness). CT-based treatment planning was performed with the GammaPlan treatment planning system (version 10.1.1). The plan was created to cover a fictitious AVM target volume near the embolization areas with eleven 8-mm shots and a prescription dose of 20 Gy to 50% isodose level. Dose distributions were computed using both tissue maximum ratio (TMR) 10 and convolution dose-calculation algorithms. These two 3D dose distributions were compared using an in-house program. Additionally, the same analysis method was applied to evaluate the dosimetric effects for 2 patients previously treated by GKRS. RESULTS The phantom-based analyses showed that the mean dose difference between TMR 10 and convolution doses of the AVM target was no larger than

  10. EURAMET.RI(I)-S7 comparison of alanine dosimetry systems for absorbed dose to water measurements in gamma- and x-radiation at radiotherapy levels

    NASA Astrophysics Data System (ADS)

    Garcia, Tristan; Anton, Mathias; Sharpe, Peter

    2012-01-01

    The National Physical Laboratory (NPL), the Physikalisch-Technische Bundesanstalt (PTB) and the Laboratoire National Henri Becquerel (LNE-LNHB) are involved in the European project 'External Beam Cancer Therapy', a project of the European Metrology Research Programme. Within this project, the electron paramagnetic resonance (EPR)/alanine dosimetric method has been chosen for performing measurements in small fields such as those used in IMRT (intensity modulated radiation therapy). In this context, these three National Metrology Institutes (NMI) wished to compare the result of their alanine dosimetric systems (detector, modus operandi etc) at radiotherapy dose levels to check their consistency. This EURAMET.RI(I)-S7 comparison has been performed with the support of the Bureau International des Poids et Mesures (BIPM) which collected and distributed the results as a neutral organization, to ensure the comparison was 'blind'. Irradiations have been made under reference conditions by each laboratory in a 60Co beam and in an accelerator beam (10 MV or 12 MV) in a water phantom of 30 cm × 30 cm × 30 cm in a square field of 10 cm × 10 cm at the reference depth. Irradiations have been performed at known values of absorbed dose to water (Dw) within 10% of nominal doses of 5 Gy and 10 Gy, i.e. between 4.5 Gy and 5.5 Gy and between 9 Gy and 11 Gy, respectively. Each participant read out their dosimeters and assessed the doses using their own protocol (calibration curve, positioning device etc) as this comparison aims at comparing the complete dosimetric process. The results demonstrate the effectiveness of the EPR/alanine dosimetry systems operated by National Metrology Institutes as a method of assuring therapy level doses with the accuracy required. The maximum deviation in the ratio of measured to applied dose is less than 1%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key

  11. Magnetic Microcalorimeter Gamma Detectors for High-Precision Non-Destructive Analysis, FY14 Extended Annual Report

    SciTech Connect

    Friedrich, S.

    2015-02-06

    Cryogenic gamma (γ) detectors with operating temperatures of ~0.1 K or below offer 10× better energy resolution than conventional high-purity germanium detectors that are currently used for non-destructive analysis (NDA) of nuclear materials. This can greatly increase the accuracy of NDA, especially at low-energies where gamma rays often have similar energies and cannot be resolved by Ge detectors. We are developing cryogenic γ–detectors based on metallic magnetic calorimeters (MMCs), which have the potential of higher resolution, faster count rates and better linearity than other cryogenic detector technologies. High linearity is essential to add spectra from different pixels in detector arrays that are needed for high sensitivity. Here we discuss the fabrication of a new generation of MMC γ–detectors in FY2014, and the resulting improvements in energy resolution and linearity of the new design. As an example of the type of NDA that cryogenic detectors enable, we demonstrate the direct detection of Pu-242 emissions with our MMC γ–detectors in the presence of Pu-240, and show that a quantitative NDA analysis agrees with the mass spectrometry

  12. Gamma-ray activity in the volcanic islands of the Southern Tyrrhenian Sea.

    PubMed

    Chiozzi, P; Pasquale, V; Verdoya, M; Minato, S

    2003-01-01

    Field gamma-ray spectrometry was used for the quantitative assessment of U, Th and K of rocks of Stromboli, Salina, Filicuidi and Panarea (Aeolian arc of the Southern Tyrrhenian, Italy). The air absorbed dose rate was calculated from radioelement concentrations. For some rocks the gamma-ray spectra were analysed with the three photo-peak methods and the response matrix method, which converts the pulse height distribution into the true incident gamma-ray energy spectrum. The higher values of U (8.2-9.8 ppm) coincide with higher Th (20.6-27.8 ppm) concentrations associated with rocks of shoshonitic composition. The spatial variation in radioelement concentration reflects the geochemical differences among the rocks. The air absorbed dose rate varies from 25 to 215 nGy h(-1). The highest values correspond to outcrops located in the eastern part of Stromboli, where the annual effective dose equivalent reaches a value of 264 microSv.

  13. Should all patients undergoing treatment with biologic agents be screened annually for latent tuberculosis infection with an interferon gamma release assay?

    PubMed

    Johnson, M G; Bialas, R W; Hall, R P; Stout, J E

    2016-08-01

    Systemic biologic therapy has become commonplace for the treatment of a variety of inflammatory dermatologic conditions, particularly psoriasis. Screening for latent tuberculosis infection (LTBI) is recommended prior to initiation of systemic biologic agents, and an interferon gamma release assays (IGRA) is often used as the screening modality. Annual screening for LTBI is also recommended for patients while on systemic biologic therapy, but the literature does not clearly support how often screening should be performed. In addition, serial testing with IGRAs, particularly among low-risk populations without any new tuberculosis (TB) exposures, has proven to be unreliable with frequent reversions and conversions. We propose that in low-incidence TB regions, repeat LTBI screening should only be considered for patients on systemic biologic therapy if any new TB exposures occurred since initial LTBI screening was performed prior to starting biologic therapy. This strategy aims to reduce false-positive LTBI testing that can expose patients to hazardous antibiotics and result in the unnecessary interruption of systemic biologic therapy.

  14. Gis predictive mapping of terrestrial gamma radiation in the Northern State, Sudan.

    PubMed

    Hamed Bashier, E; Salih, I; Khatir Sam, A

    2012-09-01

    This study presents the evaluation of absorbed dose in air due to gamma-emitting nuclides from (238)U and (232)Th series, (40)K and (137)Cs and the corresponding geographical information system (GIS) predictive mapping for the Northern State. Activity concentration of (238)U, (232)Th , (40)K and (137)Cs in soil samples collected from different locations have been measured using high-resolution gamma spectrometry. On  average, activity concentrations were 19±4 ((238)U), 47±11 ((232)Th), 317±65 ((40)K) and 2.26 Bq kg(-1) for (137)Cs. Absorbed dose rate in air at a height of 1 m above ground surface was calculated using seven sets of dose rate conversion factors (DRCFs) and the corresponding annual effective dose was estimated. On average, the values obtained fall within a narrow range of 44 and 53 nGy h(-1), indicating that the variation in absorbed dose rate is insignificant for different DRCFs. The corresponding annual effective dose ranged from 53 to 65 µSv y(-1). Using GIS, prediction maps for concentrations of (238)U, (232)Th, (40)K and (137)Cs were produced. Also, a map for absorbed dose rate in air at a height of 1 m above the ground level was produced, which showed a trend of increasing from the west towards south-east of the State.

  15. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. )

    1990-12-01

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  16. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  17. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  18. The application of two-dimensional imaging to very high energy gamma ray astronomy. Annual report, 1 May 1991--30 April 1992

    SciTech Connect

    Weekes, T.C.

    1992-12-01

    After an introductory overview of gamma-ray astronomy, very brief summaries of research results are given. Summary topics may be grouped as follows: observations (survey of candidate gamma-ray sources; Cygnus X-3; Markarian 421; AGN`s: general survey; Crab observations: pulsar outburst; Geminga; AE Aqr; bursts; ARTEMIS; muon telescope), technical developments (11m telescope: dedication and performance; 10m mount control; CCD cameras; light cones; filters; GRANITE upgrade; trigger configuration; miror coatings; lightning protection), data analysis (quick look; optical disk archive; false source method), infrastructure, and reviews.

  19. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  20. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  1. CPCs with segmented absorbers

    SciTech Connect

    Keita, M.; Robertson, H.S. )

    1991-01-01

    One of the most promising means of improving the performance of solar thermal collectors is to reduce the energy lost by the hot absorber. One way to do this, not currently part of the technology, is to recognize that since the absorber is usually not irradiated uniformly, it is therefore possible to construct an absorber of thermally isolated segments, circulate the fluid in sequence from low to high irradiance segments, and reduce loss by improving effective concentration. This procedure works even for ideal concentrators, without violating Winston's theorem. Two equivalent CPC collectors with single and segmented absorber were constructed and compared under actual operating conditions. The results showed that the daily thermal efficiency of the collector with segmented absorber is higher (about 13%) than that of the collector with nonsegmented absorber.

  2. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  3. Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran

    PubMed Central

    2012-01-01

    Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115

  4. Radon survey and soil gamma doses in primary schools of Batman, Turkey.

    PubMed

    Damla, Nevzat; Aldemir, Kamuran

    2014-06-01

    A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual (222)Rn activity in the surveyed area was found to be 49 Bq m(-3) (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m(-3). The estimated annual effective doses are less than the recommended action level (3-10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.

  5. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  6. Radar Absorbing Material Design

    DTIC Science & Technology

    2003-09-01

    simulations of coated plates were performed to estimate the effectiveness of the absorbing layers in reducing radar cross section . The reduction in monostatic... radar cross section value is shown by plotting the radar cross section of the plate with and without radar absorbing material. ε t 15. NUMBER OF

  7. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  8. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  9. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  10. Electromagnetic power absorber

    NASA Technical Reports Server (NTRS)

    Iwasaki, R. S. (Inventor)

    1979-01-01

    A structure is presented with a surface portion of dielectric material which passes electromagnetic radiation and with a portion below the surface which includes material that absorbs the radiation, the face of the structure being formed with numerous steep ridges. The steepness of the dielectric material results in a high proportion of the electromagnetic energy passing through the surface for absorption by the absorbing material under the surface. A backing of aluminum or other highly heat-conductive and reflective material lies under the face and has very steep protuberances supporting the absorbing and dielectric materials.

  11. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  12. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  13. Environmental gamma radiation measurements on the island of Pantelleria.

    PubMed

    Brai, M; Bellia, S; Di Liberto, R; Dongarra, G; Hauser, S; Parello, F; Puccio, P; Rizzo, S

    1992-09-01

    The population exposure to those living on the island of Pantelleria, Italy, was estimated by measuring the natural gamma background. Gamma spectra of natural rocks and measurements of absorbed dose in air were taken. A correlation was found between the mean gamma exposure rate and the mean values of natural radionuclide concentrations in the investigated rocks.

  14. Shuttle flight test of an advanced gamma-ray detection system. Semi-annual technical report, 1 July-31 December 1983

    SciTech Connect

    Rester, A.C.

    1984-02-28

    In August of 1983 the Gamma-Ray Advanced Detector (GRAD) Project was assigned to the AFP-675 Program for flight on a future space-shuttle mission. In order to adapt the experiment to the requirements of AFP-675, a number of changes were made both in hardware and software. However, the necessity for such changes is more than affected by an expansion in scope of the experiment made possible by the introduction of a Payload Specialist into the operation. The principal changes to be made are in the avionics, as GRAD was originally designed for operation through ground-based telemetry. This complete redesigning of our avionics to accomodate operation by a Payload Specialist from the aft flight deck of the Orbiter allows us to take advantage of very recent findings on radiation-induced microprocessor failure in other space shuttle experiments in order to make the GRAD avionics less vulnerable to such latch-ups. Advances in bismuth germanate (BGO) scintillator technology during the year since construction of the prototype GRAD now make it possible to construct a BGO shield with a closed-ended geometry. This improvement will enhance the signal-to-noise ratio. In addition, a new type of decay-vetoed calibration probe using an alpha-rather than a beta-emitting radioactive source is being investigated.

  15. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  16. Shock absorber servicing tool

    NASA Technical Reports Server (NTRS)

    Koepler, Jack L. (Inventor); Hill, Robert L. (Inventor)

    1981-01-01

    A tool to assist in the servicing of a shock absorber wherein the shock absorber is constructed of a pair of aligned gas and liquid filled chambers. Each of the chambers is separated by a movable separator member. Maximum efficiency of the shock absorber is achieved in the locating of a precise volume of gas within the gas chamber and a precise volume of liquid within the liquid chamber. The servicing tool of this invention employs a rod which is to connect with the separator and by observation of the position of the rod with respect to the gauge body, the location of the separator is ascertained even though it is not directly observable.

  17. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  18. Shock Absorbing System

    NASA Astrophysics Data System (ADS)

    1982-01-01

    A lightweight, inexpensive shock-absorbing system, developed by Langley Research Center 20 years ago, is now in service as safety device for an automated railway at Duke University Medical Center. The transportation system travels at about 25 miles per hour, carrying patients, visitors, staff and cargo. At the end of each guideway of the system are "frangible," (breakable) tube "buffers." If a slowing car fails to make a complete stop at the terminal, it would bump and shatter the tubes, absorbing energy that might otherwise jolt the passengers or damage the vehicle.

  19. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  20. Multiple-layer Radiation Absorber

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Baker, Bonnie Sue

    A structure is discussed for absorbing incident radiation, either electromagnetic (EM) or sound. Such a surface structure is needed, for example, in a highly sensitive high-frequency gravitational wave or HFGW detector such as the Li-Baker. The multi-layer absorber, which is discussed, is constructed with metamaterial [MM] layer or layers on top. This MM is configured for a specific EM or sound radiation frequency band, which absorbs incident EM or sound radiation without reflection. Below these top MM layers is a substrate of conventional EM-radiation absorbing or acoustical absorbing reflective material, such as an array of pyramidal foam absorbers. Incident radiation is partially absorbed by the MM layer or layers, and then it is more absorbed by the lower absorbing and reflecting substrate. The remaining reflected radiation is even further absorbed by the MM layers on its "way out_ so that essentially all of the incident radiation is absorbed _ a nearly perfect black-body absorber. In a HFGW detector a substrate, such as foam absorbers, may outgas into a high vacuum and reduce the capability of the vacuum-producing equipment, however, the layers above this lowest substrate will seal the absorbing and reflecting substrate from any external vacuum. The layers also serve to seal the absorbing material against air or water flow past the surfaces of aircraft, watercraft or submarines. Other applications for such a multiple-level radiation absorber include stealth aircraft, missiles and submarines.

  1. Shock Absorbing Helmets

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This paper presents a description of helmets used by football players that offer three times the shock-absorbing capacity of earlier types. An interior padding for the helmets, composed of Temper Foam, first used by NASA's Ames Research Center in the design of aircraft seats is described.

  2. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  3. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  4. Distribution and solubility of radionuclides and neutron absorbers in waste forms for disposition of plutonium ash and scraps, excess plutonium, and miscellaneous spent nuclear fuels. 1998 annual progress report

    SciTech Connect

    Fen, X.; Vance, E.R.; Shuh, D.K.

    1998-06-01

    'The objective of this research is to gain a fundamental understanding of the distributions and the solubility limits for actinides Pu and U and rare earth neutron absorbers such as Gd and Hf in waste forms. This will be accomplished by systematically studying the local structural environments of these constituents in representative waste forms such as glass, ceramics, and vitreous ceramics. Basic knowledge of these issues will provide a technical and scientific basis that can be used by the US Department of Energy (DOE), Environment Management (EM) Program in developing, evaluating, and selecting waste forms for the safe disposal of Pu, spent nuclear fuel, and other transuranic wastes. The work presented here is a summary of the research activity from November 1997 to May 1998. The elucidation of the correlations between the local structural environments of actinides and rare earth neutron absorbers in waste forms as functions of waste form compositions, and waste form processing conditions will also advance basic material science. The work presented here is a summary of the research activity from November 1997 to May 1998. Currently being studied is the effect of the Pu oxidation state on its solubility in borosilicate-based glasses. When glasses are melted in ambient atmosphere, Pu(IV) has been shown to be the dominant oxidation state as determined by ultraviolet-visible-near infrared spectroscopy (UV-VIS-NIR) and x-ray absorption fine structure (XAFS) techniques. However, no literature data are available for glasses containing Pu predominantly as Pu(III) nor the solubility for Pu(III) in the glass. The results of the study demonstrate that in borosilicate glass, Pu(III) is significantly more soluble than Pu(IV). Using x-ray diffraction analysis the solubility of Pu(III) as oxide was determined to be at least 25 mass% in the reduced glass, while it was no greater than 10 mass% in the same glass under oxidizing conditions (glass melting temperature was 1,400 C

  5. Metasurface Broadband Solar Absorber

    SciTech Connect

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  6. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  7. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; ...

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  8. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  9. Apollo couch energy absorbers

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.; Drexel, R. E.

    1972-01-01

    Load attenuators for the Apollo spacecraft crew couch and its potential applications are described. Energy absorption is achieved through friction and cyclic deformation of material. In one concept, energy absorption is accomplished by rolling a compressed ring of metal between two surfaces. In another concept, energy is absorbed by forcing a plastically deformed washer along a rod. Among the design problems that had to be solved were material selection, fatigue life, ring slippage, lubrication, and friction loading.

  10. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  11. Absorbed fractions for electrons in ellipsoidal volumes.

    PubMed

    Amato, E; Lizio, D; Baldari, S

    2011-01-21

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as (90)Y and to (131)I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  12. Absorbed fractions for electrons in ellipsoidal volumes

    NASA Astrophysics Data System (ADS)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  13. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  14. Environmental gamma radiation measurement in district Swat, Pakistan.

    PubMed

    Jabbar, T; Khan, K; Subhani, M S; Akhter, P; Jabbar, A

    2008-01-01

    External exposure to environmental gamma ray sources is an important component of exposure to the public. A survey was carried out to determine activity concentration levels and associated doses from (226)Ra, (232)Th, (40)K and (137)Cs by means of high-resolution gamma ray spectrometry in the Swat district, famous for tourism. The mean concentrations for (226)Ra, (232)Th and (40)K were found to be 50.4 +/- 0.7, 34.8 +/- 0.7 and 434.5 +/- 7.4 Bq kg(-1), respectively, in soil samples, which are slightly more than the world average values. However, (137)Cs was only found in the soil sample of Barikot with an activity concentration of 34 +/- 1.2 Bq kg(-1). Only (40)K was determined in vegetation samples with an average activity of 172.2 +/- 1.7 Bq kg(-1), whereas in water samples, all radionuclides were found below lower limits of detection. The radium equivalent activity in all soil samples is lower than the limit set in the Organisation for Economic Cooperation and Development report (370 Bq kg(-1)). The value of the external exposure dose has been determined from the content of these radionuclides in soil. The average terrestrial gamma air absorbed dose rate was observed to be 62.4 nGy h(-1), which yields an annual effective dose of 0.08 mSv. The average value of the annual effective dose lies close to the global range of outdoor radiation exposure given in United Nations Scientific Committee on the Effects of Atomic Radiation. However, the main component of the radiation dose to the population residing in the study area arises from cosmic ray due to high altitude.

  15. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  16. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  17. Direct MC conversion of absorbed dose to graphite to absorbed dose to water for 60Co radiation.

    PubMed

    Lye, J E; Butler, D J; Franich, R D; Harty, P D; Oliver, C P; Ramanathan, G; Webb, D V; Wright, T

    2013-06-01

    The ARPANSA calibration service for (60)Co gamma rays is based on a primary standard graphite calorimeter that measures absorbed dose to graphite. Measurements with the calorimeter are converted to the absorbed dose to water using the calculation of the ratio of the absorbed dose in the calorimeter to the absorbed dose in a water phantom. ARPANSA has recently changed the basis of this calculation from a photon fluence scaling method to a direct Monte Carlo (MC) calculation. The MC conversion uses an EGSnrc model of the cobalt source that has been validated against water tank and graphite phantom measurements, a step that is required to quantify uncertainties in the underlying interaction coefficients in the MC code. A comparison with the Bureau International des Poids et Mesures (BIPM) as part of the key comparison BIPM.RI(I)-K4 showed an agreement of 0.9973 (53).

  18. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  19. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  20. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  1. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  2. Modulation of PPAR-Gamma Signaling in Prostatic Carcinogenesis

    DTIC Science & Technology

    2008-09-01

    PPAR - Gamma Signaling in Prostatic Carcinogenesis PRINCIPAL INVESTIGATOR: Simon W. Hayward PhD CONTRACTING...annual 1 Jun 00 - 31 May 01) Annual 1 SEP 2007 - 1 SEP 2008 4. Title and Subtitle Modulation of PPAR - Gamma Signaling in Prostatic Carcinogenesis...Modulation of PPAR - Gamma Signaling in Prostatic Carcinogenesis P.I. Simon W. Hayward, PhD Introduction This project examines the relationship between

  3. Modulation of PPAR-Gamma Signaling in Prostatic Carcinogenesis

    DTIC Science & Technology

    2009-09-01

    AD_________________ AWARD NUMBER: W81XWH-07-1-0479 TITLE: Modulation of PPAR -Gamma Signaling in...REPORT TYPE Annual 3. DATES COVERED 1 Sep 2008 – 1 Sep 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Modulation of PPAR -Gamma Signaling in...4 Annual Report PCRP Idea Development Award W81XWH-07-1-0479 Modulation of PPAR -Gamma Signaling in Prostatic Carcinogenesis P.I. Simon W

  4. Assessment of gamma dose rates from terrestrial exposure in Serbia and Montenegro.

    PubMed

    Dragović, S; Janković, Lj; Onjia, A

    2006-01-01

    The gamma dose rates due to naturally occuring terrestrial radionuclides ((226)Ra, (232)Th and (40)K) were calculated based on their activities in soil samples, determined by gamma-ray spectrometry. A total of 140 soil samples from 21 different regions of Serbia and Montenegro were collected. The gamma dose rates ranged from 7.40 to 29.7 nGy h(-1) for (226)Ra, from 12.9 to 46.5 nGy h(-1) for (232)Th and from 12.5 to 37.1 nGy h(-1) for (40)K. The total absorbed gamma dose rate due to these radionuclides varied from 34.5 to 97.6 nGy h(-1) with mean of 66.8 nGy h(-1). Assuming a 20% occupancy factor, the corresponding annual effective dose varied from 4.23 x 10(-5) to 11.9 x 10(-5) Sv with mean of 8.19 x 10(-5) Sv, i.e. the dose was lower than world wide average value. According to the values of external hazard index (mean: 0.39) obtained in this study, the radiation hazard was found to be insignificant for population living in the investigated area.

  5. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  6. Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India - A comparative study of dose rates estimated by AGRS and PGRS.

    PubMed

    Srinivas, D; Ramesh Babu, V; Patra, I; Tripathi, Shailesh; Ramayya, M S; Chaturvedi, A K

    2017-02-01

    The Atomic Minerals Directorate for Exploration and Research (AMD) has conducted high-resolution airborne gamma ray spectrometer (AGRS), magnetometer and time domain electromagnetic (TDEM) surveys for uranium exploration, along the northern margins of Cuddapah Basin. The survey area includes well known uranium deposits such as Lambapur-Peddagattu, Chitrial and Koppunuru. The AGRS data collected for uranium exploration is utilised for estimating the average absorbed rates in air due to radio-elemental (potassium in %, uranium and thorium in ppm) distribution over these known deposit areas. Further, portable gamma ray spectrometer (PGRS) was used to acquire data over two nearby locations one from Lambapur deposit, and the other from known anomalous zone and subsequently average gamma dose rates were estimated. Representative in-situ rock samples were also collected from these two areas and subjected to radio-elemental concentration analysis by gamma ray spectrometer (GRS) in the laboratory and then dose rates were estimated. Analyses of these three sets of results complement one another, thereby providing a comprehensive picture of the radiation environment over these deposits. The average absorbed area wise dose rate level is estimated to be 130 ± 47 nGy h(-1) in Lambapur-Peddagattu, 186 ± 77 nGy h(-1) in Chitrial and 63 ± 22 nGy h(-1) in Koppunuru. The obtained average dose levels are found to be higher than the world average value of 54 nGy h(-1). The gamma absorbed dose rates in nGy h(-1) were converted to annual effective dose rates in mSv y(-1) as proposed by the United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR). The annual average effective dose rates for the entire surveyed area is 0.12 mSv y(-1), which is much lower than the recommended limit of 1 mSv y(-1) by International Commission on Radiation protection (ICRP). It may be ascertained here that the present study establishes a reference data set (baseline) in these

  7. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed.

  8. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  9. THz-metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Tuong Pham, Van; Park, J. W.; Vu, Dinh Lam; Zheng, H. Y.; Rhee, J. Y.; Kim, K. W.; Lee, Y. P.

    2013-03-01

    An ultrabroad-band metamaterial absorber was investigated in mid-IR regime based on a similar model in previous work. The high absorption of metamaterial was obtained in a band of 8-11.7 THz with energy loss distributed in SiO2, which is appropriate potentially for solar-cell applications. A perfect absorption peak was provided by using a sandwich structure with periodical anti-dot pattern in the IR region, getting closed to visible-band metamaterials. The dimensional parameters were examined for the corresponding fabrication. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  10. Ferroelectrics based absorbing layers

    NASA Astrophysics Data System (ADS)

    Hao, Jianping; Sadaune, Véronique; Burgnies, Ludovic; Lippens, Didier

    2014-07-01

    We show that ferroelectrics-based periodic structure made of BaSrTiO3 (BST) cubes, arrayed onto a metal plate with a thin dielectric spacer film exhibit a dramatic enhancement of absorbance with value close to unity. The enhancement is found around the Mie magnetic resonance of the Ferroelectrics cubes with the backside metal layer stopping any transmitted waves. It also involves quasi-perfect impedance matching resulting in reflection suppression via simultaneous magnetic and electrical activities. In addition, it was shown numerically the existence of a periodicity optimum, which is explained from surface waves analysis along with trade-off between the resonance damping and the intrinsic loss of ferroelectrics cubes. An experimental verification in a hollow waveguide configuration with a good comparison with full-wave numerical modelling is at last reported by measuring the scattering parameters of single and dual BST cubes schemes pointing out coupling effects for densely packed structures.

  11. The changes in optical absorbance of ZrO2 thin film with the rise of the absorbed dose

    NASA Astrophysics Data System (ADS)

    Abayli, D.; Baydogan, N.

    2016-03-01

    In this study, zirconium oxide (ZrO2) thin film samples prepared by sol-gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO2 thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO2 thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 - 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.

  12. The changes in optical absorbance of ZrO{sub 2} thin film with the rise of the absorbed dose

    SciTech Connect

    Abayli, D. Baydogan, N.

    2016-03-25

    In this study, zirconium oxide (ZrO{sub 2}) thin film samples prepared by sol–gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO{sub 2} thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO{sub 2} thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 – 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.

  13. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  14. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  15. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  16. Remote dynamic absorber

    NASA Astrophysics Data System (ADS)

    Nichols, Todd S.; Ghoneim, Hany

    2002-06-01

    A new concept, the Passive Remote Electromechanical Dynamic Absorber (RDA) is investigated. The current design utilizes piezoelectric elements to convert the mechanical strain energy of a parent system into electrical energy, which is fed into the RDA. The RDA similarly uses piezoelectric elements to convert the applied electrical energy into mechanical self-excitation and vice versa. A lumped-system model of the coupled system is developed, accounting for the stiffness and mass of both the parent and RDA systems, along with a coupling stiffness term. Additionally, a three dimensional coupled-system finite element model is developed in ANSYS/Multiphysics. Experimental work is conducted to validate the concept of the lumped system model and to validate the finite element modeling technique. A reasonable correlation exists between the experimental results and the analytical predictions. Finite Element Analysis (FEA) provides a reasonable prediction of the RDA performance. Furthermore, analytical predictions of the RDA show a successful reduction of the parent response by up to ~30 db, in a narrow frequency band around its uncoupled resonant frequency. The overall qualitative agreement between the analytical and the experiment confirm the validity and potential of the proposed RDA for vibration suppression of dynamic systems.

  17. Energy absorber for the CETA

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  18. Improvement Of The Helmholtz Absorber

    NASA Technical Reports Server (NTRS)

    Morrow, Duane L.

    1992-01-01

    Helmholtz-resonator system improved to enable it to absorb sound at more than one frequency without appreciable loss of effectiveness at primary frequency. Addition of annular cavities enables absorption of sound at harmonic frequencies in addition to primary frequency. Improved absorber designed for use on structures of high transmission loss. Applied to such machines as fixed-speed engines and fans.

  19. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  20. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  1. Visible light broadband perfect absorbers

    SciTech Connect

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O.

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  2. The production of poly-(gamma-glutamic acid) from microorganisms and its various applications.

    PubMed

    Shih, I L; Van, Y T

    2001-09-01

    This review article deals with the chemistry and biosynthesis of poly-(gamma-glutamic acid) (gamma-PGA) produced by various strains of Bacillus. Potential applications of gamma-PGA as thickener, cryoprotectant, humectant, drug carrier, biological adhesive, flocculant, or heavy metal absorbent, etc. with biodegradability in the fields of food, cosmetics, medicine and water treatments are also reviewed.

  3. Gamma II

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, M.; Cline, J.; Owen, L.; Boehme, J.; Rottler, L.; Whitworth, C.; Clavier, D.

    2011-05-01

    GAMMA II is the Guide Star Automatic Measuring MAchine relocated from STScI to the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). GAMMA II is a multi-channel laser-scanning microdensitometer that was used to measure POSS and SERC plates to create the Guide Star Catalog and the Digital Sky Survey. The microdensitometer is designed with submicron accuracy in x and y measurements using a HP 5507 laser interferometer, 15 micron sampling, and the capability to measure plates as large as 0.5-m across. GAMMA II is a vital instrument for the success of digitizing the direct, objective prism, and spectra photographic plate collections in APDA for research. We plan several targeted projects. One is a collaboration with Drs. P.D. Hemenway and R. L. Duncombe who plan to scan 1000 plates of 34 minor planets to identify systematic errors in the Fundamental System of celestial coordinates. Another is a collaboration with Dr. R. Hudec (Astronomical Institute, Academy of Sciences of the Czech Republic) who is working within the Gaia Variability Unit CU7 to digitize objective prism spectra on the Henize plates and Burrell-Schmidt plates located in APDA. These low dispersion spectral plates provide optical counterparts of celestial high-energy sources and cataclysmic variables enabling the simulation of Gaia BP/RP outputs. The astronomical community is invited to explore the more than 140,000 plates from 20 observatories now archived in APDA, and use GAMMA II. The process of relocating GAMMA to APDA, re-commissioning, and starting up the production scan programs will be described. Also, we will present planned research and future upgrades to GAMMA II.

  4. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  5. Acoustic performance of membrane absorbers

    NASA Astrophysics Data System (ADS)

    Frommhold, W.; Fuchs, H. V.; Sheng, S.

    1994-03-01

    This paper is a report on the acoustic properties of absorbing elements, which consist of metal membranes and show good sound absorption at low and medium frequencies over more than one octave. The studies refer to the sound absorption coefficient and acoustic impedance at normal incidence of the sound waves. It is shown that the behavior of the absorbing element is mainly determined by a combination of Helmholtz resonance and plate resonance. The parameters of the separate resonators are determined both by theory and experiment and serve as input data for a simplified calculation model, which can be used as an auxiliary tool for designing membrane absorber silencers.

  6. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  7. An introduction to absorbent dressings.

    PubMed

    Jones, Menna Lloyd

    2014-12-01

    Exudate bathes the wound bed with a serous fluid that contains essential components that promote wound healing. However, excess exudate is often seen as a challenge for clinicians. Absorbent dressings are often used to aid in the management of exudate, with the aim of providing a moist but unmacerated environment. With so many different types of absorbent dressings available today-alongside making a holistic assessment-it is essential that clinicians also have the knowledge and skill to select the most appropriate absorbent dressing for a given patient.

  8. Gamma watermarking

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  9. Three intervening galaxy absorbers towards GRB 060418: faint and dusty?

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Vreeswijk, Paul; Ledoux, Cédric; Willis, Jon P.; Jaunsen, Andreas; Wijers, Ralph A. M. J.; Smette, Alain; Fynbo, Johan P. U.; Møller, Palle; Hjorth, Jens; Kaufer, Andreas

    2006-10-01

    We present an analysis of three strong, intervening Mg II absorption systems (zabs = 0.603, 0.656, 1.107) towards the optical afterglow of gamma-ray burst (GRB) 060418. From high-resolution Ultraviolet and Visual Echelle Spectrograph (UVES) spectra we measure metal column densities and find that the highest redshift absorber exhibits a large amount of dust depletion compared with damped Lyman absorbers (DLAs) seen in quasi-stellar object (QSO) spectra. The intervening zabs = 1.107 absorber is also unusual in exhibiting a clear 2175-Å bump, the first time this feature has been definitively detected in a GRB spectrum. The GRB afterglow spectrum is best fitted with a two-component extinction curve: a Small Magellanic Cloud (SMC) extinction law at z = 1.49 (the redshift of the host) with E(B - V) = 0.07 +/- 0.01 and a Galactic extinction curve at z ~ 1.1 with E(B - V) = 0.08 +/- 0.01. We also present a moderately deep New Technology Telescope (NTT) R-band image of the GRB 060418 field and spectroscopy of four galaxies within 1 arcmin. None of these objects has a redshift that matches any of the intervening absorbers, and we conclude that the galaxies responsible for the two intervening MgII absorbers at z ~ 0.6 have luminosities .

  10. Radiometric analysis of construction materials using HPGe gamma-ray spectrometry.

    PubMed

    Khandaker, M U; Jojo, P J; Kassim, H A; Amin, Y M

    2012-11-01

    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.

  11. Guided tissue regeneration. Absorbable barriers.

    PubMed

    Wang, H L; MacNeil, R L

    1998-07-01

    Over the past 15 years, techniques aimed at regeneration of lost periodontal tissue have become widely used and accepted in clinical practice. Among these techniques are those which use the principles of guided tissue regeneration (GTR), wherein barriers (i.e., membranes) are used to control cell and tissue repopulation of the periodontal wound. A variety of non-absorbable and absorbable barriers have been developed and used for this purpose, with a trend in recent years toward increased use of absorbable GTR materials. This article describes the evolution of absorbable barrier materials and overview materials available for clinical use today. In addition, advantages and disadvantages of these materials are discussed, as well as possible new developments in barrier-based GTR therapy.

  12. Spontaneous emission and absorber theory

    NASA Astrophysics Data System (ADS)

    Pegg, David T.

    1997-01-01

    One of the long term interests of George Series was the construction of a theory of spontaneous emission which does not involve field quantisation. His approach was written in terms of atomic operators only and he drew a parallel with the Wheeler-Feynman absorber theory of radiation. By making a particular extra postulate, he was able to obtain the correct spontaneous emission rate and the Lamb shift reasonably simply and directly. An examination of his approach indicates that this postulate is physically reasonable and the need for it arises because quantisation in his theory occurs after the response of the absorber has been accounted for by means of the radiative reaction field. We review briefly an alternative absorber theory approach to spontaneous emission based on the direct action between the emitting atom and a quantised absorber, and outline some applications to more recent effects of interest in quantum optics.

  13. Metamaterial Absorbers for Microwave Detection

    DTIC Science & Technology

    2015-06-01

    systems comprised of large- scaled and super high speed integrated circuitry [9]. The advent of solid - state electronics, 5 the continuous trend toward...nearly perfect absorber based on multi-resonance with square patch,” Solid State Communications, vol. 188, pp. 5–11, Jun. 2014. [51] “Perfectly...ABSORBERS FOR MICROWAVE DETECTION by Michael T. McMahan June 2015 Thesis Advisor: Dragoslav Grbovic Co-Advisor: Richard C. Olsen THIS PAGE

  14. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  15. Packed Alumina Absorbs Hypergolic Vapors

    NASA Technical Reports Server (NTRS)

    Thomas, J. J.; Mauro, D. M.

    1984-01-01

    Beds of activated alumina effective as filters to remove hypergolic vapors from gas streams. Beds absorb such substances as nitrogen oxides and hydrazines and may also absorb acetylene, ethylene, hydrogen sulfide, benzene, butadiene, butene, styrene, toluene, and xoylene. Bed has no moving parts such as pumps, blowers and mixers. Reliable and energy-conservative. Bed readily adapted to any size from small portable units for use where little vapor release is expected to large stationary units for extensive transfer operations.

  16. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  17. Perfect selective metamaterial solar absorbers.

    PubMed

    Wang, Hao; Wang, Liping

    2013-11-04

    In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

  18. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A saliva absorber is a device made of paper or cotton intended to absorb moisture from the oral cavity during dental...

  19. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A saliva absorber is a device made of paper or cotton intended to absorb moisture from the oral cavity during dental...

  20. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    SciTech Connect

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-08-10

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm{sup 3} Sn absorber is 50 -90eV for {gamma}-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity.

  1. Gamma Processes

    DTIC Science & Technology

    1986-01-01

    E[exp{-Bn Xn 1 U-Y nU-X vi ] - EeUY )Ee (v+Bu)X1 (2.4) where, in the last step, we have dropped the indices n and n-1 because of stationarity and...1967). "Some Problems of Statistical Inference Relating to Double-Gamma Distribution," Trabajos de Estadistica , 18, 67-87. Hugus, D. K. (1982

  2. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  3. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  4. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  5. Nonventing, Regenerable, Lightweight Heat Absorber

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    A lightweight, regenerable heat absorber (RHA), developed for rejecting metabolic heat from a space suit, may also be useful on Earth for short-term cooling of heavy protective garments. Unlike prior space-suit-cooling systems, a system that includes this RHA does not vent water. The closed system contains water reservoirs, tubes through which water is circulated to absorb heat, an evaporator, and an absorber/radiator. The radiator includes a solution of LiCl contained in a porous material in titanium tubes. The evaporator cools water that circulates through a liquid-cooled garment. Water vapor produced in the evaporator enters the radiator tubes where it is absorbed into the LiCl solution, releasing heat. Much of the heat of absorption is rejected to the environment via the radiator. After use, the RHA is regenerated by heating it to a temperature of 100 C for about 2 hours to drive the absorbed water back to the evaporator. A system including a prototype of the RHA was found to be capable of maintaining a temperature of 20 C while removing heat at a rate of 200 W for 6 hours.

  6. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  7. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications.

    PubMed

    Sung, Moon-Hee; Park, Chung; Kim, Chul-Joong; Poo, Haryoung; Soda, Kenji; Ashiuchi, Makoto

    2005-01-01

    Poly-gamma-glutamic acid (gamma-PGA) is a very promising biodegradable polymer that is produced by Bacillus subtilis. Gamma-PGA is water-soluble, anionic, biodegradable, and edible. This paper reviews the production of a strain of gamma-PGA and recent developments with respect to applications in terms of Ca absorption, moisturizing properties, gamma-PGA conjugation, super absorbent polymer, and so on. Our recent research shows that gamma-PGA can be used as an immune-stimulating and anti-tumor agent, especially at high molecular weight. 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  8. Low temperature selective absorber research

    NASA Astrophysics Data System (ADS)

    Herzenberg, S. A.; Silberglitt, R.

    1982-04-01

    Research carried out since 1979 on selective absorbers is surveyed, with particular attention given to the low-temperature coatings seen as promising for flat plate and evacuated tube applications. The most thoroughly investigated absorber is black chrome, which is highly selective and is the most durable low-temperature absorber. It is believed that other materials, because of their low cost and lower content of strategic materials, may eventually supplant black chrome. Among these candidates are chemically converted black nickel; anodically oxidized nickel, zinc, and copper composites; and nickel or other low-cost multilayer coatings. In reviewing medium and high-temperature research, black chrome, multilayer coatings and black cobalt are seen as best medium-temperature candidates. For high temperatures, an Al2O3/Pt-Al203 multilayer composite or the zirconium diboride coating is preferred.

  9. Assessment of gamma dose rates in air in Adana/Turkey.

    PubMed

    Degerlier, M; Ozger, G

    2008-01-01

    This study assesses the outdoor gamma absorbed dose levels in air of the Adana's region. The measurements were taken from 130 different sample points in this area by Eberline Smart Portable (ESP-2) with SPA-6 plastic scintillation detector. The outdoor gamma absorbed dose rates order from 40 to 145 nGy h(-1). Average outdoor gamma dose rates were measured as 65 nGy h(-1). Average effective dose received from outdoor gamma radiation in Adana's region is 80 microSv y(-1).

  10. Magnetically tunable metamaterial perfect absorber

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Feng, Ningyue; Wang, Qingmin; Hao, Yanan; Huang, Shanguo; Bi, Ke

    2016-06-01

    A magnetically tunable metamaterial perfect absorber (MPA) based on ferromagnetic resonance is experimentally and numerically demonstrated. The ferrite-based MPA is composed of an array of ferrite rods and a metallic ground plane. Frequency dependent absorption of the ferrite-based MPA under a series of applied magnetic fields is discussed. An absorption peak induced by ferromagnetic resonance appears in the range of 8-12 GHz under a certain magnetic field. Both the simulated and experimental results demonstrate that the absorption frequency of the ferrite-based MPA can be tuned by the applied magnetic field. This work provides an effective way to fabricate the magnetically tunable metamaterial perfect absorber.

  11. Adaptive inertial shock-absorber

    NASA Astrophysics Data System (ADS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-03-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated.

  12. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  13. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  14. Scintillating-nanoparticle-induced enhancement of absorbed radiation dose

    NASA Astrophysics Data System (ADS)

    Withers, Nathan J.; Plumley, John B.; Triño, Nicole D.; Sankar, Krishnaprasad; Akins, Brian A.; Rivera, Antonio C.; Smolyakov, Gennady A.; Timmins, Graham S.; Osinski, Marek

    2009-02-01

    Cerium-doped lanthanum fluoride colloidal nanocrystals offer a way to improve external radiation therapy through the enhanced absorption of high energy photons, as well as through the emission of UV light in the presence of radiation, providing a second cell killing mechanism. Lanthanum fluoride nanocrystals doped with 10% cerium were anhydrously synthesized in methanol as platelets 10-12 nm in diameter and 4-6 nm thick. The nanocrystals were characterized by transmission electron microscopy, energy dispersive spectroscopy (EDS), and by steady state UV-visible optical absorption and photoluminescence spectroscopy. Using an incoming gamma flux from a 137Cs source and a Fricke dosimeter solution to measure absorbed energy, a 55% enhancement of absorbed dose was measured for a 1.2 mg/ml loading of nanocrystals over exposure range from one to four kiloroentgens.

  15. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  16. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  17. Bioresorbable polymeric scaffolds for coronary revascularization: Lessons learnt from ABSORB III, ABSORB China, and ABSORB Japan.

    PubMed

    Gogas, Bill D; King, Spencer B; Samady, Habib

    2015-01-01

    Bioresorbable polymers and biocorrodible metals are the latest developments in biodegradable materials used in interventional cardiology for the mechanical treatment of coronary atherosclerosis. Poly-L-lactic acid is the most frequently used bioresorbable polymer and initial evidence of feasibility, efficacy and clinical safety following deployment of polymer-based platforms was gained after completion of the first-in-man longitudinal ABSORB registries, Cohorts A and B and ABSORB Extend. In these studies, the biologic interaction of the first-generation Absorb Bioresorbable Vascular Scaffold (BVS) (Abbott Vascular, SC, Calif., US) with the underlying vascular tissue was evaluated in vivo with multiple imaging modalities such as intravascular ultrasound (IVUS), virtual histology-IVUS, IVUS-palpography, optical coherence tomography as well as ex vivo with coronary computed tomography. Efficacy measures following this in vivo multi-imaging assessment as well as clinical safety were comparable with current generation drug-eluting stents (DES) (Abbott Vascular, SC, Calif., US) in non-complex lesions over a 3-year follow-up. Furthermore, novel properties of functional and anatomic restoration of the vessel wall during the late phases of resorption and vascular healing were observed transforming the field of mechanical treatment of atherosclerosis from delivering only acute revascularization to additionally enable late repair and subsequent restoration of a more physiologic underlying vascular tissue. Despite the sufficient evidence and the subsequent Conformité Européenne mark approval of the first fully biodegradable scaffold (Absorb BVS) in 2012 for revascularizing non-complex lesions, the paucity of randomized comparisons of fully bioresorbable scaffolds (BRS) with metallic DES in a "real-world" clinical setting raised controversies among the interventional community for the merit of these technologies. Only recently, results from international large

  18. OVI absorbers in SDSS spectra

    NASA Astrophysics Data System (ADS)

    Frank, Stephan

    We conducted a systematic search for signatures of the Intergalactic Medium (IGM) in Quasar spectra of the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3), focusing on finding intervening absorbers via detection of their O VI doublet. We present a search algorithm, and criteria for distinguishing candidates from spurious Lyman a forest lines. In addition, we compare our findings with simulations of the Lyman a forest in order to estimate the detectability of O VI doublets over various redshift intervals. We obtain a sample of 1866 O VI doublet candidates with rest-frame equivalent width >= 0.05 λ in 855 AGN spectra (out of 3702 objects with redshifts in the range accessible for O VI detection). This sample is subdivided into 3 groups according to the likelihood of being real and the potential for follow-up observation of the candidate. The group with the cleanest and most secure candidates is comprised of 145 candidates. 69 of these reside at a velocity separation >= 5000 km/s from the QSO, and can therefore be classified tentatively as intervening absorbers. Most of these absorbers have not been picked up by earlier, automated QSO absorption line detection algorithms. This sample increases the number of known O VI absorbers at redshifts beyond z abs >= 2.7 substantially. We propose to obtain observations of some of the candidates with the best signatures for O VI doublets with high signal-to-noise and high resolution in order to better constrain the physical state of the absorbers. We then focused on a subsample of 387 AGN sightlines with an average S/N >= 5: 0, allowing for the detection of absorbers above a rest-frame equivalent width limit of W r >= 0:19 ? A for the O VI 1032 λ component. Accounting for random interlopers mimicking an O VI doublet, we derive for the first time a secure lower limit for the redshift number density DN/Dz for redshifts z abs >= 2:8. With extensive Monte Carlo simulations we quantify the losses of absorbers due to blending

  19. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1).

  20. Evaluation of radioactive environmental hazards in Area-3, Northern Palmyrides, Central Syria using airborne spectrometric gamma technique.

    PubMed

    Asfahani, J; Aissa, M; Al-Hent, R

    2016-01-01

    Airborne spectrometric gamma data are used in this paper to estimate the degree of radioactive hazard on humanity in Area-3, Northern Palmyrides, Central Syria. Exposure Rate (ER), Absorbed Dose Rate (ADR), Annual Effective Dose Rate (AEDR), and Heat Production (HP) of the eleven radiometric units included in the established lithological scored map in the study area have been computed to evaluate the radiation background influence in humans. The results obtained indicate that a human body in Area-3 is subjected to radiation hazards in the acceptable limits for long duration exposure. The highest radiogenetic heat production values in Area-3 correspond to the phosphatic locations characterized by relatively high values of uranium and thorium.

  1. Measurements and Characterization of Neutron and Gamma Dose Quantities in the Vicinity of an Independent Spent Fuel Storage Installation

    SciTech Connect

    Darois, E.L.; Keefer, D.G.; Plazeski, P.E.; Connell, J.

    2006-07-01

    As part of the decommissioning of the Maine Yankee Atomic Power Company (MYAPCo) nuclear power plant, the spent nuclear fuel is being temporarily stored in a dry cask storage facility on a portion of the original licensed property. Each of the spent nuclear fuel (SNF) storage casks hold approximately 25 spent fuel assemblies. Additional storage casks for the greater-than-Class C waste (GTCC) are also used. This waste is contained in 64 casks (60 SNF, 4 GTCC), each of which contain a substantial amount of concrete for shielding and structural purposes. The vertical concrete casks (VCCs) are typically separated by a distance of 4 and 6 feet. The storage casks are effective personnel radiation shields for most of the gamma and neutron radiation emitted from the fuel. However measurable gamma and neutron radiation levels are present in the vicinity of the casks. In order to establish a controlled area boundary around the facility such that a member of the public annual dose level of 0.25-mSv could be demonstrated, measurements of gamma and neutron dose equivalents were conducted. External gamma exposure rates were measured with a Pressurized Ion Chamber (PIC). Neutron absorbed dose and dose equivalent rates were measured with a Rossi-type tissue equivalent proportional counter (TEPC). Both gamma and neutron measurements were made at increasing distances from the facility as well as at a background location. The results of the measurements show that the distance to the 0.25-mSv per year boundary for 100% occupancy conditions varies from 321 feet to 441 feet from the geometric center of the storage pads, depending on the direction from the pad. For the TEPC neutron measurements, the average quality factor from the facilities was approximately 7.4. This quality factor compares well with the average quality factor of 7.6 that was measured during a calibration performed with a bare Cf-252 source. (authors)

  2. The Enigma of the Strong MgII Absorbers along the GRB Sightlines

    NASA Astrophysics Data System (ADS)

    Cucchiara, Antonino; Charlton, J.; Jones, T.; Fox, D. B.; Narayan, A.; Narayan, A.

    2009-01-01

    The startling result of Prochter & Prochaska (2006) that the incidence of strong MgII absorbers (equivalent width EW(2796Å) > 1 Å) along gamma-ray burst (GRB) sightlines is four times larger (dN/dzGR=0.90) than for quasar sightlines (dN/dzQSO=0.24) has yet to be understood. In particular, explanations relating to dust bias in quasar samples, partial covering of quasars, and lensing amplification of the GRB beam all fail to satisfy basic observational constraints. We are currently engaged in an effort to explore this mystery using archival VLT/UVES (R=45,000) quasar and afterglow spectra. Identifying strong MgII absorbers in a uniform and statistically complete manner, we have compiled a sample of 28 absorbers toward 81 quasars and 9 absorbers toward 6 GRB afterglows. We explore the kinematics of the absorbers, the abundances of other metal species, and the strength of dust depletion in the GRB and QSO samples. We fail to identify any respects in which 75% of the GRB line-of-sight absorbers can be distinguished from the other members of the GRB and QSO absorber populations. We consider whether this finding rules out the possibility of an intrinsic high-velocity (v 0.2 c) GRB or GRB host-related origin for the excess absorbers, and conclude that it does not.

  3. Airborne Gamma-Spectrometry in Switzerland

    NASA Astrophysics Data System (ADS)

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-01

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of 137Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  4. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  5. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  6. Acoustic Properties of Absorbent Asphalts

    NASA Astrophysics Data System (ADS)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  7. Casimir force in absorbing multilayers

    SciTech Connect

    Tomas, M.S.

    2002-11-01

    The Casimir effect in a dispersive and absorbing multilayered system is considered adopting the (net) vacuum-field pressure point of view to the Casimir force. Using the properties of the macroscopic field operators appropriate for absorbing systems and a convenient compact form of the Green function for a multilayer, a straightforward and transparent derivation of the Casimir force in a lossless layer of an otherwise absorbing multilayer is presented. The resulting expression, in terms of the reflection coefficients of the surrounding stacks of layers, is of the same form as that obtained by Zhou and Spruch for a purely dispersive multilayer using the (surface) mode summation method [Phys. Rev. A 52, 297 (1995)]. Owing to the recursion relations that the generalized Fresnel coefficients satisfy, this result can be applied to more complex systems with planar symmetry. This is illustrated by calculating the Casimir force on a dielectric (metallic) slab in a planar cavity with realistic mirrors. Also, a relationship between the Casimir force and energy in two different layers is established.

  8. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  9. Measurement of gamma and 2 beta + gamma

    SciTech Connect

    Albert, J.

    2005-01-03

    We report on the initial measurements of the angle {gamma} and the sum of angles 2{beta} +{gamma} of the Unitarity Triangle. When compared with indirect information on the value of {gamma} from other measurements of CKM parameters, the measurement of these angles will provide a precise test of Standard Model predictions, as statistics increase. There are several methods for directly measuring {gamma} and 2{beta} +{gamma}. We report on the status of each of these techniques, and the resulting constraints on the values of these angles.

  10. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... absorber is a device made of paper or cotton intended to absorb moisture from the oral cavity during dental... manufacturing practice requirements of the quality system regulation in part 820 of this chapter, with...

  11. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  12. Gamma ray generator

    SciTech Connect

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  13. Improving the laboratory monitoring of absorbent oil

    SciTech Connect

    V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov

    2009-05-15

    The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

  14. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  15. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  16. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  17. Carbon dioxide absorbents for rebreather diving.

    PubMed

    Pennefather, John

    2016-09-01

    Firstly I would like to thank SPUMS members for making me a Life Member of SPUMS; I was surprised and greatly honoured by the award. I also want to confirm and expand on the findings on carbon dioxide absorbents reported by David Harvey et al. For about 35 years, I was the main player in deciding which absorbent went into Australian Navy and Army diving sets. On several occasions, suppliers of absorbents to the anaesthesia market tried to supply the Australian military market. On no occasion did they provide absorbent that came close to the minimum absorbent capacity required, generally being 30-40% less efficient than diving-grade absorbents. Because I regard lives as being more important than any likely dollar saving, the best absorbent was always selected unless two suppliers provided samples with the same absorbent capacity. On almost every occasion, there was a clear winner and cost was never considered. I suggest the same argument for the best absorbent should be used by members and their friends who dive using rebreather sets. I make this point because of my findings on a set that was brought to me after the death of its owner. The absorbent was not the type or grain size recommended by the manufacturer of the set and did not resemble any of the diving grade absorbents I knew of. I suspected by its appearance that it was anaesthetic grade absorbent. When I tested the set, the absorbent system failed very quickly so it is likely that carbon dioxide toxicity contributed to his death. The death was not the subject of an inquest and I have no knowledge of how the man obtained the absorbent. Possibly there was someone from an operating theatre staff who unintentionally caused their friend's death by supplying him with 'borrowed absorbent'. I make this point as I would like to discourage members from making a similar error.

  18. Constraints on the relative sizes of intervening Mg II-absorbing clouds and quasar emitting regions

    NASA Astrophysics Data System (ADS)

    Lawther, D.; Paarup, T.; Schmidt, M.; Vestergaard, M.; Hjorth, J.; Malesani, D.

    2012-10-01

    Context. A significantly higher incidence of strong (rest equivalent width Wr > 1 Å) intervening Mg ii absorption is observed along gamma-ray burst (GRB) sight-lines relative to those of quasar sight-lines. A geometrical explanation for this discrepancy has been suggested: the ratio of the beam size of the source to the characteristic size of an Mg ii absorption system can influence the observed Mg ii equivalent width, if these two sizes are comparable. Aims: We investigate whether the differing beam sizes of the continuum source and broad-line region of Sloan Digital Sky Survey (SDSS) quasars produce a discrepancy between the incidence of strong Mg ii absorbers illuminated by the quasar continuum region and those of absorbers illuminated by both continuum and broad-line region light. Methods: We performed a semi-automated search for strong Mg ii absorbers in the SDSS Data Release 7 quasar sample. The resulting strong Mg ii absorber catalog is available at the CDS. We measured the sight-line number density of strong Mg ii absorbers superimposed on and off the quasar C iv λ 1550 and C iii] λ 1909 emission lines. Results: We see no difference in the sight-line number density of strong Mg ii absorbers superimposed on quasar broad emission lines compared to those superimposed on continuum-dominated spectral regions. This suggests that the Mg ii absorbing clouds typically observed as intervening absorbers in quasar spectra are larger than the beam sizes of both the continuum-emitting regions and broad line-emitting regions in the centers of quasars, corresponding to a lower limit of the order of 1017 cm for the characteristic size of an Mg ii absorbing cloud. Catalog of Mg II absorbers is available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A67

  19. A polarization-independent broadband terahertz absorber

    SciTech Connect

    Shi, Cheng; Zang, XiaoFei E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing E-mail: ymzhu@usst.edu.cn

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.

  20. AAPCC Annual Reports

    MedlinePlus

    ... Annual Report 2000 Annual Report 1999 Annual Report Poison Data National Poison Data System Uses for NPDS ... Elements NPDS FAQs Annual Reports Find Your Local Poison Center Poison centers offer free, private, confidential medical ...

  1. The gamma-ray telescope Gamma-1

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Nesterov, V. E.; Kalinkin, L. F.; Balibanov, V. M.; Prilutsky, O. F.; Rodin, V. G.; Leikov, N. G.; Bielaoussov, A. S.; Dobrian, L. B.; Poluektov, V. P.

    1985-01-01

    French and Soviet specialists have designed and built the gamma-ray telescope GAMMA-1 to detect cosmic gamma rays above 50 MeV. The sensitive area of the detector is 1400 sq cm, energy resolution is 30% at 300 MeV, and angular resolution 1.2 deg at 300 MeV (and less than 20' arc when a coded aperture mask is used). Results on calibration of the qualification model and Monte-Carlo calculations are presented.

  2. The Portuguese gamma irradiation facility

    NASA Astrophysics Data System (ADS)

    Mendes, C. M.; Almeida, J. C.; Botelho, M. L.; Cavaco, M. C.; Almeida-Vara, E.; Andrade, M. E.

    A Gamma Radiation Facility was built up in the National Laboratory of Industrial Technology and Engineering (LNETI), Lisbon, Portugal. This plant (UTR GAMA-Pi) is a Cobalt-60 dry storage continuous facility with a nominal capacity of 1.5X10 16 Bq. The initial activity is 1.1X10 16 Bq and the troughput capacity 10 3 ton/year for product with a bulk density of 0.2 g/cm 3 treated with a minimum absorbed dose of 25 kGy. Complementary control devices were installed: ventilation system, closed water refrigeration circuit, internal TV system, detection and extinction fire system and emergency power group. It must be emphasized that the best attention was given to the conception and efficiency of the interlock safety systems. This facility will be utilized mainly for radiosterilization of medical articles and decontamination of wine cork stoppers.

  3. Oxalate: Effect on calcium absorbability

    SciTech Connect

    Heaney, R.P.; Weaver, C.M. )

    1989-10-01

    Absorption of calcium from intrinsically labeled Ca oxalate was measured in 18 normal women and compared with absorption of Ca from milk in these same subjects, both when the test substances were ingested in separate meals and when ingested together. Fractional Ca absorption from oxalate averaged 0.100 +/- 0.043 when ingested alone and 0.140 +/- 0.063 when ingested together with milk. Absorption was, as expected, substantially lower than absorption from milk (0.358 +/- 0.113). Nevertheless Ca oxalate absorbability in these women was higher than we had previously found for spinach Ca. When milk and Ca oxalate were ingested together, there was no interference of oxalate in milk Ca absorption and no evidence of tracer exchange between the two labeled Ca species.

  4. Liquid crystal tunable metamaterial absorber.

    PubMed

    Shrekenhamer, David; Chen, Wen-Chen; Padilla, Willie J

    2013-04-26

    We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

  5. MEMS switchable infrared metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Lin, Yu Sheng; Singh, Navab; Lee, Chengkuo

    2015-03-01

    We experimentally demonstrate a switchable metamaterial absorber for infrared spectral region using MEMS technology. In order to achieve active tunability; air gap is introduced as the part of dielectric spacer layer and is electrostatically actuated. As the air gap is decreased, the peak absorption wavelength will blue shift accordingly. The tuning range is approximately 700 nm for 300 nm air gap change. Complementary cross is used as the metamaterial unit cell pattern. Owing to the π/2 rotational symmetry of the metamaterial unit cell geometry and out of plane actuation direction of the metamaterial layer, the resultant absorption retains the polarization insensitive characteristics at different actuation states. Additionally high temperature stable materials such as, molybdenum and silicon-di-oxide are used as structural materials for potential use in rugged applications.

  6. Energy-Absorbing Beam Member

    NASA Technical Reports Server (NTRS)

    Littell, Justin D. (Inventor)

    2017-01-01

    An energy-absorbing (EA) beam member and having a cell core structure is positioned in an aircraft fuselage proximate to the floor of the aircraft. The cell core structure has a length oriented along a width of the fuselage, a width oriented along a length of the fuselage, and a depth extending away from the floor. The cell core structure also includes cell walls that collectively define a repeating conusoidal pattern of alternating respective larger and smaller first and second radii along the length of the cell core structure. The cell walls slope away from a direction of flight of the aircraft at a calibrated lean angle. An EA beam member may include the cell core structure and first and second plates along the length of the cell core structure on opposite edges of the cell material.

  7. Anomalous Thermal Behavior in Microcalorimeter Gamma-Ray Detectors

    SciTech Connect

    Horansky, Robert D.; Beall, James A.; Irwin, Kent D.; Ullom, Joel N.

    2009-12-16

    Improving the resolution of gamma-ray detectors is important for many fields, including determinations of the Lamb shift in atoms with high atomic numbers, nuclear treaty verification, and environmental monitoring. High-purity germanium detectors are currently the tool of choice for precision gamma-ray spectroscopy. The resolution of these detectors is limited to about 500 eV full-width-at-half-maximum at 100 keV by Fano statistics. In comparison, low-temperature microcalorimeters can provide over an order of magnitude improvement in photon resolution. For instance, a gamma-ray microcalorimeter has achieved 25 eV FWHM resolution at 103 keV. These calorimeters consist of two components, a bulk absorber to stop incident gamma rays and a thermometer made from a thin film electrically biased in the superconducting-to-normal phase transition, called a Transition Edge Sensor, or TES. The standard absorber is bulk, superconducting tin. While tin has historically been the best performing absorber, pulse decays in Sn devices are much slower than predicted. We have begun a systematic study of absorber behavior in order to assess and improve response times. This study leverages two capabilities: the ability to microfabricate highly uniform arrays of gamma-ray detectors and the ability to read out many detectors in a single cool-down using SQUID multiplexer circuits. Here, we present two experiments to identify the source of thermal time constants. The first involves varying properties of the Sn absorber including purity, vendor, and crystal grain size. The second examines the role of the other elements in the microcalorimeter assembly.

  8. Anomalous Thermal Behavior in Microcalorimeter Gamma-Ray Detectors

    NASA Astrophysics Data System (ADS)

    Horansky, Robert D.; Beall, James A.; Irwin, Kent D.; Ullom, Joel N.

    2009-12-01

    Improving the resolution of gamma-ray detectors is important for many fields, including determinations of the Lamb shift in atoms with high atomic numbers, nuclear treaty verification, and environmental monitoring. High-purity germanium detectors are currently the tool of choice for precision gamma-ray spectroscopy. The resolution of these detectors is limited to about 500 eV full-width-at-half-maximum at 100 keV by Fano statistics. In comparison, low-temperature microcalorimeters can provide over an order of magnitude improvement in photon resolution. For instance, a gamma-ray microcalorimeter has achieved 25 eV FWHM resolution at 103 keV. These calorimeters consist of two components, a bulk absorber to stop incident gamma rays and a thermometer made from a thin film electrically biased in the superconducting-to-normal phase transition, called a Transition Edge Sensor, or TES. The standard absorber is bulk, superconducting tin. While tin has historically been the best performing absorber, pulse decays in Sn devices are much slower than predicted. We have begun a systematic study of absorber behavior in order to assess and improve response times. This study leverages two capabilities: the ability to microfabricate highly uniform arrays of gamma-ray detectors and the ability to read out many detectors in a single cool-down using SQUID multiplexer circuits. Here, we present two experiments to identify the source of thermal time constants. The first involves varying properties of the Sn absorber including purity, vendor, and crystal grain size. The second examines the role of the other elements in the microcalorimeter assembly.

  9. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  10. Electromagnetic scattering by pyramidal and wedge absorber

    NASA Technical Reports Server (NTRS)

    Dewitt, Brian T.; Burnside, Walter D.

    1988-01-01

    Electromagnetic scattering from pyramidal and wedge absorbers used to line the walls of modern anechoic chambers is measured and compared with theoretically predicted values. The theoretical performance for various angles of incidence is studied. It is shown that a pyramidal absorber scatters electromagnetic energy more as a random rough surface does. The apparent reflection coefficient from an absorber wall illuminated by a plane wave can be much less than the normal absorber specifications quoted by the manufacturer. For angles near grazing incidence, pyramidal absorbers give a large backscattered field from the pyramid side-faces or edges. The wedge absorber was found to give small backscattered fields for near-grazing incidence. Based on this study, some new guidelines for the design of anechoic chambers are advocated because the specular scattering models used at present do not appear valid for pyramids that are large compared to the wavelength.

  11. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  12. Identification and elimination of anomalous thermal decay in gamma-ray microcalorimeters

    SciTech Connect

    Horansky, Robert D.; Bennett, Douglas A.; Schmidt, Daniel R.; Ullom, Joel N.; Zink, Barry L.

    2013-11-18

    Microcalorimeter detectors rely on superconducting components and cryogenic temperatures to provide over an order-of-magnitude improvement in energy resolution compared to semiconducting sensors. Resolution improvements impact fields from gamma-ray astrophysics to nuclear safeguards. The temporal response of these detectors has been much slower than predicted from the known device parameters. This discrepancy has been attributed to the dynamics of quasiparticles and phonons in the bulk absorber used for absorbing photons. We will show that long-lived states in the glue used for absorber attachment have been the dominant cause of the slow response. Also, we have fabricated microcalorimeters using metal-to-metal diffusion bonding to attach the absorber. These detectors show a significant improvement in their recovery after gamma-ray events and will now enable study of the internal scattering dynamics of the bulk absorber.

  13. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  14. Metamaterial Resonant Absorbers for Terahertz Sensing

    DTIC Science & Technology

    2015-12-01

    absorber that can be incorporated into a terahertz (THz) imaging system with a 4.7 THz quantum cascade laser (QCL) illumination source. Finite...absorber that can be incorporated into a terahertz (THz) imaging system with a 4.7 THz quantum cascade laser (QCL) illumination source. Finite...use of THz imaging systems. Recent developments in quantum cascade THz lasers and metamaterial-based THz absorbers allow design of compact imaging

  15. Determination of thorium-232 in Canadian soils by gamma-ray spectrometry via lead-212 and actinium-228, interference from uranium

    SciTech Connect

    Zikovsky, L.; Blagoeva, R.

    1994-12-31

    Thorium-232 background levels in non-cultivated Canadian soils (southern and northern Quebec and the Northwest Territories) are presented. Gamma-ray spectrometry was used to determine the activity of {sup 232}Th by measuring the activities of {sup 228}Ac and {sup 212}Pb at 37 sites. The specific activity levels ranged from 2.7 to 95.5 Bq/kg with an overall mean of 24.0 {+-} 15.4 Bq/kg. This activity generated an annual absorbed dose equivalent in air of 0.1 mSv. The activities of {sup 228}Ac and {sup 212}Pb in the soil increased with increasing depth. IT was found that uranium, via its decay product radium, can interfere with the determination of thorium in the soil.

  16. Efficient degradation of butylparaben by gamma radiolysis.

    PubMed

    Guin, Jhimli Paul; Bhardwaj, Y K; Varshney, Lalit

    2017-04-01

    Gamma radiolysis and ozonolysis are two competitive advanced oxidation processes for degradation of organic pollutants present in the ground water. In this paper, the gamma radiolytic degradation of an emerging organic pollutant Butylparaben (BP) in aqueous solution has been investigated for the first time at different absorbed doses. The effect of the absorbed dose rate in the degradation and mineralization of BP has been investigated. About 65% mineralization of BP was observed at absorbed dose of 70kGy and dose rate of 0.7kGyh(-1). Interestingly, turbidity appeared in the solution during radiolysis at doses higher than 2kGy, which disappeared again at very higher dose (~90kGy) making the solution again transparent. At lower dose rate of 0.175kGyh(-1) the turbidity was appeared at much lower dose about 1kGy. However, the dose rate showed no effect in the dose of the disappearance of the turbidity. The hydrophobic fragments insoluble in water were generated during the initial stage of gamma radiolysis and those were completely mineralized to CO2 and H2O by direct absorption of gamma radiation. About 90kGy dose was required to achieve ~90% mineralization of BP. On the contrary, maximum 50% mineralization was achieved after 5h of ozonation at the O3 flow rate of 0.5Lmin(-1) at pH 7.5 and it remained even constant upon prolonged ozonation. The oxygen-equivalent-chemical-oxidation-capacity (OCC) was used as the parameter to compare the % mineralization efficiencies of the two oxidative processes studied here and the gamma radiolysis was found to be more efficient between those processes. The phytotoxicity of the treated BP solution to agricultural seeds showed that the radiolytically generated fragments were less toxic compared to ozonolytically generated fragments. Thus gamma radiolysis is effective for reducing the organic burden and the toxicity of water polluted with emerging pollutants like BP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  18. Metamaterial absorber with random dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  19. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  20. Nonlinear dynamic vibration absorbers with a saturation

    NASA Astrophysics Data System (ADS)

    Febbo, M.; Machado, S. P.

    2013-03-01

    The behavior of a new type of nonlinear dynamic vibration absorber is studied. A distinctive characteristic of the proposed absorber is the impossibility to extend the system to infinity. The mathematical formulation is based on a finite extensibility nonlinear elastic potential to model the saturable nonlinearity. The absorber is attached to a single degree-of-freedom linear/nonlinear oscillator subjected to a periodic external excitation. In order to solve the equations of motion and to analyze the frequency-response curves, the method of averaging is used. The performance of the FENE absorber is evaluated considering a variation of the nonlinearity of the primary system, the damping and the linearized frequency of the absorber and the mass ratio. The numerical results show that the proposed absorber has a very good efficiency when the nonlinearity of the primary system increases. When compared with a cubic nonlinear absorber, for a large nonlinearity of the primary system, the FENE absorber shows a better effectiveness for the whole studied frequency range. A complete absence of quasi-periodic oscillations is also found for an appropriate selection of the parameters of the absorber. Finally, direct integrations of the equations of motion are performed to verify the accuracy of the proposed method.

  1. A Six-Fold Symmetric Metamaterial Absorber.

    PubMed

    Fernández Álvarez, Humberto; de Cos Gómez, María Elena; Las-Heras, Fernando

    2015-04-03

    A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  2. Advanced Reflector and Absorber Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.

  3. A Six-Fold Symmetric Metamaterial Absorber

    PubMed Central

    Fernández Álvarez, Humberto; de Cos Gómez, María Elena; Las-Heras, Fernando

    2015-01-01

    A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber. PMID:28788019

  4. An EPIC view of absorbed HMXBs in the Scutum Arm

    NASA Astrophysics Data System (ADS)

    Bodaghee, Arash

    2009-10-01

    Observations are proposed for 5 new unclassified gamma-ray sources in the Scutum Arm. Each source will be targeted by EPIC PN and MOS cameras for 25 ks providing us with: a refined position that will facilitate optical/IR identification; spectral characteristics including the slope of the power law in X-rays and the photoelectric absorption; and timing characteristics in the case of Galactic XRBs. The targets lie within 5degs of the plane of the Milky Way, towards the tangent to the Scutum Arm, and are expected to be Galactic in origin. The main objective is to elucidate the nature of these sources. An additional benefit is that we will have a more complete sample of high-energy emitters in the Scutum Arm to compare with absorbed HMXBs in the Norma Arm.

  5. Distributions of 15 elements on 58 absorbers from simulated Hanford Double-Shell Slurry Feed (DSSF)

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1994-11-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 58 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, pillared layered materials, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford double-shell slurry feed (DSSF) (pH 14.0). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U and Am), and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 870 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2610 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing DSSF solutions.

  6. Distributions of 12 elements on 64 absorbers from simulated Hanford Neutralized Current Acid Waste (NCAW)

    SciTech Connect

    Svitra, Z.V.; Bowen, S.M.; Marsh, S.F.

    1994-12-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 64 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford neutralized current acid waste (NCAW) (pH 14.2). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Cs, Sr, Tc, and Y) and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 768 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2304 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing NCAW solutions.

  7. Rehabilitation of gamma

    NASA Astrophysics Data System (ADS)

    Poynton, Charles A.

    1998-07-01

    Gamma characterizes the reproduction of tone scale in an imaging system. Gamma summarizes, in a single numerical parameter, the nonlinear relationship between code value--in an 8-bit system, from 0 through 255--and physical intensity. Nearly all image coding systems are nonlinear, and so involve values of gamma different from unity. Owing to poor understanding of tone scale reproduction, and to misconceptions about nonlinear coding, gamma has acquired a terrible reputation in computer graphics and image processing. In addition, the world-wide web suffers from poor reproduction of grayscale and color images, due to poor handling of nonlinear image coding. This paper aims to make gamma respectable again.

  8. Gamma-ray waveguides

    SciTech Connect

    Tournear, D. M.; Hoffbauer, M. A.; Akhadov, E. A.; Chen, A. T.; Pendleton, S. J.; Williamson, T. L.; Cha, K. C.; Epstein, R. I.

    2008-04-14

    We have developed an approach for gamma-ray optics using layered structures acting as planar waveguides. Experiments demonstrating channeling of 122 keV gamma rays in two prototype waveguides validate the feasibility of this technology. Gamma-ray waveguides allow one to control the direction of radiation up to a few MeV. The waveguides are conceptually similar to polycapillary optics, but can function at higher gamma-ray energies. Optics comprised of these waveguides will be able to collect radiation from small solid angles or concentrate radiation into small area detectors. Gamma-ray waveguides may find applications in medical imaging and treatment, astrophysics, and homeland security.

  9. Nonlinear absorbance effects in bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Rayfield, George W.

    1991-03-01

    Bacteriorhodopsin (BR) is a protein found in the cell membrane wall of Halobacterium halobium and serves as a light-activated proton pump (i.e., the protein converts light energy into chemical energy). The chromophore (retinal) responsible for light absorption is located within a pocket of the opsin and is bound via a Schiff base to a lysine residue in the amino acid sequence. When BR is illuminated by a laser light flash, transient changes occur in the visible absorption spectrum of the protein -- i.e., the material is photochromic. The optical absorption changes are characterized by a series of photointermediates, with characteristic rise and fall times that range from less than a picosecond to more then 10 milliseconds. This photochromic property of BR makes it a useful material for optical devices. With an aim toward developing an optical switch for the Army, we are studying the transient absorption of nanosecond light pulses from a dye laser in the spectral region in which the absorbance of BR increases as light intensity increases. This nonlinear effect is wavelength-dependent and becomes a bleach in a different spectral window. The nonlinear absorption change is reversible.

  10. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  11. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  12. Levelized Cost of Coating (LCOC) for selective absorber materials

    SciTech Connect

    Ho, Clifford K.; Pacheco, James E.

    2014-08-08

    A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annual thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.

  13. The natural radioactivity measurements in coastal sediment samples along the East Coast of Tamilnadu using gamma spectrometry technique

    SciTech Connect

    Chandramohan, J.; Tholkappian, M.; Harikrishnan, N.; Ravisankar, R.

    2015-08-28

    The natural radioactivity concentration in beach sediment samples collected from Pattipulam to Devanampattinam of East Coast of Tamilnadu have been determined by NaI (TI) gamma ray spectrometer. The specific activity concentrations range from ≤ 2.21 (BDL) to 37.02 Bq kg{sup −1} with a mean of 3.79 Bqkg{sup −1} for {sup 238}U, ≤ 2.11 (BDL) to 643.77 Bqkg{sup −1} with a mean of 49.60 Bqkg{sup −1} for {sup 232}Th and 300.34 Bqkg{sup −1} to 449.08 Bqkg{sup −1} with a mean of 360.23 Bqkg{sup −1} for {sup 40}K. The potential radiological hazards due to natural radionuclides content such as Radium Equivalent activity (Ra{sub eq}), Representative level index (RLI), External hazard index (H{sub ex}), absorbed gamma does rate (D{sub R}), and Annual effective dose rate (AEDR) are estimated to assess the radiation hazard associated with the sediments. The obtained data are compared with the recommended safety limits and international approved values. All the values are well below the recommended safety limits indicating that radiation levels do not poses any significant health hazard to the public in the area as a result of the natural radioactivity of beach sediments. This study may help the baseline data for more extensive works in the same subjects of future studies.

  14. Absorbencies of six different rodent beddings: commercially advertised absorbencies are potentially misleading.

    PubMed

    Burn, C C; Mason, G J

    2005-01-01

    Moisture absorbency is one of the most important characteristics of rodent beddings for controlling bacterial growth and ammonia production. However, bedding manufacturers rarely provide information on the absorbencies of available materials, and even when they do, absorption values are usually expressed per unit mass of bedding. Since beddings are usually placed into cages to reach a required depth rather than a particular mass, their volumetric absorbencies are far more relevant. This study therefore compared the saline absorbencies of sawdust, aspen woodchips, two virgin loose pulp beddings (Alpha-Dri and Omega-Dri), reclaimed wood pulp (Tek-Fresh), and corncob, calculated both by volume and by mass. Absorbency per unit volume correlated positively with bedding density, while absorbency per unit mass correlated negatively. Therefore, the relative absorbencies of the beddings were almost completely reversed depending on how absorbency was calculated. By volume, corncob was the most absorbent bedding, absorbing about twice as much saline as Tek-Fresh, the least absorbent bedding. Conversely, when calculated by mass, Tek-Fresh appeared to absorb almost three times as much saline as the corncob. Thus, in practical terms the most absorbent bedding here was corncob, followed by the loose pulp beddings; and this is generally supported by their relatively low ammonia production as seen in previous studies. Many factors other than absorbency determine whether a material is suitable as a rodent bedding, and they are briefly mentioned here. However, manufacturers should provide details of bedding absorbencies in terms of volume, in order to help predict the relative absorbencies of the beddings in practical situations.

  15. An ultrathin dual-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun; Zhang, Binzhen

    2016-10-01

    The design and preparation of an ultrathin dual-band metamaterial absorber whose resonant frequency located at radar wave (20 GHz-60 GHz) is presented in this paper. The absorber is composed of a 2-D periodic sandwich featured with two concentric annuluses. The influence on the absorber's performance produced by resonant cell's structure size and material parameters was numerically simulated and analyzed based on the standard full wave finite integration technology in CST. Laser ablation process was adopted to prepare the designed absorber on epoxy resin board coated with on double plane of copper with a thickness that is 1/30 and 1/50 of the resonant wavelength at a resonant frequency of 30.51 GHz and 48.15 GHz. The full width at half maximum (FWHM) reached 2.2 GHz and 2.35 GHz and the peak of the absorptance reached 99.977%. The ultrathin absorber is nearly omnidirectional for all polarizations. The test results of prepared sample testify the designed absorber's excellent absorbing performance forcefully. The absorber expands inspirations of radar stealth in military domain due to its flexible design, cost-effective and other outstanding properties.

  16. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  17. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  18. Device for Measuring Heat Capacities of Microcalorimeter Absorber Materials

    NASA Astrophysics Data System (ADS)

    Kotsubo, Vincent; Beall, James; Ullom, Joel

    2009-12-01

    We are developing a device for measuring the heat capacity of candidate absorber materials for gamma-ray microcalorimeters with the goal of finding materials with low heat capacity and high stopping power to improve detector efficiency. To date, only Sn has been effective as an absorber, and speculation is that other materials suffer from anomalously high heat capacities at low temperatures. The key component of the measurement device is a 17 mm×17 mm low heat capacity silicon platform suspended by Kevlar fibers designed for accepting 1 g to 2 g samples, and whose heat capacity can be characterized prior to attaching a sample. The platform has a thin film Pd/Au heater deposited directly on the silicon, and a semiconducting thermometer bonded to the surface. The heat capacity is determined from C = Gτ, where G is the in-situ measured conductance and x is the measured temperature decay time from a step change in applied heat. For a platform without samples, decay periods on the order of 0.3 to 0.05 seconds were measured. With samples, decay periods of several seconds are projected, allowing good resolution of the heat capacities. Several thermometers were tested in an effort to find one with the optimum characteristics for measuring platform temperatures. These included a commercial thick-film Ruthenium-oxide surface-mount resistor, a germanium NTD, and a zirconium oxy-nitride thin-film thermometer.

  19. Absorbed dose to water: Standards and traceability for radiation oncology

    SciTech Connect

    Almond, P.R.

    1995-12-31

    Although the need for appropriate quantities and units for ionizing radiation has existed since shortly after discovery of X-rays, the quantities and units in general use today were not completely formalized until about 15 years ago. The development of appropriate national and international standards have also been ongoing. For many years the quantity, exposure, measured in units of roentgen was the national standard and they were also the quantity and units in which radiotherapy was described. With the introduction of megavoltage X-ray and electron-beam equipment and the adoption of the quantity {open_quotes}absorbed-dose{close_quotes} measured in units of rad (or gray) different approaches to calibrating these beams were needed. This was especially the case since the national standard in terms of exposure at a maximum photon energy for {sup 60}Co gamma rays was only available. Since the late 1960s various machine calibration protocols have been published. These protocols have to accommodate changes in modality, energy, quantities and units between the national standard and the user. Because of this, a new definition of traceability is proposed to accommodate the present system. By recording all intercomparisons and parameters used, an auditable calibration chain can be maintained. Even with the introduction of calibration protocols based upon national absorbed dose standards, the proposed traceability definition will still be needed.

  20. Resonance production in. gamma gamma. collisions

    SciTech Connect

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (q anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)

  1. [Absorbed doses in dental radiology].

    PubMed

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk.

  2. Gamma europium- and cobalt-sources

    SciTech Connect

    Klochkov, E.P.; Risovany, V.D.; Ponomarenko, B.V.

    1993-12-31

    The double-purpose control rods of nuclear reactors were made in which the inserts containing cobalt and europium oxide with natural {sup 151}Eu and {sup 153}Eu content were used as an absorbing core. The mass content of europium oxide is to exceed 15% to provide for a necessary reactivity. Cobalt and europium radionuclides were shown to be accumulated during the reactor operation allowing the inserts to be used as gamma sources after unloading of control rods at large commercial plants for radiation processing of different materials. Shape, geometry and composition of inserts were optimized allowing their specific activity to be obtained above 2 x 10 Bq/g (about 60 Ci/g). The spectral activity and radiation resistance of gamma sources were studied.

  3. MRI is unable to illustrate the absorption time of the absorbable TIGR mesh in humans: a case report

    PubMed Central

    Öberg, Stina; Andresen, Kristoffer; Møller, Jakob M.; Rosenberg, Jacob

    2015-01-01

    A male patient had a bilateral laparoscopic inguinal hernia repair in 2012. The right-sided hernia was treated with a permanent mesh, and the left-sided hernia received an absorbable mesh. The absorbable TIGR mesh has been proved to be completely absorbed and replaced by new connective tissue after 3 years in sheep. The patient was therefore followed for 3 years by annual magnetic resonance imagings (MRIs) to illustrate the absorption time in humans. During follow-up, the thickness of the absorbable mesh slightly decreased, and at the last clinical examination, the patient was without a recurrence. However, MRI failed to illustrate absorption of the TIGR mesh, perhaps since new connective tissue and the mesh material had the same appearance on the images. In conclusion, MRI was unable to confirm an absorption time of 3 years for the TIGR mesh, and further studies are needed to investigate if the mesh also completely absorbs in humans. PMID:26581219

  4. MIMIM photodetectors using plasmonically enhanced MIM absorbers

    NASA Astrophysics Data System (ADS)

    Abedini Dereshgi, S.; Okyay, A. K.

    2017-02-01

    We demonstrate super absorbing metal-insulator-metal (MIM) stacks and MIMIM photosensitive devices operating at visible and near-infrared (VIS-NIR) spectrum, where absorbing (top) MIM and photocollecting (bottom) MIM can be optimized separately. We investigate different bottom metals in absorbing MIM with nanoparticles realized by dewetting of silver thin film on top. While gold and silver have conventionally been considered the most appropriate plasmonic absorbers, we demonstrate different absorbing metals like aluminum and specifically chromium, with its plasma frequency happening at 850 nm, as more efficient layers for absorption. Absorption in chromium hits 82 percent around 1000 nm. We provide convincing evidences by doing reflection experiment and computational simulations for absorbing MIM part. We also suggest for the first time investigating electric loss tangent of metal or coherently, surface plasmon quality factor of absorbing metals which are reliable tools for engineering different metal layers. They reveal that despite the fact that gold and silver are good plasmonic scatterers in VIS-NIR and reliable absorbers in VIS region, they are not proper choices as absorbers for NIR applications. Once the most optimum absorbing design is pointed out, we integrate it on top of another metal-insulator to form an MIMIM photodetector with tunneling photocurrent path. The final optimized sample consisting of silver - hafnium oxide - chromium - aluminum oxide - silver nanoparticles (from bottom to top) has a dark current of 7nA and a photoresponsivity peak of 0.962 mA/W at 1000 nm and a full width at half maximum of 300 nm, while applied bias is 50 mV and device areas are 300 μm x 600 μm. This photoresponse shows 70 times enhancement compared to former reported spin coated rare nanoparticle MIMIMs.

  5. Air kerma based dosimetry calibration for the Leksell Gamma Knife

    SciTech Connect

    Meltsner, Sheridan Griffin; DeWerd, Larry A.

    2009-02-15

    No accepted official protocol exists for the dosimetry of the Leksell Gamma Knife registered (GK) stereotactic radiosurgery device. Establishment of a dosimetry protocol has been complicated by the unique partial-hemisphere arrangement of 201 individual {sup 60}Co beams simultaneously focused on the treatment volume and by the rigid geometry of the GK unit itself. This article proposes an air kerma based dosimetry protocol using either an in-air or in-acrylic phantom measurement to determine the absorbed dose rate of fields of the 18 mm helmet of a GK unit. A small-volume air ionization chamber was used to make measurements at the physical isocenter of three GK units. The absorbed dose rate to water was determined using a modified version of the AAPM Task Group 21 protocol designed for use with {sup 60}Co-based teletherapy machines. This experimentally determined absorbed dose rate was compared to the treatment planning system (TPS) absorbed dose rate. The TPS used with the GK unit is Leksell GammaPlan. The TPS absorbed dose rate at the time of treatment is the absorbed dose rate determined by the physicist at the time of machine commissioning decay corrected to the treatment date. The TPS absorbed dose rate is defined as absorbed dose rate to water at the isocenter of a water phantom with a radius of 8 cm. Measurements were performed on model B and C Gamma Knife units. The absorbed dose rate to water for the 18 mm helmet determined using air-kerma based calculations is consistently between 1.5% and 2.9% higher than the absorbed dose rate provided by the TPS. These air kerma based measurements allow GK dosimetry to be performed with an established dosimetry protocol and without complications arising from the use of and possible variations in solid phantom material. Measurements were also made with the same ionization chamber in a spherical acrylic phantom for comparison. This methodology will allow further development of calibration methods appropriate for the

  6. Gamma densitometry for the measurement of skeletal density

    NASA Astrophysics Data System (ADS)

    Chalker, B. E.; Barnes, D. J.

    1990-03-01

    A method is described for the measurement of the density of calcium carbonate materials from the attenuation of a narrow, collimated beam of gamma photons. For the measurement of density for slices, approximately 0.5 to 1.0 cm thick, from the skeletons of reef building corals, the optimum beam energy is 30 34 keV; and measurement is practical from approximately 22 to 100 keV. The potential utilities of five commercially available isotopic sources (109Cd,125I,253Gd,210Pb and241Am) are evaluated. Methods and results are presented for gamma densitometry using210Pb and241Am. The210Pb point source had its principal gamma emission at 46.5 keV. Bremsstrahlung and high energy (800 keV) gamma emissions associated with the210Pb decay grand-daughter were detected, and procedures were developed to accommodate the contribution of these emissions to the overall count rate. The attenuation of count rate by aluminium and aragonite absorbers closely followed simple theoretical considerations provided that narrow energy window settings were used at the radiation monitor. These theoretical considerations take account of the density of the material absorbing the radiation, and hence the density could be determined from the attenuation of the gamma beam. Increased accuracy was achieved by the use of241Am and high speed counting equipment.241Am has its principal gamma emission at 59.6 keV. The attenuation of this gamma beam follows simple theoretical considerations for targets with mass thicknesses from 0 to 6 g cm-2. Aragonite from the shell of a giant clam was found to have slightly different properties in the absorption of gamma photons to aragonite from a coral skeleton. The differences were small but statistically significant.

  7. Design of a nonlinear torsional vibration absorber

    NASA Astrophysics Data System (ADS)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  8. Gamma-Ray Transition-Edge Sensor Microcalorimeters on Solid Substrates

    NASA Astrophysics Data System (ADS)

    Iyomoto, Naoko; Kawakami, Hisao; Maehata, Keisuke; Yoshimine, Ikumi; Shuto, Yuki; Nagayoshi, Kenichiro; Mitsuda, Kazuhisa; Ezaki, Shohei; Takano, Akira; Yoshimoto, Shota; Ishibashi, Kenji

    2016-07-01

    We develop transition-edge-sensor microcalorimeters for gamma-ray spectroscopy. To develop mechanically robust detectors, we fabricated devices with no membrane structure. We report results of three such devices, two with a Bi-absorber and the other with a Sn-absorber. The thickness and volume of each absorber are 1 mm and 0.5-0.6 mm3. We cooled the detectors and irradiated each with gamma rays from a Cs-137 source and observed two types of pulses: slow-rise and fast-rise. The slow-rise pulses are signals from gamma rays absorbed or Compton scattered in the absorbers and the fast-rise pulses are signals resulting from Compton scattering in the Si substrate. We selected the slow pulses to obtain energy spectra. The energy resolutions of the 662-keV photo peak for the Bi-absorber and Sn-absorber devices are, respectively, 4.1 and 7.5 keV, whereas their baseline energy resolutions are 3.2 and 2.6 keV. The degradation in energy resolution is mainly because of the fluctuation of bath temperature. The baseline energy resolutions are more than an order of magnitude worse than the design values. The poor resolution probably arises because of thermal noise from Compton events on the Si substrate.

  9. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  10. Indirect Signatures of CP Violation in the Processes {gamma}{gamma} {yields} {gamma}{gamma}, {gamma}Z, and ZZ

    SciTech Connect

    Petriello, Frank J

    2001-07-25

    This paper studies the utility of the processes {gamma}{gamma} {yields} {gamma}{gamma}, {gamma}Z, and ZZ in searching for sources of CP violation arising from energy scales beyond the production thresholds of planned future colliders. In the context of an effective Lagrangian approach we consider the most general set of CP odd SU(2) x U(1) operators that give rise to genuinely quartic gauge boson couplings which can be probed in 2 {yields} 2 scattering processes at a {gamma}{gamma} collider. We study each process in detail, emphasizing the complementary information that is obtained by varying the initial beam polarizations. Finally, we compare our results to other constraints in the literature on CP odd gauge boson interactions and quartic gauge boson couplings; the search reaches obtained here are typically stronger and nicely complement previous studies which have focused primarily on W boson, top quark, or Higgs production.

  11. The diffuse gamma-ray flux associated with sub-PEV/PEV neutrinos from starburst galaxies

    SciTech Connect

    Chang, Xiao-Chuan; Wang, Xiang-Yu

    2014-10-01

    One attractive scenario for the excess of sub-PeV/PeV neutrinos recently reported by IceCube is that they are produced by cosmic rays in starburst galaxies colliding with the dense interstellar medium. These proton-proton (pp) collisions also produce high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background. We calculate the diffuse gamma-ray flux with a semi-analytic approach and consider that the very high energy gamma rays will be absorbed in the galaxies and converted into electron-positron pairs, which then lose almost all of their energy through synchrotron radiation in the strong magnetic fields in the starburst region. Since the synchrotron emission goes into energies below GeV, this synchrotron loss reduces the diffuse high-energy gamma-ray flux by a factor of about two, thus leaving more room for other sources to contribute to the gamma-ray background. For an E{sub ν}{sup −2} neutrino spectrum, we find that the diffuse gamma-ray flux contributes about 20% of the observed diffuse gamma-ray background in the 100 GeV range. However, for a steeper neutrino spectrum, this synchrotron loss effect is less important, since the energy fraction in absorbed gamma rays becomes lower.

  12. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  13. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  14. {gamma} production at CDF

    SciTech Connect

    Abe, F.

    1995-07-01

    We report on preliminary measurements of the {gamma}(1S), {gamma}(2S) and {gamma}(3S) differential and integrated cross sections in p{bar p} at {radical}s = 1.8 TeV using a sample of 16.6 {+-} 0.6 pb{sup -1} collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay {gamma} {yields} {mu}{sup +}{mu}{sup -} in the rapidity region {vert_bar}y{vert_bar} < 0.4. The cross section results are compared to theoretical models of direct bottomonium production.

  15. The nonlinear piezoelectric tuned vibration absorber

    NASA Astrophysics Data System (ADS)

    Soltani, P.; Kerschen, G.

    2015-07-01

    This paper proposes a piezoelectric vibration absorber, termed the nonlinear piezoelectric tuned vibration absorber (NPTVA), for the mitigation of nonlinear resonances of mechanical systems. The new feature of the NPTVA is that its nonlinear restoring force is designed according to a principle of similarity, i.e., the NPTVA should be an electrical analog of the nonlinear host system. Analytical formulas for the NPTVA parameters are derived using the homotopy perturbation method. Doing so, a nonlinear generalization of Den Hartog’s equal-peak tuning rule is developed for piezoelectric vibration absorbers.

  16. Iron-Chalcogenide Based Solar Absorbers

    NASA Astrophysics Data System (ADS)

    Kykyneshi, Robert; Jieratum, Vorranutch; Altschul, Emmeline; Ravichandran, Ram; Pelatt, Brian; Yu, Liping; Zunger, Alex; Wager, John; Keszler, Douglas

    2011-10-01

    Earth abundant, non-toxic solar absorbers are greatly desirable to reduce solar cell production cost. FeS2 pyrite, with a band gap of ˜0.9 eV, is well known for outstanding absorption properties, yet significant photoconversion has never been achieved. Our computational and experimental study recognizes the failure mechanism of iron pyrite as an instability with respect to other FexS (0.5absorbers. Fe2MS4 (M=Si,Ge) are proposed as viable candidates, and merit for solar absorber application discussed.

  17. Fluorescence diagnostics for foods subjected to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kulawansa, Digala M.; Menzel, E. R.; Banford, H. M.

    1996-03-01

    We have examined the inherent fluorescence of pepper and cinnamon samples exposed to radiation from a 60Co gamma source. We find that in the pepper the fluorescence intensity increases with radiation dose and the ratio of fluorescence intensity at two specific wavelengths, 566 and 674 nm, increases with radiation dose. In contrast, in the cinnamon the distinction between unirradiated and irradiated is not clear. Our preliminary work on gamma ray irradiated pepper indicates that laser-induced fluorescence may be utilized to detect the absorbed dose of irradiation of food samples.

  18. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  19. Neutron absorbing coating for nuclear criticality control

    DOEpatents

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  20. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  1. Porous absorber for solar air heaters

    SciTech Connect

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  2. Structured metal film as a perfect absorber.

    PubMed

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yu-Hui; Peng, Ru-Wen; Wang, Mu

    2013-08-07

    A new type of absorber, a four-tined fish-spear-like resonator (FFR), constructed by the two-photon polymerization process, is reported. An absorbance of more than 90% is experimentally realized and the resonance occurs in the space between the tines. Since a continuous layer of metallic thin film covers the structure, it is perfectly thermo- and electroconductive, which is the mostly desired feature for many applications.

  3. Multilayer Radar Absorbing Non-Woven Material

    NASA Astrophysics Data System (ADS)

    Dedov, A. V.; Nazarov, V. G.

    2016-06-01

    We study the electrical properties of multilayer radar absorbing materials obtained by adding nonwoven sheets of dielectric fibers with an intermediate layer of electrically conductive carbon fibers. Multilayer materials that absorb electromagnetic radiation in a wide frequency range are obtained by varying the content of the carbon fibers. The carbon-fiber content dependent mechanism of absorption of electromagnetic radiation by sheets and multilayer materials is considered.

  4. Non-absorbed Antibiotics for IBS

    DTIC Science & Technology

    2012-03-16

    absorbed antibiotic rifaximin for nonconstipated irritable bowel syndrome (IBS). This effort adds to the body of literature from other, smaller studies that...have demonstrated clinical efficacy for IBS with rifaximin . Non-absorbed antibiotics have been endorsed by the American College of Gastroenterology... rifaximin 400 mg three times daily for 10 days or placebo. During the initial 2 weeks of therapy and the subsequent 10 weeks of follow-up rifaximin

  5. Radar Absorbing Materials for Cube Stealth Satellite

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M.

    A Cube Stealth Satellite is proposed for potential applications in defense system. Particularly, the faces of the satellite exposed to the Earth are made of nanostructured materials able to absorb radar surveillance electromagnetic waves, conferring stealth capability to the cube satellite. Microwave absorbing and shielding material tiles are proposed using composite materials consisting in epoxy-resin and carbon nanotubes filler. The electric permittivity of the composite nanostructured materials is measured and discussed. Such data are used by the modeling algorithm to design the microwave absorbing and the shielding faces of the cube satellite. The electromagnetic modeling takes into account for several incidence angles (0-80°), extended frequency band (2-18 GHz), and for the minimization of the electromagnetic reflection coefficient. The evolutionary algorithm used for microwave layered microwave absorber modeling is the recently developed Winning Particle Optimization. The mathematical model of the absorbing structure is finally experimentally validated by comparing the electromagnetic simulation to the measurement of the manufactured radar absorber tile. Nanostructured composite materials manufacturing process and electromagnetic reflection measurements methods are described. Finally, a finite element method analysis of the electromagnetic scattering by cube stealth satellite is performed.

  6. Absorbance changes of carotenoids in different solvents.

    PubMed

    Zang, L Y; Sommerburg, O; van Kuijk, F J

    1997-01-01

    Carotenoids are typically measured in tissues with the high performance liquid chromatography (HPLC) and quantitation is usually done by calibrating with stock solutions in solvents. Four carotenoids including lutein, zeaxanthin, lycopene and beta-carotene were dissolved in hexane and methanol respectively, and their absorbance characteristics were compared. Lutein shows absorbance spectra that are almost independent of solvents at various concentrations. Spectra of zeaxanthin, lycopene and beta-carotene were found to be more solvent-dependent. The absorbance of zeaxanthin at lambda max is about approximately 2 times larger in methanol than in hexane at the higher concentrations, and increased non-linearly with increasing concentration in hexane. The absorbance of lycopene at lambda max in hexane is approximately 4 fold larger than in methanol, but the absorbance of the methanol sample can be recovered by re-extracting this sample in hexane. The absorbance of beta-carotene in hexane is larger than in methanol, and increased linearly with increasing concentration. But beta-carotene showed a non-linear concentration effect in methanol. There are very small variations in lambda max for all four carotenoids between hexane and methanol, due to differences in molar extinction coefficients. The non-linear concentration effects for these carotenoids are probably due to differences in solubility leading to the formation of microcrystals. Thus, care should be taken with quantitation of tissue carotenoid values, when they depend on measurement of concentrations in stock solutions.

  7. The Highly Variable Absorber of NGC 4507

    NASA Astrophysics Data System (ADS)

    Braito, Valentina

    2010-03-01

    Variability studies of the X-ray absorbing media in Seyfert galaxies has proved to be a fundamental tool to assess the nature and location of the absorbing matter present in the central region of Active Galactic Nuclei. An exciting recent development is the finding that the X-ray spectra of a few obscured AGN change between characteristically Compton-thin and Compton-thick states on relatively short time scales with the most extreme example being NGC1365. This places severe constraints on the geometry and structure of the X-ray absorbing/reprocessing regions and suggests the presence of apparently multiple absorbers/ reflecting mirrors and that the absorber could be inhomogeneous and could have a range of ionization states. We present the Suzaku observation of the Seyfert 1.9 galaxy NGC4507, one of the X-ray brightest Compton-thin Seyfert 2s and a candidate for a variable absorber. Suzaku caught the source in a reflection dominated state. A comparison with previous X-ray observations shows that NGC4507 changes from transmission to reflection dominated. The pattern of this dramatic spectral variability cannot be simply explained purely by variability of the nuclear activity, but also requires strong variability in the amount of absorption.

  8. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  9. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  10. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  11. Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Wijers, Ralph A. M. J.; Woosley, Stan

    2012-11-01

    Prologue C. Kouveliotou, R. A . M. J. Wijers and S. E. Woosley; 1. The discovery of the gamma-ray burst phenomenon R. W. Klebesadel; 2. Instrumental principles E. E. Fenimore; 3. The BATSE era G. J. Fishman and C. A. Meegan; 4. The cosmological era L. Piro and K. Hurley; 5. The Swift era N. Gehrels and D. N. Burrows; 6. Discoveries enabled by multi-wavelength afterglow observations of gamma-ray bursts J. Greiner; 7. Prompt emission from gamma-ray bursts T. Piran, R. Sari and R. Mochkovitch; 8. Basic gamma-ray burst afterglows P. Mészáros and R. A. M. J. Wijers; 9. The GRB-supernova connection J. Hjorth and J. S. Bloom; 10. Models for gamma-ray burst progenitors and central engines S. E. Woosley; 11. Jets and gamma-ray burst unification schemes J. Granot and E. Ramirez-Ruiz; 12. High-energy cosmic rays and neutrinos E. Waxman; 13. Long gamma-ray burst host galaxies and their environments J. P. U. Fynbo, D. Malesani and P. Jakobsson; 14. Gamma-ray burst cosmology V. Bromm and A. Loeb; 15. Epilogue R. D. Blandford; Index.

  12. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  13. Muons in gamma showers

    NASA Technical Reports Server (NTRS)

    Stanev, T.; Vankov, C. P.; Halzen, F.

    1985-01-01

    Muon production in gamma-induced air showers, accounting for all major processes. For muon energies in the GeV region the photoproduction is by far the most important process, while the contribution of micron + micron pair creation is not negligible for TeV muons. The total rate of muons in gamma showers is, however, very low.

  14. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  15. Laser Electron Gamma Source. Biennial progress report

    SciTech Connect

    Sandorfi, A.M.; Caracappa, A.; Kuczewski, A.; Kistner, O.C.; Lincoln, F.; Miceli, L.; Thorn, C.E.; Hoblit, S.; Khandaker, M. |

    1994-06-01

    The LEGS facility provides intense, polarized, monochromatic {gamma}-ray beams by Compton backscattering laser light from relativistic electrons circulating in the X-Ray storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. With the start of ring operations at 2.8 GeV, LEGS {gamma}-ray energies now extend to 370 MeV. Considerable progress has been made in the development of a new laser system that will increase the beam energies to 470 MeV, and this system is expected to come into operation before the next biennial report. The total flux is administratively held at 6 {times} 10{sup 6} s{sup {minus}1}. The {gamma}-ray energy is determined, with a resolution of 5.5 MeV, by detecting the scattering electrons in a magnetic spectrometer. This spectrometer can `tag` all {gamma}-rays with energies from 185 MeV up to the Compton edge. The beam spot size at the target position is 8 mm (V) {times} 18 mm (H), FWHM. For a single laser wavelength, the linear polarization of the beam is 98% at the Compton edge and decreases to 50% at about 1/2 the energy of the edge. By choosing the laser wavelengths appropriately the polarization can be maintained above 85% throughout the tagging range. During the last two years, experimental running at LEGS occupied an average of 3000 hours annually. Highlights of some of the programs are discussed below.

  16. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhong, Qiwen

    photosynthesis. Photosynthesis uses light from the sun to drive a series of chemical reactions. Most natural photosynthetic systems utilize chlorophylls to absorb light energy and carry out photochemical charge separation that stores energy in the form of chemical bonds. The sun produces a broad spectrum of light output that ranges from gamma rays to radio waves. The entire visible range of light (400-700 nm) and some wavelengths in the NIR (700-1000 nm), are highly active in driving photosynthesis. Although the most familiar chlorophyll-containing organisms, such as plants, algae and cyanobacteria, cannot use light longer than 700 nm, anoxygenic bacterium containing bacteriochlorophylls can use the NIR part of the solar spectrum. No organism is known to utilize light of wavelength longer than about 1000 nm for photosynthesis. NIR light has a very low-energy content in each photon, so that large numbers of these low-energy photons would have to be used to drive the chemical reactions of photosynthesis. This is thermodynamically possible but would require a fundamentally different molecular mechanism that is more akin to a heat engine than to photochemistry. Early work on developing light absorbing materials for OPVs was inspired by photosynthesis in which light is absorbed by chlorophyll. Structurally related to chlorophyll is the porphyrin family, which has accordingly drawn much interest as the potential light absorbing component in OPV applications. In this dissertation, the design and detail studies of several porphyrin-based NIR absorbing materials, including pi--extended perylenyl porphryins and pyrazole-containing carbaporphyrins, as well as porphyrin modified single-walled carbon nanotube hybrids, will be presented, dedicating efforts to develop novel and application-oriented materials for efficient utilization of sustainable solar energy.

  17. Effect of gamma and neutron irradiation on the mechanical properties of Spectralon™ porous PTFE

    SciTech Connect

    Gourdin, William H.; Datte, Philip; Jensen, Wayne; Khater, Hesham; Pearson, Mark; Girard, Sylvain; Paillet, Philippe; Alozy, Eric

    2016-07-21

    Here, we establish a correspondence between the mechanical properties (maximum load and failure elongation) of Spectralon™ porous PTFE irradiated with 14 MeV neutrons and 1.17 and 1.33 MeV gammas from a cobalt-60 source. From this correspondence we infer that the effects of neutrons and gammas on this material are approximately equivalent for a given absorbed dose.

  18. Effect of gamma and neutron irradiation on the mechanical properties of Spectralon™ porous PTFE

    DOE PAGES

    Gourdin, William H.; Datte, Philip; Jensen, Wayne; ...

    2016-07-21

    Here, we establish a correspondence between the mechanical properties (maximum load and failure elongation) of Spectralon™ porous PTFE irradiated with 14 MeV neutrons and 1.17 and 1.33 MeV gammas from a cobalt-60 source. From this correspondence we infer that the effects of neutrons and gammas on this material are approximately equivalent for a given absorbed dose.

  19. Method of absorbance correction in a spectroscopic heating value sensor

    SciTech Connect

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  20. IDA Gamma-Ray Laser Annual Report (1993)

    DTIC Science & Technology

    1994-02-01

    smaller geneous broadening due to motion of the atoms about than the spacing of the contributing nuclei in a crystal their periodically spaced equilibrium...Borrmanm m (3) ode the relation N . " k-al-lkl ( S ) On substituting (3) into (1) it follows that for some reciprocal-lattice vector a. To satisfy (8) it is 3...superradiance in a crystal is the independent variable that they enclose. The second sufficient for coupling to a Borrmanan mode, the propaga- law , in which R

  1. Cobalt-60 gamma irradiation of shrimp

    SciTech Connect

    Sullivan, N.L.B.

    1993-01-01

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine was measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  2. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  3. Ultrathin flexible dual band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  4. Water absorbency by wool fibers: Hofmeister effect.

    PubMed

    Lo Nostro, Pierandrea; Fratoni, Laura; Ninham, Barry W; Baglioni, Piero

    2002-01-01

    Wool is a complex material, composed of cuticle and epicuticle cells, surrounded by a cell membrane complex. Wool fibers absorb moisture from air, and, once immersed in water, they take up considerable amounts of liquid. The water absorbency parameter can be determined from weight gain, according to a standard method, and used to quantify this phenomenon. In this paper we report a study on the water absorbency (or retention) of untreated wool fibers in the presence of aqueous 1 M salt solutions at 29 degrees C and a relative humidity of either 33% or 56%. The effect of anions was determined by selecting a wide range of different sodium salts, while the effect of cations was checked through some chlorides and nitrates. Our results show a significant specific ion and ion pair "Hofmeister" effects, that change the amount of water absorbed by the fibers. To understand this phenomenon, the water absorbency parameter (A(w)) is compared to different physicochemical parameters such as the lyotropic number, free energy of hydration of ions, molar surface tension increment, polarizability, refractive index increment, and molar refractivity. The data indicate that this Hofmeister phenomenon is controlled by dispersion forces that depend on the polarizability of ionic species, their adsorption frequencies, the solvent, and the substrate. These dispersion forces dominate the behavior in concentrated solutions. They are in accord with new developing theories of solutions and molecular interactions in colloidal systems that account for Hofmeister effects.

  5. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world.

  6. ANL Advanced Photon Source crotch absorber design

    SciTech Connect

    Choi, M. ); Gonczy, J.D.; Howell, J.W.; Niemann, R.C. )

    1991-01-01

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm{sup 2} at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop Al 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce rf impedance and to provide pumping access for the high local gas load. 3 refs., 4 figs., 2 tabs.

  7. Design of a Multi-Channel Ultra-High Resolution Superconducting Gamma-Ray Spectrometer

    SciTech Connect

    Friedrich, S; Terracol, S F; Miyazaki, T; Drury, O B; Ali, Z A; Cunningham, M F; Niedermayr, T R; Barbee Jr., T W; Batteux, J D; Labov, S E

    2004-11-29

    Superconducting Gamma-ray microcalorimeters operated at temperatures around {approx}0.1 K offer an order of magnitude improvement in energy resolution over conventional high-purity Germanium spectrometers. The calorimeters consist of a {approx}1 mm{sup 3} superconducting or insulating absorber and a sensitive thermistor, which are weakly coupled to a cold bath. Gamma-ray capture increases the absorber temperature in proportion to the Gamma-ray energy, this is measured by the thermistor, and both subsequently cool back down to the base temperature through the weak link. We are developing ultra-high-resolution Gamma-ray spectrometers based on Sn absorbers and superconducting Mo/Cu multilayer thermistors for nuclear non-proliferation applications. They have achieved an energy resolution between 60 and 90 eV for Gamma-rays up to 100 keV. We also build two-stage adiabatic demagnetization refrigerators for user-friendly detector operation at 0.1 K. We present recent results on the performance of single pixel Gamma-ray spectrometers, and discuss the design of a large detector array for increased sensitivity.

  8. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  9. Non-Absorbable Gas Behavior in the Absorber/Evaporator of a Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Nagamoto, Wataru; Sugiyama, Takahide

    A two-dimensional numerical study on non-absorbable gas behavior in the absorber/evaporator of an absorption chiller has been performed. In the present study, the effect of the pitch-to-diameter ratio of a cylinder bundle in the absorber was highlighted. From the results, a sudden decrease of the overall heat transfer coefficient of the absorber was observed at a certain mean concentration of non-absorbable gas for each pitch-to-diameter ratio. Such a critical concentration was also found to decrease as the pitch-to- diameter ratio increased. The sudden decrease occurs due to the sudden disappearance of recirculating region, which is formed between the absorber and the evaporator, and where most of non-absorbable gas stays when it exists. As the pitch-to-diameter ratio increases, the recirculating region becomes weak because the velocity of the high velocity region supporting the recirculating flow decreases. Then, the critical mean concentration of non-absorbable gas is found to decrease as pitch-to-ratio increases.

  10. Interference theory of metamaterial perfect absorbers.

    PubMed

    Chen, Hou-Tong

    2012-03-26

    The impedance matching to free space in metamaterial perfect absorbers has been believed to involve and rely on magnetic resonant response, with direct evidence provided by the anti-parallel surface currents in the metal structures. Here I present a different theoretical interpretation based on interference, which shows that the two layers of metal structures in metamaterial absorbers are linked only by multiple reflections with negligible near-field interactions or magnetic resonances. This is further supported by the out-of-phase surface currents derived at the interfaces of resonator array and ground plane through multiple reflections and superpositions. The theory developed here explains all features observed in narrowband metamaterial absorbers and therefore provides a profound understanding of the underlying physics.

  11. Absorber Materials at Room and Cryogenic Temperatures

    SciTech Connect

    F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

    2011-09-01

    We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

  12. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  13. Optical analysis of solar energy tubular absorbers.

    PubMed

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  14. Translatory shock absorber for attitude sensors

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.; Morgan, I. T., Jr.; Kirby, C. A. (Inventor)

    1976-01-01

    A translatory shock absorber is provided for mounting an attitude sensor thereon for isolating a sensor from translatory vibrations. The translatory shock absorber includes a hollow block structure formed as one piece to form a parallelogram. The absorber block structure includes a movable top plate for supporting the attitude sensor and a fixed base plate with opposed side plates interposed between. At the junctions of the side plates, and the base and top plates, there are provided grooves which act as flexible hinges for attenuating translatory vibrations. A damping material is supported on a pedestal which is carried on the base plate between the side plates thereof. The top of the damping material rests against the bottom surface of the top plate for eliminating the resonant peaks of vibration.

  15. Fully carbon metasurface: Absorbing coating in microwaves

    NASA Astrophysics Data System (ADS)

    Bychanok, D.; Li, S.; Gorokhov, G.; Piasotski, K.; Meisak, D.; Kuzhir, P.; Burgess, E. A.; Gallagher, C. P.; Ogrin, F. Y.; Hibbins, A. P.; Pasc, A.; Sanchez-Sanchez, A.; Fierro, V.; Celzard, A.

    2017-04-01

    The microwave-absorbing properties of a heterostructure consisting of an ordered monolayer of porous glassy carbon spheres were experimentally and theoretically investigated in the Ka-band (26-37 GHz) frequency range. The electromagnetic response of such a "moth-eye"-like all-carbon metasurface at a normal incidence angle was modelled on the basis of long-wave approximation. Modelling parameters in the Ka-band were used to estimate and predict the absorption properties of monolayers in free space in the range 1-40 GHz. Experimental and theoretical results demonstrate that a metasurface based on porous glassy carbon spheres is an inert, lightweight, compact, and perfectly absorbing material for designing new effective microwave absorbers in various practically used frequency ranges.

  16. Distributed electric absorbers of beam vibrations

    NASA Astrophysics Data System (ADS)

    dell'lsola, Francesco; Del Vescovo, Dionisio; Maurini, Corrado

    2003-07-01

    Several electric vibration absorbers based on distributed piezoelectric control of beam vibrations are studied. The damping devices are conceived by interconnecting with different modular electric networks an array of piezoelectric transducers uniformly distributed on a beam. Five different vibration absorbers made of five different network interconnecting topologies are considered and their damping performances are analyzed and compared. The analysis is based on homogenized models of modular piezo-electromechanical systems. The optimal parameters of these absorbers are found by adopting the criterion of critical damping of waves with a single wave number. We show that: i) there is an interconnecting network providing an optimal multimodal damping; ii) the performances required to the electr(on)ic components can be significantly decreased by increasing the number (and decreasing the dimensions) of the piezoelectric transducers.

  17. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  18. A comparison of the alpha and gamma radiolysis of CMPO

    SciTech Connect

    Bruce J. Mincher; Stephen P. Mezyk; Gary Groenewold; Gracy Elias

    2011-06-01

    The radiation chemistry of CMPO has been investigated using a combination of irradiation and analytical techniques. The {alpha}-, and {gamma}-irradiation of CMPO resulted in identical degradation rates (G-value, in {mu}mol Gy{sup -1}) for both radiation types, despite the difference in their linear energy transfer (LET). Similarly, variations in {gamma}-ray dose rates did not affect the degradation rate of CMPO. The solvent extraction behavior was different for the two radiation types, however. Gamma-irradiation resulted in steadily increasing distribution ratios for both forward and stripping extractions, with respect to increasing absorbed radiation dose. This was true for samples irradiated as a neat organic solution, or irradiated in contact with the acidic aqueous phase. In contrast, {alpha}-irradiated samples showed a rapid drop in distribution ratios for forward and stripping extractions, followed by essentially constant distribution ratios at higher absorbed doses. These differences in extraction behavior are reconciled by mass spectrometric examination of CMPO decomposition products under the different irradiation sources. Irradiation by {gamma}-rays resulted in the rupture of phosphoryl-methylene bonds with the production of phosphinic acid products. These species are expected to be complexing agents for americium that would result in higher distribution ratios. Irradiation by {alpha}-sources appeared to favor rupture of carbamoyl-methylene bonds with the production of less deleterious acetamide products.

  19. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  20. THE {gamma}SF METHOD

    SciTech Connect

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Kondo, T.; Iwamoto, C.; Okamoto, A.; Goriely, S.; Harada, H.; Kitatani, F.; Goko, S.; Toyokawa, H.; Yamada, K.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2011-10-28

    The {gamma}-ray strength function ({gamma}SF) interconnects radiative neutron capture and photoneutron emission as a common ingredient in the statistical model. Outlined here is an indirect method of determining radiative neutron-capture cross sections for unstable nuclei based on the {gamma}-ray strength function. Application examples of the {gamma}SF method are demonstrated.

  1. Absorber topography dependence of phase edge effects

    NASA Astrophysics Data System (ADS)

    Shanker, Aamod; Sczyrba, Martin; Connolly, Brid; Waller, Laura; Neureuther, Andy

    2015-10-01

    Mask topography contributes to phase at the wafer plane, even for OMOG binary masks currently in use at the 22nm node in deep UV (193nm) lithography. Here, numerical experiments with rigorous FDTD simulation are used to study the impact of mask 3D effects on aerial imaging, by varying the height of the absorber stack and its sidewall angle. Using a thin mask boundary layer model to fit to rigorous simulations it is seen that increasing the absorber thickness, and hence the phase through the middle of a feature (bulk phase) monotonically changes the wafer-plane phase. Absorber height also influences best focus, revealed by an up/down shift in the Bossung plot (linewidth vs. defocus). Bossung plot tilt, however, responsible for process window variability at the wafer, is insensitive to changes in the absorber height (and hence also the bulk phase). It is seen to depend instead on EM edge diffraction from the thick mask edge (edge phase), but stays constant for variations in mask thickness within a 10% range. Both bulk phase and edge phase are also independent of sidewall angle fluctuation, which is seen to linearly affect the CD at the wafer, but does not alter wafer phase or the defocus process window. Notably, as mask topography varies, the effect of edge phase can be replicated by a thin mask model with 8nm wide boundary layers, irrespective of absorber height or sidewall angle. The conclusions are validated with measurements on phase shifting masks having different topographic parameters, confirming the strong dependence of phase variations at the wafer on bulk phase of the mask absorber.

  2. A new-concept gamma calorimeter at ELI-NP

    NASA Astrophysics Data System (ADS)

    Lenzi, M.; Adriani, O.; Albergo, S.; Andreotti, M.; Berto, D.; Borgheresi, R.; Cappello, G.; Cardarelli, P.; Ciaranfi, R.; Consoli, E.; Di Domenico, G.; Evangelisti, F.; Gambaccini, M.; Graziani, G.; Marziani, M.; Palumbo, L.; Passaleva, G.; Pellegriti, M. G.; Serban, A.; Starodubtsev, O.; Statera, M.; Tricomi, A.; Variola, A.; Veltri, M.

    2017-02-01

    ELI-NP is an European Research Infrastructure that will provide a monochromatic, high brilliance gamma beam with tunable energy up to 19.5 MeV. The time structure of the beam consists of 32 high intensity gamma bunches separated by a time interval of 16 ns and delivered at a repetition rate of 100 Hz. In order to match such unprecedented beam specifications, specific devices and techniques have been developed to measure and monitor the beam parameters during the commissioning and the operational phase. This paper presents an overview of the gamma beam characterization system, with particular focus on a new-concept sampling calorimeter made of silicon detectors and polyethylene absorbers.

  3. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  4. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  5. Assessment of gamma dose rate over a suspected uranium mineralisation area of Jebel Mun, Western Sudan.

    PubMed

    Sam, A K; Sirelkhatim, D A; Hassona, R K; Hassan, R E; Hag Musa, E; Ahmed, M M O

    2002-01-01

    This study was conducted at the request of authorities in western Darfour State, to address the public concern about the levels of radioactivity in the area of Jebel Mun situated at Sudan-Chad international boundaries. It has been identified as a high background radiation area through aerial geological surveys conducted in late 1970s. The ambient gamma dose in the area was measured with the aid of a hand-held dose rate meter (Mini-Rad, Series 1000) and the surface rock samples were collected and analysed for their radioactivity content using a high-resolution gamma spectrometry equipped with HPGe with relative efficiency of 18%. The activity concentrations of 238U, 232Th and 40K were found to range from 39-253 Bq.kg(-1), 41-527 Bq.kg(-1) and 77-3027 Bq.kg(-1), respectively. From the values of the standard deviation it was concluded that the activity concentration of the considered primordial radionuclides was highly scattered (localised) which in turn indicates non-uniformity in the geological features and/or formations. 238U activity concentration corresponds to equivalent mass concentration of 7.77+/-6.12 ppm (3.19-20.73 ppm), which is of no economic importance. Samples are enriched in thorium relative to uranium as reflected by the Th:U mass ratio which ranges from 3 to 17. The absorbed dose rate in air as estimated from the measured activity concentrations of the primordial radionuclides using the DRCFs (dose rate conversion factors) falls within the range of 70-522 nGy.h(-1) with an average of 221+/-130 nGy.h(-1). It corresponds to an annual effective dose equivalent averaged of 0.27 mSv. The regression analysis has shown that the correlation between calculated and the measured ambient dose rate is marginally significant (r2 = 0.59). The 232Th series is the major producer of the surface radioactivity followed by 40K as they contribute 48% and 32% of the total absorbed dose, respectively.

  6. Timing the warm absorber in NGC 4051

    NASA Astrophysics Data System (ADS)

    Silva, C. V.; Uttley, P.; Costantini, E.

    2016-12-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results of the extensive 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051 whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed in NGC 4051, is able to produce soft lags, up to 100 s, on timescales of hours. The time delay is associated with the response of the gas to changes in the ionizing source, either by photoionization or radiative recombination, which is dependent on its density. The range of radial distances that, under our assumptions, yield longer time delays are distances r 0.3-1.0 × 1016 cm, and hence gas densities n 0.4-3.0 × 107 cm-3. Since these ranges are comparable to the existing estimates of the location of the warm absorber in NGC 4051, we suggest that it is likely that the observed X-ray time lags may carry a signature of the warm absorber response time to changes in the ionizing continuum. Our results show that the warm absorber in NGC 4051 does not introduce lags on the short timescales associated with reverberation, but will likely modify the hard continuum lags seen on longer timescales, which in this source have been measured to be on the order of 50 s. Hence, these

  7. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  8. Radio-Absorbing Nanocoatings on Corrugated Surfaces

    NASA Astrophysics Data System (ADS)

    Antipov, V. B.; Potekaev, A. I.; Vorozhtsov, A. B.; Melentyev, S. V.; Tsyganok, Yu. I.

    2016-12-01

    The feasibility of producing protective radio-absorbing shielding materials on the basis of differently shaped surfaces with nanostructured coatings is investigated. Combinations of special nanostructured materials and technical solutions for the shape of the absorbing surface were tested, in order to create efficient nanocoatings. It is shown that the coatings of interest that meet the requirements of low reflection and high attenuation of transmitted radiation combined with low coating thickness can be developed, using corrugated surfaces. Corrugated chicken egg-packing cell samples with nanostructured carbon coatings were examined and found to allow for effective shielding of electromagnetic radiation and to exhibit minimum reflection coefficients as compared to construction materials.

  9. Design optimization of nanostrip metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    El-Aasser, Mostafa A.

    2014-01-01

    Metamaterial perfect absorber (MPA) promises many applications due to its capability of complete suppression of transmission or/and reflection. The complete dissipation of the incident electromagnetic energy by the absorptive meta-atoms makes it a unique candidate in many photonic and optoelectronic devices. An ultrathin metamaterial absorber that consists of a periodic nanostrip metal on top of a planar dielectric slab backed by a conducting metal plate is presented. The spectral absorptivity of MPA is investigated by the finite difference time domain method from visible to near-infrared. The various geometrical and material parameters of MPA are optimized for maximum absorption.

  10. Method for manufacture of neutron absorbing articles

    SciTech Connect

    Owens, D.

    1980-07-22

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form.

  11. OSCEE fan exhaust bulk absorber treatment evaluation

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Samanich, N. E.

    1980-01-01

    The acoustic suppression capability of bulk absorber material designed for use in the fan exhaust duct walls of the quiet clean short haul experiment engine (OCSEE UTW) was evaluated. The acoustic suppression to the original design for the engine fan duct which consisted of phased single degree-of-freedom wall treatment was tested with a splitter and also with the splitter removed. Peak suppression was about as predicted with the bulk absorber configuration, however, the broadband characteristics were not attained. Post test inspection revealed surface oil contamination on the bulk material which could have caused the loss in bandwidth suppression.

  12. Shock-Absorbent Ball-Screw Mechanism

    NASA Technical Reports Server (NTRS)

    Hirr, Otto A., Jr.; Meneely, R. W.

    1986-01-01

    Actuator containing two ball screws in series employs Belleville springs to reduce impact loads, thereby increasing life expectancy. New application of springs increases reliability of equipment in which ball screws commonly used. Set of three springs within lower screw of ball-screw mechanism absorbs impacts that result when parts reach their upper and lower limits of movement. Mechanism designed with Belleville springs as shock-absorbing elements because springs have good energy-to-volume ratio and easily stacked to attain any stiffness and travel.

  13. Quantum walk with one variable absorbing boundary

    NASA Astrophysics Data System (ADS)

    Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli

    2017-01-01

    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks.

  14. Shock-Absorbent Ball-Screw Mechanism

    NASA Technical Reports Server (NTRS)

    Hirr, Otto A., Jr.; Meneely, R. W.

    1986-01-01

    Actuator containing two ball screws in series employs Belleville springs to reduce impact loads, thereby increasing life expectancy. New application of springs increases reliability of equipment in which ball screws commonly used. Set of three springs within lower screw of ball-screw mechanism absorbs impacts that result when parts reach their upper and lower limits of movement. Mechanism designed with Belleville springs as shock-absorbing elements because springs have good energy-to-volume ratio and easily stacked to attain any stiffness and travel.

  15. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the

  16. Gamma-Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Weekes, T.; Murdin, P.

    2000-11-01

    Gamma-rays are the highest-energy photons in the ELECTROMAGNETIC SPECTRUM and their detection presents unique challenges. On one hand it is easy to detect γ-rays. The interaction cross-sections are large and above a few MeV the pair production interaction, the dominant γ-ray interaction with matter, is easily recognized. Gamma-ray detectors were far advanced when the concept of `γ-ray astronomy' ...

  17. [Gamma (or immune) interferon].

    PubMed

    Maniu, H

    1987-01-01

    Research on interferon progressed very much during the last years, especially studies on the gamma type of interferon. Historical data about the research conducted on the gamma interferon, its inductors, its physical, chemical and biological properties, the methods of preparation and purification, as well as the perspective of therapeutical utilisation of this type of interferon, in spite of some reversible side effects, are presented and discussed.

  18. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  19. 21 CFR 880.6025 - Absorbent tipped applicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbent tipped applicator. 880.6025 Section 880... Devices § 880.6025 Absorbent tipped applicator. (a) Identification. An absorbent tipped applicator is a device intended for medical purposes that consists of an absorbent swab on a wooden, paper, or...

  20. The GAMMA-400 gamma-ray telescope angular resolution

    NASA Astrophysics Data System (ADS)

    Kheymits, Maxim; Leonov, Alexey

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be realized by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Search for signatures of dark matter, surveying the celestial sphere in order to study point and extended sources of gamma-rays, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, study of gamma-ray bursts and gamma-ray emission from the Sun. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution nearby 1% and angular resolution better than 0.02 deg. The methods, developed to reconstruct the direction of incident gamma photon, are presented in this paper. The main point concerns with the space topology of high energy gamma photon interaction in the matter of GAMMA-400. Multiple secondary particles, generated inside gamma-ray telescope, produce significant problems to restore the direction of initial gamma photon. Also back-splash particles, i.e., charged particles and gamma photons generated in calorimeter and moved upward, mask the initial tracks of electron/positron pair from conversion of incident gamma photon. The processed methods allow us to reconstruct the direction of electromagnetic shower axis and extract the electron/positron trace. As a result, the direction of incident gamma photon with the energy of 100 GeV is calculated with an accuracy of more than 0.02 deg.

  1. The Cooling of a Liquid Absorber using a Small Cooler

    SciTech Connect

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-08-24

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed.

  2. Multiobjective Topology Optimization of Energy Absorbing Materials

    DTIC Science & Technology

    2015-08-01

    absorbing liner for equestrian helmets. Part I: layered foam liner . Mater Des 30(9):3405–3413 Sethian J, Wiegmann A (2000) Structural boundary design via...Army Research Laboratory Wildman RA, Weile DS (2007) Geometry reconstruction of conduct- ing cylinders using genetic programming. IEEE Trans Antennas

  3. Review of Plasmonic Nanocomposite Metamaterial Absorber

    PubMed Central

    Hedayati, Mehdi Keshavarz; Faupel, Franz; Elbahri, Mady

    2014-01-01

    Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface _lasmon). These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on) perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented. PMID:28788511

  4. Shock absorbing mount for electrical components

    NASA Technical Reports Server (NTRS)

    Dillon, R. F., Jr.; Mayne, R. C. (Inventor)

    1975-01-01

    A shock mount for installing electrical components on circuit boards is described. The shock absorber is made of viscoelastic material which interconnects the electrical components. With this system, shocks imposed on one component of the circuit are not transmitted to other components. A diagram of a typical circuit is provided.

  5. Monofilament absorbable sutures in median sternotomy.

    PubMed

    Işik, O; Ipek, G; Mansuroğlu, D; Berki, T; Tuzcu, M; Yakut, C

    1999-08-01

    The most common material used for closure of median sternotomy incision is steel suture in open heart surgery. Some complications and disadvantages have been investigated recently. These complications are the breaking down of steel suture, erosion of sternum tabulae especially in osteoporotic patients, erosion of the dermis especially in patients with thin subdermic layer and cause of infection. Another disadventage of steel suture material is cosmetic problems or discomfort. For these reasons some suture materials such as silk, polyfilament polyester, monofilament material, polypropylene have been used recently. Silk and polyester have a risk of high infection, and polypropylene causes granulation tissue according to the number of knots. These facts encouraged the usage of an absorbable suture material. The available polyfilament absorbable sutures in the market a few years ago had a short absorption time, causing sternal infection and dehiscence. Polydiaxone, a monofilament suture material introduced recently has a considerably longer absorption time. 153 sternal closures were performed with monofilament absorbable suture material in a period of seven months at the Koşuyolu Heart and Research Hospital. The mean age of the patients was 32.55, ranging from 8/12 to 71 years. The mean body weight is 48.37, ranging between 7 kg and 75 kg. Only two patients had sternal dehiscence. We conclude that monofilament absorbable suture is a safe alternative for all kinds of steel suture material for closure of sternotomy.

  6. The design of broadband radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  7. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  8. Lining materials for wet limestone absorber modules

    SciTech Connect

    Bauer, J.P.; Cordes, F.A.; Pace, S.

    1995-06-01

    A large number of carbon steel, wet limestone absorber modules originally lined with rubber are now requiring replacement of the lining material. Alternatives for lining absorber modules include: metal wallpaper (high nickel alloy or 6 Mo stainless steel), rubber (natural or chlorobutyl), and glass-reinforced polymers (epoxy, polyester, and vinyl ester). This paper describes the selection process of a replacement lining for the absorber modules at a typical Midwestern power station. For each alternative, a life-cycle cost analysis was conducted, which considered initial capital, operating and maintenance, and replacement costs over the remaining life of the absorber module. The glass-reinforced vinyl ester system and metal wallpaper were predicted to have nearly identical life-cycle costs. However, the flake glass vinyl ester system has a significantly lower initial installed cost and was thus recommended on the basis of life-cycle and initial cost. Actual construction experience is presented, which confirms the recommendation to replace the lining with a flake glass novalac vinyl ester system.

  9. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  10. How to build a molecular shock absorber.

    PubMed

    McGough, A

    1999-12-02

    Newly determined structures of the alpha-helical repeats that make up the key 'rod' domains of spectrin and alpha-actinin - which serve as spacers between their actin-binding domains - have provided important insights into how these proteins function as molecular shock absorbers in cells.

  11. Novel shock absorber features varying yield strengths

    NASA Technical Reports Server (NTRS)

    Geier, D. J.

    1964-01-01

    A shock absorbent webbing of partially drawn synthetic strands is arranged in sections of varying density related to the varying mass of the human body. This is contoured to protect the body at points of contact, when subjected to large acceleration or deceleration forces.

  12. Torus elements used in effective shock absorber

    NASA Technical Reports Server (NTRS)

    Cunningham, P.; Platus, D. L.

    1966-01-01

    Energy absorbing device forces torus elements to revolve annularly between two concentric tubes when a load is applied to one tube. Interference forces can be varied by using torus elements of different thicknesses. The device operates repeatedly in compression or tension, and under problems of large onset rate tolerance or structural overload.

  13. Shock Tube Test for Energy Absorbing Materials

    DTIC Science & Technology

    2013-09-13

    pressure pulse in a shock tube. This test has application in the development of body armor for blast attenuation and impact attenuation. Foam materials...ANSI Std. Z39.18 FOAM DROP TESTS IMPACT TESTS STRAIN(MECHANICS) IMPACT ATTENUATION BLAST ABSORPTION ...VELOCITY SHOCK TUBES LOADS(FORCES) ENERGY ABSORPTION PRESSURE SHOCK WAVES SHOCK (MECHANICS) ENERGY ABSORBING MATERIALS

  14. Integrated tuned vibration absorbers: a theoretical study.

    PubMed

    Gardonio, Paolo; Zilletti, Michele

    2013-11-01

    This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.

  15. Methods of calculating radiation absorbed dose.

    PubMed

    Wegst, A V

    1987-01-01

    The new tumoricidal radioactive agents being developed will require a careful estimate of radiation absorbed tumor and critical organ dose for each patient. Clinical methods will need to be developed using standard imaging or counting instruments to determine cumulated organ activities with tracer amounts before the therapeutic administration of the material. Standard MIRD dosimetry methods can then be applied.

  16. Tunable metamaterial dual-band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  17. Moving core beam energy absorber and converter

    DOEpatents

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  18. Evaluation of Microwave Anechoic Chamber Absorbing Materials

    DTIC Science & Technology

    1988-05-01

    Labs: Mcgraw-Hill, vol. 11, pp. 612-616, 1947. [14] B. F. Lawrence, "RF anechoic chamber test facilities," Second ESTEC spacecraft EMC seminar... Noordwijk , Netherlands, 1982. [15] E. B. McMillan, and H. J. Schmitt, "Doppler method for absorber testing," Microwave Journal. vol. 3, pp. 64- 68, nov

  19. Metamaterial Absorber Based Multifunctional Sensor Application

    NASA Astrophysics Data System (ADS)

    Ozer, Z.; Mamedov, A. M.; Ozbay, E.

    2017-02-01

    In this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes.

  20. Shock absorber protects motive components against overloads

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Shock absorber with an output shaft, hollow gear, and a pair of springs forming a resilient driving connection between shaft and gear, operates when abnormally high torques are applied. This simple durable frictional device is valuable in rotating mechanisms subject to sudden overloads.

  1. Imaging of Damped Ly-alpha Absorbers

    NASA Astrophysics Data System (ADS)

    Jim, K. T. C.; Roth, K. C.

    1998-05-01

    Intervening H I gas clouds toward QSOs give rise to damped Ly-alpha absorption. Because of the high column density (N(H I)>= 2*E(20) cm(-2) ) these systems have been thought to be galactic disks in some stage of formation. However, because potential optical counterparts have not been identified for most damped Ly-alpha systems, it is possible that some of the absorbing systems could be dwarf irregular galaxies or low surface brightness galaxies, and are thus difficult to image. In any case, the absorbers are expected to have small angular separation from the QSOs, and so high resolution imaging is required to differentiate the absorbers from the QSOs. Because previous studies have not shown any dominant morphological form for the few candidate objects known, our images are obtained with the Hawaii tip-tilt system in order to achieve the best possible morphological classification. By imaging in the NIR and optical bands that bracket the 4000 Angstroms break of these Ly-alpha absorbers, we can more readily select candidate objects by photometrically constraining their redshifts. In our sample of 14 QSOs with abosorbers from 1absorbers (Kolhatkar et al.)

  2. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    SciTech Connect

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  3. Gamma-Ray Attenuation Measurements as a Laboratory Experiment: Some Remarks

    ERIC Educational Resources Information Center

    Adamides, E.; Koutroubas, S. K.; Moshonas, N.; Yiasemides, K.

    2011-01-01

    In this article we make some significant remarks on the experimental study of the absorption of gamma radiation passing through matter. These remarks have to do with the seemingly unexpected trend of the measured intensity of radiation versus the thickness of the absorber, which puzzles students and its explanation eludes many laboratory…

  4. Gamma-Ray Attenuation Measurements as a Laboratory Experiment: Some Remarks

    ERIC Educational Resources Information Center

    Adamides, E.; Koutroubas, S. K.; Moshonas, N.; Yiasemides, K.

    2011-01-01

    In this article we make some significant remarks on the experimental study of the absorption of gamma radiation passing through matter. These remarks have to do with the seemingly unexpected trend of the measured intensity of radiation versus the thickness of the absorber, which puzzles students and its explanation eludes many laboratory…

  5. Effect of gamma ray on optical characteristics of (PMMA/PS) polymer blends

    NASA Astrophysics Data System (ADS)

    Al-Kadhemy, Mahasin F. Hadi; Saeed, Asrar Abdulmunem; Khaleel, Rana Ismael; Al-Nuaimi, Farah Jawad Kadhum

    2017-07-01

    Gamma ray effect has been worked out on PMMA/PS blends at different concentrations. The optical constants such as the absorption coefficient, refractive index are calculated, and optical energy gap (direct/indirect) has been studied before and after irradiation. Transmittance, absorbance, and reflectance spectra of pure and blends polymers are investigated.

  6. Radiation burst from a single {gamma}-photon field

    SciTech Connect

    Shakhmuratov, R. N.; Vagizov, F.; Kocharovskaya, O.

    2011-10-15

    The radiation burst from a single {gamma}-photon field interacting with a dense resonant absorber is studied theoretically and experimentally. This effect was discovered for the fist time by P. Helisto et al.[Phys. Rev. Lett. 66, 2037 (1991)] and it was named the ''gamma echo''. The echo is generated by a 180 Degree-Sign phase shift of the incident radiation field, attained by an abrupt change of the position of the absorber with respect to the radiation source during the coherence time of the photon wave packet. Three distinguishing cases of the gamma echo are considered; i.e., the photon is in exact resonance with the absorber, close to resonance (on the slope of the absorption line), and far from resonance (on the far wings of the resonance line). In resonance the amplitude of the radiation burst is two times larger than the amplitude of the input radiation field just before its phase shift. This burst was explained by Helisto et al. as a result of constructive interference of the coherently scattered field with the phase-shifted input field, both having almost the same amplitude. We found that out of resonance the scattered radiation field acquires an additional component with almost the same amplitude as the amplitude of the incident radiation field. The phase of the additional field depends on the optical thickness of the absorber and resonant detuning. Far from resonance this field interferes destructively with the phase-shifted incident radiation field and radiation quenching is observed. Close to resonance the three fields interfere constructively and the amplitude of the radiation burst is three times larger than the amplitude of the input radiation field.

  7. The Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.

    1991-01-01

    The Gamma Ray Observatory (GRO), scheduled for launch by the Space Shuttle in April 1991, weighs 35,000 lbs and will offer 10 to 20 times better sensitivity than any previous gamma ray mission. The four instruments aboard GRO are described. The Burst and Transient Source Experiment (BATSE) will continuously monitor the entire sky for transient gamma-ray events using eight identical, wide-field detectors capable of measuring brightness variations lasting only milliseconds at energies from about 50,000 to 600,000 eV. The Oriented Scintillation Spectrometer Experiment (OSSE) will make comprehensive observations of discrete sources at energies from 100,000 to 10 million eV, where many radioactive elements have emission lines. The observatory's Imaging Compton Telescope will conduct a deep survey of the entire sky at gamma-ray energies between 1 and 30 MeV. The Energetic Gamma Ray Experiment Telescope will cover a broad high-energy spectral range, from about 20 million to 30 billion eV and conduct a sensitive all-sky survey with a wide field of view and good angular resolution.

  8. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  9. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  10. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  11. Scission gamma rays

    SciTech Connect

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kuznetsov, V. L.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2009-11-15

    Gamma rays probably emitted by the fissioning nucleus {sup 236}U* at the instant of the break of the neck or within the time of about 10{sup -21} s after or before this were discovered in the experiment devoted to searches for the effect of rotation of the fissioning nucleus in the process {sup 235}U(n,{gamma}f) and performed in a polarized beam of cold neutrons from the MEPHISTO Guideline at the FRM II Munich reactor. Detailed investigations revealed that the angular distribution of these gamma rays is compatible with the assumption of the dipole character of the radiation and that their energy spectrum differs substantially from the spectrum of prompt fission gamma rays. In the measured interval 250-600 keV, this spectrum can be described by an exponential function at the exponent value of {alpha} = -5 x 10{sup -3} keV{sup -1}. The mechanism of radiation of such gamma rays is not known at the present time. Theoretical models based on the phenomenon of the electric giant dipole resonance in a strongly deformed fissioning nucleus or in a fission fragment predict harder radiation whose spectrum differs substantially from the spectrum measured in the present study.

  12. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  13. Comparison of LSO and BGO block detectors for prompt gamma imaging in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Hueso-González, F.; Biegun, A. K.; Dendooven, P.; Enghardt, W.; Fiedler, F.; Golnik, C.; Heidel, K.; Kormoll, T.; Petzoldt, J.; Römer, K. E.; Schwengner, R.; Wagner, A.; Pausch, G.

    2015-09-01

    A major weakness of ion beam therapy is the lack of tools for verifying the particle range in clinical routine. The application of the Compton camera concept for the imaging of prompt gamma rays, a by-product of the irradiation correlated to the dose distribution, is a promising approach for range assessment and even three-dimensional in vivo dosimetry. Multiple position sensitive gamma ray detectors arranged in scatter and absorber planes, together with an imaging algorithm, are required to reconstruct the prompt gamma emission density map. Conventional block detectors deployed in Positron Emission Tomography (PET), which are based on Lu2SiO5:Ce (LSO) and Bi4Ge3O12 (BGO) scintillators, are suitable candidates for the absorber of a Compton camera due to their high density and absorption efficiency with respect to the prompt gamma energy range (several MeV). We compare experimentally LSO and BGO block detectors in clinical-like radiation fields in terms of energy, spatial and time resolution. The high energy range compensates for the low light yield of the BGO material and boosts significantly its performance compared to the PET scenario. Notwithstanding the overall superiority of LSO, BGO catches up in the field of prompt gamma imaging and can be considered as a competitive alternative to LSO for the absorber plane due to its lower price and the lack of intrinsic radioactivity.

  14. Design of a non-traditional dynamic vibration absorber.

    PubMed

    Cheung, Y L; Wong, W O

    2009-08-01

    A non-traditional dynamic vibration absorber is proposed for the minimization of maximum vibration velocity response of a vibrating structure. Unlike the traditional damped absorber configuration, the proposed absorber has a linear viscous damper connecting the absorber mass directly to the ground instead of the main mass. Optimum parameters of the proposed absorber are derived based on the fixed-point theory for minimizing the maximum vibration velocity response of a single-degree-of-freedom system under harmonic excitation. The extent of reduction in maximum vibration velocity response of the primary system when using the traditional dynamic absorber is compared with that using the proposed one. Under the optimum tuning condition of the absorbers, it is proved analytically that the proposed absorber provides a greater reduction in maximum vibration velocity response of the primary system than the traditional absorber.

  15. Lunar Elemental Abundances from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Vaniman, D. T.

    1999-01-01

    The determination of elemental abundances is one of the highest science objectives of most lunar missions. Such multi-element abundances, ratios, or maps should include results for elements that are diagnostic or important in lunar processes, including heat-producing elements (such as K and Th), important incompatible elements (Th and rare earth elements), H (for polar deposits and regolith maturity), and key variable elements in major lunar provinces (such as Fe and Ti in the maria). Both neutron and gamma-ray spectroscopy can be used to infer elemental abundances; the two complement each other. These elemental abundances need to be determined with high accuracy and precision from measurements such as those made by the gamma-ray spectrometer (GRS) and neutron spectrometers (NS) on Lunar Prospector. As presented here, a series of steps, computer codes, and nuclear databases are needed to properly convert the raw gamma-ray and neutron measurements into good elemental abundances, ratios, and/or maps. Lunar Prospector (LP) is the first planetary mission that has measured neutrons escaping from a planet other than the Earth. The neutron spectrometers on Lunar Prospector measured a wide range of neutron energies. The ability to measure neutrons with thermal (E < 0.1 eV), epithermal (E about equal 0.1 - 1000 eV), and fast (E about 0.1-10 MeV) energies maximizes the scientific return, being especially sensitive to both H (using epithermal neutrons) and thermal-neutron-absorbing elements. Neutrons are made in the lunar surface by the interaction of galactic-cosmic-ray (GCR) particles with the atomic nuclei in the surface. Most neutrons are produced with energies above about 0.1 MeV. The flux of fast neutrons in and escaping from the Moon depends on es the intensity of the cosmic rays (which vary with solar activity) and the elemental composition of the surface. Variations in the elemental composition of the lunar surface can affect the flux of fast neutrons by about 25

  16. Gamma synthetic hydrographs

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-05-01

    The two-parameter Gamma distribution is presented as a basis for synthetic hydrographs with a review of existing applications and non-feasible applications are identified. Several approaches for fitting this function to practical boundary condition parameters are identified and presented in a unified treatment. They are especially designed for use on small programmable calculators since the synthetic hydrograph is extremely sensitive to the Gamma distribution parameters. Nomographs would give large errors in the fit for small errors in the boundary condition parameters. Although non-dimensionalization of the synthetic hydrograph is possible with the Gamma distribution, it is shown to be unnecessary. Current uses of "standard" non-dimensional hydrographs are shown to be in error.

  17. Gamma radiation effects on silicon photonic waveguides.

    PubMed

    Grillanda, Stefano; Singh, Vivek; Raghunathan, Vivek; Morichetti, Francesco; Melloni, Andrea; Kimerling, Lionel; Agarwal, Anuradha M

    2016-07-01

    To support the use of integrated photonics in harsh environments, such as outer space, the hardness threshold to high-energy radiation must be established. Here, we investigate the effects of gamma (γ) rays, with energy in the MeV-range, on silicon photonic waveguides. By irradiation of high-quality factor amorphous silicon core resonators, we measure the impact of γ rays on the materials incorporated in our waveguide system, namely amorphous silicon, silicon dioxide, and polymer. While we show the robustness of amorphous silicon and silicon dioxide up to an absorbed dose of 15 Mrad, more than 100× higher than previous reports on crystalline silicon, polymer materials exhibit changes with doses as low as 1 Mrad.

  18. Measurement of Absorbed Dose of Neutrons, and of Mixtures of Neutrons and Gamma Rays

    DTIC Science & Technology

    1961-02-03

    Dist Special National Bureau of Standards Handb ok 75 Issued February 3, 1961 Preface Neutron sources such as nuclear reactors, accelerators, and...b. Neutronm The neutron is a nuclear particle, and may be thought of as interacting with nuclei only. The interaction expected between neutrons and... nuclear forces are charge independent. I Metropolis ot at., (1988) Is the best reference pr-esently available from which most of the data conaiened in

  19. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  20. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2011-11-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  1. Imaging highly absorbing nanoparticles using photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  2. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  3. Development and application of rotary shock absorber

    SciTech Connect

    Yamamoto, Kozo; Yamada, Toshihiro; Fukuyama, Katsura

    1995-12-31

    In recent years, rear suspension systems with a single shock absorber unit placed behind the engine, have been used primarily in the middle and large classes of motorcycles. Some features such as the longer rear wheel travel, progressive response characteristics and mass concentration at the center part of motorcycle are effective in improving maneuverability of the motorcycle. In the 1980s, the systems were introduced first in the off-road motorcycles and then in the on-road motorcycles. Performance of the systems are excellent, but there are demands for further improvement of suspension characteristics and space utility at the center part of motorcycle. For this purpose, the authors have developed a prototype of a rotary shock absorber and studied the applicability to modern motorcycles.

  4. Vibration absorber modeling for handheld machine tool

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Azman; Mustafa, Mohd Muhyiddin; Jamil, Jazli Firdaus; Salim, Mohd Azli; Ramli, Faiz Redza

    2015-05-01

    Handheld machine tools produce continuous vibration to the users during operation. This vibration causes harmful effects to the health of users for repeated operations in a long period of time. In this paper, a dynamic vibration absorber (DVA) is designed and modeled to reduce the vibration generated by the handheld machine tool. Several designs and models of vibration absorbers with various stiffness properties are simulated, tested and optimized in order to diminish the vibration. Ordinary differential equation is used to derive and formulate the vibration phenomena in the machine tool with and without the DVA. The final transfer function of the DVA is later analyzed using commercial available mathematical software. The DVA with optimum properties of mass and stiffness is developed and applied on the actual handheld machine tool. The performance of the DVA is experimentally tested and validated by the final result of vibration reduction.

  5. The ultimate chrome absorber in photomask making

    NASA Astrophysics Data System (ADS)

    Hashimoto, Masahiro; Iwashita, Hiroyuki; Kominato, Atsushi; Shishido, Hiroaki; Ushida, Masao; Mitsui, Hideaki

    2008-05-01

    193nm-immersion lithography is the most promising technology for 32nm-node device fabrication. A new Cr absorber (TFC) for 193-nm attenuated phase-shift blanks was developed to meet the photomask requirements without any additional process step, such as hardmask etching. TFC was introduced with a design concept of the vertical profile for shorter etching time, the over etching time reduction. As a result, the dry-etching time was dramatically improved by more than 20% shorter than the conventional Cr absorber (TF11) without any process changes. We confirmed that 150nm-resist thickness was possible by TFC. The 32nm technology-node requirement is fully supported by TFC with thinner CAR, such as resolution and CD performance.

  6. Brief review of emerging photovoltaic absorbers

    DOE PAGES

    Zakutayev, Andriy

    2017-02-08

    Photovoltaic solar cells have recently made significant commercial progress and are on track toward meeting more than 1% of global energy demand. However, further research is needed on photovoltaic technologies that face no scalability constraints in generating more than 10% of the world's electricity. This 2017 article briefly reviews emerging photovoltaic absorber materials, focusing on research progress over the past 2-3 years. Particular emphasis is given to emerging solar cell absorbers -- for example, SnS, Sb2Se3, Cu2SnS3, and CuSbSe2 -- related to established solar cell technologies such as CdTe, Cu(In,Ga)Se2, and CH3NH3PbI3. Lastly, the general publication and performance trends aremore » discussed, and the promising future research directions are pointed out.« less

  7. Impedance matched thin metamaterials make metals absorbing

    NASA Astrophysics Data System (ADS)

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-11-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  8. Investigations on Absorber Materials at Cryogenic Temperatures

    SciTech Connect

    Marhauser, Frank; Elliott, Thomas; Rimmer, Robert

    2009-05-01

    In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility's (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variations from room temperature down to 2 K. Initial results are presented in this paper.

  9. Absorbing Software Testing into the Scrum Method

    NASA Astrophysics Data System (ADS)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  10. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  11. A sound absorbing metasurface with coupled resonators

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  12. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  13. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  14. Accelerated life testing of solar absorber coatings

    NASA Astrophysics Data System (ADS)

    Carlsson, Bo; Moeller, K.; Frei, Ulrich; Koehl, Michael

    1994-09-01

    Results from a comprehensive case study on accelerated life testing of some selective solar collector absorber coatings for DHW systems are reviewed. The study was conducted within Task X `Solar Materials Research and Development' of the IEA Solar Heating and Cooling Program from 1987 to 1992 and is unique due to its quantitative and systematic approach for durability assessment. The work of case study involved the development of both experimental and theoretical tools to aid the assessment of service life or absorber coatings. This entailed performance analysis, failure analysis, microclimate characterization, environmental resistance testing and life date analysis. Predicted in-service degradation of coatings from accelerated life testing was found to be in fairly good agreement both qualitatively and quantitatively with what was actually observed on coatings installed and tested for three years in solar collectors working under typical DHW conditions.

  15. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  16. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  17. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  18. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    PubMed

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-08-01

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash.

  19. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  20. Measurement of the gamma gamma* --> eta and gamma gamma* --> eta' transition form factors

    SciTech Connect

    del Amo Sanchez et al, P.

    2011-02-07

    We study the reactions e{sup +}e{sup -} {yields} e{sup +}e{sup -} {eta}{sup (/)} in the single-tag mode and measure the {gamma}{gamma}* {yields} {eta}{sup (/)} transition form factors in the momentum transfer range from 4 to 40 GeV{sup 2}. The analysis is based on 469 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  1. Gamma-ray Polarimetry

    SciTech Connect

    Tajima, Hiroyasu

    2003-02-05

    An astrophysics application of a low noise Double-sided Silicon Strip Detector (DSSD) is described. A Semiconductor Multiple-Compton Telescope (SMCT) is being developed to explore the gamma-ray universe in the 0.1-20 MeV energy band. Excellent energy resolution and polarization sensitivity are key features of the SMCT. We have developed prototype modules for a low-noise DSSD system, which reached an energy resolution of 1.3 keV (FWHM) for 122 keV at 0 C. Results of a gamma-ray imaging test are also presented.

  2. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    NASA Astrophysics Data System (ADS)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  3. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  4. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  5. Tech Transfer Webinar: Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-06-17

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  6. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  7. Progress On Solar Absorber Selective Paint Research

    NASA Astrophysics Data System (ADS)

    Moore, Stanley W.

    1984-11-01

    A considerable amount of effort has been expended by the Department of Energy (DOE) and by commercial interests to develop solar absorber selective paints; the goal is to develop an inexpensive, durable selective coating that has moderately good optical properties. This report is intended to focus on those research programs monitored by Los Alamos, the research efforts in progress at Los Alamos, durability evaluations, and the progress that has been made toward commercialization.

  8. Lightweight Energy Absorbers for Blast Containers

    NASA Technical Reports Server (NTRS)

    Balles, Donald L.; Ingram, Thomas M.; Novak, Howard L.; Schricker, Albert F.

    2003-01-01

    Kinetic-energy-absorbing liners made of aluminum foam have been developed to replace solid lead liners in blast containers on the aft skirt of the solid rocket booster of the space shuttle. The blast containers are used to safely trap the debris from small explosions that are initiated at liftoff to sever frangible nuts on hold-down studs that secure the spacecraft to a mobile launch platform until liftoff.

  9. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  10. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  11. Simultaneous measurements of indoor radon, radon-thoron progeny and high-resolution gamma spectrometry in Greek dwellings.

    PubMed

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M

    2006-01-01

    Simultaneous indoor radon, radon-thoron progeny and high-resolution in situ gamma spectrometry measurements, with portable high-purity Ge detector were performed in 26 dwellings of Thessaloniki, the second largest town of Greece, during March 2003-January 2005. The radon gas was measured with an AlphaGUARD ionisation chamber (in each of the 26 dwellings) every 10 min, for a time period between 7 and 10 d. Most of the values of radon gas concentration are between 20 and 30 Bq m(-3), with an arithmetic mean of 34 Bq m(-3). The maximum measured value of radon gas concentration is 516 Bq m(-3). The comparison between the radon gas measurements, performed with AlphaGUARD and short-term electret ionisation chamber, shows very good agreement, taking into account the relative short time period of the measurement and the relative low radon gas concentration. Radon and thoron progeny were measured with a SILENA (model 4s) instrument. From the radon and radon progeny measurements, the equilibrium factor F could be deduced. Most of the measurements of the equilibrium factor are within the range 0.4-0.5. The mean value of the equilibrium factor F is 0.49 +/- 0.10, i.e. close to the typical value of 0.4 adopted by UNSCEAR. The mean equilibrium equivalent thoron concentration measured in the 26 dwellings is EEC(thoron) = 1.38 +/- 0.79 Bq m(-3). The mean equilibrium equivalent thoron to radon ratio concentration, measured in the 26 dwellings, is 0.1 +/- 0.06. The mean total absorbed dose rate in air, owing to gamma radiation, is 58 +/- 12 nGy h(-1). The contribution of the different radionuclides to the total indoor gamma dose rate in air is 38% due to 40K, 36% due to thorium series and 26% due to uranium series. The annual effective dose, due to the different source terms (radon, thoron and external gamma radiation), is 1.05, 0.39 and 0.28 mSv, respectively.

  12. Application of magnetorheological elastomer to vibration absorber

    NASA Astrophysics Data System (ADS)

    Deng, Hua-xia; Gong, Xing-long

    2008-11-01

    Traditional dynamic vibration absorber (DVA) is widely used in industries as a vibration absorption equipment. However, it is only effective at narrow working frequency range. This shortcoming has limited its stability and application. This paper develops an adaptive tuned vibration absorber (ATVA) based on unique characteristics of magnetorheological elastomers (MREs), whose modulus can be controlled by an applied magnetic field. This ATVA works in shear mode and consists of dynamic mass, static mass and smart spring elements with MREs. Based on the double pole model of MR effects, the shift-frequency capability of the ATVA has been theoretically and experimentally evaluated. The experimental results demonstrated that the natural frequency of the ATVA can be tuned from 27.5 Hz to 40 Hz. To study its vibration absorption capacity, a beam structure with two ends supported has been employed. To analyze the vibration absorption capacity, a dynamic model of coupling beam and absorber has been established. Both the calculation and experimental results show that the absorption capacity of the developed ATVA is better than the traditional TVA and can achieve as high as 25 dB which was justified by the experiment.

  13. Heaving buoys, point absorbers and arrays.

    PubMed

    Falnes, Johannes; Hals, Jørgen

    2012-01-28

    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required.

  14. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  15. COSMIC DUST IN Mg II ABSORBERS

    SciTech Connect

    Menard, Brice; Fukugita, Masataka

    2012-08-01

    Mg II absorbers induce reddening on background quasars. We measure this effect and infer the cosmic density of dust residing in these systems to be {Omega} Almost-Equal-To 2 Multiplication-Sign 10{sup -6}, in units of the critical density of the universe, which is comparable to the amount of dust found in galactic disks or about half the amount inferred to exist outside galaxies. We also estimate the neutral hydrogen abundance in Mg II clouds to be {Omega} Almost-Equal-To 1.5 Multiplication-Sign 10{sup -4}, which is approximately 5% of hydrogen in stars in galaxies. This implies a dust-to-gas mass ratio for Mg II clouds of about 1/100, which is similar to the value for normal galaxies. This would support the hypothesis of the outflow origin of Mg II clouds, which are intrinsically devoid of stars and hence have no sources of dust. Considerations of the dust abundance imply that the presence of Mg II absorbers around galaxies lasts effectively for a few Gyr. High-redshift absorbers allow us to measure the rest-frame extinction curve to 900 A, at which the absorption by the Lyman edge dominates over scattering by dust in the extinction opacity.

  16. Load limiting energy absorbing lightweight debris catcher

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor); Schneider, William C. (Inventor)

    1991-01-01

    In the representative embodiment of the invention disclosed, a load limiting, energy absorbing net is arranged to overlay a normally-covered vent opening in the rear bulkhead of the space orbiter vehicle. Spatially-disposed flexible retainer straps are extended from the net and respectively secured to bulkhead brackets spaced around the vent opening. The intermediate portions of the straps are doubled over and stitched together in a pattern enabling the doubled-over portions to progressively separate at a predicable load designed to be well below the tensile capability of the straps as the stitches are successively torn apart by the forces imposed on the retainer members whenever the cover plate is explosively separated from the bulkhead and propelled into the net. By arranging these stitches to be successively torn away at a load below the strap strength in response to forces acting on the retainers that are less than the combined strength of the retainers, this tearing action serves as a predictable compact energy absorber for safely halting the cover plate as the retainers are extended as the net is deployed. The invention further includes a block of an energy-absorbing material positioned in the net for receiving loose debris produced by the explosive release of the cover plate.

  17. Development of monofilar rotor hub vibration absorber

    NASA Technical Reports Server (NTRS)

    Duh, J.; Miao, W.

    1983-01-01

    A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.

  18. Gallbladder perforation by absorbable spiral tacker

    PubMed Central

    Wirsching, A; Vonlanthen, R

    2014-01-01

    Introduction Mesh fixation with tacker systems is common in laparoscopic and open hernia repair. Complications due to absorbable tackers are rare and have not been described in the literature. However, we report a case of gallbladder erosion due to tacker dislocation. Methods An open hernia repair was performed using an intraperitoneal onlay mesh for a recurrent parastomal hernia after two previous mesh repairs in a 67-year-old patient. Results On postoperative day 2, the patient was reoperated because of a dislocated tacker that eroded and perforated the fundus region of the gallbladder. Putatively, tacker dislocation occurred owing to imbalanced traction forces. Initially, the mesh was fixed with absorbable tackers around the stoma on the right and transmuscular suture fixation was carried out on the left abdominal side. On revision surgery, tension forces to the right were therefore neutralised by additional transmuscular sutures on the right side. Conclusions Absorbable tackers in open hernia repair provide a safe and effective mesh fixation if tension forces are carefully avoided. PMID:25245719

  19. Timing the warm absorber in NGC4051

    NASA Astrophysics Data System (ADS)

    Silva, C.; Uttley, P.; Costantini, E.

    2015-07-01

    In this work we have combined spectral and timing analysis in the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ˜600ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC4051, whose spectrum has revealed a complex multi-component wind. Working simultaneously with RGS and PN data, we have performed a detailed analysis using a time-dependent photoionization code in combination with spectral and Fourier timing techniques. This method allows us to study in detail the response of the gas due to variations in the ionizing flux of the central source. As a result, we will show the contribution of the recombining gas to the time delays of the most highly absorbed energy bands relative to the continuum (Silva, Uttley & Costantini in prep.), which is also vital information for interpreting the continuum lags associated with propagation and reverberation effects in the inner emitting regions. Furthermore, we will illustrate how this powerful method can be applied to other sources and warm-absorber configurations, allowing for a wide range of studies.

  20. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  1. Gamma knife surgery for craniopharyngioma.

    PubMed

    Prasad, D; Steiner, M; Steiner, L

    1995-01-01

    We present our results of Gamma Knife surgery for craniopharyngioma in nine patients. The current status of surgery, radiation therapy, intracavitary instillation of radionucleides and Gamma Knife surgery in the management of craniopharyngiomas is discussed.

  2. Interferon Gamma-1b Injection

    MedlinePlus

    Interferon gamma-1b injection is used to reduce the frequency and severity of serious infections in people ... with severe, malignant osteopetrosis (an inherited bone disease). Interferon gamma-1b is in a class of medications ...

  3. Gamma-Ray Sterilization of Mars Analog Rocks and Minerals

    NASA Astrophysics Data System (ADS)

    Allen, C. C.

    1998-01-01

    Samples of rock and soil, collected by robotic spacecraft on Mars, will be returned to terrestrial laboratories early in the next century. Plans call for the samples to be placed immediately in biological containment and tested for signs of present or past life and biological hazard. It is recommended that "controlled distribution of unsterilized materials from Mars should occur only if rigorous analyses determine that the materials do not constitute a biological hazard. If any portion of the sample is removed from containment prior to completion of these analyses it should first be sterilized." While sterilization of Mars samples may not be required, an acceptable method must be available before the samples are returned to Earth. Various techniques are routinely used to sterilize biological samples. These include dry heating to temperatures of 150C or higher, heating in the presence of steam, exposure to poisonous gases such as formaldehyde and propiolactone, exposure to H2O2 vapor or plasma, exposure to ultraviolet light, and exposure to gamma radiation. The appropriate technique depends on the physical characteristics of the sample and the desired results. Gamma radiation is routinely used to inactivate viruses and destroy bacteria in medical research. The most commercial sterilizers use Cobalt 60, which emits gamma photons with energies of 1. 173 and 1. 332 MeV. Absorbed doses of approximately 106 rad (104 gamma ray is equal to 104 ergs/gm) are sufficient to destroy most bacteria. The current study is designed to investigate the effects of lethal doses of Cobalt 60 gamma radiation on geologic materials analogous to the first samples to be returned from Mars. The goals are (1) to determine the gamma ray dose required to kill microorganisms within geologic samples, and (2) to determine the effects of lethal doses of gamma radiation on the physical and chemical properties of the samples.

  4. Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate.

    PubMed

    Sharaf, J M; Hamideen, M S

    2013-10-01

    This study is undertaken to determine the activity concentration of (226)Ra, (232)Th and (40)K in samples of commonly used building materials in Jordan. Samples of seven different materials were collected from construction sites and local agencies supplying raw construction materials and analyzed using a HPGe gamma-ray spectrometer, taking into account self-attenuation in bulk samples. The average specific activity concentrations of (226)Ra, (232)Th, and (40)K ranged from 2.84 to 41.52, 0.78 to 58.42. and 3.74 to 897 Bq/kg, respectively. All the samples had radium equivalent activities well below the limit of 370 Bq/kg set by the Organization for Economic Cooperation and Development (OECD, 1979). External and internal hazard indices, absorbed dose and annual effective dose rate associated with the radionuclides of interest were calculated and compared with the international legislation and guidance. In general, most of the activities did not exceed the recommended international limits, except for granite and ceramic samples which are usually used as secondary building materials in Jordan.

  5. Celestial gamma ray study

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1995-01-01

    This report documents the research activities performed by Stanford University investigators as part of the data reduction effort and overall support of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. This report is arranged chronologically, with each subsection detailing activities during roughly a one year period of time, beginning in June 1991.

  6. Fusion gamma diagnostics

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III

    1985-05-01

    Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.

  7. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Burst and Transient Source Experiment on the Gamma Ray Observatory and to collection, analysis, and interpretation of data from the MSFC Very Low Frequency transient monitoring program were performed. The results are summarized and relevant references are included.

  8. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1992-01-01

    Miscellaneous tasks related to mission operations and data analysis for the Burst and Transient Source Experiment on the Gamma Ray Observatory, to collection, analysis, and interpretation of data from the Marshall Space Flight Center Very Low Frequency transient monitoring program, and to compilation and analysis of induced radioactivity data were performed. The results are summarized and relevant references are included.

  9. The Universe in Gamma Rays

    NASA Astrophysics Data System (ADS)

    Schönfelder, Volker

    After describing cosmic gamma-ray production and absorption, the instrumentation used in gamma-ray astronomy is explained. The main part of the book deals with astronomical results, including the somewhat surprising result that the gamma-ray sky is continuously changing.

  10. pi {sup 0} {yields} gamma gamma to NLO in CHPT

    SciTech Connect

    Jose Goity

    2003-05-01

    The pi 0 {yields} gamma gamma width is determined to next to leading order in the combined chiral and 1/Nc expansions. It is shown that corrections driven by chiral symmetry breaking produce an enhancement of about 4.5% with respect to the width calculated in terms of the chiral-limit amplitude leading to Gamma{sub {pi}}{sup 0} {yields} {gamma}{gamma} = 8.1 +/- 0.08 MeV. This theoretical prediction will be tested via pi 0 Primakoff production by the PRIMEX experiment at Jefferson Lab.

  11. Iron K Lines from Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Meszaros, P.; Rees, M. J.

    2003-01-01

    We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.

  12. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    ERIC Educational Resources Information Center

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  13. Spectrophotometry of Thin Films of Light-Absorbing Particles.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2017-04-06

    Thin films of dispersions of light-absorbing solid particles or emulsions containing a light-absorbing solute all have a nonuniform distribution of light-absorbing species throughout the sample volume. This results in nonuniform light absorption over the illuminated area, which causes the optical absorbance, as measured using a conventional specular UV-vis spectrophotometer, to deviate from the Beer-Lambert relationship. We have developed a theoretical model to account for the absorbance properties of such films, which are shown to depend on the size and volume fraction of the light-absorbing particles plus other sample variables. We have compared model predictions with measured spectra for samples consisting of emulsions containing a dissolved light-absorbing solute. Using no adjustable parameters, the model successfully predicts the behavior of nonuniform, light-absorbing emulsion films with varying values of droplet size, volume fraction, and other parameters.

  14. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    ERIC Educational Resources Information Center

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  15. Gamma doses from phospho-gypsum plaster-board.

    PubMed

    O'Brien, R S

    1997-01-01

    The use of phospho-gypsum plaster-board and plaster cement in buildings as a substitute for natural gypsum may constitute an additional source of radiation exposure to both workers and members of the public, both from inhalation of radon progeny produced from radon which is exhaled from the plaster-board and from beta and gamma radiation produced by radioactive decay in the plaster-board. The calculations presented in this paper indicate that if phospho-gypsum sheets 1 cm thick containing a 226Ra concentration of 400 Bq kg(-1) are used to line the walls and ceiling of a room of dimensions up to 5 m x 5 m x 3 m, the annual effective dose from gamma radiation for a person continually occupying the room should not exceed approximately 0.13 mSv. This compares with a measured annual average effective dose from gamma radiation in Australian homes of 0.9 mSv. The annual effective dose from such thin sheets is directly proportional to the 226Ra concentration in the plaster-board.

  16. Some applications of gamma absorptiometry and spectrometry for the control of nuclear materials

    NASA Astrophysics Data System (ADS)

    Guery, M.

    1991-02-01

    In nuclear fuels, and neutrons absorbers used in control rods, the thermal power generated is locally dependent on the concentration of the fissile or absorbing nucleus. In order to control the homogeneity of such materials, non-destructive methods using either gamma absorptiometry or gamma spectrometry were developed; some applications of these methods are presented in this paper. The fuel of the High Temperature Reactor (HTR) is frequently composed of UO 2 and ThO 2 spherical particles dispersed in a carbon matrix; the axial distribution of the particles along the fuel rods can be controlled in two ways: with gamma absorptiometry the heavy elements atoms (U+Th) can be detected but without discrimination between U and Th; with gamma spectrometry, separate distributions of uranium and thorium, deduced from the intensity of characteristic gamma rays are obtained. In nuclear power plants (PWR, FBR) the control rods are made usually with boron carbide (B 4C) pellets. By mean of gamma absorptiometry scanning the density distribution along the axis and the radius of the pellets are obtained. The originality of the method consists in the use of a self-calibration process, then the knowledge of the mass absorption coefficient is not required to perform the examinations. A computerized apparatus has been developed for these controls.

  17. Annual Technical Report.

    DTIC Science & Technology

    1982-11-01

    T ’ .. . . . -. . . . , . . . - . ... - -. --- ~ . . . ..... .... IIS~ANNUAL TECHNICAL REPORT K-TO THE OFFICE OF NAVAL RESEARCH CONTRACT No, N00014...RIECIPICHT’S CATC1.O@ NUM@SA 4. TITLE (sn$ S-611fleI) ’I TYPE OP RErPORT A Pimo0o COVEREC, Annual Technical Report Am~4~10/01ZS-9130/26 S.PERFORMING

  18. Annual Energy Review, 2008

    SciTech Connect

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  19. Annual Review of Biophysics.

    PubMed

    Hatzis, Christos

    2013-07-01

    Annual Review of Biophysics Rees D. Dill K., Williamson J., Annual Reviews Palo Alto, CA, 2010. 581 pp. (hardcover), ISBN: 978-0-8243-1839-0, © 2013 Doody's Review Service. Doody's Review Service. © 2013 American Association of Physicists in Medicine.

  20. Annual Data Profile, 1998.

    ERIC Educational Resources Information Center

    Texas Higher Education Coordinating Board, Austin. Community Colleges and Technical Institutes Div.

    This document is a compilation of annual data profile tables, Perkins measures, and institutional effectiveness measures and standards for South Texas Community College, 1998. Data highlights include: (1) total annual enrollment in 1996-97 was 11,508 (872 white; 29 black; 10,526 Hispanic; 69 Asian; 9 Native American; 3 international; and 81…

  1. Annual Partnership Report, 2016

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2016

    2016-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. This partnership report fulfills statutory reporting requirement W.S. 21-18-202(e)(iv) which mandates the development of annual reports to the legislature on the outcomes of partnerships between colleges…

  2. β-Cyclodextrin-based oil-absorbent microspheres: preparation and high oil absorbency.

    PubMed

    Song, Ci; Ding, Lei; Yao, Fei; Deng, Jianping; Yang, Wantai

    2013-01-02

    This article reports the preparation and evaluation of polymeric microspheres as a new class of oil-absorbent (POAMs). Based on our earlier oil-absorbents, the present microspheres contained β-cyclodextrin (β-CD) moieties as both cross-linking agent and porogen agent, and showed exciting high oil absorbency, fast oil absorption speed and good reusability. Such microspheres were prepared via suspension polymerization with octadecyl acrylate and butyl acrylate as co-monomers, β-CD derivative as cross-linking agent, 2,2'-azoisobutyronitrile as initiator and polyvinylalcohol as stabilizer. Oil absorbency of the POAMs was, for CCl(4), 83.4; CHCl(3), 75.1; xylene, 48.7; toluene, 42.8; gasoline, 30.0; kerosene 27.1; and diesel, 18.2 g/g (oil/POAMs). Saturation oil absorption reached within 3h in CCl(4). The POAMs exhibited high oil retention percentage (>90%), and can be reused for at least 10 times while keeping oil absorbency almost unchanged. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Method for absorbing an ion from a fluid

    DOEpatents

    Gao, Huizhen; Wang, Yifeng; Bryan, Charles R.

    2007-07-03

    A method for absorbing an ion from a fluid by using dispersing an organic acid into an anion surfactant solution, mixing in a divalent-metal containing compound and a trivalent-metal containing compound and calcining the resulting solid layered double hydroxide product to form an absorbent material and then contacting the absorbent material with an aqueous solution of cations or anions to be absorbed.

  4. Dynamic testing of airplane shock-absorbing struts

    NASA Technical Reports Server (NTRS)

    Langer, P; Thome, W

    1932-01-01

    Measurement of perpendicular impacts of a landing gear with different shock-absorbing struts against the drum testing stand. Tests were made with pneumatic shock absorbers having various degrees of damping, liquid shock absorbers, steel-spring shock absorbers and rigid struts. Falling tests and rolling tests. Maximum impact and gradual reduction of the impacts in number and time in the falling tests. Maximum impact and number of weaker impacts in rolling tests.

  5. An Energy Absorber for the International Space Station

    NASA Technical Reports Server (NTRS)

    Wilkes, Bob; Laurence, Lora

    2000-01-01

    The energy absorber described herein is similar in size and shape to an automotive shock absorber, requiring a constant, high load to compress over the stroke, and self-resetting with a small load. The differences in these loads over the stroke represent the energy absorbed by the device, which is dissipated as friction. This paper describes the evolution of the energy absorber, presents the results of testing performed, and shows the sensitivity of this device to several key design variables.

  6. Effect of inclusions' distribution on microwave absorbing properties of composites

    NASA Astrophysics Data System (ADS)

    Qin, Siliang; Wang, Qingguo; Qu, Zhaoming

    2013-03-01

    Effect of inclusions' spatial distributions on the permeability and permittivity of composites is studied using the generalized Maxwell-Garnett equations. The result indicates that inclusions' orientation distribution can increase the longitudinal electromagnetic parameters. For inclusions' random and orientation distribution, single and three-layer absorbers are designed and optimized using genetic algorithm. The result shows that under a given absorbing requirement, absorber with inclusions' orientation distribution is lighter and thinner than absorber with inclusions' random distribution.

  7. Application of airborne gamma spectrometric survey data to estimating terrestrial gamma-ray dose rates: an example in California.

    PubMed

    Wollenberg, H A; Revzan, K L; Smith, A R

    1994-01-01

    We examined the applicability of radioelement data from the National Aerial Radiometric Reconnaissance, an element of the National Uranium Resource Evaluation, to estimate terrestrial gamma-ray absorbed dose rates, by comparing dose rates calculated from aeroradiometric surveys of uranium, thorium, and potassium concentrations with dose rates calculated from a radiogeologic data base and the distribution of lithologies in California. Gamma-ray dose rates increase generally from north to south following lithological trends, with low values of 25-30 nGy h-1 in the northernmost 1 x 2 degrees quadrangles between 41 and 42 degrees N to high values of 75-100 nGy h-1 in southeastern California. Lithologic-based estimates of mean dose rates in the quadrangles generally match those from aeroradiometric data, with statewide means of 63 and 60 nGy h-1, respectively. These are intermediate between a population-weighted global average of 51 nGy h-1 reported in 1982 by UNSCEAR and a weighted continental average of 70 nGy h-1, based on the global distribution of rock types. The concurrence of lithologically and aeroradiometrically determined dose rates in California, with its varied geology and topography encompassing settings representative of the continents, indicates that the National Aerial Radiometric Reconnaissance data are applicable to estimates of terrestrial absorbed dose rates from natural gamma emitters.

  8. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  9. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  10. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  11. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  12. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  13. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  14. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  15. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  16. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  17. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  18. 21 CFR 880.5300 - Medical absorbent fiber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical absorbent fiber. 880.5300 Section 880.5300... Devices § 880.5300 Medical absorbent fiber. (a) Identification. A medical absorbent fiber is a device intended for medical purposes that is made from cotton or synthetic fiber in the shape of a ball or a...

  19. Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration

    DTIC Science & Technology

    2016-08-01

    ARL-TR-7743 ● AUG 2016 US Army Research Laboratory Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology...AUG 2016 US Army Research Laboratory Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration by Muthuvel...COVERED (From - To) 10 January 2012–29 February 2016 4. TITLE AND SUBTITLE Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology

  20. 40 CFR 65.150 - Absorbers used as control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Absorbers used as control devices. 65... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65.150 Absorbers used as control devices. (a) Absorber equipment and...

  1. About sound mufflers sound-absorbing panels aircraft engine

    NASA Astrophysics Data System (ADS)

    Dudarev, A. S.; Bulbovich, R. V.; Svirshchev, V. I.

    2016-10-01

    The article provides a formula for calculating the frequency of sound absorbed panel with a perforated wall. And although the sound absorbing structure is a set of resonators Helmholtz, not individual resonators should be considered in acoustic calculations, and all the perforated wall panel. The analysis, showing how the parameters affect the size and sound-absorbing structures in the absorption rate.

  2. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach.

    PubMed

    Andryieuski, Andrei; Lavrinenko, Andrei V

    2013-04-08

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.

  3. 21 CFR 878.4755 - Absorbable lung biopsy plug.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable lung biopsy plug. 878.4755 Section 878...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4755 Absorbable lung biopsy plug. (a) Identification. A preformed (polymerized) absorbable lung biopsy plug is intended to...

  4. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a device...

  5. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a device...

  6. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a device...

  7. 14 CFR 29.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section... shock absorbers. Unless otherwise prescribed, for each specified landing condition, the tires must be assumed to be in their static position and the shock absorbers to be in their most critical position. ...

  8. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  9. [Absorbable coronary stents. New promising technology].

    PubMed

    Erbel, Raimund; Böse, Dirk; Haude, Michael; Kordish, Igor; Churzidze, Sofia; Malyar, Nasser; Konorza, Thomas; Sack, Stefan

    2007-06-01

    Coronary stent implantation started in Germany 20 years ago. In the beginning, the progress was very slow and accelerated 10 years later. Meanwhile, coronary stent implantation is a standard procedure in interventional cardiology. From the beginning of permanent stent implantation, research started to provide temporary stenting of coronary arteries, first with catheter-based systems, later with stent-alone technology. Stents were produced from polymers or metal. The first polymer stent implantation failed except the Igaki-Tamai stent in Japan. Newly developed absorbable polymer stents seem to be very promising, as intravascular ultrasound (IVUS) and optical coherence tomography have demonstrated. Temporary metal stents were developed based on iron and magnesium. Currently, the iron stent is tested in peripheral arteries. The absorbable magnesium stent (Biotronik, Berlin, Germany) was tested in peripheral arteries below the knee and meanwhile in the multicenter international PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) study. The first magnesium stent implantation was performed on July 30, 2004 after extended experimental testing in Essen. The magnesium stent behaved like a bare-metal stent with low recoil of 5-7%. The stent struts were absorbed when tested with IVUS. Stent struts were not visible by fluoroscopy or computed tomography (CT) as well as magnetic resonance imaging (MRI). That means, that the magnesium stent is invisible and therefore CT and MRI can be used for imaging of interventions. Only using micro-CT the stent struts were visible. The absorption process could be demonstrated in a patient 18 days after implantation due to suspected acute coronary syndrome, which was excluded. IVUS showed a nice open lumen. Stent struts were no longer visible, but replaced by tissue indicating the previous stent location. Coronary angiography after 4 months showed an ischemia-driven target lesion

  10. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  11. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  12. PRECISE {gamma}-RAY TIMING AND RADIO OBSERVATIONS OF 17 FERMI {gamma}-RAY PULSARS

    SciTech Connect

    Ray, P. S.; Wolff, M. T.; Grove, J. E.; Gwon, C.; Kerr, M.; Parent, D.; Makeev, A.; Abdo, A. A.; Guillemot, L.; Freire, P. C. C.; Kramer, M.; Ransom, S. M.; Rea, N.; Roberts, M. S. E.; Camilo, F.; Dormody, M.; Harding, A. K.; Johnston, S.; Keith, M.; Michelson, P. F.

    2011-06-01

    We present precise phase-connected pulse timing solutions for 16 {gamma}-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multiwavelength follow-up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard power-law component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the {gamma}-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the {gamma}-ray to radio phase offset.

  13. [Performance of desulfurizing absorbent of roasted navajoite].

    PubMed

    Chen, Fang; Yang, Chun-ping; Gan, Hai-ming; Wu, Ting; Chen, Hai-lin; Chen, Hong; Xu, Ke-hui; Xie, Geng-xin

    2010-04-01

    An innovative flue gas desulfurization (FGD) coupling process was proposed in this study to overcome the problems in wet-type limestone/lime processes which include fouling, clogging, and difficulty of selling the by-products and the problems in traditional process for vanadium extraction from navajoite ore such as excessive consumption of sulfuric acid and emissions of pollutants. The performance of a jet bubbling reactor (JBR) at pilot-scale was evaluated using navajoite ore produced in the process of extracting vanadium pentoxide as desulfurization absorbent. Results showed that navajoite ore slurry achieved better desulfurization performance than limestone slurry. When the inlet flue gas pressure drop was 3.0 kPa, the gas flow was about 2350 m3 x h(-1) and the pH of the navajoite ore slurry was higher than 4.5, the desulfurization efficiency was stable about 90%. The SO2 removal efficiency appeared to increase along with the increasing of absorbent cycle-index. The efficiency of the second circulation was improved 3.5% compared to the first circulation. After an operating duration of 40 minutes, the leaching rate of vanadium pentoxide was about 20%, and reached 60% when the by-products were leached with 5% dilute sulfuric acid for 10 hours. The by-product from this process not only could be used to produce vanadium pentoxide which is a valuable industrial product, but also could significantly overcome the pollution problem existing in the traditional refining process of vanadium pentoxide when navajoite ore is used as the feed material. This FGD process using roasted navajoite slurry as absorbent is environmental sound and cost-effective, and shows the potential for application in the field of flue gas desulfurization as well as hydrometallurgy.

  14. Ply-tear webbing energy absorber

    NASA Technical Reports Server (NTRS)

    Stevens, G. W. H.

    1972-01-01

    Ply-tear webbing is essentially two plain webbings that are bound together by a portion of the warps and that can be torn apart and do work by breaking the binders. Nylon webbing were woven to range in tear force from 1 to 10 kilonewtons. This force is substantially independent of speed, which was as high as 100 m/sec in some cases. A specific energy absorption of 90 J/g was achieved in the dry state. However, lower rated webbings that absorb approximately 40 J/g are recommended for use in practice where it is acceptable.

  15. Ultra-broadband microwave metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Cui, Yanxia; Ge, Xiaochen; Jin, Yi; He, Sailing

    2012-03-01

    A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-frequencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7 GHz, and the absorption is kept large when the incident angle is smaller than 60°. The experimental results agree well with the numerical simulation.

  16. Electrically tunable absorber based on nonstructured graphene

    NASA Astrophysics Data System (ADS)

    Ye, Caiyan; Zhu, Zhihong; Xu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-12-01

    We demonstrate numerically that a tunable absorber with absorption of 99.94% in the far infrared range can be obtained using a nonstructured graphene. The mechanism originates from a nonstructured graphene film supported on a periodical dielectric array that can show Fermi level modulation periodically and produce plasmonic resonances in the far infrared range. The nonstructured graphene can avoid the unexpected edge effects and does not influence the unique properties of graphene, which will be helpful in practice to achieve the unity absorption and facilitate the development of many related applications.

  17. Absorbing boundary conditions for exterior problems

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    Elliptic and hyperbolic problems in unbounded regions are considered. These problems, when one wants to solve them numerically, have the difficulty of prescribing boundary conditions at infinity. Computationally, one needs a finite region in which to solve these problems. The corresponding conditions at infinity imposed on the finite distance boundaries should dictate the boundary condition at infinity and be accurate with respect to the interior numerical scheme. Such boundary conditions are commonly referred to as absorbing boundary conditions. A treatment is given of these boundary conditions for wave-like equations.

  18. Piston-rotaxanes as molecular shock absorbers.

    PubMed

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response.

  19. Highly absorbing ARC for DUV lithography

    NASA Astrophysics Data System (ADS)

    Pavelchek, Edward K.; Meador, James D.; Guerrero, Douglas J.; Lamb, James E., III; Kache, Ajit; doCanto, Manuel; Adams, Timothy G.; Stark, David R.; Miller, Daniel A.

    1996-06-01

    The properties of a new anti-reflective coating for 248 nm lithography are described. It is formed by thermally cross-linking a spin-on organic coating, and has an absorbance greater than 12/micrometers. It is compatible with UVIIHS and APEX-E photoresists. Thin films (less than 600 angstrom over silicon substrates) are found to completely suppress standing waves, to reduce EO swing curves to less than 3%, and to offer good CD control over typical field oxide topography. The etch rate was found to be comparable to that of the APEX-E photoresist.

  20. Generation of intestinal surface: an absorbing tale

    PubMed Central

    Walton, Katherine D.; Freddo, Andrew M.; Wang, Sha

    2016-01-01

    The vertebrate small intestine requires an enormous surface area to effectively absorb nutrients from food. Morphological adaptations required to establish this extensive surface include generation of an extremely long tube and convolution of the absorptive surface of the tube into villi and microvilli. In this Review, we discuss recent findings regarding the morphogenetic and molecular processes required for intestinal tube elongation and surface convolution, examine shared and unique aspects of these processes in different species, relate these processes to known human maladies that compromise absorptive function and highlight important questions for future research. PMID:27381224

  1. Acoustical model of a Shoddy fibre absorber

    NASA Astrophysics Data System (ADS)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  2. Exposure testing of solar absorber surfaces

    SciTech Connect

    Moore, S.W.

    1986-01-01

    The Los Alamos National Laboratory has been involved in supporting, monitoring and conducting exposure testing of solar materials for approximately ten years. The Laboratory has provided technical monitoring of the IITRI, DSET, Lockheed, and Berry contracts and has operated the Los Alamos exposure Facility for over five years. This report will outline some of the past exposure testing, the testing still in progress, and describe some of the major findings. While this report will primarily emphasize solar absorber surfaces, some of the significant findings relative to advanced glazing will be discussed.

  3. An electromechanical low frequency panel sound absorber.

    PubMed

    Chang, Daoqing; Liu, Bilong; Li, Xiaodong

    2010-08-01

    The sound absorbing properties of a thin micro-perforated plate (MPP) coated with piezoelectric material with shunt damping technology is investigated. First a theoretical model is presented to predict the sound absorption coefficients of a thin plate attached with a piezoelectric patch and electrical circuits. Then the model is extended to analyze the sound absorption for a thin plate with micro perforations and piezoelectric material. Measurements are also carried out in an impedance tube and found to be in good agreements with the theoretical model. The sound absorption of the constructions can be much improved by tuning the electrical circuits.

  4. A novel broadband waterborne acoustic absorber

    NASA Astrophysics Data System (ADS)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  5. Development of a Stereotactic Device for Gamma Knife Irradiation of Small Animals

    PubMed Central

    Chung, Hyun-Tai; Kim, Dong Gyu; Paek, Sun Ha; Cho, Keun-Tae

    2008-01-01

    Objective The authors developed a stereotactic device for irradiation of small animals with Leksell Gamma Knife® Model C. Development and verification procedures were described in this article. Methods The device was designed to satisfy three requirements. The mechanical accuracy in positioning was to be managed within 0.5 mm. The strength of the device and structure were to be compromised to provide enough strength to hold a small animal during irradiation and to interfere the gamma ray beam as little as possible. The device was to be used in combination with the Leksell G-frame® and KOPF® rat adaptor. The irradiation point was determined by separate imaging sequences such as plain X-ray images. Results The absolute dose rate with the device in a Leksell Gamma Knife was 3.7% less than the value calculated from Leksell Gamma Plan®. The dose distributions measured with GAFCHROMIC® MD-55 film corresponded to those of Leksell Gamma Plan® within acceptable range. The device was used in a series of rat experiments with a 4 mm helmet of Leksell Gamma Knife. Conclusion A stereotactic device for irradiation of small animals with Leksell Gamma Knife Model C has been developed so that it fulfilled above requirements. Absorbed dose and dose distribution at the center of a Gamma Knife helmet are in acceptable ranges. The device provides enough accuracy for stereotactic irradiation with acceptable practicality. PMID:19096541

  6. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Sharma, Vikrant

    2013-11-01

    Keeping in view the influence of gamma radiation on the physiochemical properties of the polysaccharides and their importance in the food and pharmaceutical industry, in the present study attempt has been made to investigate the effects of absorbed dose on FTIR, XRD, SEMs, absorbance, pH, solubility, water absorption capacity, emulsion stability and rheology of sterculia gum. Increase in solubility and decrease in swellability of gum has been observed on increasing the absorbed dose. The emulsion stability has improved for the gum sample irradiated with total dose of 8.1±0.2 kGy. Apparent viscosity of gum solution first increased with increase in dose from 0 to 8.1±0.2 kGy than decreased with regular trends with further increase in total absorbed dose. Flow behavior of gum solution shifted to Newtonian from non-Newtonian with increasing the dose.

  7. Estimation of annual effective dose and radiation hazards due to natural radionuclides in Mount Homa, southwestern Kenya.

    PubMed

    Otwoma, D; Patel, J P; Bartilol, S; Mustapha, A O

    2013-08-01

    The radiological hazard of naturally occurring radioactive material in Mount Homa in southwestern Kenya was investigated after 210 point measurements and 44 samples were analysed. In situ measured average outdoor absorbed dose rate in air using survey meters was found to vary from 154.8 to 2280.6 nGy h(-1). The mean (range) values of radioactive concentrations measured using an HpGe detection system for (40)K, (226)Ra and (232)Th were 915 ± 3 (64-3017), 195 ± 8 (17-1447) and 409 ± 4 (23-1369) Bq kg(-1), respectively. The calculated range of the annual effective dose for a person living in Homa Mountain area varied from 28.6 to 1681.2, with a mean of 470.4 µSv. All calculated average radiological indices, namely Radium equivalent, Representative level, Gamma activity, External and Internal hazard, were higher than the limits set by various national and international bodies. These results imply that Mount Homa region is a high background radiation area.

  8. Insight into the Nonlinear Absorbance of Two Related Series of Two-Photon Absorbing Chromophores (Postprint)

    DTIC Science & Technology

    2007-01-01

    Reinhardt, B. A. Opt. Lett. 1995, 20, 1524. (f) Larson, E . J.; Friesen , L. A.; Johnson, C. K. Chem. Phys. Lett. 1997, 265, 161. (g) Albota, M.; Beljonne, D...62102F 5d. PROJECT NUMBER 4348 5e. TASK NUMBER RG 6. AUTHOR(S) Joy E . Rogers (UES, Inc.) Jonathan E . Slagle (AT&T Government Solutions) Daniel G...Insight into the Nonlinear Absorbance of Two Related Series of Two-Photon Absorbing Chromophores Joy E . Rogers,*,†,‡ Jonathan E . Slagle,†,§ Daniel G

  9. Discovery of Rapidly Moving Partial X-Ray Absorbers Within Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.; Petre, R.; Enoto, T.; Morihana, K.; Ishida, M.

    2016-01-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually strong hard X-ray emission. The Suzaku observatory detected six rapid X-ray spectral hardening events called "softness dips" in a approx.100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either approx.40% or approx.70% partial covering absorption to kT approx.12 keV plasma emission by matter with a neutral hydrogen column density of approx.(2-8) ×10(exp 21)/sq cm, while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the gamma Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT approx 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past.

  10. Discovery of Rapidly Moving Partial X-Ray Absorbers Within Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.; Petre, R.; Enoto, T.; Morihana, K.; Ishida, M.

    2016-01-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually strong hard X-ray emission. The Suzaku observatory detected six rapid X-ray spectral hardening events called "softness dips" in a approx.100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either approx.40% or approx.70% partial covering absorption to kT approx.12 keV plasma emission by matter with a neutral hydrogen column density of approx.(2-8) ×10(exp 21)/sq cm, while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the gamma Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT approx 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past.

  11. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    SciTech Connect

    Massaro, F.; Ajello, M.; D'Abrusco, R.; Paggi, A.; Tosti, G.; Gasparrini, D.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.

  12. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  13. Superconducting High Energy Resolution Gamma-ray Spectrometers

    SciTech Connect

    Chow, D T

    2002-02-22

    We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction of TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular results.

  14. Voltage-dependent absorbance change of carotenoids in halophilic archaebacteria.

    PubMed

    Seki, S I; Sasabe, H; Tomioka, H

    1996-10-02

    Membrane vesicles of wild-type Halobacterium sp. mex strain show a wavy absorbance change which has not been so far reported in halophilic archaebacteria. A white mutant strain lacking carotenoids did not show the wavy absorbance change. The wavy absorbance change in the range of 440-590 nm was induced by a red flash (600-640 nm), which photoexcited electrogenic ion pumps, mex bacteriorhodopsin and mex halorhodopsin but not carotenoids. The wavy change was also caused by K+ diffusion potentials without light. These results suggest that the wavy absorbance change in the membrane vesicles is the voltage-dependent absorbance change of the carotenoids.

  15. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  16. Backside absorbing layer microscopy: Watching graphene chemistry.

    PubMed

    Campidelli, Stéphane; Abou Khachfe, Refahi; Jaouen, Kevin; Monteiller, Jean; Amra, Claude; Zerrad, Myriam; Cornut, Renaud; Derycke, Vincent; Ausserré, Dominique

    2017-05-01

    The rapid rise of two-dimensional nanomaterials implies the development of new versatile, high-resolution visualization and placement techniques. For example, a single graphene layer becomes observable on Si/SiO2 substrates by reflected light under optical microscopy because of interference effects when the thickness of silicon oxide is optimized. However, differentiating monolayers from bilayers remains challenging, and advanced techniques, such as Raman mapping, atomic force microscopy (AFM), or scanning electron microscopy (SEM) are more suitable to observe graphene monolayers. The first two techniques are slow, and the third is operated in vacuum; hence, in all cases, real-time experiments including notably chemical modifications are not accessible. The development of optical microscopy techniques that combine the speed, large area, and high contrast of SEM with the topological information of AFM is therefore highly desirable. We introduce a new widefield optical microscopy technique based on the use of previously unknown antireflection and absorbing (ARA) layers that yield ultrahigh contrast reflection imaging of monolayers. The BALM (backside absorbing layer microscopy) technique can achieve the subnanometer-scale vertical resolution, large area, and real-time imaging. Moreover, the inverted optical microscope geometry allows its easy implementation and combination with other techniques. We notably demonstrate the potentiality of BALM by in operando imaging chemical modifications of graphene oxide. The technique can be applied to the deposition, observation, and modification of any nanometer-thick materials.

  17. Wave based optimization of distributed vibration absorbers

    NASA Astrophysics Data System (ADS)

    Johnson, Marty; Batton, Brad

    2005-09-01

    The concept of distributed vibration absorbers or DVAs has been investigated in recent years as a method of vibration control and sound radiation control for large flexible structures. These devices are comprised of a distributed compliant layer with a distributed mass layer. When such a device is placed onto a structure it forms a sandwich panel configuration with a very soft core. With this configuration the main effect of the DVA is to create forces normal to the surface of the structure and can be used at low frequencies to either add damping, where constrain layer damper treatments are not very effective, or to pin the structure over a narrow frequency bandwidth (i.e., large input impedance/vibration absorber approach). This paper analyses the behavior of these devices using a wave based approach and finds an optimal damping level for the control of broadband disturbances in panels. The optimal design is calculated by solving the differential equations for waves propagating in coupled plates. It is shown that the optimal damping calculated using the infinite case acts as a good ``rule of thumb'' for designing DVAs to control the vibration of finite panels. This is bourn out in both numerical simulations and experiments.

  18. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  19. Metamaterial perfect absorber based hot electron photodetection.

    PubMed

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems.

  20. Wave energy extraction by coupled resonant absorbers.

    PubMed

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  1. Mapping liquid distribution in absorbent incontinence products.

    PubMed

    Landeryou, M A; Yerworth, R J; Cottenden, A M

    2003-01-01

    This paper reviews methods available for mapping the distribution of fluid in incontinence pad materials to assist with evaluating existing products and developing new ones, and to provide data for building and validating predictive models. Specifically, the following technologies are considered and their strengths and limitations described: discrete sensors based on conductance, temperature or optical measurements, optical imaging, gravimetric methods, X-ray imaging and magnetic resonance imaging. It is suggested that the ideal method would enable fluid distribution to be mapped in three dimensions with good spatial and time resolution in single materials and composite structures of simple and complex geometries under static and dynamic mechanical loading. It would also allow liquid to be mapped in products when worn by users. It is concluded that, although each existing method meets some of these requirements, and each requirement is met, at least reasonably well, by at least one method, improved techniques are needed. The particular need for methods that can provide some measurement of liquid saturation within absorbent products, both in the laboratory and in real use, is highlighted. In many cases, simple methods used appropriately are sufficient to elicit the important aspects of liquid transport and storage within absorbent products.

  2. Configurable metamaterial absorber with pseudo wideband spectrum.

    PubMed

    Zhu, Weiren; Huang, Yongjun; Rukhlenko, Ivan D; Wen, Guangjun; Premaratne, Malin

    2012-03-12

    Metamaterials attain their behavior due to resonant interactions among their subwavelength components and thus show specific designer features only in a very narrow frequency band. There is no simple way to dynamically increase the operating bandwidth of a narrowband metamaterial, but it may be possible to change its central frequency, shifting the spectral response to a new frequency range. In this paper, we propose and experimentally demonstrate a metamaterial absorber that can shift its central operating frequency by using mechanical means. The shift is achieved by varying the gap between the metamaterial and an auxiliary dielectric slab parallel to its surface. We also show that it is possible to create multiple absorption peaks by adjusting the size and/or shape of the dielectric slab, and to shift them by moving the slab relative to the metamaterial. Specifically, using numerical simulations we design a microwave metamaterial absorber and experimentally demonstrate that its central frequency can be set anywhere in a 1.6 GHz frequency range. The proposed configuration is simple and easy to make, and may be readily extended to THz frequencies.

  3. Fabrication of THz Sensor with Metamaterial Absorber

    NASA Astrophysics Data System (ADS)

    Gonzalez, Hugo; Alves, Fabio; Karunasiri, Gamani

    The terahertz (THz) portion of the electromagnetic spectrum (0.1-10 THz) has not been fully utilized due to the lack of sensitive detectors. Real-time imaging in this spectral range has been demonstrated using uncooled infrared microbolometer cameras and external illumination provided by quantum cascade laser (QCL) based THz sources. However, the microbolometer pixels in the cameras have not been optimized to achieve high sensitivity in THz frequencies. Recently, we have developed a highly sensitive micromechanical THz sensor employing bi-material effect with an integrated metamaterial absorber tuned to the THz frequency of interest. The use of bi-material structures causes deflection on the sensor to as the absorbed THz radiation increases its temperature, which can be monitored optically by reflecting a light beam. This approach eliminates the integration of readout electronics needed in microbolometers. The absorption of THz by metamaterial can be tailored by controlling geometrical parameters. The sensors can be fabricated using conventional microelectronic materials and incorporated into pixels to form focal plane arrays (FPAs). In this presentation, characterization and readout of a THz sensor with integrated metamaterial structure will be described. Supported by DoD.

  4. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect

    Sazali, E. S. Rohani, M. S. Sahar, M. R. Arifin, R. Ghoshal, S. K. Hamzah, K.

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  5. Possible Quantum Absorber Effects in Cortical Synchronization

    NASA Astrophysics Data System (ADS)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  6. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1991-01-01

    A gamma ray collimator including a housing having first and second sections is disclosed. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  7. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1993-01-01

    A gamma ray collimator including a housing having first and second sections. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut-out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  8. A novel Compton camera design featuring a rear-panel shield for substantial noise reduction in gamma-ray images

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.

    2014-12-01

    After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.

  9. NIF Gamma Reaction History

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y.; Young, C. S.; Mack, J. M.; McEvoy, A. M.; Hoffman, N. M.; Wilson, D. C.; Langenbrunner, J. R.; Evans, S.; Batha, S. H.; Stoeffl, W.; Lee, A.; Horsfield, C. J.; Rubery, M.; Miller, E. K.; Malone, R. M.; Kaufman, M. I.

    2010-11-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostics is to provide bang time and burn width information based upon measurement of fusion gamma-rays. This is accomplished with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. In addition, the GRH detectors can perform γ-ray spectroscopy to explore other nuclear processes from which additional significant implosion parameters may be inferred (e.g., plastic ablator areal density). Implementation is occurring in 2 phases: 1) four PMT-based channels mounted to the outside of the NIF target chamber at ˜6 m from TCC (GRH-6m) for the 3e13-3e16 DT neutron yield range expected during the early ignition-tuning campaigns; and 2) several channels located just inside the target bay shield wall at ˜15 m from TCC (GRH-15m) with optical paths leading through the wall into well-shielded streak cameras and PMTs for the 1e16-1e20 yield range expected during the DT ignition campaign. This suite of diagnostics will allow exploration of interesting γ-ray physics well beyond the ignition campaign. Recent data from OMEGA and NIF will be shown.

  10. The DRAGO gamma camera

    SciTech Connect

    Fiorini, C.; Gola, A.; Peloso, R.; Longoni, A.; Lechner, P.; Soltau, H.; Strueder, L.; Ottobrini, L.; Martelli, C.; Lui, R.; Madaschi, L.; Belloli, S.

    2010-04-15

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm{sup 2}, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated {sup 57}Co source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45 deg. with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  11. Absorption of high-energy gamma rays in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Dubus, G.; Malzac, J.; Szostek, A.; Belmont, R.; Zdziarski, A. A.; Henri, G.

    2011-05-01

    Context. The microquasar Cygnus X-3 was detected at high energies by the gamma-ray space telescopes AGILE and Fermi. The gamma-ray emission is transient, modulated with the orbital period and seems related to major radio flares, i.e. to the relativistic jet. The GeV gamma-ray flux can be substantially attenuated by internal absorption with the ambient X-rays. Aims: We examine quantitatively the effect of pair production in Cygnus X-3 and put constraints on the location of the gamma-ray source. Methods: Cygnus X-3 exhibits complex temporal and spectral patterns in X-rays. During gamma-ray flares, the X-ray emission can be approximated by a bright disk black-body component and a non-thermal tail extending in hard X-rays, which is possibly related to a corona above the disk. We calculate numerically the exact optical depth for gamma rays above a standard accretion disk. Emission and absorption in the corona are also investigated. Results: GeV gamma rays are significantly absorbed by soft X-rays emitted from the inner parts of the accretion disk. The absorption pattern is complex and anisotropic. Isotropization of X-rays caused by Thomson scattering in the companion-star wind tends to increase the gamma-ray opacity. Gamma rays from the corona suffer from strong absorption by photons from the disk and cannot explain the observed high-energy emission, unless the corona is unrealistically extended. Conclusions: The lack of an absorption feature in the GeV emission indicates that high-energy gamma rays should be located at a minimum distance ~108-1010 cm from the compact object. The gamma-ray emission is unlikely to have a coronal origin.

  12. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  13. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  14. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  15. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  16. Impedance approach to designing efficient vibration energy absorbers

    NASA Astrophysics Data System (ADS)

    Bobrovnitskii, Y. I.; Morozov, K. D.; Tomilina, T. M.

    2017-03-01

    The concept introduced previously by the authors on the best sound absorber having the maximum allowable efficiency in absorbing the energy of an incident sound field has been extended to arbitrary linear elastic media and structures. Analytic relations have been found for the input impedance characteristics that the best vibrational energy absorber should have. The implementation of these relations is the basis of the proposed impedance method of designing efficient vibration and noise absorbers. We present the results of a laboratory experiment that confirms the validity of the obtained theoretical relations, and we construct the simplest best vibration absorber. We also calculate the parameters and demonstrate the efficiency of a dynamic vibration absorber as the best absorber.

  17. Determination of decay coefficients for combustors with acoustic absorbers

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.; Espander, W. R.; Baer, M. R.

    1972-01-01

    An analytical technique for the calculation of linear decay coefficients in combustors with acoustic absorbers is presented. Tuned circumferential slot acoustic absorbers were designed for the first three transverse modes of oscillation, and decay coefficients for these absorbers were found as a function of backing distance for seven different chamber configurations. The effectiveness of the absorbers for off-design values of the combustion response and acoustic mode is also investigated. Results indicate that for tuned absorbers the decay coefficient increases approximately as the cube of the backing distance. For most off-design situations the absorber still provides a damping effect. However, if an absorber designed for some higher mode of oscillation is used to damp lower mode oscillations, a driving effect is frequently found.

  18. The response characteristics of tetrazolium violet solutions to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Emi-Reynolds, G.; Kovács, András; Fletcher, J. J.

    2007-08-01

    The dosimetry characteristics of various solutions of tetrazolium violet, TV, (2,5-diphenyl-3-(1-naphthyl)-2H-tetrazolium chloride) to gamma irradiation are reported. The optical absorption spectra of these solutions show peaks between 400 and 600 nm with a shoulder at around 550 nm. The dose response of the optical absorbance values of aqueous and aqueous-alcoholic solutions containing different concentrations of TV was measured in the 250 Gy up to 75 kGy dose range. The formation of formazan product was observed due to radiolytic reduction in both solutions. Its formation was found more pronounced in N 2-saturated as well as in alkaline solutions. The results indicate that the 1 mM TV solution can be used for food irradiation and medical sterilization dosimetry at gamma irradiation facilities.

  19. Modification of microcrystalline cellulose by gamma radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Abad, Lucille V.

    2015-10-01

    Modified microcrystalline cellulose (MCC) was prepared through gamma radiation-induced graft polymerization of glycidyl methacrylate (GMA). Simultaneous grafting was employed wherein MCC with GMA in methanol was irradiated with gamma radiation in nitrogen atmosphere. The effects of different experimental factors such as monomer concentration, type of solvent and absorbed dose on the degree of grafting, Dg, were studied. The amount of grafted GMA, expressed as Dg, was determined gravimetrically. Information from grafted samples subjected to Fourier transformed infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode showed peaks corresponding to GMA which indicates successful grafting. The X-ray diffraction (XRD) analysis revealed that the crystalline region of MCC was not adversely affected after grafting with GMA. The thermogravimetric analysis (TGA) data showed that the decomposition of grafted MCC occurred at higher temperature compared to the base MCC polymer.

  20. Effects of. gamma. irradiation on cartilage matrix calcification

    SciTech Connect

    Nijweide, P.J.; Burger, E.H.; van Delft, J.L.; Kawilarange-de Haas, E.W.M.; Wassenaar, A.M.; Mellink, J.H.

    1980-10-01

    The effect of ..gamma.. irradiation on cartilage matrix calcification was studied in vitro. Metatarsal bones of 14- to 17-day-old embryonic mice were dissected and cultured under various conditions. Prior to culture, half of the metatarsal bones received absorbed doses of 1.0 to 30.0 Gy ..gamma.. radiation. Their paired counterparts served as controls. Irradiation inhibited longitudinal growth and calcification of the cartilage matrix during culture. In addition, a number of histological changes were noted. The inhibition of matrix calcification appeared to be due to an inhibition of the intracellular calcium accumulation. The formation of extracellular calcification foci and the growth of the calcified area already present at the moment of explanation were not inhibited during culture.

  1. Ceramic Matrix Composites Performances Under High Gamma Radiation Doses

    NASA Astrophysics Data System (ADS)

    Cemmi, A.; Baccaro, S.; Fiore, S.; Gislon, P.; Serra, E.; Fassina, S.; Ferrari, E.; Ghisolfi, E.

    2014-06-01

    Ceramic matrix composites reinforced by continuous ceramic fibers (CMCs) represent a class of advanced materials developed for applications in automotive, aerospace, nuclear fusion reactors and in other specific systems for harsh environments. In the present work, the silicon carbide/silicon carbide (SiCf/SiC) composites, manufactured by Chemical Vapour Infiltration process at FN S.p.A. plant, have been evaluated in term of gamma radiation hardness at three different absorbed doses (up to around 3MGy). Samples behavior has been investigated before and after irradiation by means of mechanical tests (flexural strength) and by surface and structural analyses (X-ray diffraction, SEM, FTIR-ATR, EPR).

  2. A new gamma camera for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Schotanus, Paul

    1988-06-01

    The detection of annihilation radiation employing radiation absorbed in a barium fluoride (BaF2) crystal is described. The resulting scintillation light is detected in a multiwire proportional chamber filled with a photosensitive vapor. The use of a high density fast scintillator with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. The physical background of the detection mechanism is explored and the performance parameters of a gamma camera using this principle are determined. The scintillation mechanism and physical characteristics of the BaF2 scintillator are examined. Ultraviolet scintillation materials consisting of rare earth doped fluorides are introduced.

  3. Radiation effect on silicon transistors in mixed neutrons-gamma environment

    NASA Astrophysics Data System (ADS)

    Assaf, J.; Shweikani, R.; Ghazi, N.

    2014-10-01

    The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

  4. Gamma radiation shielding and health physics characteristics of diaspore-flyash concretes.

    PubMed

    Singh, Kanwaldeep; Singh, Sukhpal; Singh, S P; Mudahar, Gurmel S; Dhaliwal, A S

    2015-06-01

    Different gamma radiation interaction parameters has been measured experimentally for the prepared diaspore-flyash concretes at 59.54, 662, 1173 and 1332 keV using narrow-beam transmission geometry and results are found to be in good agreement with theoretical values computed with a computer programme, WinXCom. The radiation exposure rate and absorbed dose rate for the gamma radiation with and without shielding of diaspore-flyash concretes have been determined using linear attenuation results. The results show that on average, there is reduction of 95%, 53% and 40% in dose rate for gamma sources (241)Am, (137)Cs and (60)Co, respectively with diaspore-flyash concretes as shielding material. Other health physics parameters namely equivalent dose, effective dose, gamma flux and energy fluence rate have also been determined.

  5. Gamma-Ray Spectrometers Using Superconducting Transition Edge Sensors with External Active Feedback Bias

    SciTech Connect

    Chow, D.T.; van den Berg, M.L.; Loshak, A.; Frank, M.; Barbee, T.W.; Labov, S.E.

    2000-09-22

    The authors are developing x-ray and gamma-ray spectrometers with high absorption efficiency and high energy-resolution for x-ray and gamma-ray spectroscopy. They are microcalorimeters consisting of a bulk Sn absorber coupled to a Mo/Cu multilayer superconducting transition edge sensor (TES). The authors have measured an energy resolution of 70 eV FWHM for 60 keV incident gamma-rays using electrothermal feedback. They have also operated these microcalorimeters with an external active feedback bias to linearize the detector response, improve the count rate performance, and extend the detection energy range. They present x-ray and gamma-ray results operation of this detector design in both bias modes.

  6. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    SciTech Connect

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Bulgarelli, A.; Trifoglio, M.; Di Cocco, G.; Gianotti, F.; Argan, A.; De Paris, G.; Trois, A.; Del Monte, E.; Costa, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Pacciani, L.; Rubini, A.; Sabatini, S.

    2010-09-17

    Terrestrial gamma-ray flashes (TGFs) are very short bursts of high-energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of {approx}5-10 deg. at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the subsatellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  7. Matrix effects in compositional analysis of bulk materials by PGNAA (prompt gamma/neutron activation analysis). Final report

    SciTech Connect

    Rogers, V.C.; Sandquist, G.M.; Merrell, G.B.; Gozani, T.

    1984-08-01

    This feasibility study has identified and evaluated the influence of important matrix effects which arise in the commercial application of prompt gamma/neutron activation analysis (PGNAA) methods to bulk-coal analysis as follows: neutron moderation and absorption changes; gamma-ray attenuation in the sample; sample density and volume changes. The neutron-induced capture gamma spectra were found to vary in a similar, predictable manner for all neutron absorbers found in coal such as hydrogen, boron, nitrogen, chlorine, and sulfur. Three different models have been proposed from this study to analyze coal by PGNAA methods and account for the significant matrix effects arising from hydrogen variation and other system perturbations.

  8. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  9. Method of absorbing UF.sub.6 from gaseous mixtures in alkamine absorbents

    DOEpatents

    Lafferty, Robert H.; Smiley, Seymour H.; Radimer, Kenneth J.

    1976-04-06

    A method of recovering uranium hexafluoride from gaseous mixtures employing as an absorbent a liquid composition at least one of the components of which is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2.

  10. 2010 Annual Report

    SciTech Connect

    2010-01-01

    This annual report includes: an overview of Western; approaches for future hydropower and transmission service; major achievements in FY 2010; FY 2010 customer Integrated Resource Planning, or IRP, survey; and financial data.

  11. Shielding property of natural biomass against gamma rays.

    PubMed

    Mavi, B; Gurbuz, L F; Ciftci, H; Akkurt, I

    2014-01-01

    Algae and cyanobacteria are capable living under harsh conditions in the natural environments and can develop peculiar survival processes. In order to evaluate radiation shielding properties of green algae; Chlorella vulgaris, Scenedesmus obliquus, and cyanobacteria; Synechococcus sp., Planktothrix limnetica, Microcystis aeruginosa, Arthrospira maxima, Anabaena affinis, Phormidium articulatum, and Pseudoanabaena sp. were cultured in batch systems. Air dried biomass was tested for its high tolerance to gamma-radiations in terms of linear attenuation coefficients. In the present work, the linear and mass attenuation coefficients were measured at photon energies of 1173 and 1332 keV. Protection capacity of some biomass was observed to be higher than a 1-cm thick lead standard for comparison. Gamma ray related protection depends not only to thickness but also to density (g/cm3). Hence the effect of biomass density also was tested and significantly found the tested biomass absorbed more of the incoming energy on a density basis than lead. This paper discusses the a new approach to environmental protection from gamma ray. The findings suggest that the test samples, especially cyanobacteria, have a potential for reducing gamma ray more significantly than lead and can be used as shielding materials.

  12. Absorbed Dose and Collision Kerma Relationship for High-Energy Photons

    NASA Astrophysics Data System (ADS)

    Sibata, Claudio Hissao

    Historically, exposure has been used as an important quantity to specify X- or (gamma)- ray beams. For any photon beam the energy fluence is proportional to the exposure. Exposure can be calculated and/or measured if the spectrum of the beam is known and charged particle equilibrium (CPE) exists. For low energy photons (up to approximately 1 MeV), due to the existence of CPE, absorbed dose (D) is equal to the collision kerma (K(,c)). For megavoltage photons this equality is lost due to CPE failure, which also restricts the measurement of exposure. It is possible, though, to find a relationship between the absorbed dose and collision kerma when transient charged particle equilibrium (TCPE) exists. This basic idea was originally proposed by Roesch in 1958 and its refinement has been discussed by Attix in 1979 and 1983. The modified Roesch's formula which enables us to measure exposure even for high-energy photons is given by D = (beta) K(,c) (TURNEQ) K(,c) (1 + (mu)' ) where (mu)' is the effective linear attenuation coefficient and is the mean distance the secondary electrons carry kinetic energy in the direction of the photon beam while depositing it as absorbed dose. The symbol (beta) is the quotient of the absorbed dose and the collision kerma. The importance of Roesch's formula has been recognized and used implicitly in the recent dosimetry protocol of the AAPM (Task Group 21). However, the value used in the protocol is based on theoretical calculations which do not include photon scattering. As a result of the present effort the parameters (mu)' and have been determined experimentally, for the first time. The dependence of (beta) on several factors has been studied and (beta) has been obtained including the effects of scattering. Calculations were also performed for several photon energies and materials, using the Roesch method, which does not include photon scattering effects. Comparisons of measured and calculated values of show

  13. Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts

    SciTech Connect

    Murase, Kohta; Asano, Katsuaki; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-04-06

    Regenerated high energy emissions from gamma-ray bursts (GRBs) are studied in detail. If the primary emission spectrum extends to TeV range, these very high energy photons will be absorbed by the cosmic infrared background (CIB). The created high energy electron-positron pairs up-scatter not only cosmic microwave background (CMB) photons but also CIB photons, and secondary photons are generated in the GeV-TeV range. These secondary delayed photons may be observed in the near future, and useful for a consistency check for the primary spectra and GRB physical parameters. The up-scattered CIB photons cannot be neglected for low redshift bursts and/or GRBs with a relatively low maximum photon energy. The secondary gamma-rays also give us additional information on the CIB, which is uncertain in observations so far.

  14. TARDEC Annual Report 2010

    DTIC Science & Technology

    2011-06-15

    working on specific technologies, such as automotive capabilities, materials and software development. The benefits of these collaborations are two-fold...ANNUAL REPORT U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER TWO THOUSAND TEN Report Documentation Page Form ApprovedOMB No...unlimited 13. SUPPLEMENTARY NOTES Tank- Automotive Research Development and Engineering Center (TARDEC) Fiscal Year (FY) 10 Annual Report 14. ABSTRACT

  15. Natural gas annual 1995

    SciTech Connect

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  16. Natural gas annual 1994

    SciTech Connect

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  17. Lunar based gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Haymes, R. C.

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed.

  18. Gamma Oscillations and Visual Binding

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.

  19. Ultrathin microwave absorber based on metamaterial

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2016-11-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8-4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62-4.2 GHz; however, the absorption was slightly lower than 99% in 1.8-2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments.

  20. Porous Carbon Nanoparticle Networks with Tunable Absorbability

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-08-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels.