Sample records for annual average concentrations

  1. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  2. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  3. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  4. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  5. Year-to-year variations in annual average indoor 222Rn concentrations.

    PubMed

    Martz, D E; Rood, A S; George, J L; Pearson, M D; Langner, G H

    1991-09-01

    Annual average indoor 222Rn concentrations in 40 residences in and around Grand Junction, CO, have been measured repeatedly since 1984 using commercial alpha-track monitors (ATM) deployed for successive 12-mo time periods. Data obtained provide a quantitative measure of the year-to-year variations in the annual average Rn concentrations in these structures over this 6-y period. A mean coefficient of variation of 25% was observed for the year-to-year variability of the measurements at 25 sampling stations for which complete data were available. Individual coefficients of variation at the various stations ranged from a low of 7.7% to a high of 51%. The observed mean coefficient of variation includes contributions due to the variability in detector response as well as the true year-to-year variation in the annual average Rn concentrations. Factoring out the contributions from the measured variability in the response of the detectors used, the actual year-to-year variability of the annual average Rn concentrations was approximately 22%.

  6. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...

  7. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...

  8. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...

  9. Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK

    NASA Astrophysics Data System (ADS)

    Tang, Yuk S.; Braban, Christine F.; Dragosits, Ulrike; Dore, Anthony J.; Simmons, Ivan; van Dijk, Netty; Poskitt, Janet; Dos Santos Pereira, Gloria; Keenan, Patrick O.; Conolly, Christopher; Vincent, Keith; Smith, Rognvald I.; Heal, Mathew R.; Sutton, Mark A.

    2018-01-01

    A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998-2014) and particulate ammonium (NH4+: 1999-2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m-3) and highest in the areas with intensive agriculture (up to 22 µg m-3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m-3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha-1 yr-1) and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n = 59) show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann-Kendall (MK), -6.3 %; linear regression (LR), -3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: -22 %; LR: -21 %, annually averaged NH3) is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (-39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH3), despite the estimated decline in NH3 emissions from this sector since 1998 (-11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999-2014: MK: -47 %; LR: -49 %, p < 0.01, n = 23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3.

  10. Globally Averaged Atmospheric CFC-11 Concentrations: Monthly and Annual Data for the Period 1975-1992 (DB1010)

    DOE Data Explorer

    Khalil, M. A.K. [Oregon Graduate Institute of Science and Technology Portland, Oregon (USA); Rasmussen, R. A. [Oregon Graduate Institute of Science and Technology Portland, Oregon

    1996-01-01

    This data set presents globally averaged atmospheric concentrations of chlorofluorocarbon 11, known also as CFC-11 or F-11 (chemical name: trichlorofluoromethane; formula: CCl3F). The monthly global average data are derived from flask air samples collected at eight sites in six locations over the period August 1980-July 1992. The sites are Barrow (Alaska), Cape Meares (Oregon), Cape Kumukahi and Mauna Loa (Hawaii), Cape Matatula (American Samoa), Cape Grim (Tasmania), Palmer Station, and the South Pole (Antarctica). At each collection site, monthly averages were obtained from three flask samples collected every week. In addition to the monthly global averages available for 1980-992, this data set also contains annual global average data for 1975-1985. These annual global averages were derived from January measurements at the South Pole and in the Pacific Northwest of the United States (specifically, Washington state and the Oregon coast).

  11. Effective control measures at high particulate pollution areas : analysis of data from the 2000 Phoenix Greenwood study

    DOT National Transportation Integrated Search

    2005-02-01

    Annual average PM10 concentrations at the Greenwood monitoring station in western Phoenix have : exceeded EPAs annual average air quality standard and are higher on average than values observed at the : West Phoenix monitor, which is located just ...

  12. ERROR IN ANNUAL AVERAGE DUE TO USE OF LESS THAN EVERYDAY MEASUREMENTS

    EPA Science Inventory

    Long term averages of the concentration of PM mass and components are of interest for determining compliance with annual averages, for developing exposure surrogated for cross-sectional epidemiologic studies of the long-term of PM, and for determination of aerosol sources by chem...

  13. Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abuelhia, E.

    2017-11-01

    The aim of this study is to determine the indoor radon concentration and to evaluate the annual effective dose received by the inhabitants in Dammam, Al-Khobar, and compare it with new premises built at university of dammam. The research has been carried out by using active detection method; Electronic Radon Detector (RAD-7) a solid state α-detector with its special accessories. The indoor radon concentration measured varies from 10.2 Bqm-3 to 25.8 Bqm-3 with an average value of 18.8 Bqm-3 and 19.7 Bqm-3 to 23.5 Bqm-3 with an average value of 21.7 Bqm-3, in Dammam and Al-khobar dwellings, respectively. In university of dammam the radon concentration varies from 7.4 Bqm-3 to 15.8 Bqm-3 with an average value of 9.02 Bqm-3. The values of annual effective doses were found to be 0.47mSv/y, 0.55mSv/y, and 0.23mSv/y, in Dammam, Al-khobar and university new premises, respectively. The average radon concentration in the old dwellings was two times compared to that in the new premises and it was 25.4 Bqm-3 lower than the world average value of 40 Bqm-3 reported by the UNSCEAR. The annual effective doses in the old dwellings was found to be (0.55mSv/y) two times the doses received at the new premises, and below the world wide average of 1.15mSv/y reported by ICRP (2010). The indoor radon concentration in the study region is safe as far as health hazard is concerned.

  14. The relationships between chemical and genetic differentiation and environmental factors across the distribution of Erigeron breviscapus (Asteraceae).

    PubMed

    Li, Xiang; Peng, Li-yan; Zhang, Shu-dong; Zhao, Qin-shi; Yi, Ting-shuang

    2013-01-01

    Erigeron breviscapus (Vant.) Hand.-Mazz. is an important, widely used Chinese herb with scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B being its major active compounds. We aimed to resolve the influence of biotic and abiotic factors on the concentrations of these compounds and to determine appropriate cultivation methods to improve the yields of the four compounds in this herb. In order to detect the major genetic and natural environmental factors affecting the yields of these four compounds, we applied AFLP markers to investigate the population genetic differentiation and HPLC to measure the concentrations of four major active compounds among 23 wild populations which were located across almost the entire distribution of this species in China. The meteorological data including annual average temperature, annual average precipitation and annual average hours of sunshine were collected. The relationships among the concentrations of four compounds and environmental factors and genetic differentiation were studied. Low intraspecific genetic differentiation is detected, and there is no obvious correlation between the genetic differentiation and the contents of the chemical compounds. We investigated the correlation between the concentrationsof four compounds (scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B) and environmental factors. Concentrations of two compounds (1,5-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid) were correlated with environmental factors. The concentration of 1,5-dicaffeoylquinic acid is positively correlated with latitude, and is negatively correlated with the annual average temperature. The concentration of 3,5-dicaffeoylquinic acid is positively correlated with annual average precipitation. Therefore, changing cultivation conditions may significantly improve the yields of these two compounds. We found the concentration of scutellarin positively correlated with that of erigoster B and 3,5-dicaffeoylquinic acid, respectively. We inferred that the synthesis of these two pairs of compounds may share similar triggering mechanism as they synthesized in a common pathway.

  15. Acid rain monitoring in East-Central Florida from 1977 to present

    NASA Technical Reports Server (NTRS)

    Madsen, B. C.; Kheoh, T.; Hinkle, C. R.; Dreschel, T. W.

    1990-01-01

    Rainfall has been collected on the University of Central Florida campus and at the Kennedy Space Center over a 12 year period. The chemical composition has been determined and summarized by monthly, annual periods, and for the entire 12 year period at both locations. The weighted average pH at each site is 4.58; however, annual weighted average pH has been equal to or above the 12 year average during six of the past eight years. Nitrate concentrations have increased slightly during recent years while excess sulfate concentrations have remained below the 12 year weighted average during six of the past seven years. Stepwise regression suggests that sulfate, nitrate, ammonium ion and calcium play major roles in the description of rainwater acidity. Annual acid deposition and annual rainfall have varied from 20 to 50 meg/(m(exp 2) year) and 100 to 180 cm/year, respectively. Sea salt comprises at least 25 percent of the total ionic composition.

  16. Dust deposition and ambient PM10 concentration in northwest China: spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Sharratt, Brenton; Chen, Xi; Wang, Zi-Fa; Liu, Lian-You; Guo, Yu-Hong; Li, Jie; Chen, Huan-Sheng; Yang, Wen-Yi

    2017-02-01

    Eolian dust transport and deposition are important geophysical processes which influence global bio-geochemical cycles. Currently, reliable deposition data are scarce in central and east Asia. Located at the boundary of central and east Asia, Xinjiang Province of northwestern China has long played a strategic role in cultural and economic trade between Asia and Europe. In this paper, we investigated the spatial distribution and temporal variation in dust deposition and ambient PM10 (particulate matter in aerodynamic diameter ≤ 10 µm) concentration from 2000 to 2013 in Xinjiang Province. This variation was assessed using environmental monitoring records from 14 stations in the province. Over the 14 years, annual average dust deposition across stations in the province ranged from 255.7 to 421.4 t km-2. Annual dust deposition was greater in southern Xinjiang (663.6 t km-2) than northern (147.8 t km-2) and eastern Xinjiang (194.9 t km-2). Annual average PM10 concentration across stations in the province varied from 100 to 196 µg m-3 and was 70, 115 and 239 µg m-3 in northern, eastern and southern Xinjiang, respectively. The highest annual dust deposition (1394.1 t km-2) and ambient PM10 concentration (352 µg m-3) were observed in Hotan, which is located in southern Xinjiang and at the southern boundary of the Taklamakan Desert. Dust deposition was more intense during the spring and summer than other seasons. PM10 was the main air pollutant that significantly influenced regional air quality. Annual average dust deposition increased logarithmically with ambient PM10 concentration (R2 ≥ 0.81). While the annual average dust storm frequency remained unchanged from 2000 to 2013, there was a positive relationship between dust storm days and dust deposition and PM10 concentration across stations. This study suggests that sand storms are a major factor affecting the temporal variability and spatial distribution of dust deposition in northwest China.

  17. 40 CFR 464.44 - New source performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards. 464...

  18. 40 CFR 464.14 - New source performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...

  19. 40 CFR 464.14 - New source performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards. 464...

  20. 40 CFR 464.44 - New source performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...

  1. 40 CFR 464.24 - New source performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...

  2. 40 CFR 464.24 - New source performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2011-07-01 2011-07-01 false New source performance standards. 464...

  3. 40 CFR 464.24 - New source performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards. 464...

  4. 40 CFR 464.44 - New source performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...

  5. 40 CFR 464.44 - New source performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...

  6. 40 CFR 464.24 - New source performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...

  7. 40 CFR 464.44 - New source performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2011-07-01 2011-07-01 false New source performance standards. 464...

  8. 40 CFR 464.24 - New source performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...

  9. 40 CFR 464.14 - New source performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...

  10. 40 CFR 464.14 - New source performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2011-07-01 2011-07-01 false New source performance standards. 464...

  11. 40 CFR 464.14 - New source performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...

  12. Modeling particle number concentrations along Interstate 10 in El Paso, Texas

    PubMed Central

    Olvera, Hector A.; Jimenez, Omar; Provencio-Vasquez, Elias

    2014-01-01

    Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 103 particles/cc and 1.3 × 105 particles/cc, and averaged 2.5 × 104 particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available. PMID:25313294

  13. 76 FR 79579 - Approval and Promulgation of Implementation Plans and Designation of Areas for Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... posting of the availability of the submittal on EPA's Adequacy Web site (at http://www.epa.gov/otaq... average annual fourth-highest daily maximum 8-hour average ozone concentration), if it had a 1-hour design... ozone standard is attained when the three-year average of the annual fourth-highest daily maximum 8-hour...

  14. Decreasing trends of suspended particulate matter and PM2.5 concentrations in Tokyo, 1990-2010.

    PubMed

    Hara, Kunio; Homma, Junichi; Tamura, Kenji; Inoue, Mariko; Karita, Kanae; Yano, Eiji

    2013-06-01

    In Tokyo, the annual average suspended particulate matter (SPM) and PM2.5 concentrations have decreased in the past two decades. The present study quantitatively evaluated these decreasing trends using data from air-pollution monitoring stations. Annual SPM and PM2.5 levels at 83 monitoring stations and hourly SPM and PM2.5 levels at four monitoring stations in Tokyo, operated by the Tokyo Metropolitan Government, were used for analysis, together with levels of co-pollutants and meteorological conditions. Traffic volume in Tokyo was calculated from the total traveling distance of vehicles as reported by the Ministry of Land, Infrastructure, Transport, and Tourism. High positive correlations between SPM levels and nitrogen oxide levels, sulfur dioxide levels, and traffic volume were determined. The annual average SPM concentration declined by 62.6%from 59.4 microg/m3 in 1994 to 22.2 microg/m3 in 2010, and PM2.5 concentration also declined by 49.8% from 29.3 microg/m3 in 2001 to 14.7 microg/m3 in 2010. Likewise, the frequencies of hourly average SPM and PM2.5 concentrations exceeding the daily guideline values have significantly decreased since 2001 and the hourly average SPM or PM2.5 concentrations per traffic volume for each time period have also significantly decreased since 2001. However SPM and PM2.5 concentrations increased at some monitoring stations between 2004 and 2006 and from 2009 despite strengthened environmental regulations and improvements in vehicle engine performance. The annual average SPM and PM2.5 concentrations were positively correlated with traffic volumes and in particular with the volume of diesel trucks. These results suggest that the decreasing levels of SPM and PM2.5 in Tokyo may be attributable to decreased traffic volumes, along with the effects of stricter governmental regulation and improvements to vehicle engine performance, including the fitting of devices for exhaust emission reduction.

  15. A COMPARISON OF WINTER SHORT-TERM AND ANNUAL AVERAGE RADON MEASUREMENTS IN BASEMENTS OF A RADON-PRONE REGION AND EVALUATION OF FURTHER RADON TESTING INDICATORS

    PubMed Central

    Barros, Nirmalla G.; Steck, Daniel J.; Field, R. William

    2014-01-01

    The primary objective of this study was to investigate the temporal variability between basement winter short-term (7 to 10 days) and basement annual radon measurements. Other objectives were to test the short-term measurement’s diagnostic performance at two reference levels and to evaluate its ability to predict annual average basement radon concentrations. Electret ion chamber (short-term) and alpha track (annual) radon measurements were obtained by trained personnel in Iowa residences. Overall, the geometric mean of the short-term radon concentrations (199 Bq m−3) was slightly greater than the geometric mean of the annual radon concentrations (181 Bq m−3). Short-term tests incorrectly predicted that the basement annual radon concentrations would be below 148 Bq m−3 12% of the time and 2% of the time at 74 Bq m−3. The short-term and annual radon concentrations were strongly correlated (r=0.87, p<0.0001). The foundation wall material of the basement was the only significant factor to have an impact on the absolute difference between the short-term and annual measurements. The findings from this study provide evidence of a substantially lower likelihood of obtaining a false negative result from a single short-term test in a region with high indoor radon potential when the reference level is lowered to 74 Bq m−3. PMID:24670901

  16. Hazelwood Interim Storage Site: Annual site environment report, Calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-11-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE Derived Concentration Guides (DCGs) and radiation protection standards. During 1985, annual average radon concentrations ranged from 10 to 23% of the DCG. The highest external dose rate at the HISS was 287 mrem/yr. The measured background dose rate for the HISS area is 99 mrem/yr. The highest average annual concentration of uranium in surface water monitored in the vicinity of the HISS was 0.7% of the DOE DCG; for /sup 226/Ra itmore » was 0.3% of the applicable DCG, and for /sup 230/Th it was 1.7%. In groundwater, the highest annual average concentration of uranium was 12% of the DCG; for /sup 226/Ra it was 3.6% of the applicable DCG, and for /sup 230/Th it was 1.8%. While there are no concentration guides for stream sediments, the highest concentration of total uranium was 19 pCi/g, the highest concentration of /sup 226/Ra was 4 pCi/g, and the highest concentration of /sup 230/Th was 300 pCi/g. Radon concentrations, external gamma dose rates, and radionuclide concentrations in groundwater at the site were lower than those measured in 1984; radionuclide concentrations in surface water were roughly equivalent to 1984 levels. For sediments, a meaningful comparison with 1984 concentrations cannot be made since samples were obtained at only two locations and were only analyzed for /sup 230/Th. The calculated radiation dose to the maximally exposed individual at the HISS, considering several exposure pathways, was 5.4 mrem, which is 5% of the radiation protection standard.« less

  17. The Impact of Sea Ice Concentration Accuracies on Climate Model Simulations with the GISS GCM

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Rind, David; Healy, Richard J.; Martinson, Douglas G.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Goddard Institute for Space Studies global climate model (GISS GCM) is used to examine the sensitivity of the simulated climate to sea ice concentration specifications in the type of simulation done in the Atmospheric Modeling Intercomparison Project (AMIP), with specified oceanic boundary conditions. Results show that sea ice concentration uncertainties of +/- 7% can affect simulated regional temperatures by more than 6 C, and biases in sea ice concentrations of +7% and -7% alter simulated annually averaged global surface air temperatures by -0.10 C and +0.17 C, respectively, over those in the control simulation. The resulting 0.27 C difference in simulated annual global surface air temperatures is reduced by a third, to 0.18 C, when considering instead biases of +4% and -4%. More broadly, least-squares fits through the temperature results of 17 simulations with ice concentration input changes ranging from increases of 50% versus the control simulation to decreases of 50% yield a yearly average global impact of 0.0107 C warming for every 1% ice concentration decrease, i.e., 1.07 C warming for the full +50% to -50% range. Regionally and on a monthly average basis, the differences can be far greater, especially in the polar regions, where wintertime contrasts between the +50% and -50% cases can exceed 30 C. However, few statistically significant effects are found outside the polar latitudes, and temperature effects over the non-polar oceans tend to be under 1 C, due in part to the specification of an unvarying annual cycle of sea surface temperatures. The +/- 7% and 14% results provide bounds on the impact (on GISS GCM simulations making use of satellite data) of satellite-derived ice concentration inaccuracies, +/- 7% being the current estimated average accuracy of satellite retrievals and +/- 4% being the anticipated improved average accuracy for upcoming satellite instruments. Results show that the impact on simulated temperatures of imposed ice concentration changes is least in summer, encouragingly the same season in which the satellite accuracies are thought to be worst. Hence the impact of satellite inaccuracies is probably less than the use of an annually averaged satellite inaccuracy would suggest.

  18. Air concentrations of /sup 239/Pu and /sup 240/Pu and potential radiation doses to persons living near Pu-contaminated areas in Palomares, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iranzo, E.; Salvador, S.; Iranzo, C.E.

    1987-04-01

    On 17 January 1966, an accident during a refueling operation resulted in the destruction of an air force KC-135 tanker and a B-52 bomber carrying four thermonuclear weapons. Two weapons, whose parachutes opened, were found intact. The others experienced non-nuclear explosion with some burning and release of the fissile fuel at impact. Joint efforts by the United States and Spain resulted in remedial action and a long-term program to monitor the effectiveness of the cleanup. Air concentrations of /sup 239/Pu and /sup 240/Pu have been continuously monitored since the accident. The average annual air concentration for each location was usedmore » to estimate committed dose equivalents for individuals living and working around the air sampling stations. The average annual /sup 239/Pu and /sup 240/Pu air concentrations during the 15-y period corresponding to 1966-1980 and the potential committed dose equivalents for various tissues due to the inhalation of the /sup 239/Pu and /sup 240/Pu average annual air concentration during this period are shown and discussed in the report.« less

  19. St. Louis Airport Site. Annual site environmental report, calendar year 1985. Formerly Utilized Sites Remedial Action Program (FUSRAP). Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The monitoring program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) aremore » not applicable to SLAPS, but are included only as a basis for comparison. The DOE DCGs and the DOE radiation protection standard have been revised. (Appendix B). During 1985, annual average radon levels in air at the SLAPS were below the DCG for uncontrolled areas. External gamma monitoring in 1985 showed measured annual gamma dose rates ranging from 3 to 2087 mrem/y, with the highest value occurring in an area known to be contaminated. The calculated maximum dose at the site boundary, assuming limited occupancy, would be 6 mrem/y. Average annual concentrations of /sup 230/Th, /sup 226/Ra, and total uranium in surface waters remained below the DOE DCG. The on-site groundwater measurements showed that average annual concentrations of /sup 230/Th, /sup 226/Ra and total uranium were within the DOE DCGs. Although there are no DCGs for sediments, all concentrations of total uraniu, /sup 230/Th, and /sup 226/Ra were below the FUSRAP Guidelines.« less

  20. Dry deposition of gaseous oxidized mercury in Western Maryland.

    PubMed

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. EFFECTS OF NITROGEN LOADING, FRESHWATER RESIDENCE TIME, AND INTERNAL LOSSES ON NITROGEN CONCENTRATIONS IN ESTUARIES

    EPA Science Inventory

    A simple model is presented that uses the annual loading rate of total nitrogen (TN) and the water residence time to calculate: 1) average annual TN concentration and intemalloss rates (e.g. denitrification and incorporation in sediments) in an estuary, and 2) the rate of nitroge...

  2. Concentrations and annual fluxes for selected water-quality constituents from the USGS National Stream Quality Accounting Network (NASQAN) 1996-2000

    USGS Publications Warehouse

    Kelly, Valerie J.; Hooper, Richard P.; Aulenbach, Brent T.; Janet, Mary

    2001-01-01

    This report contains concentrations and annual mass fluxes (loadings) for a broad range of water-quality constituents measured during 1996-2000 as part of the U.S. Geological Survey National Stream Quality Accounting Network (NASQAN). During this period, NASQAN operated a network of 40-42 stations in four of the largest river basins of the USA: the Colorado, the Columbia, the Mississippi (including the Missouri and Ohio), and the Rio Grande. The report contains surface-water quality data, streamflow data, field measurements (e.g. water temperature and pH), sediment-chemistry data, and quality-assurance data; interpretive products include annual and average loads, regression parameters for models used to estimate loads, sub-basin yield maps, maps depicting percent detections for censored constituents, and diagrams depicting flow-weighted average concentrations. Where possible, a regression model relating concentration to discharge and season was used for flux estimation. The interpretive context provided by annual loads includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean.

  3. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-02-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23%, nitrate increasing by 58%, and sulfate decreasing by 46%.

  4. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-08-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23 %, nitrate increasing by 58%, and sulfate decreasing by 46%.

  5. Annual variability of PAH concentrations in the Potomac River watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maher, I.L.; Foster, G.D.

    1995-12-31

    Dynamics of organic contaminant transport in a large river system is influenced by annual variability in organic contaminant concentrations. Surface runoff and groundwater input control the flow of river waters. They are also the two major inputs of contaminants to river waters. The annual variability of contaminant concentrations in rivers may or may not represent similar trends to the flow changes of river waters. The purpose of the research is to define the annual variability in concentrations of polycyclic aromatic hydrocarbons (PAH) in riverine environment. To accomplish this, from March 1992 to March 1995 samples of Potomac River water weremore » collected monthly or bimonthly downstream of the Chesapeake Bay fall line (Chain Bridge) during base flow and main storm flow hydrologic conditions. Concentrations of selected PAHs were measured in the dissolved phase and the particulate phase via GC/MS. The study of the annual variability of PAH concentrations will be performed through comparisons of PAH concentrations seasonally, annually, and through study of PAH concentration river discharge dependency and rainfall dependency. For selected PAHs monthly and annual loadings will be estimated based on their measured concentrations and average daily river discharge. The monthly loadings of selected PAHs will be compared by seasons and annually.« less

  6. Concentrations and transport of atrazine in the Delaware River-Perry Lake system, northeast Kansas, July 1993 through September 1995

    USGS Publications Warehouse

    Pope, L.M.; Brewer, L.D.; Foley, G.A.; Morgan, S.C.

    1996-01-01

    A study of the distribution and transport of atrazine in surface water in the 1,117 square-mile Delaware River Basin in northeast Kansas was conducted from July 1992 through September 1995. The purpose of this report is to present information to assess the present (1992-95) conditions and possible future changes in the distribution and magnitude of atrazine concentrations, loads, and yields spatially, temporally, and in relation to hydrologic conditions and land-use characteristics. A network of 11 stream-monitoring and sample-collection sites was established within the basin. Stream- water samples were collected during a wide range of hydrologic conditions throughout the study. Nearly 5,000 samples were analyzed by enzyme- linked immunosorbent assay (ELISA) for triazine herbicide concentrations. Daily mean triazine herbicide concentrations were calculated for all sampling sites and subsequently used to estimate daily mean atrazine concentrations with a linear- regression relation between ELISA-derived triazine concentrations and atrazine concentrations determined by gas chromatography/mass spectrometry for 141 dual-analyzed surface-water samples. During May, June, and July, time-weighted, daily mean atrazine concentrations in streams in the Delaware River Basin commonly exceeded the value of 3.0-ug/L (micrograms per liter) annual mean Maximum Contaminant Level (MCL) established by the U.S. Environmental Protection Agency for drinking-water supplies. Time-weighted, daily mean concentrations equal to or greater than 20 ug/L were not uncommon. However, most time- weighted, daily mean concentrations were less than 1.0 ug/L from August through April. The largest time-weighted, monthly mean atrazine concentrations occurred during May, June, and July. Most monthly mean concentrations between August and April were less than 0.50 ug/L. Large differences were documented in monthly mean concentrations within the basin. Sites receiving runoff from the northern and northeastern parts of the Delaware River Basin had the largest monthly and annual mean atrazine concentrations. Time- weighted, annual mean atrazine concentrations did not exceed the MCL in water from any sampling site for either the 1993 or 1994 crop years (April-March); however, concentrations were during 1994 than during 1993. Time-weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 0.27 to 1.5 ug/L and from 0.36 to 2.8 ug/L during the 1994 crop year. Furthermore, concentrations in samples from the outflow of Perry Lake were larger during the first 6 months of the 1995 crop year than during the previous year. Flow-weighted, annual mean atrazine concentrations were larger than time-weighted, annual mean concentrations in water from all sampling sites upstream of Perry Lake, and samples from several sites had concentrations were substantially larger than the MCL. This difference explained why time-weighted, annual mean concentrations in the outflow of Perry Lake were larger than corresponding time-weighted concentrations in water from sampling sites upstream of Perry Lake. Flow- weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 1.0 to 4.4 ug/L and from 1.0 to 8.9 ug/L during the 1994 crop year. Statistically significant linear-regression equations were identified relating the percentage of subbasin in cropland to time- and flow-weighted, average annual mean atrazine concentrations. The relations indicate that time-weighted, average annual mean atrazine concentrations may not exceed the MCL in water from subbasins with at least about 70-percent cropland. However, flow-weighted, average annual mean atrazine concentrations may exceed the MCL when the percentage of cropland is greater than about 40 percent. Approximately 90 percent of the annual atrazine load is transport from May through July. Atrazine loads and yields were larger during the 1993 cro

  7. Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium.

    PubMed

    Vranckx, Stijn; Vos, Peter; Maiheu, Bino; Janssen, Stijn

    2015-11-01

    Effects of vegetation on pollutant dispersion receive increased attention in attempts to reduce air pollutant concentration levels in the urban environment. In this study, we examine the influence of vegetation on the concentrations of traffic pollutants in urban street canyons using numerical simulations with the CFD code OpenFOAM. This CFD approach is validated against literature wind tunnel data of traffic pollutant dispersion in street canyons. The impact of trees is simulated for a variety of vegetation types and the full range of approaching wind directions at 15° interval. All these results are combined using meteo statistics, including effects of seasonal leaf loss, to determine the annual average effect of trees in street canyons. This analysis is performed for two pollutants, elemental carbon (EC) and PM10, using background concentrations and emission strengths for the city of Antwerp, Belgium. The results show that due to the presence of trees the annual average pollutant concentrations increase with about 8% (range of 1% to 13%) for EC and with about 1.4% (range of 0.2 to 2.6%) for PM10. The study indicates that this annual effect is considerably smaller than earlier estimates which are generally based on a specific set of governing conditions (1 wind direction, full leafed trees and peak hour traffic emissions). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    PubMed

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  9. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND PROGENY IN THE INDOOR ENVIRONMENT OF YAMUNA AND TONS VALLEYS OF GARHWAL HIMALAYA.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Prasad, Ganesh; Mishra, Rosaline; Ramola, R C

    2016-10-01

    Long-term measurements of indoor radon, thoron and their progeny concentrations have been carried out in dwellings of Yamuna and Tons Valleys of Uttarkashi, Garhwal Himalaya to investigate the health risk associated with inhalation of radon, thoron and progeny. The experimentally determined values of radon, thoron and progeny concentrations were used to estimate the annual inhalation doses and annual effective doses. The annual inhalation dose has been found to vary from 0.8 to 3.9 mSv y -1 with an average of 1.8 mSv y -1 The annual effective dose from the exposure to radon and its progeny in the study area has been found to vary from 0.1 to 2.4 mSv with an average of 1.2±0.6 mSv. Similarly, the annual effective dose due to thoron and its progeny has been found to vary from 0.2 to 1.5 mSv with an average of 0.6±0.4. The measurement techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Evaluation of the impact of wood combustion on benzo[a]pyrene (BaP) concentrations; ambient measurements and dispersion modeling in Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Hellén, Heidi; Kangas, Leena; Kousa, Anu; Vestenius, Mika; Teinilä, Kimmo; Karppinen, Ari; Kukkonen, Jaakko; Niemi, Jarkko V.

    2017-03-01

    Even though emission inventories indicate that wood combustion is a major source of polycyclic aromatic hydrocarbons (PAHs), estimating its impacts on PAH concentration in ambient air remains challenging. In this study the effect of local small-scale wood combustion on the benzo[a]pyrene (BaP) concentrations in ambient air in the Helsinki metropolitan area in Finland is evaluated, using ambient air measurements, emission estimates, and dispersion modeling. The measurements were conducted at 12 different locations during the period from 2007 to 2015. The spatial distributions of annual average BaP concentrations originating from wood combustion were predicted for four of those years: 2008, 2011, 2013, and 2014. According to both the measurements and the dispersion modeling, the European Union target value for the annual average BaP concentrations (1 ng m-3) was clearly exceeded in certain suburban detached-house areas. However, in most of the other urban areas, including the center of Helsinki, the concentrations were below the target value. The measured BaP concentrations highly correlated with the measured levoglucosan concentrations in the suburban detached-house areas. In street canyons, the measured concentrations of BaP were at the same level as those in the urban background, clearly lower than those in suburban detached-house areas. The predicted annual average concentrations matched with the measured concentrations fairly well. Both the measurements and the modeling clearly indicated that wood combustion was the main local source of ambient air BaP in the Helsinki metropolitan area.

  11. Spatiotemporal distributions of ambient oxides of nitrogen, with implications for exposure inequality and urban design.

    PubMed

    Yu, Haofei; Stuart, Amy L

    2013-08-01

    Intra-urban differences in concentrations of oxides of nitrogen (NO(x)) and exposure disparities in the Tampa area were investigated across temporal scales through emissions estimation, dispersion modeling, and analysis of residential subpopulation exposures. A hybrid estimation method was applied to provide link-level hourly on-road mobile source emissions. Ambient concentrations in 2002 at 1 km resolution were estimated using the CALPUFF dispersion model. Results were combined with residential demographic data at the block-group level, to investigate exposures and inequality for select racioethnic, age, and income population subgroups. Results indicate that on-road mobile sources contributed disproportionately to ground-level concentrations and dominated the spatial footprint across temporal scales (annual average to maximum hour). The black, lower income (less than $40K annually), and Hispanic subgroups had higher estimated exposures than the county average; the white and higher income (greater than $60K) subgroups had lower than average exposures. As annual average concentration increased, the disparity between groups generally increased. However for the highest 1-hr concentrations, reverse disparities were also found. Current studies of air pollution exposure inequality have not fully considered differences by time scale and are often limited in spatial resolution. The modeling methods and the results presented here can be used to improve understanding of potential impacts of urban growth form on health and to improve urban sustainability. Results suggest focusing urban design interventions on reducing on-road mobile source emissions in areas with high densities of minority and low income groups.

  12. A national-scale review of air pollutant concentrations measured in the U.S. near-road monitoring network during 2014 and 2015

    NASA Astrophysics Data System (ADS)

    DeWinter, Jennifer L.; Brown, Steven G.; Seagram, Annie F.; Landsberg, Karin; Eisinger, Douglas S.

    2018-06-01

    In 2010, the U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) for NO2 to include a primary health-based standard for hourly NO2, and required air quality monitoring next to major roadways in urban areas in the U.S. Requirements for near-road measurements also include carbon monoxide (CO) and particulate matter smaller than 2.5 μm in diameter (PM2.5). We performed a national-scale assessment of air pollutants measured at 81 sites in the near-road environment during the first two years (2014 and 2015) of the new measurement program. We evaluated how concentrations at these locations compared to the NAAQS, to concentrations measured at other sites within the same urban areas, and when considering their site characteristics (distance of monitor to road, traffic volume, and meteorology). We also estimated the contribution of emissions from adjacent roadways at each near-road site to the PM2.5 concentrations above the local urban background concentrations, i.e., the near-road "increment." Hourly values of CO reached a maximum of 4.8 ppm across 31 sites in 2014 and 9.6 ppm across 47 sites in 2015, and were well below the NAAQS levels for both the 1-hr (35 ppm) and 8-hr (9 ppm) standards. Hourly concentrations of near-road NO2 reached 258 ppb across 40 sites in 2014; however, there were only two occurrences of a daily 1-hr maximum NO2 concentration above 100 ppb (the level of the hourly NO2 standard). In 2015, hourly concentrations of near-road NO2, monitored at 61 sites in 55 urban areas, reached 154 ppb. Only 0.0015% (n = 5) of hourly NO2 observations in 2015 exceeded 100 ppb. The highest annual NO2 average recorded in 2015 (29.9 ppb) occurred at the Ontario site located along I-10 in the Los Angeles, California, area and was below the level of the NO2 annual standard (53 ppb); in 2014, the highest annual mean NO2 was also observed in Los Angeles at the Anaheim site (27.1 ppb). In 2014, sites in Cincinnati, Indianapolis, and Louisville recorded annual average PM2.5 concentrations at or above 12 μg/m3 (the level of the annual standard). There were 15 occurrences in 2014 of 24-hr PM2.5 concentrations above the NAAQS level of 35 μg/m3. Annual average PM2.5 exceeded 12 μg/m3 at near-road sites in five urban areas in 2015, and there were 33 days across 12 near-road locations with 24-hr PM2.5 concentrations above 35 μg/m3. Across the near-road monitoring network, annual average PM2.5 concentrations did not have a significant relationship with traffic volume or distance between the monitor and the adjacent roadway; rather, variations in PM2.5 were mostly driven by urban-scale PM2.5, with a typically small "increment" above urban-scale concentrations due to a site's proximity to the roadway. We estimated this increment, i.e., the difference between near-road PM2.5 concentrations and the concentrations at sites in the urban area of each near-road monitor, to be on average 1.2 μg/m3 (σ = 0.3 μg/m3), with a range of -1.2 μg/m3 to 3.1 μg/m3 across the 26 sites (four of which had a negative increment). The near-road increment is on average 13% of the near-road PM2.5, and 15% of the near-road PM2.5 for sites within 20 m of the roadway.

  13. Analysis of the distributions of hourly NO2 concentrations contributing to annual average NO2 concentrations across the European monitoring network between 2000 and 2014

    NASA Astrophysics Data System (ADS)

    Malley, Christopher S.; von Schneidemesser, Erika; Moller, Sarah; Braban, Christine F.; Hicks, W. Kevin; Heal, Mathew R.

    2018-03-01

    Exposure to nitrogen dioxide (NO2) is associated with negative human health effects, both for short-term peak concentrations and from long-term exposure to a wider range of NO2 concentrations. For the latter, the European Union has established an air quality limit value of 40 µg m-3 as an annual average. However, factors such as proximity and strength of local emissions, atmospheric chemistry, and meteorological conditions mean that there is substantial variation in the hourly NO2 concentrations contributing to an annual average concentration. The aim of this analysis was to quantify the nature of this variation at thousands of monitoring sites across Europe through the calculation of a standard set of chemical climatology statistics. Specifically, at each monitoring site that satisfied data capture criteria for inclusion in this analysis, annual NO2 concentrations, as well as the percentage contribution from each month, hour of the day, and hourly NO2 concentrations divided into 5 µg m-3 bins were calculated. Across Europe, 2010-2014 average annual NO2 concentrations (NO2AA) exceeded the annual NO2 limit value at 8 % of > 2500 monitoring sites. The application of this chemical climatology approach showed that sites with distinct monthly, hour of day, and hourly NO2 concentration bin contributions to NO2AA were not grouped into specific regions of Europe, furthermore, within relatively small geographic regions there were sites with similar NO2AA, but with differences in these contributions. Specifically, at sites with highest NO2AA, there were generally similar contributions from across the year, but there were also differences in the contribution of peak vs. moderate hourly NO2 concentrations to NO2AA, and from different hours across the day. Trends between 2000 and 2014 for 259 sites indicate that, in general, the contribution to NO2AA from winter months has increased, as has the contribution from the rush-hour periods of the day, while the contribution from peak hourly NO2 concentrations has decreased. The variety of monthly, hour of day and hourly NO2 concentration bin contributions to NO2AA, across cities, countries and regions of Europe indicate that within relatively small geographic areas different interactions between emissions, atmospheric chemistry and meteorology produce variation in NO2AA and the conditions that produce it. Therefore, measures implemented to reduce NO2AA in one location may not be as effective in others. The development of strategies to reduce NO2AA for an area should therefore consider (i) the variation in monthly, hour of day, and hourly NO2 concentration bin contributions to NO2AA within that area; and (ii) how specific mitigation actions will affect variability in hourly NO2 concentrations.

  14. Assessment of indoor radon, thoron concentrations, and their relationship with seasonal variation and geology of Udhampur district, Jammu & Kashmir, India.

    PubMed

    Kumar, Ajay; Sharma, Sumit; Mehra, Rohit; Narang, Saurabh; Mishra, Rosaline

    2017-07-01

    Background The inhalation doses resulting from the exposure to radon, thoron, and their progeny are important quantities in estimating the radiation risk for epidemiological studies as the average global annual effective dose due to radon and its progeny is 1.3 mSv as compared to that of 2.4 mSv due to all other natural sources of ionizing radiation. Objectives The annual inhalation dose has been assessed with an aim of investigating the health risk to the inhabitants of the studied region. Methods Time integrated deposition based 222 Rn/ 220 Rn sensors have been used to measure concentrations in 146 dwellings of Udhampur district, Jammu and Kashmir. An active smart RnDuo monitor has also been used for comparison purposes. Results The range of indoor radon/thoron concentrations is found to vary from 11 to 58 Bqm -3 with an average value of 29 ± 9 Bqm -3 and from 25 to 185 Bqm -3 with an average value of 83 ± 32 Bqm -3 , respectively. About 10.7% dwellings have higher values than world average of 40 Bqm -3 prescribed by UNSCEAR. The relationship of indoor radon and thoron levels with different seasons, ventilation conditions, and different geological formations have been discussed. Conclusions The observed values of concentrations and average annual effective dose due to radon, thoron, and its progeny in the study area have been found to be below the recommended level of ICRP. The observed concentrations of 222 Rn and 220 Rn measured with active and passive techniques are found to be in good agreement.

  15. Sediment Flux of Particulate Organic Phosphorus in the Open Black Sea

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. V.; Kukushkin, A. S.

    2018-03-01

    The interannual variation of the monthly average (weighted average) concentrations of particulate organic phosphorus (PPOM) in the photosynthetic layer, oxycline, redox zone, and H2S zone in the open Black Sea is estimated based on long-term observation data. The suspension sedimentation rates from the studied layers are assessed using model calculations and published data. The annual variation of PPOM sediment fluxes from the photosynthetic layer, oxycline, redox zone, and upper H2S zone to the anaerobic zone of the sea and the correspondingly annual average values are estimated for the first time. A regular decrease in the PPOM annual average flux with depth in the upper active layer is demonstrated. A correlation between the annual average values of PPOM sediment flux from the photosynthetic layer and ascending phosphate flux to this layer is shown, which suggests their balance in the open sea. The results are discussed in terms of the phosphorus biogeochemical cycle and the concept of new and regenerative primary production in the open Black Sea.

  16. A comparison of speciated atmospheric mercury at an urban center and an upwind rural location

    USGS Publications Warehouse

    Rutter, A.P.; Schauer, J.J.; Lough, G.C.; Snyder, D.C.; Kolb, C.J.; Von Klooster, S.; Rudolf, T.; Manolopoulos, H.; Olson, M.L.

    2008-01-01

    Gaseous elemental mercury (GEM), particulate mercury (PHg) and reactive gaseous mercury (RGM) were measured every other hour at a rural location in south central Wisconsin (Devil's Lake State Park, WI, USA) between April 2003 and March 2004, and at a predominantly downwind urban site in southeastern Wisconsin (Milwaukee, WI, USA) between June 2004 and May 2005. Annual averages of GEM, PHg, and RGM at the urban site were statistically higher than those measured at the rural site. Pollution roses of GEM and reactive mercury (RM; sum of PHg and RGM) at the rural and urban sites revealed the influences of point source emissions in surrounding counties that were consistent with the US EPA 1999 National Emission Inventory and the 2003-2005 US EPA Toxics Release Inventory. Source-receptor relationships at both sites were studied by quantifying the impacts of point sources on mercury concentrations. Time series of GEM, PHg, and RGM concentrations were sorted into two categories; time periods dominated by impacts from point sources, and time periods dominated by mercury from non-point sources. The analysis revealed average point source contributions to GEM, PHg, and RGM concentration measurements to be significant over the year long studies. At the rural site, contributions to annual average concentrations were: GEM (2%; 0.04 ng m-3); and, RM (48%; 5.7 pg m-3). At the urban site, contributions to annual average concentrations were: GEM (33%; 0.81 ng m-3); and, RM (64%; 13.8 pg m-3). ?? The Royal Society of Chemistry.

  17. Air quality impact of the coal-fired power plants in the northern passageway of the China West-East Power Transmission Project.

    PubMed

    Xue, Zhigang; Hao, Jiming; Chai, Fahe; Duan, Ning; Chen, Yizhen; Li, Jindan; Chen, Fu; Liu, Simei; Pu, Wenqing

    2005-12-01

    This paper analyzes the air quality impacts of coal-fired power plants in the northern passageway of the West-East Power Transmission Project in China. A three-layer Lagrangian model called ATMOS, was used to simulate the spatial distribution of incremental sulfur dioxide (SO2) and coarse particulate matter (PM10) concentrations under different emission control scenarios. In the year 2005, the emissions from planned power plants mainly affected the air quality of Shanxi, Shaanxi, the common boundary of Inner Mongolia and Shanxi, and the area around the boundary between Inner Mongolia and Ningxia. In these areas, the annually averaged incremental SO2 and PM10 concentrations exceed 2 and 2.5 microg/m3, respectively. The maximum increases of the annually averaged SO2 and PM10 concentrations are 8.3 and 7.2 microg/m3, respectively, which occur around Hancheng city, near the boundary of the Shaanxi and Shanxi provinces. After integrated control measures are considered, the maximum increases of annually averaged SO2 and PM10 concentrations fall to 4.9 and 4 microg/m3, respectively. In the year 2010, the areas affected by planned power plants are mainly North Shaanxi, North Ningxia, and Northwest Shanxi. The maximum increases of the annually averaged SO2 and PM10, concentrations are, respectively, 6.3 and 5.6 microg/m3, occurring in Northwest Shanxi, which decline to 4.4 and 4.1 microg/m3 after the control measures are implemented. The results showed that the proposed power plants mainly affect the air quality of the region where the power plants are built, with little impact on East China where the electricity will be used. The influences of planned power plants on air quality will be decreased greatly by implementing integrated control measures.

  18. Atmospheric CO2 Concentrations from the Commonwealth Scientific and Industrial Research Organization (CSIRO) GASLAB Flask Sampling Network (March 1991 - December 2006)

    DOE Data Explorer

    Steele, L. P. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia; Krummel, P. B. [Commonwealth Scientific and Industrial Research Organization (CSIRO),; Langenfelds, R. L. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia

    2008-01-01

    Individual measurements have been obtained from flask air samples returned to the CSIRO GASLAB. Typical sample storage times range from days to weeks for some sites (e.g. Cape Grim, Aircraft over Tasmania and Bass Strait) to as much as one year for Macquarie Island and the Antarctic sites. Experiments carried out to test for changes in sample CO2 mixing ratio during storage have shown significant drifts in some flask types over test periods of several months to years (Cooper et al., 1999). Corrections derived from the test results are applied to network data according to flask type. These measurements indicate a rise in annual average atmospheric CO2 concentration from 357.72 parts per million by volume (ppmv) in 1992 to 383.05 ppmv in 2006, or an increase in annual average of about 1.81 ppmv/year. These flask data may be compared with other flask measurements from the Scripps Institution of Oceanography, available through 2004 in TRENDS; both indicate an annual average increase of 1.72 ppmv/year throuth 2004. Differences may be attributed to different sampling times or days, different numbers of samples, and different curve-fitting techniques used to obtain monthly and annual average numbers from flask data. Measurement error in flask data is believed to be small (Masarie et al., 2001).

  19. Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997-1999

    USGS Publications Warehouse

    Green, W. Reed; Haggard, Brian E.

    2001-01-01

    Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.

  20. Wavelength dependent light absorption as a cost effective, real-time surrogate for ambient concentrations of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Brown, Richard J. C.; Butterfield, David M.; Goddard, Sharon L.; Hussain, Delwar; Quincey, Paul G.; Fuller, Gary W.

    2016-02-01

    Many monitoring stations used to assess ambient air concentrations of pollutants regulated by European air quality directives suffer from being expensive to establish and operate, and from their location being based on the results of macro-scale modelling exercises rather than measurement assessments in candidate locations. To address these issues for the monitoring of polycyclic aromatic hydrocarbons (PAHs), this study has used data from a combination of the ultraviolet and infrared channels of aethalometers (referred to as UV BC), operated as part of the UK Black Carbon Network, as a surrogate measurement. This has established a relationship between concentrations of the PAH regulated in Europe, benzo[a]pyrene (B[a]P), and the UV BC signal at locations where these measurements have been made together from 2008 to 2014. This relationship was observed to be non-linear. Relationships for individual site types were used to predict measured concentrations with, on average, 1.5% accuracy across all annual averages, and with only 1 in 36 of the predicted annual averages deviating from the measured annual average by more than the B[a]P data quality objective for uncertainty of 50% (at -65%, with the range excluding this value between + 38% and -37%). These relationships were then used to predict B[a]P concentrations at stations where UV BC measurement are made, but PAH measurements are not. This process produced results which reflected expectations based on knowledge of the pollution climate at these stations gained from the measurements of other air quality networks, or from nearby stations. The influence of domestic solid fuel heating was clear using this approach which highlighted Strabane in Northern Ireland as a station likely to be in excess of the air quality directive target value for B[a]P.

  1. Air quality status of an open pit mining area in India.

    PubMed

    Chaulya, S K

    2005-06-01

    This investigation presents the assessment of ambient air quality carried out at an open pit coal mining area in Orissa state of India. The 24-h average concentrations of suspended particulate matter (SPM), respirable particulate matter (RPM, particles of less than 10 microm aerodynamic diameter), sulphur dioxide (SO2) and oxides of nitrogen (NO(x)) were determined at regular interval throughout one year at 13 monitoring stations in residential area and four stations in mining/industrial area. During the study period, the 24-h and annual average SPM and RPM concentrations exceeded the respective standards set in the Indian ambient air quality standard (NAAQS) protocol in most of the residential and industrial areas. However, the 24-h and annual average concentrations of SO2 and NO(x) were well within the prescribed limit of the NAAQS in both residential and industrial areas. A management strategy is formulated for effective control of particulate matter at source and other mitigative measures are recommended including implementation of green belts around the sensitive areas.

  2. Hydrology, phosphorus, and suspended solids in five agricultural streams in the Lower Fox River and Green Bay Watersheds, Wisconsin, Water Years 2004-06

    USGS Publications Warehouse

    Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.

    2011-01-01

    The average annual TSS yields ranged from 111 tons/mi2 in Apple Creek to 45 tons/mi2 in Duck Creek. All five watersheds yielded more TSS than the median value (32.4 tons/mi2) from previous studies in the Southeastern Wisconsin Till Plains (SWTP) ecoregion. The average annual TP yields ranged from 663 lbs/mi2 in Baird Creek to 382 lbs/mi2 in Duck Creek. All five watersheds yielded more TP than the median value from previous studies in the SWTP ecoregion, and the Baird Creek watershed yielded more TP than the statewide median of 650 lbs/mi2 from previous studies.Overall, Duck Creek had the lowest median and volumetric weighted concentrations and mean yield of TSS and TP. The same pattern was true for dissolved phosphorus (DP), except the volumetrically weighted concentration was lowest in the East River. In contrast, Ashwaubenon, Baird, and Apple Creeks had greater median and volumetrically weighted concentrations and mean yields of TSS, TP, DP than Duck Creek and the East River. Water quality in Duck Creek and East River were distinctly different from Ashwaubenon, Baird, and Apple Creeks. Loads from individual runoff events for all of these streams were important to the total annual mass transport of the constituents. On average, about 20 percent of the annual TSS loads and about 17 percent of the TP loads were transported in 1-day events in each stream.

  3. Evaluation of the accuracy of an offline seasonally-varying matrix transport model for simulating ideal age

    DOE PAGES

    Bardin, Ann; Primeau, Francois; Lindsay, Keith; ...

    2016-07-21

    Newton-Krylov solvers for ocean tracers have the potential to greatly decrease the computational costs of spinning up deep-ocean tracers, which can take several thousand model years to reach equilibrium with surface processes. One version of the algorithm uses offline tracer transport matrices to simulate an annual cycle of tracer concentrations and applies Newton’s method to find concentrations that are periodic in time. Here we present the impact of time-averaging the transport matrices on the equilibrium values of an ideal-age tracer. We compared annually-averaged, monthly-averaged, and 5-day-averaged transport matrices to an online simulation using the ocean component of the Community Earthmore » System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels. We found that increasing the time resolution of the offline transport model reduced a low age bias from 12% for the annually-averaged transport matrices, to 4% for the monthly-averaged transport matrices, and to less than 2% for the transport matrices constructed from 5-day averages. The largest differences were in areas with strong seasonal changes in the circulation, such as the Northern Indian Ocean. As a result, for many applications the relatively small bias obtained using the offline model makes the offline approach attractive because it uses significantly less computer resources and is simpler to set up and run.« less

  4. Spatial variations in nitrogen dioxide concentrations in an urban area

    NASA Astrophysics Data System (ADS)

    Nicholas Hewitt, C.

    Fortnightly average NO 2 concentrations have been measured at 49 sites in the small city of Lancaster, U.K., over a continuous 1-year period using passive diffusion tubes. At sampling sites on a congested main road in the city centre considerable spatial and temporal variability in concentrations was found. An annual mean concentration of 63 μgm -3 was found witha range of 12-222 μgm -3. The mean concentration in an adjacent main road was 58 μgm -3 with a range of 5-107 μgm -3. Rather less variability was seen in a suburban main road and in a suburban residential street, which had annual mean concentrations of 38 and 30 μm -3, respectively. Concentrations in a city centre pedestrian precinct decreased with distance from the main road, having an annual mean value of 30μm -3. The data suggest that the precise location of a sampling device may be crucial in determining whether or not a given NO 2, concentration or standard is exceeded.

  5. Estimation of the indoor radon and the annual effective dose from granite samples

    NASA Astrophysics Data System (ADS)

    Sola, P.; Srinuttrakul, W.; Kewsuwan, P.

    2015-05-01

    Inhalation of radon and thoron daughters increases the risk of lung cancer. The main sources of indoor radon are building materials. The aim of this research is to estimate the indoor radon and the annual effective dose from the building materials. Eighteen granite samples bought from the markets in Thailand were measured using an ionization chamber (ATMOS 12 DPX) for the radon concentration in air. Radon exhalation rates were calculated from the radon concentration in chamber. The indoor radon from the granite samples ranged from 10.04 to 55.32 Bq·m-2·h-1 with an average value of 20.30 Bq·m-2·h-1 and the annual effective dose ranged from 0.25 to 1.39 mSv·y-1 with an average value of 0.48 mSv·y-1. The results showed that the annual effective doses of three granite samples were higher than the annual exposure limit for the general public (1 mSv·y-1) recommended by the International Commission on Radiological Protection (ICRP). In addition, the relationship between the colours and radon exhalation rates of granite samples was also explained.

  6. The contributions to long-term health-relevant particulate matter at the UK EMEP supersites between 2010 and 2013: Quantifying the mitigation challenge.

    PubMed

    Malley, Christopher S; Heal, Mathew R; Braban, Christine F; Kentisbeer, John; Leeson, Sarah R; Malcolm, Heath; Lingard, Justin J N; Ritchie, Stuart; Maggs, Richard; Beccaceci, Sonya; Quincey, Paul; Brown, Richard J C; Twigg, Marsailidh M

    2016-10-01

    Human health burdens associated with long-term exposure to particulate matter (PM) are substantial. The metrics currently recommended by the World Health Organization for quantification of long-term health-relevant PM are the annual average PM10 and PM2.5 mass concentrations, with no low concentration threshold. However, within an annual average, there is substantial variation in the composition of PM associated with different sources. To inform effective mitigation strategies, therefore, it is necessary to quantify the conditions that contribute to annual average PM10 and PM2.5 (rather than just short-term episodic concentrations). PM10, PM2.5, and speciated water-soluble inorganic, carbonaceous, heavy metal and polycyclic aromatic hydrocarbon components are concurrently measured at the two UK European Monitoring and Evaluation Programme (EMEP) 'supersites' at Harwell (SE England) and Auchencorth Moss (SE Scotland). In this work, statistical analyses of these measurements are integrated with air-mass back trajectory data to characterise the 'chemical climate' associated with the long-term health-relevant PM metrics at these sites. Specifically, the contributions from different PM concentrations, months, components and geographic regions are detailed. The analyses at these sites provide policy-relevant conclusions on mitigation of (i) long-term health-relevant PM in the spatial domain for which these sites are representative, and (ii) the contribution of regional background PM to long-term health-relevant PM. At Harwell the mean (±1 sd) 2010-2013 annual average concentrations were PM10=16.4±1.4μgm(-3) and PM2.5=11.9±1.1μgm(-3) and at Auchencorth PM10=7.4±0.4μgm(-3) and PM2.5=4.1±0.2μgm(-3). The chemical climate state at each site showed that frequent, moderate hourly PM10 and PM2.5 concentrations (defined as approximately 5-15μgm(-3) for PM10 and PM2.5 at Harwell and 5-10μgm(-3) for PM10 at Auchencorth) determined the magnitude of annual average PM10 and PM2.5 to a greater extent than the relatively infrequent high, episodic PM10 and PM2.5 concentrations. These moderate PM10 and PM2.5 concentrations were derived across the range of chemical components, seasons and air-mass pathways, in contrast to the highest PM concentrations which tended to associate with specific conditions. For example, the largest contribution to moderate PM10 and PM2.5 concentrations - the secondary inorganic aerosol components, specifically NO3(-) - were accumulated during the arrival of trajectories traversing the spectrum of marine, UK, and continental Europe areas. Mitigation of the long-term health-relevant PM impact in the regions characterised by these two sites requires multilateral action, across species (and hence source sectors), both nationally and internationally; there is no dominant determinant of the long-term PM metrics to target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Urban stormwater quality, event-mean concentrations, and estimates of stormwater pollutant loads, Dallas-Fort Worth area, Texas, 1992-93

    USGS Publications Warehouse

    Baldys, Stanley; Raines, T.H.; Mansfield, B.L.; Sandlin, J.T.

    1998-01-01

    Local regression equations were developed to estimate loads produced by individual storms. Mean annual loads were estimated by applying the storm-load equations for all runoff-producing storms in an average climatic year and summing individual storm loads to determine the annual load.

  8. Hydrologic effects of annually diverting 131,000 acre-feet of water from Dillon Reservoir, central Colorado

    USGS Publications Warehouse

    Alley, William M.; Bauer, D.P.; Veenhuis, J.E.; Brennan, Robert

    1979-01-01

    Because of the increased demands for water in eastern Colorado, principally in the urbanizing Denver metropolitan area, increased diversions of water from Dillon Reservoir are planned. Estimates of end-of-month storage in Dillon Reservoir, assuming the reservoir was in place and 131,000 acre-feet of water were diverted from the reservoir each year, were reconstructed by mass balance for the 1931-77 water years. Based on the analysis, the annual maximum end-of-month drawdown below the elevation at full storage would have averaged 54 feet. The maximum end-of-month drawdown below the elevation at full storage would have been 171 feet. The mean-annual discharge-weighted dissolved-solids concentrations in the Colorado River near Glenwood Springs and Cameo, Colo., and Cisco, Utah, for the 1942-77 water years, were computed assuming an annual diversion of 131,000 acre-feet of water from Dillon Reservoir. The average increases in the dissolved-solids concentrations with the 131 ,000-acre-foot diversion were 15 to 16 milligrams per liter at the three sites. (Woodard-USGS)

  9. THE EFFECTS OF NITROGEN LOADING AND FRESHWATER RESIDENCE TIME ON THE ESTUARINE ECOSYSTEM

    EPA Science Inventory

    A simple mechanistic model, designed to predict annual average concentrations of total nitrogen (TN) concentrations from nitrogen inputs and freshwater residence time in estuaries, was applied to data for several North American estuaries from previously published literature. The ...

  10. Improving the representation of secondary organic aerosol (SOA) in the MOZART-4 global chemical transport model

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Barsanti, K. C.

    2012-12-01

    The secondary organic aerosol (SOA) module in the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) has been updated by replacing existing two-product (2p) parameters with those obtained from two-product volatility basis set (2p-VBS) fits, and by treating SOA formation from the following volatile organic compounds (VOCs): isoprene, propene and lumped alkenes. Strong seasonal and spatial variations in global SOA distributions were demonstrated, with significant differences in the predicted concentrations between the base-case and updated model versions. The base-case MOZART-4 predicted annual average SOA of 0.36 ± 0.50 μg m-3 in South America, 0.31 ± 0.38 μg m-3 in Indonesia, 0.09 ± 0.05 μg m-3 in the USA, and 0.12 ± 0.07 μg m-3 in Europe. Concentrations from the updated versions of the model showed a~marked increase in annual average SOA. Using the updated set of parameters alone (MZ4-v1) increased annual average SOA by ~8%, ~16%, ~56%, and ~108% from the base-case in South America, Indonesia, USA, and Europe, respectively. Treatment of additional parent VOCs (MZ4-v2) resulted in an even more dramatic increase of ~178-406% in annual average SOA for these regions over the base-case. The increases in predicted SOA concentrations further resulted in increases in corresponding SOA contributions to annual average total aerosol optical depth (AOD) by <1% for MZ4-v1 and ~1-6% for MZ4-v2. Estimated global SOA production was ~6.6 Tg yr-1 and ~19.1 Tg yr-1 with corresponding burdens of ~0.24 Tg and ~0.59 Tg using MZ4-v1 and MZ4-v2, respectively. The SOA budgets predicted in the current study fall well within reported ranges for similar modeling studies, 6.7 to 96 Tg yr-1, but are lower than recently reported observationally-constrained values, 50 to 380 Tg yr-1. With MZ4-v2, simulated SOA concentrations at the surface were also in reasonable agreement with comparable modeling studies and observations. Concentrations of estimated organic aerosol (OA) at the surface, however, showed under-prediction in Europe and over-prediction in the Amazonian regions and Malaysian Borneo during certain months of the year. Overall, the updated version of MOZART-4, MZ4-v2, showed consistently better skill in predicting SOA and OA levels and spatial distributions as compared with unmodified MOZART-4. The MZ4-v2 updates may be particularly important when MOZART-4 output is used to generate boundary conditions for regional air quality simulations that require more accurate representation of SOA concentrations and distributions.

  11. National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea.

    PubMed

    Kim, Sun-Young; Song, Insang

    2017-07-01

    The limited spatial coverage of the air pollution data available from regulatory air quality monitoring networks hampers national-scale epidemiological studies of air pollution. The present study aimed to develop a national-scale exposure prediction model for estimating annual average concentrations of PM 10 and NO 2 at residences in South Korea using regulatory monitoring data for 2010. Using hourly measurements of PM 10 and NO 2 at 277 regulatory monitoring sites, we calculated the annual average concentrations at each site. We also computed 322 geographic variables in order to represent plausible local and regional pollution sources. Using these data, we developed universal kriging models, including three summary predictors estimated by partial least squares (PLS). The model performance was evaluated with fivefold cross-validation. In sensitivity analyses, we compared our approach with two alternative approaches, which added regional interactions and replaced the PLS predictors with up to ten selected variables. Finally, we predicted the annual average concentrations of PM 10 and NO 2 at 83,463 centroids of residential census output areas in South Korea to investigate the population exposure to these pollutants and to compare the exposure levels between monitored and unmonitored areas. The means of the annual average concentrations of PM 10 and NO 2 for 2010, across regulatory monitoring sites in South Korea, were 51.63 μg/m3 (SD = 8.58) and 25.64 ppb (11.05), respectively. The universal kriging exposure prediction models yielded cross-validated R 2 s of 0.45 and 0.82 for PM 10 and NO 2 , respectively. Compared to our model, the two alternative approaches gave consistent or worse performances. Population exposure levels in unmonitored areas were lower than in monitored areas. This is the first study that focused on developing a national-scale point wise exposure prediction approach in South Korea, which will allow national exposure assessments and epidemiological research to answer policy-related questions and to draw comparisons among different countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors.

    PubMed

    Ying, Qi; Feng, Miao; Song, Danlin; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Kleeman, Michael J; Li, Xinghua

    2018-05-15

    Contributions to 15 trace elements in airborne particulate matter with aerodynamic diameters <2.5μm (PM 2.5 ) in China from five major source sectors (industrial sources, residential sources, transportation, power generation and windblown dust) were determined using a source-oriented Community Multiscale Air Quality (CMAQ) model. Using emission factors in the composite speciation profiles from US EPA's SPECIATE database for the five sources leads to relatively poor model performance at an urban site in Beijing. Improved predictions of the trace elements are obtained by using adjusted emission factors derived from a robust multilinear regression of the CMAQ predicted primary source contributions and observation at the urban site. Good correlations between predictions and observations are obtained for most elements studied with R>0.5, except for crustal elements Al, Si and Ca, particularly in spring. Predicted annual and seasonal average concentrations of Mn, Fe, Zn and Pb in Nanjing and Chengdu are also consistently improved using the adjusted emission factors. Annual average concentration of Fe is as high as 2.0μgm -3 with large contributions from power generation and transportation. Annual average concentration of Pb reaches 300-500ngm -3 in vast areas, mainly from residential activities, transportation and power generation. The impact of high concentrations of Fe on secondary sulfate formation and Pb on human health should be evaluated carefully in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Estimation of seasonal diurnal variations in primary and secondary organic carbon concentrations in the urban atmosphere: EC tracer and multiple regression approaches

    NASA Astrophysics Data System (ADS)

    Kim, Woogyung; Lee, Hanlim; Kim, Jhoon; Jeong, Ukkyo; Kweon, Jung

    2012-09-01

    In order to investigate seasonal and diurnal variation of primary organic carbon (POC) and secondary organic carbon (SOC) concentrations in a megacity, hourly measurements of particulate and gaseous pollutants were carried out in Seoul from January to December 2010. The EC Tracer Method (ECTM) and the Multiple Regression Method (MRM) have been used to estimate seasonal and diurnal concentrations of POC and SOC concentrations. Annual mean SOC concentrations estimated by ECTM (SOCECTM) and MRM (SOCMRM) accounted for 14.61 and 17.21% of TOC concentrations, respectively. Seasonal patterns in SOCMRM were comparable to those of SOCECTM, but the annual average SOCMRM was about 15% greater than that of SOCECTM. In spring, however, a large discrepancy was observed between SOCECTM and SOCMRM, which is thought to be due to a high ozone concentration and primary TOC/EC ratio. Regarding the annual mean diurnal characteristics, POC concentration showed peaks around 10:00 and 00:00 local time that were also observed in diurnal variations of TOC and EC concentrations. Annual mean SOC concentration, however, showed peaks at around 15:00. In the morning over all seasons, we found discrepancies between SOCECTM and SOCMRM due to overestimated SOCECTM concentration. The diurnal variations in SOC concentrations were found to have seasonal characteristics. The diurnal pattern of SOC concentration in spring was similar to that in autumn, and SOC concentrations in all seasons with the exception of winter showed a peak at around 15:00. In summer, however, the SOC concentration peak at around 15:00 was greater by 70%, 81%, and 54% than the peaks seen in spring, autumn, and winter, respectively, which could be explained by the high ozone concentration and strong UV radiation in summer. From 10:00 to 15:00 in summer, the average increase rates in SOCECTM and SOCMRM were 0.39 and 0.24 μg m-3 h-1, respectively. In winter, negligible diurnal variations of estimated SOC concentrations demonstrate that SOC formation is less active than in other seasons. The high concentration level of mean SOC in winter could be attributed to a low mixing height or stagnant atmospheric condition.

  14. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O 3) mean fractional bias (MFB) ofmore » 12% and an annual average fine particulate matter (PM 2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM 2.5 at some high concentration locations and generally overpredicts average 24 h O 3 concentrations. Performance is better at predicting daytime-average and daily peak O 3 concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM 2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM 2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM 2.5 subspecies. Model predictive performance for PM 2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less

  15. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    DOE PAGES

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-04-07

    We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O 3) mean fractional bias (MFB) ofmore » 12% and an annual average fine particulate matter (PM 2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM 2.5 at some high concentration locations and generally overpredicts average 24 h O 3 concentrations. Performance is better at predicting daytime-average and daily peak O 3 concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM 2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM 2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM 2.5 subspecies. Model predictive performance for PM 2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less

  16. An evaluation of the latitudinal gradient of chlorophyll in the California Current

    NASA Astrophysics Data System (ADS)

    Dietrich, W.; Broughton, J.; Kudela, R. M.

    2013-12-01

    Tracking of spatial and temporal trends in phytoplankton abundance and distribution is an important step toward understanding large-scale macroecological processes in the ocean. Measurements of ocean radiance from satellite-borne sensors, such as SeaWiFS and MODIS, can be used to estimate surface chlorophyll concentration, which is a good indicator of phytoplankton biomass. The primary goal of this study was to evaluate the latitudinal gradient in chlorophyll concentration within the California Current first reported by Ware and Thomson (2005). They found that average chlorophyll concentration tended to increase steadily from 32-48°N latitude. This concentration gradient was reevaluated using a longer dataset and an algorithm refined for the region. Radiance data from the MODIS-Aqua instrument were obtained for every year from 2002 through 2013. Data included annual averages of remote sensing radiance as well as monthly averages for February, April, and August. These months were chosen to represent each of the three oceanographic seasons present in the California Current. Estimates of chlorophyll concentration were derived from these data using the CALFIT algorithm developed by Kahru et al. (2012). The resulting maps of chlorophyll concentration were processed in MATLAB and linear regressions were performed using SYSTAT 13 software. A statistically significant (p < 0.05) latitudinal trend in chlorophyll was observed in the annual averaged data as well as in the averaged seasonal data from February and August. No significant trend was observed in the averaged April data. Chlorophyll concentration was positively correlated with latitude in every instance, except in April 2003 and April 2005, where a negative correlation was observed. The positive latitudinal trend was strongest during August and weakest during April. Strong peaks in chlorophyll were observed near San Francisco Bay and the mouth of the Columbia River, suggesting that river-borne nutrient input may be the dominant factor responsible for the existence of this chlorophyll gradient.

  17. RELATIONSHIPS BETWEEEN NITROGEN LOADING AND CONCENTRATIONS OF NITROGEN AND CHLOROPHYLL IN COASTAL EMBAYMENTS

    EPA Science Inventory

    We describe results obtained with a simple model that uses loading rates of total nitrogen (TN), defined as dissolved inorganic nitrogen plus dissolved and particulate organic nitrogen, to calculate annually and spatially averaged concentrations of TN in coastal embayments. We al...

  18. Occurrence and distribution of fecal indicator bacteria, and physical and chemical indicators of water quality in streams receiving discharge from Dallas/Fort Worth International Airport and vicinity, North-Central Texas, 2008

    USGS Publications Warehouse

    Harwell, Glenn R.; Mobley, Craig A.

    2009-01-01

    This report, done by the U.S. Geological Survey in cooperation with Dallas/Fort Worth International (DFW) Airport in 2008, describes the occurrence and distribution of fecal indicator bacteria (fecal coliform and Escherichia [E.] coli), and the physical and chemical indicators of water quality (relative to Texas Surface Water Quality Standards), in streams receiving discharge from DFW Airport and vicinity. At sampling sites in the lower West Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts for five of the eight West Fork Trinity River watershed sampling sites exceeded the Texas Commission on Environmental Quality E. coli criterion, thus not fully supporting contact recreation. Two of the five sites with geometric means that exceeded the contact recreation criterion are airport discharge sites, which here means that the major fraction of discharge at those sites is from DFW Airport. At sampling sites in the Elm Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts exceeded the geometric mean contact recreation criterion for seven (four airport, three non-airport) of 13 sampling sites. Under low-flow conditions in the lower West Fork Trinity River watershed, E. coli counts for airport discharge sites were significantly different from (lower than) E. coli counts for non-airport sites. Under low-flow conditions in the Elm Fork Trinity River watershed, there was no significant difference between E. coli counts for airport sites and non-airport sites. During stormflow conditions, fecal indicator bacteria counts at the most downstream (integrator) sites in each watershed were considerably higher than counts at those two sites during low-flow conditions. When stormflow sample counts are included with low-flow sample counts to compute a geometric mean for each site, classification changes from fully supporting to not fully supporting contact recreation on the basis of the geometric mean contact recreation criterion. All water temperature measurements at sampling sites in the lower West Fork Trinity River watershed were less than the maximum criterion for water temperature for the lower West Fork Trinity segment. Of the measurements at sampling sites in the Elm Fork Trinity River watershed, 95 percent were less than the maximum criterion for water temperature for the Elm Fork Trinity River segment. All dissolved oxygen concentrations were greater than the minimum criterion for stream segments classified as exceptional aquatic life use. Nearly all pH measurements were within the pH criterion range for the classified segments in both watersheds, except for those at one airport site. For sampling sites in the lower West Fork Trinity River watershed, all annual average dissolved solids concentrations were less than the maximum criterion for the lower West Fork Trinity segment. For sampling sites in the Elm Fork Trinity River, nine of the 13 sites (six airport, three non-airport) had annual averages that exceeded the maximum criterion for that segment. For ammonia, 23 samples from 12 different sites had concentrations that exceeded the screening level for ammonia. Of these 12 sites, only one non-airport site had more than the required number of exceedances to indicate a screening level concern. Stormflow total suspended solids concentrations were significantly higher than low-flow concentrations at the two integrator sites. For sampling sites in the lower West Fork Trinity River watershed, all annual average chloride concentrations were less than the maximum annual average chloride concentration criterion for that segment. For the 13 sampling sites in the Elm Fork Trinity River watershed, one non-airport site had an annual average concentration that exceeded the maximum annual average chloride concentration criterion for that segment.

  19. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide.

    PubMed

    Chandra, B P; Sinha, Vinayak

    2016-03-01

    In the north west Indo-Gangetic Plain (N.W.IGP), large scale post-harvest paddy residue fires occur every year during the months of October-November. This anthropogenic perturbation causes contamination of the atmospheric environment with adverse impacts on regional air quality posing health risks for the population exposed to high concentrations of carcinogens such as benzene and toxic VOCs such as isocyanic acid. These gases and carbon monoxide are known to be emitted from biomass fires along with acetonitrile. Yet no long-term in-situ measurements quantifying the impact of this activity have been carried out in the N.W. IGP. Using high quality continuous online in-situ measurements of these gases at a strategic downwind site over a three year period from 2012 to 2014, we demonstrate the strong impact of this anthropogenic emission activity on ambient concentrations of these gases. In contrast to the pre-paddy harvest period, excellent correlation of benzenoids, isocyanic acid and CO with acetonitrile (a biomass burning chemical tracer); (r≥0.82) and distinct VOC/acetonitrile emission ratios were observed for the post-paddy harvest period which was also characterized by high ambient concentrations of these species. The average concentrations of acetonitrile (1.62±0.18ppb), benzene (2.51±0.28ppb), toluene (3.72±0.41ppb), C8-aromatics (2.88±0.30ppb), C9-aromatics (1.55±0.19ppb) and CO (552±113ppb) in the post-paddy harvest periods were about 1.5 times higher than the annual average concentrations. For isocyanic acid, a compound with both primary and secondary sources, the concentration in the post-paddy harvest period was 0.97±0.17ppb. The annual average concentrations of benzene, a class A carcinogen, exceeded the annual exposure limit of 1.6ppb at NTP mandated by the National Ambient Air Quality Standard of India (NAAQS). We show that mitigating the post-harvest paddy residue fires can lower the annual average concentration of benzene and ensure compliance with the NAAQS. Calculations of excessive lifetime cancer risk due to benzene amount to 25 and 10 per million inhabitants for children and adults, respectively, exceeding the USEPA threshold of 1 per million inhabitants. Annual exposure to isocyanic acid was close to 1ppb, the concentration considered to be sufficient to enhance risks for cardiovascular diseases and cataracts. This study makes a case for urgent mitigation of post-harvest paddy residue fires as the unknown synergistic effect of multi-pollutant exposure due to emissions from this anthropogenic source may be posing grave health risks to the population of the N.W. IGP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    USGS Publications Warehouse

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment-associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages.

  1. Temporal trends in the acidity of precipitation and surface waters of New York

    USGS Publications Warehouse

    Peters, Norman E.; Schroeder, Roy A.; Troutman, David E.

    1982-01-01

    Statistical analyses of precipitation data from a nine-station monitoring network indicate little change in pH from 1965-78 within New York State as a whole but suggest that pH of bulk precipitation has decreased in the western part of the State by approximately 0.2 pH units since 1965 and increased in the eastern part by a similar amount. This trend is equivalent to an annual change in hydrogen-ion concentration of 0.2 microequivalents per liter. An average annual increase in precipitation quantity of 2 to 3 percent since 1965 has resulted in an increased acid load in the western and central parts of the State. During 1965-78, sulfate concentration in precipitation decreased an average of 1-4 percent annually. In general, no trend in nitrate was detected. Calculated trends in hydrogen-ion concentration do not correlate with measured trends of sulfate and nitrate, which suggests variable neutralization of hydrogen ion, possibly by particles from dry deposition. Neutralization has produced an increase of about 0.3 pH units in nonurban areas and 0.7 pH units in urban areas. Statistical analyses of chemical data from several streams throughout New York suggest that sulfate concentrations decreased an average of 1 to 4 percent per year. This decrease is comparable to the sulfate decrease in precipitation during the same period. In most areas of the State, chemical contributions from urbanization and farming, as well as the neutralizing effect of carbonate soils, conceal whatever effects acid precipitation may have on pH of streams.

  2. Evaluation of air quality indicators in Alberta, Canada - An international perspective.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B

    2016-01-01

    There has been an increase in oil sands development in northern Alberta, Canada and an overall increase in economic activity in the province in recent years. An evaluation of the state of air quality was conducted in four Alberta locations - urban centers of Calgary and Edmonton, and smaller communities of Fort McKay and Fort McMurray in the Athabasca Oil Sands Region (AOSR). Concentration trends, diurnal hourly and monthly average concentration profiles, and exceedances of provincial, national and international air quality guidelines were assessed for several criteria air pollutants over the period 1998 to 2014. Two methods were used to evaluate trends. Parametric analysis of annual median 1h concentrations and non-parametric analysis of annual geometric mean 1h concentrations showed consistent decreasing trends for NO2 and SO2 (<1ppb per year), CO (<0.1ppm per year) at all stations, decreasing for THC (<0.1ppm per year) and increasing for O3 (≤0.52ppb per year) at most stations and unchanged for PM2.5 at all stations in Edmonton and Calgary over a 17-year period. Little consistency in trends was observed among the methods for the same air pollutants other than for THC (increasing in Fort McKay <0.1ppm per year and no trend in Fort McMurray), PM2.5 in Fort McKay and Fort McMurray (no trend) and CO (decreasing <0.1ppm per year in Fort McMurray) over the same period. Levels of air quality indicators at the four locations were compared with other Canadian and international urban areas to judge the current state of air quality. Median and annual average concentrations for Alberta locations tended to be the smallest in Fort McKay and Fort McMurray. Other than for PM2.5, Calgary and Edmonton tended to have median and annual average concentrations comparable to and/or below that of larger populated Canadian and U.S. cities, depending upon the air pollutant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey.

    PubMed

    Taskin, H; Karavus, M; Ay, P; Topuzoglu, A; Hidiroglu, S; Karahan, G

    2009-01-01

    The objective of this study is to evaluate and map soil radionuclides' activity concentrations and environmental outdoor gamma dose rates (terrestrial and cosmic) in Kirklareli, Turkey. The excess lifetime cancer risks are also calculated. Outdoor gamma dose rates were determined in 230 sampling stations and soil samples were taken from 177 locations. The coordinates of the readings were determined by the Global Positioning System (GPS). The outdoor gamma dose rates were determined by Eberline smart portable device (ESP-2) and measurements were taken in air for two minutes at 1m from the ground. The average outdoor gamma dose rate was 118+/-34nGyh(-1). Annual effective gamma dose of Kirklareli was 144microSv and the excess lifetime cancer risk of 5.0x10(-4). Soil samples were analyzed by gamma spectroscopy. The average 226Ra, 238U, 232Th, 137Cs, and 40K activities were 37+/-18Bqkg(-1), 28+/-13Bqkg(-1), 40+/-18Bqkg(-1), 8+/-5Bqkg(-1) and 667+/-281Bqkg(-1), respectively. The average soil radionuclides' concentrations of Kirklareli were within the worldwide range although some extreme values had been determined. Annual effective gamma doses and the excess lifetime risks of cancer were higher than the world's average.

  4. Testing the Wisconsin Phosphorus Index with year-round, field-scale runoff monitoring.

    PubMed

    Good, Laura W; Vadas, Peter; Panuska, John C; Bonilla, Carlos A; Jokela, William E

    2012-01-01

    The Wisconsin Phosphorus Index (WPI) is one of several P indices in the United States that use equations to describe actual P loss processes. Although for nutrient management planning the WPI is reported as a dimensionless whole number, it is calculated as average annual dissolved P (DP) and particulate P (PP) mass delivered per unit area. The WPI calculations use soil P concentration, applied manure and fertilizer P, and estimates of average annual erosion and average annual runoff. We compared WPI estimated P losses to annual P loads measured in surface runoff from 86 field-years on crop fields and pastures. As the erosion and runoff generated by the weather in the monitoring years varied substantially from the average annual estimates used in the WPI, the WPI and measured loads were not well correlated. However, when measured runoff and erosion were used in the WPI field loss calculations, the WPI accurately estimated annual total P loads with a Nash-Sutcliffe Model Efficiency (NSE) of 0.87. The DP loss estimates were not as close to measured values (NSE = 0.40) as the PP loss estimates (NSE = 0.89). Some errors in estimating DP losses may be unavoidable due to uncertainties in estimating on-farm manure P application rates. The WPI is sensitive to field management that affects its erosion and runoff estimates. Provided that the WPI methods for estimating average annual erosion and runoff are accurately reflecting the effects of management, the WPI is an accurate field-level assessment tool for managing runoff P losses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. A method to assess the inter-annual weather-dependent variability in air pollution concentration and deposition based on weather typing

    NASA Astrophysics Data System (ADS)

    Pleijel, Håkan; Grundström, Maria; Karlsson, Gunilla Pihl; Karlsson, Per Erik; Chen, Deliang

    2016-02-01

    Annual anomalies in air pollutant concentrations, and deposition (bulk and throughfall) of sulphate, nitrate and ammonium, in the Gothenburg region, south-west Sweden, were correlated with optimized linear combinations of the yearly frequency of Lamb Weather Types (LWTs) to determine the extent to which the year-to-year variation in pollution exposure can be partly explained by weather related variability. Air concentrations of urban NO2, CO, PM10, as well as O3 at both an urban and a rural monitoring site, and the deposition of sulphate, nitrate and ammonium for the period 1997-2010 were included in the analysis. Linear detrending of the time series was performed to estimate trend-independent anomalies. These estimated anomalies were subtracted from observed annual values. Then the statistical significance of temporal trends with and without LWT adjustment was tested. For the pollutants studied, the annual anomaly was well correlated with the annual LWT combination (R2 in the range 0.52-0.90). Some negative (annual average [NO2], ammonia bulk deposition) or positive (average urban [O3]) temporal trends became statistically significant (p < 0.05) when the LWT adjustment was applied. In all the cases but one (NH4 throughfall, for which no temporal trend existed) the significance of temporal trends became stronger with LWT adjustment. For nitrate and ammonium, the LWT based adjustment explained a larger fraction of the inter-annual variation for bulk deposition than for throughfall. This is probably linked to the longer time scale of canopy related dry deposition processes influencing throughfall being explained to a lesser extent by LWTs than the meteorological factors controlling bulk deposition. The proposed novel methodology can be used by authorities responsible for air pollution management, and by researchers studying temporal trends in pollution, to evaluate e.g. the relative importance of changes in emissions and weather variability in annual air pollution exposure.

  6. Long-term variations of the riverine input of potentially toxic dissolved elements and the impacts on their distribution in Jiaozhou Bay, China.

    PubMed

    Wang, Changyou; Guo, Jinqiang; Liang, Shengkang; Wang, Yunfei; Yang, Yanqun; Wang, Xiulin

    2018-03-01

    The concentrations of the potentially toxic dissolved elements (PTEs) As, Hg, Cr, Pb, Cd, and Cu in the main rivers into Jiaozhou Bay (JZB) during 1981-2006 were measured, and the impact of the fluvial PTE fluxes on their distributions in the bay was investigated. The overall average concentration in the rivers into JZB ranged from 8.8 to 39.6 μg L -1 for As, 10.1 to 632.6 ng L -1 for Hg, 4.1 to 3003.6 μg L -1 for Cr, 8.5 to 141.9 μg L -1 for Pb, 1.1 to 34.2 μg L -1 for Cd, and 13.2 to 1042.8 μg L -1 for Cu. The interannual average concentration variations of the PTEs in these rivers were enormous, with maximum differences of 41-21,680 times, while their relative seasonal changes were far smaller with maximum differences of 3-12 times. The total annual fluvial fluxes for As, Hg, and Cr into JZB exhibited the inverse "U" pattern, while those for Pb and Cd showed the "N" pattern. As a whole, the total annual Cu flux presented a growing tendency from 1998 to 2006. In general, the changing trends of the PTE concentrations in JZB were similar to those of their annual fluxes from the rivers, indicating a great impact of their fluvial fluxes on their distributions in JZB. The annual concentration of Cd in the bay almost remained constant and differed from the fluvial flux of Cd. The diversified pattern of the environmental Kuznets curve (EKC) represented China's approach to industrialization as "improving while developing."

  7. InMAP: a new model for air pollution interventions

    NASA Astrophysics Data System (ADS)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-01

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) < 10 % and population-weighted R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The InMAP model source code and input data are freely available online.

  8. Using PBL to Prepare Educators and Emergency Managers to Plan for Severe Weather

    ERIC Educational Resources Information Center

    Stalker, Sarah L.; Cullen, Theresa A.; Kloesel, Kevin

    2015-01-01

    Within the past 10 years severe weather has been responsible for an annual average of 278 fatalities in the United States (National Weather Service, 2013). During severe weather special populations are populations of high concentrations of people that cannot respond quickly. Schools show both of these characteristics. The average lead time for…

  9. Atmospheric wet deposition of trace elements to a suburban environment, Reston, Virginia, USA

    USGS Publications Warehouse

    Conko, Kathryn M.; Rice, Karen C.; Kennedy, Margaret M.

    2004-01-01

    Wet deposition from a suburban area in Reston, Virginia was collected during 1998 and analyzed to assess the anion and trace-element concentrations and depositions. Suburban Reston, approximately 26 km west of Washington, DC, is densely populated and heavily developed. Wet deposition was collected bi-weekly in an automated collector using trace-element clean sampling and analytical techniques. The annual volume-weighted concentrations of As, Cd, and Pb were similar to those previously reported for a remote site on Catoctin Mt., Maryland (70 km northwest), which indicated a regional signal for these elements. The concentrations and depositions of Cu and Zn at the suburban site were nearly double those at remote sites because of the influence of local vehicular traffic. The 1998 average annual wet deposition (μg m−2 yr−1) was calculated for Al (52,000), As (94), Cd (54), Cr (160), Cu (700), Fe (23,000), Mn (2000), Ni (240), Pb (440), V (430), and Zn (4100). The average annual wet deposition (meq m−2 yr−1) was calculated for H+ (74), Cl− (8.5), NO3− (33), and SO42− (70). Analysis of digested total trace-element concentrations in a subset of samples showed that the refractory elements in suburban precipitation comprised a larger portion of the total deposition of trace elements than in remote areas.

  10. Seasonal radon measurements in Darbandikhan Lake water resources at Kurdistan region-northeastern of Iraq

    NASA Astrophysics Data System (ADS)

    Jafir, Adeeb Omer; Ahmad, Ali Hassan; Saridan, Wan Muhamad

    2016-03-01

    A total of 164 water samples were collected from Darbandikhan Lake with their different resources (spring, stream, and lake) during the four seasons, and the measurements were carried out using the electronic RAD 7 detector. For spring water the average radon concentration for spring, summer, autumn and summer were found to be 8.21 Bq/1, 8.94 Bq/1, 7.422 Bq/1, and 8.06 Bq/1, respectively, while for lake and streams the average values were found to be 0.43 Bq/1, 0.877 Bq/1, 0.727 Bq/1, 0.575 Bq/1 respectively. The radon concentration level was higher in summer and lower in spring, and only two samples from spring water have radon concentrations more than 11.1 Bq/1 recommended by the EPA. Total annual effective dose due to ingestion and inhalation has been estimated, the mean annual effective dose during the whole year for spring water was 0.022 mSv/y while for lake with streams was 0.00157 mSv/y. The determined mean annual effective dose in water was lower than the 0.1 mSv/y recommended by WHO. Some physicochemical parameters were measured and no correlation was found between them and radon concentration except for the conductivity of the spring drinking water which reveals a strong correlation for the four seasons.

  11. Source apportionment of airborne particulate matter using organic compounds as tracers

    NASA Astrophysics Data System (ADS)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  12. Source apportionment of airborne particulate matter using organic compounds as tracers

    NASA Astrophysics Data System (ADS)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution:; from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  13. A novel methodology for interpreting air quality measurements from urban streets using CFD modelling

    NASA Astrophysics Data System (ADS)

    Solazzo, Efisio; Vardoulakis, Sotiris; Cai, Xiaoming

    2011-09-01

    In this study, a novel computational fluid dynamics (CFD) based methodology has been developed to interpret long-term averaged measurements of pollutant concentrations collected at roadside locations. The methodology is applied to the analysis of pollutant dispersion in Stratford Road (SR), a busy street canyon in Birmingham (UK), where a one-year sampling campaign was carried out between August 2005 and July 2006. Firstly, a number of dispersion scenarios are defined by combining sets of synoptic wind velocity and direction. Assuming neutral atmospheric stability, CFD simulations are conducted for all the scenarios, by applying the standard k-ɛ turbulence model, with the aim of creating a database of normalised pollutant concentrations at specific locations within the street. Modelled concentration for all wind scenarios were compared with hourly observed NO x data. In order to compare with long-term averaged measurements, a weighted average of the CFD-calculated concentration fields was derived, with the weighting coefficients being proportional to the frequency of each scenario observed during the examined period (either monthly or annually). In summary the methodology consists of (i) identifying the main dispersion scenarios for the street based on wind speed and directions data, (ii) creating a database of CFD-calculated concentration fields for the identified dispersion scenarios, and (iii) combining the CFD results based on the frequency of occurrence of each dispersion scenario during the examined period. The methodology has been applied to calculate monthly and annually averaged benzene concentration at several locations within the street canyon so that a direct comparison with observations could be made. The results of this study indicate that, within the simplifying assumption of non-buoyant flow, CFD modelling can aid understanding of long-term air quality measurements, and help assessing the representativeness of monitoring locations for population exposure studies.

  14. Investigation of distribution of radioactivity with effects of heavy metals in toothpastes from Penang markets.

    PubMed

    Salih, Najeba F; Jafri, Zubir M; Jaafar, Mohamad S

    2016-12-01

    This study was carried out to determine the concentration of 222 Rn, 226 Ra, and 238 U in 25 different toothpastes available in the local market in Penang, Malaysia, using a CR-39 detector. The results showed the maximum concentration of radon/ radium/uranium to be 4197.644 Bq.m -3 , 54.369 Bq.Kgm -1 , and 0.044 ppm in Colgate4; the annual effective dose was found (0.402 mSvy -1 ) in S07. The average concentration of radon (42 %, 3.224 KBq.m -3 ) was higher than the concentration of 214 Po, 218 Po in POS (32 %, 2.415 KBq.m -3 ) and POW (26 %, 1.979 KBq.m -3 ). Also the values of pH of samples ranged from 4.21 (highly acidic) in S04 to 9.97 (highly basic) in S07, with an average of 6.33 which tended towards an acidic behavior; a low or high pH for a long period of time can cause harmful side-effects and enamel erosion. Concentrations of heavy metals varied from the maximum value 56.156 ppm in the Ca elements in the Colgate 4 sample to a minimum value of -0.858 ppm in the Cd elements in Colgate 6 (Ca 56.156 ppm > Cd 51.572 ppm > Zn 41.039 ppm > Mg 11.682 ppm > Pb 11.009 ppm]. Monitoring the accumulation of these metals in toothpaste samples is very important: the average annual effective dose (0.3118 mSvy -1 ) was below the range (3-10 mSvy -1 ) reported by ICRP (1993), and therefore there is no evidence of health problems. Significant strong positive correlations were found (r = 1, Pearson correlation, p < 0.000) in concentration of radon, radium, uranium, annual effective dose, pH, and electrical conductivity.

  15. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Praphulla Chandra, Boggarapu; Sinha, Vinayak

    2016-04-01

    In the North West Indo-Gangetic Plain (N.W.IGP), large scale post-harvest paddy residue fires occur every year during the months of October-November. This anthropogenic perturbation causes contamination of the atmospheric environment with adverse impacts on regional air quality posing health risks for the population exposed to high concentrations of carcinogens such as benzene and toxic VOCs such as isocyanic acid. These gases and carbon monoxide are known to be emitted from biomass fires along with acetonitrile. Yet no long-term in-situ measurements quantifying the impact of this activity have been carried out in the N.W. IGP. Using high quality continuous online in-situ measurements of these gases at a strategic downwind site over a three year period from 2012 to 2014, we demonstrate the strong impact of this anthropogenic emission activity on ambient concentrations of these gases. In contrast to the pre-paddy harvest period, excellent correlation of benzenoids, isocyanic acid and CO with acetonitrile (a biomass burning chemical tracer); (r ≥ 0.82) and distinct VOC/acetonitrile emission ratios were observed for the post-paddy harvest period which was also characterized by high ambient concentrations of these species. The average concentrations of acetonitrile (1.62 ± 0.18 ppb), benzene (2.51 ± 0.28 ppb), toluene (3.72 ± 0.41 ppb), C8-aromatics (2.88 ± 0.30 ppb), C9-aromatics (1.55 ± 0.19 ppb) and CO (552 ± 113 ppb) in the post-paddy harvest periods were about 1.5 times higher than the annual average concentrations. For isocyanic acid, a compound with both primary and secondary sources, the concentration in the post-paddy harvest period was 0.97 ± 0.17 ppb. The annual average concentrations of benzene, a class A carcinogen, exceeded the annual exposure limit of 1.6 ppb at NTP mandated by the National Ambient Air Quality Standard of India (NAAQS). We show that mitigating the post-harvest paddy residue fires can lower the annual average concentration of benzene and ensure compliance with the NAAQS. Calculations of excessive lifetime cancer risk due to benzene amount to 25 and 10 per million inhabitants for children and adults, respectively, exceeding the USEPA threshold of 1 per million inhabitants. Annual exposure to isocyanic acid was close to 1 ppb, the concentration considered to be sufficient to enhance risks for cardiovascular diseases and cataracts. This study makes a case for urgent mitigation of post-harvest paddy residue fires as the unknown synergistic effect of multi-pollutant exposure due to emissions from this anthropogenic source may be posing grave health risks to the population of the N.W. IGP. This work has been published very recently and the citation to the complete work is: B.P. Chandra, Vinayak Sinha, Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide, Environment International, Volume 88, March 2016, Pages 187-197, ISSN 0160-4120, http://dx.doi.org/10.1016/j.envint.2015.12.025.

  16. Joint analysis of air pollution in street canyons in St. Petersburg and Copenhagen

    NASA Astrophysics Data System (ADS)

    Genikhovich, E. L.; Ziv, A. D.; Iakovleva, E. A.; Palmgren, F.; Berkowicz, R.

    The bi-annual data set of concentrations of several traffic-related air pollutants, measured continuously in street canyons in St. Petersburg and Copenhagen, is analysed jointly using different statistical techniques. Annual mean concentrations of NO 2, NO x and, especially, benzene are found systematically higher in St. Petersburg than in Copenhagen but for ozone the situation is opposite. In both cities probability distribution functions (PDFs) of concentrations and their daily or weekly extrema are fitted with the Weibull and double exponential distributions, respectively. Sample estimates of bi-variate distributions of concentrations, concentration roses, and probabilities of concentration of one pollutant being extreme given that another one reaches its extremum are presented in this paper as well as auto- and co-spectra. It is demonstrated that there is a reasonably high correlation between seasonally averaged concentrations of pollutants in St. Petersburg and Copenhagen.

  17. Municipal landfill leachate characteristics and feasibility of retrofitting existing treatment systems with deammonification - A full scale survey.

    PubMed

    Mohammad-Pajooh, Ehsan; Weichgrebe, Dirk; Cuff, Graham

    2017-02-01

    Leachate characteristics, applied technologies and energy demand for leachate treatment were investigated through survey in different states of Germany. Based on statistical analysis of leachate quality data from 2010 to 2015, almost half of the contaminants in raw leachate satisfy direct discharge limits. Decrease in leachate pollution index of current landfills is mainly related to reduction in concentrations of certain heavy metals (Pb, Zn, Cd, Hg) and organics (biological oxygen demand (BOD 5 ), chemical oxygen demand (COD), and adsorbable organic halogen (AOX)). However, contaminants of concern remain COD, ammonium-nitrogen (NH 4 N) and BOD 5 with average concentrations in leachate of about 1850, 640, and 120 mg/L respectively. Concentrations of COD and NH 4 N vary seasonally, mainly due to temperature changes; concentrations during the first quarter of the year are mostly below the annual average value. Electrical conductivity (EC) of leachate may be used as a time and cost saving alternative to monitor sudden changes in concentration of these two parameters, due to high correlations of around 0.8 with both COD and NH 4 N values which are possibly due to low heavy metal concentrations in leachate. The decreased concentrations of heavy metals and BOD 5 favor the retrofitting of an existing biological reactor (nitrification/denitrification) with the deammonification process and post denitrification, as this lowers average annual operational cost (in terms of energy and external carbon source) and CO 2 emission by €25,850 and 15,855 kg CO 2,eq respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Annual estimates of water and solute export from 42 tributaries to the Yukon River

    USGS Publications Warehouse

    Frederick Zanden,; Suzanne P. Anderson,; Striegl, Robert G.

    2012-01-01

    Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions.

  19. Changes in Transportation-Related Air Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in the United States in 2000 and 2010

    PubMed Central

    Clark, Lara P.; Millet, Dylan B.

    2017-01-01

    Background: Disparities in exposure to air pollution by race-ethnicity and by socioeconomic status have been documented in the United States, but the impacts of declining transportation-related air pollutant emissions on disparities in exposure have not been studied in detail. Objective: This study was designed to estimate changes over time (2000 to 2010) in disparities in exposure to outdoor concentrations of a transportation-related air pollutant, nitrogen dioxide (NO2), in the United States. Methods: We combined annual average NO2 concentration estimates from a temporal land use regression model with Census demographic data to estimate outdoor exposures by race-ethnicity, socioeconomic characteristics (income, age, education), and by location (region, state, county, urban area) for the contiguous United States in 2000 and 2010. Results: Estimated annual average NO2 concentrations decreased from 2000 to 2010 for all of the race-ethnicity and socioeconomic status groups, including a decrease from 17.6 ppb to 10.7 ppb (−6.9 ppb) in nonwhite [non-(white alone, non-Hispanic)] populations, and 12.6 ppb to 7.8 ppb (−4.7 ppb) in white (white alone, non-Hispanic) populations. In 2000 and 2010, disparities in NO2 concentrations were larger by race-ethnicity than by income. Although the national nonwhite–white mean NO2 concentration disparity decreased from a difference of 5.0 ppb in 2000 to 2.9 ppb in 2010, estimated mean NO2 concentrations remained 37% higher for nonwhites than whites in 2010 (40% higher in 2000), and nonwhites were 2.5 times more likely than whites to live in a block group with an average NO2 concentration above the WHO annual guideline in 2010 (3.0 times more likely in 2000). Conclusions: Findings suggest that absolute NO2 exposure disparities by race-ethnicity decreased from 2000 to 2010, but relative NO2 exposure disparities persisted, with higher NO2 concentrations for nonwhites than whites in 2010. https://doi.org/10.1289/EHP959 PMID:28930515

  20. Changes in Transportation-Related Air Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in the United States in 2000 and 2010.

    PubMed

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2017-09-14

    Disparities in exposure to air pollution by race-ethnicity and by socioeconomic status have been documented in the United States, but the impacts of declining transportation-related air pollutant emissions on disparities in exposure have not been studied in detail. This study was designed to estimate changes over time (2000 to 2010) in disparities in exposure to outdoor concentrations of a transportation-related air pollutant, nitrogen dioxide (NO2), in the United States. We combined annual average NO2 concentration estimates from a temporal land use regression model with Census demographic data to estimate outdoor exposures by race-ethnicity, socioeconomic characteristics (income, age, education), and by location (region, state, county, urban area) for the contiguous United States in 2000 and 2010. Estimated annual average NO2 concentrations decreased from 2000 to 2010 for all of the race-ethnicity and socioeconomic status groups, including a decrease from 17.6 ppb to 10.7 ppb (-6.9 ppb) in nonwhite [non-(white alone, non-Hispanic)] populations, and 12.6 ppb to 7.8 ppb (-4.7 ppb) in white (white alone, non-Hispanic) populations. In 2000 and 2010, disparities in NO2 concentrations were larger by race-ethnicity than by income. Although the national nonwhite-white mean NO2 concentration disparity decreased from a difference of 5.0 ppb in 2000 to 2.9 ppb in 2010, estimated mean NO2 concentrations remained 37% higher for nonwhites than whites in 2010 (40% higher in 2000), and nonwhites were 2.5 times more likely than whites to live in a block group with an average NO2 concentration above the WHO annual guideline in 2010 (3.0 times more likely in 2000). Findings suggest that absolute NO2 exposure disparities by race-ethnicity decreased from 2000 to 2010, but relative NO2 exposure disparities persisted, with higher NO2 concentrations for nonwhites than whites in 2010. https://doi.org/10.1289/EHP959.

  1. Estimation of recharge rates to the sand and gravel aquifer using environmental tritium, Nantucket Island, Massachusetts

    USGS Publications Warehouse

    Knott, Jayne Fifield; Olimpio, Julio C.

    1986-01-01

    Estimation of the average annual rate of ground-water recharge to sand and gravel aquifers using elevated tritium concentrations in ground water is an alternative to traditional steady-state and water-balance recharge-rate methods. The concept of the tritium tracer method is that the average annual rate of ground-water recharge over a period of time can be calculated from the depth of the peak tritium concentration in the aquifer. Assuming that ground-water flow is vertically downward and that aquifer properties are reasonably homogeneous, and knowing the date of maximum tritium concentration in precipitation and the current depth to the tritium peak from the water table, the average recharge rate can be calculated. The method, which is a direct-measurement technique, was applied at two sites on Nantucket Island, Massachusetts. At site 1, the average annual recharge rate between 1964 and 1983 was 26.1 inches per year, or 68 percent of the average annual precipitation, and the estimated uncertainty is ?15 percent. At site 2, the multilevel water samplers were not constructed deep enough to determine the peak concentration of tritium in ground water. The tritium profile at site 2 resembles the upper part of the tritium profile at site 1 and indicates that the average recharge rate was at least 16 .7 inches per year, or at least 44 percent of the average annual precipitation. The Nantucket tritium recharge rates clearly are higher than rates determined elsewhere in southeastern Massachusetts using the tritium, water-table-fluctuation, and water-balance (Thornthwaite) methods, regardless of the method or the area. Because the recharge potential on Nantucket is so high (runoff is only 2 percent of the total water balance), the tritium recharge rates probably represent the effective upper limit for ground-water recharge in this region. The recharge-rate values used by Guswa and LeBlanc (1985) and LeBlanc (1984) in their ground-water-flow computer models of Cape Cod are 20 to 30 percent lower than this upper limit. The accuracy of the tritium method is dependent on two key factors: the accuracy of the effective-porosity data, and the sampling interval used at the site. For some sites, the need for recharge-rate data may require a determination as statistically accurate as that which can be provided by the tritium method. However, the tritium method is more costly and more time consuming than the other methods because numerous wells must be drilled and installed and because many water samples must be analyzed for tritium, to a very small level of analytical detection. For many sites, a less accurate, less expensive, and faster method of recharge-rate determination might be more satisfactory . The factor that most seriously limits the usefulness of the tritium tracer method is the current depth of the tritium peak. Water with peak concentrations of tritium entered the ground more than 20 years ago, and, according to the Nantucket data, that water now is more than 100 feet below the land surface. This suggests that the tracer method will work only in sand and gravel aquifers that are exceedingly thick by New England standards. Conversely, the results suggest that the method may work in areas where saturated thicknesses are less than 100 feet and the rate of vertical ground-water movement is relatively slow, such as in till and in silt- and clay-rich sand and gravel deposits.

  2. A mathematical model of reservoir sediment quality prediction based on land-use and erosion processes in watershed

    NASA Astrophysics Data System (ADS)

    Junakova, N.; Balintova, M.; Junak, J.

    2017-10-01

    The aim of this paper is to propose a mathematical model for determining of total nitrogen (N) and phosphorus (P) content in eroded soil particles with emphasis on prediction of bottom sediment quality in reservoirs. The adsorbed nutrient concentrations are calculated using the Universal Soil Loss Equation (USLE) extended by the determination of the average soil nutrient concentration in top soils. The average annual vegetation and management factor is divided into five periods of the cropping cycle. For selected plants, the average plant nutrient uptake divided into five cropping periods is also proposed. The average nutrient concentrations in eroded soil particles in adsorbed form are modified by sediment enrichment ratio to obtain the total nutrient content in transported soil particles. The model was designed for the conditions of north-eastern Slovakia. The study was carried out in the agricultural basin of the small water reservoir Klusov.

  3. High Contributions of Secondary Inorganic Aerosols to PM2.5 under Polluted Levels at a Regional Station in Northern China.

    PubMed

    Li, Yang; Tao, Jun; Zhang, Leiming; Jia, Xiaofang; Wu, Yunfei

    2016-12-15

    Daily PM 2.5 samples were collected at Shangdianzi (SDZ) regional site in Beijing-Tianjin-Hebei (BTH) region in 2015. Samples were subject to chemical analysis for organic carbon (OC), elemental carbon (EC), and major water-soluble inorganic ions. The annual average PM 2.5 mass concentration was 53 ± 36 μg·m -3 with the highest seasonal average concentration in spring and the lowest in summer. Water-soluble inorganic ions and carbonaceous aerosols accounted for 34% ± 15% and 33% ± 9%, respectively, of PM 2.5 mass on annual average. The excellent, good, lightly polluted, moderately polluted, and heavily polluted days based on the Air Quality Index (AQI) of PM 2.5 accounted for 40%, 42%, 11%, 4%, and 3%, respectively, of the year. The sum of the average concentration of sulfate, nitrate, and ammonium (SNA) increased from 4.2 ± 2.9 μg·m -3 during excellent days to 85.9 ± 22.4 μg·m -3 during heavily polluted days, and their contributions to PM 2.5 increased from 15% ± 8% to 49% ± 10% accordingly. In contrast, the average concentration of carbonaceous aerosols increased from 9.2 ± 2.8 μg·m -3 to 51.2 ± 14.1 μg·m -3 , and their contributions to PM 2.5 decreased from 34% ± 6% to 29% ± 7%. Potential source contribution function (PSCF) analysis revealed that the major sources for high PM 2.5 and its dominant chemical components were within the area mainly covering Shandong, Henan, and Hebei provinces. Regional pollutant transport from Shanxi province and Inner Mongolia autonomous region located in the west direction of SDZ was also important during the heating season.

  4. Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Ziegler, Andrew C.; Rasmussen, Patrick P.

    2005-01-01

    The lower Kansas River is an important source of drinking water for hundreds of thousands of people in northeast Kansas. Constituents of concern identified by the Kansas Department of Health and Environment (KDHE) for streams in the lower Kansas River Basin include sulfate, chloride, nutrients, atrazine, bacteria, and sediment. Real-time continuous water-quality monitors were operated at three locations along the lower Kansas River from July 1999 through September 2004 to provide in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen and to estimate concentrations for constituents of concern. Estimates of concentration and densities were combined with streamflow to calculate constituent loads and yields from January 2000 through December 2003. The Wamego monitoring site is located 44 river miles upstream from the Topeka monitoring site, which is 65 river miles upstream from the DeSoto monitoring site, which is 18 river miles upstream from where the Kansas River flows into the Missouri River. Land use in the Kansas River Basin is dominated by grassland and cropland, and streamflow is affected substantially by reservoirs. Water quality at the three monitoring sites varied with hydrologic conditions, season, and proximity to constituent sources. Nutrient and sediment concentrations and bacteria densities were substantially larger during periods of increased streamflow, indicating important contributions from nonpoint sources in the drainage basin. During the study period, pH remained well above the KDHE lower criterion of 6.5 standard units at all sites in all years, but exceeded the upper criterion of 8.5 standard units annually between 2 percent of the time (Wamego in 2001) and 65 percent of the time (DeSoto in 2003). The dissolved oxygen concentration was less than the minimum aquatic-life-support criterion of 5.0 milligrams per liter less than 1 percent of the time at all sites. Dissolved solids, a measure of the dissolved material in water, exceeded 500 milligrams per liter about one-half of the time at the three Kansas River sites. Larger dissolved-solids concentrations upstream likely were a result of water inflow from the highly mineralized Smoky Hill River that is diluted by tributary flow as it moves downstream. Concentrations of total nitrogen and total phosphorus at the three monitoring sites exceeded the ecoregion water-quality criteria suggested by the U.S. Environmental Protection Agency during the entire study period. Median nitrogen and phosphorus concentrations were similar at all three sites, and nutrient load increased moving from the upstream to downstream sites. Total nitrogen and total phosphorus yields were nearly the same from site to site indicating that nutrient sources were evenly distributed throughout the lower Kansas River Basin. About 11 percent of the total nitrogen load and 12 percent of the total phosphorus load at DeSoto during 2000-03 originated from wastewater-treatment facilities. Escherichia coli bacteria densities were largest at the middle site, Topeka. On average, 83 percent of the annual bacteria load at DeSoto during 2000-03 occurred during 10 percent of the time, primarily in conjunction with runoff. The average annual sediment loads at the middle and downstream monitoring sites (Topeka and DeSoto) were nearly double those at the upstream site (Wamego). The average annual sediment yield was largest at Topeka. On average, 64 percent of the annual suspended-sediment load at DeSoto during 2000-03 occurred during 10 percent of the time. Trapping of sediment by reservoirs located on contributing tributaries decreases transport of sediment and sediment-related constituents. The average annual suspended-sediment load in the Kansas River at DeSoto during 2000-03 was estimated at 1.66 million tons. An estimated 13 percent of this load consisted of sand-size particles, so approximately 216,000 tons of sand were transported

  5. Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor.

    PubMed

    Shi, Shanshan; Chen, Chen; Zhao, Bin

    2017-01-01

    Numerous epidemiological studies explored health risks attributed to outdoor particle pollution. However, a number of these studies routinely utilized ambient concentration as a surrogate for personal exposure to ambient particles. This simplification ignored the difference between indoor and outdoor concentrations of outdoor originated particles and may bias the estimate of particle-health associations. Intending to avoid the bias, particle infiltration factor (F inf ), which describes the penetration of outdoor particles in indoor environment, and ambient exposure factor (α), which represents the fraction of outdoor particles people are truly exposed to, are utilized as modification factors to modify outdoor particle concentration. In this study, the probabilistic distributions of annually-averaged and seasonally-averaged F inf and α were assessed for residences and residents in Beijing. F inf of a single residence and α of an individual was estimated based on the mechanisms governing particle outdoor-to-indoor migration and human time-activity pattern. With this as the core deterministic model, probabilistic distributions of F inf and α were estimated via Monte Carlo Simulation. Annually-averaged F inf of PM 2.5 and PM 10 for residences in Beijing tended to be log-normally distributed as lnN(-0.74,0.14) and lnN(-0.94,0.15) with geometric mean value as 0.47 and 0.39, respectively. Annually-averaged α of PM 2.5 and PM 10 for Beijing residents also tended to be log-normally distributed as lnN(-0.59,0.12) and lnN(-0.73,0.13) with geometric mean value as 0.55 and 0.48, respectively. As for seasonally-averaged results, F inf and α of PM 2.5 and PM 10 were largest in summer and smallest in winter. The obvious difference between these modification factors and unity suggested that modifications of ambient particle concentration need to be considered in epidemiological studies to avoid misclassifications of personal exposure to ambient particles. Moreover, considering the inter-individual difference of F inf and α may lead to a brand new perspective of particle-health associations in further epidemiological study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Water and tritium movement through the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1981-85

    USGS Publications Warehouse

    Mills, Patrick C.; Healy, R.W.

    1991-01-01

    The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 millimeters; mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 millimeters. Average annual tritium flux below the study trenches was estimated to be 3.4 millicuries per year. Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 meters in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10^-1 to 3.4x10^4 millimeters per day. A 120-meter-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the trenches primarily at the trench edges where the compacted zone was absent and the cover was relatively thin. Collapse holes in the trench covers that resulted from inadequate compaction of wastes within the trenches provided additional preferential pathways for surface-water drainage into the trenches; drainage into one collapse hole during a rainstorm was estimated to be 1,700 liters. Till deposits near trench bases induced lateral water and tritium movement. Limited temporal variation in water movement and small flow gradients (relative to the till deposits) were detected in the unsaturated subtrench sand deposit; maximum gradients during the spring recharge period averaged 1.62 millimeters per millimeter. Time-of-travel of water moving from the trench covers to below the trenches was estimated to be as rapid as 41 days (assuming individual water molecules move this distance in one recharge cycle). Tritium concentrations in water from the unsaturated zone ranged from 200 (background) to 10,000,000 pCi/L (picocuries per liter). Tritium concentrations generally were higher below trench bases (averaging 91,000 pCi/L) than below intertrench sediments (averaging 3,300 pCi/L), and in the subtrench Toulon Member of the Glasford Formation (sand) (averaging 110,000 pCi/L) than in the Hulick Till Member of the Glasford Formation (clayey silt) (averaging 59,000 pCi/L). Average subtrench tritium concentration increased from 28,000 to 100,000 pCi/L during the study period. Within the trench covers, there was a strong seasonal trend in tritium concentrations; the highest concentrations occurred in late summer when soil-moisture contents were at a minimum. Subtrench tritium movement occurred in association with the annual cycle of water movement, as well as independently of the cycle, in apparent response to continuous water movement through the subtrench sand deposits and to the deterioration of trench-waste containers. The increase in concentrations of tritium with incre

  7. The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Schultz, D.; Mejia, A.; Harman, C. J.; Raj, C.; Goslee, S.; Veith, T.; Patterson, P. H.

    2017-12-01

    Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70 - 95%); however, these values are typically calculated as an average of removal efficiencies observed or simulated for individual events. We argue that due to: (i) positively correlated sediment concentration-discharge relationships; (ii) strong temporal inequality exhibited by sediment transport; and (iii) decreasing VFS performance with increasing flow rates, VFS removal efficiencies over annual time scales may be significantly lower than the per-event values or averages typically reported in the literature and used in decision-making models. By applying a stochastic approach to a two-component VFS model, we investigated the extent of the disparity between two calculation methods: averaging efficiencies from each event over the course of one year, versus reporting the total annual load reduction. We examined the effects of soil texture, concentration-discharge relationship, and VFS slope to reveal the potential errors that may be incurred by ignoring the effects of temporal inequality in quantifying VFS performance. Simulation results suggest that errors can be as low as < 2% and as high as > 20%, with the differences between the two methods of removal efficiency calculations greatest for: (i) soils with high percentage of fine particulates; (ii) VFSs with higher slopes; and (iii) strongly positive concentration-discharge relationships. These results can aid in annual-scale decision making for achieving downstream water quality goals.

  8. Assessment of natural radioactivity levels in soil samples from some areas in Assiut, Egypt.

    PubMed

    El-Gamal, Hany; Farid, M El-Azab; Abdel Mageed, A I; Hasabelnaby, M; Hassanien, Hassanien M

    2013-12-01

    The natural radioactivity of soil samples from Assiut city, Egypt, was studied. The activity concentrations of 28 samples were measured with a NaI(Tl) detector. The radioactivity concentrations of (226)Ra, (232)Th, and (40)K showed large variations, so the results were classified into two groups (A and B) to facilitate the interpretation of the results. Group A represents samples collected from different locations in Assiut and characterized by low activity concentrations with average values of 46.15 ± 9.69, 30.57 ± 4.90, and 553.14 ± 23.19 for (226)Ra, (232)Th, and (40)K, respectively. Group B represents samples mainly collected from the area around Assiut Thermal Power Plant and characterized by very high activity concentrations with average values of 3,803 ± 145, 1,782 ± 98, and 1,377 ± 78 for (226)Ra, (232)Th, and (40)K, respectively. In order to evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity (Raeq), the absorbed dose rate (D), the annual effective dose rate (E), the external hazard index (H ex), and the annual gonadal dose equivalent (AGDE) have been calculated and compared with the internationally approved values. For group A, the calculated averages of these parameters are in good agreement with the international recommended values except for the absorbed dose rate and the AGDE values which are slightly higher than the international recommended values. However, for group B, all obtained averages of these parameters are much higher by several orders of magnitude than the international recommended values. The present work provides a background of radioactivity concentrations in the soil of Assiut.

  9. Staggering reductions in atmospheric nitrogen dioxide across Canada in response to legislated transportation emissions reductions

    NASA Astrophysics Data System (ADS)

    Reid, Holly; Aherne, Julian

    2016-12-01

    It is well established that atmospheric nitrogen dioxide (NO2), associated mainly with emissions from transportation and industry, can have adverse effects on both human and ecosystem health. Specifically, atmospheric NO2 plays a role in the formation of ozone, and in acidic and nutrient deposition. As such, international agreements and national legislation, such as the On-Road Vehicle and Engine Emission Regulations (SOR/2003-2), and the Federal Agenda on Cleaner Vehicles, Engines and Fuel have been put into place to regulate and limit oxidized nitrogen emissions. The objective of this study was to assess the response of ambient air concentrations of NO2 across Canada to emissions regulations. Current NO2 levels across Canada were examined at 137 monitoring sites, and long-term annual and quarterly trends were evaluated for 63 continuous monitoring stations that had at least 10 years of data during the period 1988-2013. A non-parametric Mann-Kendall test (Z values) and Sen's slope estimate were used to determine monotonic trends; further changepoint analysis was used to determine periods with significant changes in NO2 air concentration and emissions time-series data. Current annual average NO2 levels in Canada range between 1.16 and 14.96 ppb, with the national average being 8.43 ppb. Provincially, average NO2 ranges between 3.77 and 9.25 ppb, with Ontario and British Columbia having the highest ambient levels of NO2. Long-term tend analysis indicated that the annual average NO2 air concentration decreased significantly at 87% of the stations (55 of 63), and decreased non-significantly at 10% (5 of 63) during the period 1998-2013. Concentrations increased (non-significantly) at only 3% (2 of 63) of the sites. Quarterly long-term trends showed similar results; significant decreases occurred at 84% (January-March), 88% (April-June), 83% (July-September), and 81% (October-December) of the sites. Declines in transportation emissions had the most influence on NO2 air concentrations, and changepoint analysis identified three significant changepoints for the air concentration of NO2 and transportation emissions data. The air concentration changepoints occurred immediately following changepoints in transportation emissions. The introduction of emissions limiting legislation, primarily from transportation sources, has lead to dramatic decreases of 32% in NO× emissions (42% from transportation sources [road, rail, air, marine]) and 47% in ambient NO2 concentrations across Canada. With respect to human health, legislated changes in transportation emissions have the greatest impact on ambient concentration in urban areas.

  10. The first countrywide monitoring of selected POPs: Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and selected organochlorine pesticides (OCPs) in the atmosphere of Turkey

    NASA Astrophysics Data System (ADS)

    Kurt-Karakus, Perihan Binnur; Ugranli-Cicek, Tugba; Sofuoglu, Sait C.; Celik, Halil; Gungormus, Elif; Gedik, Kadir; Sofuoglu, Aysun; Okten, Hatice Eser; Birgul, Askın; Alegria, Henry; Jones, Kevin C.

    2018-03-01

    Atmospheric levels of 43 PCBs, 22 OCPs, and 14 PBDEs were determined in 16 cities at urban and rural sites by passive sampling to generate the first large-scale nationwide dataset of POP residues in Turkey's atmosphere. Sampling campaign was performed from May 2014 to April 2015 with three-month sampling periods at locations on east-west and north-south transects through the country to investigate seasonal and spatial variations, including long range atmospheric transport (LRAT). Factor analysis was conducted to infer on the potential sources. Overall average Σ43PCBs concentration was 108 ± 132 pg/m3. PCB-118 (26.3 ± 44.6 pg/m3) was the top congener, and penta-CBs had the highest contribution with 54.3%. ΣDDTs had the highest annual mean concentration with 134 ± 296 pg/m3 among the OCP groups among which the highest concentration compound was p'p-DDE (97.6 ± 236 pg/m3). Overall average concentration of Σ14PBDEs was 191 ± 329 pg/m3 with the highest contribution from BDE-190 (42%). Comparison of OCPs and PCBs concentrations detected at temperatures which were above and below annual average temperature indicated higher concentrations in the warmer periods, hence significance of secondary emissions for several OCPs and Σ43PCBs, as well as inference as LRAT from secondary emissions. The first nationwide POPs database constructed in this study, point to current use, local secondary emissions, and LRAT for different individual compounds, and indicate the need for regular monitoring.

  11. 1988 Wet deposition temporal and spatial patterns in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-yearmore » (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.« less

  12. Indoor radon activity concentration measurements in the great historical museums of University of Naples, Italy.

    PubMed

    Quarto, Maria; Pugliese, Mariagabriella; Loffredo, Filomena; La Verde, Giuseppe; Roca, Vincenzo

    2016-01-01

    Indoor radon activity concentrations were measured in seven Museums of University of Naples, very old buildings of great historical value. The measurements were performed using a time-integrated technique based on LR-115 solid-state nuclear track detectors. The annual average concentrations were found to range from 40 up to 1935 Bq m(-3) and in 26 % of measurement sites, the values were higher than 500 Bq m(-3) which is the limit value of Italian legislation for workplace. Moreover, we analysed the seasonal variations of radon concentrations observing the highest average in cold weather than in warm. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Blending Multiple Nitrogen Dioxide Data Sources for Neighborhood Estimates of Long-Term Exposure for Health Research.

    PubMed

    Hanigan, Ivan C; Williamson, Grant J; Knibbs, Luke D; Horsley, Joshua; Rolfe, Margaret I; Cope, Martin; Barnett, Adrian G; Cowie, Christine T; Heyworth, Jane S; Serre, Marc L; Jalaludin, Bin; Morgan, Geoffrey G

    2017-11-07

    Exposure to traffic related nitrogen dioxide (NO 2 ) air pollution is associated with adverse health outcomes. Average pollutant concentrations for fixed monitoring sites are often used to estimate exposures for health studies, however these can be imprecise due to difficulty and cost of spatial modeling at the resolution of neighborhoods (e.g., a scale of tens of meters) rather than at a coarse scale (around several kilometers). The objective of this study was to derive improved estimates of neighborhood NO 2 concentrations by blending measurements with modeled predictions in Sydney, Australia (a low pollution environment). We implemented the Bayesian maximum entropy approach to blend data with uncertainty defined using informative priors. We compiled NO 2 data from fixed-site monitors, chemical transport models, and satellite-based land use regression models to estimate neighborhood annual average NO 2 . The spatial model produced a posterior probability density function of estimated annual average concentrations that spanned an order of magnitude from 3 to 35 ppb. Validation using independent data showed improvement, with root mean squared error improvement of 6% compared with the land use regression model and 16% over the chemical transport model. These estimates will be used in studies of health effects and should minimize misclassification bias.

  14. Impacts of sampling design and estimation methods on nutrient leaching of intensively monitored forest plots in the Netherlands.

    PubMed

    de Vries, W; Wieggers, H J J; Brus, D J

    2010-08-05

    Element fluxes through forest ecosystems are generally based on measurements of concentrations in soil solution at regular time intervals at plot locations sampled in a regular grid. Here we present spatially averaged annual element leaching fluxes in three Dutch forest monitoring plots using a new sampling strategy in which both sampling locations and sampling times are selected by probability sampling. Locations were selected by stratified random sampling with compact geographical blocks of equal surface area as strata. In each sampling round, six composite soil solution samples were collected, consisting of five aliquots, one per stratum. The plot-mean concentration was estimated by linear regression, so that the bias due to one or more strata being not represented in the composite samples is eliminated. The sampling times were selected in such a way that the cumulative precipitation surplus of the time interval between two consecutive sampling times was constant, using an estimated precipitation surplus averaged over the past 30 years. The spatially averaged annual leaching flux was estimated by using the modeled daily water flux as an ancillary variable. An important advantage of the new method is that the uncertainty in the estimated annual leaching fluxes due to spatial and temporal variation and resulting sampling errors can be quantified. Results of this new method were compared with the reference approach in which daily leaching fluxes were calculated by multiplying daily interpolated element concentrations with daily water fluxes and then aggregated to a year. Results show that the annual fluxes calculated with the reference method for the period 2003-2005, including all plots, elements and depths, lies only in 53% of the cases within the range of the average +/-2 times the standard error of the new method. Despite the differences in results, both methods indicate comparable N retention and strong Al mobilization in all plots, with Al leaching being nearly equal to the leaching of SO(4) and NO(3) with fluxes expressed in mol(c) ha(-1) yr(-1). This illustrates that Al release, which is the clearest signal of soil acidification, is mainly due to the external input of SO(4) and NO(3).

  15. Changes in the biomass and species composition of macroalgae in a eutrophic estuary

    NASA Astrophysics Data System (ADS)

    Lavery, Paul S.; Lukatelich, R. J.; McComb, A. J.

    1991-07-01

    More than 20 years of data are presented on the macroalgal biomass, species composition and water quality of Peel-Harvey estuary in south-western Australia. The occurrence of macroalgal blooms was a sudden event in the late 1960s, and appears to have resulted from nutrient availability surpassing a threshold of some kind. Cladophora dominated the system until 1979 and appears to have had a competitive advantage in deep-water areas because of its morphology. A catastrophic event compounded by a series of unfavourable conditions resulted in the loss of Cladophora from the deep areas and its estuary-wide replacement by Chaetomorpha, which was more competitive in the shallows. Since 1979, changes in water quality have been reflected in changes in biomass and species composition in the system. Average annual biomass is linearly related to average light attenuation over the summer growth period. Periods of high nutrient concentrations favour Ulva and Enteromorpha, while Chaetomorpha resumes dominance during periods of lower mean nutrient concentrations. Nutrient concentrations appear to be more influential on an inter-annual than seasonal scale, except in the case of Ulva which, on the basis of tissue N and P concentrations, is seasonally nitrogen-limited. Light attenuation appears to have seasonal and long-term effects. The data support the hypothesis of other workers that inter-annual differences in hydrographic events and phytoplankton dynamics influence macroalgal dynamics. The concept is examined further in light of this extensive database.

  16. Use of the USEPA Estuary Nitrogen Model to Estimate Concentrations of Total Nitrogen in Estuaries Using Loads Calculated by Watershed Models and Monitoring Data

    EPA Science Inventory

    We use USEPA’s Estuary Nitrogen Model (ENM) to calculate annual average concentrations of total nitrogen (TN) in ten estuaries or sub-estuaries along the Atlantic coast from New Hampshire to Florida. These include a variety of systems, ranging from strongly-flushed bays to weakly...

  17. Strontium-90: concentrations in surface waters of the Atlantic Ocean.

    PubMed

    Bowen, V T; Noshkin, V E; Volchok, H L; Sugihara, T T

    1969-05-16

    From the large body of analyses of strontium-90 in surface waters of the Atlantic Ocean, annual average concentrations (from 10 degrees N to 70 degrees N) have been compared to those predicted. The data indicate higher fall-out over ocean than over land and confirm the rapid rates of down-mixing shown by most studies of subsurface strontium-90.

  18. Annual dose of Taiwanese from the ingestion of 210Po in oysters.

    PubMed

    Lee, Hsiu-wei; Wang, Jeng-Jong

    2013-03-01

    Oysters around the coast of Taiwan were collected, dried, spiked with a (209)Po tracer for yield, digested with concentrated HNO(3) and H(2)O(2), and finally dissolved in 0.5 N HCl. The polonium was then spontaneously deposited onto a silver disc, and the activity of (210)Po was measured using an alpha spectrum analyzer equipped with a silicon barrier detector. Meanwhile, the internal effective dose of (210)Po coming from the intake of oysters by Taiwanese was evaluated. The results of the present study indicate that (210)Po average activity concentrations ranged from 23.4 ± 0.4 to 126 ± 94 Bq kg(-1) of fresh oysters. The oysters coming from Penghu island and Kinmen island regions contain higher concentrations of (210)Po in comparison with oysters from other regions of Taiwan. The value of (210)Po weighted average activity concentrations for all oyster samples studied is 25.9 Bq kg(-1). The annual effective dose of Taiwanese due to the ingestion of (210)Po in oysters was estimated to be 4.1 × 10(-2) mSv y(-1). Copyright © 2013. Published by Elsevier Ltd.

  19. Monitoring and assessment of radionuclide discharges from Temelín Nuclear Power Plant into the Vltava River (Czech Republic).

    PubMed

    Hanslík, Eduard; Ivanovová, Diana; Juranová, Eva; Simonek, Pavel; Jedináková-Krízová, Vĕra

    2009-02-01

    The paper summarizes impacts of the Temelín Nuclear Power Plant (NPP) on the Vltava and Labe River basins. The study is based on the results of long-term monitoring carried out before the plant operation (1989-2000), and subsequently during the plant operation (2001-2005). In the first period, the main objective was to determine background radionuclide levels remaining in the environment after global fallout and due to the Chernobyl accident. A decrease in the concentrations of (90)Sr, (134)Cs and (137)Cs, which was observed before the plant operation, continued also during the subsequent period. Apart from tritium, the results of the observation did not indicate any impacts of the plant on the concentrations of activation and fission products in the hydrosphere. The annual average tritium concentrations in the Vltava River were in agreement with predicted values. The maximum annual average tritium concentration (13.5 Bq L(-1)) was observed in 2004 downstream from the wastewater discharge in the Vltava River at Solenice. Estimated radiation doses for adults due to intakes of river water as drinking water contaminated by tritium are below 0.1 microSv y(-1).

  20. Long-term study of urban ultrafine particles and other pollutants

    NASA Astrophysics Data System (ADS)

    Wang, Yungang; Hopke, Philip K.; Chalupa, David C.; Utell, Mark J.

    2011-12-01

    Continuous measurements of number size distributions of ultrafine particles (UFPs) and other pollutants (PM 2.5, SO 2, CO and O 3) have been performed in Rochester, New York since late November 2001. The 2002-2009 average number concentrations of particles in three size ranges (10-50 nm, 50-100 nm and 100-500 nm) were 4730 cm -3, 1838 cm -3, and 1073 cm -3, respectively. The lowest annual average number concentrations of particles in 10-50 nm and 50-100 nm were observed during 2008-2009. The lowest monthly average number concentration of 10-50 nm particles was observed in July and the highest in February. The daily patterns of 10-50 nm particles had two peaks at early morning (7-8 AM) and early afternoon (2 PM). There was a distinct declining trend in the peak number concentrations from 2002-2005 to 2008-2009. Large reductions in SO 2 concentrations associated with northerly winds between 2007 and 2009 were observed. The most significant annual decrease in the frequency of morning particle nucleation was observed from 2005 to 2007. The monthly variation in the morning nucleation events showed a close correlation with number concentrations of 10-50 nm particles ( r = 0.89). The frequency of the local SO 2-related nucleation events was much higher before 2006. All of these results suggest significant impacts of highway traffic and industrial sources. The decrease in particle number concentrations and particle nucleation events likely resulted from a combination of the U.S. EPA 2007 Heavy-Duty Highway Rule implemented on October 1, 2006, the closure of a large coal-fired power plant in May 2008, and the reduction of Eastman Kodak emissions.

  1. Atmospheric deposition of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in the Kanto Region, Japan.

    PubMed

    Ogura, I; Masunaga, S; Nakanishi, J

    2001-09-01

    The atmospheric bulk (dry and wet) deposition of dioxins was investigated at four locations (Tokyo, Yokohama, Tsukuba, and Tanzawa) in the Kanto region (in Japan) over one year using a stainless-steel pot. Annual average polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) deposition fluxes were estimated to be from 450 to 1300 ng/m2/yr, and the annual average TEQ fluxes from 5.7 to 17 ng-TEQ/m2/yr at the four locations. The PCDD/PCDF deposition flux was higher in winter than in summer. The deposition flux could be related to ambient temperature, particularly for less chlorinated PCDDs/PCDFs, while the deposition flux is not necessarily related to the amount of precipitation. The PCDD/PCDF deposition flux increased as the particle deposition flux increased, for the winter samples. Based on the ratio of the PCDD/PCDF deposition fluxes to the particle deposition fluxes, the contribution of the reentrainment of soil particles to the TEQ of PCDD/PCDF deposition was considered to be negligible in this region. Based on the air concentrations monitored near our deposition sampling points by the municipalities, the ratio of the annual deposition flux to the annual average air concentration was roughly estimated to be 0.082 cm/s. The range of deposition flux in the Kanto region was estimated to be from 1.5 to 31 (median: 9.8) ng-TEQ/m2/yr based on the range of air concentration data measured by the municipalities. The total annual deposition flux in the entire Kanto region was estimated to range from 50 to 900 g-TEQ/yr (median 320 g-TEQ/yr). This estimated flux was of the same order as the sum of estimated emissions from municipal solid waste incinerators and industrial waste incinerators in the Kanto region. The contributions of dioxin-like PCBs in Yokohama, Tsukuba, and Tanzawa depositions were less than 10% of the total TEQ; however, in Tokyo it was almost equal to or more than 50%.

  2. A comparison of the dose from natural radionuclides and artificial radionuclides after the Fukushima nuclear accident

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Ishikawa, Tetsuo; Iwaoka, Kazuki

    2016-01-01

    Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon–thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m−3, respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents. PMID:26838130

  3. Hydrology and water quality of the headwaters of the River Severn: Stream acidity recovery and interactions with plantation forestry under an improving pollution climate.

    PubMed

    Neal, Colin; Robinson, Mark; Reynolds, Brian; Neal, Margaret; Rowland, Philip; Grant, Simon; Norris, David; Williams, Bronwen; Sleep, Darren; Lawlor, Alan

    2010-10-01

    This paper presents new information on the hydrology and water quality of the eroding peatland headwaters of the River Severn in mid-Wales and links it to the impact of plantation conifer forestry further down the catchment. The Upper Hafren is dominated by low-growing peatland vegetation, with an average annual precipitation of around 2650 mm with around 250 mm evaporation. With low catchment permeability, stream response to rainfall is "flashy" with the rising limb to peak stormflow typically under an hour. The water quality is characteristically "dilute"; stormflow is acidic and enriched in aluminium and iron from the acid organic soil inputs. Baseflow is circum-neutral and calcium and bicarbonate bearing due to the inputs of groundwater enriched from weathering of the underlying rocks. Annual cycling is observed for the nutrients reflecting uptake and decomposition processes linked to the vegetation and for arsenic implying seasonal water-logging within the peat soils and underlying glacial drift. Over the decadal scale, sulphate and nitrate concentrations have declined while Gran alkalinity, dissolved organic carbon and iron have increased, indicating a reduction in stream acidification. Within the forested areas the water quality is slightly more concentrated and acidic, transgressing the boundary for acid neutralisation capacity as a threshold for biological damage. Annual sulphate and aluminium concentrations are double those observed in the Upper Hafren, reflecting the influence of forestry and the greater ability of trees to scavenge pollutant inputs from gaseous and mist/cloud-water sources compared to short vegetation. Acidification is decreasing more rapidly in the forest compared to the eroding peatland possibly due to the progressive harvesting of the mature forest reducing the scavenging of acidifying inputs. For the Lower Hafren, long-term average annual precipitation is slightly lower, with lower average altitude, at around 2520mm and evaporation is around double that of the Upper Hafren. Copyright 2010 Elsevier B.V. All rights reserved.

  4. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    PubMed

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m -3 with an overall average of 89 Bq m -3 The average thoron concentration varies from 29 to 55 Bq m -3 with an overall average of 38 Bq m -3 The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y -1 with an average of 2.9 mSv y -1 While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Methods for Environments and Contaminants: Hazardous Air Pollutants

    EPA Pesticide Factsheets

    EPA’s Office of Air Quality Planning and Standards estimated census tract annual average outdoor concentrations of 181i hazardous air pollutants, also known as air toxics, as part of EPA’s National Air Toxics Assessment (NATA) for the calendar year 2005.

  6. Manufacturing Industries with High Concentrations of Scientists and Engineers Lead in 1965-77 Employment Growth. Science Resources Studies Highlights, April 20, 1979.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Presented are the results of a survey of over 100,000 manufacturing establishments, conducted for the National Science Foundation by the Bureau of Labor Statistics, covering average annual employment for calendar year 1977. Industries whose relative concentration of scientists and engineers was high in 1977, such as petroleum refining, chemicals,…

  7. Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico.

    PubMed

    García, Gilberto Fuentes; Álvarez, Humberto Bravo; Echeverría, Rodolfo Sosa; de Alba, Sergio Rosas; Rueda, Víctor Magaña; Dosantos, Ernesto Caetano; Cruz, Gustavo Vázquez

    2017-09-01

    Atmospheric mercury in the environment as a result of the consumption of fossil fuels, such as coal used in electricity generation, has gained increased attention worldwide because of its toxicity, atmospheric persistence, and bioaccumulation. Determining or predicting the concentration of this pollutant in ambient air is essential for determining sensitive areas requiring health protection. This study investigated the spatiotemporal variability of gaseous elemental mercury (GEM) concentrations and its dry deposition surrounding the Presidente Plutarco Elías Calles (CETEPEC) coal-fired power plant, located on Mexico's Pacific coast. The CALPUFF dispersion model was applied on the basis of the daily consumption of coal during 2013 for each generating unit in the power plant and considering the local scale. The established 300-ng/m 3 annual average risk factor considered by the U.S. Department of Health and Human Services (U.S. DHHS) and Integrated Risk Information System (IRIS) must not be exceeded to meet satisfactory air quality levels. An area of 65 × 60 km was evaluated, and the results show that the risk level for mercury vapor was not exceeded because the annual average concentration was 2.8 ng/m 3 . Although the predicted risk level was not exceeded, continuous monitoring studies of GEM and of particulates in the atmosphere, soil, and water may be necessary to identify the concentration of this pollutant, specifically that resulting from coal-fired power plants operated in environmental areas of interest in Mexico. The dry mercury deposition was low in the study area; according to the CALPUFF model, the annual average was 1.40E-2 ng/m 2 /sec. These results represent a starting point for Mexico's government to implement the Minamata Convention on Mercury, which Mexico signed in 2013. The obtained concentrations of mercury from a bigger coal-fired plant in Mexico, through the application of the CALPUFF dispersion model by the mercury emissions, are below the level recommended according to the US Department of Health and Human Services and Integrated Risk Information System. These results provide evidence of important progress in the planning and installation to the future of monitoring mercury stations in the area of interest.

  8. Annual cycle of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) related to phytoplankton succession in the Southern North Sea.

    PubMed

    Speeckaert, Gaëlle; Borges, Alberto V; Champenois, Willy; Royer, Colin; Gypens, Nathalie

    2018-05-01

    The influence of abiotic and biotic variables on the concentration of dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP), and dimethylsulfoxide (DMSO), were investigated during an annual cycle in 2016 in the Belgian Coastal Zone (BCZ, North Sea). We reported strong seasonal variations in the concentration of these compounds linked to the phytoplankton succession with high DMS(P,O) producers (mainly Phaeocystis globosa) occurring in spring and low DMS(P,O) producers (various diatoms species) occurring in early spring and autumn. Spatial gradients of DMS and DMSP were related to those of phytoplankton biomass itself related to the inputs of nutrients from the Scheldt estuary. However, the use of a relationship with Chlorophyll-a (Chl-a) concentration is not sufficient to predict DMSP. Accounting for the phytoplankton composition, two different DMSP versus Chl-a correlations could be established, one for diatoms and another one for Phaeocystis colonies. We also reported high nearshore DMSO concentrations uncoupled to Chl-a and DMSP concentrations but linked to high suspended particulate matter (SPM) presumably coming from the Scheldt estuary as indicated by the positive relationship between annual average SPM and salinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Study of natural radioactivity in Mansehra granite, Pakistan: environmental concerns.

    PubMed

    Qureshi, Aziz Ahmed; Jadoon, Ishtiaq Ahmed Khan; Wajid, Ali Abbas; Attique, Ahsan; Masood, Adil; Anees, Muhammad; Manzoor, Shahid; Waheed, Abdul; Tubassam, Aneela

    2014-03-01

    A part of Mansehra Granite was selected for the assessment of radiological hazards. The average activity concentrations of (226)Ra, (232)Th and (40)K were found to be 27.32, 50.07 and 953.10 Bq kg(-1), respectively. These values are in the median range when compared with the granites around the world. Radiological hazard indices and annual effective doses were estimated. All of these indices were found to be within the criterion limits except outdoor external dose (82.38 nGy h(-1)) and indoor external dose (156.04 nGy h(-1)), which are higher than the world's average background levels of 51 and 55 nGy h(-1), respectively. These values correspond to an average annual effective dose of 0.867 mSv y(-1), which is less than the criterion limit of 1 mSv y(-1) (ICRP-103). Some localities in the Mansehra city have annual effective dose higher than the limit of 1 mSv y(-1). Overall, the Mansehra Granite does not pose any significant radiological health hazard in the outdoor or indoor.

  10. Water and tritium movement through the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1981-85

    USGS Publications Warehouse

    Mills, Patrick C.; Healy, Richard W.

    1993-01-01

    The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 mm (millimeters); mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 mm. Average annual tritium flux below the study trenches was estimated to be 3.4 mCi/yr (millicuries per year). Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 m (meters) in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10 -1 to 3.4x10 4 mm/d (millimeters per day). A 120-m-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the trenches primarily at the trench edges where the compacted zone was absent and the cover was relatively thin. Collapse holes in the trench covers that resulted from inadequate compaction of wastes within the trenches provided additional preferential pathways for surface-water drainage into the trenches; drainage into one collapse hole during a rainstorm was estimated to be 1,700 L (liters). Till deposits near trench bases induced lateral water and tritium movement. Limited temporal variation in water movement and small flow gradients (relative to the till deposits) were detected in the unsaturated subtrench sand deposit; maximum gradients during the spring recharge period averaged 1.62 mm/mm (millimeter per millimeter). Time-of-travel of water moving from the trench covers to below the trenches was estimated to be as rapid as 41 days (assuming individual water molecules move this distance in one recharge cycle). Tritium concentrations in water from the unsaturated zone ranged from 200 (background) to 10,000,000 pCi/L (picocuries per liter). Tritium concentrations generally were higher below trench bases (averaging 91,000 pCi/L) than below intertrench sediments (averaging 3,300 pCi/L), and in the subtrench Toulon Member of the Glasford Formation (sand) (averaging 110,000 pCi/L) than in the Hulick Till Member of the Glasford Formation (clayey silt) (averaging 59,000 pCi/L). Average subtrench tritium concentration increased from 28,000 to 100,000 pCi/L during the study period. Within the trench covers, there was a strong seasonal trend in tritium concentrations; the highest concentrations occurred in late summer when soil-moisture contents were at a minimum. Subtrench tritium movement occurred in association with the annual cycle of water movement, as well as independently of the cycle, in apparent response to continuous water movement through the subtrench sand deposits and to the deterioration of trench-waste containers. The increase in concen

  11. Patterns and predictability in the intra-annual organic carbon variability across the boreal and hemiboreal landscape

    USGS Publications Warehouse

    Hytteborn, Julia K.; Temnerud, Johan; Alexander, Richard B.; Boyer, Elizabeth W.; Futter, Martyn N.; Fröberg, Mats; Dahné, Joel; Bishop, Kevin H.

    2015-01-01

    Factors affecting total organic carbon (TOC) concentrations in 215 watercourses across Sweden were investigated using parameter parsimonious regression approaches to explain spatial and temporal variabilities of the TOC water quality responses. We systematically quantified the effects of discharge, seasonality, and long-term trend as factors controlling intra-annual (among year) and inter-annual (within year) variabilities of TOC by evaluating the spatial variability in model coefficients and catchment characteristics (e.g. land cover, retention time, soil type).Catchment area (0.18–47,000 km2) and land cover types (forests, agriculture and alpine terrain) are typical for the boreal and hemiboreal zones across Fennoscandia. Watercourses had at least 6 years of monthly water quality observations between 1990 and 2010. Statistically significant models (p < 0.05) describing variation of TOC in streamflow were identified in 209 of 215 watercourses with a mean Nash-Sutcliffe efficiency index of 0.44. Increasing long-term trends were observed in 149 (70%) of the watercourses, and intra-annual variation in TOC far exceeded inter-annual variation. The average influences of the discharge and seasonality terms on intra-annual variations in daily TOC concentration were 1.4 and 1.3 mg l− 1 (13 and 12% of the mean annual TOC), respectively. The average increase in TOC was 0.17 mg l− 1 year− 1 (1.6% year− 1).Multivariate regression with over 90 different catchment characteristics explained 21% of the spatial variation in the linear trend coefficient, less than 20% of the variation in the discharge coefficient and 73% of the spatial variation in mean TOC. Specific discharge, water residence time, the variance of daily precipitation, and lake area, explained 45% of the spatial variation in the amplitude of the TOC seasonality.Because the main drivers of temporal variability in TOC are seasonality and discharge, first-order estimates of the influences of climatic variability and change on TOC concentration should be predictable if the studied catchments continue to respond similarly.

  12. Long-term trends of phosphorus concentrations in an artificial lake: Socio-economic and climate drivers.

    PubMed

    Vystavna, Yuliya; Hejzlar, Josef; Kopáček, Jiří

    2017-01-01

    European freshwater ecosystems have undergone significant human-induced and environmentally-driven variations in nutrient export from catchments throughout the past five decades, mainly in connection with changes in land-use, agricultural practice, waste water production and treatment, and climatic conditions. We analysed the relations among concentration of total phosphorus (TP) in the Slapy Reservoir (a middle reservoir of the Vltava River Cascade, Czechia), and socio-economic and climatic factors from 1963 to 2015. The study was based on a time series analysis, using conventional statistical tools, and the identification of breaking points, using a segmented regression. Results indicated clear long-term trends and seasonal patterns of TP, with annual average TP increasing up until 1991 and decreasing from 1992 to 2015. Trends in annual, winter and spring average TP concentrations reflected a shift in development of sewerage and sanitary infrastructure, agricultural application of fertilizers, and livestock production in the early 1990s that was associated with changes from the planned to the market economy. No trends were observed for average TP in autumn. The summer average TP has fluctuated with increased amplitude since 1991 in connection with recent climate warming, changes in thermal stratification stability, increased water flow irregularities, and short-circuiting of TP-rich inflow during high flow events. The climate-change-induced processes confound the generally declining trend in lake-water TP concentration and can result in eutrophication despite decreased phosphorus loads from the catchment. Our findings indicate the need of further reduction of phosphorus sources to meet ecological quality standards of the EU Water Framework Directive because the climate change may lead to a greater susceptibility of the aquatic ecosystem to the supply of nutrients.

  13. Annual sediment flux estimates in a tidal strait using surrogate measurements

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights reserved.

  14. The Concept of Equivalent Radon Concentration for Practical Consideration of Indoor Exposure to Thoron

    PubMed Central

    Chen, Jing; Moir, Deborah

    2012-01-01

    To consider the total exposure to indoor radon and thoron, a concept of equivalent radon concentration for thoron is introduced, defined as the radon concentration that delivers the same annual effective dose as that resulting from the thoron concentration. The total indoor exposure to radon and thoron is then the sum of the radon concentration and the equivalent radon concentration for thoron. The total exposure should be compared to the radon guideline value, and if it exceeds the guideline value, appropriate remedial action is required. With this concept, a separate guideline for indoor thoron exposure is not necessary. For homes already tested for radon with radon detectors, Health Canada’s recommendation of a 3-month radon test performed during the fall/winter heating season not only ensures a conservative estimate of the annual average radon concentration but also covers well any potentially missing contribution from thoron exposure. In addition, because the thoron concentration is much lower than the radon concentration in most homes in Canada, there is no real need to re-test homes for thoron. PMID:22470292

  15. Changes in groundwater quality in a conduit-flow-dominated karst aquifer, following BMP implementation

    USGS Publications Warehouse

    Currens, J.C.

    2002-01-01

    Water quality in the Pleasant Grove Spring karst groundwater basin, Logan County, Kentucky, was monitored to determine the effectiveness of best management practices (BMPs) in protecting karst aquifers. Ninety-two percent of the 4,069-ha (10,054-acre) watershed is used for agriculture. Water-quality monitoring began in October 1992 and ended in November 1998. By the fall of 1995 approximately 72% of the watershed was enrolled in BMPs sponsored by the US Department of Agriculture Water Quality Incentive Program (WQIP). Pre-BMP nitrate-nitrogen concentration averaged 4.65 mg/1. The median total suspended solids concentration was 127 mg/1. The median triazine concentration measured by immunosorbent assay was 1.44 ??tg/l. Median bacteria counts were 418 colonies per 100 ml (col/100 ml) for fecal coliform and 540 col/100 ml for fecal streptococci. Post-BMP, the average nitrate-nitrogen concentration was 4.74 mg/1. The median total suspended solids concentration was 47.8 mg/1. The median triazine concentration for the post-BMP period was 1.48 ??g/1. The median fecal coliform count increased to 432 col/100 ml after BMP implementation, but the median fecal streptococci count decreased to 441 col/100 ml. The pre- and post-BMP water quality was statistically evaluated by comparing the annual mass flux, annual descriptive statistics, and population of analyses for the two periods. Nitrate-nitrogen concentration was unchanged. Increases in atrazine-equivalent flux and triazine geometric averages were not statistically significant. Total suspended solids concentration decreased slightly, whereas orthophosphate concentration increased slightly. Fecal streptococci counts were reduced. The BMPs were only partially successful because the types available and the rules for participation resulted in less effective BMPs being chosen. Future BMP programs in karst areas should emphasize buffer strips around sinkholes, excluding livestock from streams and karst windows, and withdrawing land from production.

  16. Watershed Effects on Streamflow Quantity and Quality in Six Watersheds of Gwinnett County, Georgia

    USGS Publications Warehouse

    Landers, Mark N.; Ankcorn, Paul D.; McFadden, Keith W.

    2007-01-01

    Watershed management is critical for the protection and enhancement of streams that provide multiple benefits for Gwinnett County, Georgia, and downstream communities. Successful watershed management requires an understanding of how stream quality is affected by watershed characteristics. The influence of watershed characteristics on stream quality is complex, particularly for the nonpoint sources of pollutants that affect urban watersheds. The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources (formerly known as Public Utilities), established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. Between 1996 and 2003, more than 10,000 analyses were made for more than 430 water-quality samples. Continuous-flow and water-quality data have been collected since 1998. Loads have been computed for selected constituents from 1998 to 2003. Changing stream hydrology is a primary driver for many other water-quality and aquatic habitat effects. Primary factors affecting stream hydrology (after watershed size and climate) within Gwinnett County are watershed slope and land uses. For the six study watersheds in Gwinnett County, watershedwide imperviousness up to 12 percent does not have a well-defined influence on stream hydrology, whereas two watersheds with 21- and 35-percent impervious area are clearly impacted. In the stream corridor, however, imperviousness from 1.6 to 4.4 percent appears to affect baseflow and stormflow for all six watersheds. Relations of concentrations to discharge are used to develop regression models to compute constituent loads using the USGS LOAD ESTimator model. A unique method developed in this study is used to calibrate the model using separate baseflow and stormflow sample datasets. The method reduced model error and provided estimates of the load associated with the baseflow and stormflow parts of the hydrograph. Annual load of total suspended sediment is a performance criterion in Gwinnett County's Watershed Protection Plan. Median concentrations of total suspended solids in stormflow range from 30 to 180 times greater than in baseflow. This increase in total suspended solids concentration with increasing discharge has a multiplied effect on total suspended solids load, 97 to 99 percent of which is transported during stormflow. Annual total suspended solids load is highly dependent on annual precipitation; between 1998 and 2003 load for the wettest year was up to 28 times greater than for the driest year. Average annual total suspended solids yield from 1998-2003 in the six watersheds increased with high-density and transportation/utility land uses, and generally decreased with low-density residential, estate/park, and undeveloped land uses. Watershed characteristics also were related to annual loads of total phosphorus, dissolved phosphorus, total nitrogen, total dissolved solids, biochemical oxygen demand, and total zinc, as well as stream alkalinity. Flow-adjusted total suspended solids, total phosphorus, and total zinc stormflow concentrations between 1996 and 2003 have a seasonal pattern in five of the six watersheds. Flow-adjusted concentrations typically peak during late summer, between July and August. The seasonal pattern is stronger for more developed watersheds and may be related to seasonal land-disturbance activities and/or to seasonal rainfall intensity, both of which increase in summer. Adjusting for seasonality in the computation of constituent load caused the standard error of annual total suspended solids load to improve by an average of 11 percent, and increased computed summer total suspended solids loads by an average of 45 percent and decreased winter total suspended solids loads by an average of 40 percent. Total annual loads changed by less than 5 percent on the average. Graphical and statistical analyses do not indicate a time tre

  17. 1988 Wet deposition temporal and spatial patterns in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-yearmore » (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.« less

  18. Assessment of Particulate Matter Levels in Vulnerable Communities in North Charleston, South Carolina prior to Port Expansion

    PubMed Central

    Svendsen, Erik R; Reynolds, Scott; Ogunsakin, Olalekan A; Williams, Edith M; Fraser-Rahim, Herb; Zhang, Hongmei; Wilson, Sacoby M

    2014-01-01

    INTRODUCTION The Port of Charleston, one of the busiest US ports, currently operates five terminals. The fifth terminal is being planned for expansion to accommodate container ships from the proposed Panama Canal expansion. Such expansion is expected to increase traffic within local vulnerable North Charleston neck communities by at least 7,000 diesel truck trips per day, more than a 70% increase from the present average rate of 10,000 trucks per day. Our objective was to measure the current particulate matter (PM) concentrations in North Charleston communities as a baseline to contrast against future air pollution after the proposed port expansion. METHODS Saturation study was performed to determine spatial variability of PM in local Charleston neck communities. In addition, the temporal trends in particulate air pollution within the region were determined across several decades. With the BGI sampler, PM samples were collected for 24 hours comparable to the federal reference method protocol. Gravimetric analysis of the PM filter samples was conducted following EPA protocol. RESULTS The range of the PM10 annual average across the region from 1982 to 2006 was 17.0–55.0 μg/m3. On only two occasions were the records of PM10 averaged above the 50.0 μg/m3 national standard. In the case of PM2.5, the annual average for 1999–2006 ranged from 11.0 to 13.5 μg/m3 and no annual average exceeded the 15.0 μg/m3 PM2.5 annual standard. CONCLUSIONS Although ambient PM levels have fallen in the Charleston region since the 1960s due to aggressive monitoring by the stakeholders against air pollution, local air pollution sources within the North Charleston neck communities have consistently contributed to the PM levels in the region for several decades. This baseline assessment of ambient PM will allow for comparisons with future assessments to ascertain the impact of the increased truck and port traffic on PM concentrations. PMID:24653648

  19. Determination of concentration factors for Cs-137 and Ra-226 in the mullet species Chelon labrosus (Mugilidae) from the South Adriatic Sea.

    PubMed

    Antovic, Ivanka; Antovic, Nevenka M

    2011-07-01

    Concentration factors for Cs-137 and Ra-226 transfer from seawater, and dried sediment or mud with detritus, have been determined for whole, fresh weight, Chelon labrosus individuals and selected organs. Cesium was detected in 5 of 22 fish individuals, and its activity ranged from 1.0 to 1.6 Bq kg(-1). Radium was detected in all fish, and ranged from 0.4 to 2.1 Bq kg(-1), with an arithmetic mean of 1.0 Bq kg(-1). In regards to fish organs, cesium activity concentration was highest in muscles (maximum - 3.7 Bq kg(-1)), while radium was highest in skeletons (maximum - 25 Bq kg(-1)). Among cesium concentration factors, those for muscles were the highest (from seawater - an average of 47, from sediment - an average of 3.3, from mud with detritus - an average of 0.8). Radium concentration factors were the highest for skeleton (from seawater - an average of 130, from sediment - an average of 1.8, from mud with detritus - an average of 1.5). Additionally, annual intake of cesium and radium by human adults consuming muscles of this fish species has been estimated to provide, in aggregate, an effective dose of about 4.1 μSv y(-1). 2011 Elsevier Ltd. All rights reserved.

  20. Radon measurements and dose estimate of workers in a manganese ore mine.

    PubMed

    Shahrokhi, Amin; Vigh, Tamás; Németh, Csaba; Csordás, Anita; Kovács, Tibor

    2017-06-01

    In the new European Basic Safety Standard (EU-BSS), a new reference level for indoor radon concentration in workplaces has recommended that the annual average activity concentration of indoor radon shall not be higher than 300Bqm -3 . This paper describes the radon concentration level in an underground workplace (manganese ore mine) over long time intervals (4 years). Several common radon monitors devices - including NRPB and Raduet (as a passive method based on CR-39), AlphaGUARD PQ 2000Pro, SARAD EQF3220, TESLA and Pylon WLX (as active methods) - were used for continuous radon measurements. The output results were used, first, to comprised the result of each device, based on conditions present in underground mines; Second, to have comprehensive measurements about all factors that cause workers exposure to radiation (each monitoring device specified for a unique measurement). The results indicate that the mine's staff had successful efforts to reach the strict requirement of the new EU-BSS, and the average annual radon activity concentrations during the working hours were below 300Bqm -3 in the investigated period. The paper presents the effective dose calculations; applying different equilibrium factors suggested by the literature and calculated basing on our measurements at the site, concluding that the differences could be about threefold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A MODEL OF ESTUARY RESPONSE TO NITROGEN LOADING AND FRESHWATER RESIDENCE TIME

    EPA Science Inventory

    We have developed a deterministic model that relates average annual nitrogen loading rate and water residence time in an estuary to in-estuary nitrogen concentrations and loss rates (e.g. denitrification and incorporation in sediments), and to rates of nitrogen export across the ...

  2. A web-based screening tool for near-port air quality assessments

    EPA Science Inventory

    The Community model for near-PORT applications (C-PORT) is a screening tool with an intended purpose of calculating differences in annual averaged concentration patterns and relative contributions of various source categories over the spatial domain within about 10 km of the port...

  3. Inter-annual Variability in Global Suspended Particulate Inorganic Carbon Inventory Using Space-based Measurements

    NASA Astrophysics Data System (ADS)

    Hopkins, J.; Balch, W. M.; Henson, S.; Poulton, A. J.; Drapeau, D.; Bowler, B.; Lubelczyk, L.

    2016-02-01

    Coccolithophores, the single celled phytoplankton that produce an outer covering of calcium carbonate coccoliths, are considered to be the greatest contributors to the global oceanic particulate inorganic carbon (PIC) pool. The reflective coccoliths scatter light back out from the ocean surface, enabling PIC concentration to be quantitatively estimated from ocean color satellites. Here we use datasets of AQUA MODIS PIC concentration from 2003-2014 (using the recently-revised PIC algorithm), as well as statistics on coccolithophore vertical distribution derived from cruises throughout the world ocean, to estimate the average global (surface and integrated) PIC standing stock and its associated inter-annual variability. In addition, we divide the global ocean into Longhurst biogeochemical provinces, update the PIC biomass statistics and identify those regions that have the greatest inter-annual variability and thus may exert the greatest influence on global PIC standing stock and the alkalinity pump.

  4. Organic compounds and cadmium in the tributaries to the Elizabeth River in New Jersey, October 2008 to November 2008: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor

    USGS Publications Warehouse

    Bonin, Jennifer L.

    2010-01-01

    Samples of surface water and suspended sediment were collected from the two branches that make up the Elizabeth River in New Jersey - the West Branch and the Main Stem - from October to November 2008 to determine the concentrations of selected chlorinated organic and inorganic constituents. The sampling and analyses were conducted as part of Phase II of the New York-New Jersey Harbor Estuary Plan-Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted by the U.S. Geological Survey to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. This portion of the Phase II study was conducted on the two branches of the Elizabeth River, which were previously sampled during July and August of 2003 at low-flow conditions. Samples were collected during 2008 from the West Branch and Main Stem of the Elizabeth River just upstream from their confluence at Hillside, N.J. Both tributaries were sampled once during low-flow discharge conditions and once during high-flow discharge conditions using the protocols and analytical methods that were used in the initial part of Phase II of the Workplan. Grab samples of streamwater also were collected at each site and were analyzed for cadmium, suspended sediment, and particulate organic carbon. The measured concentrations, along with available historical suspended-sediment and stream-discharge data were used to estimate average annual loads of suspended sediment and organic compounds in the two branches of the Elizabeth River. Total suspended-sediment loads for 1975 to 2000 were estimated using rating curves developed from historical U.S. Geological Survey suspended-sediment and discharge data, where available. Concentrations of suspended-sediment-bound polychlorinated biphenyls (PCBs) in the Main Stem and the West Branch of the Elizabeth River during low-flow conditions were 534 ng/g (nanograms per gram) and 1,120 ng/g, respectively, representing loads of 27 g/yr (grams per year) and 416 g/yr, respectively. These loads were estimated using contaminant concentrations during low flow, and the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound PCBs in the Main Stem and the West Branch of the Elizabeth River during high-flow conditions were 3,530 ng/g and 623 ng/g, respectively, representing loads of 176 g/yr and 231 g/yr, respectively. These loads were estimated using contaminant concentrations during high-flow conditions, the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-difuran compounds (PCDD/PCDFs) during low-flow conditions were 2,880 pg/g (picograms per gram) and 5,910 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 0.14 g/yr and 2.2 g/yr, respectively. Concentrations of suspended-sediment-bound PCDD/PCDFs during high-flow conditions were 40,900 pg/g and 12,400 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 2.05 g/yr and 4.6 g/yr, respectively. Total toxic equivalency (TEQ) loads (sum of PCDD/PCDF and PCB TEQs) were 3.1 mg/yr (milligrams per year) (as 2, 3, 7, 8-TCDD) in the Main Stem and 28 mg/yr in the West Branch during low-flow conditions. Total TEQ loads (sum of PCDD/PCDFs and PCBs) were 27 mg/yr (as 2, 3, 7, 8-TCDD) in the Main Stem and 32 mg/yr in the West Branch during high-flow conditions. All of these load estimates, however, are directly related to the assumed annual discharge for the two branches. Long-term measurement of stream discharge and suspended-sediment concentrations would be needed to verify these loads. On the basis of the loads cal

  5. Characteristics of PM2.5 from ship emissions and their impacts on the ambient air: A case study in Yangshan Harbor, Shanghai.

    PubMed

    Mamoudou, Issoufou; Zhang, Fan; Chen, Qi; Wang, Panpan; Chen, Yingjun

    2018-05-30

    The rapid development of ports in China over the last two decades has had inevitable consequences on the ambient air quality in coastal areas and harbors. For mitigation strategies and monitoring aims, the contributions of ship emissions should be identified, especially in these specific areas. Therefore, in this study, fine particulate matters (PM 2.5 ) samples were collected at Yangshan Harbor in 2016 to characterize ship emissions and estimate their impacts on the ambient air. The results showed that the average annual PM 2.5 concentration was 44.02 μg/m 3 at Yangshan Harbor. The mean seasonal PM 2.5 concentrations reached a maximum in the spring (60.28 μg/m 3 ) and a minimum in the summer (28.04 μg/m 3 ). Two methods were used in this study to estimate the contributions of ship emissions to the ambient air. When a V-based method was used, the primary estimated daily contributions of ship emissions to the ambient air at Yangshan Harbor ranged from 0.02 to 0.73 μg/m 3 with an annual average of 0.10 μg/m 3 . When a PMF-based method was used, the contributions ranged from 0.02 to 9.15 μg/m 3 with an annual average of 1.02 μg/m 3 . In fact, there was a significant underestimation of the true influences of ship emissions when only the primary contribution was considered. In accordance with this evidence, there was a main average underestimation of 1.84 μg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Study of meteorological aspects and urban concentration of SO2 in atmospheric environment of La Plata, Argentina.

    PubMed

    Ratto, Gustavo; Videla, Fabián; Almandos, J Reyna; Maronna, Ricardo; Schinca, Daniel

    2006-10-01

    This article presents and discusses SO(2) (ppbv) concentration measurements combined with meteorological data (mainly wind speed and direction) for a five-year campaign (1996 to 2000), in a site near an oil refinery plant close to the city of La Plata and surroundings (aprox. 740.000 inh.), considered one of the six most affected cities by air pollution in the country. Since there is no monitoring network in the area, the obtained results should be considered as medium term accumulated data that enables to determine trends by analyzing together gas concentrations and meteorological parameters. Preliminary characterization of the behaviour of the predominant winds of the region in relation with potential atmospheric gas pollutants from seasonal wind roses is possible to carry out from the data. These results are complemented with monthly averaged SO(2) measurements. In particular, for year 2000, pollutant roses were determined which enable predictions about contamination emission sources. As a general result we can state that there is a clear increase in annual SO(2) concentration and that the selected site should be considered as a key site for future survey monitoring network deployment. Annual SO(2) average concentration and prevailing seasonal winds determined in this work, together with the potential health impact of SO(2) reveals the need for a comprehensive and systematic study involving particulate matter an other basic pollutant gases.

  7. Radon Concentration And Dose Assessment In Well Water Samples From Karbala Governorate Of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Alawy, I. T.; Hasan, A. A.

    2018-05-01

    There are numerous studies around the world about radon concentrations and their risks to the health of human beings. One of the most important social characteristics is the use of water wells for irrigation, which is a major source of water pollution with radon gas. In the present study, six well water samples have been collected from different locations in Karbala governorate to investigate radon concentration level using CR-39 technique. The maximum value 4.112±2.0Bq/L was in Al-Hurr (Al-Qarih Al-Easariah) region, and the lowest concentration of radon was in Hay Ramadan region which is 2.156±1.4Bq/L, with an average value 2.84±1.65Bq/L. The highest result of annual effective dose (AED) was in Al-Hurr (Al-Qarih Al-Easariah) region which is equal to 15.00±3.9μSv/y, while the minimum was recorded in Hay Ramadan 7.86±2.8μSv/y, with an average value 10.35±3.1μSv/y. The current results have shown that the radon concentrations in well water samples are lower than the recommended limit 11.1Bq/L and the annual effective dose in these samples are lower than the permissible international limit 1mSv/y.

  8. High Contributions of Secondary Inorganic Aerosols to PM2.5 under Polluted Levels at a Regional Station in Northern China

    PubMed Central

    Li, Yang; Tao, Jun; Zhang, Leiming; Jia, Xiaofang; Wu, Yunfei

    2016-01-01

    Daily PM2.5 samples were collected at Shangdianzi (SDZ) regional site in Beijing–Tianjin–Hebei (BTH) region in 2015. Samples were subject to chemical analysis for organic carbon (OC), elemental carbon (EC), and major water-soluble inorganic ions. The annual average PM2.5 mass concentration was 53 ± 36 μg·m−3 with the highest seasonal average concentration in spring and the lowest in summer. Water-soluble inorganic ions and carbonaceous aerosols accounted for 34% ± 15% and 33% ± 9%, respectively, of PM2.5 mass on annual average. The excellent, good, lightly polluted, moderately polluted, and heavily polluted days based on the Air Quality Index (AQI) of PM2.5 accounted for 40%, 42%, 11%, 4%, and 3%, respectively, of the year. The sum of the average concentration of sulfate, nitrate, and ammonium (SNA) increased from 4.2 ± 2.9 μg·m−3 during excellent days to 85.9 ± 22.4 μg·m−3 during heavily polluted days, and their contributions to PM2.5 increased from 15% ± 8% to 49% ± 10% accordingly. In contrast, the average concentration of carbonaceous aerosols increased from 9.2 ± 2.8 μg·m−3 to 51.2 ± 14.1 μg·m−3, and their contributions to PM2.5 decreased from 34% ± 6% to 29% ± 7%. Potential source contribution function (PSCF) analysis revealed that the major sources for high PM2.5 and its dominant chemical components were within the area mainly covering Shandong, Henan, and Hebei provinces. Regional pollutant transport from Shanxi province and Inner Mongolia autonomous region located in the west direction of SDZ was also important during the heating season. PMID:27983711

  9. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application

    PubMed Central

    van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Kahn, Ralph; Levy, Robert; Verduzco, Carolyn; Villeneuve, Paul J.

    2010-01-01

    Background Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 μm (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations. Objective In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations. Methods We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model. Results We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 μg/m3. The World Health Organization Air Quality PM2.5 Interim Target-1 (35 μg/m3 annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 μg/m3 over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 μg/m3. Conclusions Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations. PMID:20519161

  10. 50 CFR 218.21 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... annually); (xv) Pygmy killer whale (Feresa attenuate)—15 (an average of 3 annually); (xvi) Killer whale... dolphin (Lagenorhynchus acutus)—100 (an average of 20 annually); (x) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (xi) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually...

  11. 50 CFR 218.21 - Permissible methods of taking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... annually); (xv) Pygmy killer whale (Feresa attenuate)—15 (an average of 3 annually); (xvi) Killer whale... dolphin (Lagenorhynchus acutus)—100 (an average of 20 annually); (x) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (xi) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually...

  12. 50 CFR 218.21 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... annually); (xv) Pygmy killer whale (Feresa attenuate)—15 (an average of 3 annually); (xvi) Killer whale... dolphin (Lagenorhynchus acutus)—100 (an average of 20 annually); (x) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (xi) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually...

  13. 50 CFR 218.11 - Permissible methods of taking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... annually); (viii) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (ix) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually); (x) Beaked whales—100 (an average of 20 annually); (xi) Minke whales (Balaenoptera acutorostrata)—15 (an average of 3 annually). (2) Level A Harassment...

  14. 50 CFR 218.11 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... annually); (viii) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (ix) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually); (x) Beaked whales—100 (an average of 20 annually); (xi) Minke whales (Balaenoptera acutorostrata)—15 (an average of 3 annually). (2) Level A Harassment...

  15. 50 CFR 218.11 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... annually); (viii) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (ix) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually); (x) Beaked whales—100 (an average of 20 annually); (xi) Minke whales (Balaenoptera acutorostrata)—15 (an average of 3 annually). (2) Level A Harassment...

  16. Relationship of soil terrestrial radionuclide concentrations and the excess of lifetime cancer risk in western Mazandaran Province, Iran.

    PubMed

    Abbaspour, M; Moattar, F; Okhovatian, A; Kharrat Sadeghi, M

    2010-12-01

    The main goal of this study is to lay out the map of the soil radionuclide activity concentrations and the terrestrial outdoor gamma dose rates in the western Mazandaran Province of Iran, and to present an evaluation scheme. Mazandaran Province was selected due to its special geographical characteristics, high population density and the long terrestrial and aquatic borders with the neighbouring countries possessing nuclear facilities. A total of 54 topsoil samples were collected, ranging from the Nour to Ramsar regions, and were based on geological conditions, vegetation coverage and the sampling standards outlined by the International Atomic Energy Agency. The excess lifetime cancer risks (ELCRs) were evaluated and the coordinates of sampling locations were determined by the global positioning system. The average terrestrial outdoor gamma dose rate was 612.38 ± 3707.93 nGy h(-1), at 1 m above the ground. The annual effective gamma dose at the western part of Mazandaran Province was 750 μSv, and the ELCR was 0.26 × 10(-2). Soil samples were analysed by gamma spectrometry with a high-purity germanium detector. The average (226)Ra, (232)Th, (40)K and (137)Cs activities were 1188.50 ± 7838.40, 64.92 ± 162.26, 545.10 ± 139.42 and 10.41 ± 7.86 Bq kg(-1), respectively. The average soil radionuclide concentrations at the western part of Mazandaran Province were higher than the worldwide range. The excess lifetime risks of cancer and the annual effective gamma doses were also higher than the global average.

  17. Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran.

    PubMed

    Fathabadi, N; Vasheghani Farahani, M; Moradi, M; Hadadi, B

    2012-09-01

    Phosphate rock is used world wide for manufacturing phosphoric acid and several chemical fertilisers. It is known that the phosphate rock contains various concentrations of uranium, thorium, radium and their daughters. The subject of this study is the evaluation of the radiation exposure to workers in the phosphoric acid production plant due to technologically enhanced naturally occurring radioactive materials that can result from the presence of naturally occurring radioactive materials in phosphate ores used in the manufacturing of phosphoric acid. Radiation exposure due to direct gamma radiation, dust inhalation and radon gas has been investigated and external and internal doses of exposed workers have been calculated. Natural radioactivity due to (40)K, (226)Ra and (232)Th have been measured in phosphate rock, phosphogypsum, chemical fertilisers and other samples by gamma spectrometry system with a high-purity germanium. The average concentrations of (226)Ra and (40)K observed in the phosphate rock are 760 and 80 Bq kg(-1), respectively. Annual effective dose from external radiation had a mean value of ∼0.673 mSv y(-1). Dust sampling revealed greatest values in the storage area. The annual average effective dose from inhalation of long-lived airborne was 0.113 mSv y(-1). Radon gas concentrations in the processing plant and storage area were found to be of the same value as the background. In this study the estimated annual effective doses to workers were below 1 mSv y(-1).

  18. Assessment of natural radionuclides and its radiological hazards from tiles made in Nigeria

    NASA Astrophysics Data System (ADS)

    Joel, E. S.; Maxwell, O.; Adewoyin, O. O.; Ehi-Eromosele, C. O.; Embong, Z.; Saeed, M. A.

    2018-03-01

    Activity concentration of 10 different brands of tiles made in Nigeria were analyzed using High purity Germanium gamma detector and its hazard indices such as absorbed dose rate, radium equivalent activity, external Hazard Index (Hex), internal Hazard Index (Hin), Annual Effective Dose (mSv/y), Gamma activity Index (Iγ) and Alpha Index (Iα) were determined. The result showed that the average activity concentrations of radionuclides (226Ra, 232Th and 40K) content are within the recommended limit. The average radium equivalent is within the recommended limit of 370 Bq/kg. The result obtained further showed that the mean values for the absorbed dose rate (D), external and internal hazard index, the annual effective dose (AEDR) equivalent, gamma activity index and Alpha Index were: 169.22 nGyh-1, 0.95 and 1.14, 1.59 mSv/y, 1.00 Sv yr-1 and 0.34 respectively. The result established that radiological hazards such as absorbed dose rate, internal hazard, annual effective dose rate, gamma activity index and Alpha Index for some samples are found to be slightly close or above international recommended values. The result for the present study was compared with tiles sample from others countries, it was observed that the concentration of tiles made in Nigeria and other countries are closer, however recommends proper radiation monitoring for some tiles made in Nigeria before usage due to the long term health effect.

  19. Measurement of natural radioactivity and assessment of associated radiation hazards in soil around Baoji second coal-fired thermal power plant, China.

    PubMed

    Lu, Xinwei; Li, Xiaoxue; Yun, Pujun; Luo, Dacheng; Wang, Lijun; Ren, Chunhui; Chen, Cancan

    2012-01-01

    Activity concentrations of natural radionuclides (226)Ra, (232)Th and (40)K in soil around Baoji Second coal-fired thermal power plant of China were determined using gamma ray spectrometry. The mean activity concentrations of (226)Ra, (232)Th and (40)K in soil were found to be 40.3 ± 3.5, 59.6 ± 3.1 and 751.2 ± 12.4 Bq kg(-1), respectively, which are all higher than the corresponding average values in Shaanxi, Chinese and world soil. The radium equivalent activity (Ra(eq)), the air absorbed dose rate (D), the annual effective dose (E), the external hazard index (H(ex)) and internal hazard index (H(in)) were evaluated and compared with the internationally reported or reference values. All the soil samples have Ra(eq) lower than the limit of 370 Bq kg(-1) and H(ex) and H(in) less than unity. The overall mean outdoor terrestrial gamma air absorbed dose rate is ∼86.6 ± 3.4 nGy h(-1) and the corresponding outdoor annual effective dose is 0.106 ± 0.004 mSv, which is higher than the worldwide average (0.07 mSv y(-1)) for outdoor's annual effective dose.

  20. Comparative elemental analysis of fine particulate matter (PM2.5) from industrial and residential areas in Greater Cairo-Egypt by means of a multi-secondary target energy dispersive X-ray fluorescence spectrometer

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Hassan, Salwa K.; Karydas, Andreas G.; Zaki, Z. I.; Mostafa, Nasser Y.; Kregsamer, Peter; Wobrauschek, Peter; Streli, Christina

    2018-07-01

    Fine aerosol particles with aerodynamic diameter equal or <2.5 μm (PM2.5) have been collected from industrial and residential areas of Greater Cairo, Egypt during two different seasons namely; autumn 2014 and winter 2014/2015. Energy dispersive X-ray fluorescence (EDXRF) analysis utilizing polarization geometry and three different secondary targets (CaF2, Ge, and Mo) was employed for the quantitative analysis of eighteen (18) elements in PM2.5 samples. Light elements like Na and Mg was possible to be quantified, whereas detection limits in the range of few ng m-3 were attained for the most of the detected elements. Although, the average mass concentrations of the PM2.5 collected from the residential area (27 ± 7 μg m-3) is close to the annual mean limit value, a significant number of the collected samples (33%) presented higher average mass concentrations. For the industrial location, the average mass concentration is equal to 55 ± 19 μg m-3, exceeded twofold the annual mean limit value of the European Commission. Remarkably high elemental concentrations were determined for the most of the detected elements from the industrial area samples, clearly indicating the significant influence of anthropogenic activities. The present optimized EDXRF analysis offered significantly improved analytical range and limits of detection with respect to previous similar studies, thus enhancing our knowledge and understanding on the contribution of different pollution sources.

  1. Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model

    USGS Publications Warehouse

    Granato, Gregory; Jones, Susan Cheung

    2017-01-01

    The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.

  2. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    PubMed

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B

    2007-01-01

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  3. The relationship of nitrate concentrations in streams to row crop land use in Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Libra, R.D.

    2000-01-01

    The relationship between row crop land use and nitrate N concentrations in surface water was evaluated for 15 Iowa watersheds ranging from 1002 to 2774 km2 and 10 smaller watersheds ranging from 47 to 775 km2 for the period 1996 to 1998. The percentage of land in row crop varied from 24 to >87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p 87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p<0.0003). Linear regression showed similar slope for both sets of watersheds (0.11) suggesting that average annual surface water nitrate concentrations in Iowa, and possibly similar agricultural areas in the midwestern USA, can be approximated by multiplying a watershed's row crop percentage by 0.1. Comparing the Iowa watershed data with similar data collected at a subwatershed scale in Iowa (0.1 to 8.1 km2) and a larger midcontinent scale (7300 to 237 100 km2) suggests that watershed scale affects the relationship of nitrate concentration and land use. The slope of nitrate concentration versus row crop percentage decreases with increasing watershed size.Mean nitrate concentrations and row crop land use were summarized for 15 larger and ten smaller watersheds in Iowa, and the relationship between NO3 concentration and land use was examined. Linear regression of mean NO3 concentration and percent row crop was highly significant for both sets of watershed data, but a stronger correlation was noted in the small-watershed data. Both data sets suggested that mean annual surface-water NO3 concentrations in the state could be approximated by multiplying the watershed's percent row crop by 0.1. The slope of NO3 concentration versus row crop percentage appeared to decrease with increasing watershed size.

  4. Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)

    NASA Astrophysics Data System (ADS)

    Van Engeland, T.; Soetaert, K.; Knuijt, A.; Laane, R. W. P. M.; Middelburg, J. J.

    2010-09-01

    Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the robustness of the patterns against these missing data. No long-term trends in DON concentrations were found over the sampling period (1995-2005). Inter-annual variability in the different time series showed both common and station-specific behavior. The stations could be divided into two regions, based on absolute concentrations and the dominant times scales of variability. Average DON concentrations were 11 μmol l -1 in the coastal region and 5 μmol l -1 in the open sea. Organic fractions of total dissolved nitrogen (TDN) averaged 38 and 71% in the coastal zone and open sea, respectively, but increased over time due to decreasing dissolved inorganic nitrogen (DIN) concentrations. In both regions intra-annual variability dominated over inter-annual variability, but DON variation in the open sea was markedly shifted towards shorter time scales relative to coastal stations. In the coastal zone a consistent seasonal DON cycle existed with high values in spring-summer and low values in autumn-winter. In the open sea seasonality was weak. A marked shift in the seasonality was found at the Dogger Bank, with DON accumulation towards summer and low values in winter prior to 1999, and accumulation in spring and decline throughout summer after 1999. This study clearly shows that DON is a dynamic actor in the North Sea and should be monitored systematically to enable us to understand fully the functioning of this ecosystem.

  5. PM2.5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment.

    PubMed

    Chen, Ying; Li, Xinghua; Zhu, Tianle; Han, Yingjie; Lv, Dong

    2017-05-15

    Three indoor (residential home, dormitory, and office) and one outdoor concentrations of PM 2.5 -bound Polycyclic aromatic hydrocarbons (PAHs) were analyzed in Beijing across four seasons. The highest and lowest concentration of total PAHs for outdoor appeared in winter and in summer with averages of 200.1 and 9.1ng/m 3 respectively. The seasonal variations of total PAHs in three indoor sites were the same as outdoor. The correlation analysis between the indoor and outdoor samples showed that the annual mean I/O ratios of total PAHs in the three sites were lower than 1. Source apportionment showed vehicle exhaust, coal combustion, and biomass burning were the major contributors of indoor and outdoor PM 2.5 -bound PAHs. Indoor source, such as camphor pollution, was identified in the dormitory, while camphor pollution and cooking sources were identified in the residential home. The annual averages of Benzo[a]pyrene equivalent concentration (BaP eq ) were 7.6, 7.8, 7.7 and 12.7ng/m 3 for the dormitory, office, residential home and outdoor samples respectively, far higher than the annual limit of 1ng/m 3 regulated by European Commission. Life lung cancer risk (LLCR) in four sites across four seasons were over the acceptable cancer risk level, showing the cancer risk were at a high level in both indoor and outdoor sites in Beijing, and its level in indoor sites was much lower than in the outdoor site. The health risk assessment indicated the level of PAHs cancer risk on human for three indoor sites were similar. The results call for the development of more stringent control measures to reduce PAHs emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 28 CFR 505.2 - Annual determination of average cost of incarceration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT AND ADMINISTRATION COST OF INCARCERATION FEE § 505.2 Annual determination of average cost of... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Annual determination of average cost of... average cost of incarceration. This calculation is reviewed annually and the revised figure is published...

  7. [Analysis About Spatial and Temporal Distribution of SO2 and An Ambient SO2 Pollution Process in Beijing During 2000-2014].

    PubMed

    Cheng, Nian-liang; Zhang, Da-wei; Li, Yun-ting; Chen, Tian; Li, Jin-xiang; Dong, Xin; Sun, Rui-wen; Meng, Fan

    2015-11-01

    Spatial and temporal distribution of SO2 during 2000-2014 was all analyzed based on the SO2 monitoring data that Beijing Municipal Environmental Monitoring Center released and the formation mechanism of a typical air pollution episode in January 2014 was also investigated by combining numerical model CAM(x). Analysis results showed that mass concentration of ρ(SO2) in Beijing in 2014 decreased 69% compared to that in 2000 with an annual gradient from 2000 to 2014 of - 3.5 μg x (m3 x a)(-1). Monthly average concentration of SO2 changed in a U shape curve and from the lowest to the highest, and seasonal variations of SO2 concentrations were as follows: winter > spring > autumn > summer; concentration of SO2 in heating season was significantly higher than that in non heating season. Annual average concentration of SO2 was lower in northern and western regions while higher in six city area and southern area. Concentrations of SO2 at Shijingshan, Dongsi, Tongzhou monitoring sites were significantly decreased related to SO2 emission reduction measures. During a heavy air pollution process in January 14 - 18th 2014 there was obviously SO2 regional transportation and model simulation analysis based on PAST showed that the contribution of SO2 regional transport to Beijing was 83% with elevated power plants surrounding Beijing accounting for 21% and the four major Beijing power plants contributing about 3.5% to the SO2 concentration during this heavy air pollution process.

  8. Assessing the present and future probability of Hurricane Harvey's rainfall

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry

    2017-11-01

    We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey's magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981–2000 and will increase to 18% over the period 2081–2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century.

  9. Radon exposure assessment for underground workers: a case of Seoul Subway Police officers in Korea.

    PubMed

    Song, Myeong Han; Chang, Byung-Uck; Kim, Yongjae; Cho, Kun-Woo

    2011-11-01

    The objective of this study is the systematic and individual assessment of the annual effective dose due to inhaled radon for the Seoul Subway Police officers, Korea. The annual average radon concentrations were found to be in the range of 18.9-114 Bq·m(-3) in their workplaces. The total annual effective doses which may likely to be received on duty were assessed to be in the range of 0.41-1.64 mSv·y(-1). These were well below the recommended action level 10 mSv·y(-1) by ICRP. However, the effective doses were higher than subway station staff in Seoul, Korea.

  10. Exposure to atmospheric radon.

    PubMed Central

    Steck, D J; Field, R W; Lynch, C F

    1999-01-01

    We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer study varied by a factor of two at the median dose, 8 mSv, and ranged up to 60 mSv (6 rem). Failure to include these doses can reduce the statistical power of epidemiologic studies that examine the lung cancer risk associated with residential radon exposure. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9924007

  11. 50 CFR 216.242 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-headed whale (Peponocephala electra)—8270 (an average of 1654 annually). (Q) Pygmy killer whale (Feresa attenuata)—1400 (an average of 280 annually). (R) False killer whale (Pseudorca crassidens)—2690 (an average of 538 annually). (S) Killer whale (Orcinus orca)—2515 (an average of 503 annually). (T) Pilot whales...

  12. 50 CFR 216.242 - Permissible methods of taking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-headed whale (Peponocephala electra)—8270 (an average of 1654 annually). (Q) Pygmy killer whale (Feresa attenuata)—1400 (an average of 280 annually). (R) False killer whale (Pseudorca crassidens)—2690 (an average of 538 annually). (S) Killer whale (Orcinus orca)—2515 (an average of 503 annually). (T) Pilot whales...

  13. 40 CFR 63.1260 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process vents as required in § 63.1257(d)(2)(ii). (6) Data and other information supporting the determination of annual average concentrations by process simulation as required in § 63.1257(e)(1)(ii). (7... must be performed while a process with a vent subject to § 63.1254(a)(3) will be operating. (g...

  14. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...

  15. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...

  16. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...

  17. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...

  18. An assessment of hopanes in settled dust and air as indicators of exposure to traffic-related air pollution in Windsor, Ontario

    NASA Astrophysics Data System (ADS)

    Curran, Jason

    Traffic-related air pollution (TRAP) has been linked with several adverse health effects. We investigated hopanes, markers of primary particle emissions from gasoline and diesel engines, in house dust as an alternative approach for assessing exposure to TRAP in Windsor, Ontario. Settled house dust was collected from the homes of 28 study participants (10 -- 13 yrs). The dust was then analyzed for a suite of hopanes by gas chromatography-mass spectrometry. We calculated correlations between dust hopane concentrations and estimates of annual average NO2 concentrations derived from an existing LUR model. Hopanes were consistently present in detectable quantities in house dust. Annual average outdoor NO2 estimated was moderately correlated with hopanes in house dust (r = 0.46; p<0.05). The correlations did not vary by infiltration efficiency or the presence of an attached garage. Hopanes measured in settled house dust show promise as an indicator of long-term exposure to traffic-related air pollution. Keywords: hopane; air pollution; traffic; dust; exposure; TRAP.

  19. Temporal dynamics of optical-microphysical characteristics of atmospheric aerosol at the Spitsbergen Archipelago in 2011-2014

    NASA Astrophysics Data System (ADS)

    Chernov, D. G.; Kozlov, V. S.; Panchenko, M. V.; Turchinovich, Yu. S.; Radionov, V. F.; Gubin, A. V.; Prakhov, A. N.

    2015-11-01

    In 2011-2014, the Institute of Atmospheric Optics (IAO SB RAS, Tomsk) and the Arctic and Antarctic Research Institute (AARI, St. Petersburg) conducted field investigations of the near-ground aerosol characteristics near Barentsburg (Spitsbergen Archipelago) in the spring and summer seasons. The particle number density in the size range 0.3-20 μm, size distribution of particles, and mass concentrations of aerosol and black carbon were measured round-the-clock every hour with Grimm 1.108 and 1.109; and AZ-10 optical counters. The mass concentration of black carbon was measured by the MDA-02 aethalometer developed by the IAO SB RAS. Series of observations are obtained, annual and seasonal average values and their standard deviations are estimated, and seasonal and annual dynamics of the studied parameters is analyzed. Peculiarities of the temporal dynamics of average values of the aerosol characteristics are revealed and compared with the data of observations at other stations of the Spitsbergen Archipelago and in different regions of the Russian Arctic and Subarctic.

  20. Modelling and Evaluation of Environmental Impact due to Continuous Emissions of the Severonickel Plant (Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Mahura, A.; Gonzalez-Aparicio, I.; Nuterman, R.; Baklanov, A.

    2012-04-01

    In this study, evaluation of potential impact - through concentration, deposition and loadings patterns - on population and environment due to continuous anthropogenic emissions (on example of sulfates) of the Cu-Ni smelters of the Russian North is given. To estimate impact, the Danish Emergency Response Model for Atmosphere (DERMA) was employed to perform long-term simulations of air concentration, time integrated air concentration (TIAC), dry (DD) and wet (WD) deposition patterns resulting from continuous emissions of the Severonickel smelters located on the Kola Peninsula (Murmansk region, Russia). To perform such simulations the 3D meteorological fields (from the European Center for Medium-Range Weather Forecasts, ECMWF) for the year 2000 were used as input. For simplicity, it has been assumed that normalized releases of sulfates from smelters location occurred at a constant rate every day. For each daily release the atmospheric transport, dispersion, dry and wet deposition due to removal processes were estimated during 10 day interval. Output from these long-term simulations is an essential input for evaluation of impact, doses, risks, and short- and long-term consequences, etc. Detailed analyses of simulated concentration and deposition fields allowed evaluating the spatial and temporal variability of resulted patterns on different scales. Temporal variability of both wet and dry deposition as well as their contribution into total deposition have been estimated. On an annual scale, the concentration and deposition patterns were estimated for the most populated cities of the North-West Russia. The modeled annual fields were also integrated into GIS environment as well as layers with population density (from the Center for International Earth Science Information Network, CIESIN) and standard administrative division of the North-West Russia and bordering countries. Furthermore, the estimation of deposited amounts (loadings) of sulfates for selected regions of Russia and border countries has been performed. It has been found that for the "mild emission scenario" (i.e. approx. 31.6 ths. ton), for the Severonickel smelters, the annual average daily dry deposition value is 5.79 ton (with the highest - 10.4 ton - in September, and the lowest - 2.9 ton - in March). The annual average daily wet deposition is 22.7 tons, and a strong month-to-month variability is seen compared with dry deposition. The highest average WD (46.3 ton) is in January, and the lowest - 5.5 ton - in July. There are also differences in amount deposited in total from daily releases. On an annual scale, on average, 32.9% of emitted amount could be deposited at the surface during the considered duration (i.e. 10 days) of atmospheric transport. The highest deposited amount of 57.2% is observed in January and the lowest of 14.3% - in July. Taking into account actual annual (on example of year 2000) emissions of sulfur dioxide as 45.3 ths. ton (Severonickel smelters, city of Monchegorsk), the summary annual time integrated air concentration, dry and wet deposition were re-scaled and these have been estimated for most populated cities (Arkhangelsk, Petrozavodsk, Sankt-Petersburg, Syktyvkar, Pskov, and Vologda) of the North-West Russia. It was found that among these cities, the TIAC is the highest - 86 μg•h/m3 - for Arkhangelsk and the lowest - 4 μg•h/m3 - for Pskov. Both dry and wet depositions were also the highest for Arkhangelsk - 0.5 and 2.2 mg/m2, respectively. Detailed analysis also showed that for regions surrounding the Kola Peninsula, on average (maximum), the total (dry plus wet) deposition was 0.6 (3.0), 1.8 (5.1), and 28.3 (122) mg/m2 for the territories of the Arkhangelsk, Karelia, and Murmansk regions of Russia. For border regions with Scandinavian countries, on average (maximum), the total deposition was 2.2 (6.7) mg/m2 in Finnmark (Norway); 0.2 (0.4) in Norrbotten and 0.03 (0.1) mg/m2 in Vsterbotten counties (Sweden); 0.6 (1.2) in Eastern Finland, 2.2 (7.2) in Lapland, and 1.4 (2.9) mg/m2 in Oulu provinces of Finland. For urban population living in the central and northern territories of the Kola Peninsula the yearly loading due to deposition of sulfates could be more than 40 kg/person. For bordering territories with the Murmansk region such loadings are less than 5 kg/person for the Eastern Finland, Karelia, and Arkhangelsk regions; and up to 15 kg/person - for the Northern Norway.

  1. Longitudinal Effects of Air Pollution on Exhaled Nitric Oxide: The Children’s Health Study

    PubMed Central

    Berhane, Kiros; Zhang, Yue; Salam, Muhammad T.; Eckel, Sandrah P.; Linn, William S.; Rappaport, Edward B.; Bastain, Theresa M; Lurmann, Fred; Gilliland, Frank D.

    2015-01-01

    OBJECTIVES To assess the effects of long-term variations in ambient air pollutants on longitudinal changes in exhaled nitric oxide (FeNO), a potentially useful biomarker of eosinophilic airway inflammation, based on data from the southern California Children’s Health Study. METHODS Based on a cohort of 1,211 schoolchildren from 8 Southern California communities with FeNO measurements in 2006/07 and 2007/08, regression models adjusted for short-term effects of air pollution were fitted to assess the association between changes in annual long-term exposures and changes in FeNO. RESULTS Increases in annual average concentrations of 24-hr average NO2 and PM2.5 (scaled to the interquartile range (IQR) of 1.8 ppb and 2.4 μg/m3, respectively) were associated with a 2.29 ppb (CI=[0.36,4.21]; p =0.02) and a 4.94 ppb (CI=[1.44,8.47]; p = 0.005) increase in FeNO, respectively, after adjustments for short term effects of the respective pollutants. In contrast, changes in annual averages of PM10 and O3 were not significantly associated with changes in FeNO. These findings did not differ significantly by asthma status. CONCLUSIONS Changes in annual average exposure to current levels of ambient air pollutants are significantly associated with changes in FeNO levels in children, independent of short-term exposures and asthma status. Use of this biomarker in population-based epidemiologic research has great potential for assessing the impact of changing real world mixtures of ambient air pollutants on children’s respiratory health. PMID:24696513

  2. Temporal trends of PM10 and its impact on mortality in Lombardy, Italy.

    PubMed

    Carugno, Michele; Consonni, Dario; Bertazzi, Pier Alberto; Biggeri, Annibale; Baccini, Michela

    2017-08-01

    Exposure to particulate matter with diameter ≤10 μm (PM 10 ) entails well documented adverse effects on human health. In the last decade, concentration of PM 10 in Lombardy (10 million inhabitants), Italy, has been gradually decreasing. We evaluated how the mortality burden due to PM 10 varied in that same period. We focused on 13 areas of the Region in 2003-2014: 11 cities with more than 50,000 inhabitants, 1 smaller alpine town and 1 agricultural province. For each area, we collected PM 10 annual average concentrations and natural mortality data, and we used the posterior area-specific effects from a previous Bayesian meta-analysis to estimate the short-term impact of PM 10 on mortality, in terms of deaths attributable (AD) to annual average exposures exceeding the WHO threshold of 20 μg/m 3 . PM 10 annual average values showed a non-homogenous decreasing trend in the investigated time period in most of the areas. Overall, the population-weighted exposure levels decreased, except for a peak in 2011, but never met the WHO threshold. In 2003-2006, PM 10 levels were responsible, on average, for 343.0 annual AD from natural causes that decreased to 253.5 in 2007-2010 and to 208.3 in 2011-2014. Overall we estimated that PM 10 was responsible for about 1% of all natural deaths (min-max range: 0.86%-1.42%); the impact was heterogeneous among areas. By collecting routinely available data for the most populated areas in Lombardy, we returned a picture of air pollution and health trends in the last decade. Notwithstanding the observed reduction in PM 10 between 2003 and 2014 and the resulting decline in the number of AD, the impact is still relevant. Hence, appropriate policies for emission reduction could have a further beneficial effect on population health. Studies based on routine data and local effect estimates are recommended to properly inform the policy-making process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle.

    PubMed

    McNeil, Ben I; Sasse, Tristan P

    2016-01-21

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean 'CO2 hotspots' evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for fisheries during the twenty-first century.

  4. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    NASA Astrophysics Data System (ADS)

    McNeil, Ben I.; Sasse, Tristan P.

    2016-01-01

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean ‘CO2 hotspots’ evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for fisheries during the twenty-first century.

  5. Surface Water Qualit: Revisiting Nitrate Concentrations in the Des Moines River: 1945 and 1976-2001

    USGS Publications Warehouse

    McIsaac, G.F.; Libra, R.D.

    2003-01-01

    Recent compilations of historical and contemporary riverine nitrate (NO3) concentrations indicate that concentrations in many rivers in the north-central USA increased during the second half of the 20th century. The Des Moines River near Des Moines, Iowa, however, was reported to have had similar NO3 concentrations in 1945 and the 1980s, in spite of substantially greater N input to the watershed during the latter period. The objective of this study was to reconsider the comparison of historical and contemporary NO3 concentrations in the Des Moines River near Des Moines in light of the following: (i) possible errors in the historical data used, (ii) variations in methods of sample collection, (iii) variations in location of sampling, and (iv) additional data collected since 1990. We discovered that an earlier study had compared the flow-weighted average concentration in 1945 to arithmetic annual average concentrations in the 1980s. The intertemporal comparison also appeared to be influenced by differences in sample collection methods and locations used at different times. Depending on the model used and the estimated effects of composite sample collection, the 1945 arithmetic average NO3 concentration was between 44 and 57% of the expected mean value at a similar water yield during 1976-2001. The flow-weighted average NO3 concentration for 1945 was between 54 and 73% of the expected mean value at a similar water yield during 1976-2001. The difference between NO3 concentrations in 1945 and the contemporary period are larger than previously reported for the Des Moines River.

  6. Polonium-210 budget in cigarettes.

    PubMed

    Khater, Ashraf E M

    2004-01-01

    Due to the relatively high activity concentrations of (210)Po and (210)Pb that are found in tobacco and its products, cigarette smoking highly increases the internal intake of both radionuclides and their concentrations in the lung tissues. That might contribute significantly to an increase in the internal radiation dose and in the number of instances of lung cancer observed among smokers. Samples of most frequently smoked fine and popular brands of cigarettes were collected from those available on the Egyptian market. (210)Po activity concentrations were measured by alpha spectrometry, using surface barrier detectors, following the radiochemical separation of polonium. Samples of fresh tobacco, wrapping paper, fresh filters, ash and post-smoking filters were spiked with (208)Po for chemical recovery calculation. The samples were dissolved using mineral acids (HNO(3), HCl and HF). Polonium was spontaneously plated-out on stainless steel disks from diluted HCl solution. The (210)Po activity concentration in smoke was estimated on the basis of its activity in fresh tobacco and wrapping paper, fresh filter, ash and post-smoking filters. The percentages of (210)Po activity concentrations that were recovered from the cigarette tobacco to ash, post-smoking filters, and smokes were assessed. The results of this work indicate that the average (range) activity concentration of (210)Po in cigarette tobacco was 16.6 (9.7-22.5) mBq/cigarette. The average percentages of (210)Po content in fresh tobacco plus wrapping paper that were recovered by post-smoking filters, ash and smoke were 4.6, 20.7 and 74.7, respectively. Cigarette smokers, who are smoking one pack (20 cigarettes) per day, are inhaling on average 123 mBq/d of (210)Po and (210)Pb each. The annual effective doses were calculated on the basis of (210)Po and (210)Pb intake with the cigarette smoke. The mean values of the annual effective dose for smokers (one pack per day) were estimated to be 193 and 251 microSv from (210)Po and (210)Pb, respectively.

  7. Estimation of Radionuclide Concentrations and Average Annual Committed Effective Dose due to Ingestion for the Population in the Red River Delta, Vietnam.

    PubMed

    Van, Tran Thi; Bat, Luu Tam; Nhan, Dang Duc; Quang, Nguyen Hao; Cam, Bui Duy; Hung, Luu Viet

    2018-02-16

    Radioactivity concentrations of nuclides of the 232 Th and 238 U radioactive chains and 40 K, 90 Sr, 137 Cs, and 239+240 Pu were surveyed for raw and cooked food of the population in the Red River delta region, Vietnam, using α-, γ-spectrometry, and liquid scintillation counting techniques. The concentration of 40 K in the cooked food was the highest compared to those of other radionuclides ranging from (23 ± 5) (rice) to (347 ± 50) Bq kg -1 dw (tofu). The 210 Po concentration in the cooked food ranged from its limit of detection (LOD) of 5 mBq kg -1  dw (rice) to (4.0 ± 1.6) Bq kg -1  dw (marine bivalves). The concentrations of other nuclides of the 232 Th and 238 U chains in the food were low, ranging from LOD of 0.02 Bq kg -1  dw to (1.1 ± 0.3) Bq kg -1  dw. The activity concentrations of 90 Sr, 137 Cs, and 239+240 Pu in the food were minor compared to that of the natural radionuclides. The average annual committed effective dose to adults in the study region was estimated and it ranged from 0.24 to 0.42 mSv a -1 with an average of 0.32 mSv a -1 , out of which rice, leafy vegetable, and tofu contributed up to 16.2%, 24.4%, and 21.3%, respectively. The committed effective doses to adults due to ingestion of regular diet in the Red River delta region, Vietnam are within the range determined in other countries worldwide. This finding suggests that Vietnamese food is safe for human consumption with respect to radiation exposure.

  8. Distributions of phytoplankton carbohydrate, protein and lipid in the world oceans from satellite ocean colour.

    PubMed

    Roy, Shovonlal

    2018-06-01

    Energy value of phytoplankton regulates the growth of higher trophic species, affecting the tropic balance and sustainability of marine food webs. Therefore, developing our capability to estimate and monitor, on a global scale, the concentrations of macromolecules that determine phytoplankton energy value, would be invaluable. Reported here are the first estimates of carbohydrate, protein, lipid, and overall energy value of phytoplankton in the world oceans, using ocean-colour data from satellites. The estimates are based on a novel bio-optical method that utilises satellite-derived bio-optical fingerprints of living phytoplankton combined with allometric relationships between phytoplankton cells and cellular macromolecular contents. The annually averaged phytoplankton energy value, per cubic metre of sub-surface ocean, varied from less than 0.1 kJ in subtropical gyres, to 0.5-1.0 kJ in parts of the equatorial, northern and southern latitudes, and rising to >10 kJ in certain coastal and optically complex waters. The annually averaged global stocks of carbohydrate, protein and lipid were 0.044, 0.17 and 0.108 gigatonnes, respectively, with monthly stocks highest in September and lowest in June, over 1997-2013. The fractional contributions of phytoplankton size classes e.g., picoplankton, nanoplankton and microplankton to surface concentrations and global stocks of macromolecules varied considerably across marine biomes classified as Longhurst provinces. Among these provinces, the highest annually averaged surface concentrations of carbohydrate, protein, and lipid were in North-East Atlantic Coastal Shelves, whereas, the lowest concentration of carbohydrate or lipid were in North Atlantic Tropical Gyral, and that of protein was in North Pacific Subtropical Gyre West. The regional accuracy of the estimates and their sensitivity to satellite inputs are quantified from the bio-optical model, which show promise for possible operational monitoring of phytoplankton energy value from satellite ocean colour. Adequate in situ measurements of macromolecules and improved retrievals of inherent optical properties from high-resolution satellite images, would be required to validate these estimates at local sites, and to further improve their accuracy in the world oceans.

  9. A high resolution record of chlorine-36 nuclear-weapons-tests fallout from Central Asia

    USGS Publications Warehouse

    Green, J.R.; Cecil, L.D.; Synal, H.-A.; Santos, J.; Kreutz, K.J.; Wake, C.P.

    2004-01-01

    The Inilchek Glacier, located in the Tien Shan Mountains, central Asia, is unique among mid-latitude glaciers because of its relatively large average annual accumulation. In July 2000, two ice cores of 162 and 167 meters (m) in length were collected from the Inilchek Glacier for (chlorine-36) 36Cl analysis a part of a collaborative international effort to study the environmental changes archived in mid-latitude glaciers worldwide. The average annual precipitation at the collection site was calculated to be 1.6 m. In contrast, the reported average annual accumulations at the high-latitude Dye-3 glacial site, Greenland, the mid-latitude Guliya Ice Cap, China, and the mid-latitude Upper Fremont Glacier, Wyoming, USA, were 0.52, 0.16 and 0.76 m, respectively. The resolution of the 36Cl record in one of the Inilchek ice cores was from 2 to 10 times higher than the resolution of the records at these other sites and could provide an opportunity for detailed study of environmental changes that have occurred over the past 150 years. Despite the differences in accumulation among these various glacial sites, the 36Cl profile and peak concentrations for the Inilchek ice core were remarkably similar in shape and magnitude to those for ice cores from these other sites. The 36Cl peak concentration from 1958, the year during the mid-1900s nuclear-weapons-tests period when 36Cl fallout was largest, was preserved in the Inilchek core at a depth of 90.56 m below the surface of the glacier (74.14-m-depth water equivalent) at a concentration of 7.7 ?? 105 atoms of 36Cl/gram (g) of ice. Peak 36Cl concentrations from Dye-3, Guliya and the Upper Fremont glacial sites were 7.1 ?? 105, 5.4 ?? 105 and 0.7 ?? 105 atoms of 36Cl/g of ice, respectively. Measurements of 36Cl preserved in ice cores improve estimates of historical worldwide atmospheric deposition of this isotope and allow the sources of 36Cl in ground water to be better identified. ?? 2004 Published by Elsevier B.V.

  10. The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon.

    PubMed

    Lacerda, Luiz D; de Souza, Margareth; Ribeiro, Mario G

    2004-05-01

    This study presents the spatial distribution, degree of contamination and storage capacity of Hg in surface forest and pasture soils from Alta Floresta, Southern Amazon, a significant gold mining site from 1980 to 1996. During that period, average annual gold production was about 6.5 tons, with an estimated Hg annual emission to the environment of about 8.8 tons, 60-80% of it being emitted to the atmosphere. Mercury sources to the region are mining sites and gold-dealer shops at the city of Alta Floresta, where gold is smelted and commercialized. Mercury concentrations in forest soils (15-248 ng g(-1), average=61.9 ng g(-1)) were 1.5-3.0 times higher than in pasture soils (10-74 ng g(-1), average=33.8 ng g(-1)), suggesting strong re-mobilization after deforestation. Highest Hg concentrations were found within a distance of 20-30 km from mining sites in both soil types. The influence of the refining operations within the city of Alta Floresta, however, was less clear. Somewhat higher concentrations were observed only within a 5 km radius from the city center where gold-dealer shops are located. Wind direction controls the spatial distribution of Hg. Background concentrations (15-50 ng g(-1)) were generally found at the outer perimeter of the sampling grid, about 40 km from sources. This suggests that Hg released from mining and refining activities undergoes rapid deposition. Estimated cumulative Hg burdens for the first 10 cm of soil averaged 8.3 mg m(-2) and 4.9 mg m(-2), for forest and pasture soils respectively and compare well with ultisols and hydromorphic oxisols, but were lower than those found in yellow-red and yellow latosols and podsols from other Amazonian areas. Our results show that changing land use in the Amazon is a strong re-mobilizing agent of Hg deposited on soils from the atmosphere.

  11. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1993 through March 1995

    USGS Publications Warehouse

    Torikai, J.D.

    1995-01-01

    This report contains hydrologic and climatic data that describe the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1993 through March 1995, although the report focuses on hydrologic events from January through March 1995. Cumulative rainfall for January through March 1995 was about 42 inches which is higher than the mean cumulative rainfall of about 33 inches for the same 3 months in a year. January and February are part of the annual wet season and March is the start of the annual dry season. Rainfall for each month was above average from the respective mean monthly rainfall. Ground- water withdrawal during January through March 1995 averaged 894,600 gallons per day. Withdrawal for the same 3 months in 1994 averaged 999,600 gallons per day. At the end of March 1995, the chloride concentration of the composite water supply was 26 milligrams per liter, well below the 250 milligrams per liter secondary drinking-water standard established by the U.S. Environmental Protection Agency. Chloride concentrations of the composite water supply from January through March 1995 ranged between 19 and 49 milligrams per liter. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations decreased since November 1994. The deepest monitoring wells show declines in chloride concentration by as much as 4,000 milligrams per liter. A fuel leak at Air Operations caused the shutdown of ten wells in May 1991. Four of the wells resumed pumping for water- supply purposes in April 1992. The remaining six wells are being used to hydraulically contain and divert fuel migration by recirculating about 150,000 gallons of water each day.

  12. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1992 through September 1994

    USGS Publications Warehouse

    Torikai, J.D.

    1995-01-01

    This report contains hydrologic and climatic data that describe the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data are presented from January 1992 through September 1994. This report concentrates on data from July through September 1994, and references historic data from 1992 through June 1994. Total rainfall for the first nine months of 1994 was about 77 inches which is 72 percent of the mean annual rainfall of 106 inches. In comparison, total rainfall for the first nine months of 1992 and 1993 was 67 inches and 69 inches, respectively. Annual rainfall totals in 1992 and 1993 were 93 inches and 95 inches, respectively. Ground-water withdrawal during July through September 1994 has averaged 919,400 gallons per day, while annual withdrawals in 1992 and 1993 averaged 935,900 gallons per day and 953,800 gallons per day, respectively. At the end of September 1994, the chloride concentration of the composite water supply was 56 milligrams per liter, well below the 250 milligrams per liter secondary drinking-water standard established by the U.S. Environmental Protection Agency. Chloride concentrations of the composite water supply from July through September 1994 ranged between 51 and 78 milligrams per liter. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations increased in July and August, but have leveled off or decreased in September. There has been a general trend of increasing chloride concentrations in the deeper monitoring wells since the 1992 dry season, which began in March 1992. A fuel leak at Air Operations caused the shutdown of ten wells in May 1991. Four of the wells resumed pumping for water-supply purposes in April 1992. The remaining six wells are being used to hydraulically contain and divert fuel migration by recirculating 150,000 gallons of water each day.

  13. Compilation of hydrologic data for White Sands pupfish habitat and nonhabitat areas, northern Tularosa Basin, White Sands Missile Range and Holloman Air Force Base, New Mexico, 1911-2008

    USGS Publications Warehouse

    Naus, C.A.; Myers, R.G.; Saleh, D.K.; Myers, N.C.

    2014-01-01

    The White Sands pupfish (Cyprinodon tularosa), listed as threatened by the State of New Mexico and as a Federal species of concern, is endemic to the Tularosa Basin, New Mexico. Because water quality can affect pupfish and the environmental conditions of their habitat, a comprehensive compilation of hydrologic data for pupfish habitat and nonhabitat areas in the northern Tularosa Basin was undertaken by the U.S. Geological Survey in cooperation with White Sands Missile Range. The four locations within the Tularosa Basin that are known pupfish habitat areas are the Salt Creek, Malpais Spring and Malpais Salt Marsh, Main Mound Spring, and Lost River habitat areas. Streamflow data from the Salt Creek near Tularosa streamflow-gaging station indicated that the average annual mean streamflow and average annual total streamflow for water years 1995–2008 were 1.35 cubic feet per second (ft3/s) and 983 acre-feet, respectively. Periods of no flow were observed in water years 2002 through 2006. Dissolved-solids concentrations in Salt Creek samples collected from 1911 through 2007 ranged from 2,290 to 66,700 milligrams per liter (mg/L). The average annual mean streamflow and average annual total streamflow at the Malpais Spring near Oscura streamflow-gaging station for water years 2003–8 were 6.81 ft3/s and 584 acre-feet, respectively. Dissolved-solids concentrations for 16 Malpais Spring samples ranged from 3,882 to 5,500 mg/L. Isotopic data for a Malpais Spring near Oscura water sample collected in 1982 indicated that the water was more than 27,900 years old. Streamflow from Main Mound Spring was estimated at 0.007 ft3/s in 1955 and 1957 and ranged from 0.02 to 0.07 ft3/s from 1996 to 2001. Dissolved-solids concentrations in samples collected between 1955 and 2007 ranged from an estimated 3,760 to 4,240 mg/L in the upper pond and 4,840 to 5,120 mg/L in the lower pond. Isotopic data for a Main Mound Spring water sample collected in 1982 indicated that the water was about 19,600 years old. Dissolved-solids concentrations of Lost River samples collected from 1984 to 1999 ranged from 8,930 to 118,000 (estimated) mg/L. Dissolved-solids concentrations in samples from nonhabitat area sites ranged from 1,740 to 54,200 (estimated) mg/L. In general, water collected from pupfish nonhabitat area sites tends to have larger proportions of calcium, magnesium, and sulfate than water from pupfish habitat area sites. Water from springs associated with mounds in pupfish nonhabitat areas was of a similar type (calcium-sulfate) to water associated with mounds in pupfish habitat areas. Alkali Spring had a sodium-chloride water type, but the proportions of sodium-chloride and magnesium-sulfate are unique as compared to samples from other sites.

  14. 20 CFR 30.805 - What evidence does OWCP use to determine a covered Part E employee's average annual wage and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... covered Part E employee's average annual wage and whether he or she experienced compensable wage-loss... OWCP use to determine a covered Part E employee's average annual wage and whether he or she experienced... the Social Security Administration to establish a covered Part E employee's presumed average annual...

  15. 20 CFR 30.805 - What evidence does OWCP use to determine a covered Part E employee's average annual wage and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... covered Part E employee's average annual wage and whether he or she experienced compensable wage-loss... OWCP use to determine a covered Part E employee's average annual wage and whether he or she experienced... the Social Security Administration to establish a covered Part E employee's presumed average annual...

  16. Interaction between air pollution dispersion and residential heating demands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipfert, F.W.; Moskowitz, P.D.; Dungan, J.

    The effect of the short-term correlation of a specific emission (sulfur dioxide) from residential space heating, with air pollution dispersion rates on the accuracy of model estimates of urban air pollution on a seasonal or annual basis is analyzed. Hourly climatological and residential emission estimates for six U.S. cities and a simplified area source-dispersion model based on a circular receptor grid are used. The effect on annual average concentration estimations is found to be slight (approximately + or - 12 percent), while the maximum hourly concentrations are shown to vary considerably more, since maximum heat demand and worst-case dispersion aremore » not coincident. Accounting for the correlations between heating demand and dispersion makes possible a differentiation in air pollution potential between coastal and interior cities.« less

  17. Seasonal Variations of Atmospheric Black Carbon Concentrations and Implications for Nutrient Inputs and Organic Carbon Partitioning in the Marine Coastal Ecosystem of Halong Bay, North Vietnam

    NASA Astrophysics Data System (ADS)

    Mari, X.; Thuoc, C. V.; Guinot, B. P.; Brune, J.; Lefebvre, J. P.; Raimbault, P.; Niggemann, J.; Dittmar, T.

    2016-02-01

    Black Carbon (BC) is an aerosol emitted during biomass burning and fossil fuel combustion. On a global scale, BC deposits on the ocean at a rate of 12-45 Tg per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of hotspots of atmospheric BC concentration. In the present study conducted in a coastal site located in a regional hotspot of atmospheric BC concentration, North Vietnam, we monitored the seasonal variations of atmospheric and marine BC during an annual cycle. Atmospheric BC followed a seasonal pattern characterized by high concentrations during the dry season, i.e. from October to April, and low concentrations during the wet season, i.e. from May to September. This trend is linked to a change in wind regime, with air masses originating from the North during the dry season and from the South during the wet season. On average, the contribution of BC to the particulate and the dissolved organic carbon pools was 43% and 3%, respectively. The concentration of particulate BC (PBC) was on average 50 times higher in the surface microlayer (SML) than in the water column. In the water column, the concentration of PBC was higher during the dry season than the wet season, which is consistent with variations of atmospheric BC concentrations. On the contrary, the concentration of dissolved BC (DBC) was lower during the dry season than the wet season. This seasonal pattern suggests that PBC concentration in coastal marine systems depends upon atmospheric BC concentration, while increased DBC concentration is linked to rainy conditions. The deposition of BC during the dry season was concomitant with a strong enrichment of organic phosphorus in the SML. During the annual cycle, the POC:DOC ratio was positively correlated with the concentration of PBC, suggesting adsorption of DOC onto BC particles and formation of POC via stimulation of aggregation processes.

  18. Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion.

    PubMed

    Krzyzanowski, Flávio; de Souza Lauretto, Marcelo; Nardocci, Adelaide Cássia; Sato, Maria Inês Zanoli; Razzolini, Maria Tereza Pepe

    2016-10-15

    A deeper understanding about the risks involved in sewage sludge practice in agriculture is required. The aims of the present study were to determine the annual risk of infection of consuming lettuce, carrots and tomatoes cultivated in soil amended with sewage sludge. The risk to agricultural workers of accidental ingestion of sludge or amended soil was also investigated. A Quantitative Microbial Risk Assessment was conducted based on Salmonella concentrations from five WWTPs were used to estimate the probability of annual infection associated with crops and soil ingestion. The risk of infection was estimated for nine exposure scenarios considering concentration of the pathogen, sewage sludge dilution in soil, variation of Salmonella concentration in soil, soil attachment to crops, seasonal average temperatures, hours of post-harvesting exposure, Salmonella regrowth in lettuce and tomatoes, Salmonella inhibition factor in carrots, crop ingestion and frequency of exposure, sludge/soil ingestion by agricultural workers and frequency of exposure. Annual risks values varied across the scenarios evaluated. Highest values of annual risk were found for scenarios in which the variation in the concentration of Salmonella spp. in both soil and crops (scenario 1) and without variation in the concentration of Salmonella spp. in soil and variation in crops (scenario 3) ranging from 10(-3) to 10(-2) for all groups considered. For agricultural workers, the highest annual risks of infection were found when workers applied sewage sludge to agricultural soils (2.26×10(-2)). Sensitivity analysis suggests that the main drivers for the estimated risks are Salmonella concentration and ingestion rate. These risk values resulted from conservative scenarios since some assumptions were derived from local or general studies. Although these scenarios can be considered conservative, the sensitivity analysis yielded the drivers of the risks, which can be useful for managing risks from the fresh products chain with stakeholders' involvement. Copyright © 2016. Published by Elsevier B.V.

  19. Variability of Black Carbon Deposition to the East Antarctic Plateau, 1800-2000 AD

    NASA Technical Reports Server (NTRS)

    Bisiaux, M. M.; Edwards, R.; McConnell, J. R.; Albert, M. R.; Anschutz, H.; Neumann, T. A.; Isaksson, E.; Penner, J. E.

    2012-01-01

    Refractory black carbon aerosols (rBC) from biomass burning and fossil fuel combustion are deposited to the Antarctic ice sheet and preserve a history of emissions and long-range transport from low- and mid-latitudes. Antarctic ice core rBC records may thus provide information with respect to past combustion aerosol emissions and atmospheric circulation. Here, we present six East Antarctic ice core records of rBC concentrations and fluxes covering the last two centuries with approximately annual resolution (cal. yr. 1800 to 2000). The ice cores were drilled in disparate regions of the high East Antarctic ice sheet, at different elevations and net snow accumulation rates. Annual rBC concentrations were log-normally distributed and geometric means of annual concentrations ranged from 0.10 to 0.18 m cro-g/kg. Average rBC fluxes were determined over the time periods 1800 to 2000 and 1963 to 2000 and ranged from 3.4 to 15.5 m /a and 3.6 to 21.8 micro-g/sq m/a, respectively. Geometric mean concentrations spanning 1800 to 2000 increased linearly with elevation at a rate of 0.025 micro-g/kg/500 m. Spectral analysis of the records revealed significant decadal-scale variability, which at several sites was comparable to decadal ENSO variability.

  20. Atmospheric CO2 Records from Sites in the Scripps Institution of Oceanography (SIO) Air Sampling Network (1985 - 2007)

    DOE Data Explorer

    Keeling, R. F. [Scripps Institution of Oceanography (SIO) University of California, La Jolla, California (USA); Piper, S. C. [Scripps Institution of Oceanography (SIO) University of California, La Jolla, California (USA); Bollenbacher, A. F. [Scripps Institution of Oceanography (SIO) University of California, La Jolla, California (USA); Walker , J. S. [Scripps Institution of Oceanography (SIO) University of California, La Jolla, California (USA)

    2008-05-01

    At Alert weekly air samples are collected in 5-L evacuated glass flasks exposed in triplicate. Flasks are returned to the SIO for CO2 determinations, which are made using an Applied Physics Corporation nondispersive infrared gas analyzer. In May 1983, the CO2-in-N2 calibration gases were replaced with CO2-in-air calibration gases, which are currently used (Keeling et al. 2002). Data are in terms of the Scripps "03A" calibration scale. On the basis of flask samples collected at Alert and analyzed by SIO, the annual average of the fitted monthly concentrations CO2 rose from 348.48 ppmv in 1986 to 384.84 ppmv in 2007. This represents an average annual growth rate of 1.73 ppmv per year at Alert.

  1. 40 CFR 63.147 - Process wastewater provisions-recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... record of the results of each seal gap measurement required by §§ 63.133(d) and 63.137(c) of this subpart... requirements. (f) If the owner or operator uses process knowledge to determine the annual average concentration of a wastewater stream as specified in § 63.144(b)(3) of this subpart and/or uses process knowledge...

  2. Determining Sludge Fertilization Rates for Forests from Nitrate-N in Leachate and Groundwater

    Treesearch

    D.G. Brockway; D.H. Urie

    1983-01-01

    Municipal and papermill wastewater sludges were applied to conifer and hardwood forests growing on sand soils (Entic Haplorthods, Spodle Udipsamments, and Alfic Haplothods), in northwestern Lower Michigan where annual precipitation averages 765 mm/y.To investigate the impact of sludge on nitrate-N concentrations in soil water and groundwater.During the first growing...

  3. African Dust Transport Captured by Rare Earth Elemental Concentrations in Coral Microatolls

    NASA Astrophysics Data System (ADS)

    Ouellette, G., Jr.; DeLong, K.; Herrmann, A.; Huang, C. Y.; Shen, C. C.

    2017-12-01

    Winds are integral components of the climate system; unfortunately, windsare also among the climate variables that are most difficult to study prior to the instrumentalrecord. Paleoclimatologists use sedimentary dust records (e.g., lake and ocean cores) tounderstand past wind circulation conditions; however, these types of records typically are notamenable to sub-annual interpretation due to their limited temporal resolution. Here wedeveloped a coral-based dust-wind proxy to overcome these temporal limitations by usingtrace (nmol/mol) rare earth elemental concentrations recorded in the skeletons of coralmicroatolls. The rare earth elements (REE; the lanthanides as well as scandium and yttrium)behave similarly in geologic and geochemical systems, and have served as useful proxies ofgeological processes in both deep and shallow time. Corals incorporate REE as they deposittheir exoskeletons that extend incrementally with time forming annual density band couplets.Coral microatolls grow at or near the sea surface, where coral REE concentrations are mostsensitive to dust deposition. Our study site off the west coast of Haiti is down stream of light-REE depleted bedrock whereas REE in African dust, transported by the easterly trade winds,reflect average crustal abundances. This unique "upstream" source signature allows forterrestrial contamination of the dust-wind signal to be ruled out. Light REE concentrations (esp.Nd and Pr) demonstrate an order of magnitude increase within coral aragonite coincident withmajor African dust plume events throughout the past decade, with Nd/Ca and Pr/Ca increasingfrom an average of 27 nmol/mol to an average 144 nmol/mol and an average of 5 nmol/mol toan average of 37 nmol/mol, respectively, during major African dust plume events. Monthly-resolved REE analysis shows these REE peaks coincide with the summer dust season rather thanHaiti's two wet seasons in spring and autumn. Regression of our coral REE dust proxy tosatellite records of African dust aerosol optical depth (AOD) provides a significant transferfunction [(REE)=3.00(AOD)-3.11, R 2 = 0.72, p ≤ 0.0005, df= 24]. Our results suggest coral REErecords have the potential to robustly reconstruct past African dust plume transport, thusproviding insight into the regional easterly trade wind patterns driving them.

  4. Seasonal and intradiurnal variation of airborne pollen concentrations in Bodrum, SW Turkey.

    PubMed

    Tosunoglu, Aycan; Bicakci, Adem

    2015-04-01

    An aeropalynological study was performed in Bodrum, the famous tourism center in southwestern Turkey with a Hirst-type volumetric 7-day pollen and spore trap for 2 years (2007-2008). In Bodrum, 25,099 pollen grains as a mean value belonging to 41 taxa were recorded annually during the study period, and pollen grains from woody plant taxa had the largest atmospheric contribution of 86.99% and 24 taxa. However, 17 herbaceous plant taxa constituted 12.82% of the annual total pollen count, and 0.19% were unidentified. An average annual pollen index of 22.66% was recorded in March, despite differences from year to year. The highest pollen variability of 34 taxa was recorded in April and May. Predominant pollen types belonged to Cupressaceae/Taxaceae (42.73%), Quercus (15.95%), Pinus (9.78%), Olea europaea (9.04%), Poaceae (5.50%), Betula (1.82%), Pistacia (1.74%), Morus (1.72%), Urticaceae (1.46%), and Plantago (1.28%) and generated 91.03 of the annual total. In total, 32.59% of the mean annual total pollen index was recorded in the morning, and less pollen was recorded in the evening (18.71%). Maximum pollen concentration was recorded between 11:00 and 12:00 a.m.

  5. Assessing the present and future probability of Hurricane Harvey's rainfall.

    PubMed

    Emanuel, Kerry

    2017-11-28

    We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey's magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981-2000 and will increase to 18% over the period 2081-2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century. Copyright © 2017 the Author(s). Published by PNAS.

  6. [Variation of atmospheric pollutants in Qinhuangdao City].

    PubMed

    Liu, Lu-Ning; Shen, Yu-Xuan; Xin, Jin-Yuan; Ji, Dong-Sheng; Wang, Yue-Si

    2013-06-01

    To illuminate the air pollution situation of the tourist city of Qinhuangdao, the atmospheric pollutants were measured from autumn 2009 to summer 2010. The results showed that the mean average concentration of NO, NO2, SO2, O3 and PM10 during the observation period reached (18 +/- 18), (45 +/- 18), (42 +/- 46), (44 +/- 25) and (128 +/- 77) microg x m(-3), respectively. The particulate matter pollution was serious, and the rate of the annual mean value exceeded the National Ambient Air Quality Standard II by 28%. The average daily concentration and average max hourly O3 concentration were (64 +/- 21)microg x m(-3) and (126 +/- 42) microg x m(-3) in summer, and the air masses from the southern ocean aggravated the O3 pollution. The concentrations of NO(x) SO2 and PM10 in the heating period were 1.5, 4.9 and 1.5 times more than those in the period without heating and the daily average concentration of SO2 and PM10 exceeded the National Ambient Air Quality Standard II by 53% and 11% in the heating period, respectively. The superimposition effect of regional transport in the Beijing-Tianjin-Hebei region and industrial area surrounding the Bohai Bay and local harbor emission led to an increase of 17% (NO(x)), 27% (SO2) and 12% (PM10), resulting in average concentrations of up to (100 +/- 49), (110 +/- 84) and (215 +/- 108) microg x m(-3) in winter. The winds from northern inland and southern ocean can effectively remove the air pollutants.

  7. Spatial and temporal characteristics of PM2.5 and source apportionment in Wuhan

    NASA Astrophysics Data System (ADS)

    Hao, Hanzhou; Guo, Qianqian

    2018-02-01

    In order to study the pollution characteristics and sources of PM2.5, the PM2.5 in Wuhan atmosphere was sampled continuously. Inductively coupled plasma mass spectrometry (ICP-MS) were employed to measure Na, K, Mg, Ca, Al, Mn, Cu, Zn, As, Pb, Cr, Ni, Co, Cd, Fe, V, Ti, Hg, Si, while water soluble ions (Cl-, NO3-, SO4 2-) as well as carbonaceous mass (EC and OC) were analyzed using ion chromatograph(IC) and carbon analyzer, respectively. The results show: (1) In 2014 and 2015, Wuhan PM2.5 values were 81.4μg/m3and 69.2μg/m3 respectively far exceed the national standard level 2, i.e. annual average 35 μg/m3 in China, annual average limit 10 μg/m3 by the World Health Organization, the annual limit of 15 μg/m3 in the United States. (2) Taking Huaqiao and Qihao as research points, the Spring Festival effect of PM2.5 in Wuhan city is analyzed. It shows that the concentration of PM2.5 in 2014 and 2015 is before Spring Festival> during Spring Festival> after Spring Festival. As a backdrop, during the Spring Festival, Qihao PM2.5 concentration than Huaqiao average low 20 μg/m3. (3) The results of positive factor matrix factorization (PMF) analysis show that PM2.5 in Summer in Wuhan mainly comes from the automobile source, soil dust source, biomass combustion, industrial source, secondary aerosol source, combustion coal source, the contribution rate is 37.7%. 25%, 16.4%, 8.1%, 6.5%,6.4%, respectively.

  8. Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions.

    PubMed

    Kumar, M Kishore; Sreekanth, V; Salmon, Maëlle; Tonne, Cathryn; Marshall, Julian D

    2018-08-01

    This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM 2.5 ) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM 2.5 concentrations during June 2015-May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM 2.5 concentration was ∼30 μg m -3 (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m -3 ) during 2-5% of observation days. Average concentrations were ∼25 μg m -3 higher during winter than during monsoon and ∼8 μg m -3 higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM 2.5 concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM 2.5 in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Suspended solids and nutrient retention in rural constructed wetlands in cold climate

    NASA Astrophysics Data System (ADS)

    Koskiaho, Jari; Siimekselä, Tiina; Puustinen, Markku

    2016-04-01

    Three constructed wetlands (CWs), two located in southern and one in central Finland, were monitored during 2013-2015. The southern CWs Hovi (0.6 ha wet area) and Rantamo-Seitteli (24 ha wet area) were monitored continuously by s::can nitro::lyser (www.s-can.at) sensors. On average 10 pairs (inflow and outflow) of water samples were annually taken in the two southern CWs and 20 pairs in the northernmost Tarvaala CW (wet area 1.4 ha). In Tarvaala, a portable, continuously measuring Micromac 1000 -phosphate analyzer (www.systea.it) was also tested at the CW outlet in 2015. The CWs differed in their size, dimensioning (CW-to-catchment area ratio) and in the characteristics of their upstream catchments. The Hovi CW has 5.0% CW-to-catchment area ratio and 100% agricultural land use in its clayey catchment. The corresponding percentages were for the Rantamo-Seitteli CW (clayey catchment) 1.3% and 42%, and for the Tarvaala CW (coarse soil type in the catchment) 1.0% and 16%. The average annual total suspended solids (TSS) retentions in Hovi, Rantamo-Seitteli and Tarvaala CWs were 79%, 6% and 50%, respectively. The average annual total phosphorus (TP) retentions were 61% at Hovi, 22% at Rantamo-Seitteli and 23% at Tarvaala. The unexpectedly high TSS and TP retentions at Tarvaala were probably due to the coarse soil type with more readily settling particles than in two other CWs. In Hovi and Rantamo-Seitteli CWs also dissolved reactive phosphorus (DRP) was measured. The DRP retentions (83% at Hovi and 27% at Rantamo-Seitteli) were higher than those of TP, which was probably due to the high contents of P-binding Al- and Fe-oxides in the soil of these two CWs. In the Hovi CW, vivid biological activity (abundant vegetation, algae and microbes) might also have played a role. The average annual total nitrogen (TN) retentions in Hovi and Rantamo-Seitteli CWs were 66% and 14%, respectively. At Tarvaala, TN retention varied annually so that no net retention over the whole period occurred. The most probable reason behind the occasional negative nitrogen retention was the ditching and earthworks made at the Tarvaala CW. These actions have obviously mobilized nitrogen and increased its concentrations. Micromac 1000 -phosphate analyzer proved to produce reliable (uncertainty <15%) results when PO4-P concentration was >30 μg/l. According to the results of this study, the major factor behind the differences in the retention performance of the CWs was dimensioning. Indeed, the average annual nutrient retentions measured here are close to those predicted by the model equations presented in Finnish CW planning and dimensioning guidelines (Puustinen et al. 2007): TP retention for Hovi 58%, for Rantamo-Seitteli 27% and for Tarvaala 23%. Another factor affecting the CW retention performance was the land-use of the upstream catchment; the more agricultural land there was, the higher were the inflow concentrations, and the higher were also the retentions. On the base of our results, CWs can be recommended as water protection measures in Finnish rural areas. However, generous dimensioning, like in Hovi, often reduces their cost-effectiveness and the willingness of the landowners to build them.

  10. Emission of polybrominated diphenyl ethers (PBDEs) in use of electric/electronic equipment and recycling of e-waste in Korea.

    PubMed

    Park, Jong-Eun; Kang, Young-Yeul; Kim, Woo-Il; Jeon, Tae-Wan; Shin, Sun-Kyoung; Jeong, Mi-Jeong; Kim, Jong-Guk

    2014-02-01

    The emission rates of polybrominated diphenyl ethers (PBDEs) from electric/electronic products during their use and disposal were estimated. E-wastes, including televisions and refrigerators, gathered at recycling centers were also analyzed to estimate their emissions. The average concentrations of PBDEs in TV rear covers produced before and after the year 2000 were 145,027 mg/kg and 14,049 mg/kg, respectively. The PBDEs concentration in TV front covers was lower than the concentration in TV rear covers. The concentration in the components of the refrigerator samples ranged from ND to 445 mg/kg. We estimated the atmospheric emissions of PBDEs based on the concentrations. The annual emissions from TV rear covers produced before 2000 were calculated to be approximately 162.1 kg and after 2000, the annual emissions were 18.7 kg. Refrigerators showed the lowest annual emissions of PBDEs (0.7 kg). The atmospheric concentrations were also measured to calculate emissions generated during the recycling process. The highest concentration was 16.86 ng/m(3) emitted from the TV sets during the dismantling process. The concentrations of PBDEs generated in the plastic processing field ranged from 2.05 to 5.43 ng/m(3) depending on the products, and ambient air in open-air yards showed concentrations in the range of 0.32 to 5.55 ng/m(3). Emission factors for the recycling process were calculated using the observed concentrations. The estimated emissions according to the emission factors ranged from 0.3×10(-1) to 90.3 kg/year for open-air yards and from 0.1×10(-1) to 292.7 kg/year for the dismantling and crushing processes of TV set, depending on the production year. © 2013 Elsevier B.V. All rights reserved.

  11. Longitudinal effects of air pollution on exhaled nitric oxide: the Children's Health Study.

    PubMed

    Berhane, Kiros; Zhang, Yue; Salam, Muhammad T; Eckel, Sandrah P; Linn, William S; Rappaport, Edward B; Bastain, Theresa M; Lurmann, Fred; Gilliland, Frank D

    2014-07-01

    To assess the effects of long-term variations in ambient air pollutants on longitudinal changes in exhaled nitric oxide (FeNO), a potentially useful biomarker of eosinophilic airway inflammation, based on data from the southern California Children's Health Study. Based on a cohort of 1211 schoolchildren from eight Southern California communities with FeNO measurements in 2006-2007 and 2007-2008, regression models adjusted for short-term effects of air pollution were fitted to assess the association between changes in annual long-term exposures and changes in FeNO. Increases in annual average concentrations of 24-h average NO2 and PM2.5 (scaled to the IQR of 1.8 ppb and 2.4 μg/m(3), respectively) were associated with a 2.29 ppb (CI 0.36 to 4.21; p=0.02) and a 4.94 ppb (CI 1.44 to 8.47; p=0.005) increase in FeNO, respectively, after adjustments for short-term effects of the respective pollutants. In contrast, changes in annual averages of PM10 and O3 were not significantly associated with changes in FeNO. These findings did not differ significantly by asthma status. Changes in annual average exposure to current levels of ambient air pollutants are significantly associated with changes in FeNO levels in children, independent of short-term exposures and asthma status. Use of this biomarker in population-based epidemiological research has great potential for assessing the impact of changing real world mixtures of ambient air pollutants on children's respiratory health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project.

    PubMed

    Beelen, Rob; Raaschou-Nielsen, Ole; Stafoggia, Massimo; Andersen, Zorana Jovanovic; Weinmayr, Gudrun; Hoffmann, Barbara; Wolf, Kathrin; Samoli, Evangelia; Fischer, Paul; Nieuwenhuijsen, Mark; Vineis, Paolo; Xun, Wei W; Katsouyanni, Klea; Dimakopoulou, Konstantina; Oudin, Anna; Forsberg, Bertil; Modig, Lars; Havulinna, Aki S; Lanki, Timo; Turunen, Anu; Oftedal, Bente; Nystad, Wenche; Nafstad, Per; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Penell, Johanna; Korek, Michal; Pershagen, Göran; Eriksen, Kirsten Thorup; Overvad, Kim; Ellermann, Thomas; Eeftens, Marloes; Peeters, Petra H; Meliefste, Kees; Wang, Meng; Bueno-de-Mesquita, Bas; Sugiri, Dorothea; Krämer, Ursula; Heinrich, Joachim; de Hoogh, Kees; Key, Timothy; Peters, Annette; Hampel, Regina; Concin, Hans; Nagel, Gabriele; Ineichen, Alex; Schaffner, Emmanuel; Probst-Hensch, Nicole; Künzli, Nino; Schindler, Christian; Schikowski, Tamara; Adam, Martin; Phuleria, Harish; Vilier, Alice; Clavel-Chapelon, Françoise; Declercq, Christophe; Grioni, Sara; Krogh, Vittorio; Tsai, Ming-Yi; Ricceri, Fulvio; Sacerdote, Carlotta; Galassi, Claudia; Migliore, Enrica; Ranzi, Andrea; Cesaroni, Giulia; Badaloni, Chiara; Forastiere, Francesco; Tamayo, Ibon; Amiano, Pilar; Dorronsoro, Miren; Katsoulis, Michail; Trichopoulou, Antonia; Brunekreef, Bert; Hoek, Gerard

    2014-03-01

    Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. We used data from 22 European cohort studies, which created a total study population of 367,251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. The total study population consisted of 367,251 participants who contributed 5,118,039 person-years at risk (average follow-up 13.9 years), of whom 29,076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 μg/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I(2) p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 μg/m(3) (1.07, 1.01-1.13). Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value. European Community's Seventh Framework Program (FP7/2007-2011). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Atmospheric CO2 Records from Sites in the Atmospheric Environment Service Air Sampling Network (1975 and 1994)

    DOE Data Explorer

    Trivett, N. B.A. [Atmospheric Environment Service, Downsview, Ontario, Canada; Hudec, V. C. [Atmospheric Environment Service, Downsview, Ontario, Canada; Wong, C. S. [Marine Carbon Research Centre, Institute of Ocean Sciences, Sidney, British Columbia, Canada

    1997-01-01

    From the mid-1970s through the mid-1990s, air samples were collected for the purposes of monitoring atmospheric CO2 from four sites in the AES air sampling network. Air samples were collected approximately once per week, between 12:00 and 16:00 local time, in a pair of evacuated 2-L thick-wall borosilicate glass flasks. Samples were collected under preferred conditions of wind speed and direction (i.e., upwind of the main station and when winds are strong and steady). The flasks were evacuated to pressures of ~1 × 10-4 mbar or 0.01 Pa prior to being sent to the stations. The airwas not dried during sample collection. The flask data from Alert show an increase in the annual atmospheric CO2 concentration from 341.35 parts per million by volume (ppmv) in 1981 to 357.21 ppmv in 1991. For Cape St. James, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.43 ppmv per year. In August 1992, the weather station at Cape St. James was automated; as a result, the flask sampling program was discontinued at this site. Estevan Point, on the West Coast of Vancouver Island, was chosen as a replacement station. Sampling at Estevan Point started in 1992; thus, the monthly and annual CO2record from Estevan Point is too short to show any long-term trends. The sampling site at Sable Island, off the coast of Nova Scotia, was established in 1975. The flask data from Sable Island show an increase in the annual atmospheric CO2 concentration from 334.49 parts per million by volume (ppmv) in 1977 (the first full year of data) to 356.02 ppmv in 1990. For Sable Island, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.48 ppmv per year.

  14. aerosol radiative effects and forcing: spatial and temporal distributions

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2014-05-01

    A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.

  15. Sources of phosphorus to the Carson River upstream from Lahontan Reservoir, Nevada and California, Water Years 2001-02

    USGS Publications Warehouse

    Alvarez, Nancy L.; Seiler, Ralph L.

    2004-01-01

    Discharge of treated municipal-sewage effluent to the Carson River in western Nevada and eastern California ceased by 1987 and resulted in a substantial decrease in phosphorus concentrations in the Carson River. Nonetheless, concentrations of total phosphorus and suspended sediment still commonly exceed beneficial-use criteria established for the Carson River by the Nevada Division of Environmental Protection. Potential sources of phosphorus in the study area include natural inputs from undisturbed soils, erosion of soils and streambanks, construction of low-head dams and their destruction during floods, manure production and grazing by cattle along streambanks, drainage from fields irrigated with streamwater and treated municipal-sewage effluent, ground-water seepage, and urban runoff including inputs from golf courses. In 2000, the U.S. Geological Survey (USGS), in cooperation with Carson Water Subconservancy District, began an investigation with the overall purpose of providing managers and regulators with information necessary to develop and implement total maximum daily loads for the Carson River. Two specific goals of the investigation were (1) to identify those reaches of the Carson River upstream from Lahontan Reservoir where the greatest increases in phosphorus and suspended-sediment concentrations and loading occur, and (2) to identify the most important sources of phosphorus within the reaches of the Carson River where the greatest increases in concentration and loading occur. Total-phosphorus concentrations in surface-water samples collected by USGS in the study area during water years 2001-02 ranged from <0.01 to 1.78 mg/L and dissolved-orthophosphate concentrations ranged from <0.01 to 1.81 mg/L as phosphorus. In streamflow entering Carson Valley from headwater areas in the East Fork Carson River, the majority of samples exceeding the total phosphorus water-quality standard of 0.1 mg/L occur during spring runoff (March, April, and May) when suspended-sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the

  16. Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan.

    PubMed

    Fang, Guor-Cheng; Lo, Chaur-Tsuen; Cho, Meng-Hsien; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Chao-Yang; Xiao, You-Fu

    2017-08-01

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000-2012.

  17. Compilation of water resources development and hydrologic data of Saipan, Mariana Islands

    USGS Publications Warehouse

    Van der Brug, Otto

    1985-01-01

    Saipan is the largest island of the Northern Mariana Islands, a chain of 14 islands north of Guam. Saipan comprises one third of the land area of the islands. No long-term rainfall record is available at any location, but some rainfall records are for periods up to 16 years, some of which began in 1901. Average annual rainfall for the island is 81 inches, with the southern end receiving about 10 inches less annually than the rest of the island. The amount of rainfall which runs off in northeast Saipan ranges from 23 to 64 percent and averages about 40 percent. Runoff on the rest of the island is from springs or occurs only during heavy rainfall. Surface-water development appears impractical. Ground water is the main source of water for the island and production was almost 4 million gallons per day in 1982. However, chloride concentration in ground water exceeds 1,000 milligrams per liter in many locations. The average chloride concentration of the domestic water stays near the maximum permissible level (600 milligrams per liter). This report summarizes the history of the water-resources development and presents all available hydrologic data, including rainfall records since 1901, streamflow records since 1968, and drilling logs, pumping tests, chemical analyses, and production figures from 180 testholes and wells drilled on Saipan. (USGS)

  18. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  19. Measurement of Radon Concentration in Selected Houses in Ibadan, Nigeria

    NASA Astrophysics Data System (ADS)

    Usikalu, M. R.; Olatinwo, V.; Akpochafor, M.; Aweda, M. A.; Giannini, G.; Massimo, V.

    2017-05-01

    Radon is a natural radioactive gas without colour or odour and tasteless. The World Health Organization (WHO) grouped radon as a human lung carcinogen. For this reason, there has been a lot of interest on the effects of radon exposure to people all over the world and Nigeria is no exception. The aim of this study is to investigate the radon concentration in selected houses in three local government areas of Ibadan. The indoor radon was measured in both mud and brick houses. Fifty houses were considered from the three Local government areas. A calibrated portable continuous radon monitor type (RAD7) manufactured by Durridge company was used for the measurement. A distance of 100 to 200 m was maintained between houses in all the locations. The living room was kept closed during the measurements. The mean radon concentration measured in Egbeda is 10.54 ±1.30 Bqm -3; Lagelu is 16.90 ± 6.31 Bqm -3 and Ona-Ara is 17.95 ± 1.72 Bqm -3. The mean value of the annual absorbed dose and annual effective dose for the locations in the three local government areas was 0.19 mSvy-1 and 0.48 mSvy-1 respectively. The radon concentration for location 10 in Ono-Ara local government exceeded the recommended limit. However, the overall average indoor radon concentration of the three local governments was found to be lower than the world average value of 40 Bqm -3. Hence, there is need for proper awareness about the danger of radon accumulation in dwelling places.

  20. [Influence of land use change on dissolved organic carbon export in Naoli River watershed. Northeast China].

    PubMed

    Yin, Xiao-min; Lyu, Xian-guo; Liu, Xing-tu; Xue, Zhen-shan

    2015-12-01

    The present study was conducted to evaluate the influence of land use change on dissolved organic carbon (DOC) export in Naoli River watershed, Northeast China. Seasonal variation of DOC concentrations of the river water and its relationship with land use in the whole watershed and 100 m riparian zone at the annual average scale were analyzed using the method of field sampling, laboratory analysis, GIS and statistics analysis. The results showed that the concentrations of DOC under base flow conditions in spring and summer were significantly higher than that in fall in the study watershed. The seasonal trend of DOC concentrations in wetland-watersheds was similar to that in all the sub-watersheds, while significantly different from that in non-wetland watersheds. On the annual average scale, percentage of wetland in the whole watershed and paddy field in the 100 m riparian zone had positive relationship with the DOC concentration in the river water, while percentage of forest in the whole watershed had negative relationship with it (P < 0.05). It indicated that wetland in the sub-watershed played a significant role in the seasonal variation of DOC in river water of Naoli River watershed. Wetland in the watershed and paddy field in the 100 m riparian zone significantly promoted DOC export, while forest alleviated it. Land use change in the watershed in the past few decades dramatically changed the DOC balance of river water.

  1. Comparison of regional air dispersion simulation and ambient air monitoring data for the soil fumigant 1,3-dichloropropene.

    PubMed

    van Wesenbeeck, I J; Cryer, S A; de Cirugeda Helle, O; Li, C; Driver, J H

    2016-11-01

    SOFEA v2.0 is an air dispersion modeling tool used to predict acute and chronic pesticide concentrations in air for large air sheds resulting from agronomic practices. A 1,3-dichloropropene (1,3-D) air monitoring study in high use townships in Merced County, CA, logged 3-day average air concentrations at nine locations over a 14.5month period. SOFEA, using weather data measured at the site, and using a historical CDPR regulatory assumption of a constant 320m mixing height, predicted the general pattern and correct order of magnitude for 1,3-D air concentrations as a function of time, but failed to estimate the highest observed 1,3-D concentrations of the monitoring study. A time series and statistical comparison of the measured and modeled data indicated that the model underestimated 1,3-D concentrations during calm periods (wind speed <1m/s), such that the annual average concentration was under predicted by approximately 4.7-fold, and the variability was not representative of the measured data. Calm periods are associated with low mixing heights (MHs) and are more prevalent in the Central Valley of CA during the winter months, and thus the assumption of a constant 320m mixing height is not appropriate. An algorithm was developed to calculate the MH using the air temperature in the weather file when the wind speed was <1m/s. When the model was run using the revised MHs, the average of the modeled 1,3-D concentration Probability Distribution Function (PDF) was within 5% of the measured PDF, and the variability in modeled concentrations more closely matched the measured dataset. Use of the PCRAMMET processed weather data from the site (including PCRAMMET MH) resulted in the global annual average concentration within 2-fold of measured data. Receptor density was also found to have an effect on the modeled 1,3-D concentration PDF, and a 50×50 receptor grid in the nine township domain captured the measured 1,3-D concentration distribution much better than a 3×3 receptor grid (i.e., simulated receptors at the nine monitoring locations). Comparison of the monitored and simulated PDF for 72-h 1,3-D concentrations indicated that SOFEA slightly over predicts the 1,3-D concentration distribution at all percentiles below the 99th with slight under prediction of the 99-100th percentile values. This suggests that without further refinement, the SOFEA2 model, based upon field validation observations, will result in representative but conservative estimates of lifetime exposure to 1,3-D for bystanders in 1,3-D use areas. Copyright © 2016. Published by Elsevier B.V.

  2. Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978-1990

    NASA Technical Reports Server (NTRS)

    Prinn, R.; Cunnold, D.; Simmonds, P.; Alyea, F.; Boldi, R.; Crawford, A.; Fraser, P.; Gutzler, D.; Hartley, D.; Rosen, R.

    1992-01-01

    An optimal estimation inversion scheme is utilized with atmospheric data and emission estimates to determined the globally averaged CH3CCl3 tropospheric lifetime and OH concentration. The data are taken from atmospheric measurements from surface stations of 1,1,1-trichloroethane and show an annual increase of 4.4 +/- 0.2 percent. Industrial emission estimates and a small oceanic loss rate are included, and the OH concentration for the same period (1978-1990) are incorporated at 1.0 +/- 0.8 percent/yr. The positive OH trend is consistent with theories regarding OH and ozone trends with respect to land use and global warming. Attention is given to the effects of the ENSO on the CH3CCl3 data and the assumption of continuing current industrial anthropogenic emissions. A novel tropical atmospheric tracer-transport mechanism is noted with respect to the CH3CCl3 data.

  3. Urbanization Effects on Fog in China: Field Research and Modeling

    NASA Astrophysics Data System (ADS)

    Li, Zi-hua; Yang, Jun; Shi, Chun-e.; Pu, Mei-juan

    2012-05-01

    Since the policy of "Reform and Open to the Outside World" was implemented from 1978, urbanization has been rapid in China, leading to the expansion of urban areas and population synchronous with swift advances in economy. With urban development underway, the urban heat island (UHI) and air pollution are being enhanced, together with vegetation coverage and relative humidity on the decrease. These changes lead to: (1) decline of annual fog days in cities (e.g. In Chongqing, so-called city of fog in China, the annual fog days have reduced from 100-145 in the 1950s to about 20-30 in the 2000s); (2) decrease in fog water content (FWC) and fog droplet size, but increase in fog droplets number concentration [e.g. Jinghong, a city in Yunnan province, the average FWC (the droplet diameter) during an extremely dense fog episode with drizzle was 0.74 g/m3 (28.6 μm) during the 1968/69 winter and 0.08 g/m3 (6.8 μm) in another extremely dense fog episode during the 1986/87 winter, correspondingly, the fog droplets number density had increased from 34.9 to 153 cm-3]; (3) decrease in fog water deposition (FWD) (e.g. the annual mean FWD measured in Jinghong had dropped from 17.3 mm in the 1950s to 4.4 mm in the 1970s and less than 1 mm in the 1980s, and no measurable FWD now.); (4) decrease in visibility in large cities (e.g. in Chongqing, the annual average visibility had decreased from 8.2-11.8 km in the 1960s to 4.9-6.5 km in the 1980s, and around 5 km in recent years); and (5) increase in the ion concentrations and acidity in fog water in urban areas [e.g. the average total ion concentration (TIC) in the center of Chongqing was 5.5 × 104 μmol/L, with mean pH value of 4.0, while the corresponding values are 9.7 × 103 μmol/L and over 5.5 in its rural area]. These changes endanger all kinds of transportation and human health. This paper summarized the authors' related studies, including observations and numerical simulations to confirm the above conclusions.

  4. [Variation characteristics of fine particulate matter PM2.5 concentration in three urban recreational forests in Hui Mountain of Wuxi City, Jiangsu Province of East China].

    PubMed

    Gu, Lin; Wang, Cheng; Wang, Xiao-Lei; Wang, Yan-Ying; Wang, Qian

    2013-09-01

    It is of significance to understand the controlling effects of urban forest on atmospheric fine particulate matter PM2.5 pollution. This paper monitored the variations of atmospheric PM2.5 concentrations in three typical urban recreational forests (Cinnamomum camphora, Pinus elliotii, and Quercus variabilis ) in the Hui Mountain of Wuxi City during the day time (5:00 am-19:00 pm) in autumn and winter, 2011 and in spring and summer, 2012. The meteorological factors were observed simultaneously. The average annual PM2.5 concentration in the three recreational forests was lower than that above the nearby roads, and this concentration in C. camphora and P. elliotii forests was lower than that in Q. variabilis forest. The average annual PM2.5 concentration in the forests and above the nearby roads was lower than the background value in the downtown area of the City. The PM2.5 concentration in the three recreational forests was the lowest in summer, followed by in autumn, and the highest in spring. In addition, the PM2.5 concentration was the lowest in P. elliotii forest in spring, summer, and winter, and in C. camphora forest in autumn, but relatively higher in Q. variabilis forest in all seasons. The diurnal variation of the PM2.5 concentration in the three forests in four seasons all showed nearly "one peak and one vale", with the peak and vale appeared at 7:00-9:00 and 15:00-19:00, respectively. The PM2.5 concentration was significantly correlated with the air moisture and temperature in four seasons, and significantly correlated with the light intensity in winter. Mild winds throughout the seasons had little effects on the PM2.5 concentration.

  5. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.

  6. A hail climatology in Mongolia

    NASA Astrophysics Data System (ADS)

    Lkhamjav, Jambajamts; Jin, Han-Gyul; Lee, Hyunho; Baik, Jong-Jin

    2017-11-01

    The temporal and spatial characteristics of hail frequency in Mongolia are examined using the hail observation data from 61 meteorological observatories for 1984-2013. The annual number of hail days averaged over all observatories and the entire period is 0.74. It exhibits a decreasing trend, particularly since 1993 with a rate of decrease of 0.214 per decade. Hail occurrence is concentrated in summer, with 72% of the total hail days occurring in June, July, and August. Moreover, hail occurrence is concentrated in the afternoon and early evening, with 89% of the total hail events occurring between 1200 and 2100 local standard time (LST). Spatially, observatories where relatively frequent hail events are observed are concentrated in the north central region where almost all of the land is mountainous or covered by grassland, whereas relatively less frequent hail events are observed in the southern desert region. The relationship between hail frequency and thermodynamic factors including the convective available potential energy (CAPE), the temperature lapse rate between 700 and 500 hPa, the water vapor mixing ratio averaged over the lowest 100 hPa layer, and the freezing-level height is examined using the ERA-Interim reanalysis data. It is found that in summer, CAPE and the low-level water vapor mixing ratio are larger on hail days than on all days, but there is no clear relationship between hail frequency and the 700-500 hPa temperature lapse rate. It is also found that annually, CAPE and the low-level water vapor mixing ratio decrease, while the freezing-level height increases, which seems to be responsible for the annually decreasing trend of hail frequency in Mongolia.

  7. An economic model of haemophilia in Mexico.

    PubMed

    Martínez-Murillo, C; Quintana, S; Ambriz, R; Benitez, H; Berges, A; Collazo, J; Esparza, A; Pompa, T; Taboada, C; Zavala, S; Larochelle, M R; Bentkover, J D

    2004-01-01

    A model was developed to assess the lifetime costs and outcomes associated with haemophilia in Mexico. A retrospective chart review of 182 type A haemophiliacs was conducted for patients aged 0-34 years receiving one of three treatments: (i) cryoprecipitate at clinic; (ii) concentrate at home; or (iii) concentrate at clinic. Patients treated at home experienced 30% less joint damage, used 13-54% less factor VIII, had four times fewer clinic visits, and utilized half as many hospital days than those treated at a clinic. For cryoprecipitate at clinic patients, the annual incidence rates of HCV and HIV were calculated to be 3.6% and 1.4% respectively. The life expectancy for patients receiving cryoprecipitate and those receiving concentrate was estimated to be 49 years and 69 years respectively, with 58% of cryoprecipitate patients predicted to die of AIDS before age 69. Across the lifespan, the average annual cost of care was US$11,677 (MN$110,464) for cryoprecipitate at clinic patients, US$10,104 (M$95,580) for concentrate at home patients and US$18,819 (MN$178,027) for concentrate at clinic patients. Using a 5% discount rate, the incremental lifetime cost per year of life added for treatment with concentrate at home compared with cryoprecipitate at a clinic was US$738 (MN$6981). Rank order stability analysis demonstrated that the model was most sensitive to the cost of fVIII. These results indicate that treatment with concentrate at home compared with cryoprecipitate at a clinic substantially improves clinical outcomes at reduced annual cost levels.

  8. 50 CFR 217.172 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... dolphin (Grampus griseus)—100 (an average of 20 annually). (vi) Killer whale (Orcinus orca)—100 (an... right whale (Eubalaena glacialis)—120 (an average of 24 annually). (ii) Fin whale (Balaenoptera physalus)—145 (an average of 29 annually). (iii) Humpback whale (Megaptera novaeangliae)—390 (an average of 78...

  9. 50 CFR 217.172 - Permissible methods of taking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... dolphin (Grampus griseus)—100 (an average of 20 annually). (vi) Killer whale (Orcinus orca)—100 (an... right whale (Eubalaena glacialis)—120 (an average of 24 annually). (ii) Fin whale (Balaenoptera physalus)—145 (an average of 29 annually). (iii) Humpback whale (Megaptera novaeangliae)—390 (an average of 78...

  10. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    NASA Astrophysics Data System (ADS)

    McNeil, B.

    2016-02-01

    Elevated carbon dioxide concentrations in seawater (hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual oceanic carbon dioxide variability, but relevant global observational data are sparse. Here we diagnose global ocean patterns of monthly carbon variability based on observations that allow us to examine the evolution of surface ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We find that some oceanic regions undergo an up to 10-fold amplification of the natural cycle of CO2 by 2100, if atmospheric carbon dioxide concentrations continue to rise throughout this century (RCP8.5). Projections from a suite of Earth System Climate Models are broadly consistent with the findings from our data based approach. Our predicted amplification in the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic Oceans to high CO2 events many decades earlier than expected from average atmospheric CO2 concentrations. We suggest that these ocean 'CO2 hotspots' evolve as a combination of the strong seasonal dynamics of CO2 and the long-term effective storage of anthropogenic CO2 that lowers the buffer capacity in those regions, causing a non-linear CO2 amplification over the annual cycle. The onset of ocean hypercapnia events (pCO2 >1000 µatm) is forecast for atmospheric CO2 concentrations that exceed 650 ppm, with hypercapnia spreading to up to one half of the surface ocean by the year 2100 under a high-emissions scenario (RCP8.5) with potential implications for fisheries over the coming century.

  11. Status and trends in atmospheric deposition and emissions near Atlanta, Georgia, 1986-99

    USGS Publications Warehouse

    Peters, N.E.; Meyers, T.P.; Aulenbach, Brent T.

    2002-01-01

    Wet and dry atmospheric deposition were investigated from weekly data, 1986-99 (1986-97 for dry deposition) at the Panola Mountain Research Watershed (PMRW), a forested research site 25 km, southeast of Atlanta, Georgia. Furthermore, the wet deposition was compared to that at three adjacent National Atmospheric Deposition Program's National Trends Network (NTN) sites (GA41, 50 km south of PMRW; AL99, 175 km northwest; NC25, 175 km north-northeast) and dry deposition was compared to that at adjacent Clean Air Status and Trends Network (CASTNET) sites, co-located at the NTN sites. The pH of precipitation is acidic and the dominant acid anion is SO4; the pH (derived from the volume-weighted mean H concentration) averages 4.44 for 1986-99, and varies seasonally with average lowest values in summer (4.19) and highest in winter (4.63). From 1986-99, the annual wet deposition of sulfur (S) and nitrogen (N) averaged 400 and 300 eq ha-1 (6.4 and 4.2 kg ha-1), respectively. Inferential model estimates of annual dry S and N deposition from 1986-97 averaged 130 and 150 eq ha-1 (2.1 and 2.1 kg ha-1), respectively. From 1993-99, net S deposition (dry deposition plus canopy interactions) for coniferous and deciduous throughfall (throughfall minus wet-only deposition) averaged 400 and 150 eq ha-1 (6.4 and 2.1 kg ha-1), respectively. The annual wet deposition of S and N species at PMRW was comparable to that at NTN sites, with the exception of higher N species deposition at AL99 and relatively lower H, SO4 and NO3 deposition at GA41. Dry S deposition at PMRW differed markedly from the CASTNET sites despite similarity in S concentrations for all but NC25; the differences are attributed to differences in model parameters associated with the landscape and vegetation characteristics at the sites. At PMRW, atmospheric deposition trends were not detected for the entire sampling period, but were detected for shorter periods (4-5yr). Annual S and N deposition increased from 1986 to 1991, decreased to 1995 and then increased to 1999. SO2 emissions from seven major point sources within 120 km of PMRW decreased markedly from the late 1980s to 1995 and have remained relatively constant or increased slightly from 1995 to 1998 Annual wet and dry S deposition at PMRW significantly correlates (p < 0.01) with SO2 emissions, and the correlation is dominated by the large SO2 emissions decreases in the early 1990s, consistent with the implementation of Phase I of Title IV of the 1990 Clean Air Act Amendments.

  12. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150.

    PubMed

    Wang, L; Stuart, M E; Lewis, M A; Ward, R S; Skirvin, D; Naden, P S; Collins, A L; Ascott, M J

    2016-01-15

    Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.

    PubMed

    Hamby, D M

    2002-01-01

    Reconstructed meteorological data are often used in some form of long-term wind trajectory models for estimating the historical impacts of atmospheric emissions. Meteorological data for the straight-line Gaussian plume model are put into a joint frequency distribution, a three-dimensional array describing atmospheric wind direction, speed, and stability. Methods using the Gaussian model and joint frequency distribution inputs provide reasonable estimates of downwind concentration and have been shown to be accurate to within a factor of four. We have used multiple joint frequency distributions and probabilistic techniques to assess the Gaussian plume model and determine concentration-estimate uncertainty and model sensitivity. We examine the straight-line Gaussian model while calculating both sector-averaged and annual-averaged relative concentrations at various downwind distances. The sector-average concentration model was found to be most sensitive to wind speed, followed by horizontal dispersion (sigmaZ), the importance of which increases as stability increases. The Gaussian model is not sensitive to stack height uncertainty. Precision of the frequency data appears to be most important to meteorological inputs when calculations are made for near-field receptors, increasing as stack height increases.

  14. Constituent loads and flow-weighted average concentrations for major subbasins of the upper Red River of the North Basin, 1997-99

    USGS Publications Warehouse

    Sether, Bradley A.; Berkas, Wayne R.; Vecchia, Aldo V.

    2004-01-01

    Data were collected at 11 water-quality sampling sites in the upper Red River of the North (Red River) Basin from May 1997 through September 1999 to describe the water-quality characteristics of the upper Red River and to estimate constituent loads and flow-weighted average concentrations for major tributaries of the Red River upstream from the bridge crossing the Red River at Perley, Minn. Samples collected from the sites were analyzed for 5-day biochemical oxygen demand, bacteria, dissolved solids, nutrients, and suspended sediment.Concentration data indicated the median concentrations for most constituents and sampling sites during the study period were less than existing North Dakota and Minnesota standards or guidelines. However, more than 25 percent of the samples for the Red River at Perley, Minn., site had fecal coliform concentrations that were greater than 200 colonies per 100 milliliters, indicating an abundance of pathogens in the upper Red River Basin. Although total nitrite plus nitrate concentrations generally increased in a downstream direction, the median concentrations for all sites were less than the North Dakota suggested guideline of 1.0 milligram per liter. Total and dissolved phosphorus concentrations also generally increased in a downstream direction, but, for those constituents, the median concentrations for most sampling sites exceeded the North Dakota suggested guideline of 0.1 milligram per liter.For dissolved solids, nutrients, and suspended sediments, a relation between constituent concentration and streamflow was determined using the data collected during the study period. The relation was determined by a multiple regression model in which concentration was the dependent variable and streamflow was the primary explanatory variable. The regression model was used to compute unbiased estimates of annual loads for each constituent and for each of eight primary water-quality sampling sites and to compute the degree of uncertainty associated with each estimated annual load. The estimated annual loads for the eight primary sites then were used to estimate annual loads for five intervening reaches in the study area.  Results were used as a screening tool to identify which subbasins contributed a disproportionate amount of pollutants to the Red River. To compare the relative water quality of the different subbasins, an estimated flow-weighted average (FWA) concentration was computed from the estimated average annual load and the average annual streamflow for each subbasin.The 5-day biochemical oxygen demands in the upper Red River Basin were fairly small, and medians ranged from 1 to 3 milligrams per liter. The largest estimated FWA concentration for dissolved solids (about 630 milligrams per liter) was for the Bois de Sioux River near Doran, Minn., site. The Otter Tail River above Breckenridge, Minn., site had the smallest estimated FWA concentration (about 240 milligrams per liter). The estimated FWA concentrations for dissolved solids for the main-stem sites ranged from about 300 to 500 milligrams per liter and generally increased in a downstream direction.The estimated FWA concentrations for total nitrite plus nitrate for the main-stem sites increased from about 0.2 milligram per liter for the Red River below Wahpeton, N. Dak., site to about 0.9 milligram per liter for the Red River at Perley, Minn., site. Much of the increase probably resulted from flows from the tributary sites and intervening reaches, excluding the Otter Tail River above Breckenridge, Minn., site. However, uncertainty in the estimated concentrations prevented any reliable conclusions regarding which sites or reaches contributed most to the increase.The estimated FWA concentrations for total ammonia for the main-stem sites increased from about 0.05 milligram per liter for the Red River above Fargo, N. Dak., site to about 0.15 milligram per liter for the Red River near Harwood, N. Dak., site. The increase resulted from a decrease in flows in the Red River above Fargo, N. Dak., to the Red River near Harwood, N. Dak., intervening reach and the large load for that reach.The estimated FWA concentrations for total organic nitrogen for the main-stem sites were relatively constant and ranged from about 0.5 to 0.7 milligram per liter. The relatively constant concentrations were in sharp contrast to the total nitrite plus nitrate concentrations, which increased about fivefold between the Red River below Wahpeton, N. Dak., site and the Red River at Perley, Minn., site.The Red River near Harwood, N. Dak., to the Red River at Perley, Minn., intervening reach had the largest estimated FWA concentration for total nitrogen (about 2.9 milligrams per liter), but the estimate was highly uncertain. The Otter Tail River above Breckenridge, Minn., site had the smallest concentration (about 0.6 milligram per liter). The estimated FWA concentrations for total nitrogen for the main-stem sites increased from about 0.9 milligram per liter for the Red River at Hickson, N. Dak., site to about 1.6 milligrams per liter for the Red River at Perley, Minn., site.The Sheyenne River at Harwood, N. Dak., site had the largest estimated FWA concentration for total phosphorus (about 0.5 milligram per liter). The Otter Tail River above Breckenridge, Minn., site had the smallest concentration (about 0.1 milligram per liter). The estimated FWA concentrations for total phosphorus for the main-stem sites increased from about 0.15 milligram per liter for the Red River below Wahpeton, N. Dak., site to about 0.35 milligram per liter for the Red River at Perley, Minn., site.The estimated FWA concentrations for suspended sediment for the main-stem sites increased from about 50 milligrams per liter for the Red River below Wahpeton, N. Dak., site to about 300 milligrams per liter for the Red River at Perley, Minn., site. Much of the increase occurred as a result of the large yield of suspended sediment from the Red River below Wahpeton, N. Dak., to the Red River at Hickson, N. Dak., intervening reach.

  15. Mercury in the Blue Marlin (Makaira nigricans) from the Southern Gulf of California: Tissue Distribution and Inter-Annual Variation (2005-2012).

    PubMed

    Vega-Sánchez, B; Ortega-García, S; Ruelas-Inzunza, J; Frías-Espericueta, M; Escobar-Sánchez, O; Guzmán-Rendón, J

    2017-02-01

    With the aim of knowing annual variations of Hg concentrations in muscle and liver of blue marlin (Makaira nigricans) from the southern Gulf of California, fish were collected between 2005 and 2012 in three areas. In general, Hg levels were more elevated in liver than in muscle. Variations of Hg concentrations in muscle and liver among the studied years were not significant. Hg levels in muscle and liver increased significantly with length and weight of fish. In comparison to other studies, Hg levels in muscle and liver were lower. With respect to maximum permissible limits (1.0 µg g -1 wet weight) of Hg in Mexico, the average concentration (1.91 µg g -1 wet weight) in the edible portion (muscle) of blue marlin was over the legal limit; this issue is worth research efforts in relation to the rate of ingestion of this species and the co-occurrence of selenium in the edible portion.

  16. Lake Roosevelt Fisheries Evaluation Program; Limnological and Fisheries Monitoring, Annual Report 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chuck; Scofield, Ben; Pavlik, Deanne

    2003-03-01

    A slightly dryer than normal year yielded flows in Lake Roosevelt that were essentially equal to the past ten year average. Annual mean inflow and outflow were 3,160.3 m3/s and 3,063.4 m3/s respectively. Mean reservoir elevation was 387.2 m above sea level at the Grand Coulee Dam forebay. The forebay elevation was below the mean elevation for a total of 168 days. During the first half of the 2000 forebay elevation changed at a rate of 0.121 m/d and during the last half changed at a rate of 0.208 m/d. The higher rate of elevation change earlier in the yearmore » is due to the drawdown to accommodate spring runoff. Mean annual water retention time was 40 days. Annual mean total dissolved gas was 108%. Total dissolved gas was greatest at upriver locations (110% = US/Canada Border annual mean) and decreased moving toward Grand Coulee Dam (106% = Grand Coulee Dam Forebay annual mean). Total dissolved gas was greatest in May (122% reservoir wide monthly mean). Gas bubble trauma was observed in 16 fish primarily largescale suckers and was low in severity. Reservoir wide mean temperatures were greatest in August (19.5 C) and lowest in January (5.5 C). The Spokane River and Sanpoil River Arms experienced higher temperatures than the mainstem reservoir. Brief stratification was observed at the Sanpoil River shore location in July. Warm water temperatures in the Spokane Arm contributed to low dissolved oxygen concentrations in August (2.6 mg/L at 33 m). However, decomposition of summer algal biomass was likely the main cause of depressed dissolved oxygen concentrations. Otherwise, dissolved oxygen profiles were relatively uniform throughout the water column across other sampling locations. Annual mean Secchi depth throughout the reservoir was 5.7 m. Nutrient concentrations were generally low, however, annual mean total phosphorus (0.016 mg/L) was in the mesotrophic range. Annual mean total nitrogen was in the meso-oligotrophic range. Total nitrogen to total phosphorus ratios were large (31:1 annual mean) likely indicating phosphorus limitations to phytoplankton.« less

  17. Litter mercury deposition in the Amazonian rainforest.

    PubMed

    Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa

    2015-11-01

    The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha(-1) y(-1). Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g(-1) was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m(-2) yr(-1). This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Magnitudes, nature, and effects of point and nonpoint discharges in the Chattahoochee River basin, Atlanta to West Point Dam, Georgia

    USGS Publications Warehouse

    Stamer, J.K.; Cherry, R.N.; Faye, R.E.; Kleckner, R.L.

    1978-01-01

    On an average annual basis and during the storm period of March 12-15, 1976, nonpoint-source loads for most constituents were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 miles downstream from Atlanta, GA. Most of the nonpoint-source constituent loads in the Atlanta to Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads and about 70 percent of the dissolved phosphorus loads at Whitesburg. During a low-flow period, June 1-2, 1977, five municipal point-sources contributed 63 percent of the ultimate biochemical oxygen demand, and 97 percent of the ammonium nitrogen loads at the Franklin station, at the upstream end of West Point Lake. Dissolved-oxygen concentrations of 4.1 to 5.0 milligrams per liter occurred in a 22-mile reach of the river downstream from Atlanta due about equally to nitrogenous and carbonaceous oxygen demands. The heat load from two thermoelectric powerplants caused a decrease in dissolved-oxygen concentration of about 0.2 milligrams per liter. Phytoplankton concentrations in West Point Lake, about 70 miles downstream from Atlanta, could exceed three million cells per millimeter during extended low-flow periods in the summer with present point-source phosphorus loads. (Woodard-USGS)

  19. PM2.5 Population Exposure in New Delhi Using a Probabilistic Simulation Framework.

    PubMed

    Saraswat, Arvind; Kandlikar, Milind; Brauer, Michael; Srivastava, Arun

    2016-03-15

    This paper presents a Geographical Information System (GIS) based probabilistic simulation framework to estimate PM2.5 population exposure in New Delhi, India. The framework integrates PM2.5 output from spatiotemporal LUR models and trip distribution data using a Gravity model based on zonal data for population, employment and enrollment in educational institutions. Time-activity patterns were derived from a survey of randomly sampled individuals (n = 1012) and in-vehicle exposure was estimated using microenvironmental monitoring data based on field measurements. We simulated population exposure for three different scenarios to capture stay-at-home populations (Scenario 1), working population exposed to near-road concentrations during commutes (Scenario 2), and the working population exposed to on-road concentrations during commutes (Scenario 3). Simulated annual average levels of PM2.5 exposure across the entire city were very high, and particularly severe in the winter months: ∼200 μg m(-3) in November, roughly four times higher compared to the lower levels in the monsoon season. Mean annual exposures ranged from 109 μg m(-3) (IQR: 97-120 μg m(-3)) for Scenario 1, to 121 μg m(-3) (IQR: 110-131 μg m(-3)), and 125 μg m(-3) (IQR: 114-136 μ gm(-3)) for Scenarios 2 and 3 respectively. Ignoring the effects of mobility causes the average annual PM2.5 population exposure to be underestimated by only 11%.

  20. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Hixson, M.; Hu, J.; Zhao, Z.; Chen, S.-H.; Kleeman, M. J.

    2010-11-01

    The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5) in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM) generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF) model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000-2006 (present climate with present emissions) and 2047-2053 (future climate with present emissions). Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4-39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized. Surface temperature, relative humidity (RH), rain rate, and wind speed were predicted to increase in the future climate while the ultra violet (UV) radiation was predicted to decrease in major urban areas in the San Joaquin Valley (SJV) and South Coast Air Basin (SoCAB). These changes lead to a predicted decrease in PM2.5 mass concentrations of ~0.3-0.7 μg m-3 in the southern portion of the SJV and ~0.3-1.1 μg m-3 along coastal regions of California including the heavily populated San Francisco Bay Area and the SoCAB surrounding Los Angeles. Annual average PM2.5 concentrations were predicted to increase at certain locations within the SJV and the Sacramento Valley (SV) due to the effects of climate change, but a corresponding analysis of the annual variability showed that these predictions are not statistically significant (i.e. the choice of a different 7-year period could produce a different outcome for these regions). Overall, virtually no region in California outside of coastal + central Los Angeles, and a small region around the port of Oakland in the San Francisco Bay Area experienced a statistically significant change in annual average PM2.5 concentrations due to the effects of climate change in the present~study. The present study employs the highest spatial resolution (8 km) and the longest analysis windows (7 years) of any climate-air quality analysis conducted for California to date, but the results still have some degree of uncertainty. Most significantly, GCM calculations have inherent uncertainty that is not fully represented in the current study since a single GCM was used as the starting point for all calculations. The PCM results used in the current study predicted greater wintertime increases in air temperature over the Pacific Ocean than over land, further motivating comparison to other GCM results. Ensembles of GCM results are usually employed to build confidence in climate calculations. The current results provide a first data-point for the climate-air quality analysis that simultaneously employ the fine spatial resolution and long time scales needed to capture the behavior of climate-PM2.5 interactions in California. Future downscaling studies should follow up with a full ensemble of GCMs as their starting point, and include aerosol feedback effects on local meteorology.

  1. Evaluation of long-term trends in hydrologic and water-quality conditions, and estimation of water budgets through 2013, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Reif, Andrew G.

    2017-06-02

    An evaluation of trends in hydrologic and water quality conditions and estimation of water budgets through 2013 was done by the U.S. Geological Survey in cooperation with the Chester County Water Resources Authority. Long-term hydrologic, meteorologic, and biologic data collected in Chester County, Pennsylvania, which included streamflow, groundwater levels, surface-water quality, biotic integrity, precipitation, and air temperature were analyzed to determine possible trends or changes in hydrologic conditions. Statistically significant trends were determined by applying the Kendall rank correlation test; the magnitudes of the trends were determined using the Sen slope estimator. Water budgets for eight selected watersheds were updated and a new water budget was developed for the Marsh Creek watershed. An average water budget for Chester County was developed using the eight selected watersheds and the new Marsh Creek water budget.Annual and monthly mean streamflow, base flow, and runoff were analyzed for trends at 10 streamgages. The periods of record at the 10 streamgages ranged from 1961‒2013 to 1988‒2013. The only statistically significant trend for annual mean streamflow was for West Branch Brandywine Creek near Honey Brook, Pa. (01480300) where annual mean streamflow increased 1.6 cubic feet per second (ft3/s) per decade. The greatest increase in monthly mean streamflow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 47 ft3/s per decade. No statistically significant trends in annual mean base flow or runoff were determined for the 10 streamgages. The greatest increase in monthly mean base flow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 26 ft3/s per decade.The magnitude of peaks greater than a base streamflow was analyzed for trends for 12 streamgages. The period of record at the 12 stream gages ranged from 1912‒2012 to 2004–11. Fifty percent of the streamgages showed a small statistically significant increase in peaks greater than the base streamflow. The greatest increase was for Brandywine Creek at Chadds Ford, Pa. (01481000) during 1962‒2012; the increase was 1.8 ft3/s per decade. There were no statistically significant trends in the number of floods equal to or greater than the 2-year recurrence interval flood flow.Twenty‒one monitoring wells were evaluated for statistically significant trends in annual mean water level, minimum annual water level, maximum annual water level, and annual range in water-level fluctuations. For four wells, a small statistically significant increase in annual mean water level was determined that ranged from 0.16 to 0.7 feet per decade. There was poor or no correlation between annual mean groundwater levels and annual mean streamflow and base flow. No correlation was determined between annual mean groundwater level and annual precipitation. Despite rapid population growth and land-use change since 1950, there appears to have been little or no detrimental effects on groundwater levels in 21 monitoring wells.Long-term precipitation and temperature data were available from the West Chester (1893‒2013) and Phoenixville, Pa. (1915‒2013) National Oceanic and Atmospheric Administration (NOAA) weather stations. No statistically significant trends in annual mean precipitation or annual mean temperature were determined for either station. Both weather stations had a significant decrease in the number of days per year with precipitation greater than or equal to 0.1 inch. Annual mean minimum and maximum temperatures from the NOAA Southeastern Piedmont Climate Division increased 0.2 degrees Fahrenheit (F) per decade between 1896 and 2014. The number of days with a maximum temperature equal to or greater than 90 degrees F increased at West Chester and decreased at Phoenixville. No statistically significant trend was determined for annual snowfall amounts.Data from 1974 to 2013 for three stream water-quality monitors in the Brandywine Creek watershed were evaluated. The monitors are on the West Branch Brandywine Creek at Modena, Pa. (01480617), East Branch Brandywine Creek below Downingtown, Pa. (01480870), and Brandywine Creek at Chadds Ford, Pa. (01481000). Statistically significant upward trends were determined for annual mean specific conductance at all three stations, indicating the total dissolved solids load has been increasing. If the current trend continues, the annual mean specific conductance could almost double from 1974 to 2050. The increase in specific conductance likely is due to increases in chloride concentrations, which have been increasing steadily over time at all three stations. No correlation was found between monthly mean specific conductance and monthly mean streamflow or base flow. Statistically significant upward trends in pH were determined for all three stations. Statistically significant upward trends in stream temperature were determined for East Branch Brandywine Creek below Downingtown, Pa. (01480870) and Brandywine Creek at Chadds Ford, Pa. (01481000). The stream water-quality data indicate substantial increases in the minimum daily dissolved oxygen concentrations in the Brandywine Creek over time.The Chester County Index of Biotic Integrity (CC-IBI) determined for 1998‒2013 was evaluated for the five biological sampling sites collocated with streamgages. CC-IBI scores are based on a 0‒100 scale with higher scores indicating better stream quality. Statistically significant upward trends in the CC-IBI were determined for West Branch Brandywine Creek at Modena, Pa. (01480617) and East Branch Brandywine Creek below Downingtown, Pa. (01480870). No correlation was found between the CC-IBI and streamflow, precipitation, or stream specific conductance, pH, temperature, or dissolved oxygen concentration.A Chester County average water budget was developed using the nine estimated watershed water budgets. Average precipitation was 48.4 inches, and average streamflow was 21.4 inches. Average runoff and base flow were 8.3 and 13.1 inches, respectively, and average evapotranspiration and estimation of errors was 27.2 inches."

  2. The influence of model spatial resolution on simulated ozone and fine particulate matter for Europe: implications for health impact assessments

    NASA Astrophysics Data System (ADS)

    Fenech, Sara; Doherty, Ruth M.; Heaviside, Clare; Vardoulakis, Sotiris; Macintyre, Helen L.; O'Connor, Fiona M.

    2018-04-01

    We examine the impact of model horizontal resolution on simulated concentrations of surface ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5), and the associated health impacts over Europe, using the HadGEM3-UKCA chemistry-climate model to simulate pollutant concentrations at a coarse (˜ 140 km) and a finer (˜ 50 km) resolution. The attributable fraction (AF) of total mortality due to long-term exposure to warm season daily maximum 8 h running mean (MDA8) O3 and annual-average PM2.5 concentrations is then calculated for each European country using pollutant concentrations simulated at each resolution. Our results highlight a seasonal variation in simulated O3 and PM2.5 differences between the two model resolutions in Europe. Compared to the finer resolution results, simulated European O3 concentrations at the coarse resolution are higher on average in winter and spring (˜ 10 and ˜ 6 %, respectively). In contrast, simulated O3 concentrations at the coarse resolution are lower in summer and autumn (˜ -1 and ˜ -4 %, respectively). These differences may be partly explained by differences in nitrogen dioxide (NO2) concentrations simulated at the two resolutions. Compared to O3, we find the opposite seasonality in simulated PM2.5 differences between the two resolutions. In winter and spring, simulated PM2.5 concentrations are lower at the coarse compared to the finer resolution (˜ -8 and ˜ -6 %, respectively) but higher in summer and autumn (˜ 29 and ˜ 8 %, respectively). Simulated PM2.5 values are also mostly related to differences in convective rainfall between the two resolutions for all seasons. These differences between the two resolutions exhibit clear spatial patterns for both pollutants that vary by season, and exert a strong influence on country to country variations in estimated AF for the two resolutions. Warm season MDA8 O3 levels are higher in most of southern Europe, but lower in areas of northern and eastern Europe when simulated at the coarse resolution compared to the finer resolution. Annual-average PM2.5 concentrations are higher across most of northern and eastern Europe but lower over parts of southwest Europe at the coarse compared to the finer resolution. Across Europe, differences in the AF associated with long-term exposure to population-weighted MDA8 O3 range between -0.9 and +2.6 % (largest positive differences in southern Europe), while differences in the AF associated with long-term exposure to population-weighted annual mean PM2.5 range from -4.7 to +2.8 % (largest positive differences in eastern Europe) of the total mortality. Therefore this study, with its unique focus on Europe, demonstrates that health impact assessments calculated using modelled pollutant concentrations, are sensitive to a change in model resolution by up to ˜ ±5 % of the total mortality across Europe.

  3. Surface-water hydrology of the Little Black River basin, Missouri and Arkansas, before water-land improvement practices

    USGS Publications Warehouse

    Berkas, W.R.; Femmer, Suzanne R.; Mesko, T.O.; Thompson, B.W.

    1987-01-01

    The U. S. Department of Agriculture, Soil Conservation Service, in accordance with Public Law 566, is implementing various types of water-land improvement practices in the Little Black River basin in southeastern Missouri. These practices are designed, in part, to decrease the suspended sediment (SS) transport in the basin, decrease flood damage in the basin, and improve drainage in the agricultural area. The general features of the basin, such as geology, groundwater hydrology, soils, land use, water use, and precipitation are described; surface water quantity, quality, and suspended sediment discharge are also described. The aquifers are the Mississippi River valley alluvial aquifer, which can yield about 3,500 gal/min to properly constructed wells, and the Ozark and St. Francois aquifers, which can yield from about 30 to 500 gal/min to properly constructed wells. Soils in the area have formed in loess and cherty residuum in the uplands or have formed in alluvial sediment in the lowlands. About 93% of the estimated 3 billion gal/year of water used in the basin is for crop irrigation. The average monthly precipitation varies slightly throughout the year, with an average annual precipitation of about 47 inches. Water quality data were collected at seven stations. Specific conductance values ranged from 50 to 400 microsiemens/cm at 25 C. Water temperatures ranged from 0.0 C in the winter to 33.5 C in summer. pH values ranged from 6.4 to 8.5 units. Dissolved oxygen concentrations ranged from 2.2 to 12.8 ml/l. Total nitrogen concentrations ranged from 0.13 to 2.20 ml/l as nitrogen, with organic nitrogen as the most abundant form. Phosphorus concentrations ranged from zero to 0.29 ml/l as phosphorus. Bacterial counts were largest during storm runoff in the basin with livestock waste as the significant contributor. For the period from October 1, 1980, to September 30, 1984, the average annual SS discharge ranged from 2,230 tons/yr in the headwater areas to 27,800 tons/yr at the most downstream station. The average annual SS yield ranged from 59.6 to 85.9 tons/sq mi. (Author 's abstract)

  4. Fluvial sediment in the little Arkansas River basin, Kansas

    USGS Publications Warehouse

    Albert, C.D.; Stramel, G.J.

    1966-01-01

    Characteristics and transport of sediment in the Little Arkansas River basin in south-central Kansas were studied to determine if the water from the river could be used as a supplemental source for municipal supply or would provide adequate recharge to aquifers that are sources of municipal and agricultural water supplies. During periods when overland 1low contributed a significant amount to streamflow, the suspended sediment in the Little Arkansas River at Valley Center averaged about 85 percent of clay, about 13 percent of silt, and about 2 percent of sand. The average annual suspended-sediment discharge for the water years 1958, 1959, 1960, and 1961 was about 306,000 tons, and about 80 percent of the load was transported during 133 days of the 1,461-day period. The average daily water discharge of 352 cubic feet per second for the period 1958-61 was more than the long-term (i}9-year) average of 245 cfs; therefore, the average annual sediment load for 1958-61 was probably greater than the average annual load for the same long-term period. Studies of seepage in a part of the channel of Kisiwa Creek indicated that an upstream gravel-pit operation yielded clays which, when deposited in the channel, reduced seepage. A change in plant operation and subsequent runoff that removed the deposited clays restored natural seepage conditions. Experiments by the Wichita Water Department showed that artificial recharge probably cannot be accomplished by using raw turbid water that is injected into wells or by using pits. Recharge by raw turbid water on large permeable areas or by seepage canals may be feasible. Studies of chemical quality of surface water at several sites in the Little Arkansas River basin indicate that Turkey. Creek is a major contributor of chloride and other dissolved solids to the Little Arkansas River and that the dissolved-solids content is probably highest during low-flow periods when suspended-sediment concentration is low. Data collected by the Wichita Water Department indicate that chloride concentrations are diminishing with time at sampled locations. and they receive recharge from rainwater and snowmelt moving through overlying alluvium and from storage in the De Chelly sandstone which encloses the east half of the diatreme. The quality of water from all areas is suitable for domestic use. However, special treatment may be necessary to make the water suitable for pulp processing.

  5. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  6. The last two centuries of lead pollution in the southern Gulf of Mexico recorded in the annual bands of the scleractinian coral Orbicella faveolata.

    PubMed

    Horta-Puga, Guillermo; Carriquiry, José D

    2014-05-01

    Lead (Pb) pollution history (1855-2001 A.D.) of the southern Gulf of Mexico (SGM) was reconstructed from the geochemical record contained in the annual bands of the hermatypic coral Orbicella faveolata from the Veracruz Reef System, Mexico. Pb concentrations ranged from 5.5 μg/g in 1889-23.6 μg/g in 1992, with an average of 10.0 ± 4.1 μg/g. These high concentrations are evidence of a highly polluted environment. High statistical correlations were observed between the annual Pb coral time-series and both, the production of alkyl-lead gasoline in Mexico during the second half of the twentieth century (r = 0.86, p < 0.001), and the industrial production of lead in North America for the 1900-1940 years period (r = 0.73, p < 0.001). Hence, this research provides evidence that these two processes generated Pb-rich aerosols that were atmospherically transported, increasing the environmental levels of Pb in the SGM.

  7. 50 CFR 218.171 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...); (2) Northern fur seal (Callorhinus ursinus)—220 (an average of 44 annually); (3) California sea lion (Zalophus californianus)—570 (an average of 114 annually); (4) Northern elephant seal (Mirounga angustirostris)—70 (an average of 14 annually); (5) Harbor seal (Phoca vitulina richardsi) (Washington Inland...

  8. Contribution of uranium to gross alpha radioactivity in some environmental samples in Kuwait

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bou-Rabee, F.; Bakir, Y.; Bem, H.

    1995-08-01

    This study was done in connection with the use of uranium-tipped antitank shells during the Gulf War and possible contamination of the environment of Kuwait. It was found that uranium concentrations in the soil samples ranged from 0.3 {mu}g/g to 1.85 {mu}g/g. The average value of 0.7 {mu}g/g was lower than the world average value of 2.1 {mu}g/g for surface soils. Its contribution to the total natural alpha radioactivity (excluding Rn and its short-lived daughters) varied from 1.1% to 14%. The solid fall-out samples showed higher uranium concentration which varied from 0.35 {mu}g/g to 1.73 {mu}/g (average 1.47 {mu}g/g) butmore » its contribution to the gross alpha radioactivity was in the same range, from 1.1 to 13.2%. The difference in the concentration of uranium in suspended air matter samples during the summer of 1993 and the winter of 1994 was found to be 2.0 {mu}g/g and 1.0 {mu}g/g, respectively. The uranium contribution to the natural alpha radioactivity in these samples was in the same range but lower for the winter period. The isotopic ratio of {sup 235}U to {sup 238}U for the measured samples was basically within an experimental error of {+-}0.001, close to the theoretical value of 0.007. The calculated total annual intake of uranium via inhalation for the Kuwait population was 0.07 Bq, e.g., 0.2% of the annual limit on intake. 13 refs., 1 fig., 3 tabs.« less

  9. Trifluoroacetic Acid from Degradation of HCFCs and HFCs: A Three-Dimensional Modeling Study. Appendix P

    NASA Technical Reports Server (NTRS)

    Kotamarthi, V. R.; Rodriquez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.; Prather, Michael J.

    1998-01-01

    Trifluoroacetic acid (TFA; CF3 COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 micro g/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS[Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The annually averaged rainwater concentration of 0.12 micro g/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger. 0.15-0.20 micro g/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3 - 0.45 micro g/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.

  10. Trifluoroacetic Acid from Degradation of HCFCs and HFCs: A Three-Dimensional Modeling Study

    NASA Technical Reports Server (NTRS)

    Kotamarthi, V. R.; Rodriquez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.

    1998-01-01

    Trifluoroacetic acid (TFA; CF3COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF3COX to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 micro g/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS/Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The annually averaged rainwater concentration of 0.12 micro g/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger, 0.15-0.20 micro g/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3-0.45 micro g/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.

  11. Spatio-temporal variability of lake CH4 fluxes and its influence on annual estimates

    NASA Astrophysics Data System (ADS)

    Natchimuthu, S.; Sundgren, I.; Gålfalk, M.; Klemedtsson, L.; Crill, P. M.; Danielsson, Å.; Bastviken, D.

    2014-12-01

    Lakes are major sources of methane (CH4) to the atmosphere and it has been shown that lakes contribute significantly to the global CH4 budget. However, the data behind these global estimates are snapshots in time and space only and they typically lack information on spatial and temporal variability of fluxes which can potentially lead to biased estimates. Recent studies have shown that diffusive flux, gas exchange velocity (k), ebullition and concentration of CH4 in the surface water can vary significantly in space within lakes. CH4 fluxes can also change at a broad range of temporal scales in response to seasons, temperature, lake mixing events, short term weather events like pressure variations, shifting winds and diel cycles. We sampled CH4 fluxes and surface water concentrations from three lakes of differing characteristics in southwest Sweden over two annual cycles, approximately every 14 days from April to October 2012 and from April to November 2013. CH4 fluxes were measured using floating chambers distributed in the lakes based on depth categories and dissolved CH4 concentrations were determined by a headspace equilibration method. We observed significant differences in CH4 concentration, diffusion, ebullition and total fluxes between and within the lakes. The fluxes increased exponentially with temperature in all three lakes and water temperature, for example, explained 53-78% of variations in total fluxes in the lakes. Based on our data which relied on improved spatial and temporal information, we demonstrate that measurements which do not take into account of the spatial variability in the lakes could substantially bias the whole lake estimates. For instance, in one of the lakes, measurements from the central parts of the lake represented only 58% of our estimates from all chambers on an average. In addition, we consider how intensive sampling in one season of the year may affect the annual estimates due to the complex interaction of temperature, air pressure and lake mixing events on CH4 fluxes. For example, samples collected when the average air temperatures during chamber deployments were above 15 °C overestimated the total fluxes by 17-157% in all lakes when compared to averages from all measurement times.

  12. A study on natural radioactivity in Khewra Salt Mines, Pakistan.

    PubMed

    Baloch, Muzahir Ali; Qureshi, Aziz Ahmed; Waheed, Abdul; Ali, Muhammad; Ali, Nawab; Tufail, Muhammad; Batool, Saima; Akram, Muhammad; Iftikhar, Poonam; Qayyum, Hamza; Manzoor, Shahid; Khan, Hameed Ahmed

    2012-01-01

    The Khewra Salt Mines, the second largest salt mines in the world, are located 160 km south of Islamabad, the capital of Pakistan. Around 1000 workers are involved in the removal of salt from these mines. More than 40,000 visitors come annually to see the mines. The visitors and workers are directly exposed to the internal and external radiological hazards of radon and gamma rays in these mines. The general public is affected by the intake of the salt containing the naturally occurring radionuclides. Therefore the concentration of radon (²²²Rn) in the Khewra Salt Mines and activity concentrations of the naturally occurring radionuclides in the salt samples from these mines were measured. Both active and passive techniques were employed for the measurement of radon with Radon Alpha Detector (RAD-7) and SSNTD respectively. The concentration of ²²²Rn was 26 ± 4 Bq m⁻³ measured by the active method while 43 ± 8 Bq m⁻³ was measured by the passive method. The activity concentration of the radionuclides was measured using gamma ray spectrometry with HPGe detector. The mean activity of ⁴⁰K in salt samples was found to be 36 ± 20 Bq kg⁻¹ and the concentration of ²²⁶Ra and ²³²Th in the salt samples was below the detection limits. Gamma radiation hazard was assessed in terms of the external gamma dose from salt slabs and the rooms made of salt and the annual effective dose due to gamma radiation. The exposure to radon daughters, annual effective dose and excessive lifetime cancer risk due to radon in the mines were estimated. The mean annual effective dose due to an intake of ⁴⁰K from the salt was calculated as 20.0 ± 11.1 µSv, which is lower than the average annual effective dose rate of 0.29 mSv, received by the ingestion of natural radionuclides. Due to the low concentration values of primordial radionuclides in the salt and radon ²²²Rn) in the mines, a 'low level activity measurement laboratory' is suggested to be established in these mines.

  13. 50 CFR 216.272 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electra)—100 (an average of 20 annually) (S) Pygmy killer whale (Feresa attenuata)—100 (an average of 20 annually) (T) False killer whale (Pseudorca crassidens)—100 (an average of 20 annually) (U) Killer whale... percent of the number of takes indicated below): (i) Mysticetes: (A) Humpback whale (Megaptera...

  14. 50 CFR 217.142 - Permissible methods of taking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... method and amount of take: (1) Level B Harassment: (i) Cetaceans: (A) Bowhead whale (Balaena mysticetus)—75 (an average of 15 annually) (B) Gray whale (Eschrichtius robustus)—10 (an average of 2 annually) (C) Beluga whale (Delphinapterus leucas)—100 (an average of 20 annually) (ii) Pinnipeds: (A) Ringed...

  15. Temporal and spatial variability of ammonia in urban and agricultural regions of northern Colorado, United States

    NASA Astrophysics Data System (ADS)

    Li, Yi; Thompson, Tammy M.; Van Damme, Martin; Chen, Xi; Benedict, Katherine B.; Shao, Yixing; Day, Derek; Boris, Alexandra; Sullivan, Amy P.; Ham, Jay; Whitburn, Simon; Clarisse, Lieven; Coheur, Pierre-François; Collett, Jeffrey L., Jr.

    2017-05-01

    Concentrated agricultural activities and animal feeding operations in the northeastern plains of Colorado represent an important source of atmospheric ammonia (NH3). The NH3 from these sources contributes to regional fine particle formation and to nitrogen deposition to sensitive ecosystems in Rocky Mountain National Park (RMNP), located ˜ 80 km to the west. In order to better understand temporal and spatial differences in NH3 concentrations in this source region, weekly concentrations of NH3 were measured at 14 locations during the summers of 2010 to 2015 using Radiello passive NH3 samplers. Weekly (biweekly in 2015) average NH3 concentrations ranged from 2.66 to 42.7 µg m-3, with the highest concentrations near large concentrated animal feeding operations (CAFOs). The annual summertime mean NH3 concentrations were stable in this region from 2010 to 2015, providing a baseline against which concentration changes associated with future changes in regional NH3 emissions can be assessed. Vertical profiles of NH3 were also measured on the 300 m Boulder Atmospheric Observatory (BAO) tower throughout 2012. The highest NH3 concentration along the vertical profile was always observed at the 10 m height (annual average concentration of 4.63 µg m-3), decreasing toward the surface (4.35 µg m-3) and toward higher altitudes (1.93 µg m-3). The NH3 spatial distributions measured using the passive samplers are compared with NH3 columns retrieved by the Infrared Atmospheric Sounding Interferometer (IASI) satellite and concentrations simulated by the Comprehensive Air Quality Model with Extensions (CAMx). The satellite comparison adds to a growing body of evidence that IASI column retrievals of NH3 provide very useful insight into regional variability in atmospheric NH3, in this case even in a region with strong local sources and sharp spatial gradients. The CAMx comparison indicates that the model does a reasonable job simulating NH3 concentrations near sources but tends to underpredict concentrations at locations farther downwind. Excess NH3 deposition by the model is hypothesized as a possible explanation for this trend.

  16. The spatial and temporal variation of total suspended solid concentration in Pearl River Estuary during 1987-2015 based on remote sensing.

    PubMed

    Wang, Chongyang; Li, Weijiao; Chen, Shuisen; Li, Dan; Wang, Danni; Liu, Jia

    2018-03-15

    The movement and migration of total suspended solid (TSS) are the essential component of global material cycling and change. Based on the TSS concentrations retrieved from 112 scenes of Landsat remote sensing imageries during 1987-2015, the spatial and temporal variations of TSS concentration in high flow season and low flow seasons of six sub-regions (west shoal, west channel, middle shoal, east channel, east shoal and Pearl River Estuary Chinese White Dolphin National Nature Reserve and its adjacent waters (NNR)) of Pearl River Estuary (PRE) were analyzed and compared by statistical simulation. It was found that TSS concentrations in east and west shoals were about 23mg/L and 64mg/L higher than that of the middle shoal, respectively. There was a significant decreasing trend of TSS concentration from the northwest (223.7mg/L) to southeast (51.4mg/L) of study area, with an average reduction of 5.86mg/Lperkm, which mainly attributes to unique interaction of runoff and tide in PRE. In high flow season, there existed a significant and definite annual cycle period (5-8years) of TSS concentration change primarily responding to the periodic variation of precipitation. There were five full-fledged period changes of TSS detected in west shoal and west channel (the years of changes in 1988, 1994, 1998, 2003, 2010, 2015), while there were the last four cycle periods found in middle shoal, east channel, east shoal and NNR only. TSS concentrations in shoals and channels of PRE showed a significant decreased trend mainly due to the dam construction at the same time, with an average annual TSS concentration decrease of 5.7-10.1mg/L in high flow season from 1988 to 2015. There was no significant change trend of TSS concentration in NNR before 2003, but the TSS concentration decreased significantly after the establishment of the NNR since June 2003, with an average annual decrease of 9.7mg/L from 2004 to 2015. It was deduced that man-made protection measures had a great influence on the variation trend and intensity of TSS concentration in PRE, but had little effect on the cycle of TSS changes, indicating that the cyclical change is a very strong natural law. In low flow season, there was no significant change trend of TSS concentrations in PRE except that TSS concentrations in west channel and middle shoal showed a weak increasing trend (2.1mg/L and 2.9mg/L, respectively), which is probably because of controlled discharge for avoiding the intrusion of saltwater in PRE. Evidently, the change trend and cycle periods of TSS concentration in high- and low-flow seasons in six sub-regions of PRE had significant difference. The decreasing trend and cycle periods of TSS concentration mainly occurred in high flow season. The change trend and cycle periods of TSS concentration in low flow season was relatively small in PRE. The study shows that long series mapping of Landsat remote sensing images is an effective way to help understanding the spatial and temporal variation of TSS concentrations of estuaries and coasts, and to increase awareness of environmental change and human activity effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 47 annual records of allergenic fungi spore: predictive models from the NW Iberian Peninsula.

    PubMed

    Aira, M Jesus; Rodriguez-Rajo, F; Jato, Victoria

    2008-01-01

    An analysis was carried out of the atmospheric representivity of Cladosporium and Alternaria spores in the north-western Iberian Peninsula, registering mean annual concentrations in excess of 300,000 spores/m(3). During the main sporulation period, the highest average daily concentrations corresponded to Cladosporium herbarum type (1,197 spores/m(3)) while the highest daily value was 7,556 spores/m(3) (Cladosporium cladosporioides type). Alternaria only represents between 0.1-1% of the total spores identified. In these spore types, the intraday variation was more acute inland than along the coastline due to oceanic influence. In the predictive models proposed that use the meteorological parameters with which a higher correlation was obtained (mean and maximum temperature) as predictive variables, it was seen that the predicted values did not reveal any significant differences as compared to those observed in 2006, data that was only used for verification purposes.

  18. Evaluation of high-frequency mean streamwater transit-time estimates using groundwater age and dissolved silica concentrations in a small forested watershed

    USGS Publications Warehouse

    Peters, Norman E.; Burns, Douglas A.; Aulenbach, Brent T.

    2014-01-01

    Many previous investigations of mean streamwater transit times (MTT) have been limited by an inability to quantify the MTT dynamics. Here, we draw on (1) a linear relation (r 2 = 0.97) between groundwater 3H/3He ages and dissolved silica (Si) concentrations, combined with (2) predicted streamwater Si concentrations from a multiple-regression relation (R 2 = 0.87) to estimate MTT at 5-min intervals for a 23-year time series of streamflow [water year (WY) 1986 through 2008] at the Panola Mountain Research Watershed, Georgia. The time-based average MTT derived from the 5-min data was ~8.4 ± 2.9 years and the volume-weighted (VW) MTT was ~4.7 years for the study period, reflecting the importance of younger runoff water during high flow. The 5-min MTTs are normally distributed and ranged from 0 to 15 years. Monthly VW MTTs averaged 7.0 ± 3.3 years and ranged from 4 to 6 years during winter and 8–10 years during summer. The annual VW MTTs averaged 5.6 ± 2.0 years and ranged from ~5 years during wet years (2003 and 2005) to >10 years during dry years (2002 and 2008). Stormflows are composed of much younger water than baseflows, and although stormflow only occurs ~17 % of the time, this runoff fraction contributed 39 % of the runoff during the 23-year study period. Combining the 23-year VW MTT (including stormflow) with the annual average baseflow for the period (~212 mm) indicates that active groundwater storage is ~1,000 mm. However, the groundwater storage ranged from 1,040 to 1,950 mm using WY baseflow and WY VW MTT. The approach described herein may be applicable to other watersheds underlain by granitoid bedrock, where weathering is the dominant control on Si concentrations in soils, groundwater, and streamwater.

  19. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1992 through December 1994

    USGS Publications Warehouse

    Torikai, J.D.

    1995-01-01

    This report contains hydrologic and climatic data that describe the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1992 through December 1994. This report concentrates on data from October through December 1994, and references previous data from 1992 through 1994. Cumulative rainfall for October through December 1994 was 55 inches which is higher than the mean cumulative rainfall of about 31 inches for the same 3 months. Total rainfall for 1994 was 131 inches which is 24 percent higher than the mean annual rainfall of 106 inches. In com- parison, total rainfall in 1992 and 1993 were 93 inches and 95 inches, respectively. Ground-water withdrawal during October through December 1994 averaged 903,000 gallons per day, while the annual withdrawal in 1994 was 942,700 gallons per day. Annual withdrawals in 1992 and 1993 averaged 935,900 gallons per day and 953,800 gallons per day, respectively. At the end of December 1994, the chloride concentration of the composite water supply was 28 milligrams per liter, well below the 250 milligrams per liter secondary drinking-water standard established by the U.S. Environmental Protection Agency. Chloride concentrations of the composite water supply from October through December 1994 ranged between 28 and 86 milligrams per liter. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations decreased in November and December, and seems to have leveled off by the end of the year. Although chloride concen- trations have decreased during the fourth quarter of 1994, there has been a general trend of increasing chloride concentrations in the deeper monitoring wells since the 1992 dry season, which began in March 1992. A fuel leak at Air Operations caused the shutdown of ten wells in May 1991. Four of the wells resumed pumping for water-supply purposes in April 1992. The remaining six wells are being used to hydraulically contain and divert fuel migration by recirculating 150,000 gallons of water each day.

  20. Rural and Urban Differences in Air Quality, 2008–2012, and Community Drinking Water Quality, 2010–2015 — United States

    PubMed Central

    Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-01-01

    Problem/Condition The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. Reporting Period 2008–2012 for air quality and 2010–2015 for water quality. Description of System Since 2002, CDC’s National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008–2012 and one water-quality measure for 26 states during 2010–2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM2.5) levels greater than the U.S. Environmental Protection Agency’s (EPA’s) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM2.5 (PM2.5 days); 2) mean annual average ambient concentrations of PM2.5 in micrograms per cubic meter (mean PM2.5); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. Results Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM2.5 concentration decreased from 11.15 μg/m3 in large central metropolitan counties to 8.87 μg/m3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. Interpretation Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. Public Health Action Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality. PMID:28640797

  1. Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States.

    PubMed

    Strosnider, Heather; Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-06-23

    The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. 2008-2012 for air quality and 2010-2015 for water quality. Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM 2.5 ) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM 2.5 (PM 2.5 days); 2) mean annual average ambient concentrations of PM 2.5 in micrograms per cubic meter (mean PM 2.5 ); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM 2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM 2.5 concentration decreased from 11.15 μg/m 3 in large central metropolitan counties to 8.87 μg/m 3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM 2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality.

  2. Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China.

    PubMed

    Cheng, Linjun; Wang, Shuai; Gong, Zhengyu; Li, Hong; Yang, Qi; Wang, Yeyao

    2018-05-01

    Owing to the vast territory of China and strong regional characteristic of ozone pollution, it's desirable for policy makers to have a targeted and prioritized regulation and ozone pollution control strategy in China based on scientific evidences. It's important to assess its current pollution status as well as spatial and temporal variation patterns across China. Recent advances of national monitoring networks provide an opportunity to insight the actions of ozone pollution. Here, we present rotated empirical orthogonal function (REOF) analysis that was used on studying the spatiotemporal characteristics of daily ozone concentrations. Based on results of REOF analysis in pollution seasons for 3years' observations, twelve regions with clear patterns were identified in China. The patterns of temporal variation of ozone in each region were separated well and different from each other, reflecting local meteorological, photochemical or pollution features. A rising trend in annual averaged Eight-hour Average Ozone Concentrations (O 3 -8hr) from 2014 to 2016 was observed for all regions, except for the Tibetan Plateau. The mean values of annual and 90 percentile concentrations for all 338 cities were 82.6±14.6 and 133.9±25.8μg/m 3 , respectively, in 2015. The regionalization results of ozone were found to be influenced greatly by terrain features, indicating significant terrain and landform effects on ozone spatial correlations. Among 12 regions, North China Plain, Huanghuai Plain, Central Yangtze River Plain, Pearl River Delta and Sichuan Basin were realized as priority regions for mitigation strategies, due to their higher ozone concentrations and dense population. Copyright © 2017. Published by Elsevier B.V.

  3. The Effects of Urban Form on Ambient Air Pollution and Public Health Risk: A Case Study in Raleigh, North Carolina

    PubMed Central

    Rodriguez, Daniel A.; Huegy, Joseph; Gibson, Jacqueline MacDonald

    2014-01-01

    Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions. PMID:25490890

  4. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss.

    PubMed

    Drury, C F; Tan, C S; Reynolds, W D; Welacky, T W; Oloya, T O; Gaynor, J D

    2009-01-01

    Improving field-crop use of fertilizer nitrogen is essential for protecting water quality and increasing crop yields. The objective of this study was to determine the effectiveness of controlled tile drainage (CD) and controlled tile drainage with subsurface irrigation (CDS) for mitigating off-field nitrate losses and enhancing crop yields. The CD and CDS systems were compared on a clay loam soil to traditional unrestricted tile drainage (UTD) under a corn (Zea Mays L.)-soybean (Glycine Max. (L.) Merr.) rotation at two nitrogen (N) fertilization rates (N1: 150 kg N ha(-1) applied to corn, no N applied to soybean; N2: 200 kg N ha(-1) applied to corn, 50 kg N ha(-1) applied to soybean). The N concentrations in tile flow events with the UTD treatment exceeded the provisional long-term aquatic life limit (LT-ALL) for freshwater (4.7 mg N L(-1)) 72% of the time at the N1 rate and 78% at the N2 rate, whereas only 24% of tile flow events at N1 and 40% at N2 exceeded the LT-ALL for the CDS treatment. Exceedances in N concentration for surface runoff and tile drainage were greater during the growing season than the non-growing season. At the N1 rate, CD and CDS reduced average annual N losses via tile drainage by 44 and 66%, respectively, relative to UTD. At the N2 rate, the average annual decreases in N loss were 31 and 68%, respectively. Crop yields from CDS were increased by an average of 2.8% relative to UTD at the N2 rate but were reduced by an average of 6.5% at the N1 rate. Hence, CD and CDS were effective for reducing average nitrate losses in tile drainage, but CDS increased average crop yields only when additional N fertilizer was applied.

  5. The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Hallsworth, S.; Famulari, D.; Doherty, R. M.; Dore, A. J.; Tang, Y. S.; Braban, C. F.; Leaver, D.; Sutton, M. A.; Reis, S.

    2013-12-01

    Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001-2010 using the EMEP4UK regional atmospheric chemistry transport model. In early 2003 an episode of substantially elevated surface concentrations of ammonium nitrate was measured across the UK by the AGANET network. The EMEP4UK model was able accurately to represent both the long-term decadal surface concentrations and the episode in 2003. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological, a persistent high pressure system, but whose varying location impacted the relative importance of transboundary vs. domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and south-east, may be close to or actually exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on PM concentrations and the need for international agreements to address the transboundary component of air pollution.

  6. Spatial and temporal distributions of aerosol concentrations and depositions in Asia during the year 2010.

    PubMed

    Park, Soon-Ung; Lee, In-Hye; Joo, Seung Jin

    2016-01-15

    Aerosol Modeling System (AMS) that is consisted of the Asian Dust Aerosol Model2 (ADAM2) and the Community Multi-scale Air Quality (CMAQ) modeling system has been employed to document the spatial distributions of the monthly and the annual averaged concentration of both the Asian dust (AD) aerosol and the anthropogenic aerosol (AA), and their total depositions in the Asian region for the year 2010. It is found that the annual mean surface aerosol (PM10) concentrations in the Asian region affect in a wide region as a complex mixture of AA and AD aerosols; they are predominated by the AD aerosol in the AD source region of northern China and Mongolia with a maximum concentration exceeding 300 μg m(-3); AAs are predominated in the high pollutant emission regions of southern and eastern China and northern India with a maximum concentration exceeding 110 μg m(-3); while the mixture of AA and AD aerosols is dominated in the downwind regions extending from the Yellow Sea to the Northwest Pacific Ocean. It is also found that the annual total deposition of aerosols in the model domain is found to be 485 Tg (372 Tg by AD aerosol and 113 Tg by AA), of which 66% (319 Tg) is contributed by the dry deposition (305 Tg by AD aerosol and 14 Tg by AA) and 34% (166 Tg) by the wet deposition (66 Tg by AD aerosol and 100 Tg by AA), suggesting about 77% of the annual total deposition being contributed by the AD aerosol mainly through the dry deposition process and 24% of it by AA through the wet deposition process. The monthly mean aerosol concentration and the monthly total deposition show a significant seasonal variation with high in winter and spring, and low in summer. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Satellite chlorophyll off the British Columbia Coast, 1997-2010

    NASA Astrophysics Data System (ADS)

    Jackson, Jennifer M.; Thomson, Richard E.; Brown, Leslie N.; Willis, Peter G.; Borstad, Gary A.

    2015-07-01

    We examine the spatial and temporal variability of satellite-sensed sea surface chlorophyll off the west coast of North America from 1997 to 2010, with focus on coastal British Columbia. The variability in surface chlorophyll is complex. Whereas the spring bloom generates the highest phytoplankton concentration for coastal Alaska, the north and east coasts of Haida Gwaii, Queen Charlotte Sound, the Strait of Georgia, and coastal Oregon and California, it is the fall bloom that normally generates the highest concentration for the west coast of Vancouver Island, Juan de Fuca Strait, and the west coast of Washington. The highest satellite-sensed chlorophyll concentrations occur in the Strait of Georgia, where mean values are at least 2 times higher than elsewhere in the northeast Pacific. Moreover, the annual average surface chlorophyll concentration increased significantly in the Strait of Georgia during this period, with highest concentration observed during the near neutral ENSO conditions of the spring of 2007. The next highest concentrations occur off southwest Vancouver Island but have no statistically significant trend. The lowest average peak chlorophyll concentration is observed off Southern California. The timing of the highest chlorophyll concentration is latest off the coast of Washington and earliest off the coast of Southern California. Small increasing concentration trends are observed off the Washington and California coasts.

  8. Spatial variability of carbonaceous aerosol concentrations in East and West Jerusalem.

    PubMed

    von Schneidemesser, Erika; Zhou, Iiabin; Stone, Elizabeth A; Schauer, James I; Shpund, Jacob; Brenner, Shmuel; Qasrawi, Radwan; Abdeen, Ziad; Sarnat, Jeremy A

    2010-03-15

    Carbonaceous aerosol concentrations and sources were compared during a year long study at two sites in East and West Jerusalem that were separated by a distance of approximately 4 km. One in six day 24-h PM(2.5) elemental and organic carbon concentrations were measured, along with monthly average concentrations of particle-phase organic compound tracers for primary and secondary organic aerosol sources.Tracer compounds were used in a chemical mass balance ICMB) model to determine primary and secondary source contributions to organic carbon. The East Jerusalem sampling site at Al Quds University experienced higher concentrations of organic carbon (OC) and elemental carbon (EC) compared to the West Jerusalem site at Hebrew University. The annual average concentrations of OC and EC at the East Jerusalem site were 5.20 and 2.19 μg m(-3), respectively, and at the West Jerusalem site were 4.03 and 1.14 μg m(-3), respectively. Concentrations and trends of secondary organic aerosol and vegetative detritus were similar at both sites, but large differences were observed in the concentrations of organic aerosol from fossil fuel combustion and biomass burning, which was the cause of the large differences in OC and EC concentrations observed at the two sites.

  9. A Summary of Ambient Air at John F. Kennedy Space Center with a Comparison to Data from the Florida Statewide Monitoring Network (1983-1992)

    NASA Technical Reports Server (NTRS)

    Drese, John H.

    1997-01-01

    The EPA criteria air pollutants were monitored at Kennedy Space Center (KSC) since 1983 to comply the prevention of significant deterioration requirements under the Clean Air Act amendments passed by Congress in 1977 and 1990. Monitoring results show that monthly maximum 24-hour total suspended particulates decreased from 144.6 micograms/cu m in 1988 to 73.0 micrograms/cu m in 1991 and increased to 149.3 micrograms/cu m in 1992. Inhalable particulates increased from 56.1 gg/M3 in 1983 to 131.4 micrograms/cu m in 1988, and then decreased to 38.5 micrograms/cu m in 1992. Sulfur dioxide monthly maximum 24-hour average concentrations decreased each year from 135.2 micrograms/cu m in 1983 to 33.8 micrograms/cu m in 1992. Nitrogen dioxide concentrations increased from 5.1 micrograms/cu m in 1983 to 5.9 micrograms/cu m in 1988, then decreased to 4.5 micrograms/cu m in 1992. Carbon monoxide annual average concentrations decreased from 6.2 micrograms/cu m in 1983 to 1.1 micrograms/cu m in 1988, and increased to 1.2 micrograms/cu m in 1992. Ozone maximum 1-hour concentrations increased from 98 parts per billion (ppb) in 1983 to 134 ppb in 1989, and then decreased to 80 ppb in 1992. Total annual rainfall ranged from 37.47 inches to 57.47 inches and shows a 6.6 percent increase over this same ten year period.

  10. Cancer incidence attributable to air pollution in Alberta in 2012

    PubMed Central

    Poirier, Abbey E.; Grundy, Anne; Khandwala, Farah; Friedenreich, Christine M.; Brenner, Darren R.

    2017-01-01

    Background: The International Agency for Research on Cancer has classified outdoor air pollution (fine particulate matter [PM2.5]) as a Group 1 lung carcinogen in humans. We aimed to estimate the proportion of lung cancer cases attributable to PM2.5 exposure in Alberta in 2012. Methods: Annual average concentrations of PM2.5 in 2011 for 22 communities across Alberta were extracted from the Clean Air Strategic Alliance Data Warehouse and were population-weighted across the province. Using 7.5 µg/m3 and 3.18 µg/m3 as the annual average theoretical minimum risk concentrations of PM2.5, we estimated the proportion of the population above this cut-off to determine the population attributable risk of lung cancer due to PM2.5 exposure. Results: The mean population-weighted concentration of PM2.5 for Alberta in 2011 was 10.03 µg/m3. We estimated relative risks of 1.02 and 1.06 for theoretical minimum risk PM2.5 concentration thresholds of 7.5 µg/m3 and 3.18 µg/m3, respectively. About 1.87%-5.69% of incident lung cancer cases in Alberta were estimated to be attributable to PM2.5 exposure. Interpretation: Our estimate of attributable burden is low compared to that reported in studies in other areas of the world owing to the relatively low levels of PM2.5 recorded in Alberta. Reducing PM2.5 emissions in Alberta should continue to be a priority to help decrease the burden of lung cancer in the population. PMID:28659352

  11. Rocky Mountain Snowpack Chemistry at Selected Sites, 2002

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Manthorne, David J.; Clow, David W.; Handran, Heather M.; Winterringer, Jesse A.; Campbell, Donald H.

    2004-01-01

    During spring 2002, the chemical composition of annual snowpacks in the Rocky Mountain region of the Western United States was analyzed. Snow samples were collected at 75 geographically distributed sites extending from New Mexico to Montana. Near the end of the 2002 snowfall season, the snow-water equivalent (SWE) in annual snowpacks sampled generally was below average in most of the region. Regional patterns in the concentrations of major ions (including ammonium, nitrate, and sulfate), mercury, and stable sulfur isotope ratios are presented. The 2002 snowpack chemistry in the region differed from the previous year. Snowpack ammonium concentrations were higher at 66 percent of sites in Montana compared to concentrations in the 2001 snowpack but were lower at 74 percent of sites in Wyoming, Colorado, and New Mexico. Nitrate was lower at all Montana sites and lower at all but one Wyoming site; nitrate was higher at all but two Colorado sites and higher at all New Mexico sites. Sulfate was lower across the region at 77 percent of sites. The range of mercury concentrations for the region was similar to those of 2001 but showed more variability than ammonium, nitrate, and sulfate concentrations. Concentrations of stable sulfur isotope ratios exhibited a strong regional pattern with values increasing northward from southern Colorado to northern Colorado and Wyoming.

  12. Spatial and temporal variations of metal content and water quality in the Belaya River Basin

    NASA Astrophysics Data System (ADS)

    Fashchevskaia, T. B.; Motovilov, Y.

    2016-12-01

    The aim of this research is to identify the spatiotemporal regularities of iron, copper and zinc contents dynamics in the streams of the Belaya River basin. The Belaya River is situated in the South Ural region and is one of the biggest tributary in the Volga River basin with catchment area of 142 000 km2. More than sixty years the diverse economic activities are carried out in the Belaya River basin, the intensity of this activity is characterized by high temporal variability. The leading industries in the region are oil, mining, petroleum processing, chemistry and petro chemistry, mechanical engineering, metallurgy, power industry. The dynamics of human activities in the catchment and intra and inter-annual changes in the water quality are analyzed for the period 1969-2007 years. Inter-annual dynamics of the metal content in the river waters was identified on the basis of the long-term hydrological monitoring statistics at the 32 sites. It was found that the dynamics of intensity of economic activities in the Belaya River basin is the cause statistically significant changes in the metal content of the river network. Statistically homogeneous time intervals have been set for each monitoring site. Within these time intervals there were obtained averaged reliable quantitative estimations of water quality. Empirical probability distributions of iron, copper and zinc concentrations for various phases of the water regime in all investigated monitoring sites were approximated by Pearson type III curves and the averages of the concentration values, the coefficient of variation and asymmetry, as well as the values of the concentrations of metal in the range of 1-95% of frequency were estimated. It was found that by the end of the test period, the average long-term concentrations for iron and copper exceed MAC for fishery use, for zinc become smaller MAC in many streams of Belaya River basin. Acknowledgements. The work was financially supported by the Russian Foundation for Basic Research (Grant 15-05-09022)

  13. Mortality assessment attributed to long-term exposure to fine particles in ambient air of the megacity of Tehran, Iran.

    PubMed

    Yarahmadi, Maryam; Hadei, Mostafa; Nazari, Seyed Saeed Hashemi; Conti, Gea Oliveri; Alipour, Mohammd Reza; Ferrante, Margherita; Shahsavani, Abbas

    2018-05-01

    Few studies regarding the health effects of long-term exposure to particulate matter with an aerodynamic diameter of 2.5 μm or less (PM 2.5 ) have been carried out in Asia or the Middle East. The objective of our study was to assess total, lung cancer and chronic obstructive pulmonary disease (COPD) mortality attributed to long-term exposure to PM 2.5 among adults aged over 30 years in Tehran from March 2013 to March 2016 using AirQ + software. AirQ + modeling software was used to estimate the number of deaths attributed to PM 2.5 concentrations higher than 10 μg m -3 . Air quality data were obtained from the Department of Environment (DOE) and Tehran Air Quality Control Company (TAQCC). Only valid stations with data completeness of 75% in all 3 years were selected for entry into the model. The 3-year average of the 24-h concentrations was 39.17 μg m -3 . The results showed that the annual average concentration of PM 2.5 in 2015-2016 was reduced by 13% compared to that in 2013-2014. The annual average number of all natural, COPD, and lung cancer deaths attributable to long-term exposure to PM 2.5 in adults aged more than 30 years was 5073, 158, and 142 cases, respectively. The results of all three health endpoints indicate that the mortality attributable to PM 2.5 decreased yearly from 2013 to 2016 and that the reduced mortality was related to a corresponding reduction in the PM 2.5 concentration. Considering these first positive results, the steps that have been currently taken for reducing air pollution in Tehran should be continued to further improve the already positive effects of these measures on reducing health outcomes.

  14. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    USGS Publications Warehouse

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same wells during 1995, 1997, and (or) 1998. Nitrate concentrations in two wells were larger than the U.S. Environmental Protection Agency primary drinking-water regulation of 10 milligrams per liter in 1998 and in 2001. Ground-water levels were measured during June and July 2002 and during June, July, and August 2003 in 18 monitoring wells. The median change in water level for all 18 wells was a decline of 2.03 feet.

  15. An overview of the PM10 pollution problem, in the Metropolitan Area of Athens, Greece. Assessment of controlling factors and potential impact of long range transport.

    PubMed

    Grivas, G; Chaloulakou, A; Kassomenos, P

    2008-01-15

    The present study analyzes PM(10) concentration data collected by the Greek air quality monitoring network at 8 sites over the Greater Athens Area, for the period of 2001-2004. The primary objectives were to assess the degree of compliance with the EU-legislated air quality standard for PM(10) and also provide an overall statistical examination of the factors controlling the seasonal and spatial variation of concentrations, over the wider urban agglomeration. Daily concentrations, averaged over the whole study period, ranged between 32.3 and 60.9 microg m(-3). The four-year average concentration of PM(10) at five sites exceeded the annual limit value of 40 microg m(-3), while most of the sites surpassed the allowed percentage of exceedances of the daily limit value (50 microg m(-3)), for each of the four years. The seasonal variation of PM(10) levels was not found to be uniform across the eight sites, with average cold-period concentrations being higher at four of them and warm period concentrations being significantly higher at three sites, which also displayed recurring annual variation of monthly concentrations. Concentration levels displayed moderate spatial heterogeneity. Nevertheless significant inter-site correlations were observed (ranging between 0.55 and 085). The determination of the spatial correlation levels relied mainly on site types rather than on inter-site distances. Monitoring sites were classified accordingly using cluster analysis in two groups presenting distinct spatiotemporal variation and affected by different particle formation processes. The group including urban sites was mainly affected by primary, combustion-related processes and especially vehicular traffic, as it was also deduced through the examination of the diurnal distribution of particulate levels and through factor analysis. On the contrary, suburban background sites seemed more affected by particle transport from more polluted neighboring areas and secondary particle formation through gaseous precursors, both processes aided from favoring meteorological conditions. The association of the PM(10) levels with backwards trajectories was also examined, in an attempt to account for the possible long range transport of particles in Athens. It was found that a notable part of area-wide episodic events could be attributed to trans-boundary transport of particles, with the origins of some severe dust outbreaks traced back to the Sahara desert and the Western Mediterranean.

  16. 50 CFR 218.102 - Permissible methods of taking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...

  17. 50 CFR 218.102 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...

  18. 50 CFR 218.102 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...

  19. 50 CFR 218.102 - Permissible methods of taking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...

  20. 50 CFR 218.2 - Permissible methods of taking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—10 (an average of 2 annually); and (B) Fin whale (Balaenoptera physalus)—10 (an average of 2 annually). (ii) Odontocetes: (A) Sperm whale (Physeter macrocephalus)—10 (an average of 2 annually); (B) Pygmy or dwarf sperm whales (Kogia sp.)—15 (an...

  1. 50 CFR 218.2 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—10 (an average of 2 annually); and (B) Fin whale (Balaenoptera physalus)—10 (an average of 2 annually). (ii) Odontocetes: (A) Sperm whale (Physeter macrocephalus)—10 (an average of 2 annually); (B) Pygmy or dwarf sperm whales (Kogia sp.)—15 (an...

  2. 50 CFR 218.2 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—10 (an average of 2 annually); and (B) Fin whale (Balaenoptera physalus)—10 (an average of 2 annually). (ii) Odontocetes: (A) Sperm whale (Physeter macrocephalus)—10 (an average of 2 annually); (B) Pygmy or dwarf sperm whales (Kogia sp.)—15 (an...

  3. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    USGS Publications Warehouse

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on average, within ±20% of estimates based on streamflow and turbidity combined. Results demonstrate that large suspended sediment loads are delivered to Cheney Reservoir in very short time periods, indicating that sediment management plans eventually must address large, infrequent inflow events to be effective.

  4. Direct evidence of the feedback between climate and nutrient, major, and trace element transport to the oceans

    NASA Astrophysics Data System (ADS)

    Eiriksdottir, Eydis Salome; Gislason, Sigurður Reynir; Oelkers, Eric H.

    2015-10-01

    Climate changes affect weathering, denudation and riverine runoff, and therefore elemental fluxes to the ocean. This study presents the climate effect on annual fluxes of 28 dissolved elements, and organic and inorganic particulate fluxes, determined over 26-42 year period in three glacial and three non-glacial river catchments located in Eastern Iceland. Annual riverine fluxes were determined by generating robust correlations between dissolved element concentrations measured from 1998 to 2003 and suspended inorganic matter concentrations measured from 1962 to 2002 with instantaneous discharge measured at the time of sampling in each of these rivers. These correlations were used together with measured average daily discharge to compute daily elemental fluxes. Integration of these daily fluxes yielded the corresponding annual fluxes. As the topography and lithology of the studied glacial and non-glacial river catchments are similar, we used the records of average annual temperature and annual runoff to examine how these parameters and glacier melting influenced individual element fluxes to the oceans. Significant variations were found between the individual elements. The dissolved fluxes of the more soluble elements, such as Mo, Sr, and Na are less affected by increasing temperature and runoff than the insoluble nutrients and trace elements including Fe, P, and Al. This variation between the elements tends to be more pronounced for the glacial compared to the non-glacial rivers. These observations are interpreted to stem from the stronger solubility control on the concentrations of the insoluble elements such that they are less affected by dilution. The dilution of the soluble elements by increasing discharge in the glacial rivers is enhanced by a relatively low amount of water-rock interaction; increased runoff due to glacial melting tend to be collected rapidly into river channels limiting water-rock interaction. It was found that the climate effect on particle transport from the glacial rivers is far higher than all other measured fluxes. This observation, together with the finding that the flux to the oceans of biolimiting elements such as P and Fe is dominated by particulates, suggests that particulate transport by melting glaciers have a relatively strong effect on the feedback between continental weathering, atmospheric chemistry, and climate regulation over geologic time.

  5. Estimation of average annual streamflows and power potentials for Alaska and Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdin, Kristine L.

    2004-05-01

    This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from themore » EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.« less

  6. 39 CFR 3010.21 - Calculation of annual limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... notice of rate adjustment and dividing the sum by 12 (Recent Average). Then, a second simple average CPI... Recent Average and dividing the sum by 12 (Base Average). Finally, the annual limitation is calculated by dividing the Recent Average by the Base Average and subtracting 1 from the quotient. The result is...

  7. 39 CFR 3010.21 - Calculation of annual limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... notice of rate adjustment and dividing the sum by 12 (Recent Average). Then, a second simple average CPI... Recent Average and dividing the sum by 12 (Base Average). Finally, the annual limitation is calculated by dividing the Recent Average by the Base Average and subtracting 1 from the quotient. The result is...

  8. 39 CFR 3010.21 - Calculation of annual limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... notice of rate adjustment and dividing the sum by 12 (Recent Average). Then, a second simple average CPI... Recent Average and dividing the sum by 12 (Base Average). Finally, the annual limitation is calculated by dividing the Recent Average by the Base Average and subtracting 1 from the quotient. The result is...

  9. Distribution of natural and artificial radioactivity in soils, water and tuber crops.

    PubMed

    Darko, Godfred; Faanu, Augustine; Akoto, Osei; Acheampong, Akwasi; Goode, Eric Jude; Gyamfi, Opoku

    2015-06-01

    Activity concentrations of radionuclides in water, soil and tuber crops of a major food-producing area in Ghana were investigated. The average gross alpha and beta activities were 0.021 and 0.094 Bq/L, respectively, and are below the guidelines for drinking water and therefore not expected to pose any significant health risk. The average annual effective dose due to ingestion of radionuclide in water ranged from 20.08 to 53.45 μSv/year. The average activity concentration of (238)U, (232)Th, (40)K and (137)Cs in the soil from different farmlands in the study area was 23.19, 31.10, 143.78 and 2.88 Bq/kg, respectively, which is lower than world averages. The determined absorbed dose rate for the farmlands ranged from 23.63 to 50.51 nGy/year, which is within worldwide range of 18 to 93 nGy/year. The activity concentration of (238)U, (232)Th, (40)K and (137)Cs in cassava ranges from 0.38 to 6.73, 1.82 to 10.32, 17.65 to 41.01 and 0.38 to 1.02 Bq/kg, respectively. Additionally, the activity concentration of (238)U, (232)Th, (40)K and (137)Cs in yam also ranges from 0.47 to 4.89, 0.93 to 5.03, 14.19 to 35.07 and 0.34 to 0.89 Bq/kg, respectively. The average concentration ratio for (238)U, (232)Th and (40)K in yam was 0.12, 0.11 and 0.17, respectively, and in cassava was 0.11, 0.12 and 0.2, respectively. None of the radioactivity is expected to cause significant health problems to human beings.

  10. Occurrence and distribution of dissolved solids, selenium, and uranium in groundwater and surface water in the Arkansas River Basin from the headwaters to Coolidge, Kansas, 1970-2009

    USGS Publications Warehouse

    Miller, Lisa D.; Watts, Kenneth R.; Ortiz, Roderick F.; ,

    2010-01-01

    In 2007, the U.S. Geological Survey (USGS), in cooperation with City of Aurora, Colorado Springs Utilities, Colorado Water Conservation Board, Lower Arkansas Valley Water Conservancy District, Pueblo Board of Water Works, Southeastern Colorado Water Activity Enterprise, Southeastern Colorado Water Conservancy District, and Upper Arkansas Water Conservancy District began a retrospective evaluation to characterize the occurrence and distribution of dissolved-solids (DS), selenium, and uranium concentrations in groundwater and surface water in the Arkansas River Basin based on available water-quality data collected by several agencies. This report summarizes and characterizes available DS, dissolved-selenium, and dissolved-uranium concentrations in groundwater and surface water for 1970-2009 and describes DS, dissolved-selenium, and dissolved-uranium loads in surface water along the main-stem Arkansas River and selected tributary and diversion sites from the headwaters near Leadville, Colorado, to the USGS 07137500 Arkansas River near Coolidge, Kansas (Ark Coolidge), streamgage, a drainage area of 25,410 square miles. Dissolved-solids concentrations varied spatially in groundwater and surface water in the Arkansas River Basin. Dissolved-solids concentrations in groundwater from Quaternary alluvial, glacial drift, and wind-laid deposits (HSU 1) increased downgradient with median values of about 220 mg/L in the Upper Arkansas subbasin (Arkansas River Basin from the headwaters to Pueblo Reservoir) to about 3,400 mg/L in the Lower Arkansas subbasin (Arkansas River Basin from John Martin Reservoir to Ark Coolidge). Dissolved-solids concentrations in the Arkansas River also increased substantially in the downstream direction between the USGS 07086000 Arkansas River at Granite, Colorado (Ark Granite), and Ark Coolidge streamgages. Based on periodic data collected from 1976-2007, median DS concentrations in the Arkansas River ranged from about 64 mg/L at Ark Granite to about 4,060 mg/L at Ark Coolidge representing over a 6,000 percent increase in median DS concentrations. Temporal variations in specific conductance values (which are directly related to DS concentrations) and seasonal variations in DS concentrations and loads were investigated at selected sites in the Arkansas River from Ark Granite to Ark Coolidge. Analyses indicated that, for the most part, specific conductance values (surrogate for DS concentrations) have remained relatively constant or have decreased in the Arkansas River since about 1970. Dissolved-solids concentrations in the Arkansas River were higher during the nonirrigation season (November-February) than during the irrigation season (March-October). Average annual DS loads, however, were higher during the irrigation season than during the nonirrigation season. Average annual DS loads during the irrigation season were at least two times and as much as 23 times higher than average annual DS loads during the nonirrigation season with the largest differences occurring at sites located downstream from the two main-stem reservoirs at USGS 07099400 Arkansas River above Pueblo, Colorado (Ark Pueblo), (which is below Pueblo Reservoir) and USGS 07130500 Arkansas River below John Martin Reservoir, Colorado (Ark below JMR). View report for unabridged abstract.

  11. Relation of Land Use to Streamflow and Water Quality at Selected Sites in the City of Charlotte and Mecklenburg County, North Carolina, 1993-98

    USGS Publications Warehouse

    Bales, Jerad D.; Weaver, J. Curtis; Robinson, Jerald B.

    1999-01-01

    Streamflow and water-quality data were collected at nine sites in the city of Charlotte and Mecklenburg County, North Carolina, during 1993–97. Six of the basins drained areas having relatively homogeneous land use and were less than 0.3 square mile in size; the other three basins had mixed land use. Atmospheric wet-deposition data were collected in three of the basins during 1997–98.Streamflow yield varied by a factor of six among the sites, despite the fact that sites were in close proximity to one another. The lowest yield occurred in a residential basin having no curbs and gutters. The variability in mean flow from these small, relatively homogeneous basins is much greater than is found in streams draining basins that are 10 square miles in size or larger. The ratio of runoff to rainfall in the developing basin appears to have increased during the study period.Low-flow suspended-sediment concentrations in the study basins were about the same magnitude as median stormflow concentrations in Piedmont agricultural basins. Sediment concentrations were higher in the mixed land-use basins and in the developing basin. Median suspended-sediment concentrations in these basins generally were an order of magnitude greater than median concentrations in the other five basins, which had stable land use.Some of the highest total nitrogen concentrations occurred in residential basins. Total nitrogen concentrations detected in this study were about twice as high as concentrations in small Piedmont streams affected by agriculture and urbanization. Most of the total nitrogen consisted of organic nitrogen at all of the sites except in two residential land- use basins. The high ammonia content of lawn fertilizer may explain the higher ammonia concentration in stormflow from residential basins.The two basins with the highest median suspended-sediment concentrations also had the highest total phosphorus concentrations. Median total phosphorus concentrations measured in this study were several times greater than median concentrations in small Piedmont streams but almost an order of magnitude less than total phosphorus concentrations in Charlotte streams during the late 1970's.Bacteria concentrations are not correlated to streamflow. The highest bacteria levels were found in 'first-flush' samples. Higher fecal coliform concentrations were associated with residential land use.Chromium, copper, lead, and zinc occurred at all sites in concentrations that exceeded the North Carolina ambient water-quality standards. The median chromium concentration in the developing basin was more than double the median concentration at any other site. As with chromium, the maximum copper concentration in the developing basin was almost an order of magnitude greater than maximum concentrations at other sites. The highest zinc concentration also occurred in the developing basin. Samples were analyzed for 121 organic compounds and 57 volatile organic compounds. Forty-five organic compounds and seven volatile organic compounds were detected. At least five compounds were detected at all sites, and 15 or more compounds were detected at all sites except two mixed land-use basins. Atrazine, carbaryl, and metolachlor were detected at eight sites, and 90 percent of all samples had measurable amounts of atrazine. About 60 percent of the samples had detectable levels of carbaryl and metolachlor. Diazinon and malathion were measured in samples from seven sites, and methyl parathion, chlorpyrifos, alachlor, and 2,4-D were detected at four or more sites. The fewest compounds were detected in the larger, mixed land-use basins. Residential basins and the developing basin had the greatest number of detections of organic compounds.The pH of wet atmospheric deposition in three Charlotte basins was more variable than the pH measured at a National Atmospheric Deposition Program (NADP)site in Rowan County. Summer pH values were significantly lower than pH measured during the remainder of the year, probably as a result of poorer air quality and different weather patterns during the summer.Concentrations of ammonia and nitrate at the Charlotte sites generally were lower than those measured at the NADP site. Summer concentrations of ammonia and nitrate at both the Charlotte and the NADP sites were significantly greater than concentrations measured during the remainder of the year, again probably reflecting poorer summertime air-quality conditions.Sediment yields at the nine sites ranged from 77 tons per square mile per year in a residential basin to 4,700 tons per square mile per year at the developing basin. Residential areas that have been built-out for several years and industrial areas appear, in general, to have the lowest sediment yields for the Charlotte study sites.Average annual yields of total nitrogen loads ranged from about 1.7 tons per square mile to 6.6 tons per square mile. Average annual total phosphorus yields for all sites except the developing basin were less than 1.4 tons per square mile. Phosphorus yield at the developing basin was 13 .4 tons per square mile per year.Biochemical oxygen demand loading in 1993 from all of the permitted wastewater-treatment facilities in Charlotte and Mecklenburg County was about 1.5 tons per day or 548 tons per year. Converting this point-source loading to an annual yield for the 528 square-mile area of Mecklenburg County is equivalent to 1.03 tons per square mile per year, or a yield much lower than any of the yields measured at the nine study sites. In other words, biochemical oxygen demand loading from nonpoint sources in Mecklenburg County probably exceeds loading from all point sources by a large amount.Loads and average annual yields were computed for five metals-chromium, copper, lead, nickel, and zinc. The highest annual average yields for all five of these metals were in the developing basin, which also had the highest annual average suspended-sediment yield of all the sites. Estimated wet-deposition watershed loadings suggest that atmospheric deposition may be an important source of some metals, including chromium, copper, lead, and zinc, in Charlotte storm water.Storm water from residential land-use basins has higher concentrations of total nitrogen, fecal coliform bacteria, and organic compounds than do other land-use types. Reductions in suspended-sediment concentrations should generally result in reduced export of phosphorus and metals. Stable land uses, such as industrial areas and built-out residential basins, have lower sediment concentrations in stormwater than do mixed land use and developing basins. Finally, atmospheric deposition may be an important source of nitrogen and some metals in Charlotte stormwater.

  12. Organic Seston Dynamics in Upland Neotropical Streams: Implications for Amphibian Declines

    NASA Astrophysics Data System (ADS)

    Peterson, S. D.; Colon-Gaud, C.; Whiles, M. R.; Hunte-Brown, M.; Connelly, S.; Kilham, S.; Pringle, C. M.; Lips, K. R.; Brenes, R.

    2005-05-01

    Organic seston represents food for filter feeders and a mechanism for downstream transport of energy and nutrients. As part of a study assessing the ecological impacts of stream-breeding anuran extirpations, we examined seston dynamics in 2 stream reaches with tadpoles (El Cope) and 2 without (Fortuna) in the Panamanian uplands. All reaches are high gradient with annual average discharge ranging from 46-102 L/s. Samples were collected multiple times per month at various discharges, sieved into fine (<754μm, >98μm) and very fine (<98μm, >1.6μm) fractions, and processed to estimate ash-free dry mass (AFDM), total C, and total N. Average annual concentrations ranged from 0.52- 2.51 mg/L (fine) and 2.04-3.14 mg/L (very fine), and total export ranged from 0.27-7,981 mg/s across all streams. On average, very fine particles comprised 78% of export from El Cope sites and 61% from Fortuna streams. Average total N export ranged from 5.32-30.53 mg/s in El Cope sites and 1.71-6.04 mg/s at Fortuna. Average particle quality (C/N) in El Cope streams was higher (7.6) than Fortuna streams (11.5). Lower export of very fine particles and lower seston quality in Fortuna streams suggests the loss of tadpoles may influence seston dynamics and quality in these systems.

  13. Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2001-01-01

    The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that would represent all gaged and ungaged tributaries to Sebago Lake. Outside the PWD tributary-monitoring program, the largest ungaged tributary to Sebago Lake contains 1.5 percent of the area draining to the lake. In the absence of unique point or nonpoint sources of phosphorus, ungaged tributaries are unlikely to have total phosphorus concentrations that differ significantly from those in the small tributaries that have concentration data. The regression method, also known as the rating-curve method, was used to estimate the annual total phosphorus load for Crooked River, Northwest River, and Rich Mill Pond Outlet for water years 1996-98. The MOVE.1 method was used to estimate daily streamflows for the regression method at Northwest River and Rich Mill Pond Outlet, where streamflows were not continuously monitored. An averaging method also was used to compute annual loads at the three sites. The difference between the regression estimate and the averaging estimate for each of the three tributaries was consistent with what was expected from previous studies.

  14. A benefit-cost analysis of ten tree species in Modesto, California, U.S.A

    Treesearch

    E.G. McPherson

    2003-01-01

    Tree work records for ten species were analyzed to estimate average annual management costs by dbh class for six activity areas. Average annual benefits were calculated by dbh class for each species with computer modeling. Average annual net benefits per tree were greatest for London plane (Platanus acerifolia) ($178.57), hackberry (...

  15. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrhart, Brian David; Gill, David Dennis

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is amore » fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.« less

  16. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya.

    PubMed

    Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu

    2013-08-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of <0.02-0.7±0.2 Bq l(-1) in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).

  17. Nitrogen transport from tallgrass prairie watersheds

    USGS Publications Warehouse

    Dodds, W.K.; Blair, J.M.; Henebry, G.M.; Koelliker, J.K.; Ramundo, R.; Tate, C.M.

    1996-01-01

    Discharge and N content of surface water flowing from four Karat watersheds on Konza Prairie Research Natural Area, Kansas, managed with different burn frequencies, were monitored from 1986 to 1992. The goal was to establish the influence of natural processes (climate, fire, and bison grazing) on N transport and concentration in streams. Streams were characterized by variable flow, under conditions that included an extreme flood and a drought during which all channels were dry for over a year. The estimated groundwater/stream water discharge ratio varied between 0.15 to 6.41. Annual N transport by streams, averaged across all watersheds and years, was 0.16 kg N ha-1 yr-1. Annual N transport per unit area also increased as the watershed area increased and as precipitation increased. Total annual transport of N horn the prairie via streams ranged from 0.01 to 6.0% of the N input from precipitation. Nitrate and total N concentrations in surface water decreased (P < 0.001, r values ranged from 0.140.26) as length of time since last fire increased. Increased watershed area was correlated negatively (P < 0.0001) to stream water concentrations of NO3-N and total N (r values = -0.43 and -0.20, respectively). Low N concentration is typical of these streams, with NH4/+-N concentrations below 1.0 ??g L-1, NO3-N ranging from below 1.4 to 392 ??g L-1, and total N from 3.0 to 714 ??g L-1. These data provide an important baseline for evaluating N transport and stream water quality from unfertilized grasslands.

  18. MEASUREMENT OF RADON CONCENTRATION IN DWELLINGS IN THE REGION OF HIGHEST LUNG CANCER INCIDENCE IN INDIA.

    PubMed

    Zoliana, B; Rohmingliana, P C; Sahoo, B K; Mishra, R; Mayya, Y S

    2016-10-01

    Indoor radon/thoron concentration has been measured in Aizawl district, Mizoram, India, which has the highest lung cancer incidence rates among males and females in India. Simultaneously, radon flux emanated from the surrounding soil of the dwellings was observed in selected places. The annual average value of concentration of radon(thoron) of Aizawl district is 48.8(22.65) Bq m -3 with a geometric standard deviation of 1.25(1.58). Measured radon flux from the soil has an average value of 22.6 mBq m -2 s -1 These results were found to be much below the harmful effect or action level as indicated by the World Health Organisation. On the other hand, food habit and high-level consumption of tobacco and its products in the district have been found to increase the risk of lung cancer incidence in the district. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Comparative performance of short-term diffusion barrier charcoal canisters and long-term alpha-track monitors for indoor 222Rn measurements.

    PubMed

    Martz, D E; George, J L; Langner, G H

    1991-04-01

    The accuracy and precision of indoor 222Rn measurements obtained with the use of diffusion barrier charcoal canisters (DBCC) under actual field conditions were determined by comparing the integrated average of 26 successive 7-d exposures of DBCC in each of 16 occupied residences over a 6-mo period with simultaneous measurements using four types of commercially available alpha-track monitors (ATM) and one type of scintillation chamber continuous 222Rn monitor. The results suggest that properly calibrated DBCCs provide very good estimates of the integrated 222Rn concentrations in residential structures over the standard 1-wk exposure period despite the occurrence of large diurnal variations in the actual 222Rn concentrations. The results also suggest that a relatively small number of 1-wk DBCC measurements at selected times throughout the calendar year would provide estimates of the annual average indoor 222Rn concentrations that compare favorably with single long-term ATM measurements.

  20. Temporal variability of benzene concentration in the ambient air of Delhi: a comparative assessment of pre- and post-CNG periods.

    PubMed

    Khillare, P S; Hoque, Raza Rafiqul; Shridhar, Vijay; Agarwal, Tripti; Balachandran, S

    2008-06-15

    CNG (compressed natural gas) was fully implemented in public transport system in Delhi in December 2002. The study assesses the benzene concentration trends at two busy traffic intersections and a background site in Delhi, India. Monitoring was done for two different time periods viz; in the year 2001-2002 (pre-CNG) and two winter months (January and February) of the year 2007 (post-CNG) to assess the impact of various policy measures adopted by the government of Delhi to improve the air quality in the city. Annual average benzene concentration for the pre-CNG period was found to be 86.47+/-53.24 microg m(-3). Average benzene concentrations for the winter months (January-February) of pre- and post-CNG periods were 116.32+/-51.65 microg m(-3) and 187.49+/-22.50 microg m(-3), respectively. Enhanced values could be solely attributed to the increase in the vehicular population from 3.5 million in the year 2001-2002 to approximately 5.1 millions in the year 2007.

  1. New Correction Factors Based on Seasonal Variability of Outdoor Temperature for Estimating Annual Radon Concentrations in UK.

    PubMed

    Daraktchieva, Z

    2017-06-01

    Indoor radon concentrations generally vary with season. Radon gas enters buildings from beneath due to a small air pressure difference between the inside of a house and outdoors. This underpressure which draws soil gas including radon into the house depends on the difference between the indoor and outdoor temperatures. The variation in a typical house in UK showed that the mean indoor radon concentration reaches a maximum in January and a minimum in July. Sine functions were used to model the indoor radon data and monthly average outdoor temperatures, covering the period between 2005 and 2014. The analysis showed a strong negative correlation between the modelled indoor radon data and outdoor temperature. This correlation was used to calculate new correction factors that could be used for estimation of annual radon concentration in UK homes. The comparison between the results obtained with the new correction factors and the previously published correction factors showed that the new correction factors perform consistently better on the selected data sets. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Natural radiation and its hazard in copper ore mines in Poland

    NASA Astrophysics Data System (ADS)

    Chau, Nguyen; Jodłowski, Paweł; Kalita, Stefan; Olko, Paweł; Chruściel, Edward; Maksymowicz, Adam; Waligórski, Michał; Bilski, Paweł; Budzanowski, Maciej

    2008-06-01

    The doses of gamma radiation, concentrations of radium isotopes in water and sediments, radon concentration and concentration of alpha potential energy of radon decay products in the copper ore mine and in the mining region in the vicinity of Lubin town in Poland are presented. These data served as a basis for the assessment of radiological hazard to the mine workers and general public. The results of this assessment indicate that radiological hazard in the region does not differ substantially from typical values associated with natural radiation background. The calculated average annual effective dose for copper miners is 1.48 mSv. In general, copper ore mines can be regarded as radiologically safe workplaces.

  3. Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London

    NASA Astrophysics Data System (ADS)

    Ots, Riinu; Vieno, Massimo; Allan, James D.; Reis, Stefan; Nemitz, Eiko; Young, Dominique E.; Coe, Hugh; Di Marco, Chiara; Detournay, Anais; Mackenzie, Ian A.; Green, David C.; Heal, Mathew R.

    2016-11-01

    Cooking organic aerosol (COA) is currently not included in European emission inventories. However, recent positive matrix factorization (PMF) analyses of aerosol mass spectrometer (AMS) measurements have suggested important contributions of COA in several European cities. In this study, emissions of COA were estimated for the UK, based on hourly AMS measurements of COA made at two sites in London (a kerbside site in central London and an urban background site in a residential area close to central London) for the full calendar year of 2012 during the Clean Air for London (ClearfLo) campaign. Iteration of COA emissions estimates and subsequent evaluation and sensitivity experiments were conducted with the EMEP4UK atmospheric chemistry transport modelling system with a horizontal resolution of 5 km × 5 km. The spatial distribution of these emissions was based on workday population density derived from the 2011 census data. The estimated UK annual COA emission was 7.4 Gg per year, which is an almost 10 % addition to the officially reported UK national total anthropogenic emissions of PM2.5 (82 Gg in 2012), corresponding to 320 mg person-1 day-1 on average. Weekday and weekend diurnal variation in COA emissions were also based on the AMS measurements. Modelled concentrations of COA were then independently evaluated against AMS-derived COA measurements from another city and time period (Manchester, January-February 2007), as well as with COA estimated by a chemical mass balance model of measurements for a 2-week period at the Harwell rural site (˜ 80 km west of central London). The modelled annual average contribution of COA to ambient particulate matter (PM) in central London was between 1 and 2 µg m-3 (˜ 20 % of total measured OA1) and between 0.5 and 0.7 µg m-3 in other major cities in England (Manchester, Birmingham, Leeds). It was also shown that cities smaller than London can have a central hotspot of population density of smaller area than the computational grid cell, in which case higher localized COA concentrations than modelled here may be expected. Modelled COA concentrations dropped rapidly outside of major urban areas (annual average of 0.12 µg m-3 for the Harwell location), indicating that although COA can be a notable component in urban air, it does not have a significant effect on PM concentrations on rural areas. The possibility that the AMS-PMF apportionment measurements overestimate COA concentrations by up to a factor of 2 is discussed. Since COA is a primary emission, any downward adjustments in COA emissions would lead to a proportional linear downward scaling in the absolute magnitudes of COA concentrations simulated in the model.

  4. Evaluation of gas well setback policy in the Marcellus Shale region of Pennsylvania in relation to emissions of fine particulate matter.

    PubMed

    Banan, Zoya; Gernand, Jeremy M

    2018-04-18

    Shale gas has become an important strategic energy source with considerable potential economic benefits and the potential to reduce greenhouse gas emissions in so far as it displaces coal use. However, there still exist environmental health risks caused by emissions from exploration and production activities. In the United States, states and localities have set different minimum setback policies to reduce the health risks corresponding to the emissions from these locations, but it is unclear whether these policies are sufficient. This study uses a Gaussian plume model to evaluate the probability of exposure exceedance from EPA concentration limits for PM2.5 at various locations around a generic wellsite in the Marcellus shale region. A set of meteorological data monitored at ten different stations across Marcellus shale gas region in Pennsylvania during 2015 serves as an input to this model. Results indicate that even though the current setback distance policy in Pennsylvania (500 ft. or 152.4 m) might be effective in some cases, exposure limit exceedance occurs frequently at this distance with higher than average emission rates and/or greater number of wells per wellpad. Setback distances should be 736 m to ensure compliance with the daily average concentration of PM2.5, and a function of the number of wells to comply with the annual average PM2.5 exposure standard. The Marcellus Shale gas is known as a significant source of criteria pollutants and studies show that the current setback distance in Pennsylvania is not adequate to protect the residents from exceeding the established limits. Even an effective setback distance to meet the annual exposure limit may not be adequate to meet the daily limit. The probability of exceeding the annual limit increases with number of wells per site. We use a probabilistic dispersion model to introduce a technical basis to select appropriate setback distances.

  5. Radon in Ingleborough / Clapham Cave, North Yorkshire, UK.

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin

    2015-04-01

    Atmospheric radon concentration was measured at Ingleborough Cave, North Yorkshire during the summer of 2004, and the autumn / winter of 2004/5. Significantly, Ingleborough Cave forms part of a larger system which includes the world famous Gaping Gill pothole. This plunges 105 m (334 ft), contains the tallest unbroken waterfall in England and one of the largest known underground chambers in the UK. Measurements were taken to assess the effects of seasonal and spatial variation, elevation and ventilation on radon concentration in Ingleborough. In this study personal dose exposures for three groups of cave user were identified, and the performance of a variety of radon detection systems evaluated. Summer radon concentrations inside the cave peaked at around 7,000 Bq m-3, although average concentrations were less than 5,000 Bq m-3. During the winter measurement period, average concentrations were around 100 Bq m-3, and a winter / summer ration therefore of 47,4. The average annual radon concentration exceeded the legislative limitations for the workplace of 400 Bq m-3 due in part to a failed fan in the ventilation system. When the fan was running we noted an 80% reduction in radon concentrations although reliability of the fan was problematic due to extensive but relatively rare flooding of the cave system. The radon dose experienced by cave workers and guides in this study exceeded the Ionisation Radiation Regulations limit of 5 mSv/annum, and highlighted that for health and safety reasons the ventilation system should be fully operational during the high radon concentration summer months. Keywords: Radon, Cave, Ingleborough, Detection methods

  6. Analysis of trends of water quality and streamflow in the Blackstone, Branch, Pawtuxet, and Pawcatuck Rivers, Massachusetts and Rhode Island, 1979 to 2015

    USGS Publications Warehouse

    Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.

    2017-02-21

    Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.

  7. Explanatory characteristics for nutrient concentrations and loads in the Sava River Catchment and cross-regionally

    NASA Astrophysics Data System (ADS)

    Levi, L.; Cvetkovic, V.; Destouni, G.

    2015-12-01

    This study compiles estimates of waterborne nutrient concentrations and loads in the Sava River Catchment (SRC). Based on this compilation, we investigate hotspots of nutrient inputs and retention along the river, as well as concentration and load correlations with river discharge and various human drivers of excess nutrient inputs to the SRC. For cross-regional assessment and possible generalization, we also compare corresponding results between the SRC and the Baltic Sea Drainage Basin (BSDB). In the SRC, one small incremental subcatchment, which is located just downstream of Zagreb and has the highest population density among the SRC subcatchments, is identified as a major hotspot for net loading (input minus retention) of both total nitrogen (TN) and total phosphorus (TP) to the river and through it to downstream areas of the SRC. The other SRC subcatchments exhibit relatively similar characteristics with smaller net nutrient loading. The annual loads of both TN and TP along the Sava River exhibit dominant temporal variability with considerably higher correlation with annual river discharge (R2 = 0.51 and 0.28, respectively) than that of annual average nutrient concentrations (R2 = 0.0 versus discharge for both TN and TP). Nutrient concentrations exhibit instead dominant spatial variability with relatively high correlation with population density among the SRC subcatchments (R2=0.43-0.64). These SRC correlation characteristics compare well with corresponding ones for the BSDB, even though the two regions are quite different in their hydroclimatic, agricultural and wastewater treatment conditions. Such cross-regional consistency in dominant variability type and explanatory catchment characteristics may be a useful generalization basis, worthy of further investigation, for at least first-order estimation of nutrient concentration and load conditions in less data-rich regions.

  8. Assessment of phytoplankton resources suitable for bigheaded carps in Lake Michigan derived from remote sensing and bioenergetics

    USGS Publications Warehouse

    Anderson, Karl R.; Chapman, Duane C.; Wynne, Tim T.; Paukert, Craig P.

    2017-01-01

    We used bioenergetic simulations combined with satellite-measured water temperature and estimates of algal food availability to predict the habitat suitability of Lake Michigan for adult silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis). Depending on water temperature, we found that bigheaded carp require ambient algal concentrations between 1 and 7 μg chlorophyll/L or between 0.25 × 105 and 1.20 × 105 cells/mL Microcystis to maintain body weight. When the bioenergetics model is forced with the observed average annual temperature cycle, our simulations predicted silver carp bioenergetics predicted annual weight change ranging from 9% weight loss to 23% gain; bighead carp ranged from 68 to 177% weight gain. Algal concentrations b4 μg chlorophyll/L and b200,000 cells/mL were below the detection limits of the remote sensing method. However, all areas with detectable algae have sufficient concentrations of algal foods for bigheaded carp weight-maintenance and growth. Those areas are predominately along the nearshore areas.

  9. Snowpack chemistry at selected sites in Colorado and New Mexico during winter 1999-2000

    USGS Publications Warehouse

    Ingersoll, George P.

    2000-01-01

    Snowpacks at two high-elevation (> 3,000 m) sampling sites near McPhee and Sanchez Reservoirs in southern Colorado were selected to collect representative samples of atmospheric deposition to the surrounding watersheds during winter 1999-2000. In February 2000, annual snowpacks at two sites were sampled to determine concentrations of nitrate and sulfate; concentrations of the trace elements arsenic, mercury, and selenium; and the sulfur isotope ratios that result from atmospheric deposition to the area. Snowpack chemistry data at the two sites sampled in 1999-2000 are compared to 1993-99 averages at 10 other snow-sampling sites in Colorado and New Mexico that generally are downwind of the Four Corners area of the southwestern United States. Although concentrations of ammonium and nitrate in the 1999-2000 snowpacks were fairly typical compared to averages established at nearby sites in southern Colorado and northern New Mexico, chloride and sulfate concentrations were below the 1993-99 average, while arsenic, mercury, and selenium in snow were much below the 1993-99 average. However, very similar sulfur-isotope ratios (that are not a function of precipitation amounts) deposited in snowpacks at the nearby sites indicate the snowpack chemistries at the new sampling locations near McPhee and Sanchez reservoirs were affected by similar sources of sulfate. Representative samples of coal burned during the 1999-2000 snowfall season at three power plants near Four Corners also were analyzed for sulfur content and trace elements. Results from separate, independent laboratories show similar concentrations and provide an initial baseline that will be used for general comparisons of coal chemistry to snowpack chemistry.

  10. Sediment transport and water-quality characteristics and loads, White River, northwestern Colorado, water years 1975-88

    USGS Publications Warehouse

    Tobin, R.L.

    1993-01-01

    Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.

  11. 40 CFR Table Jj-1 to Subpart Jj of... - Animal Population Threshold Level Below Which Facilities Are Not Required To Report Emissions...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions Under Subpart JJ 1 2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...

  12. 40 CFR Table Jj-1 to Subpart Jj of... - Animal Population Threshold Level Below Which Facilities Are Not Required To Report Emissions...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions Under Subpart JJ 1,2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...

  13. 50 CFR 218.112 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... average of 119274 annually). (ii) Pinnipeds: (A) Northern elephant seal (Mirounga angustirostris)—1890 (an...) Short-beaked common dolphin—10 (an average of 2 annually); (vii) Northern elephant seal—10 (an average...

  14. 50 CFR 218.112 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... average of 119274 annually). (ii) Pinnipeds: (A) Northern elephant seal (Mirounga angustirostris)—1890 (an...) Short-beaked common dolphin—10 (an average of 2 annually); (vii) Northern elephant seal—10 (an average...

  15. 50 CFR 218.112 - Permissible methods of taking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... average of 119274 annually). (ii) Pinnipeds: (A) Northern elephant seal (Mirounga angustirostris)—1890 (an...) Short-beaked common dolphin—10 (an average of 2 annually); (vii) Northern elephant seal—10 (an average...

  16. Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study.

    PubMed

    Mandin, Corinne; Trantallidi, Marilena; Cattaneo, Andrea; Canha, Nuno; Mihucz, Victor G; Szigeti, Tamás; Mabilia, Rosanna; Perreca, Erica; Spinazzè, Andrea; Fossati, Serena; De Kluizenaar, Yvonne; Cornelissen, Eric; Sakellaris, Ioannis; Saraga, Dikaia; Hänninen, Otto; De Oliveira Fernandes, Eduardo; Ventura, Gabriela; Wolkoff, Peder; Carrer, Paolo; Bartzis, John

    2017-02-01

    The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings. Thirty-seven office buildings participated in the summer campaign (2012), and thirty-five participated in the winter campaign (2012-2013). Four rooms were investigated per building. The target pollutants were twelve volatile organic compounds, seven aldehydes, ozone, nitrogen dioxide and particulate matter with aerodynamic diameter <2.5μm (PM 2.5 ). Compared to other studies in office buildings, the benzene, toluene, ethylbenzene, and xylene concentrations were lower in OFFICAIR buildings, while the α-pinene and d-limonene concentrations were higher, and the aldehyde, nitrogen dioxide and PM 2.5 concentrations were of the same order of magnitude. When comparing summer and winter, significantly higher concentrations were measured in summer for formaldehyde and ozone, and in winter for benzene, α-pinene, d-limonene, and nitrogen dioxide. The terpene and 2-ethylhexanol concentrations showed heterogeneity within buildings regardless of the season. Considering the average of the summer and winter concentrations, the acetaldehyde and hexanal concentrations tended to increase by 4-5% on average with every floor level increase, and the nitrogen dioxide concentration tended to decrease by 3% on average with every floor level increase. A preliminary evaluation of IAQ in terms of potential irritative and respiratory health effects was performed. The 5-day median and maximum indoor air concentrations of formaldehyde and ozone did not exceed their respective WHO air quality guidelines, and those of acrolein, α-pinene, and d-limonene were lower than their estimated thresholds for irritative and respiratory effects. PM 2.5 indoor concentrations were higher than the 24-h and annual WHO ambient air quality guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Radiation dose-dependent risk on individuals due to ingestion of uranium and radon concentration in drinking water samples of four districts of Haryana, India

    NASA Astrophysics Data System (ADS)

    Panghal, Amanjeet; Kumar, Ajay; Kumar, Suneel; Singh, Joga; Sharma, Sumit; Singh, Parminder; Mehra, Rohit; Bajwa, B. S.

    2017-06-01

    Uranium gets into drinking water when the minerals containing uranium are dissolved in groundwater. Uranium and radon concentrations have been measured in drinking water samples from different water sources such as hand pumps, tube wells and bore wells at different depths from various locations of four districts (Jind, Rohtak, Panipat and Sonipat) of Haryana, India, using the LED flourimetry technique and RAD7, electronic silicon solid state detector. The uranium (238U) and radon (222Rn) concentrations in water samples have been found to vary from 1.07 to 40.25 µg L-1 with an average of 17.91 µg L-1 and 16.06 ± 0.97 to 57.35 ± 1.28 Bq L-1 with an average of 32.98 ± 2.45 Bq L-1, respectively. The observed value of radon concentration in 43 samples exceeded the recommended limits of 11 Bq L-1 (USEPA) and all the values are within the European Commission recommended limit of 100 Bq L-1. The average value of uranium concentration is observed to be within the safe limit recommended by World Health Organization (WHO) and Atomic Energy Regulatory Board. The annual effective dose has also been measured in all the water samples and is found to be below the prescribed dose limit of 100 µSv y-1 recommended by WHO. Risk assessment of uranium in water is also calculated using life time cancer risk, life time average daily dose and hazard quotient. The high uranium concentration observed in certain areas is due to interaction of ground water with the soil formation of this region and the local subsurface geology of the region.

  18. Preliminary survey of radioactivity level in Thai medicinal herb plants

    NASA Astrophysics Data System (ADS)

    Kranrod, C.; Chanyotha, S.; Kritsananuwat, R.; Ploykrathok, T.; Pengvanich, P.; Tumnoi, Y.; Thumvijit, T.; Sriburee, S.

    2017-06-01

    In this research, the natural radioactivity concentrations and their respective annual effective dose of the naturally occurring radionuclides 226Ra, 228Ra and 40K in selected medicinal herb plants were investigated. Seven kinds of popular Thai medicinal herb plants had been studied: turmeric, ginger, safflower, moringa, gotu kola, garlic and alexandria senna. The radiological risk associated with the use of these medicinal plants was assessed. The activity concentrations of 226Ra, 228Ra and 40K were determined using the gamma-ray spectrometry technique. The radioactivity concentrations were found to range from less than 0.20 to 6.67 Bqkg-1 for 226Ra, less than 0.10 to 9.69 Bqkg-1 for 228Ra, and from 159.42 to 1216.25 Bqkg-1 for 40K. Gotu kola showed the highest activity concentrations of 226Ra and 228Ra, while ginger showed the highest activity concentration of 40K. The total annual effective dose due to ingestion of these herb plants were found to range from 0.0028 to 0.0097 mSvy-1 with an average value of 0.0060±0.0001 mSvy-1. The results conclude that the Thai medicinal herb plants samples from this research are considered safe in terms of the radiological hazard.

  19. Earth radiation budget measurements from satellites and their interpretation for climate modeling and studies

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.

    1980-01-01

    The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.

  20. Assessment of natural radioactivity and associated radiological risks from tiles used in Kajang, Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullahi, S.; Ismail, A. F.; Samat, S. B.; Yasir, M. S.

    2018-04-01

    The activity concentration and radiological risk of commonly used flooring materials (tiles) in Malaysia were studied. The natural radionuclide concentrations of 226Ra, 232Th and 40K were measured using high-purity germanium detector. The average concentration of 226Ra, 232Th and 40K in the samples were 65.75±1.1 Bq kg-1, 61.92±1.43 Bq kg-1 and 617.77±6.72 Bq kg-1 respectively. The mean concentration of radium equivalent activity, absorbed dose rate, external and internal hazard indices and annual effective dose equivalent were 195.21±2.88 Bq kg-1, 92.75±1.27 nGy h-1, 0.53±0.01, 0.7±0.01 and 0.44±0.0 mSv y-1 respectively. The aim was to assess the possible radiological risks attributed from the tile materials. Even though, the activity concentrations were higher than worldwide average values, but none of the radiological impact parameters exceeded the maximum recommended values. Hence, it was concluded that, contribution of tiles to radiation exposure is negligible and therefore, radiologically safe to use as building materials.

  1. Study of dissolved oxygen content in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Grigoryeva, N. I.

    2017-09-01

    Seasonal changes in the dissolved oxygen (DO) content in water were analyzed based on long-term observations (2006-2013) in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan). It was found that the monthly average DO concentrations at the bottom of the strait were significantly lower in summer than the average annual long-term data. The minimum DO contents were recorded during four months, from July to October. It was shown that the DO content in water depended on changes in current directions in the strait: lower DO contents resulted from hypoxic water inflow, mostly from Amur Bay.

  2. On-road PM2.5 pollution exposure in multiple transport microenvironments in Delhi

    NASA Astrophysics Data System (ADS)

    Goel, Rahul; Gani, Shahzad; Guttikunda, Sarath K.; Wilson, Daniel; Tiwari, Geetam

    2015-12-01

    PM2.5 pollution in Delhi averaged 150 μg/m3 from 2012 through 2014, which is 15 times higher than the World Health Organization's annual-average guideline. For this setting, we present on-road exposure of PM2.5 concentrations for 11 transport microenvironments along a fixed 8.3-km arterial route, during morning rush hour. The data collection was carried out using a portable TSI DustTrak DRX 8433 aerosol monitor, between January and May (2014). The monthly-average measured ambient concentrations varied from 130 μg/m3 to 250 μg/m3. The on-road PM2.5 concentrations exceeded the ambient measurements by an average of 40% for walking, 10% for cycle, 30% for motorised two wheeler (2W), 30% for open-windowed (OW) car, 30% for auto rickshaw, 20% for air-conditioned as well as for OW bus, 20% for bus stop, and 30% for underground metro station. On the other hand, concentrations were lower by 50% inside air-conditioned (AC) car and 20% inside the metro rail carriage. We find that the percent exceedance for open modes (cycle, auto rickshaw, 2W, OW car, and OW bus) reduces non-linearly with increasing ambient concentration. The reduction is steeper at concentrations lower than 150 μg/m3 than at higher concentrations. After accounting for air inhalation rate and speed of travel, PM2.5 mass uptake per kilometer during cycling is 9 times of AC car, the mode with the lowest exposure. At current level of concentrations, an hour of cycling in Delhi during morning rush-hour period results in PM2.5 dose which is 40% higher than an entire-day dose in cities like Tokyo, London, and New York, where ambient concentrations range from 10 to 20 μg/m3.

  3. Relationship of sediment discharge to streamflow

    USGS Publications Warehouse

    Colby, B.R.

    1956-01-01

    The relationship between rate of sediment discharge and rate of water discharge at a cross section of a stream is frequently expressed by an average curve. This curve is the sediment rating curve. It has been widely used in the computation of average sediment discharge from water discharge for periods when sediment samples were not collected. This report discusses primarily the applications of sediment rating curves for periods during which at least occasional sediment samples were collected. Because sediment rating curves are of many kinds, the selection of the correct kind for each use is important. Each curve should be carefully prepared. In particular, the correct dependent variable must be used or the slope of the sediment rating curve may be incorrect for computing sediment discharges. Sediment rating curves and their applications were studied for the following gaging stations: 1. Niobrara River near Cody, Nebr. 2. Colorado River near Grand Canyon, Ariz. 3. Rio Grande at San Martial, N. Mex. 4. Rio Puerto near Bernardo, N. Mex. 5. White River near Kadoka, S. Dak. 6. Sandusky River near Fremont, Ohio Except for the Sandusky River and the Rio Puerco, which transport mostly fine sediment, one instantaneous sediment rating curve was prepared for the discharge of suspended sands, at each station, and another for the discharge of sediment finer than 0.082 millimeter. Each curve was studied separately, and by trial-end-error multiple correlation some of the factors that cause scatter from the sediment rating curves were determined. Average velocity at the cross section, Water temperature, and erratic fluctuations in concentration seemed to be the three major factors that caused departures from the sediment rating curves for suspended sands. The concentration of suspended sands varied with about the 2.8 power of the mean velocity for the four sediment, rating curves for suspended sands. The effect of water temperature was not so consistent as that of velocity and theoretically should vary considerably with differences in the size composition of the suspended sands. Scatter from the sediment rating curves for sediments finer than 0.082 millimeter seemed to be caused by changes in supply of these sediments. Some of the scatter could be explained by seasonal variations, by a pattern of change in concentration of fine sediment following a rise, or by source of the runoff as indicated by the measured relative flows of certain tributaries. Daily or instantaneous sediment rating curves adjusted for factors that account for some of the scatter from an average curve often can be used to compute approximate daily, monthly, and annual sediment discharges. Accuracy of the computed sediment discharges should be better than average for streams that transport mostly sands rather than fine sediments and for some ephemeral or intermittent streams, such as Rio Puerco, in semiarid regions. Accuracy of computed sediment discharges can be much improved for many streams by shifting the sediment rating curve on the basis of 2 or 4 measurements of sediment discharge per month. Of 26 annual sediment discharges that were computed by shifting sediment rating curves to either 2 or 4 measured sediment discharges per month, 18 were within I0 percent of the annual-sediment discharges that were computed on the basis of a daily sampling program. Monthly and daily sediment discharges computed from daily or instantaneous sediment rating curves, either shifted or unshifted, were less accurate than similarly computed annual sediment discharges. Even so, the difference in cost between occasional sediment samples and daily samples is so great that the added accuracy from daily sampling may not Justify the added cost. Monthly and annual sediment-rating curves can be applied simply, with adjustments if required, to compute monthly and annual sediment discharges with reasonably good accuracy for gaging stations like the Rio Puerco near Bernardo,

  4. Assessment of natural radioactivity and radiation hazard indices in soil samples of East Khasi Hills District, Meghalaya, India

    NASA Astrophysics Data System (ADS)

    Lyngkhoi, B.; Nongkynrih, P.

    2018-04-01

    The Activity Concentrations of naturally occurring radionuclides such as 40K, 238U and 232Th were determined from 20 (twenty) villages of East Khasi Hills District of Meghalaya, India using gamma-ray spectroscopy. This District is adjacent to the South-West Khasi Hills District located in the same state where heavy deposit of uranium has been identified [1]. The measured activities of 40K, 238U and 232Th were found ranging from 93.4 to 606.3, 23.2 to 140.9 and 25.1 to 158.9 Bq kg-1 with their average values of 207.9, 45.6 and 63.8 Bq kg-1, respectively. The obtained value of activity concentration for 40K is lower than the world average value 400.0 Bq kg-1 while for 238U and 232Th, the average concentrations are above the world average values 35.0 and 30.0 Bq kg-1, respectively. The calculated Absorbed Dose Rate gamma-radiation of the natural radionuclides ranged from 37.4 to 186.5 nGy h-1 with an average of 71.3 nGy h-1. The outdoor Annual Effective Dose Rate received by an individual ranged from 50.0-230.0 µSv y-1 with an average value of 87.5 µSv y-1. The physical and chemical properties of the soil have no effects on the naturally occurring radionuclides concentrations. This has been revealed by the results obtained as there is no positive correlation between physical/chemical parameters and the radionuclides concentrations in the soil samples [2]. It is observed that good positive correlations among the radionuclides concentrations and with the measured dose rate prevail. The findings show that the values of external and internal hazard indices resulting from the measured activity concentrations of natural radionuclides in soil from the collected sampling areas are less than the International Recommended safety limits of 1 (unity) with the exception of Mylliem (1.12) where the External hazard index is slightly higher.

  5. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment.

    PubMed

    Nödler, Karsten; Tsakiri, Maria; Aloupi, Maria; Gatidou, Georgia; Stasinakis, Athanasios S; Licha, Tobias

    2016-04-01

    Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L(-1) and 6.1/522 ng L(-1), respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two sampling locations irgarol 1051 exceeded its annual average EQS value but not the maximum allowable concentration of 16 ng L(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China

    NASA Astrophysics Data System (ADS)

    Meng, C. C.; Wang, L. T.; Zhang, F. F.; Wei, Z.; Ma, S. M.; Ma, X.; Yang, J.

    2016-05-01

    In order to explore the spatial, temporal, and chemical characteristics of fine particulate matter (PM2.5) pollution in Handan city, China, a comprehensive dataset including continuous online observations at four air quality monitoring stations in 2013 and 2014, and the concentrations of water-soluble inorganic ions (WSII) (NO3-, SO42 -, NH4+, Cl-, Na+, Mg2 +, K+, Ca2 +) in PM2.5 samples collected in four representative seasons in 2013 and 2014 are analyzed in this study. And the principal component analysis (PCA) method is applied to identify the source of WSII in Handan. Our results indicate that PM2.5 concentration decreased from 139.4 μg/m3 in 2013 to 116.0 μg/m3 in 2014 on annual average. Spatial variations of PM2.5 mass are not pronounced, indicating that PM2.5 is nearly evenly spread over the study area. The seasonal variations of PM2.5 concentration are significant, normally with 1.7 to 2.4 times higher in winter than in summer. The concentrations of TWSII (total water-soluble inorganic ions) remain relatively stable in two years, with annual averages of 63.1 μg/m3 in 2013 and 57.2 μg/m3 in 2014. SNA (SO42 -, NO3-, NH4+) dominates in the TWSII, accounting for ~ 87% of the TWSII. Similar to PM2.5, WSII exhibits obvious seasonal variations with higher concentrations in autumn and winter, lower in spring and summer. PM2.5 samples are acidic in spring, summer and autumn of 2013, while in winter of 2013 and all seasons of 2014, they are alkaline. SO42 -, NO3- are formed mainly through homogeneous reactions, heterogeneous reactions also exist in winter. Finally, the major sources of WSII in Handan are identified as the mixture of secondary origin, coal combustion, biomass burning (46.1%), dust sources (25.8%), and motor vehicle (12.3%).

  7. Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China.

    PubMed

    Jiang, Nan; Li, Qiang; Su, Fangcheng; Wang, Qun; Yu, Xue; Kang, Panru; Zhang, Ruiqin; Tang, Xiaoyan

    2018-04-01

    PM 2.5 samples were collected in Zhengzhou during 3years of observation, and chemical characteristics and source contribution were analyzed. Approximately 96% of the daily PM 2.5 concentrations and annual average values exceeded the Chinese National Ambient Air Quality Daily and Annual Standards, indicating serious PM 2.5 pollution. The average concentration of water-soluble inorganic ions was 2.4 times higher in heavily polluted days (daily PM 2.5 concentrations>250μg/m 3 and visibility <3km) than that in other days, with sulfate, nitrate, and ammonium as major ions. According to the ratio of NO 3 - /SO 4 2- , stationary sources are still the dominant source of PM 2.5 and vehicle emission could not be ignored. The ratio of secondary organic carbon to organic carbon indicated that photochemical reactivity in heavily polluted days was more intense than in other days. Crustal elements were the most abundant elements, accounting for more than 60% of 23 elements. Chemical Mass Balance results indicated that the contributions of major sources (i.e., nitrate, sulfate, biomass, carbon and refractory material, coal combustion, soil dust, vehicle, and industry) of PM 2.5 were 13%, 16%, 12%, 2%, 14%, 8%, 7%, and 8% in heavily polluted days and 20%, 18%, 9%, 2%, 27%, 14%, 15%, and 9% in other days, respectively. Extensive combustion activities were the main sources of polycyclic aromatic hydrocarbons during the episode (Jan 1-9, 2015) and the total benzo[a]pyrene equivalency concentrations in heavily polluted days present significant health threat. Because of the effect of regional transport, the pollution level of PM 2.5 in the study area was aggravated. Copyright © 2017. Published by Elsevier B.V.

  8. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and sand concentrations at the South Yuba River (11417500) gage were typically higher than those at the Middle Yuba River (11410000) gage for a given streamflow throughout the three year project period. Factors contributing to differences in sediment loads and grain-size distributions at the Middle Yuba River (11410000) and South Yuba River (11417500) gages include contributing drainage area, flow diversions, and deposition of bed-material-sized sediment in reservoirs upstream of the Middle Yuba River (11410000) gage. Owing to its larger drainage area, higher flows, and absence of man-made structures that restrict sediment movement in the lower basin, the South Yuba River transports a greater and coarser sediment load.

  9. Spatial and seasonal patterns of particulate matter less than 2.5 microns in the Sierra Nevada Mountains, California

    Treesearch

    Ricardo Cisneros; Don Schweizer; Haiganoush Preisler; Deborah H. Bennett; Glenn Shaw; Andrzej Bytnerowicz

    2014-01-01

    This paper presents particulate matter data collected in the California southern Sierra Nevada Mountains (SNM) during 2002 to 2009 from the Central Valley (elevation 91 m) into the SNM (elevation 2,598 m). Annual average concentrations of particles smaller than 2.5 µm in diameter (PM2.5) for all sites during this study ranged from 3.1 to 22.2 µg...

  10. Measurement of the terrestrial and anthropogenic radionuclide concentrations in Bafra Kizilirmak delta (bird sanctuary) in Turkey.

    PubMed

    Mutuk, Halil; Gümüs, Hasan; Turhan, Seref

    2014-01-01

    In this study, the activity concentrations of terrestrial and anthropogenic radionuclides in the soil samples collected from Bafra Kızılırmak Delta were measured by using gamma spectrometry with an NaI(Tl) detector. The average values of activity concentrations of (238)U, (232)Th and (40)K were found to be 37.2±2.8, 33.7±3.1 and 413.0±59.8 Bq kg(-1), respectively. (137)Cs was also measured in some samples. It has a mean value of 13.8±1.0 Bq kg(-1). From the activity concentrations, the absorbed gamma dose rates in outdoor and the corresponding annual effective dose rates and external hazard index (Hex) were estimated.

  11. Combined use of land use regression and BenMAP for estimating public health benefits of reducing PM2.5 in Tianjin, China

    NASA Astrophysics Data System (ADS)

    Chen, Li; Shi, Mengshuang; Li, Suhuan; Bai, Zhipeng; Wang, Zhongliang

    2017-03-01

    To assess the public health benefits of reducing PM2.5 in Tianjin, we created an annual air quality surface with a land use regression (LUR) model conducted at a high spatial resolution (1 km). The predictors included in the final model were population density, road length within a 1000 m buffer, industrial land area within a 2000m buffer and distance to the coast. The fitting R2 and the leave-one-out-cross-validation (LOOCV) R2 of the PM2.5 LUR models were 0.78 and 0.73, respectively, suggesting that the predicted PM2.5 concentrations fitted well with the measured values for the entire year. Daily air quality surfaces were established based on historic concentration data and interpolation method. We evaluated avoided cases of mortality and morbidity in Tianjin, assuming achievement of China's current air quality daily and annual standards (No. GB3095-2012). Reducing the daily average PM2.5 to the daily Class II standard (75 μg/m3), the avoided emergency department visits, the deaths for cardiovascular disease and the deaths for respiratory disease are 85,000 (95% confidence interval (CI), 17,000-150,000), 2000 (95% CI, 920-3100) and 280 (95% CI, 94-460) per year respectively, and the monetary values are 23-42 million yuan, 180-4800 million yuan and 25-670 million yuan per year in 2015 yuan year respectively. Reducing the annual average PM2.5 to the annual Class II standard (35 μg/m3), the avoided emergency department visits, the deaths for cardiovascular disease and the deaths for respiratory disease are 59,000 (95% CI, 12,000-110,000), 1400 (95% CI, 640-2100) and 200 (95% CI, 66-320) per year respectively, and the monetary values are 16-29 million yuan, 130 to 3400 million yuan and 18 to 480 million yuan per year in 2015 yuan year respectively.

  12. Improving the representation of secondary organic aerosol (SOA) in the MOZART-4 global chemical transport model

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Barsanti, K.

    2013-07-01

    The secondary organic aerosol (SOA) module in the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) was updated by replacing existing two-product (2p) parameters with those obtained from two-product volatility basis set (2p-VBS) fits (MZ4-C1), and by treating SOA formation from the following additional volatile organic compounds (VOCs): isoprene, propene and lumped alkenes (MZ4-C2). Strong seasonal and spatial variations in global SOA distributions were demonstrated, with significant differences in the predicted concentrations between the base case and updated model simulations. Updates to the model resulted in significant increases in annual average SOA mass concentrations, particularly for the MZ4-C2 simulation in which the additional SOA precursor VOCs were treated. Annual average SOA concentrations predicted by the MZ4-C2 simulation were 1.00 ± 1.04 μg m-3 in South America, 1.57 ± 1.88 μg m-3 in Indonesia, 0.37 ± 0.27 μg m-3 in the USA, and 0.47 ± 0.29 μg m-3 in Europe with corresponding increases of 178, 406, 311 and 292% over the base-case simulation, respectively, primarily due to inclusion of isoprene. The increases in predicted SOA mass concentrations resulted in corresponding increases in SOA contributions to annual average total aerosol optical depth (AOD) by ~ 1-6%. Estimated global SOA production was 5.8, 6.6 and 19.1 Tg yr-1 with corresponding burdens of 0.22, 0.24 and 0.59 Tg for the base-case, MZ4-C1 and MZ4-C2 simulations, respectively. The predicted SOA budgets fell well within reported ranges for comparable modeling studies, 6.7 to 96 Tg yr-1, but were lower than recently reported observationally constrained values, 50 to 380 Tg yr-1. For MZ4-C2, simulated SOA concentrations at the surface also were in reasonable agreement with comparable modeling studies and observations. Total organic aerosol (OA) mass concentrations at the surface, however, were slightly over-predicted in Europe, Amazonian regions and Malaysian Borneo (Southeast Asia) during certain months of the year, and under-predicted in most sites in Asia; relative to those regions, the model performed better for sites in North America. Overall, with the inclusion of additional SOA precursors (MZ4-C2), namely isoprene, MOZART-4 showed consistently better skill (NMB (normalized mean bias) of -11 vs. -26%) in predicting total OA levels and spatial distributions of SOA as compared with unmodified MOZART-4. Treatment of SOA formation by these known precursors (isoprene, propene and lumped alkenes) may be particularly important when MOZART-4 output is used to generate boundary conditions for regional air quality simulations that require more accurate representation of SOA concentrations and distributions.

  13. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.

  14. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: an ecological study

    PubMed Central

    Morakinyo, Oyewale Mayowa; Adebowale, Ayo Stephen; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley

    2017-01-01

    Objective To assess the health risks associated with exposure to particulate matter (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3). Design The study is an ecological study that used the year 2014 hourly ambient pollution data. Setting The study was conducted in an industrial area located in Pretoria West, South Africa. The area accommodates a coal-fired power station, metallurgical industries such as a coke plant and a manganese smelter. Data and method Estimate of possible health risks from exposure to airborne PM10, SO2, NO2, CO and O3 was performed using the US Environmental Protection Agency human health risk assessment framework. A scenario-assessment approach where normal (average exposure) and worst-case (continuous exposure) scenarios were developed for intermediate (24-hour) and chronic (annual) exposure periods for different exposure groups (infants, children, adults). The normal acute (1-hour) exposure to these pollutants was also determined. Outcome measures Presence or absence of adverse health effects from exposure to airborne pollutants. Results Average annual ambient concentration of PM10, NO2 and SO2 recorded was 48.3±43.4, 11.50±11.6 and 18.68±25.4 µg/m3, respectively, whereas the South African National Ambient Air Quality recommended 40, 40 and 50 µg/m3 for PM10, NO2 and SO2, respectively. Exposure to an hour's concentration of NO2, SO2, CO and O3, an 8-hour concentration of CO and O3, and a 24-hour concentration of PM10, NO2 and SO2 will not likely produce adverse effects to sensitive exposed groups. However, infants and children, rather than adults, are more likely to be affected. Moreover, for chronic annual exposure, PM10, NO2 and SO2 posed a health risk to sensitive individuals, with the severity of risk varying across exposed groups. Conclusions Long-term chronic exposure to airborne PM10, NO2 and SO2 pollutants may result in health risks among the study population. PMID:28289048

  15. Mercury contamination in Idaho bald eagles, Haliaeetus leucocephalus.

    PubMed

    Bechard, Marc J; Perkins, Dusty N; Kaltenecker, Gregory S; Alsup, Steve

    2009-11-01

    Because mercury contamination is potentially threatening to bald eagle (Haliaeetus leucocephalus) populations, we collected molted feathers at nests to determine the level of contamination in bald eagles in the state of Idaho, USA. Eagle feathers contained measurable amounts of cadmium (Cd), chromium (Cr), selenium (Se), lead (Pb), as well as mercury (Hg). Cadmium, Cr, Se, and Pb levels averaged 0.17, 4.68, 2.02, and 1.29 mg/kg dry weight, respectively, and were at or below concentrations indicated as causing reproductive failure in bald eagles. Mercury contamination was found to be the highest averaging 18.74 mg/kg dry weight. Although a concentration of only 7.5 mg/kg dry weight Hg in bird feathers can cause reduced productivity and even sterility, all of the eagles we sampled bred successfully and the population of bald eagles continues to grow annually throughout the state.

  16. The PM2.5 threshold for aerosol extinction in the Beijing megacity

    NASA Astrophysics Data System (ADS)

    Kong, Lingbin; Xin, Jinyuan; Liu, Zirui; Zhang, Kequan; Tang, Guiqian; Zhang, Wenyu; Wang, Yuesi

    2017-10-01

    Particulate pollution has remained at a high level in the megacity of Beijing in the past decade. The PM2.5, PM10, aerosol optical depth (AOD), Angstrom exponent(α), and PM2.5/PM10 ratio (the proportion of PM2.5 in PM10) in Beijing were 70±6 μg m-3, 128±6 μg m-3, 0.57 ± 0.05, 1.10 ± 0.08, 45 ± 4%, respectively, from 2005 to 2014. The annual means of PM concentration, AOD, α, and PM2.5/PM10 ratio decreased slightly during this decade, meanwhile PM concentration increased in the winter. Furthermore, we found there were thresholds of PM2.5 concentration for aerosol extinction. When the PM concentration was lower than a certain threshold, AOD decreased quickly with the decline of PM concentration. To make the improvement of the particle pollution more noticeable, the PM concentration should be controlled under the threshold. The annual averaged threshold is 63 μg m-3, and the threshold values reached the maximum of 74 μg m-3 in spring, ranged from 54 to 56 μg m-3 in the three other seasons. The threshold values ranged from 55 to 77 μg m-3 under other relevant factors, including air masses directions and relative humidity.

  17. 20 CFR 30.811 - How will OWCP calculate the duration and extent of a covered Part E employee's initial period of...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... exceed 50 percent of his or her average annual wage, OWCP will pay the employee $15,000 as compensation... did not exceed 75 percent of such average annual wage, OWCP will pay the employee $10,000 as... EEOICPA Determinations of Average Annual Wage and Percentages of Loss § 30.811 How will OWCP calculate the...

  18. 20 CFR 30.811 - How will OWCP calculate the duration and extent of a covered Part E employee's initial period of...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... exceed 50 percent of his or her average annual wage, OWCP will pay the employee $15,000 as compensation... did not exceed 75 percent of such average annual wage, OWCP will pay the employee $10,000 as... EEOICPA Determinations of Average Annual Wage and Percentages of Loss § 30.811 How will OWCP calculate the...

  19. Meteorological detrending of primary and secondary pollutant concentrations: Method application and evaluation using long-term (2000-2012) data in Atlanta

    NASA Astrophysics Data System (ADS)

    Henneman, Lucas R. F.; Holmes, Heather A.; Mulholland, James A.; Russell, Armistead G.

    2015-10-01

    The effectiveness of air pollution regulations and controls are evaluated based on measured air pollutant concentrations. Air pollution levels, however, are highly sensitive to both emissions and meteorological fluctuations. Therefore, an assessment of the change in air pollutant levels due to emissions controls must account for these meteorological fluctuations. Two empirical methods to quantify the impact of meteorology on pollutant levels are discussed and applied to the 13-year time period between 2000 and 2012 in Atlanta, GA. The methods employ Kolmogorov-Zurbenko filters and linear regressions to detrended pollutant signals into long-term, seasonal, weekly, short-term, and white-noise components. The methods differ in how changes in weekly and holiday emissions are accounted for. Both can provide meteorological adjustments on a daily basis for future use in acute health analyses. The meteorological impact on daily signals of ozone, NOx, CO, SO2, PM2.5, and PM species are quantified. Analyses show that the substantial decreases in seasonal averages of NOx and SO2 correspond with controls implemented in the metropolitan Atlanta area. Detrending allows for the impacts of some controls to be observed with averaging times of as little as 3 months. Annual average concentrations of NOx, SO2, and CO have all fallen by at least 50% since 2000. Reductions in NOx levels, however, do not lead to uniform reductions in ozone. While average detrended summer average maximum daily average 8 h ozone (MDA8h O3) levels fell by 4% (2.2 ± 2 ppb) between 2000 and 2012, winter averages have increased by 12% (3.8 ± 1.4 ppb), providing further evidence that high ozone levels are NOx-limited and lower ozone concentrations are NOx-inhibited. High ozone days (with MDA8h O3 greater than 60 ppb) decreased both in number and in magnitude over the study period.

  20. Acidic deposition on Taiwan and associated precipitation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, N.H.; Chen, C.S.; Peng, C.M.

    1996-12-31

    The acidic deposition on Taiwan is assessed based on precipitation chemistry observed through a nationwide monitoring network of acid rain. Ten sites have been operated since 1990. These sites were further categorized into five categories, namely, the northern (A), middle (B), southern (C), and eastern (D) Taiwan, and background (E), according to their geographical consideration. As a result, the averages (1990-1994) of pH values for the northern sites were between 4.46-4.63, whereas, the rest sites, excluding a southern site near the industrial area, had their averages greater than 5.0. The average concentrations of sulfate ions for these sites of meanmore » pH < 5.0, ranged between 103 and 148 {mu}eq {ell}{sup -1}. The mean concentrations of nitrate ions for urban sites were about 30-50% of sulfate concentrations. Using these sulfate and nitrate concentrations and rainfall data, the deposition fluxes for these sites were calculated. The overall averages of annual sulfate deposition for five areas (categories A-E) were 118, 60, 64, 60 and 25 kg ha{sup -1}, respectively, which were generally greater than those of 20-40 kg ha{sup -1} observed in the eastern USA. For the nitrate deposition, these five areas had the averages of 59, 38, 33, 40 and 16 kg ha{sup -1}, respectively. One of the important reasons why Taiwan had received higher sulfate and nitrate deposition was due to a great amount of precipitation over this subtropical island. For the northern Taiwan, more than 70% of precipitation events were stratiform and frontal precipitation associated with the northeastern monsoons, and frontal systems during the winter and spring (especially, the Mei-Yu) seasons, respectively. In addition to local effects, the long-range transport of acid substances are thought to play an important role.« less

  1. Alternatives to the Moving Average

    Treesearch

    Paul C. van Deusen

    2001-01-01

    There are many possible estimators that could be used with annual inventory data. The 5-year moving average has been selected as a default estimator to provide initial results for states having available annual inventory data. User objectives for these estimates are discussed. The characteristics of a moving average are outlined. It is shown that moving average...

  2. Particulate matter levels in a South American megacity: the metropolitan area of Lima-Callao, Peru.

    PubMed

    Silva, Jose; Rojas, Jhojan; Norabuena, Magdalena; Molina, Carolina; Toro, Richard A; Leiva-Guzmán, Manuel A

    2017-11-13

    The temporal and spatial trends in the variability of PM 10 and PM 2.5 from 2010 to 2015 in the metropolitan area of Lima-Callao, Peru, are studied and interpreted in this work. The mean annual concentrations of PM 10 and PM 2.5 have ranges (averages) of 133-45 μg m -3 (84 μg m -3 ) and 35-16 μg m -3 (26 μg m -3 ) for the monitoring sites under study. In general, the highest annual concentrations are observed in the eastern part of the city, which is a result of the pattern of persistent local winds entering from the coast in a south-southwest direction. Seasonal fluctuations in the particulate matter (PM) concentrations are observed; these can be explained by subsidence thermal inversion. There is also a daytime pattern that corresponds to the peak traffic of a total of 9 million trips a day. The PM 2.5 value is approximately 40% of the PM 10 value. This proportion can be explained by PM 10 re-suspension due to weather conditions. The long-term trends based on the Theil-Sen estimator reveal decreasing PM 10 concentrations on the order of -4.3 and -5.3% year -1 at two stations. For the other stations, no significant trend is observed. The metropolitan area of Lima-Callao is ranked 12th and 16th in terms of PM 10 and PM 2.5 , respectively, out of 39 megacities. The annual World Health Organization thresholds and national air quality standards are exceeded. A large fraction of the Lima population is exposed to PM concentrations that exceed protection thresholds. Hence, the development of pollution control and reduction measures is paramount.

  3. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium and bicarbonate. Dissolved-solids concentration increases in the central and northern parts of Tooele Valley, at the distal ends of the ground-water flow paths. Increased concentration is due mainly to greater amounts of sodium and chloride. Deuterium and oxygen-18 values indicate water recharged primarily from precipitation occurs throughout the ground-water basin. Ground water with the highest percentage of recharge from irrigation exists along the eastern margin of Tooele Valley, indicating negligible recharge from the adjacent consolidated rock. Tritium and tritiogenic helium-3 concentrations indicate modern water exists along the flow paths originating in the Oquirrh Mountains between Settlement and Pass Canyons and extending between the steep hydraulic gradient areas at Tooele Army Depot and Erda. Pre-modern water exists in areas east of Erda and near Stansbury Park. Using the change in tritium along the flow paths originating in the Oquirrh Mountains, a first-order estimate of average linear ground-water velocity for the general area is roughly 2 to 5 feet per day. A numerical ground-water flow model was developed to simulate ground-water flow in the Tooele Valley ground-water basin and to test the conceptual understanding of the ground-water system. Simulating flow in consolidated rock allows recharge and withdrawal from wells in or near consolidated rock to be simulated more accurately. In general, the model accurately simulates water levels and water-level fluctuations and can be considered an adequate tool to help determine the valley-wide effects on water levels of additional ground-water withdrawal and changes in water use. The simulated increase in storage during a projection simulation using 2003 withdrawal rates and average recharge indicates that repeated years of average precipitation and recharge conditions do not completely restore the system after multiple years of below-normal precipitation. In the similar case where precipitation is 90

  4. Indoor radon variations in central Iran and its geostatistical map

    NASA Astrophysics Data System (ADS)

    Hadad, Kamal; Mokhtari, Javad

    2015-02-01

    We present the results of 2 year indoor radon survey in 10 cities of Yazd province in Central Iran (covering an area of 80,000 km2). We used passive diffusive samplers with LATEX polycarbonate films as Solid State Nuclear Track Detector (SSNTD). This study carried out in central Iran where there are major minerals and uranium mines. Our results indicate that despite few extraordinary high concentrations, average annual concentrations of indoor radon are within ICRP guidelines. When geostatistical spatial distribution of radon mapped onto geographical features of the province it was observed that risk of high radon concentration increases near the Saqand, Bafq, Harat and Abarkooh cities, this depended on the elevation and vicinity of the ores and mines.

  5. Metabolic concentration of lipid soluble organochlorine burdens in the blubber of southern hemisphere humpback whales through migration and fasting.

    PubMed

    Bengtson Nash, Susan M; Waugh, Courtney A; Schlabach, Martin

    2013-08-20

    Southern hemisphere humpback whales undertake the longest migrations and associated periods of fasting of any mammal. Fluctuations in lipid energy stores are known to profoundly affect the toxicokinetics of lipophilic organochlorine compound (OC) burdens. Results from blubber biopsy sampling of adult, male humpback whales at two time points of the annual migration journey revealed dramatic concentration effects for the majority of OC compounds. The observed concentration effect was, however, not linear with measured average blubber lipid loss indicating significant redistribution of OCs and hence the importance of alternate lipid depots for meeting the energetic demands of the migration journey. Applying lipophilic OC burdens as novel tracers of whole-body lipid dynamics, the observed average concentration index suggests an average individual weight loss of 13% over 4 months of the migration journey. This value is based upon lipid derived energy and is in good agreement with previous weight prediction formulas. Notably, however, these estimates may greatly underestimate individual weight loss if significant protein catabolism occurs. Biomagnification factors between migrating southern hemisphere humpback whales and their principal prey item, Antarctic krill, closely resembled those of baleen whales feeding on herbivorous zooplankton in the Arctic. This study emphasizes the importance of considering prolonged periods of food deprivation when assessing chemical risks posed to wildlife. This is of particular importance for Polar biota adapted to extremes in ecosystem productivity.

  6. Catchment-scale variation in the nitrate concentrations of groundwater seeps in the Catskill Mountains, New York, U.S.A.

    USGS Publications Warehouse

    West, A.J.; Findlay, S.E.G.; Burns, Douglas A.; Weathers, K.C.; Lovett, Gary M.

    2001-01-01

    Forested headwater streams in the Catskill Mountains of New York show significant among-catchment variability in mean annual nitrate (NO3-) concentrations. Large contributions from deep groundwater with high NO3- concentrations have been invoked to explain high NO3- concentrations in stream water during the growing season. To determine whether variable contributions of groundwater could explain among-catchment differences in streamwater, we measured NO3- concentrations in 58 groundwater seeps distributed across six catchments known to have different annual average streamwater concentrations. Seeps were identified based on release from bedrock fractures and bedding planes and had consistently lower temperatures than adjacent streamwaters. Nitrate concentrations in seeps ranged from near detection limits (0.005 mg NO3--N/L) to 0.75 mg NO3--N/L. Within individual catchments, groundwater residence time does not seem to strongly affect NO3- concentrations because in three out of four catchments there were non-significant correlations between seep silica (SiO2) concentrations, a proxy for residence time, and seep NO3- concentrations. Across catchments, there was a significant but weak negative relationship between NO3- and SiO2 concentrations. The large range in NO3- concentrations of seeps across catchments suggests: 1) the principal process generating among-catchment differences in streamwater NO3- concentrations must influence water before it enters the groundwater flow system and 2) this process must act at large spatial scales because among-catchment variability is much greater than intra-catchment variability. Differences in the quantity of groundwater contribution to stream baseflow are not sufficient to account for differences in streamwater NO3- concentrations among catchments in the Catskill Mountains.

  7. Flowpath contributions of weathering products to stream fluxes at the Panola Mountain Research Watershed, Georgia

    USGS Publications Warehouse

    Peters, Norman E.; Aulenbach, Brent T.

    2009-01-01

    Short-term weathering rates (chemical denudation) of primary weathering products were derived from an analysis of fluxes in precipitation and streamwater. Rainfall, streamflow (runoff), and related water quality have been monitored at the Panola Mountain Research Watershed (PMRW) since 1985. Regression relations of stream solute concentration of major ions including weathering products [sodium (Na), magnesium (Mg), calcium (Ca) and silica (H4SiO4)] were derived from weekly and storm-based sampling from October 1986 through September 1998; runoff, seasonality, and hydrologic state were the primary independent variables. The regression relations explained from 74 to 90 percent of the variations in solute concentration. Chloride (Cl) fluxes for the study period were used to estimate dry atmospheric deposition (DAD) by subtracting the precipitation flux from the stream flux; net Cl flux varied from years of net retention during dry years to >3 times more exported during wet years. On average, DAD was 56 percent of the total atmospheric deposition (also assumed for the other solutes); average annual net cation and H4SiO4 fluxes were 50.6 and 85.9 mmol m-2, respectively. The annual cumulative density functions of solute flux as a function of runoff were evaluated and compared among solutes to evaluate relative changes in solute sources during stormflows. Stream flux of weathering solutes is primarily associated with groundwater discharge. During stormflow, Ca and Mg contributions increase relative to Na and H4SiO4, particularly during wet years when the contribution is 10 percent of the annual flux. The higher Ca and Mg contributions to the stream during stormflow are consistent with increased contribution from shallow soil horizons where these solutes dominate.

  8. InMAP: A model for air pollution interventions

    DOE PAGES

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.; ...

    2017-04-19

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  9. InMAP: A model for air pollution interventions

    PubMed Central

    Hill, Jason D.; Marshall, Julian D.

    2017-01-01

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of −17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license. PMID:28423049

  10. InMAP: A model for air pollution interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  11. 75 FR 41556 - Proposed Collection Renewal; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... global education in the classroom. Estimated annual number of respondents: 300. Estimated average time to... the annual World Wise Schools Conference. The information is used as a record of attendance. 2. Title... global education in the classroom. Estimated annual number of responses: 300. Estimated average time to...

  12. Herbicide concentrations in and loads transported by the Conestoga River and Pequea Creek, Lancaster County, Pennsylvania, 1992-95

    USGS Publications Warehouse

    Reed, Lloyd A.; Koerkle, Edward H.; Takita, Charles S.

    1997-01-01

    Water samples were collected from four streams in Lancaster County from 1992 through 1995 and analyzed for selected herbicides. Samples were collected from the Little Conestoga Creek near Churchtown, Mill Creek (a tributary to the Conestoga River) at Elshelman Mill Road near Lyndon, the Conestoga River at Conestoga, and Pequea Creek at Martic Forge. Most samples were collected from stormflow that occurred during the growing season. Samples were analyzed for alachlor, aldrin, atrazine, chlordane, cyanazine, dieldrin, malathion, metolachlor, propazine, simazine, and toxaphene. Most samples had detectable concentrations of alachlor, atrazine, metolachlor, and simazine, and the loads of these constituents that were transported during each of the 4 years were computed.Of the samples collected from each of the streams—Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—10, 12, 15, and 18 percent, respectively, had atrazine concentrations greater than 3.0 micrograms per liter, the U.S. Environmental Protection Agency maximum contaminant level. Loads of atrazine, metolochlor, and simazine were greater than loads of any other herbicides. The largest loads were transported during 1994. Loads of atrazine transported by the four streams during periods of storm- flow from May to September 1994 totaled 3.46, 28.3, 263, and 46.8 pounds, respectively. The total loads of atrazine transported by the four streams?Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—during calendar year 1994 were 6.48, 54.1, 498, and 102 pounds, respectively. A little less than half the atrazine load transported by each stream—45, 39, 42, and 42 percent, respectively—was transported during storms that occurred from May through September.Average annual yields of atrazine for the period 1992-95 were 0.59, 0.64, 0.68, and 0.51 pounds per square mile from the Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek, respectively. Average annual yields of simazine were 0.36, 1.2, 0.54, and 0.48 pounds per square mile, respectively, and average annual yields of metolachlor were 0.46, 0.49, 0.54, and 0.31 pounds per square mile, respectively. Less than 1 percent of both the atrazine and metolachlor that was applied to all basins was transported by streamflow.

  13. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon.

    PubMed

    Liu, Shi V; Chen, Fu-Lin; Xue, Jianping

    2017-12-15

    An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as land use regression (LUR) models has improved exposure estimation. To better understand the relationship between vehicle emissions and near-road air pollution, we evaluated three traffic density-based indices: Major-Road Density (MRD), All-Traffic Density (ATD) and Heavy-Traffic Density (HTD) which represent the proportions of major roads, major road with annual average daily traffic (AADT), and major road with commercial annual average daily traffic (CAADT) in a buffered area, respectively. We evaluated the potential of these indices as vehicle emission-specific near-road air pollutant indicators by analyzing their correlation with black carbon (BC), a marker for mobile source air pollutants, using measurement data obtained from the Near-road Exposures and Effects of Urban Air Pollutants Study (NEXUS). The average BC concentrations during a day showed variations consistent with changes in traffic volume which were classified into high, medium, and low for the morning rush hours, the evening rush hours, and the rest of the day, respectively. The average correlation coefficients between BC concentrations and MRD, ATD, and HTD, were 0.26, 0.18, and 0.48, respectively, as compared with -0.31 and 0.25 for two commonly used traffic indicators: nearest distance to a major road and total length of the major road. HTD, which includes only heavy-duty diesel vehicles in its traffic count, gives statistically significant correlation coefficients for all near-road distances (50, 100, 150, 200, 250, and 300 m) that were analyzed. Generalized linear model (GLM) analyses show that season, traffic volume, HTD, and distance from major roads are highly related to BC measurements. Our analyses indicate that traffic density parameters may be more specific indicators of near-road BC concentrations for health risk studies. HTD is the best index for reflecting near-road BC concentrations which are influenced mainly by the emissions of heavy-duty diesel engines.

  14. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon

    PubMed Central

    Chen, Fu-Lin; Xue, Jianping

    2017-01-01

    An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as land use regression (LUR) models has improved exposure estimation. To better understand the relationship between vehicle emissions and near-road air pollution, we evaluated three traffic density-based indices: Major-Road Density (MRD), All-Traffic Density (ATD) and Heavy-Traffic Density (HTD) which represent the proportions of major roads, major road with annual average daily traffic (AADT), and major road with commercial annual average daily traffic (CAADT) in a buffered area, respectively. We evaluated the potential of these indices as vehicle emission-specific near-road air pollutant indicators by analyzing their correlation with black carbon (BC), a marker for mobile source air pollutants, using measurement data obtained from the Near-road Exposures and Effects of Urban Air Pollutants Study (NEXUS). The average BC concentrations during a day showed variations consistent with changes in traffic volume which were classified into high, medium, and low for the morning rush hours, the evening rush hours, and the rest of the day, respectively. The average correlation coefficients between BC concentrations and MRD, ATD, and HTD, were 0.26, 0.18, and 0.48, respectively, as compared with −0.31 and 0.25 for two commonly used traffic indicators: nearest distance to a major road and total length of the major road. HTD, which includes only heavy-duty diesel vehicles in its traffic count, gives statistically significant correlation coefficients for all near-road distances (50, 100, 150, 200, 250, and 300 m) that were analyzed. Generalized linear model (GLM) analyses show that season, traffic volume, HTD, and distance from major roads are highly related to BC measurements. Our analyses indicate that traffic density parameters may be more specific indicators of near-road BC concentrations for health risk studies. HTD is the best index for reflecting near-road BC concentrations which are influenced mainly by the emissions of heavy-duty diesel engines. PMID:29244754

  15. Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Allan, J. D.; Williams, P. I.; Green, D. C.; Flynn, M. J.; Harrison, R. M.; Yin, J.; Gallagher, M. W.; Coe, H.

    2014-07-01

    For the first time, the behaviour of non-refractory inorganic and organic submicron particulate through an entire annual cycle is investigated using measurements from an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) located at a UK urban background site in North Kensington, London. We show secondary aerosols account for a significant fraction of the submicron aerosol burden and that high concentration events are governed by different factors depending on season. Furthermore, we demonstrate that on an annual basis there is no variability in the extent of secondary organic aerosol (SOA) oxidation, as defined by the oxygen content, irrespective of amount. This result is surprising given the changes in precursor emissions and contributions as well as photochemical activity throughout the year; however it may make the characterisation of SOA in urban environments more straightforward than previously supposed. Organic species, nitrate, sulphate, ammonium, and chloride were measured during 2012 with average concentrations (±one standard deviation) of 4.32 (±4.42), 2.74 (±5.00), 1.39 (±1.34), 1.30 (±1.52) and 0.15 (±0.24) μg m-3, contributing 43, 28, 14, 13 and 2% to the total submicron mass, respectively. Components of the organic aerosol fraction are determined using positive matrix factorisation (PMF) where five factors are identified and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2). OOA1 and OOA2 represent more and less oxygenated OA with average concentrations of 1.27 (±1.49) and 0.14 (±0.29) μg m-3, respectively, where OOA1 dominates the SOA fraction (90%). Diurnal, monthly, and seasonal trends are observed in all organic and inorganic species, due to meteorological conditions, specific nature of the aerosols, and availability of precursors. Regional and transboundary pollution as well as other individual pollution events influence London's total submicron aerosol burden. High concentrations of non-refractory submicron aerosols in London are governed by particulate emissions in winter, especially nitrate and SFOA, whereas SOA formation drives the high concentrations during the summer. The findings from this work could have significant implications for modelling of urban air pollution as well as for the effects of atmospheric aerosols on health and climate.

  16. Criterion 6, indicator 37 : average wage rates, annual average income, and annual injury rates in major forest employment categories

    Treesearch

    Kenneth Skog; Susan J. Alexander; John Bergstrom; Ken Cordell; Elizabeth Hill; James Howard; Rebecca Westby

    2011-01-01

    Average annual incomes for forest management and protection includes salaries for full-time permanent employees of the U.S. Department of Agriculture, Forest Service, which have increased from a median of $41,300 in 1992 to $48,200 in 2000, to $50,500 in 2006 (all in 2005$). Salary of full-time permanent employees in state forestry agencies in 1998, for entry level...

  17. Sediment transport by streams in the Palouse River basin, Washington and Idaho, July 1961-June 1965

    USGS Publications Warehouse

    Boucher, P.R.

    1970-01-01

    The Palouse River basin covers about 3,300 square miles in southeastern Washington and northwestern Idaho. The eastern part of the basin is composed of steptoes and foothills which are generally above an altitude of 2,600 feet; the central part is of moderate local relief and is mantled chiefly by thick loess deposits; and the western part is characterized by low relief and scabland topography and is underlain mostly by basalt. Precipitation increases eastward across the study area. It ranges annually from 12 to 18 inches in the western part and from 14 to 23 inches in the central part, and it exceeds 40 inches in the eastern part. Surface runoff from the basin for the 4-year period of study (July 1961-June 1965) averaged 408,000 acre-feet per year, compared with 445,200 acre-feet per year for the 27-year period of record. The eastern part of the basin contributed about 55 percent of the total, whereas the central and western parts contributed 37 percent and 8 percent, respectively. Most sediment transport from the Palouse River basin and the highest sediment concentrations in streams occurred in the winter. Of the several storms during the study period, those of February 3-9, 1963, December 22-27, 1964, and January 27-February 4, 1965, accounted for 81 percent of the total 4-year suspended-sediment load; the storm of February 3-9, 1963, accounted for nearly one-half the total load. The discharge-weighted mean concentration of suspended sediment carried in the Palouse River past Hooper during the study period was 2,970 milligrams per liter. The average annual sediment discharge of the Palouse River at its mouth was about 1,580,000 tons per year, and the estimated average annual sediment yield was 480 tons per square mile. The yield ranged from 5 tons per square mile from the western part of the basin to 2,100 tons per square mile from the central part. The high yield from the central part is attributed to a scarcity of vegetal cover, to the fine-grained loess soils, and to rapid runoff during winter storms. Sediment yield from the eastern part of the basin ranged from 460 to more than 1,000 tons per square mile. During high flow, silt particles make up the largest part of the suspended-sediment load, whereas during low flow, clay particles represent the greatest part. On the average, the suspended sediment transported by the Palouse River past Hooper contained 3 percent sand, 68 percent silt, and 29 percent clay. Unmeasured sediment discharge was estimated to have been 5 percent of the total sediment discharge. Data collected during the 4-year period of study show that sediment loads were higher than those recorded by V. G. Kaiser during the longer period 1939-65. Whereas Kaiser's study showed an average annual soil loss of 9.6 million tons, the average annual loss during the recent study was 14.2 million tons. The factor that has had the greatest effect on the increase of sediment yields is land use. Lands once covered and protected by natural vegetation have been extensively, cultivated, and much of the soil has become susceptible to erosion, particularly in areas mantled by loessal soils.

  18. 50 CFR 218.31 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...); (x) Melon-headed whales (Peponocephala electra)—100 (an average of 20 annually); (xi) False killer... annually); (xiv) Pygmy killer whale (Ferresa attenuatta)—50 (an average of 10 annually); (xv) Rough-toothed... method of take and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter...

  19. 50 CFR 218.31 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...); (x) Melon-headed whales (Peponocephala electra)—100 (an average of 20 annually); (xi) False killer... annually); (xiv) Pygmy killer whale (Ferresa attenuatta)—50 (an average of 10 annually); (xv) Rough-toothed... method of take and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter...

  20. [Effect of air pollution on pregnancy outcome of women at reproductive age in Xi'an, 2010-2013].

    PubMed

    Wang, L L; Bai, R H; Zhang, Q; Yan, H

    2016-11-10

    Objective: To compare the differences in the incidence of adverse pregnancy outcome in different area, and confirm if the incidence of adverse pregnancy outcomes is closely associated with air pollution. Methods: A cross-sectional study was conducted in the central urban area and the rural-urban area of Xi'an through a questionnaire survey conducted among the local reproductive women selected through multistage stratified random sampling during 2010-2013, all the reproductive women surveyed were in pregnancy or had definite pregnancy outcomes. Results: The annual average of SO 2 concentration in the central urban area was 38-54 μg/m 3 , higher than that in the rural-urban area (29-43 μg/m 3 ). The annual average NO 2 concentration in the central urban area was 29-87 μg/m 3 , higher than that in the rural-urban area (22-42 μg/m 3 ). The incidence of birth defects was higher in the central urban area than in the rural-urban area (2.1% vs. 1.0%), the difference was significant ( P <0.05). After adjusting for confounding factors, logistic regression analysis showed the incidence of birth defects in the central urban area was still significantly higher than that in the rural-urban area, the difference was significant ( P <0.05). Conclusion: The incidence of adverse pregnancy was closely associated with the level of air pollution.

  1. Analysis of natural radioactivity in Yatağan coal - fired power plant in Turkey

    NASA Astrophysics Data System (ADS)

    Altıkulaç, Aydan; Turhan, Şeref; Gümüş, Hasan

    2017-09-01

    Use of the coal in order to generate electricity increases the exposure of people to radiation. In this paper, the activity concentrations of nuclides 226Ra, 232Th and 40K in samples of coal and bottom ash from the Yatagan Coal-Fired thermal power plant determined using gamma ray spectrometer with a NaI(Tl) scintillation detector. The mean activity concentrations of 226Ra, 232Th, and 40K in the coal were found to be 37.2±2.8 Bqkg-1, 51.8±3.4 Bqkg-1 and 166.7±11.1 Bqkg-1, respectively. Whereas in the bottom ashes, the concentrations of the corresponding radionuclides were found to be 62.2±5.6 Bqkg-1, 87.4±5.9 Bqkg-1 and 221.0 ±12.5 Bqkg-1, respectively. The findings show that bottom ashes show higher activity concentrations of related radionuclide to coal samples. The absorbed gamma dose rate in outdoor air DROUT and annual effective dose rate (AED) from coal were calculated to define radıologıcal rısk. The average findings of annual effective doses were detected as 68.6±5.1 μSvy-1 and 110.3±11.2 μSvy-1, respectively.

  2. 7 CFR 760.1304 - Eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in an eligible dairy operation must meet the average adjusted gross income eligibility requirements... benefit under this subpart if their annual average adjusted nonfarm income is over $500,000 as determined... Corporation A. For DELAP, the relevant period for the annual average adjusted nonfarm income is 2005 through...

  3. 7 CFR 760.1304 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in an eligible dairy operation must meet the average adjusted gross income eligibility requirements... benefit under this subpart if their annual average adjusted nonfarm income is over $500,000 as determined... Corporation A. For DELAP, the relevant period for the annual average adjusted nonfarm income is 2005 through...

  4. Variation of wet deposition chemistry in Sequoia National Park, California

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Parsons, David J.

    1987-01-01

    Sequoia National Park has monitored wet deposition chemistry in conjunction with the National Atmospheric Deposition Program and National Trends Network (NADP/NTN), on a weekly basis since July, 1980. Annual deposition of H, NO3 and SO4 (0.045, 3.6, and 3.9 kg ha−1 a−1, respectively) is relatively low compared to that measured in the eastern United States, or in the urban Los Angeles and San Francisco areas. Weekly ion concentrations are highly variable. Maximum concentrations of 324,162, and 156 μeq ol−1 of H, NO3 and SO4 have been recorded for one low volume summer storm (1.4 mm). Summer concentrations of NO3 and SO4 average two and five times higher, respectively, than concentrations reported for remote areas in the world. There is considerable variability in the ionic concentration of low volume samples, and much less variability in moderate and high volume samples.

  5. Polonium-210 and lead-210 in the terrestrial environment: a historical review.

    PubMed

    Persson, Bertil R R; Holm, Elis

    2011-05-01

    The radionuclides (210)Po and (210)Pb widely present in the terrestrial environment are the final long-lived radionuclides in the decay of (238)U in the earth's crust. Their presence in the atmosphere is due to the decay of (222)Rn diffusing from the ground. The range of activity concentrations in ground level air for (210)Po is 0.03-0.3 Bq m(-3) and for (210)Pb 0.2-1.5 Bq m(-3). In drinking water from private wells the activity concentration of (210)Po is in the order of 7-48 mBq l(-1) and for (210)Pb around 11-40 mBq l(-1). From water works, however, the activity concentration for both (210)Po and (210)Pb is only in the order of 3 mBq l(-1). Mosses, lichens and peat have a high efficiency in capturing (210)Po and (210)Pb from atmospheric fallout and exhibit an inventory of both (210)Po and (210)Pb in the order of 0.5-5 kBq m(-2) in mosses and in lichens around 0.6 kBq m(-2). The activity concentrations in lichens lies around 250 Bq kg(-1), dry mass. Reindeer and caribou graze lichen which results in an activity concentration of (210)Po and (210)Pb of about 1-15 Bq kg(-1) in meat from these animals. The food chain lichen-reindeer or caribou, and Man constitutes a unique model for studying the uptake and retention of (210)Po and (210)Pb in humans. The effective annual dose due to (210)Po and (210)Pb in people with high consumption of reindeer/caribou meat is estimated to be around 260 and 132 μSv a(-1) respectively. In soils, (210)Po is adsorbed to clay and organic colloids and the activity concentration varies with soil type and also correlates with the amount of atmospheric precipitation. The average activity concentration levels of (210)Po in various soils are in the range of 20-240 Bq kg(-1). Plants become contaminated with radioactive nuclides both by absorption from the soil (supported Po) and by deposition of radioactive fallout on the plants directly (unsupported Po). In fresh leafy plants the level of (210)Po is particularly high as the result of the direct deposition of (222)Rn daughters from atmospheric deposition. Tobacco is a terrestrial product with high activity concentrations of (210)Po and (210)Pb. The overall average activity concentration of (210)Po is 13 ± 2 Bq kg(-1). It is rather constant over time and by geographical origin. The average median daily dietary intakes of (210)Po and (210)Pb for the adult world population was estimated to 160 mBq day(-1) and 110 mBq day(-1), corresponding to annual effective doses of 70 μSv a(-1) and 28 μSv a(-1), respectively. The dietary intakes of (210)Po and (210)Pb from vegetarian food was estimated to only 70 mBq day(-1) and 40 mBq day(-1) corresponding to annual effective doses of 30.6 μSv a(-1) and 10 μSv a(-1), respectively. Since the activity concentration of (210)Po and (210)Pb in seafood is significantly higher than in vegetarian food the effective dose to populations consuming a lot of seafood might be 5-15 fold higher. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Water resources of Spink County, South Dakota

    USGS Publications Warehouse

    Hamilton, L.J.; Howells, L.W.

    1996-01-01

    Spink County, an agricultural area of about 1,505 square miles, is in the flat to gently rolling James River lowland of east-central South Dakota. The water resources are characterized by the highly variable flows of the James River and its tributaries and by aquifers both in glacial deposits of sand and gravel, and in sandstone in the bedrock. Glacial aquifers underlie about half of the county, and bedrock aquifers underlie most of the county. The James River is an intermittent prairie stream that drains nearly 8,900 square miles north of Spink County and has an average annual discharge of about 124 cubic feet per second where it enters the county. The discharge is augmented by the flow of Snake and Turtle Creeks, each of which has an average annual flow of about 25 to 30 cubic feet per second. Streamflow is unreliable as a water supply because precipitation, which averages 18.5 inches annually, is erratic both in volume and in distribution, and because the average annual potential evapotranspiration rate is 43 inches. The flow of tributaries generally ceases by summer, and zero flows are common in the James River in fall and winter. Aquifers in glacial drift deposits store nearly 3.3 million acre-feet of fresh to slightly saline water at depths of from near land surface to more than 500 feet below land surface beneath an area of about 760 square miles. Yields of properly developed wells in the more productive aquifers exceed 1,000 gallons per minute in some areas. Withdrawals from the aquifers, mostly for irrigation, totaled about 15,000 acre-feet of water in 1990. Water levels in observation wells generally have declined less than 15 feet over several decades of increasing pumpage for irrigation, but locally have declined nearly 30 feet. Water levels generally rose during the wet period of 1983-86. In Spink County, bedrock aquifers store more than 40 million acre-feet of slightly to moderately saline water at depths of from 80 to about 1,300 feet below land surface. Yields of properly developed wells range from 2 to 600 gallons per minute. The artesian head of the heavily used Dakota aquifer has declined about 350 feet in the approximately 100 years since the first artesian wells were drilled in the county, but water levels have stabilized locally as a result of decreases in the discharge of water from the wells. Initial flows of from 4 gallons per minute to as much as 30 gallons per minute of very hard water can be obtained in the southwestern part of the county, where drillers report artesian heads of nearly 100 feet above land surface. The quality of water from aquifers in glacial drift varies greatly, even within an aquifer. Concentrations of dissolved solids in samples ranged from 151 to 9,610 milligrams per liter, and hardness ranged from 84 to 3,700 milligrams per liter. Median concentrations of dissolved solids, sulfate, iron, and manganese in some glacial aquifers are near or exceed Secondary Maximum Contaminant Levels (SMCL's) established by the U.S. Environmental Protection Agency (EPA). Some of the water from aquifers in glacial drift is suitable for irrigation use. Water samples from aquifers in the bedrock contained concentrations of dissolved solids that ranged from 1,410 to 2,670 milligrams per liter (sum of constituents) and hardness that ranged from 10 to 1,400 milligrams per liter; these concentrations generally are largest for aquifers below the Dakota aquifer. Median concentrations of dissolved solids, sulfate, iron, and manganese in Dakota wells either are near or exceed EPA SMCL's. Dissolved solids, sodium, and boron concentrations in water from bedrock aquifers commonly are too large for the water to be suitable for irrigation use.

  7. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1994 through September 1996

    USGS Publications Warehouse

    Torikai, J.D.

    1996-01-01

    This report describes the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1994 through September 1996, with a focus on data from July through September 1996 (third quarter of 1996). A complete database of ground-water withdrawals and chloride-concentration records since 1985 is maintained by the U.S. Geological Survey. Total rainfall for the period July through September 1996 was 8.94 inches, which is 60 percent less than the mean rainfall of 22.23 inches for the period July through September. July and August are part of the annual dry season, while September is the start of the annual wet season. Ground-water withdrawal during July through September 1996 averaged 1,038,300 gallons per day. Withdrawal for the same 3 months in 1995 averaged 888,500 gallons per day. Ground-water withdrawals have steadily increased since about April 1995. At the end of September 1996, the chloride concentration of water from the elevated tanks at Cantonment and Air Operations were 68 and 150 milligrams per liter, respectively. The chloride concentration from all five production areas increased throughout the third quarter of 1996, and started the upward trend in about April 1995. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations also increased throughout the third quarter of 1996, with the largest increases from water in the deepest monitoring wells. Chloride concentrations have not been at this level since the dry season of 1994. A fuel-pipeline leak at Air Operations in May 1991 decreased total islandwide withdrawals by 15 percent. This lost pumping capacity is being offset by increased pumpage at Cantonment. Six wells do not contribute to the water supply because they are being used to hydraulically divert fuel migration away from water-supply wells by a program of ground-water withdrawal and injection.

  8. Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff.

    PubMed

    Shipitalo, Martin J; Malone, Robert W; Owens, Lloyd B

    2008-01-01

    Residual herbicides used in the production of soybean [Glycine max (L.) Merr] and corn (Zea mays L.) are often detected in surface runoff at concentrations exceeding their maximum contaminant levels (MCL) or health advisory levels (HAL). With the advent of transgenic, glyphosate-tolerant soybean and glufosinate-tolerant corn this concern might be reduced by replacing some of the residual herbicides with short half-life, strongly sorbed, contact herbicides. We applied both herbicide types to two chiseled and two no-till watersheds in a 2-yr corn-soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat (Triticum aestivum L.)-red clover (Trifolium pratense L.) rotation and monitored herbicide losses in runoff water for four crop years. In soybean years, average glyphosate loss (0.07%) was approximately 1/7 that of metribuzin (0.48%) and about one-half that of alachlor (0.12%), residual herbicides it can replace. Maximum, annual, flow-weighted concentration of glyphosate (9.2 microg L(-1)) was well below its 700 microg L(-1) MCL and metribuzin (9.5 microg L(-1)) was well below its 200 microg L(-1) HAL, whereas alachlor (44.5 microg L(-1)) was well above its 2 microg L(-1) MCL. In corn years, average glufosinate loss (0.10%) was similar to losses of alachlor (0.07%) and linuron (0.15%), but about one-fourth that of atrazine (0.37%). Maximum, annual, flow-weighted concentration of glufosinate (no MCL) was 3.5 microg L(-1), whereas atrazine (31.5 microg L(-1)) and alachlor (9.8 microg L(-1)) substantially exceeded their MCLs of 3 and 2 microg L(-1), respectively. Regardless of tillage system, flow-weighted atrazine and alachlor concentrations exceeded their MCLs in at least one crop year. Replacing these herbicides with glyphosate and glufosinate can reduce the occurrence of dissolved herbicide concentrations in runoff exceeding drinking water standards.

  9. Sulphur cycling between terrestrial agroecosystem and atmosphere.

    PubMed

    Zgorelec, Zeljka; Pehnec, Gordana; Bašić, Ferdo; Kisić, Ivica; Mesić, Milan; Zužul, Silva; Jurišić, Aleksandra; Sestak, Ivana; Vađić, Vladimira; Cačković, Mirjana

    2012-09-01

    Central gas station of the natural gas borehole system Podravina is located near the village Molve. It delivers more than a quarter of total energy used in Croatia to its consumers. Over the years, adapting technology to increasingly demanding and rigorous standards in environmental protection has become paramount. Yet, despite all the industry has undertaken to address the risk of harmful substances entering the food chain, a multidisciplinary research team of independent scientists monitors the content of specific substances in all components of the ecosystem. This paper presents measurements of total sulphur contents in soil surface [(0 to 3) cm] and subsurface [(3 to 8) cm] layers (study period: autumn 2006 - spring 2010) and in plants (study period: spring 2000 - spring 2010), and the concentration of gaseous sulphur compounds in the air. Concentrations of hydrogen sulphide (H2S) and mercaptans (RSH) were measured from the summer of 2002 until the autumn of 2010, while concentrations of sulphur dioxide (SO2) were measured from the spring of 2008 until the autumn of 2010. The paper also shows total annual atmospheric sulphur (S-SO4) deposition at Bilogora measuring station (study period: 2001 - 2010). Average monthly concentrations of H2S in air varied between 0.2 μg m-3 and 2.0 μg m-3, RSH between 0.1 μg m-3 and 24.5 μg m-3, and SO2 between 0.4 μg m-3 and 2.8 μg m-3 depending on the location and the season of sampling. Mean values of total sulphur in soil and in Plantago lanceolata plant ranged between 610 mg kg-1 and 1,599 mg kg-1 and between 3,614 mg kg-1 and 4,342 mg kg-1, respectively, depending on the soil type, location, and sampling depth. Average values of total sulphur mass ratio for all examined single soil samples (n=80) were 1,080 mg kg-1 for both studied layers, and 4,108 mg kg-1 for all analysed plant samples (n=85). Average total annual atmospheric sulphur deposition at Bilogora measuring station was 6.3 kg of S-SO4 per hectare.

  10. Use of Tritium Accelerator Mass Spectrometry for Tree Ring Analysis

    PubMed Central

    LOVE, ADAM H.; HUNT, JAMES R.; ROBERTS, MARK L.; SOUTHON, JOHN R.; CHIARAPPA - ZUCCA, MARINA L.; DINGLEY, KAREN H.

    2010-01-01

    Public concerns over the health effects associated with low-level and long-term exposure to tritium released from industrial point sources have generated the demand for better methods to evaluate historical tritium exposure levels for these communities. The cellulose of trees accurately reflects the tritium concentration in the source water and may contain the only historical record of tritium exposure. The tritium activity in the annual rings of a tree was measured using accelerator mass spectrometry to reconstruct historical annual averages of tritium exposure. Milligram-sized samples of the annual tree rings from a Tamarix located at the Nevada Test Site are used for validation of this methodology. The salt cedar was chosen since it had a single source of tritiated water that was well-characterized as it varied over time. The decay-corrected tritium activity of the water in which the salt cedar grew closely agrees with the organically bound tritium activity in its annual rings. This demonstrates that the milligram-sized samples used in tritium accelerator mass spectrometry are suited for reconstructing anthropogenic tritium levels in the environment. PMID:12144257

  11. The Effect of Mississippi River Discharge on the Concentration and Composition of Particulate Matter along the Texas-Louisiana Shelf during Summers 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Richardson, M. J.; Zuck, N.; Gardner, W. D.

    2016-02-01

    Flow from the Mississippi-Atchafalaya River System generally peaks during the spring freshet, discharging nutrient-rich fresh water and sediment into the northern Gulf of Mexico. The peak discharge varies year to year as a result of varying drought or flood conditions in the Mississippi watershed. When compared to an 8-year climatological average, summer 2012 is characterized by low discharge into the northern Gulf of Mexico, whereas summer 2013 is characterized by average discharge conditions. Water samples were collected during four cruises during June and August of 2012 and 2013 to assess the changes in concentration and composition of bulk particulate matter. While no consistent relationship between particulate matter composition and hypoxia was observed, there are several statistically significant seasonal and inter-annual changes in the concentration and composition of particulate matter associated with varying river discharge. There is also evidence that some sub-pycnocline turbidity and chlorophyll-a may be due to in situ primary productivity, rather than settled plankton containing chlorophyll-a.

  12. 40 CFR Appendix to Subpart G of... - Applicant Questionnaire for Modification of Secondary Treatment Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...

  13. 40 CFR Appendix to Subpart G of... - Applicant Questionnaire for Modification of Secondary Treatment Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...

  14. Temporal variability and annual budget of inorganic dissolved matter in Andean Pacific Rivers located along a climate gradient from northern Ecuador to southern Peru

    NASA Astrophysics Data System (ADS)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Morera, Sergio; Crave, Alain; Rau, Pedro; Vauchel, Philippe; Lagane, Christelle; Sondag, Francis; Lavado, Casimiro Waldo; Pombosa, Rodrigo; Martinez, Jean-Michel

    2018-01-01

    In Ecuador and Peru, geochemical information from Pacific coastal rivers is limited and scarce. Here, we present an unedited database of major element concentrations from five HYBAM observatory stations monitored monthly between 4 and 10 years, and the discrete sampling of 23 Andean rivers distributed along the climate gradient of the Ecuadorian and Peruvian Pacific coasts. Concentration (C) vs. discharge (Q) relationships of the five monitored basins exhibit a clear dilution behavior for evaporites and/or pyrite solutes, while the solute concentrations delivered by other endmembers are less variable. Spatially, the annual specific fluxes for total dissolved solids (TDS), Ca2+, HCO3-, K+, Mg2+, and SiO2 are controlled on the first order by runoff variability, while Cl-, Na+ and SO42- are controlled by the occurrence of evaporites and/or pyrite. The entire Pacific basin in Ecuador and Peru exported 30 Mt TDS·yr-1, according to a specific flux of ∼70 t·km-2·yr-1. This show that, even under low rainfall conditions, this orogenic context is more active, in terms of solute production, than the global average.

  15. Long term observations of PM2.5-associated PAHs: Comparisons between normal and episode days

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Li, Xiao; Jiang, Nan; Zhang, Wenkai; Zhang, Ruiqin; Tang, Xiaoyan

    2015-03-01

    The pollution characteristic of fine particular matter (PM2.5) and associated polycyclic aromatic hydrocarbons (PAHs) are currently drawing a great deal of interest because of their influence on environment and health. In this study, PM2.5 was collected from 2011 to 2013 (n = 188) in a suburban area of Zhengzhou, China. 16-PAHs were analyzed to determine the concentration, seasonal variation and potential sources during normal days and episode events. The total mass of 16 PAHs and PM2.5 were in the range of 7-961 ng m-3 and 55-697 μg m-3, with a 3-year average of 174 ng m-3 and 194 μg m-3 respectively. Winter is most polluted for both PM2.5 and PAHs. Average PAH and PM2.5 concentrations during three episode events are 454 ng m-3 and 453 μg m-3, respectively, much higher than values during normal days (299 ng m-3 and 180 μg m-3, respectively). Ratios of Σ16PAH/PM2.5 varied with seasons and concentrations of PM2.5, but showed a negative correlation with PM2.5 concentrations during episode events. The dominant components of PAHs are Benzo[b]fluoranthene, Chrysene, Fluoranthene, and Benzo[k]fluoranthene, Benz[a]anthracene, Pyrene, Indeno(1,2,3-cd)pyrene and their total concentrations vary from 27 to 342 ng m-3, accounting for 58-82% (average = 73%) of 16 PAHs. The Benzo[a]pyrene (Bap) concentration obtained was 9.4 ng m-3 (3-year average), exceeding nearly one order of magnitude of ambient air BaP standard (annual average: 1.0 ng m-3) in China. Diagnose ratios and Positive Matrix Factorization results show that coal combustion, vehicles, coking plant, and biomass burning are main sources for PAHs in this area. The high concentrations of PM2.5 and PAHs, especially during episode events, reflected a potential health problem for nearby public and the necessity of air pollution control for both stationary and mobile sources.

  16. Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH3CHF2) from in situ and air archive observations

    NASA Astrophysics Data System (ADS)

    Simmonds, P. G.; Rigby, M.; Manning, A. J.; Lunt, M. F.; O'Doherty, S.; McCulloch, A.; Fraser, P. J.; Henne, S.; Vollmer, M. K.; Mühle, J.; Weiss, R. F.; Salameh, P. K.; Young, D.; Reimann, S.; Wenger, A.; Arnold, T.; Harth, C. M.; Krummel, P. B.; Steele, L. P.; Dunse, B. L.; Miller, B. R.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Saito, T.; Yokouchi, Y.; Park, S.; Li, S.; Yao, B.; Zhou, L. X.; Arduini, J.; Maione, M.; Wang, R. H. J.; Ivy, D.; Prinn, R. G.

    2016-01-01

    High frequency, in situ observations from 11 globally distributed sites for the period 1994-2014 and archived air measurements dating from 1978 onward have been used to determine the global growth rate of 1,1-difluoroethane (HFC-152a, CH3CHF2). These observations have been combined with a range of atmospheric transport models to derive global emission estimates in a top-down approach. HFC-152a is a greenhouse gas with a short atmospheric lifetime of about 1.5 years. Since it does not contain chlorine or bromine, HFC-152a makes no direct contribution to the destruction of stratospheric ozone and is therefore used as a substitute for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). The concentration of HFC-152a has grown substantially since the first direct measurements in 1994, reaching a maximum annual global growth rate of 0.84 ± 0.05 ppt yr-1 in 2006, implying a substantial increase in emissions up to 2006. However, since 2007, the annual rate of growth has slowed to 0.38 ± 0.04 ppt yr-1 in 2010 with a further decline to an annual average rate of growth in 2013-2014 of -0.06 ± 0.05 ppt yr-1. The annual average Northern Hemisphere (NH) mole fraction in 1994 was 1.2 ppt rising to an annual average mole fraction of 10.1 ppt in 2014. Average annual mole fractions in the Southern Hemisphere (SH) in 1998 and 2014 were 0.84 and 4.5 ppt, respectively. We estimate global emissions of HFC-152a have risen from 7.3 ± 5.6 Gg yr-1 in 1994 to a maximum of 54.4 ± 17.1 Gg yr-1 in 2011, declining to 52.5 ± 20.1 Gg yr-1 in 2014 or 7.2 ± 2.8 Tg-CO2 eq yr-1. Analysis of mole fraction enhancements above regional background atmospheric levels suggests substantial emissions from North America, Asia, and Europe. Global HFC emissions (so called "bottom up" emissions) reported by the United Nations Framework Convention on Climate Change (UNFCCC) are based on cumulative national emission data reported to the UNFCCC, which in turn are based on national consumption data. There appears to be a significant underestimate ( > 20 Gg) of "bottom-up" reported emissions of HFC-152a, possibly arising from largely underestimated USA emissions and undeclared Asian emissions.

  17. A 125 year record of fluvial calcium flux from a temperate catchment: Interplay of climate, land-use change and atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2012-10-01

    SummaryThis paper analyses the world's longest fluvial record of water hardness and calcium (Ca) concentration. We used records of permanent and temporary hardness and river flow for the UK's River Thames (catchment area 9998 km2) to estimate annual Ca flux from the river since 1883. The Thames catchment has a mix of agricultural and urban land use; it is dominated by mineral soils with groundwater contributing around 60% of river flow. Since the late 1800s, the catchment has undergone widespread urbanisation and climate warming, but has also been subjected to large-scale land-use change, especially during World War II and agricultural intensification in the 1960s. Here, we use a range of time series methods to explore the relative importance of these drivers in determining catchment-scale biogeochemical response. Ca concentrations in the Thames rose to a peak in the late 1980s (106 mg Ca/l). The flux of Ca peaked in 1916 at 385 ktonnes Ca/yr; the minimum was in 1888 at 34 ktonnes Ca/yr. For both the annual average Ca concentration and the annual flux of Ca, there were significant increases with time; a significant positive memory effect relative to the previous year; and significant correlation with annual water yield. No significant correlation was found with either temperature or land use, but sulphate deposition was found to be significant. It was also possible, for a shorter time series, to show a significant relationship with inorganic nitrogen inputs into the catchment. We suggest that ionic inputs did not acidify the mineral soils of the catchment but did cause the leaching of metals, so we conclude that the decline in river Ca concentrations is caused by the decline in both S and N inputs.

  18. 24 CFR 235.204 - Amount of annual MIP.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Obligations-Homes for Lower Income Families § 235.204 Amount of annual MIP. (a) With respect to... an annual MIP shall be paid in an amount equal to one-half percent of the average outstanding... be paid in an amount equal to seven-tenths of one percent of the average outstanding principal...

  19. 24 CFR 235.204 - Amount of annual MIP.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Obligations-Homes for Lower Income Families § 235.204 Amount of annual MIP. (a) With respect to... an annual MIP shall be paid in an amount equal to one-half percent of the average outstanding... be paid in an amount equal to seven-tenths of one percent of the average outstanding principal...

  20. Onchocerciasis control in Nigeria: will households be able to afford community-directed treatment with ivermectin?

    PubMed

    Onwujekwe, O; Shu, E; Onwuameze, O; Ndum, C; Okonkwo, P

    2001-12-21

    To determine the level of affordability of community-directed treatment with ivermectin (CDTI) to households living in two onchocerciasis endemic Nigerian communities namely Toro in the north and Nike in the south. The proportion of the cost of treating people with ivermectin will deplete in average monthly/projected annual household expenditure on food and health care, and on average monthly and projected annual household income were respectively calculated and used to determine the level of affordability of CDTI. Questionnaires administered to heads of households or their representatives were used to collect information on the household expenditures and income. The suggested unit CDTI cost of $0.20 was used. However, as a test of sensitivity, we also used the unit cost of $0.056 which some community based distributors are charging per treatment. Using $0.20 as the unit treatment cost, this will consume less than 0.05% of average annual household income in both communities. It will equally deplete 0.05% of combined annual household expenditures on food and health care in both communities. However, using $0.056 as the unit treatment cost, then 0.02% of average annual household expenditure on health care, 0.01% average annual expenditure on combined health care and food, and 0.01% of average annual household income will be depleted. The households living in both communities may be able to afford CDTI schemes. However, the final decision on levels of affordability lies with the households. They will decide whether they can afford to trade-off some household income for ivermectin distribution.

  1. 78 FR 19262 - Notice of Annual Adjustment of the Cap on Average Total Assets That Defines Community Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... FEDERAL HOUSING FINANCE AGENCY [No. 2013-N-04] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... Federal Deposit Insurance Corporation and that has average total assets below a statutory cap.\\2\\ The Bank...

  2. 75 FR 9601 - Notice of Annual Adjustment of the Cap on Average Total Assets That Defines Community Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... FEDERAL HOUSING FINANCE AGENCY [No. 2010-N-01] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... Deposit Insurance Corporation and that has average total assets below a statutory cap. See 12 U.S.C. 1422...

  3. 26 CFR 1.411(d)-3 - Section 411(d)(6) protected benefits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... an annual benefit of 2% of career average pay times years of service commencing at normal retirement... an annual benefit of 1.3% of final pay times years of service, with final pay computed as the average... has 16 years of service, M's career average pay is $37,500, and the average of M's highest 3...

  4. Synthetic musk fragrances in Lake Michigan.

    PubMed

    Peck, Aaron M; Hornbuckle, Keri C

    2004-01-15

    Synthetic musk fragrances are added to a wide variety of personal care and household products and are present in treated wastewater effluent. Here we report for the first time ambient air and water measurements of six polycyclic musks (AHTN, HHCB, ATII, ADBI, AHMI, and DPMI) and two nitro musks (musk xylene and musk ketone) in North America. The compounds were measured in the air and water of Lake Michigan and in the air of urban Milwaukee, WI. All of the compounds except DPMI were detected. HHCB and AHTN were found in the highest concentrations in all samples. Airborne concentrations of HHCB and AHTN average 4.6 and 2.9 ng/m3, respectively, in Milwaukee and 1.1 and 0.49 ng/m3 over the lake. The average water concentration of HHCB and AHTN in Lake Michigan was 4.7 and 1.0 ng/L, respectively. A lake-wide annual mass budget shows that wastewater treatment plant discharge is the major source (3470 kg/yr) of the synthetic musks while atmospheric deposition contributes less than 1%. Volatilization and outflow through the Straits of Mackinac are major loss mechanisms (2085 and 516 kg/yr for volatilization and outflow, respectively). Concentrations of HHCB are about one-half the predicted steady-state water concentrations in Lake Michigan.

  5. Estimation of streamflow, base flow, and nitrate-nitrogen loads in Iowa using multiple linear regression models

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2005-01-01

    Nineteen variables, including precipitation, soils and geology, land use, and basin morphologic characteristics, were evaluated to develop Iowa regression models to predict total streamflow (Q), base flow (Qb), storm flow (Qs) and base flow percentage (%Qb) in gauged and ungauged watersheds in the state. Discharge records from a set of 33 watersheds across the state for the 1980 to 2000 period were separated into Qb and Qs. Multiple linear regression found that 75.5 percent of long term average Q was explained by rainfall, sand content, and row crop percentage variables, whereas 88.5 percent of Qb was explained by these three variables plus permeability and floodplain area variables. Qs was explained by average rainfall and %Qb was a function of row crop percentage, permeability, and basin slope variables. Regional regression models developed for long term average Q and Qb were adapted to annual rainfall and showed good correlation between measured and predicted values. Combining the regression model for Q with an estimate of mean annual nitrate concentration, a map of potential nitrate loads in the state was produced. Results from this study have important implications for understanding geomorphic and land use controls on streamflow and base flow in Iowa watersheds and similar agriculture dominated watersheds in the glaciated Midwest. (JAWRA) (Copyright ?? 2005).

  6. Daily radionuclide ingestion and internal radiation doses in Aomori prefecture, Japan.

    PubMed

    Ohtsuka, Yoshihito; Kakiuchi, Hideki; Akata, Naofumi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2013-10-01

    To assess internal annual dose in the general public in Aomori Prefecture, Japan, 80 duplicate cooked diet samples, equivalent to the food consumed over a 400-d period by one person, were collected from 100 volunteers in Aomori City and the village of Rokkasho during 2006–2010 and were analyzed for 11 radionuclides. To obtain average rates of ingestion of radionuclides, the volunteers were selected from among office, fisheries, agricultural, and livestock farm workers. Committed effective doses from ingestion of the diet over a 1-y period were calculated from the analytical results and from International Commission on Radiological Protection dose coefficients; for 40K, an internal effective dose rate from the literature was used. Fisheries workers had significantly higher combined internal annual dose than the other workers, possibly because of high rates of ingestion of marine products known to have high 210Po concentrations. The average internal dose rate, weighted by the numbers of households in each worker group in Aomori Prefecture, was estimated at 0.47 mSv y-1. Polonium-210 contributed 49% of this value. The sum of committed effective dose rates for 210Po, 210Pb, 228Ra, and 14C and the effective dose rate of 40K accounted for approximately 99% of the average internal dose rate.

  7. Preimpoundment hydrologic conditions in the Swatara Creek (1981- 84) and estimated postimpoundment water quality in and downstream from the planned Swatara State Park Reservoir, Lebanon and Schuylkill counties, Pennsylvania

    USGS Publications Warehouse

    Fishel, D.K.

    1988-01-01

    The hydrology and water quality of Swatara Creek were studied by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources, Bureau of State Parks, from July 1981 through September 1984. The purpose of the study was to determine the effects of anthracite-coal mining and other point and nonpoint sources on the water quality of a planned 10,500 acre-foot reservoir. The Swatara State Park Reservoir is planned to be used for recreation and drinking-water supply for the city of Lebanon and surrounding communities. Annual precipitation during 1982, 1983, and 1984 was about 8 percent below, near normal, and 29 percent above the long-term average, respectively. The average annual precipitation during a year with near-normal precipitation, the 1983 water year, was 47 inches at Pine Grove. Mean streamflows during 1982, 1983, and 1984 were about 15 percent below, 4 percent above, and 50 percent above the long-term average, respectively. The average streamflow to the planned reservoir area during the 1983 water year was about 220 cubic feet per second. Inflows to, and downstream discharge from, the planned reservoir wer poorly buffered. Median alkalinity ranged from 4 to 7 mg/L (milligrams per liter) and median acidity ranged from 2 to 5 mg/L at the three sampling locations. Maximum total-recoverable iron, aluminum, and manganese concentrations were 100,000, 66,000, and 2,300 micrograms per liter, respectively. During 1983 the annual discharges of total-recoverable iron, aluminum, and manganese to the planned reservoir area were estimated to be 692, 300, and 95 tons, respectively. About 87 percent of the total-recoverable iron and 91 percent of total-recoverable sluminum measured was in the suspended phase. The data indicated that mine drainage affects the quality of Swatara Creek and will affect the quality of the planned reservoir. In addition to mine drainage, point-source nutrient and metal discharges will probably affect the planned reservoir. For example, in September 1983, Swatara Creek was sampled downstream from a point source. A dissolved- phosphorus concentration of 14 mg/L and total ammonia plus organic nitrogen concentration of 8.2 mg/L were measured. At the same location, concentrations of total-recoverable aluminum, chromium, copper, iron, and lead were 35, 300, 110, 1,300, and 32 micrograms per liter, respectively. Inflows to the planned Swatara State Park Reservoir are estimated to be acidic and rich in nutrients and select metals. Unless an effort is made to improve the quality of water from point and nonpoint sources, these conditions may impair the planned uses for the reservoir. Conservation releases from the reservoir need to be carefully controlled or these conditions also may degrade the water quality downstream.

  8. 50 CFR 218.122 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (A) Sperm whales (Physeter macrocephalus)—1,645 (an average of 329 annually); (B) Killer whale... the rule must be maintained. (4) Level B Harassment: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—6,975 (an average of 1,395 annually); (B) Fin whale (Balaenoptera physalus)—55185 (an average of...

  9. 50 CFR 218.122 - Permissible methods of taking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: (A) Sperm whales (Physeter macrocephalus)—1,645 (an average of 329 annually); (B) Killer whale... the rule must be maintained. (4) Level B Harassment: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—6,975 (an average of 1,395 annually); (B) Fin whale (Balaenoptera physalus)—55185 (an average of...

  10. 50 CFR 218.122 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (A) Sperm whales (Physeter macrocephalus)—1,645 (an average of 329 annually); (B) Killer whale... the rule must be maintained. (4) Level B Harassment: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—6,975 (an average of 1,395 annually); (B) Fin whale (Balaenoptera physalus)—55185 (an average of...

  11. Study of air pollution in the Aburra Valley, Colombia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedoya, J.; Bedoya, E.

    1980-01-01

    A study of air pollution in the Aburra Valley, Colombia, showed that in 1978, the total vehicular (automobiles, buses, and trucks) fuel consumption, including gasoline, fuel oil, kerosine and aviation gasoline, was 136 million gal, which, based on EPA emission factors, produced 755 metric tons of particulate matter and 245 metric tons of sulfur dioxide. In the city of Medellin, during 1976-1979, sulfur dioxide concentrations averaged 40 jg/cu m annually at two sampling stations representing the worst cases, a value below the Colombian standard of 70 jg/cu m. The annual average for the city showed an increase of 22 jg/cumore » m in 1977 to 30 jg/cu m in 1979. In March 1978, the Olaya Herrera Airport in Aburra Valley was closed a number of hours due to lack of visibility caused by fumes; on 3/17/78, it was closed ten hours. The economic and demographic aspects of the Aburra Valley, industrial sources of pollution in the Valley and Colombian air pollution regulations are discussed.« less

  12. Annual Research Briefs: 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report contains the 1995 annual progress reports of the Research Fellows and students of the Center for Turbulence Research (CTR). In 1995 CTR continued its concentration on the development and application of large-eddy simulation to complex flows, development of novel modeling concepts for engineering computations in the Reynolds averaged framework, and turbulent combustion. In large-eddy simulation, a number of numerical and experimental issues have surfaced which are being addressed. The first group of reports in this volume are on large-eddy simulation. A key finding in this area was the revelation of possibly significant numerical errors that may overwhelm the effects of the subgrid-scale model. We also commissioned a new experiment to support the LES validation studies. The remaining articles in this report are concerned with Reynolds averaged modeling, studies of turbulence physics and flow generated sound, combustion, and simulation techniques. Fundamental studies of turbulent combustion using direct numerical simulations which started at CTR will continue to be emphasized. These studies and their counterparts carried out during the summer programs have had a noticeable impact on combustion research world wide.

  13. Spatiotemporal distribution and the characteristics of the air temperature of a river source region of the Qinghai-Tibet Plateau.

    PubMed

    Deng, Cai; Zhang, Wanchang

    2018-05-30

    As the backland of the Qinghai-Tibet Plateau, the river source region is highly sensitive to changes in global climate. Air temperature estimation using remote sensing satellite provides a new way of conducting studies in the field of climate change study. A geographically weighted regression model was applied to estimate synchronic air temperature from 2001 to 2015 using Moderate-Resolution Imaging Spectroradiometry (MODIS) data. The results were R 2  = 0.913 and RMSE = 2.47 °C, which confirmed the feasibility of the estimation. The spatial distribution and variation characteristics of the average annual and seasonal air temperature were analyzed. The findings are as follows: (1) the distribution of average annual air temperature has significant terrain characteristics. The reduction in average annual air temperature along the elevation of the region is 0.19 °C/km, whereas the reduction in the average annual air temperature along the latitude is 0.04 °C/degree. (2) The average annual air temperature increase in the region is 0.37 °C/decade. The average air temperature increase could be arranged in the following decreasing order: Yangtze River Basin > Mekong River Basin > Nujiang River Basin > Yarlung Zangbo River Basin > Yellow River Basin. The fastest, namely, Yangtze River Basin, is 0.47 °C/decade. (3) The average air temperature rise in spring, summer, and winter generally increases with higher altitude. The average annual air temperature in different types of lands following a decreasing order is as follows: wetland > construction land > bare land glacier > shrub grassland > arable land > forest land > water body and that of the fastest one, wetland, is 0.13 °C/year.

  14. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    USGS Publications Warehouse

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  15. Calculating net primary productivity of forest ecosystem with G4M model: case study on South Korea

    NASA Astrophysics Data System (ADS)

    Sung, S.; Forsell, N.; Kindermann, G.; Lee, D. K.

    2015-12-01

    Net primary productivity (NPP) is considered as an important indicator for forest ecosystem since the role of forest is highlighted as a stepping stone for mitigating climate change. Especially rapidly urbanizing countries which have high carbon dioxide emission have large interest in calculating forest NPP under climate change. Also maximizing carbon sequestration in forest sector has became a global goal to minimize the impacts of climate change. Therefore, the objective of this research is estimating carbon stock change under the different climate change scenarios by using G4M (Global Forestry Model) model in South Korea. We analyzed four climate change scenarios in different Representative Concentration Pathway (RCP). In this study we used higher resolution data (1kmx1km) to produce precise estimation on NPP from regionalized four climate change scenarios in G4M model. Finally, we set up other environmental variables for G4M such as water holding capacity, soil type and elevation. As a result of this study, temperature showed significant trend during 2011 to 2100. Average annual temperature increased more than 5℃ in RCP 8.5 scenario while 1℃ increased in RCP 2.6 scenario. Each standard deviation of the annual average temperature showed similar trend. Average annual precipitation showed similarity within four scenarios. However the standard deviation of average annual precipitation is higher in RCP8.5 scenario which indicates the ranges of precipitation is wider in RCP8.5 scenario. These results present that climate indicators such as temperature and precipitation have uncertainties in climate change scenarios. NPP has changed from 5-13tC/ha/year in RCP2.6 scenario to 9-21 tC/ha/year in RCP8.5 scenario in 2100. In addition the spatial distribution of NPP presented different trend among the scenarios. In conclusion we calculated differences in temperature and precipitation and NPP change in different climate change scenarios. This study can be applied for maximizing carbon seqestration of vegetation.

  16. The Influence of Large-Scale Airborne Particle Decline and Traffic-Related Exposure on Children’s Lung Function

    PubMed Central

    Sugiri, Dorothea; Ranft, Ulrich; Schikowski, Tamara; Krämer, Ursula

    2006-01-01

    Between 1991 and 2000, ambient air pollution in East Germany changed to resemble West German pollution levels: The concentration of total suspended particles (TSPs) decreased on a broad scale while traffic increased. During that time, we analyzed total lung capacity (TLC) and airway resistance (Raw) of East and West German children. We tested children 5–7 years of age (n = 2,574) with cooperation-independent body plethysmography in repeated cross sections. We used random-effect models to determine the mutually adjusted association between lung function and short-term and chronic particle exposure and its interaction with living near a busy road. Annual averages of TSPs declined from 77 to 44 μg/m3; averages on the day of investigation declined from 133 to 30 μg/m3. Differences in lung function between East and West German children vanished during the investigation time. The association of TSPs with Raw and TLC was stronger in children living > 50 m away from busy roads. East German children from this group had an Raw 2.5% higher [95% confidence interval (CI), 0.0–5.1%] per 40-μg/m3 increase of daily TSP averages. TLC decreased by 6.2% (95% CI, 0.04–11.6%) per 40-μg/m3 increase in annual mean TSPs, and this effect was equally pronounced in East and West Germany. TSP exposure decreased on a broad scale between 1991 and 2000. Lower concentrations of TSPs were associated with better measures of lung function in 6-year-old children. For children living near busy roads, this effect was diminished. PMID:16451868

  17. Internal loading of phosphorus in western Lake Erie

    USGS Publications Warehouse

    Matisoff, Gerald; Kaltenberg, Eliza M.; Steely, Rebecca L.; Hummel, Stephanie K.; Seo, Jinyu; Gibbons, Kenneth J.; Bridgeman, Thomas B.; Seo, Youngwoo; Behbahani, Mohsen; James, William F.; Johnson, Laura; Doan, Phuong; Dittrich, Maria; Evans, Mary Anne; Chaffin, Justin D.

    2016-01-01

    This study applied eight techniques to obtain estimates of the diffusive flux of phosphorus (P) from bottom sediments throughout the western basin of Lake Erie. The flux was quantified from both aerobic and anaerobic incubations of whole cores; by monitoring the water encapsulated in bottom chambers; from pore water concentration profiles measured with a phosphate microelectrode, a diffusive equilibrium in thin films (DET) hydrogel, and expressed pore waters; and from mass balance and biogeochemical diagenetic models. Fluxes under aerobic conditions at summertime temperatures averaged 1.35 mg P/m2/day and displayed spatial variability on scales as small as a centimeter. Using two different temperature correction factors, the flux was adjusted to mean annual temperature yielding average annual fluxes of 0.43–0.91 mg P/m2/day and a western basin-wide total of 378–808 Mg P/year as the diffusive flux from sediments. This is 3–7% of the 11,000 Mg P/year International Joint Commission (IJC) target load for phosphorus delivery to Lake Erie from external sources. Using these average aerobic fluxes, the sediment contributes 3.0–6.3 μg P/L as a background internal contribution that represents 20–42% of the IJC Target Concentration of 15 μg P/L for the western basin. The implication is that this internal diffusive recycling of P is unlikely to trigger cyanobacterial blooms by itself but is sufficiently large to cause blooms when combined with external loads. This background flux may be also responsible for delayed response of the lake to any decrease in the external loading.

  18. ²²⁶Ra, ²³²Th and ⁴⁰K radionuclides enhancement rate and dose assessment for residues of lignite-fired thermal power plants in Turkey.

    PubMed

    Parmaksiz, A; Arikan, P; Vural, M; Yeltepe, E; Tükenmez, I

    2011-11-01

    A total of 77 coal, slag and fly ash samples collected from six thermal power plants were measured by gamma-ray spectrometry. The average (226)Ra activity concentrations in coal, slag and fly ash were measured as 199.8±16.7, 380.3±21.8 and 431.5±29.0 Bq kg(-1), respectively. The average (232)Th activity concentrations in coal, slag and fly ash were measured as 32.0±2.4, 74.0±9.0 and 87.3±9.8 Bq kg(-1), respectively. The average (40)K activity concentrations in coal, slag and fly ash were found to be 152.8±12.1, 401.3±25.0 and 439.0±30.2 Bq kg(-1), respectively. The radium equivalent activities of samples varied from 147.6±8.5 to 1077.4±53.3 Bq kg(-1). The gamma and alpha index of one thermal power plant's fly ash were calculated to be 3.5 and 5 times higher than that of the reference values. The gamma absorbed dose rates were found to be higher than that of the average Earth's crust. The annual effective dose of residues measured in four thermal power plants were calculated higher than that of the permitted dose rate for public, i.e. 1 mSv y(-1).

  19. Evaluation of a Compartmental Model for Prediction of Nitrate Leaching Losses,

    DTIC Science & Technology

    1981-12-01

    model results limit their utility, the calculated total dissolved solids (TDS) of the soil solution (7146 mg L-1) and the measured TDS of tile...measured values of plant uptake, residual inorganic N and average annual In eq 1, the term on the left-hand side represents soil solution N concentrations...Research Applied to National the soil solution below which the uptake efficiency Needs, decreases sharply. 11 Table 3. Summary of water input data (cm of H2

  20. Cost of illness among patients with diabetic foot ulcer in Turkey

    PubMed Central

    Oksuz, Ergun; Malhan, Simten; Sonmez, Bilge; Numanoglu Tekin, Rukiye

    2016-01-01

    AIM To evaluate the annual cost of patients with Wagner grade 3-4-5 diabetic foot ulcer (DFU) from the public payer’s perspective in Turkey. METHODS This study was conducted focused on a time frame of one year from the public payer’s perspective. Cost-of-illness (COI) methodology, which was developed by the World Health Organization, was used in the generation of cost data. By following a clinical path with the COI method, the main total expenses were reached by multiplying the number of uses of each expense item, the percentage of cases that used them and unit costs. Clinical guidelines and real data specific to Turkey were used in the calculation of the direct costs. Monte Carlo Simulation was used in the study as a sensitivity analysis. RESULTS The following were calculated in DFU treatment from the public payer’s perspective: The annual average per patient outpatient costs $579.5 (4.1%), imaging test costs $283.2 (2.0%), laboratory test costs $284.8 (2.0%), annual average per patient cost of intervention, rehabilitation and trainings $2291.7 (16.0%), annual average per patient cost of drugs used $2545.8 (17.8%) and annual average per patient cost of medical materials used in DFU treatment $735.0 (5.1%). The average annual per patient cost for hospital admission is $7357.4 (51.5%). The average per patient complication cost for DFU is $210.3 (1.5%). The average annual per patient cost of DFU treatment in Turkey is $14287.70. As a result of the sensitivity analysis, the standard deviation of the analysis was $5706.60 (n = 5000, mean = $14146.8, 95%CI: $13988.6-$14304.9). CONCLUSION The health expenses per person are $-PPP 1045 in 2014 in Turkey and the average annual per patient cost for DFU is 14-fold of said amount. The total health expense in 2014 in Turkey is $-PPP 80.3 billion and the total DFU cost has a 3% share in the total annual health expenses for Turkey. Hospital costs are the highest component in DFU disease costs. In order to prevent DFU, training of the patients at risk and raising consciousness in patients with diabetes mellitus (DM) will provide benefits in terms of economy. Appropriate and efficient treatment of DM is a health intervention that can prevent complications. PMID:27795820

  1. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for atmospheric aerosols with a coarse mode diameter situated at about 3.5 μm. The experimental results reported in this study will be important in validating satellite based observations and simulation models of the African dust plume towards the Gulf of Guinea during winter.

  2. Carbon Dioxide and Water Vapor Fluxes at Reduced and Elevated CO2 Concentrations in Southern California Chaparral

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Oechel, W. C.; Hastings, S. J.; Bryant, P. J.; Qian, Y.

    2003-12-01

    This research took two different approaches to measuring carbon and water vapor fluxes at the plot level (2 x 2 meter and 1 x 1 meter plots) to help understand and predict ecosystem responses to elevated CO2 concentrations and concomitant environmental changes. The first measurement approach utilized a CO2-controlled, ambient lit, temperature controlled (CO2LT) null-balance chamber system run in a chaparral ecosystem in southern California, with six different CO2 concentrations ranging from 250 to 750 ppm CO2 concentrations with 100 ppm difference between treatments. The second measurement approach used a free air CO2 enrichment (FACE) system operated at 550 ppm CO2 concentration. These manipulations allowed the study of responses of naturally-growing chaparral to varying levels of CO2, under both chamber and open air conditions. There was a statistically significant CO2 effect on annual NEE (net ecosystem exchange) during the period of this study, 1997 to 2000. The effects of elevated CO2 on CO2 and water vapor flux showed strong seasonal patterns. Elevated CO2 delayed the development of water stress, enhanced leaf-level photosynthesis, and decreased transpiration and conductance rates. These effects were observed regardless of water availability. Ecosystem CO2 sink strength and plant water status were significantly enhanced by elevated CO2 when water availability was restricted. Comparing the FACE treatment and the FACE control, the ecosystem was either a stronger sink or a weaker source to the atmosphere throughout the dry seasons, but there was no statistically significant difference during the wet seasons. Annual average leaf transpiration decreased with the increasing of the atmospheric CO2 concentration. Although leaf level water-use efficiency (WUE) increased with the growth CO2 concentration increase, annual evapotranspiration (ET) during these four years also increased with the increase of the atmospheric CO2 concentrations. These results indicate that chaparral or other similar ecosystems, under future elevated CO2 concentrations, might be even more water stressed than they are under current conditions.

  3. Using PM2.5 concentrations to estimate the health burden from solid fuel combustion, with application to Irish and Scottish homes

    PubMed Central

    2013-01-01

    Background This study estimates the potential population health burden from exposure to combustion-derived particulate air pollution in domestic settings in Ireland and Scotland. Methods The study focused on solid fuel combustion used for heating and the use of gas for cooking. PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) was used as the pollutant mixture indicator. Measured PM2.5 concentrations in homes using solid fuels were adjusted for other sources of PM2.5 by subtracting PM2.5 concentrations in homes using gas for cooking but not solid fuel heating. Health burden was estimated for exposure indoors 6 pm - midnight, or all day (24-hour), by combining estimated attributable annual PM2.5 exposures with (i) selected epidemiological functions linking PM2.5 with mortality and morbidity (involving some re-scaling from PM10 to PM2.5, and adjustments ‘translating’ from concentrations to exposures) and (ii) on the current population exposed and background rates of morbidity and mortality. Results PM2.5 concentrations in coal and wood burning homes were similar to homes using gas for cooking, used here as a baseline (mean 24-hr PM2.5 concentrations 8.6 μg/m3) and so health impacts were not calculated. Concentrations of PM2.5 in homes using peat were higher (24-hr mean 15.6 μg/m3); however, health impacts were calculated for the exposed population in Ireland only; the proportion exposed in Scotland was very small. The assessment for winter evening exposure (estimated annual average increase of 2.11 μg/m3 over baseline) estimated 21 additional annual cases of all-cause mortality, 55 of chronic bronchitis, and 30,100 and 38,000 annual lower respiratory symptom days (including cough) and restricted activity days respectively. Conclusion New methods for estimating the potential health burden of combustion-generated pollution from solid fuels in Irish and Scottish homes are provided. The methodology involves several approximations and uncertainties but is consistent with a wider movement towards quantifying risks in PM2.5 irrespective of source. Results show an effect of indoor smoke from using peat (but not wood or coal) for heating and cooking; but they do not suggest that this is a major public health issue. PMID:23782423

  4. Using PM2.5 concentrations to estimate the health burden from solid fuel combustion, with application to Irish and Scottish homes.

    PubMed

    Galea, Karen S; Hurley, J Fintan; Cowie, Hilary; Shafrir, Amy L; Sánchez Jiménez, Araceli; Semple, Sean; Ayres, Jon G; Coggins, Marie

    2013-06-19

    This study estimates the potential population health burden from exposure to combustion-derived particulate air pollution in domestic settings in Ireland and Scotland. The study focused on solid fuel combustion used for heating and the use of gas for cooking. PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) was used as the pollutant mixture indicator. Measured PM2.5 concentrations in homes using solid fuels were adjusted for other sources of PM2.5 by subtracting PM2.5 concentrations in homes using gas for cooking but not solid fuel heating. Health burden was estimated for exposure indoors 6 pm - midnight, or all day (24-hour), by combining estimated attributable annual PM2.5 exposures with (i) selected epidemiological functions linking PM2.5 with mortality and morbidity (involving some re-scaling from PM10 to PM2.5, and adjustments 'translating' from concentrations to exposures) and (ii) on the current population exposed and background rates of morbidity and mortality. PM2.5 concentrations in coal and wood burning homes were similar to homes using gas for cooking, used here as a baseline (mean 24-hr PM2.5 concentrations 8.6 μg/m3) and so health impacts were not calculated. Concentrations of PM2.5 in homes using peat were higher (24-hr mean 15.6 μg/m3); however, health impacts were calculated for the exposed population in Ireland only; the proportion exposed in Scotland was very small. The assessment for winter evening exposure (estimated annual average increase of 2.11 μg/m3 over baseline) estimated 21 additional annual cases of all-cause mortality, 55 of chronic bronchitis, and 30,100 and 38,000 annual lower respiratory symptom days (including cough) and restricted activity days respectively. New methods for estimating the potential health burden of combustion-generated pollution from solid fuels in Irish and Scottish homes are provided. The methodology involves several approximations and uncertainties but is consistent with a wider movement towards quantifying risks in PM2.5 irrespective of source. Results show an effect of indoor smoke from using peat (but not wood or coal) for heating and cooking; but they do not suggest that this is a major public health issue.

  5. 76 FR 3142 - Notice of Annual Adjustment of the Cap on Average Total Assets That Defines Community Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... FEDERAL HOUSING FINANCE AGENCY [No. 2011-N-01] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... average total assets below a statutory cap. See 12 U.S.C. 1422(10)(A); 12 CFR 1263.1. The Bank Act was...

  6. The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Hallsworth, S.; Famulari, D.; Doherty, R. M.; Dore, A. J.; Tang, Y. S.; Braban, C. F.; Leaver, D.; Sutton, M. A.; Reis, S.

    2014-08-01

    Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001-2010 using the EMEP4UK regional atmospheric chemistry transport model and evaluated against measurements. Gas/particle partitioning in the EMEP4UK model simulations used a bulk approach, which may lead to uncertainties in simulated secondary inorganic aerosol. However, model simulations were able to accurately represent both the long-term decadal surface concentrations of particle sulfate and nitrate and an episode in early 2003 of substantially elevated nitrate measured across the UK by the AGANet network. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological: a persistent high-pressure system, whose varying location impacted the relative importance of transboundary versus domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and southeast, may be close to or exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on particulate matter concentrations and the need for international agreements to address the transboundary component of air pollution.

  7. Decadal stream water quality trends under varying climate, land use, and hydrogeochemical setting in, Iowa, USA

    NASA Astrophysics Data System (ADS)

    Green, Christopher; Bekins, Barbara; Kalkhoff, Stephen; Hirsch, Robert; Liao, Lixia; Barnes, Kimberlee

    2015-04-01

    Understanding how nitrogen fluxes respond to changes in agricultural practices and climatic variations is important for improving water quality in agricultural settings. In the central United States, intensification of corn cropping in support of ethanol production led to increases in N application rates in the 2000s during a period including both extreme dry and wet conditions. To examine the effect of these recent changes, a study was conducted on surface water quality in 10 major Iowa Rivers. Long term (~20 to 30 years) water quality and flow data were analyzed with Weighted Regression on Time, Discharge and Season (WRTDS), a statistical method that provides internally consistent estimates of the concentration history and reveals decadal trends that are independent of random variations of stream flow from seasonal averages. Trends of surface water quality showed constant or decreasing flow-normalized concentrations of nitrate+nitrite-N from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to annual concentrations. The recent declining concentration trends can be attributed to both very high and very low streamflow discharge in the 2000's and to the long (e.g. 8-year) subsurface residence times in some basins. Dilution of surface water nitrate and depletion of stored nitrate may occur in years with very high discharge. Limited transport of N to streams and accumulation of stored N may occur in years with very low discharge. Central Iowa basins showed the greatest reduction in concentrations, likely because extensive tile-drains limit the effective volumes for storage of N and reduce residence times, and because the glacial sediments in these basins promote denitrification. Changes in nitrogen fluxes resulting from ethanol production and other factors will likely be delayed for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.

  8. Nutrient Loading and Algal Response in West Thompson Lake, Thompson, Connecticut, 2003-2005

    USGS Publications Warehouse

    Morrison, Jonathan; Colombo, Michael J.

    2008-01-01

    Water quality and nutrient loads were characterized for parts of the Quinebaug River and West Thompson Lake in northeastern Connecticut during 2003 to 2005. The West Thompson Lake watershed is a mainly forested watershed that receives treated municipal wastewater from several point sources in Massachusetts. The lake is a flood-control reservoir formed in 1966 by impoundment of the Quinebaug River. Median concentrations of total phosphorus in two inflow (upstream) and one outflow (downstream) sampling stations on the Quinebaug River were higher than the nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) for rivers and streams in aggregate Ecoregion XIV. In general, concentrations of total phosphorus in West Thompson Lake also were above the nutrient criteria recommended by USEPA for lakes and impoundments in aggregate Ecoregion XIV. The trophic status of West Thompson Lake has changed since 1995 from a hypereutrophic lake to a eutrophic lake; however, the lake still has large algal blooms. These blooms are predominated by blue-green algae, with chlorophyll-a concentrations of more than 30 micrograms per liter and algal cell counts as high as 73,000 cells/mL. Water samples collected during the summer of 2005 identified phosphorus as the primary limiting nutrient early in the season, but algal growth is probably co-limited by phosphorus and nitrogen later in the season. Lake-bottom sediments were collected from several areas throughout the lake and ranged in thickness from less than 1 foot (ft) to more than 3 ft. Concentrations of phosphorus in sediments differed throughout the lake; the highest values were found in the middle of the lake. Concentrations of total phosphorus also increased from an average 1,800 milligrams per kilogram (mg/kg) in the upper layers of sediment to more than 6,000 mg/kg at depth in the sediment. Annual, seasonal, and monthly loads and yields of nutrients were calculated for the three sampling locations on the Quinebaug River to develop a nutrient mass-balance model (budget) for West Thompson Lake. The average annual yields of total phosphorus during 2000 to 2005 were 115 pounds per square mile per year (lb/mi2/yr) at Quinebaug (inflow station), 116 lb/mi2/yr at Red Bridge Road (inflow station), and 97.9 lb/mi2/yr at West Thompson (outflow station). The 18-percent decrease in the average annual yield of total phosphorus between the inflow station at Red Bridge Road and the outlet of West Thompson Lake at West Thompson indicates that a significant part of the phosphorus load is retained in the lake. Annual yields of total phosphorus at Quinebaug have decreased significantly since the 1980s, from 362 lb/mi2/yr (for 1981-1990) to 115 lb/mi2/yr (1996-2005). The annual net export of phosphorus in West Thompson Lake during water years 2000 to 2005 ranged from -36 percent (2005) to 1 percent (2002) of the incoming load. Seasonal mass-balance data for total phosphorus during the summers of 2000 to 2003, when streamflow was at or lower than normal, indicated a net export of phosphorus that ranged from 3.4 percent (2003) to 30.7 percent (2002) of the incoming load. During the summer of 2004, however, streamflows were much higher than normal, and there was a negative export of phosphorus in West Thompson Lake of -3.9 percent. The annual net export of nitrogen in West Thompson Lake during water years 2000 to 2005 ranged from -5 percent (2002) to 4 percent (2001) of the incoming load. No clear pattern was evident to relate total nitrogen export to seasonal variables or runoff. Removal of phosphorus during the summer by wastewater-treatment plants (WWTPs) in Massachusetts reduces the concentration and load of total phosphorus entering West Thompson Lake in the summer; however, the large amount of phosphorus retained in the lake during the other seasons, in addition to the phosphorus stored in the lake-bottom sediments, may become available to fuel algal blooms in the lake

  9. [Nutrients in atmospheric wet deposition in the East China Sea].

    PubMed

    Zhu, Yu-Mei; Liu, Su-Mei

    2011-09-01

    92 rainwater samples were collected at Shengsi Archipelago from January 2008 to December 2009. The pH and the concentrations of nutrients (NH4(+), NO3(-) + NO2(-), PO4(3-), SiO3(2-)) were analyzed using spectrophotometry to understand the impacts of the atmospheric wet deposition on the ecosystem of the East China Sea. The results showed that the pH of 85% samples were less than 5.0, and had significant effect on the environment. There were significant differences among monthly average concentrations of nutrients and rainfall and seasonal average wet deposition of nutrients in investigation periods. The annual average wet deposition flux was 52.05 mmol x (m2 x a) (-1) for DIN, 0.08 mmol x (m2 x a) (-1) for PO4(3-), 2.05 mmol x (m2 x a) (-1) for SiO3(2-). The average molar ratios of NO3(-)/NH4(+) is 0.73, N: P ratio is 684: 1, indicating that nutrients composition in rainwater was different from seawater of the East China Sea Shelf (10-150). The wet deposition may change the nutrients structure, pH and lead to change the phytoplankton production in the surface seawater of the East China Sea, even lead to the red tide.

  10. Convective organization in the Pacific ITCZ: Merging OLR, TOVS, and SSM/I information

    NASA Technical Reports Server (NTRS)

    Hayes, Patrick M.; Mcguirk, James P.

    1993-01-01

    One of the most striking features of the planet's long-time average cloudiness is the zonal band of concentrated convection lying near the equator. Large-scale variability of the Intertropical Convergence Zone (ITCZ) has been well documented in studies of the planetary spatial scales and seasonal/annual/interannual temporal cycles of convection. Smaller-scale variability is difficult to study over the tropical oceans for several reasons. Conventional surface and upper-air data are virtually non-existent in some regions; diurnal and annual signals overwhelm fluctuations on other time scales; and analyses of variables such as geopotential and moisture are generally less reliable in the tropics. These problems make the use of satellite data an attractive alternative and the preferred means to study variability of tropical weather systems.

  11. Comparison of Hourly PM2.5 Observations Between Urban and Suburban Areas in Beijing, China.

    PubMed

    Yao, Ling; Lu, Ning; Yue, Xiafang; Du, Jia; Yang, Cundong

    2015-09-29

    Hourly PM2.5 observations collected at 12 stations over a 1-year period are used to identify variations between urban and suburban areas in Beijing. The data demonstrates a unique monthly variation form, as compared with other major cities. Urban areas suffer higher PM2.5 concentration (about 92 μg/m³) than suburban areas (about 77 μg/m³), and the average PM2.5 concentration in cold season (about 105 μg/m³) is higher than warm season (about 78 μg/m³). Hourly PM2.5 observations exhibit distinct seasonal, diurnal and day-of-week variations. The diurnal variation of PM2.5 is observed with higher concentration at night and lower value at daytime, and the cumulative growth of nighttime (22:00 p.m. in winter) PM2.5 concentration maybe due to the atmospheric stability. Moreover, annual average PM2.5 concentrations are about 18 μg/m³ higher on weekends than weekdays, consistent with driving restrictions on weekdays. Additionally, the nighttime peak in weekdays (21:00 p.m.) is one hour later than weekends (20:00 p.m.) which also shows the evidence of human activity. These observed facts indicate that the variations of PM2.5 concentration between urban and suburban areas in Beijing are influenced by complex meteorological factors and human activities.

  12. Comparison of Hourly PM2.5 Observations Between Urban and Suburban Areas in Beijing, China

    PubMed Central

    Yao, Ling; Lu, Ning; Yue, Xiafang; Du, Jia; Yang, Cundong

    2015-01-01

    Hourly PM2.5 observations collected at 12 stations over a 1-year period are used to identify variations between urban and suburban areas in Beijing. The data demonstrates a unique monthly variation form, as compared with other major cities. Urban areas suffer higher PM2.5 concentration (about 92 μg/m3) than suburban areas (about 77 μg/m3), and the average PM2.5 concentration in cold season (about 105 μg/m3) is higher than warm season (about 78 μg/m3). Hourly PM2.5 observations exhibit distinct seasonal, diurnal and day-of-week variations. The diurnal variation of PM2.5 is observed with higher concentration at night and lower value at daytime, and the cumulative growth of nighttime (22:00 p.m. in winter) PM2.5 concentration maybe due to the atmospheric stability. Moreover, annual average PM2.5 concentrations are about 18 μg/m3 higher on weekends than weekdays, consistent with driving restrictions on weekdays. Additionally, the nighttime peak in weekdays (21:00 p.m.) is one hour later than weekends (20:00 p.m.) which also shows the evidence of human activity. These observed facts indicate that the variations of PM2.5 concentration between urban and suburban areas in Beijing are influenced by complex meteorological factors and human activities. PMID:26426035

  13. Inhalation Dose and Source Term Studies in a Tribal Area of Wayanad, Kerala, India

    PubMed Central

    Damodaran, Ravikumar C.; Kumar, Visnuprasad Ashok; Panakal John, Jojo; Bangaru, Danalakshmi; Natarajan, Chitra; Sathiamurthy, Bala Sundar; Mundiyanikal Thomas, Jose; Mishra, Rosaline

    2017-01-01

    Among radiation exposure pathways to human beings, inhalation dose is the most prominent one. Radon, thoron, and their progeny contribute more than 50 per cent to the annual effective dose due to natural radioactivity. South west coast of India is classified as a High Natural Background Radioactivity Area and large scale data on natural radioactivity and dosimetry are available from these coastal regions including the Neendakara-Chavara belt in the south of Kerala. However, similar studies and reports from the northern part of Kerala are scarce. The present study involves the data collection and analysis of radon, thoron, and progeny concentration in the Wayanad district of Kerala. The radon concentration was found to be within a range of 12–378 Bq/m3. The thoron concentration varied from 15 to 621 Bq/m3. Progeny concentration of radon and thoron and the diurnal variation of radon were also studied. In order to assess source term, wall and floor exhalation studies have been done for the houses showing elevated concentration of radon and thoron. The average values of radon, thoron, and their progeny are found to be above the Indian average as well as the average values reported from the High Natural Background Radioactivity Areas of Kerala. Exhalation studies of the soil samples collected from the vicinity of the houses show that radon mass exhalation rate varied from below detectable limit (BDL) to a maximum of 80 mBq/kg/h. The thoron surface exhalation rate ranged from BDL to 17470 Bq/m2/h. PMID:28611847

  14. Systematic review of the relationship of Helicobacter pylori infection with geographical latitude, average annual temperature and average daily sunshine.

    PubMed

    Lu, Chao; Yu, Ye; Li, Lan; Yu, Chaohui; Xu, Ping

    2018-04-17

    Helicobacter pylori (H. pylori) infection is a worldwide threat to human health with high prevalence. In this study, we analyzed the relationship between latitude, average annual temperature, average daily sunshine time and H. pylori infection. The PubMed, ClinicalTrials.gov , EBSCO and Web of Science databases were searched to identify studies reporting H. pylori infection. Latitude 30° was the cut-off level for low and mid-latitude areas. We obtained information for latitude, average annual temperature, average daily sunshine, and Human Development Index (HDI) from reports of studies of the relationships with H. pylori infection. Of the 51 studies included, there was significant difference in H. pylori infection between the low- and mid-latitude areas (P = 0.05). There was no significant difference in the prevalence of H. pylori infection in each 15°-latitude zone analyzed (P = 0.061). Subgroup analysis revealed the highest and lowest H. pylori infection rates in the developing regions at > 30° latitude subgroup and the developed regions at < 30° latitude subgroup, respectively (P < 0.001). Multivariate analysis showed that average annual temperature, average daily sunshine time and HDI were significantly correlated with H. pylori infection (P = 0.009, P < 0.001, P < 0.001), while there was no correlation between H. pylori infection and latitude. Our analysis showed that higher average annual temperature was associated with lower H. pylori infection rates, while average daily sunshine time correlated positively with H. pylori infection. HDI was also found to be a significant factor, with higher HDI associated with lower infection rates. These findings provide evidence that can be used to devise strategies for the prevention and control of H. pylori.

  15. Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Kennedy, James L.

    2011-01-01

    Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.

  16. Estimation of effective hydrologic properties of soils from observations of vegetation density. M.S. Thesis; [water balance of watersheds in Clinton, Maine and Santa Paula, California

    NASA Technical Reports Server (NTRS)

    Tellers, T. E.

    1980-01-01

    An existing one-dimensional model of the annual water balance is reviewed. Slight improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate-soil system, is verified through comparisons with observed data and is employed in the annual water balance of watersheds in Clinton, Ma., and Santa Paula, Ca., to estimate effective areal average soil properties. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides excellent verification of the soil-selection procedure. This method of parameterization of the land surface should be useful with present global circulation models, enabling them to account for both the non-linearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.

  17. Water-quality characteristics of urban runoff and estimates of annual loads in the Tampa Bay area, Florida, 1975-80

    USGS Publications Warehouse

    Lopez, M.A.; Giovannelli, R.F.

    1984-01-01

    Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)

  18. An estimation of Canadian population exposure to cosmic rays.

    PubMed

    Chen, Jing; Timmins, Rachel; Verdecchia, Kyle; Sato, Tatsuhiko

    2009-08-01

    The worldwide average exposure to cosmic rays contributes to about 16% of the annual effective dose from natural radiation sources. At ground level, doses from cosmic ray exposure depend strongly on altitude, and weakly on geographical location and solar activity. With the analytical model PARMA developed by the Japan Atomic Energy Agency, annual effective doses due to cosmic ray exposure at ground level were calculated for more than 1,500 communities across Canada which cover more than 85% of the Canadian population. The annual effective doses from cosmic ray exposure in the year 2000 during solar maximum ranged from 0.27 to 0.72 mSv with the population-weighted national average of 0.30 mSv. For the year 2006 during solar minimum, the doses varied between 0.30 and 0.84 mSv, and the population-weighted national average was 0.33 mSv. Averaged over solar activity, the Canadian population-weighted average annual effective dose due to cosmic ray exposure at ground level is estimated to be 0.31 mSv.

  19. Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition

    NASA Technical Reports Server (NTRS)

    Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.

    1992-01-01

    Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico, USA. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots did not differ, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Annual net nitrogen mineralization and nitrate production were estimated in soil and forest floor using in situ incubations; fertilized soil mineralized 277 kg/ha/y in contrast to 18 kg/ha/y in control plots. Relative recovery of 15NH4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Despite the elevated nitrous oxide emission resulting from fertilization, we estimate that global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.

  20. Prediction and analysis of near-road concentrations using a reduced-form emission/dispersion model

    PubMed Central

    2010-01-01

    Background Near-road exposures of traffic-related air pollutants have been receiving increased attention due to evidence linking emissions from high-traffic roadways to adverse health outcomes. To date, most epidemiological and risk analyses have utilized simple but crude exposure indicators, most typically proximity measures, such as the distance between freeways and residences, to represent air quality impacts from traffic. This paper derives and analyzes a simplified microscale simulation model designed to predict short- (hourly) to long-term (annual average) pollutant concentrations near roads. Sensitivity analyses and case studies are used to highlight issues in predicting near-road exposures. Methods Process-based simulation models using a computationally efficient reduced-form response surface structure and a minimum number of inputs integrate the major determinants of air pollution exposures: traffic volume and vehicle emissions, meteorology, and receptor location. We identify the most influential variables and then derive a set of multiplicative submodels that match predictions from "parent" models MOBILE6.2 and CALINE4. The assembled model is applied to two case studies in the Detroit, Michigan area. The first predicts carbon monoxide (CO) concentrations at a monitoring site near a freeway. The second predicts CO and PM2.5 concentrations in a dense receptor grid over a 1 km2 area around the intersection of two major roads. We analyze the spatial and temporal patterns of pollutant concentration predictions. Results Predicted CO concentrations showed reasonable agreement with annual average and 24-hour measurements, e.g., 59% of the 24-hr predictions were within a factor of two of observations in the warmer months when CO emissions are more consistent. The highest concentrations of both CO and PM2.5 were predicted to occur near intersections and downwind of major roads during periods of unfavorable meteorology (e.g., low wind speeds) and high emissions (e.g., weekday rush hour). The spatial and temporal variation among predicted concentrations was significant, and resulted in unusual distributional and correlation characteristics, including strong negative correlation for receptors on opposite sides of a road and the highest short-term concentrations on the "upwind" side of the road. Conclusions The case study findings can likely be generalized to many other locations, and they have important implications for epidemiological and other studies. The reduced-form model is intended for exposure assessment, risk assessment, epidemiological, geographical information systems, and other applications. PMID:20579353

  1. Nutrient Uptake and Cycles of Change: the Ventura River in Southern California

    NASA Astrophysics Data System (ADS)

    Leydecker, A.; Simpson, J.; Grabowski, L.

    2003-12-01

    Watersheds in Mediterranean climates are characterized by extreme seasonal and inter-annual rainfall variability. This variability engenders cycles of sediment deposition and removal, algal growth, and the advance and retreat of riparian and aquatic vegetation. In turn, these changes dramatically alter the appearance and biological functioning of rivers and streams, regulating the uptake of nutrients. The Ventura River drains 580 sq. km of mountainous coastal watershed 100 km northwest of Los Angles, Ca. More than 90 % of the average annual rainfall of 500 mm falls between December and March with most of the annual runoff occurring within a few days. Since 1930, annual runoff has varied from 0.01 to 70 cm/ha, with a mean of 12 and median of 4 cm. We have been measuring dissolved nutrient concentrations at four locations on the lower 9 kilometers of the river for the past 3 years (annual runoff of 19, 0.6 and 14 cm, respectively) and quantifying the relative abundance of plants and algae during 2003. A subsequent decrease in nutrient concentrations below a treated sewage outfall at km 8 provides estimates of nutrient uptake under changing conditions. Nitrate concentrations on the river peak in early winter, presumably from mineralization and mobilization after the advent of the rainy season, and decrease to a minimum by late summer. Phosphate, controlled by dry-season treatment plant outflows, has an opposite pattern. The seasonal variation in both is considerable (0 to 380 microM for nitrate, 0 to 35 microM for phosphate). Major winter storms, such as occur during severe El Nino years (peak flows > 1000 cms), begin a transformational cycle by completely scouring the channel of vegetation and fine sediment; this occurs, on average, once every 10 to 12 years (the interval has varied from 3 to 30 years). The scoured channel, with warmer water temperatures, the absence of shade and a nutrient rich environment, becomes dominated by filamentous algae (principally Cladophora, Rhizoclonium, Enteromorpha and Spirogyra spp.). In contrast, drought years occasion exuberant plant growth and the competitive replacement of algae by aquatic vegetation. Absent scouring winter flows, perennial aquatic plants become established, trapping fine sediment and narrowing the wetted channel; the rapid growth of riparian vegetation (Arundo donax and Salix spp.) provides increased shade to the narrowed waterway. These processes increasingly stabilize the channel and elevate the threshold flow of a scouring storm; the major storm of 2003, following the 2002 drought year (peak flow of 5 cms), produced appreciably less channel transformation than a similarly-sized storm in 2001 (peak flow of 500 cms). During the 2002 drought year, dry-season nitrate concentrations at the river mouth were reduced to near zero, likely due to reduced flows, extensive vascular plant growth supporting high rates of denitrification and vegetative uptake, and enhanced sediment processes from increased fine sediment entrapment. Higher nitrate concentrations at the same location in 2003 (circa 60 microM) exhibited a 3-fold increase compared with 2001, an algal dominated year with a similar flow regime, and N uptake below the treatment plant appears to be substantially decreased.

  2. Flow-covariate prediction of stream pesticide concentrations.

    PubMed

    Mosquin, Paul L; Aldworth, Jeremy; Chen, Wenlin

    2018-01-01

    Potential peak functions (e.g., maximum rolling averages over a given duration) of annual pesticide concentrations in the aquatic environment are important exposure parameters (or target quantities) for ecological risk assessments. These target quantities require accurate concentration estimates on nonsampled days in a monitoring program. We examined stream flow as a covariate via universal kriging to improve predictions of maximum m-day (m = 1, 7, 14, 30, 60) rolling averages and the 95th percentiles of atrazine concentration in streams where data were collected every 7 or 14 d. The universal kriging predictions were evaluated against the target quantities calculated directly from the daily (or near daily) measured atrazine concentration at 32 sites (89 site-yr) as part of the Atrazine Ecological Monitoring Program in the US corn belt region (2008-2013) and 4 sites (62 site-yr) in Ohio by the National Center for Water Quality Research (1993-2008). Because stream flow data are strongly skewed to the right, 3 transformations of the flow covariate were considered: log transformation, short-term flow anomaly, and normalized Box-Cox transformation. The normalized Box-Cox transformation resulted in predictions of the target quantities that were comparable to those obtained from log-linear interpolation (i.e., linear interpolation on the log scale) for 7-d sampling. However, the predictions appeared to be negatively affected by variability in regression coefficient estimates across different sample realizations of the concentration time series. Therefore, revised models incorporating seasonal covariates and partially or fully constrained regression parameters were investigated, and they were found to provide much improved predictions in comparison with those from log-linear interpolation for all rolling average measures. Environ Toxicol Chem 2018;37:260-273. © 2017 SETAC. © 2017 SETAC.

  3. Water quality in the St. Croix National Scenic Riverway, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczyk, D.J.

    1986-01-01

    A water quality study of the St. Croix National Scenic Riverway, was conducted during the period 1975-83. Concentrations of most constituents analyzed, and constituent loads and yields were lower in the Scenic Riverway than in other Wisconsin streams. Water quality samples were collected at 10 stations throughout the study area and were compared to analyses of samples from selected National Stream Quality Accounting Network stations (NASWAN) and the Hydrologic Bench-Mark Network (HBMN) station in Wisconsin. The average suspended sediment (SS) concentration for 9 of the 10 stations in this study was 7.7 mg/L. The concentrations of major cations and anionsmore » at two of the stations were similar to concentrations at the HBMN station Popple River near Fence. Mean total phosphorus concentrations ranged from 0.02 to 0.08 mg/L at the study stations and from 0.03 to 0.16 mg/L at selected NASQAN stations. Concentrations of trace metals were below safe drinking water standards at all the study sites, except for iron and manganese which exceeded drinking water standards at some of the study sites. Pesticides were sampled at the St. Croix River at St. Croix Falls and above and below cranberry bogs that drain into the Namekagon River. Average annual loads of SS, total phosphorus, total nitrogen, and dissolved solids were calculated by a flow duration curve method. Suspended sediment yields ranged from 1.9 to 13.3 tons/sq mi. The average SS yield for Wisconsin is 80 tons/sq mi. total phosphorus and other constituents exhibited the same trend. 26 refs., 10 figs., 12 tabs.« less

  4. 210Po in the marine biota of Korean coastal waters and the effective dose from seafood consumption.

    PubMed

    Kim, S H; Hong, G H; Lee, H M; Cho, B E

    2017-08-01

    The activity concentrations of 210 Po were determined in plankton and selected species of macroalgae, crustaceans, molluscs, and fish from Korean coastal waters to understand 210 Po distribution in these trophic levels and to assess the effective dose of 210 Po from seafood ingested by the average Korean. The activity concentration of 210 Po in macroalgae, mixed plankton, anchovy (whole body), abalone muscle, and abalone viscera was 0.97-1.43, 32-137, 59-392, 2.93 ± 0.86, and 1495 ± 484 Bq kg -1 (w.w.), respectively. Polonium-210 concentration in the whole flesh of mussel and oyster were 47.8 ± 5.9 and 45.3 ± 7.1 Bq kg -1 (w.w.), respectively. Polonium-210 concentration in the muscle of the five tested species of fish other than anchovy ranged from 0.51 to 5.56 Bq kg -1 (w.w.), with the lowest amount in a demersal species. In fish, 210 Po activity concentration was as much as three orders of magnitude higher in viscera than in muscle. The average annual effective 210 Po dose per average Korean adult, who consumes 42.8 kg of seafood a year (excluding anchovy), was estimated to be 94 μSv y -1 , with 42-71% of this attributed to shellfish. Further studies are required to assess the dose of 210 Po from anchovy owing to its high activity concentration and the manner in which anchovy is consumed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Water uptake and nutrient concentrations under a floodplain oak savanna during a non-flood period, lower Cedar River, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Jacobson, P.

    2009-01-01

    Floodplains during non-flood periods are less well documented than when flooding occurs, but non-flood periods offer opportunities to investigate vegetation controls on water and nutrient cycling. In this study, we characterized water uptake and nutrient concentration patterns from 2005 to 2007 under an oak savanna located on the floodplain of the Cedar River in Muscatine County, Iowa. The water table ranged from 0.5 to 2.5 m below ground surface and fluctuated in response to stream stage, plant water demand and rainfall inputs. Applying the White method to diurnal water table fluctuations, daily ET from groundwater averaged more than 3.5 mm/day in June and July and approximately 2 mm/day in May and August. Total annual ET averaged 404 mm for a growing season from mid-May to mid-October. Savanna groundwater concentrations of nitrate-N, ammonium-N, and phosphate-P were very low (mean <0.18, <0.14, <0.08 mg/l, respectively), whereas DOC concentrations were high (7.1 mg/l). Low concentrations of N and P were in contrast to high nutrient concentrations in the nearby Cedar River, where N and P averaged 7.5 mg/ l and 0.13, respectively. In regions dominated by intensive agriculture, study results document valuable ecosystem services for native floodplain ecosystems in reducing watershed-scale nutrient losses and providing an oasis for biological complexity. Improved understanding of the environmental conditions of regionally significant habitats, including major controls on water table elevations and water quality, offers promise for better management aimed at preserving the ecology of these important habitats. Copyright ?? 2009 John Wiley & Sons, Ltd.

  6. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    NASA Technical Reports Server (NTRS)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; hide

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  7. Assessment of natural radioactivity in various commercial tiles used for building purposes in Nigeria.

    PubMed

    Joel, E S; Maxwell, O; Adewoyin, O O; Ehi-Eromosele, C O; Embong, Z; Oyawoye, F

    2018-01-01

    In this study, we evaluated the activity concentration of natural radionuclides ( 226 Ra, 232 Th and 40 K) for fifteen (15) different brands of tile samples used for building purposes in Nigeria. The tile samples were analyzed using High purity Germanium gamma detector. The mean activity concentrations of 226 Ra, 232 Th, and 40 K were observed to be 61.1 ± 5.5 Bq/kg, 70.2 ± 6.08 Bq/kg and 514.7 ± 59.8 Bq/kg respectively. Various hazard indices such as absorbed dose rate, external and internal hazard index, annual effective dose rate, Gamma activity Index (Iγ) and Alpha Index (Iα) were calculated. The obtained results showed that the mean radium equivalent activity (Raeq), the absorbed dose rate (D), external and internal hazard index, the annual effective dose (AEDR) equivalent, Gamma activity Index (Iγ) and Alpha Index (Iα) were: 204.42 Bq/kg, 177.61 nGyh -1 , 0.55, 0.77, 0.96 mSvyr -1 , 0.74 and 0.32 respectively. The average value of radium equivalent obtained in this study is less than that of the recommended value of 370 Bq/kg but the average values of the other radiological hazards for some samples are found to be slightly above international recommended values except H ex , H in and AEDE which are within the international reference value of unity. The measured concentrations of these radioactive materials were correlated with other previous result obtained from similar tile materials used in other countries and found to be in good agreement with the international standard, however, the tiles are recommended for decoration purposes in Nigeria.

  8. Annual and Semi-Annual Temperature Oscillations in the Upper Mesosphere

    NASA Technical Reports Server (NTRS)

    Niciejewski, R. J.; Killeen, T. L.

    1995-01-01

    Fourier transform spectrometer observations of the mesosphere have been performed at the University of Michigan (latitude: 42.5 N) on a long term basis. A database of near infrared Meinel hydroxyl spectra has been accumulated from which rotational temperatures have been determined. Harmonic analysis of one-day averaged temperatures for the period 1992.0 to 1994.5 has shown a distinct annual and semi-annual variation. Subsequent fitting of a five term periodic function characterizing the annual and semi-annual temperature oscillations to the daily averaged temperatures was performed. The resultant mean temperature and the amplitudes and phases of the annual and semi-annual variations are shown to coincide with an emission height slightly above 85 km which is consistent with the mean rocket derived altitude for peak nocturnal hydroxyl emission.

  9. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.

    PubMed

    He, Congrong; Miljevic, Branka; Crilley, Leigh R; Surawski, Nicholas C; Bartsch, Jennifer; Salimi, Farhad; Uhde, Erik; Schnelle-Kreis, Jürgen; Orasche, Jürgen; Ristovski, Zoran; Ayoko, Godwin A; Zimmermann, Ralf; Morawska, Lidia

    2016-05-01

    Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality. The current results provide a solid platform for more detailed health and modelling investigations in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nutrient and Suspended-Sediment Transport and Trends in the Columbia River and Puget Sound Basins, 1993-2003

    USGS Publications Warehouse

    Wise, Daniel R.; Rinella, Frank A.; Rinella, Joseph F.; Fuhrer, Greg J.; Embrey, Sandra S.; Clark, Gregory M.; Schwarz, Gregory E.; Sobieszczyk, Steven

    2007-01-01

    This study focused on three areas that might be of interest to water-quality managers in the Pacific Northwest: (1) annual loads of total nitrogen (TN), total phosphorus (TP) and suspended sediment (SS) transported through the Columbia River and Puget Sound Basins, (2) annual yields of TN, TP, and SS relative to differences in landscape and climatic conditions between subbasin catchments (drainage basins), and (3) trends in TN, TP, and SS concentrations and loads in comparison to changes in landscape and climatic conditions in the catchments. During water year 2000, an average streamflow year in the Pacific Northwest, the Columbia River discharged about 570,000 pounds per day of TN, about 55,000 pounds per day of TP, and about 14,000 tons per day of SS to the Pacific Ocean. The Snake, Yakima, Deschutes, and Willamette Rivers contributed most of the load discharged to the Columbia River. Point-source nutrient loads to the catchments (almost exclusively from municipal wastewater treatment plants) generally were a small percentage of the total in-stream nutrient loads; however, in some reaches of the Spokane, Boise, Walla Walla, and Willamette River Basins, point sources were responsible for much of the annual in-stream nutrient load. Point-source nutrient loads generally were a small percentage of the total catchment nutrient loads compared to nonpoint sources, except for a few catchments where point-source loads comprised as much as 30 percent of the TN load and as much as 80 percent of the TP load. The annual TN and TP loads from point sources discharging directly to the Puget Sound were about equal to the annual loads from eight major tributaries. Yields of TN, TP, and SS generally were greater in catchments west of the Cascade Range. A multiple linear regression analysis showed that TN yields were significantly (p < 0.05) and positively related to precipitation, atmospheric nitrogen load, fertilizer and manure load, and point-source load, and were negatively related to average slope. TP yields were significantly related positively to precipitation, and point-source load and SS yields were significantly related positively to precipitation. Forty-eight percent of the available monitoring sites for TN had significant trends in concentration (2 increasing, 19 decreasing), 32 percent of the available sites for TP had significant trends in concentration (7 increasing, 9 decreasing), and 40 percent of the available sites for SS had significant trends in concentration (4 increasing, 15 decreasing). The trends in load followed a similar pattern, but with fewer sites showing significant trends. The results from this study indicate that inputs from nonpoint sources of nutrients probably have decreased over time in many of the catchments. Despite the generally small contribution of point-source nutrient loads, they still may have been partially responsible for the significant decreasing trends for nutrients at sites where the total point-source nutrient loads to the catchments equaled a substantial proportion of the in-stream load.

  11. Incorporating measures of time-varying emissions to enhance top-down BC emissions: what is done well, what needs improvement, and what are the consequences

    NASA Astrophysics Data System (ADS)

    Cohen, J. B.; Xi, X.; Wang, C.

    2012-12-01

    Black Carbon (BC) and other absorbing aerosols uniquely impact the climate system by both scattering and absorbing solar radiation, leading to simultaneous heating and cooling of the climate system. A critical understanding of the emissions, processing, transport, and removal of these aerosols are necessary to increase our understanding of their impacts on climate system. However, BC is tricky to model: it has a mostly anthropogenic origin that is highly variable in both space and time. Furthermore, its atmospheric chemical and physical processing involves interaction with third-party chemical species. Finally, there is a strong correlation between uncertainty in prediction of the primary removal mechanism, precipitation, and those regions having the highest emissions, such as Monsoon regions of Asia. Recent work using a coupled climate/radiation/aerosol/urbanization model, data of BC concentrations and remotely sensed AAODs from more than 100 different sites, and a Kalman Filter, has lead to an average estimate of the BC average and uncertainty range of emissions. These average results ranged from about 200% to 300% the emissions currently used by the IPCC, AEROCOM, and GFED. The differences in the modeled concentrations, AAODs, radiative forcings, and climate response between these annual average different emissions levels, as well as the error bounds associated with the Kalman Filter emissions has been explored and will be summarized. Additionally, since absorbing aerosols are regionally and temporally non-uniform, an improved comparison between these differences will be highlighted using an additional data source: MISR AOD and a new analysis technique to mathematically constrain and identify unique temporally and spatially varying properties. These new constraints will be further combined with model runs under the different emissions scenarios to test the impacts of both annual average as well as more realistic cases of large-scale, season-to-season, and year-to-year variations. These results will be displayed, compared against measurements, and the influence of the time-varying component quantified both globally as well as over two regions exhibiting such an influence. It is hoped that such quantification can lead to further improvement of the emissions estimates and their impact on the climate system.

  12. Evaluation of the solar conditions for the acquisitions of energy from renewable sources on the base of Sosnowiec city (Poland)

    NASA Astrophysics Data System (ADS)

    Sarapata, Sonia

    2014-09-01

    The country's energy security risk, as well as a desire to protect the environment from the pollution and degradation which are the results of conventional fuels acquisition - these was a motivation for intensive researches on the use of renewable energy sources in eco - innovative installations. Solar radiation is one of the self - renewable energy sources which can be used both as a source of electricity and heat. The area of research is Sosnowiec city located in the south of Poland in the eastern part of Silesia voivodeship. The solar radiation data covering the years 2003 to 2013 was used. The intra - annual variability of daily averaged solar radiation hesitated in a wide range from 0.6 kWh/m2 (December) to 5.2 kWh/m2 (June). Day duration varies on average from 10 hours in January, November and December to 17 hours in May, June and July. Day occupies 56% of the 8767 hours in year. On average the largest amount of energy reached the analyzed area in July: 157 kWh/m2 (15% of the annual average), while the smallest in December: 18 kWh/m2 (less than 2% of the annual average). The 75% of the average annual total of energy falls on the period from 1st March to 31th August (spring - summer). The range of the annual solar radiation was determined by the minimum of 980 kWh/m2 and the maximum of 1094 kWh/m2. In Sosnowiec the average annual irradiation total on the horizontal surface amounts to 1052 kWh/m2 (2003 - 2013)

  13. Particulate matter pollution over China and the effects of control policies.

    PubMed

    Wang, Jiandong; Zhao, Bin; Wang, Shuxiao; Yang, Fumo; Xing, Jia; Morawska, Lidia; Ding, Aijun; Kulmala, Markku; Kerminen, Veli-Matti; Kujansuu, Joni; Wang, Zifa; Ding, Dian; Zhang, Xiaoye; Wang, Huanbo; Tian, Mi; Petäjä, Tuukka; Jiang, Jingkun; Hao, Jiming

    2017-04-15

    China is one of the regions with highest PM 2.5 concentration in the world. In this study, we review the spatio-temporal distribution of PM 2.5 mass concentration and components in China and the effect of control measures on PM 2.5 concentrations. Annual averaged PM 2.5 concentrations in Central-Eastern China reached over 100μgm -3 , in some regions even over 150μgm -3 . In 2013, only 4.1% of the cities attained the annual average standard of 35μgm -3 . Aitken mode particles tend to dominate the total particle number concentration. Depending on the location and time of the year, new particle formation (NPF) has been observed to take place between about 10 and 60% of the days. In most locations, NPF was less frequent at high PM mass loadings. The secondary inorganic particles (i.e., sulfate, nitrate and ammonium) ranked the highest fraction among the PM 2.5 species, followed by organic matters (OM), crustal species and element carbon (EC), which accounted for 6-50%, 15-51%, 5-41% and 2-12% of PM 2.5 , respectively. In response to serious particulate matter pollution, China has taken aggressive steps to improve air quality in the last decade. As a result, the national emissions of primary PM 2.5 , sulfur dioxide (SO 2 ), and nitrogen oxides (NO X ) have been decreasing since 2005, 2006, and 2011, respectively. The emission control policies implemented in the last decade could result in noticeable reduction in PM 2.5 concentrations, contributing to the decreasing PM 2.5 trends observed in Beijing, Shanghai, and Guangzhou. However, the control policies issued before 2010 are insufficient to improve PM 2.5 air quality notably in future. An optimal mix of energy-saving and end-of-pipe control measures should be implemented, more ambitious control policies for NMVOC and NH 3 should be enforced, and special control measures in winter should be applied. 40-70% emissions should be cut off to attain PM 2.5 standard. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: an ecological study.

    PubMed

    Morakinyo, Oyewale Mayowa; Adebowale, Ayo Stephen; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley

    2017-03-13

    To assess the health risks associated with exposure to particulate matter (PM 10 ), sulphur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), carbon monoxide (CO) and ozone (O 3 ). The study is an ecological study that used the year 2014 hourly ambient pollution data. The study was conducted in an industrial area located in Pretoria West, South Africa. The area accommodates a coal-fired power station, metallurgical industries such as a coke plant and a manganese smelter. Estimate of possible health risks from exposure to airborne PM 10 , SO 2 , NO 2 , CO and O 3 was performed using the US Environmental Protection Agency human health risk assessment framework. A scenario-assessment approach where normal (average exposure) and worst-case (continuous exposure) scenarios were developed for intermediate (24-hour) and chronic (annual) exposure periods for different exposure groups (infants, children, adults). The normal acute (1-hour) exposure to these pollutants was also determined. Presence or absence of adverse health effects from exposure to airborne pollutants. Average annual ambient concentration of PM 10 , NO 2 and SO 2 recorded was 48.3±43.4, 11.50±11.6 and 18.68±25.4 µg/m 3 , respectively, whereas the South African National Ambient Air Quality recommended 40, 40 and 50 µg/m 3 for PM 10 , NO 2 and SO 2 , respectively. Exposure to an hour's concentration of NO 2 , SO 2 , CO and O 3 , an 8-hour concentration of CO and O 3 , and a 24-hour concentration of PM 10 , NO 2 and SO 2 will not likely produce adverse effects to sensitive exposed groups. However, infants and children, rather than adults, are more likely to be affected. Moreover, for chronic annual exposure, PM 10 , NO 2 and SO 2 posed a health risk to sensitive individuals, with the severity of risk varying across exposed groups. Long-term chronic exposure to airborne PM 10 , NO 2 and SO 2 pollutants may result in health risks among the study population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Variations of radon concentration in the atmosphere. Gamma dose rate

    NASA Astrophysics Data System (ADS)

    Tchorz-Trzeciakiewicz, D. E.; Solecki, A. T.

    2018-02-01

    The purposes of research were following: observation and interpretation of variations of radon concentration in the atmosphere - vertical, seasonal, spatial and analysis of relation between average annual radon concentration and ground natural radiation and gamma dose rate. Moreover we wanted to check the occurrence of radon density currents and the possibility of radon accumulation at the foot of the spoil tip. The surveys were carried out in Okrzeszyn (SW Poland) in the area of the spoil tip formed during uranium mining that took place in 60's of 20th century. The measurements were carried out in 20 measurements points at three heights: 0.2 m, 1 m and 2 m a.g.l. using SSNTD LR-115. The survey lasted one year and detectors were exchanged at the beginning of every season. Uranium eU (ppm), thorium eTh (ppm) and potassium K (%) contents were measured using gamma ray spectrometer Exploranium RS-230, ambient gamma dose rate using radiometer RK-100. The average radon concentration on this area was 52.8 Bq m-3. The highest radon concentrations were noted during autumn and the lowest during winter. We observed vertical variations of radon concentration. Radon concentrations decreased with increase of height above ground level. The decrease of radon with increase of height a.g.l. had logarithmic character. Spatial variations of radon concentrations did not indicate the occurrence of radon density currents and accumulation of radon at the foot of the spoil tip. The analysis of relation between average radon concentrations and ground natural radiation (uranium and thorium content) or gamma dose rate revealed positive relation between those parameters. On the base of results mentioned above we suggested that gamma spectrometry measurements or even cheaper and simpler ambient gamma dose rate measurements can be a useful tool in determining radon prone areas. This should be confirmed by additional research.

  16. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen

    USGS Publications Warehouse

    Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.

    2007-01-01

    Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices that would reduce the loading of nutrients and soil erosion from that land use.

  17. 20 CFR 226.63 - Determining monthly compensation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...

  18. 20 CFR 226.63 - Determining monthly compensation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...

  19. 20 CFR 226.63 - Determining monthly compensation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...

  20. 20 CFR 226.63 - Determining monthly compensation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...

  1. 20 CFR 226.63 - Determining monthly compensation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...

  2. Schedule of average annual equipment ownership expense

    DOT National Transportation Integrated Search

    2003-03-06

    The "Schedule of Average Annual Equipment Ownership Expense" is designed for use on Force Account bills of Contractors performing work for the Illinois Department of Transportation and local government agencies who choose to adopt these rates. This s...

  3. The Great Basin Canada goose in southcentral Washington: A 40-year nesting history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzner, R.E.; Rickard, W.H.; Eberhardt, L.E.

    1991-04-01

    Overall, the nesting population of Great Basin Canada geese (Branta canadensis moffitti) on the Hanford Site in southcentral Washington State is doing well and appears to be increasing. The average annual total nests for the period 1981 through 1990 was 215 nests, which is slightly above the average reported for the period 1950 through 1970. The nesting population has shifted its nucleus from upriver islands (1--10) to the lower river islands (11--20) with over 70% of the present-day nesting occurring on Islands 17, 18, 19, 20. The annual percent-successful nests from 1981 through 1990 was 80%. This is above themore » 71% reported for 1950 to 1970, but is below the 82% reported for 1971 to 1980. Average annual clutch size for 1981 to 1990 was 6.05, which is above the 1971-to-1980 average of 5.6 and the 1950-to-70 average of 5.5. Next desertions for 1981 to 1990 averaged 8%. This rate is well below the 14% reported for 1950 to 1970. Predators were responsible for an annual predation rate of 9% from 1981 to 1990. This is below the 1950-to-1970 annual average predation rate of 14%. Flooding losses to nests were low during the 1980s, except for 1989 and 1990 when 6% and 9% of the total nests, respectively, were destroyed by flooding. 9 refs., 4 figs., 1 tab.« less

  4. Some General Laws of Chemical Elements Composition Dynamics in the Hydrosphere

    NASA Astrophysics Data System (ADS)

    Korzh, V.

    2012-12-01

    The biophysical oceanic composition is a result of substance migration and transformation on river-sea and ocean- atmosphere boundaries. Chemical composition of oceanic water is a fundamental multi-dimensional constant for our planet. Detailed studies revealed three types of chemical element distribution in the ocean: 1) Conservative: concentration normalized to salinity is constant in space and time; 2) Nutrient-type: element concentration in the surface waters decreases due to the biosphere consumption; and 3) Litho-generative: complex character of distribution of elements, which enter the ocean with the river runoff and interred almost entirely in sediments (Fig. 1). The correlation between the chemical compositions of the river and oceanic water is high (r = 0.94). We conclude that biogeochemical features of each element are determined by the relationship between its average concentration in the ocean and the intensity of its migration through hydrosphere boundary zones. In Fig.1 we show intensities of global migration and average concentrations in the ocean in the coordinates lgC - lg τ, where C is an average element concentration and τ is its residual time in the ocean. Fig. 1 shows a relationship between three main geochemical parameters of the dissolved forms of chemical elements in the hydrosphere: 1) average concentration in the ocean, 2) average concentration in the river runoff and 3) the type of distribution in oceanic water. Using knowledge of two of these parameters, it allows gaining theoretical knowledge of the third. The System covers all chemical elements for the entire range of observed concentrations. It even allows to predict the values of the annual river transport of dissolved Be, C, N, Ge, Tl, Re, to refine such estimates for P, V, Zn, Br, I, and to determine the character of distribution in the ocean for Au and U. Furthermore, the System allowed to estimate natural (unaffected by anthropogenic influence) mean concentrations of elements in the river runoff and use them as ecological reference data. Finally, due to the long response time of the ocean, the mean concentrations of elements and patterns of their distribution in the ocean can be used to determine pre-technogenic concentrations of elements in the river runoff. An example of such studies for the Northern Eurasia Arctic Rivers will be presented at the conference. References Korzh 1974: J. de Recher. Atmos, 8, 653-660. Korzh 2008: J. Ecol., 15, 13-21. Korzh 2012: Water: Chem. & Ecol., No. 1, 56-62; Fig.1. The System of chemical elements distribution in the hydrosphere. Types of distribution in the ocean: 1) conservative; 2) nutrient-type; 3) litho-generative.

  5. Seasonal patterns in carbon dioxide in 15 mid-continent (USA) reservoirs

    USGS Publications Warehouse

    Jones, John R.; Obrecht, Daniel V.; Graham, Jennifer L.; Balmer, Michelle B.; Filstrup, Christopher T.; Downing, John A.

    2016-01-01

    Evidence suggests that lakes are important sites for atmospheric CO2 exchange and so play a substantial role in the global carbon budget. Previous research has 2 weaknesses: (1) most data have been collected only during the open-water or summer seasons, and (2) data are concentrated principally on natural lakes in northern latitudes. Here, we report on the full annual cycle of atmospheric CO2 exchanges of 15 oligotrophic to eutrophic reservoirs in the Glacial Till Plains of the United States. With one exception, these reservoirs showed an overall loss of CO2 during the year, with most values within the lower range reported for temperate lakes. There was a strong cross-system seasonal pattern: an average of 70% of total annual CO2 efflux occurred by the end of spring mixis; some 20% of annual flux was reabsorbed during summer stratification; and the remaining 50% of efflux was lost during autumnal mixing. Net annual flux was negatively correlated with depth and positively correlated with both water residence time and DOC, with the smallest annual CO2 efflux measured in shallow fertile impoundments. Strong correlations yield relationships allowing regional up-scaling of CO2 evasion. Understanding lacustrine CO2 uptake and evasion requires seasonal analyses across the full range of lake trophic states and morphometric attributes.

  6. The physiology of cooperative breeding in a rare social canid; sex, suppression and pseudopregnancy in female Ethiopian wolves.

    PubMed

    van Kesteren, Freya; Paris, Monique; Macdonald, David W; Millar, Robert; Argaw, Kifle; Johnson, Paul J; Farstad, Wenche; Sillero-Zubiri, Claudio

    2013-10-02

    Ethiopian wolves, Canis simensis, differ from other cooperatively breeding canids in that they combine intense sociality with solitary foraging, making them a suitable species in which to study the physiology of cooperative breeding. The reproductive physiology of twenty wild female Ethiopian wolves (eleven dominant and nine subordinate) in Ethiopia's Bale Mountains National Park was studied non-invasively through the extraction and assaying of estradiol, progesterone and glucocorticoids in collected fecal samples using enzyme and radioimmunoassays. All dominant females showed increased estradiol concentrations and/or mating behavior during the annual mating season. In contrast, none of the subordinate females showed increased estradiol concentrations or mating behavior during the mating season. However, two subordinate females came into estrus outside of the mating season. Both dominant and subordinate females had higher average progesterone concentrations during the dominant female's pregnancy than at other times of the year, and two subordinate females allosuckled the dominant female's pups. No statistically significant differences in glucocorticoid concentrations were found between dominant and subordinate females. These results suggest that subordinate females are reproductively suppressed during the annual mating season, but may ovulate outside of the mating season and become pseudopregnant. No evidence was found to suggest that reproductive suppression in subordinate females was regulated through aggressive behaviors, and no relationship was found between fecal glucocorticoids and dominance status. © 2013 Elsevier Inc. All rights reserved.

  7. Implementation of a national external quality assessment program for medical laboratories in Burkina Faso: challenges, lessons learned, and perspectives.

    PubMed

    Sakandé, Jean; Nikièma, Abdoulaye; Kabré, Elie; Sawadogo, Charles; Nacoulma, Eric W; Sanou, Mamadou; Sangaré, Lassana; Traoré-Ouédraogo, Rasmata; Sawadogo, Mamadou; Gershy-Damet, Guy Michel

    2014-02-01

    The National External Quality Assessment (NEQA) program of Burkina Faso is a proficiency testing program mandatory for all laboratories in the country since 2006. The program runs two cycles per year and covers all areas of laboratories. All panels were validated by the expert committee before dispatch under optimal storage and transport conditions to participating laboratories along with report forms. Performance in the last 5 years varied by panel, with average annual performance of bacteriology panels for all laboratories rising from 75% in 2006 to 81% in 2010 and with a best average performance of 87% in 2007 and 2008. During the same period, malaria microscopy performance varied from 85% to 94%, with a best average performance of 94% in 2010; chemistry performance increased from 87% to 94%, with a best average annual performance of 97% in 2009. Hematology showed more variation in performance, ranging from 61% to 86%, with a best annual average performance of 90% in 2008. Average annual performance for immunology varied less between 2006 and 2010, recording 97%, 90%, and 95%. Except for malaria microscopy, annual performances for enrolled panels varied substantially from year to year, indicating some difficulty in maintaining consistency in quality. The main challenges of the NEQA program observed between 2006 to 2010 were funding, sourcing, and safe transportation of quality panels to all laboratories countrywide.

  8. Sediment characteristics of small streams in southern Wisconsin, 1954-59

    USGS Publications Warehouse

    Collier, Charles R.

    1963-01-01

    The results of investigations of the sediment and water discharge characteristics of Black Earth Creek, Mount Vernon Creek, and Yellowstone River from 1954 to 1959 and Dell Creek for 1958 and 1959 indicate large differences in annual runoff and sediment yields. The suspended-sediment discharge of Black Earth Creek averaged 3,260 tons per year or 71 tons per square mile : the annual yields ranged from 27 to 102 tons per square mile. The annual suspended-sediment yield of Mount Vernon Creek ranged from 48 to 171 tons per square mile and averaged 96 tons per square mile. The maximum daily discharge was 1,120 tons on April 1, 1960, during a storm which produced 67 percent of the suspended load for that water year and exceeded the discharge for the preceding 3 years. The sediment discharge of the Yellowstone River averaged 6,870 tons per year or 236 tons per square riffle. The maximum daily sediment discharge, 3,750 tons on April 1, 1959, occurred during a 14-day period of high flow during which the sediment discharge was 15,480 tons. In 1958 and 1959, Dell Creek had suspended-sediment yields of 4.7 and 26 tons per square mile of drainage area. The suspended sediment transported by Black Earth and Mount Vernon Creeks is about two-thirds clay and one-third silt. For Yellowstone River the particle-size distribution of the suspended sediment ranged from three-fourths clay and one-fourth silt during periods of low sediment discharge to one-third clay and two-thirds silt during high sediment discharges. For Dell Creek nearly all of the suspended sediment is clay, but the bed load is sand. The mean sediment concentration of storm runoff averaged two to three times more in the summer than in the winter. No significant changes with time occurred in the relation between storm runoff and sediment yield.

  9. Ammonia emissions from dairy production in Wisconsin.

    PubMed

    Harper, L A; Flesch, T K; Powell, J M; Coblentz, W K; Jokela, W E; Martin, N P

    2009-05-01

    Ammonia gas is the only significant basic gas that neutralizes atmospheric acid gases produced from combustion of fossil fuels. This reaction produces an aerosol that is a component of atmospheric haze, is implicated in nitrogen (N) deposition, and may be a potential human health hazard. Because of the potential impact of NH3 emissions, environmentally and economically, the objective of this study was to obtain representative and accurate NH3 emissions data from large dairy farms (>800 cows) in Wisconsin. Ammonia concentrations and climatic measurements were made on 3 dairy farms during winter, summer, and autumn to calculate emissions using an inverse-dispersion analysis technique. These study farms were confinement systems utilizing freestall housing with nearby sand separators and lagoons for waste management. Emissions were calculated from the whole farm including the barns and any waste management components (lagoons and sand separators), and from these components alone when possible. During winter, the lagoons' NH3 emissions were very low and not measurable. During autumn and summer, whole-farm emissions were significantly larger than during winter, with about two-thirds of the total emissions originating from the waste management systems. The mean whole-farm NH3 emissions in winter, autumn, and summer were 1.5, 7.5, and 13.7% of feed N inputs emitted as NH3-N, respectively. Average annual emission comparisons on a unit basis between the 3 farms were similar at 7.0, 7.5, and 8.4% of input feed N emitted as NH3-N, with an annual average for all 3 farms of 7.6 +/- 1.5%. These winter, summer, autumn, and average annual NH3 emissions are considerably smaller than currently used estimates for dairy farms, and smaller than emissions from other types of animal-feeding operations.

  10. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2011-04-01 2011-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  11. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2012-04-01 2011-04-01 true If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  12. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2013-04-01 2013-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  13. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2010-04-01 2010-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  14. 25 CFR 30.116 - If a school fails to achieve its annual measurable objectives, what other methods may it use to...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2014-04-01 2014-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...

  15. Continuous real-time water-quality monitoring and regression analysis to compute constituent concentrations and loads in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999–2012

    USGS Publications Warehouse

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir, located in south-central Kansas, is the primary water supply for the city of Wichita. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River, the main source of inflow to Cheney Reservoir. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on data collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for four new constituents, including additional nutrient species and indicator bacteria. In addition, a conversion factor of 0.68 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI model 6136 sensor at the North Ninnescah River upstream from Cheney Reservoir site. Newly developed models and 14 years of hourly continuously measured data were used to calculate selected constituent concentrations and loads during January 1999 through December 2012. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest to Cheney Reservoir, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that would not be possible otherwise. In general, model forms and the amount of variance explained by the models was similar between the original and updated models. The amount of variance explained by the updated models changed by 10 percent or less relative to the original models. Total nitrogen, nitrate, organic nitrogen, E. coli bacteria, and total organic carbon models were newly developed for this report. Additional data collection over a wider range of hydrological conditions facilitated the development of these models. The nitrate model is particularly important because it allows for comparison to Cheney Reservoir Task Force goals. Mean hourly computed total suspended solids concentration during 1999 through 2012 was 54 milligrams per liter (mg/L). The total suspended solids load during 1999 through 2012 was 174,031 tons. On an average annual basis, the Cheney Reservoir Task Force runoff (550 mg/L) and long-term (100 mg/L) total suspended solids goals were never exceeded, but the base flow goal was exceeded every year during 1999 through 2012. Mean hourly computed nitrate concentration was 1.08 mg/L during 1999 through 2012. The total nitrate load during 1999 through 2012 was 1,361 tons. On an annual average basis, the Cheney Reservoir Task Force runoff (6.60 mg/L) nitrate goal was never exceeded, the long-term goal (1.20 mg/L) was exceeded only in 2012, and the base flow goal of 0.25 mg/L was exceeded every year. Mean nitrate concentrations that were higher during base flow, rather than during runoff conditions, suggest that groundwater sources are the main contributors of nitrate to the North Fork Ninnescah River above Cheney Reservoir. Mean hourly computed phosphorus concentration was 0.14 mg/L during 1999 through 2012. The total phosphorus load during 1999 through 2012 was 328 tons. On an average annual basis, the Cheney Reservoir Task Force runoff goal of 0.40 mg/L for total phosphorus was exceeded in 2002, the year with the largest yearly mean turbidity, and the long-term goal (0.10 mg/L) was exceeded in every year except 2011 and 2012, the years with the smallest mean streamflows. The total phosphorus base flow goal of 0.05 mg/L was exceeded every year. Given that base flow goals for total suspended solids, nitrate, and total phosphorus were exceeded every year despite hydrologic conditions, the established base flow goals are either unattainable or substantially more best management practices will need to be implemented to attain them. On an annual average basis, no discernible patterns were evident in total suspended sediment, nitrate, and total phosphorus concentrations or loads over time, in large part because of hydrologic variability. However, more rigorous statistical analyses are required to evaluate temporal trends. A more rigorous analysis of temporal trends will allow evaluation of watershed investments in best management practices.

  16. Satellite derived estimates of forest leaf area index in South-west Western Australia are not tightly coupled to inter-annual variations in rainfall: implications for groundwater decline in a drying climate.

    NASA Astrophysics Data System (ADS)

    Smettem, Keith; Waring, Richard; Callow, Nik; Wilson, Melissa; Mu, Qiaozhen

    2013-04-01

    There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. Ecological optimality proposes that the long term average canopy size of undisturbed perennial vegetation is tightly coupled to climate. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study we analysed satellite-derived estimates of monthly LAI across forested coastal catchments of South-west Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, inter-annual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long term decline in areal average underground water storage storage and diminished summer flows, with a trend towards more ephemeral flow regimes.

  17. Estimation of annual average daily traffic for off-system roads in Florida

    DOT National Transportation Integrated Search

    1999-07-28

    Estimation of Annual Average Daily Traffic (AADT) is extremely important in traffic planning and operations for the state departments of transportation (DOTs), because AADT provides information for the planning of new road construction, determination...

  18. [Evaluation of radon levels in bank buildings: results of a survey on a major Italian banking group].

    PubMed

    Urso, Patrizia; Ronchin, M; Lietti, Barbara; Izzo, A; Colloca, G; Russignaga, D; Carrer, P

    2008-01-01

    Radon, the second cause of lung cancer after smoking, is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. Italian legislation recommends an action level of 500 Bq/m3 per year for occupational exposure in underground premises. Since banks usually use various underground premises (archives, safe-deposit room), a study was made of the radon levels on such premises with the aim of identifying useful monitoring strategies. 134 branches of a major Italian banking group were examined using 1817 nuclear track dosimeters at ground level and underground level premises. The branches were located in 7 Italian regions in the north (Piedmont, Lombardy, Veneto), centre (Lazio) and south (Campania, Apulia, Sicily). Information on measurement points was recorded in a technical sheet and statistical analysis was carried out. Annual underground measurements gave an average concentration of 157 Bq/m3, with 5.1% for 400 < C < 500 Bq/m3 and 2.9%for C > 500 Bq/m3. Seasonal variability was reflected in a significant decrease in concentrations between winter and spring (delta(mean)% = -47.3%) and good stability between autumn and winter (delta(mean)% = 3%); moreover quarterly concentrations account for 85% of the variability of the corresponding annual level. A multiple linear regression model (R2 = 0.33) indicated geographic location as the principal factor in radon accumulation, followed by underground level, humidity, use, lack of windows, heating and natural ventilation, and direct contact of at least one wall with ground rock; whereas the safe-deposit room structure seems to protect from radon accumulation. Moreover, the ground level measurement results were significantly associated with the corresponding underground average concentrations (p < 0.001). The results could be a useful tool in planning a monitoring strategy for assessment of bank worker exposure, especially for banking groups with a large number of branches.

  19. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1993 through September 1995

    USGS Publications Warehouse

    Torikai, J.D.

    1996-01-01

    This report contains hydrologic and climatic data that describe the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1993 through September 1995, although the report focuses on hydrologic events from July through September 1995. Cumulative rainfall for July through September 1995 was about 15 inches which is 32 percent less than the mean cumulative rainfall of about 22 inches for July through September. July and August are within the annual dry season, while September is the start of the annual wet season. Mean cumulative rainfall is calculated for the fixed base period 1951-90. Ground-water withdrawal during July through September 1995 averaged 888,500 gallons per day. Withdrawal for the same 3 months in 1994 averaged 919,400 gallons per day. Patterns of withdrawal during the third quarter of 1995 did not change significantly since 1993 at all five ground-water production areas. At the end of September 1995, the chloride concentration of the composite water supply was 51 milligrams per liter, well below the 250 milligrams per liter secondary drinking-water standard established by the U.S. Environmental Protection Agency. Chloride concentrations of the composite water supply from July through September 1995 ranged between 42 and 68 milligrams per liter. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations continued to increase since April 1995, with water from the deepest monitoring wells increasing in chloride concentration by as much as 2,000 milligrams per liter. A fuel leak at Air Operations caused the shutdown of ten wells in May 1991. Four of the wells resumed pumping for water-supply purposes in April 1992. The remaining six wells are being used to hydraulically divert fuel migration away from water-supply wells by recirculating about 150,000 gallons of water each day.

  20. Effect of soil moisture on seasonal variation in indoor radon concentration: modelling and measurements in 326 Finnish houses

    PubMed Central

    Arvela, H.; Holmgren, O.; Hänninen, P.

    2016-01-01

    The effect of soil moisture on seasonal variation in soil air and indoor radon is studied. A brief review of the theory of the effect of soil moisture on soil air radon has been presented. The theoretical estimates, together with soil moisture measurements over a period of 10 y, indicate that variation in soil moisture evidently is an important factor affecting the seasonal variation in soil air radon concentration. Partitioning of radon gas between the water and air fractions of soil pores is the main factor increasing soil air radon concentration. On two example test sites, the relative standard deviation of the calculated monthly average soil air radon concentration was 17 and 26 %. Increased soil moisture in autumn and spring, after the snowmelt, increases soil gas radon concentrations by 10–20 %. In February and March, the soil gas radon concentration is in its minimum. Soil temperature is also an important factor. High soil temperature in summer increased the calculated soil gas radon concentration by 14 %, compared with winter values. The monthly indoor radon measurements over period of 1 y in 326 Finnish houses are presented and compared with the modelling results. The model takes into account radon entry, climate and air exchange. The measured radon concentrations in autumn and spring were higher than expected and it can be explained by the seasonal variation in the soil moisture. The variation in soil moisture is a potential factor affecting markedly to the high year-to-year variation in the annual or seasonal average radon concentrations, observed in many radon studies. PMID:25899611

  1. Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware

    USGS Publications Warehouse

    Vogel, Karen L.; Reif, Andrew G.

    1993-01-01

    The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per year were simulated by the model. Different combinations of ground-water supply and wastewater-disposal plans were simulated to assess their effects on the stream-aquifer system. Six of the simulations represent an increase in population of 14,283 and water use of 1.07 million gallons per day. One simulation represents an increase in population of 28,566 and water use of 2.14 million gallons per day. Reduction of average base flow is greatest for development plans with wastewater removed from the basin through sewers and is proportional to the amount of water removed from the basin. The development plan that had the least effect on water levels and base flow included on-lot wells and on-lot septic systems. Five organochlorine insecticides--lindane, DDT, dieldrin, heptachlor, and methoxychlor--were detected in ground water. Four organophosphorus insecticides--malathion, parathion, diazinon, and phorate--were detected in ground water. Four volatile organic compounds--benzene, toluene, tetrachloroethylene, and trichloroethylene--were detected in ground water. Phenol was detected at concentrations up to 8 micrograms per liter in water from 50 percent of 14 wells sampled. The concentration of dissolved nitrate in water from 18 percent of wells sampled exceeded 10 milligrams per liter as nitrogen; concentration of nitrate were as high as 19 milligrams per liter. PCB was detected in the bottom material of West Branch Red Clay Creek at Kennet Square at concentrations up to 5,600 micrograms per kilogram.

  2. Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Allan, J. D.; Williams, P. I.; Green, D. C.; Flynn, M. J.; Harrison, R. M.; Yin, J.; Gallagher, M. W.; Coe, H.

    2015-06-01

    For the first time, the behaviour of non-refractory inorganic and organic submicron particulate through an entire annual cycle is investigated using measurements from an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) located at a UK urban background site in North Kensington, London. We show that secondary aerosols account for a significant fraction of the submicron aerosol burden and that high concentration events are governed by different factors depending on season. Furthermore, we demonstrate that on an annual basis there is no variability in the extent of secondary organic aerosol (SOA) oxidation, as defined by the oxygen content, irrespective of amount. This result is surprising given the changes in precursor emissions and contributions as well as photochemical activity throughout the year; however it may make the characterisation of SOA in urban environments more straightforward than previously supposed. Organic species, nitrate, sulphate, ammonium, and chloride were measured during 2012 with average concentrations (±1 standard deviation) of 4.32 (±4.42), 2.74 (±5.00), 1.39 (±1.34), 1.30 (±1.52), and 0.15 (±0.24) μg m-3, contributing 44, 28, 14, 13, and 2 % to the total non-refractory submicron mass (NR-PM1) respectively. Components of the organic aerosol fraction are determined using positive matrix factorisation (PMF), in which five factors are identified and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2). OOA1 and OOA2 represent more and less oxygenated OA with average concentrations of 1.27 (±1.49) and 0.14 (±0.29) μg m-3 respectively, where OOA1 dominates the SOA fraction (90%). Diurnal, monthly, and seasonal trends are observed in all organic and inorganic species due to meteorological conditions, specific nature of the aerosols, and availability of precursors. Regional and transboundary pollution as well as other individual pollution events influence London's total submicron aerosol burden. High concentrations of non-refractory submicron aerosols in London are governed by particulate emissions in winter, especially nitrate and SFOA, whereas SOA formation drives the high concentrations during the summer. The findings from this work could have significant implications for modelling of urban air pollution as well as for the effects of atmospheric aerosols on health and climate.

  3. Estimating the health and economic benefits associated with reducing air pollution in the Barcelona metropolitan area (Spain).

    PubMed

    Pérez, Laura; Sunyer, Jordi; Künzli, Nino

    2009-01-01

    To estimate the health and economic benefits that would result from two scenarios of improved air quality in 57 municipalities of the metropolitan area of Barcelona. We used attributable fractions and life tables to quantify the benefits for selected health outcomes, based on published concentration-response functions and economic unit values. The mean weighted concentration of PM(10) for the study population was estimated through concentration surface maps developed by the local government. The annual mean health benefits of reducing the mean PM(10) exposure estimated for the population in the study area (50microg/m(3)) to the annual mean value recommended by the World Health Organization (20microg/m(3)) were estimated to be 3,500 fewer deaths (representing an average increase in life expectancy of 14 months), 1,800 fewer hospitalizations for cardio-respiratory diseases, 5,100 fewer cases of chronic bronchitis among adults, 31,100 fewer cases of acute bronchitis among children, and 54,000 fewer asthma attacks among children and adults. The mean total monetary benefits were estimated to be 6,400 million euros per year. Reducing PM(10) to comply with the current European Union regulatory annual mean level (40microg/m(3)) would yield approximately one third of these benefits. This study shows that reducing air pollution in the metropolitan area of Barcelona would result in substantial health and economic benefits. The benefits are probably underestimated due to the assumptions made in this study. Assessment of the health impact of local air pollution is a useful tool in public health.

  4. Snow Impurities on Central Asian Glaciers: Mineral Dust, Organic & Elemental Carbon

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Kang, S.; Peltier, R.; Sprenger, M.; Guo, J.; Li, Y.; Zhang, Q.

    2014-12-01

    In Central Asia, 90 % of the population depend on water stored in glaciers and mountain snow cover. Accelerated melting can be induced by the deposition of e.g., mineral dust and black carbon that reduce the surface albedo. Data on source regions and chemical characteristics of snow impurities are however scarce in Central Asia. We studied aerosol deposited between summers of 2012 and 2013on three different glaciers in the Kyrgyz Republic. Samples were taken from two snow pits on the glacier Abramov in the northern Pamir and from one snow pit on Ak-Shiirak and Suek in the central Tien Shan. The snow was analyzed for elemental and total organic carbon, major ions and mineral dust. In addition, dissolved organic carbon was speciated by using the Aerodyne high-resolution time-of-flight aerosol spectrometer. Elevated mineral dust concentrations were found on all glaciers during summer and winter with lower annual average concentrations (20 mg l-1)in the northern Pamir (factor 5 to 6). Correlations between dust tracers varied, indicating different source regions. Average EC concentrations showed seasonal variation in the northern Pamir (> 100 μg l-1 in summer, < 30 μg l-1 in winter) while there was little variation throughout the year in the central Tien Shan (~ 200 μg l-1). Similarly, OC:EC ratios showed no seasonal cycle in that region averaging around 3. On Abramov, the ratio was significantly higher in winter (> 12) than in summer (< 4). The average O:C ratios across all glaciers ranged between 0.65 and 1.09, indicating a high degree of oxygenation which suggests long-range transport of the organic snow impurities. Marker substances such as potassium and mercury and their correlations suggest contribution from biomass burning emissions. Atmospheric measurements in August 2013 were conducted to obtain information on background aerosol characteristics in the remote high mountain areas. The average black carbon concentration was 0.26 μg/m³ (± 0.24 μg/m³).

  5. GIS Tools to Estimate Average Annual Daily Traffic

    DOT National Transportation Integrated Search

    2012-06-01

    This project presents five tools that were created for a geographical information system to estimate Annual Average Daily : Traffic using linear regression. Three of the tools can be used to prepare spatial data for linear regression. One tool can be...

  6. Monitoring urban impacts on suspended sediment, trace element, and nutrient fluxes within the City of Atlanta, Georgia, USA: Program design, methodological considerations, and initial results

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2008-01-01

    Atlanta, Georgia (City of Atlanta, COA), is one of the most rapidly growing urban areas in the US. Beginning in 2003, the US Geological Survey established a long-term water-quantity/quality monitoring network for the COA. The results obtained during the first 2 years have provided insights into the requirements needed to determine the extent of urban impacts on water quality, especially in terms of estimating the annual fluxes of suspended sediment, trace/major elements, and nutrients. During 2004/2005, suspended sediment fluxes from the City of Atlanta (COA) amounted to about 150 000 t year-1; ??? 94% of the transport occurred in conjunction with storm-flow, which also accounted for ??? 65% of the annual discharge. Typically, storm-flow averaged ??? 20% of theyear. Normally, annual suspended sediment fluxes are determined by summing daily loads based on a single calculation step using mean-daily discharge and a single rating curve-derived suspended sediment concentration. Due to the small and 'flashy' nature of the COAs streams, this approach could produce underestimates ranging from 25% to 64%. Accurate estimates (?? 15%) require calculation time-steps as short as every 2-3 h. Based on annual median base-flow/storm-flow chemical concentrations, the annual fluxes of ??? 75% of trace elements (e.g. Cu, Pb, Zn), major elements (e.g. Fe, Al), and total P occur in association with suspended sediment; in turn, ??? 90% of the transport of these constituents occur in conjunction with storm-flow. As such, base-flow sediment-associated and dissolved contributions represent relatively insignificant portions of the total annual load. An exception is total N, whose sediment-associated fluxes range from 50% to 60%; even so, storm-related transport typically exceeds 80%. Hence, in urban environments, non-point-source appear to be the dominant contributors to the fluxes of these constituents.

  7. Ozone response to emission reductions in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Blanchard, Charles L.; Hidy, George M.

    2018-06-01

    Ozone (O3) formation in the southeastern US is studied in relation to nitrogen oxide (NOx) emissions using long-term (1990s-2015) surface measurements of the Southeastern Aerosol Research and Characterization (SEARCH) network, U.S. Environmental Protection Agency (EPA) O3 measurements, and EPA Clean Air Status and Trends Network (CASTNET) nitrate deposition data. Annual fourth-highest daily peak 8 h O3 mixing ratios at EPA monitoring sites in Georgia, Alabama, and Mississippi exhibit statistically significant (p < 0.0001) linear correlations with annual NOx emissions in those states between 1996 and 2015. The annual fourth-highest daily peak 8 h O3 mixing ratios declined toward values of ˜ 45-50 ppbv and monthly O3 maxima decreased at rates averaging ˜ 1-1.5 ppbv yr-1. Mean annual total oxidized nitrogen (NOy) mixing ratios at SEARCH sites declined in proportion to NOx emission reductions. CASTNET data show declining wet and dry nitrate deposition since the late 1990s, with total (wet plus dry) nitrate deposition fluxes decreasing linearly in proportion to reductions of NOx emissions by ˜ 60 % in Alabama and Georgia. Annual nitrate deposition rates at Georgia and Alabama CASTNET sites correspond to 30 % of Georgia emission rates and 36 % of Alabama emission rates, respectively. The fraction of NOx emissions lost to deposition has not changed. SEARCH and CASTNET sites exhibit downward trends in mean annual nitric acid (HNO3) concentrations. Observed relationships of O3 to NOz (NOy-NOx) support past model predictions of increases in cycling of NO and increasing responsiveness of O3 to NOx. The study data provide a long-term record that can be used to examine the accuracy of process relationships embedded in modeling efforts. Quantifying observed O3 trends and relating them to reductions in ambient NOy species concentrations offers key insights into processes of general relevance to air quality management and provides important information supporting strategies for reducing O3 mixing ratios.

  8. West Bank of the Mississippi River in the Vicinity of New Orleans, Louisiana (East of the Harvey Canal) Hurricane Protection Study. Technical Appendixes. Volume 2

    DTIC Science & Technology

    1994-08-01

    ANNUAL PRECIPITATION, 30-YEAR NORMALS (1951-1980) A-I-3 A-I-2 MEAN MONTHLY AND ANNUAL TEMPERATURE , 30-YEAR NORMALS (1951-1980) A-I-4 A-1-3 AVERAGE ...Environmental Quality (DEQ). CLIMATE The climate of the area is humid si!btropicl. AMual average temperature in the project area is 68°F, with monthly...normal temperatures varying from 82’F in July to 531F in Januwry. Average annual precipitation over tae area is 63 inche!, maiying from a monthly

  9. A national survey of natural radionuclides in soils and terrestrial radiation exposure in Iran.

    PubMed

    Kardan, M R; Fathabdi, N; Attarilar, A; Esmaeili-Gheshlaghi, M T; Karimi, M; Najafi, A; Hosseini, S S

    2017-11-01

    In the past, some efforts have been made for measuring natural radioactivity and evaluating public exposure to natural radiation in certain areas of Iran especially in well-known High Level Natural Radiation Areas (HLNRA) in Ramsar and Mahallat. However, the information on radionuclide concentrations, and, consequently, terrestrial radiation exposure for many other areas are not available. There was therefore a need for a systematic and nation-wide survey. For this purpose, 979 soil samples from 31 provinces were collected. The activity concentrations of 40 K, 226 Ra and 232 Th were measured by HPGe detector. The average activity concentrations for Iran were found to be 457.7 Bq/kg for 40 K, 24.3 Bq/kg for 226 Ra and 25.8 Bq/kg for 232 Th. Results were compared with previous regional or provincial surveys. The population-weighted average outdoor and indoor annual effective dose due to external exposure to terrestrial sources of radiation are 0.06 mSv and 0.33 mSv, respectively. It was shown that there is a significant correlation between the activity concentrations of 232 Th and 40 K in soil. In addition, the results of chi square tests show normal and lognormal distributions cannot be considered for the frequency distributions of activity concentration of 232 Th and 226 Ra while 40 K has a normal distribution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Retrieval of Atmospheric Particulate Matter Using Satellite Data Over Central and Eastern China

    NASA Astrophysics Data System (ADS)

    Chen, G. L.; Guang, J.; Li, Y.; Che, Y. H.; Gong, S. Q.

    2018-04-01

    Fine particulate matter (PM2.5) is a particle cluster with diameters less than or equal to 2.5 μm. Over the past few decades, regional air pollution composed of PM2.5 has frequently occurred over Central and Eastern China. In order to estimate the concentration, distribution and other properties of PM2.5, the general retrieval models built by establishing the relationship between aerosol optical depth (AOD) and PM2.5 has been widely used in many studies, including experimental models via statistics analysis and physical models with certain physical mechanism. The statistical experimental models can't be extended to other areas or historical period due to its dependence on the ground-based observations and necessary auxiliary data, which limits its further application. In this paper, a physically based model is applied to estimate the concentration of PM2.5 over Central and Eastern China from 2007 to 2016. The ground-based PM2.5 measurements were used to be as reference data to validate our retrieval results. Then annual variation and distribution of PM2.5 concentration in the Central and Eastern China was analysed. Results shows that the annual average PM2.5 show a trend of gradually increasing and then decreasing during 2007-2016, with the highest value in 2011.

  11. A study of indoor radon, thoron and their exhalation rates in the environment of Fazilka district, Punjab, India

    NASA Astrophysics Data System (ADS)

    Narang, Saurabh; Kumar, Deepak; Sharma, Dinesh Kumar; Kumar, Ajay

    2018-02-01

    Over the last few decades, the study of radioactive radon gas has gained huge momentum due to its possible role in health related hazards. In the present work, pin-hole twin chamber single entrance dosimeters have been used for track measurements of radon and thoron. The annual average radon concentration varies from 50.3 to 204 Bq/m3 at all locations. Almost all the values are below the safe range provided by ICRP. Radon concentration is found to be higher in winter as compared to other seasons. Variation of radon with quality of dwellings is also discussed. The values of annual effective dose due to radon and thoron are also well within the range provided by ICRP and WHO. Radon and thoron exhalation rates are measured using SMART RnDuo monitor. The radon mass exhalation rates ranged from 11 to 71 mBq/kg/h while the thoron surface values ranged from 36 to 2048 Bq/m2/h. All the values are on the lower side. A weak correlation is found between radon and thoron concentrations and their exhalation rates. When compared with the values of other parts of northern India, the values of present investigation are on higher side.

  12. The Within-Year Concentration of Medical Care: Implications for Family Out-of-Pocket Expenditure Burdens

    PubMed Central

    Selden, Thomas M

    2009-01-01

    Objective To examine the within-year concentration of family health care and the resulting exposure of families to short periods of high expenditure burdens. Data Source Household data from the pooled 2003 and 2004 Medical Expenditure Panel Survey (MEPS) yielding nationally representative estimates for the nonelderly civilian noninstitutionalized population. Study Design The paper examines the within-year concentration of family medical care use and the frequency with which family out-of-pocket expenditures exceeded 20 percent of family income, computed at the annual, quarterly, and monthly levels. Principal Findings On average among families with medical care, 49 percent of all (charge-weighted) care occurred in a single month, and 63 percent occurred in a single quarter). Nationally, 27 percent of the study population experienced at least 1 month in which out-of-pocket expenditures exceeded 20 percent of income. Monthly 20 percent burden rates were highest among the poor, at 43 percent, and were close to or above 30 percent for all but the highest income group (families above four times the federal poverty line). Conclusions Within-year spikes in health care utilization can create financial pressures missed by conventional annual burden analyses. Within-year health-related financial pressures may be especially acute among lower-income families due to low asset holdings. PMID:19674431

  13. Temporal and Longitudinal Mercury Trends in Burbot (Lota lota) in the Russian Arctic.

    PubMed

    Pelletier, Alexander R; Castello, Leandro; Zhulidov, Alexander V; Gurtovaya, Tatiana Yu; Robarts, Richard D; Holmes, Robert M; Zhulidov, Daniel A; Spencer, Robert G M

    2017-11-21

    Current understanding of mercury (Hg) dynamics in the Arctic is hampered by a lack of data in the Russian Arctic region, which comprises about half of the entire Arctic watershed. This study quantified temporal and longitudinal trends in total mercury (THg) concentrations in burbot (Lota lota) in eight rivers of the Russian Arctic between 1980 and 2001, encompassing an expanse of 118 degrees of longitude. Burbot THg concentrations declined by an average of 2.6% annually across all eight rivers during the study period, decreasing by 39% from 0.171 μg g -1 wet weight (w.w.) in 1980 to 0.104 μg g -1 w.w. in 2001. THg concentrations in burbot also declined by an average of 1.8% per 10° of longitude from west to east across the study area between 1988 and 2001. These results, in combination with those of previous studies, suggest that Hg trends in Arctic freshwater fishes before 2001 were spatially and temporally heterogeneous, as those in the North American Arctic were mostly increasing while those in the Russian Arctic were mostly decreasing. It is suggested that Hg trends in Arctic animals may be influenced by both depositional and postdepositional processes.

  14. Assessment of the radiological impact of oil refining industry.

    PubMed

    Bakr, W F

    2010-03-01

    The field of radiation protection and corresponding national and international regulations has evolved to ensure safety in the use of radioactive materials. Oil and gas production processing operations have been known to cause naturally occurring radioactive materials (NORMs) to accumulate at elevated concentrations as by-product waste streams. A comprehensive radiological study on the oil refining industry in Egypt was carried out to assess the radiological impact of this industry on the workers. Scales, sludge, water and crude oil samples were collected at each stage of the refining process. The activity concentration of (226)Ra, (232)Th and (40)K were determined using high-resolution gamma spectrometry. The average activity concentrations of the determined isotopes are lower than the IAEA exempt activity levels for NORM isotopes. Different exposure scenarios were studied. The average annual effective dose for workers due to direct exposure to gamma radiation and dust inhalation found to be 0.6 microSv and 3.2 mSv, respectively. Based on the ALARA principle, the results indicate that special care must be taken during cleaning operations in order to reduce the personnel's exposure due to maintenance as well as to avoid contamination of the environment. 2009 Elsevier Ltd. All rights reserved.

  15. National Economic Development Procedures Manual. Coastal Storm Damage and Erosion

    DTIC Science & Technology

    1991-09-01

    study area is temperate with warm summers and moderate winters. The annual temperature averages approximately 53 degrees Fahrenheit (*F). On average ...January is the coolest month with a mean temperature of 32°F and July is the warmest month. The average annual precipitation is about 45 inches with...0704.0188 Public rooing burden for rhr$ LoIlecton of ,nformaton .s estma eO to average I hour oer resiorse including the time for resrewing inttuctiOn

  16. Spatial and temporal patterns of dengue in Guangdong province of China.

    PubMed

    Wang, Chenggang; Yang, Weizhong; Fan, Jingchun; Wang, Furong; Jiang, Baofa; Liu, Qiyong

    2015-03-01

    The aim of the study was to describe the spatial and temporal patterns of dengue in Guangdong for 1978 to 2010. Time series analysis was performed using data on annual dengue incidence in Guangdong province for 1978-2010. Annual average dengue incidences for each city were mapped for 4 periods by using the geographical information system (GIS). Hot spot analysis was used to identify spatial patterns of dengue cases for 2005-2010 by using the CrimeStat III software. The incidence of dengue in Guangdong province had fallen steadily from 1978 to 2010. The time series was a random sequence without regularity and with no fixed cycle. The geographic range of dengue fever had expanded from 1978 to 2010. Cases were mostly concentrated in Zhanjiang and the developed regions of Pearl River Delta and Shantou. © 2013 APJPH.

  17. Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa

    NASA Astrophysics Data System (ADS)

    Venter, Andrew D.; van Zyl, Pieter G.; Beukes, Johan P.; Josipovic, Micky; Hendriks, Johan; Vakkari, Ville; Laakso, Lauri

    2017-03-01

    Atmospheric trace metals can cause a variety of health-related and environmental problems. Only a few studies on atmospheric trace metal concentrations have been conducted in South Africa. Therefore the aim of this study was to determine trace metal concentrations in aerosols collected at a regional background site, i.e. Welgegund, South Africa. PM1, PM1-2. 5 and PM2. 5-10 samples were collected for 13 months, and 31 atmospheric trace metal species were detected. Atmospheric iron (Fe) had the highest concentrations in all three size fractions, while calcium (Ca) was the second-most-abundant species. Chromium (Cr) and sodium (Na) concentrations were the third- and fourth-most-abundant species, respectively. The concentrations of the trace metal species in all three size ranges were similar, with the exception of Fe, which had higher concentrations in the PM1 size fraction. With the exception of titanium (Ti), aluminium (Al) and manganese (Mg), 70 % or more of the trace metal species detected were in the smaller size fractions, which indicated the influence of industrial activities. However, the large influence of wind-blown dust was reflected by 30 % or more of trace metals being present in the PM2. 5-10 size fraction. Comparison of trace metals determined at Welgegund to those in the western Bushveld Igneous Complex indicated that at both locations similar species were observed, with Fe being the most abundant. However, concentrations of these trace metal species were significantly higher in the western Bushveld Igneous Complex. Fe concentrations at the Vaal Triangle were similar to levels thereof at Welgegund, while concentrations of species associated with pyrometallurgical smelting were lower. Annual average Ni was 4 times higher, and annual average As was marginally higher than their respective European standard values, which could be attributed to regional influence of pyrometallurgical industries in the western Bushveld Igneous Complex. All three size fractions indicated elevated trace metal concentrations coinciding with the end of the dry season, which could partially be attributed to decreased wet removal and increases in wind generation of particulates. Principal component factor analysis (PCFA) revealed four meaningful factors in the PM1 size fraction, i.e. crustal, pyrometallurgical-related and Au slimes dams. No meaningful factors were determined for the PM1-2. 5 and PM2. 5-10 size fractions, which was attributed to the large influence of wind-blown dust on atmospheric trace metals determined at Welgegund. Pollution roses confirmed the influence of wind-blown dust on trace metal concentrations measured at Welgegund, while the impact of industrial activities was also substantiated.

  18. EnviroAtlas - Biological nitrogen fixation in natural/semi-natural ecosystems by 12-digit HUC for the Conterminous United States, 2006

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains data on the mean biological nitrogen fixation in natural/semi-natural ecosystems per 12-digit Hydrologic Unit (HUC) in 2006. Biological N fixation (BNF) in natural/semi-natural ecosystems was estimated using a correlation with actual evapotranspiration (AET). This correlation is based on a global meta-analysis of BNF in natural/semi-natural ecosystems (Cleveland et al. 1999). AET estimates for 2006 were calculated using a regression equation describing the correlation of AET with climate (average annual daily temperature, average annual minimum daily temperature, average annual maximum daily temperature, and annual precipitation) and land use/land cover variables in the conterminous US (Sanford and Selnick 2013). Data describing annual average minimum and maximum daily temperatures and total precipitation for 2006 were acquired from the PRISM climate dataset (http://prism.oregonstate.edu). Average annual climate data were then calculated for individual 12-digit USGS Hydrologic Unit Codes (HUC12s; http://water.usgs.gov/GIS/huc.html; 22 March 2011 release) using the Zonal Statistics tool in ArcMap 10.0. AET for individual HUC12s was estimated using equations described in Sanford and Selnick (2013). BNF in natural/semi-natural ecosystems within individual HUC12s was modeled with an equation describing the statistical relationship between BNF (kg N ha-1 yr-1) and actual evapotranspiration (AET; cm yr-1) and scaled to the proportion

  19. PM10 Concentration levels at an urban and background site in Cyprus: The impact of urban sources and dust storms

    PubMed Central

    Achilleos, Souzana; Evans, John S.; Yiallouros, Panayiotis K.; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2016-01-01

    Air quality in Cyprus is influenced by both local and transported pollution including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993 through December 11, 2008, and Ayia Marina (rural background representative) from January 1, 1999 through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records and satellite data were used to identify dust storm days. We investigated long term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. PMID:25562931

  20. Chloride cycling in two forested lake watersheds in the west-central Adirondack Mountains, New York, U.S.A.

    USGS Publications Warehouse

    Peters, N.E.

    1991-01-01

    The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling C1- cycling. Results indicate that C1- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived C1- through the ecosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till( > 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl- cycling. Results indicate that Cl- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl- through the excosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till (> 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.

  1. Analysis of the solar radiation data for Beer Sheva, Israel, and its environs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudish, A.I.; Ianetz, A.

    The solar radiation climate of Beer Sheva, Israel, is reported upon in detail. The database utilized in this analysis consisted of global radiation on a horizontal surface, normal incidence beam radiation, and global radiation on a south-facing surface tilted at 40{degree}. Monthly-average hourly and daily values are reported for each of these three types of measured radiations, together with the calculated monthly-average daily values for the components of the global radiation, viz. the horizontal beam and diffuse radiations. The monthly-average hourly and daily clearness index values have also been calculated and analyzed. Monthly-average daily frequency distributions of the clearness indexmore » values are reported for each month. The solar radiation climate of Beer Sheva has also been compared to those reported for a number of countries in this region. The annual-average daily global radiation incident on a horizontal surface is 18.91 MG/m{sup 2} and that for normal incidence beam radiation is 21.17 MG/m{sup 2}. The annual-average daily fraction of the horizontal global radiation that is beam is 0.72. The annual-average daily value for the clearness index is 0.587 and the average frequency of clear days annually is 58.6%. The authors conclude, based upon the above analysis, that Beer Sheva and its environs are characterized by relatively high, average-daily irradiation rates, both global and beam, and a relatively high frequency of clear days.« less

  2. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    USGS Publications Warehouse

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total nitrogen loading was from stormflows. The stormflow load accounted for 76.6 percent of the total load for the 2010 water year and 80.6 percent of the total load for the 2011 water year. The estimated monthly total nitrogen loads were higher during the winter and spring (December through May) than during the summer (June through August). For the Bakersville station, the estimated suspended-sediment load (SSL) was 17,700 tons for 11 months of the 2010 water year (November 2009 to September 2010). The storm beginning January 24, 2010, provided 34.4 percent of the annual SSL, and the storm beginning March 10, 2010, provided 31.9 percent of the annual SSL. Together, these two winter storms provided 66 percent of the annual SSL for the 2010 water year. For the 2011 water year, the estimated annual SSL was 13,500 tons. For the 2011 water year, the SSLs were more evenly divided among storms than for the 2010 water year. Seven of 37 storms with the highest SSLs provided a total of 65.7 percent of the annual SSL for the 2011 water year; each storm provided from 4.6 to 12.3 percent of the annual SSL. The highest cumulative SSL for the 2010 and 2011 water years generally occurred during the late winter. Stormflows with the highest peak discharges generally carried the highest SSL. The sediment-fingerprinting approach was used to quantify sources of fine-grained suspended sediment in the watershed draining to the Laurel Hill Creek near Bakersville streamflow-gaging station. Sediment source samples were collected from five source types: 20 from cropland, 9 from pasture, 18 from forested areas, 20 from unpaved roads, and 23 from streambanks. At the Bakersville station, 10 suspended-sediment samples were collected during 6 storms for sediment-source analysis. Thirty-five tracers from elemental analysis and 4 tracers from stable isotope analysis were used to fingerprint the source of sediment for the 10 storm samples. Statistical analysis determined that cropland and pasture could not be discriminated by the set of tracers and were combined into one source group—agriculture. Stepwise discriminant function analysis determined that 11 tracers best described the 4 sources. An "unmixing" model applied to the 11 tracers showed that agricultural land (cropland and pasture) was the major source of sediment, contributing an average of 53 percent of the sediment for the 10 storm samples. Streambanks, unpaved roads, and forest contributions for the 10 storm samples averaged 30, 17, and 0 percent, respectively. Agriculture was the major contributor of sediment during the highest sampled stormflows. The highest stormflows also produced the highest total nitrogen and suspended-sediment loads.

  3. Health risk profile for terrestrial radionuclides in soil around artisanal gold mining area at Alsopag, Sudan

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Salih, Isam; Alaamer, Abdulaziz S.; AL-Rajhi, M. A.; Osman, Alshfia; Adreani, Tahir Elamin; Abdelgalil, M. Y.; Ali, Nagi I.

    2018-06-01

    This study shows the assessment of radiation hazard parameters due to terrestrial radionuclides in the soil around artisanal gold mining for addressing the issue of natural radioactivity in mining areas. Hence, the levels 238U, 232Th, 40K and 226Ra in soil (using gamma spectrometry), 222Rn in soil and 222Rn in air were determined. Radiation hazard parameters were then computed. These include absorbed dose D, annual effective dose E, radium equivalent activity Raeq, external hazard H ex, annual gonadal dose equivalent hazard index AGDE and excess lifetime cancer risk ELCR due to the inhalation of radon (222Rn) and consumption of radium (226Ra) in vegetation. Uranium (238U), thorium (232Th) and potassium (40K) averages were, respectively, 26, 36 and 685 Becquerel per kilogram (Bq kg-1). Soil radon (4671 Bq m-3) and radon in air (14.77 Bq m-3) were found to be less than worldwide data. Nevertheless, the average 40K concentration was 685 Bq kg-1. This is slightly higher than the United Nations Scientific Committee on the Effects of Atomic Radiation average value of 412 Bq kg-1. The obtained result indicates that some of the radiation hazard parameters seem unsavory. The mean value of absorbed dose rate (62.49 nGy h-1) was slightly higher than average value of 57 nGy h-1 ( 45% from 40K), and that of AGDE (444 μSv year-1) was higher than worldwide average reported value (300 μSv year-1). This study highlights the necessity to launch extensive nationwide radiation protection program in the mining areas for regulatory control.

  4. Development of retrospective quantitative and qualitative job-exposure matrices for exposures at a beryllium processing facility.

    PubMed

    Couch, James R; Petersen, Martin; Rice, Carol; Schubauer-Berigan, Mary K

    2011-05-01

    To construct a job-exposure matrix (JEM) for an Ohio beryllium processing facility between 1953 and 2006 and to evaluate temporal changes in airborne beryllium exposures. Quantitative area- and breathing-zone-based exposure measurements of airborne beryllium were made between 1953 and 2006 and used by plant personnel to estimate daily weighted average (DWA) exposure concentrations for sampled departments and operations. These DWA measurements were used to create a JEM with 18 exposure metrics, which was linked to the plant cohort consisting of 18,568 unique job, department and year combinations. The exposure metrics ranged from quantitative metrics (annual arithmetic/geometric average DWA exposures, maximum DWA and peak exposures) to descriptive qualitative metrics (chemical beryllium species and physical form) to qualitative assignment of exposure to other risk factors (yes/no). Twelve collapsed job titles with long-term consistent industrial hygiene samples were evaluated using regression analysis for time trends in DWA estimates. Annual arithmetic mean DWA estimates (overall plant-wide exposures including administration, non-production, and production estimates) for the data by decade ranged from a high of 1.39 μg/m(3) in the 1950s to a low of 0.33 μg/m(3) in the 2000s. Of the 12 jobs evaluated for temporal trend, the average arithmetic DWA mean was 2.46 μg/m(3) and the average geometric mean DWA was 1.53 μg/m(3). After the DWA calculations were log-transformed, 11 of the 12 had a statistically significant (p < 0.05) decrease in reported exposure over time. The constructed JEM successfully differentiated beryllium exposures across jobs and over time. This is the only quantitative JEM containing exposure estimates (average and peak) for the entire plant history.

  5. Characterization of carbonaceous species of ambient PM2.5 in Beijing, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fumo Yang; Kebin He; Yongliang Ma

    2005-07-01

    One-week integrated fine particulate matter (i.e., particles {lt}2.5 {mu}m in diameter; PM2.5) samples were collected continuously with a low-flow rate sampler at a downtown site (Chegongzhuang) and a residential site (Tsinghua University) in Beijing between July 1999 and June 2000. The annual average concentrations of organic carbon (OC) and elemental carbon (EC) at the urban site were 23.9 and 8.8 {mu}g m{sup -3}, much higher than those in some cities with serious air pollution. Similar weekly variations of OC and EC concentrations were found for the two sampling sites with higher concentrations in the winter and autumn. The highest weeklymore » variations of OC and EC occurred in the winter, suggesting that combustion sources for space heating were important contributors to carbonaceous particles, along with a significant impact from variable meteorological conditions. High emissions coupled with unfavorable meteorological conditions led to the maximum weekly carbonaceous concentration the week of November 18-25, 1999. The weekly mass ratios of OC:EC ranged between 2 and 4 for most samples and averaged 2.9, probably suggesting that secondary OC (SOC) is present most weeks. The range of contemporary carbon fraction, based on the C14 analyses of eight samples collected in 2001, is 0.330-0.479. Estimated SOC accounted for {approximately}38% of the total OC at the two sites. Average OC and EC concentrations at Tsinghua University were 25% and 18%, respectively, higher than those at Chegongzhuang, which could be attributed to different local emissions of primary carbonaceous particles and gaseous precursors of SOC, as well as different summer photochemical intensities between the two locations. Main carbonaceous sources are from coal combustion, vehicles and cooking. 44 refs., 5 figs., 2 tabs.« less

  6. Characterization of carbonaceous species of ambient PM2.5 in Beijing, China.

    PubMed

    Yang, Fumo; He, Kebin; Ma, Yongliang; Zhang, Qiang; Cadle, Steven H; Chan, Tai; Mulawa, Patricia A

    2005-07-01

    One-week integrated fine particulate matter (i.e., particles <2.5 microm in diameter; PM2.5) samples were collected continuously with a low-flow rate sampler at a downtown site (Chegongzhuang) and a residential site (Tsinghua University) in Beijing between July 1999 and June 2000. The annual average concentrations of organic carbon (OC) and elemental carbon (EC) at the urban site were 23.9 and 8.8 microg m(-3), much higher than those in some cities with serious air pollution. Similar weekly variations of OC and EC concentrations were found for the two sampling sites with higher concentrations in the winter and autumn. The highest weekly variations of OC and EC occurred in the winter, suggesting that combustion sources for space heating were important contributors to carbonaceous particles, along with a significant impact from variable meteorological conditions. High emissions coupled with unfavorable meteorological conditions led to the max weekly carbonaceous concentration the week of November 18-25, 1999. The weekly mass ratios of OC:EC ranged between 2 and 4 for most samples and averaged 2.9, probably suggesting that secondary OC (SOC) is present most weeks. The range of contemporary carbon fraction, based on the C14 analyses of eight samples collected in 2001, is 0.330-0.479. Estimated SOC accounted for approximately 38% of the total OC at the two sites. Average OC and EC concentrations at Tsinghua University were 25% and 18%, respectively, higher than those at Chegongzhuang, which could be attributed to different local emissions of primary carbonaceous particles and gaseous precursors of SOC, as well as different summer photochemical intensities between the two locations.

  7. ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.

    USGS Publications Warehouse

    Ling, Chi-Hai; Parkinson, Claire L.

    1986-01-01

    A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.

  8. Amazon River investigations, reconnaissance measurements of July 1963

    USGS Publications Warehouse

    Oltman, Roy Edwin; Sternberg, H. O'R.; Ames, F.C.; Davis, L.C.

    1964-01-01

    The first measurements of the flow of the Amazon River were made in July 1963 as a joint project of the University of Brazil, the Brazilian Navy, and the U.S. Geological Survey. The discharge of the Amazon River at Obidos was 7,640,000 cfs at an annual flood stage somewhat lower than the average. For comparison the maximum known discharge of the Mississippi River at Vicksburg is about 2,300,000 cfs. Dissolved-solids concentrations and sediment loads of the Amazon River and of several major tributaries were found to be low.

  9. Subsurface recharge to the Tesuque aquifer system from selected drainage basins along the western side of the Sangre de Cristo Mountains near Santa Fe, New Mexico

    USGS Publications Warehouse

    Wasiolek, Maryann

    1995-01-01

    Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.

  10. 77 FR 14366 - Notice of Annual Adjustment of the Cap on Average Total Assets That Defines Community Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... FEDERAL HOUSING FINANCE AGENCY [No. 2012-N-02] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... statutory cap.\\2\\ The Bank Act was amended in 2008 to set the statutory cap at $1 billion and to require the...

  11. 75 FR 71446 - Agency Information Collection Activities; Proposed Collection; Comment Request; Reports of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... information regarding these corrections and removals and to determine whether recall action is adequate... Annual Reporting Burden\\1\\ Annual 21 CFR section Number of frequency per Total annual Hours per Total... Average Annual Recordkeeping Burden \\1\\ Annual 21 CFR Section Number of frequency per Total annual Hours...

  12. Medical expenditures in division I collegiate athletics: an analysis by sport and gender.

    PubMed

    Kaeding, Christopher C; Borchers, James; Oman, Janine; Pedroza, Angela

    2014-09-01

    Medical expenses for collegiate athletics include providing a training room with its supplies, equipment, personnel costs, and insurance coverage. Additional expenses beyond the training room include imaging, diagnostic testing, specialty consultations, and surgeries. We hypothesized that there would be no difference in average expenses or number of claims between male and female athletes over a 5-year period. Prospective patient cohort. A sports medicine center serving athletes in Big 10 Conference intercollegiate sports. All medical claims and charges for 36 varsity teams were analyzed from 2005 to 2010. The teams were categorized into 3 groups: female-only teams, male-only teams, and coed teams. Analysis of sports with corresponding male and female teams was also performed. Claims and charges for medical care for 36 intercollegiate athletic teams over 5 years. Individual team claims and charges were stable over the study period. In 11 of the 14 sex-matched sports, the female teams had higher average annual charges. After normalizing for roster size in the sex-matched sports, females had 0.97 more average annual claims (P < 0.01) and $1459 higher annual charges (P = 0.001) than their male counterparts. The charges per claim were similar between the sexes. The 5 teams with the highest average annual charges were football, wrestling, softball, women's crew, and men's lacrosse. When normalized for roster size, the 5 sports with the highest average annual charges per athlete were softball, women's diving, men's basketball, wrestling, and men's gymnastics. Charges per claim were similar between the sex-matched sports, but the female sports had a higher number of annual claims per athlete and thus higher total charges per athlete/year. Football had the highest average annual total charges as a team, but when normalized for roster size football charges per athlete/year were similar to those of other sports.

  13. Mercury export from the Yukon River Basin and potential response to a changing climate

    USGS Publications Warehouse

    Schuster, P. F.; Striegl, Robert G.; Aiken, G. R.; Krabbenhoft, D. P.; Dewild, J. F.; Butler, K.; Kamark, B.; Dornblaser, M.

    2011-01-01

    We measured mercury (Hg) concentrations and calculated export and yield from the Yukon River Basin (YRB) to quantify Hg flux from a large, permafrost-dominated, high-latitude watershed. Exports of Hg averaged 4400 kg Hg yr–1. The average annual yield for the YRB during the study period was 5.17 μg m–2 yr–1, which is 3–32 times more than Hg yields reported for 8 other major northern hemisphere river basins. The vast majority (90%) of Hg export is associated with particulates. Half of the annual export of Hg occurred during the spring with about 80% of 34 samples exceeding the U.S. EPA Hg standard for adverse chronic effects to biota. Dissolved and particulate organic carbon exports explained 81% and 50%, respectively, of the variance in Hg exports, and both were significantly (p < 0.001) correlated with water discharge. Recent measurements indicate that permafrost contains a substantial reservoir of Hg. Consequently, climate warming will likely accelerate the mobilization of Hg from thawing permafrost increasing the export of organic carbon associated Hg and thus potentially exacerbating the production of bioavailable methylmercury from permafrost-dominated northern river basins.

  14. Mercury export from the Yukon River Basin and potential response to a changing climate

    USGS Publications Warehouse

    Schuster, Paul F.; Striegl, Robert G.; Aiken, George R.; Krabbenhoft, David P.; DeWild, John F.; Butler, Kenna D.; Kamark, Ben; Dornblaser, Mark

    2011-01-01

    We measured mercury (Hg) concentrations and calculated export and yield from the Yukon River Basin (YRB) to quantify Hg flux from a large, permafrost-dominated, high-latitude watershed. Exports of Hg averaged 4400 kg Hg yr-1. The average annual yield for the YRB during the study period was 5.17 μg m-2 yr-1, which is 3–32 times more than Hg yields reported for 8 other major northern hemisphere river basins. The vast majority (90%) of Hg export is associated with particulates. Half of the annual export of Hg occurred during the spring with about 80% of 34 samples exceeding the U.S. EPA Hg standard for adverse chronic effects to biota. Dissolved and particulate organic carbon exports explained 81% and 50%, respectively, of the variance in Hg exports, and both were significantly (p < 0.001) correlated with water discharge. Recent measurements indicate that permafrost contains a substantial reservoir of Hg. Consequently, climate warming will likely accelerate the mobilization of Hg from thawing permafrost increasing the export of organic carbon associated Hg and thus potentially exacerbating the production of bioavailable methylmercury from permafrost-dominated northern river basins.

  15. Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition

    NASA Technical Reports Server (NTRS)

    Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.

    1992-01-01

    Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots were not different from each other, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Fertilized soil mineralized 277 kg/ha per year in contrast to 18 kg/ha per year in control plots. Relative recovery of (N-15)H4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.

  16. Diatoms (Class Bacillariophyceae) and geochemistry from annually laminated mid-Holocene sediments, west coast Canada: insights into abrupt climate change in the past

    NASA Astrophysics Data System (ADS)

    Chang, A.; Pedersen, T. F.

    2009-04-01

    A 115-year record of annually laminated sediments from Effingham Inlet, a small anoxic fjord on the west coast of Vancouver Island, British Columbia (49˚N, 125˚W), was analyzed for diatoms (species and abundances) and geochemistry (C and N isotopes, organic C and trace elements Ag, Cd, Re and Mo) from a piston core. The sediments were radiocarbon dated at approx. 4200-4400 years before present (yr BP) and show diatom enriched varves in the lower 70 years, with a sudden transition to diatom impoverished varves above. In the lower section, varves are thick (2-5 mm) and consist of well-defined Thalassiosira-Skeletonema-Chaetoceros spring bloom successions. Diatom concentrations average at 787 ± 733 million valves/g of dry sediment, del 15N at 7.0 ± 0.5 per mil, and organic C at 5.2 ± 0.5 wt. %. In the upper section, the varves are thinner (1-2 mm), do not clearly show the seasonal diatom succession, and contain increased terrigenous detritus. Diatom concentrations average at 388 ± 202 million valves/g with an increased relative abundance of benthic and freshwater taxa, del 15N at 7.3 ± 0.6 per mil and organic C at 5.7 ± 0.5 wt. %. Values of del 13C for both sections are similar, averaging at -24.0 ± 0.5 per mil. The trace element concentrations are quite variable throughout the section. However, several thin (<1 cm) nonlaminated intervals show decreased diatom abundances with concomitant increases in trace element concentrations, suggesting short-lived changes in surface productivity, upwelling and nutrient delivery, and/or anoxic conditions. The abrupt transition from diatom-rich to diatom-poor varves could reflect a shift in dominance of the North Pacific High and Aleutian Low atmospheric pressure systems over the northeast Pacific Ocean, not unlike the well-documented 1976/1977 climate regime shift which showed a change in upwelling and nutrient delivery. A transition between warm and sunny climates to cooler and wetter regimes at around 4000 yr BP has been noted in previous paleoenvironmental studies from British Columbia and the northern hemisphere in general. The Effingham Inlet sediment record data will also be compared with modern sediment trap data from the inlet.

  17. Fingerprint of carcinogenic semi-volatile organic compounds (SVOCs) during bonfire night.

    PubMed

    Pongpiachan, Siwatt

    2013-01-01

    It is well known that increased incidences of lung, skin, and bladder cancers are associated with occupational exposure to PAHs. Animal studies show that certain PAHs also can affect the hematopoietic and immune systems and can produce reproductive, neurologic, and developmental effects. As a consequence, several studies have been attempted to investigate the fate of PAHs in atmospheric environment during the past decades. However, there is still a lack of information in regard to the atmospheric concentration of PAHs during the "Bon Fire Night". In this study, twenty-three polycyclic aromatic hydrocarbons and twenty-eight aliphatics were identified and quantified in the PM10 and vapour range in Birmingham (27th November 2001-19th January 2004). The measured concentrations of total particulate and vapour (P+V) PAHs were consistently higher at the BROS in both winter and summer. Arithmetic mean total (P+V) PAH concentrations were 51.04±47.62 ng m-3 and 22.30±19.18 ng m-3 at the Bristol Road Observatory Site (BROS) and Elms Road Observatory Site (EROS) respectively. In addition arithmetic mean total (P+V) B[a]P concentrations at the BROS were 0.47±0.39 ng m-3 which exceeded the EPAQS air quality standard of 0.25 ng m-3. On the other hand, the arithmetic mean total (P+V) aliphatics were 81.80±69.58 ng m-3 and 48.00±35.38 ng m-3 at the BROS and EROS in that order. The lowest average of CPI and Cmax measured at the BROS supports the idea of traffic emissions being a principle source of SVOCs in an urban atmosphere. The annual trend of PAHs was investigated by using an independent t-test and one- way independent ANOVA analysis. Generally, there is no evidence of a significant decline of heavier MW PAHs from the two data sets, with only Ac, Fl, Ph, An, 2-MePh, 1+9-MePh, Fluo and B[b+j+k]F showing a statistically significant decline (p<0.05). A further attempt for statistical analysis had been conducted by dividing the data set into three groups (i.e. 2000, 2001-2002 and 2003-2004). For lighter MW compounds a significant level of decline was observed by using one-way independent ANOVA analysis. Since the annual mean of O3 measured in Birmingham City Centre from 2001 to 2004 increased significantly (p<0.05), it may be possible to attribute the annul reduction of more volatile PAHs to the enhanced level of annual average O3. By contrast, the heavier MW PAHs measured at the BROS did not show any significant annual reduction, implying the difficulties of 5- and 6-ring PAHs to be subject to photochemical decomposition. The deviation of SVOCs profile measured at the EROS was visually confirmed during the "Bonfire Night" festival closest to the 6th November 2003. In this study, the atmospheric PAH concentrations were generally elevated on this day with concentrations of Fl, Ac, B[a]A, B[b+j+k]F, Ind and B[g,h,i]P being particularly high.

  18. Environmental factors controlling transient and seasonal changes of trace gases within shallow vadose zone

    NASA Astrophysics Data System (ADS)

    Pla, Concepcion; Galiana-Merino, Juan Jose; Cuezva, Soledad; Fernandez-Cortes, Angel; Garcia-Anton, Elena; Cuevas, Jaime; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Benavente, David

    2014-05-01

    Shallow vadose environments below soil, mainly caves, show significant seasonal and even daily variations in gas composition of ground air, which involves the exchange of large amounts of gases, e.g. greenhouse gases (GHGs) as CO2 or CH4, with the lower troposphere. To understand better the role of caves as a sink or depot of GHGs, geochemical tracing of air (atmosphere, soil and ground air) was performed at Rull cave (southeast Spain) by monitoring CH4, CO2 and the stable carbon isotopic delta13C[CO2] using cavity ring-down spectroscopy (CRDS). A comprehensive microclimatic monitoring of exterior and cave atmosphere was simultaneously conducted to GHGs-tracking, including factors as temperature, barometric pressure, relative humidity and concentration of CO2 and 222Rn. The analysis of the measured data allows understanding outgassing and isolation processes taking place in the karst cavity. Annual patterns of gases behaviour can be distinguished, depending on the prevailing relationship between outer atmosphere, indoor atmosphere and soil system. Cave air temperature fluctuates around 15.7 ºC and relative humidity remains higher than 96% the whole annual cycle. The mean concentration of 222Rn is 1584 Bq m-3 while CO2 remains 1921 ppm. When external temperature is higher of indoor temperature (April-October), the highest levels of both trace gases are reached, while levels drop to its lowest values in the coldest months. Preliminary results obtained show an annual variation in concentration of CO2 inside the cave between 3300 ppm and 900 ppm, whereas corresponding isotopic signal delta13CO2 varies between -24‰ and -21‰. The results have been studied by Keeling model that approximates the isotopic signal of the source contribution in a resulting air mix. The values registered inside the cave were represented joined to results for exterior air (average values round 410 ppm of CO2 and -9 ‰ for delta13C). Value obtained is -27‰ pointing to a high influence of the soil produced CO2 (with a characteristic signal of -27‰ for C3 plants) in the cave atmosphere. The lowest levels of CO2 coincide with the highest of delta13C pointing to an input of exterior air during the degassing stage. Regarding the CH4 concentration inside the cave, higher values (0.3 ppm average concentration) are observed during outgassing stage than the isolation period (CH4 mean value of 0 ppm), confirming a major connection with the exterior atmosphere (average value of methane 1.8 ppm) during outgassing stage. By introducing wavelet analysis on obtained time series filtered signal of raw data show strong dependencies between trace gases and studied parameters. For instance, values of coherence between relative humidity and CO2 or 222Rn concentration are higher than 0.9. Results show that gas patterns dependence on relative humidity, atmospheric pressure and temperatures (indoor and outdoor) prevails throughout a year, determining the outgassing and isolation periods identified by statistical analyses. The measured of delta13C and CH4 concentration became a useful tool to understand processes affecting cave air and driving parameters variations inside the cave. Moreover, combining wavelet analysis, statistics and resemblance techniques, seasonal and transient behaviour of gases exchange can be highlighted in subterranean sites as Rull Cave.

  19. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...

  20. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...

Top