Deng, Cai; Zhang, Wanchang
2018-05-30
As the backland of the Qinghai-Tibet Plateau, the river source region is highly sensitive to changes in global climate. Air temperature estimation using remote sensing satellite provides a new way of conducting studies in the field of climate change study. A geographically weighted regression model was applied to estimate synchronic air temperature from 2001 to 2015 using Moderate-Resolution Imaging Spectroradiometry (MODIS) data. The results were R 2 = 0.913 and RMSE = 2.47 °C, which confirmed the feasibility of the estimation. The spatial distribution and variation characteristics of the average annual and seasonal air temperature were analyzed. The findings are as follows: (1) the distribution of average annual air temperature has significant terrain characteristics. The reduction in average annual air temperature along the elevation of the region is 0.19 °C/km, whereas the reduction in the average annual air temperature along the latitude is 0.04 °C/degree. (2) The average annual air temperature increase in the region is 0.37 °C/decade. The average air temperature increase could be arranged in the following decreasing order: Yangtze River Basin > Mekong River Basin > Nujiang River Basin > Yarlung Zangbo River Basin > Yellow River Basin. The fastest, namely, Yangtze River Basin, is 0.47 °C/decade. (3) The average air temperature rise in spring, summer, and winter generally increases with higher altitude. The average annual air temperature in different types of lands following a decreasing order is as follows: wetland > construction land > bare land glacier > shrub grassland > arable land > forest land > water body and that of the fastest one, wetland, is 0.13 °C/year.
Annual estimates of water and solute export from 42 tributaries to the Yukon River
Frederick Zanden,; Suzanne P. Anderson,; Striegl, Robert G.
2012-01-01
Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions.
Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico
Owen-Joyce, Sandra J.
1987-01-01
Estimates of tributary inflow by basin or area and by surface water or groundwater are presented in this report and itemized by subreaches in tabular form. Total estimated average annual tributary inflow to the Colorado River between Hoover Dam and Mexico, excluding the measured tributaries, is 96,000 acre-ft or about 1% of the 7.5 million acre-ft/yr of Colorado River water apportioned to the States in the lower Colorado River basin. About 62% of the tributary inflow originates in Arizona, 30% in California, and 8% in Nevada. Tributary inflow is a small component in the water budget for the river. Most of the quantities of unmeasured tributary inflow were estimated in previous studies and were based on mean annual precipitation for 1931-60. Because mean annual precipitation for 1951-80 did not differ significantly from that of 1931-60, these tributary inflow estimates are assumed to be valid for use in 1984. Measured average annual runoff per unit drainage area on the Bill Williams River has remained the same. Surface water inflow from unmeasured tributaries is infrequent and is not captured in surface reservoirs in any of the States; it flows to the Colorado River gaging stations. Estimates of groundwater inflow to the Colorad River valley. Average annual runoff can be used in a water budget; although in wet years, runoff may be large enough to affect the calculation of consumptive use and to be estimated from hydrographs for the Colorado River valley are based on groundwater recharge estimates in the bordering areas, which have not significantly changed through time. In most areas adjacent to the Colorado River valley, groundwater pumpage is small and pumping has not significantly affected the quantity of groundwater discharged to the Colorado River valley. In some areas where groundwater pumpage exceeds the quantity of groundwater discharge and water levels have declined, the quantity of discharge probably has decreased and groundwater inflow to the Colorado River valley will eventually be reduced if not stopped completely. Groundwater discharged at springs below Hoover Dam is unused and flows directly to the Colorado River. (Lantz-PTT)
Paleohydrological methods and some examples from Swedish fluvial environments. II - River meanders.
Williams, G.P.
1984-01-01
Empirical relations are developed between river-meander features and water-discharge characteristics for 19 reaches along Swedish rivers. In these relations, either average channel width or average radius of curvature of meander arcs can be used to estimate average annual peak discharge and average daily discharge. By accepting certain assumptions, the relations can be applied to other meandering Swedish rivers, present or ancient. The Oster-Dalalven River near Mora is used as an example.-Author
Water-Resources Investigations in Wisconsin, 2002
Hueschen, K. A.; Jones, S.Z.; Fuller, J.A.
2002-01-01
Runoff for rivers in the state ranged from 67 percent of the average annual runoff (1964–2001) at the Kewaunee River site in the northeast part of the state to 160 percent of the average annual runoff (1944–2001) at the Eau Galle River at Spring Valley site in the west central part of the state. Departures of runoff in the 2001 water year as a percent of long-term average runoff in the state (determined using stations with drainage areas greater than 150 square miles and at least 20 years of record) are shown in figure 4.
Ecological setting of the Wind River old-growth forest.
David C. Shaw; Jerry F. Franklin; Ken Bible; Jeffrey Klopatek; Elizabeth Freeman; Sarah Greene; Geoffrey G. Parker
2004-01-01
The Wind River old-growth forest, in the southern Cascade Range of Washington State, is a cool (average annual temperature, 8.7°C), moist (average annual precipitation, 2223 mm), 500-year-old Douglas-fir-western hemlock forest of moderate to low productivity at 371-m elevation on a less than 10% slope. There is a seasonal snowpack (November-March), and rain-on-snow and...
Soil erosion assessment of a Himalayan river basin using TRMM data
NASA Astrophysics Data System (ADS)
Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.
2015-04-01
In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.
Water resources of the Humboldt River Valley near Winnemucca, Nevada
Cohen, Philip M.
1965-01-01
This report, resulting from studies made by the U.S. Geological Survey as part of the interagency Humboldt River Research Project, describes the qualitative and quantitative relations among the components of the hydrologic system in the Winnemucca Reach of the Humboldt River valley. The area studied includes the segment of the Humboldt River valley between the Comus and Rose Creek gaging stations. It is almost entirely in Humboldt County in north-central Nevada, and is about 200 miles downstream from the headwaters of the Humboldt River. Agriculture is the major economic activity in the area. Inasmuch as the valley lowlands receive an average of about 8 inches of precipitation per year and because the rate of evaporation from free-water surfaces is about six times the average annual precipitation, all crops in the area (largely forage crops) are irrigated. About 85 percent of the cultivated land is irrigated with Humboldt River water; the remainder is irrigated from about 20 irrigation wells. The consolidated rocks of the uplifted fault-block mountains are largely barriers to the movement of ground water and form ground-water and surface-water divides. Unconsolidated deposits of late Tertiary and Quaternary age underlie the valley lowlands to a maximum depth of about 5,000 feet. These deposits are in hydraulic continuity with the Humboldt River and store and transmit most of the economically recoverable ground water. Included in the valley fill is a highly permeable sand and gravel deposit having a maximum thickness of about 90-100 feet; it underlies the flood plain and bordering terraces throughout most of the project area. This deposit is almost completely saturated and contains about 500,000 acre-feet of ground water in storage. The Humboldt River is the source of 90-95 percent of the surface-water inflow to the area. In water years 1949-62 the average annual streamflow at the Comus gaging station at the upstream margin of the area was 172,100 acre-feet; outflow at the Rose Creek gaging station averaged about 155,400 acre-feet. Accordingly, the measured loss of Humboldt River streamflow averaged nearly 17,000 acre-feet per year. Most of this water was transpired by phreatophytes and crops, evaporated from free-water surfaces, and evaporated from bare soil. Inasmuch as practically no tributary streamflow normally discharges into the river in the Winnemucca reach and because pumpage is virtually negligible during the nonirrigation season, gains and losses of streamflow during most of the year reflect the close interrelation of the Humboldt River and the groundwater reservoir. An estimated average of about 14,000 acre-feet per year of ground-water underflow moves toward the Humboldt River from tributary areas. Much of this water discharges into the Humboldt River; hovever, some evaporates or is transpired before reaching the river. More than 65 percent of the average annual flow of the river horn-ally occurs in April, May, and June owing to the spring runoff. The stage of the river generally rises rapidly during these months causing water to move from the river to the ground-water reservoir. Furthermore, the period of high streamflow normally coincides with the irrigation season, and much of the excess irrigation water diverted from the river percolates downward to the zone of saturation. The net measured loss of streamflow in April-June, which averaged about 24,000 acre-feet in water years 1949-62, was about 7,000 acre-feet more than the average annual loss. The estimated net average annual increase of ground water in storage during these months in this period was on the order of 10,000 acre-feet. Following the spring runoff and the irrigation season, normally in July, some of the ground water stored in the flood-plain deposits during the spring runoff begins to discharge into the river. In addition, ground-water inflow from tributary areas again begins to discharge into the river. Experiments utilizin
Annual variability of PAH concentrations in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Dynamics of organic contaminant transport in a large river system is influenced by annual variability in organic contaminant concentrations. Surface runoff and groundwater input control the flow of river waters. They are also the two major inputs of contaminants to river waters. The annual variability of contaminant concentrations in rivers may or may not represent similar trends to the flow changes of river waters. The purpose of the research is to define the annual variability in concentrations of polycyclic aromatic hydrocarbons (PAH) in riverine environment. To accomplish this, from March 1992 to March 1995 samples of Potomac River water weremore » collected monthly or bimonthly downstream of the Chesapeake Bay fall line (Chain Bridge) during base flow and main storm flow hydrologic conditions. Concentrations of selected PAHs were measured in the dissolved phase and the particulate phase via GC/MS. The study of the annual variability of PAH concentrations will be performed through comparisons of PAH concentrations seasonally, annually, and through study of PAH concentration river discharge dependency and rainfall dependency. For selected PAHs monthly and annual loadings will be estimated based on their measured concentrations and average daily river discharge. The monthly loadings of selected PAHs will be compared by seasons and annually.« less
Annual replenishment of bed material by sediment transport in the Wind River near Riverton, Wyoming
Smalley, M.L.; Emmett, W.W.; Wacker, A.M.
1994-01-01
The U.S. Geological Survey, in cooperation with the Wyoming Department of Transportation, conducted a study during 1985-87 to determine the annual replenishment of sand and gravel along a point bar in the Wind River near Riverton, Wyoming. Hydraulic- geometry relations determined from streamflow measurements; streamflow characteristics determined from 45 years of record at the study site; and analyses of suspended-sediment, bedload, and bed- material samples were used to describe river transport characteristics and to estimate the annual replenishment of sand and gravel. The Wind River is a perennial, snowmelt-fed stream. Average daily discharge at the study site is about 734 cubic feet per second, and bankfull discharge (recurrence interval about 1.5 years) is about 5,000 cubic feet per second. At bankfull discharge, the river is about 136 feet wide and has an average depth of about 5.5 feet and average velocity of about 6.7 feet per second. Streams slope is about 0.0010 foot per foot. Bed material sampled on the point bar before the 1986 high flows ranged from sand to cobbles, with a median diameter of about 22 millimeters. Data for sediment samples collected during water year 1986 were used to develop regression equations between suspended-sediment load and water discharge and between bedload and water discharge. Average annual suspended-sediment load was computed to be about 561,000 tons per year using the regression equation in combination with flow-duration data. The regression equation for estimating bedload was not used; instead, average annual bedload was computed as 1.5 percent of average annual suspended load about 8,410 tons per year. This amount of bedload material is estimated to be in temporary storage along a reach containing seven riffles--a length of approximately 1 river mile. On the basis of bedload material sampled during the 1986 high flows, about 75 percent (by weight) is sand (2 millimeters in diameter or finer); median particle size is about 0.5 milli- meter. About 20 percent (by weight) is medium gravel to small cobbles--12.7 millimeters (0.5 inch) or coarser. The bedload moves slowly (about 0.03 percent of the water speed) and briefly (about 10 percent of the time). The average travel distance of a median-sized particle is about 1 river mile per year. The study results indicate that the average replenishment rate of bedload material coarser than 12.7 millimeters is about 1,500 to 2,000 tons (less than 1,500 cubic yards) per year. Finer material (0.075 to 6.4 millimeters in diameter) is replen- ishment at about 4,500 to 5,000 cubic yards per year. The total volume of potentially usable material would average about 6,000 cubic yards per year.
DeSimone, Leslie A.
2004-01-01
Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from anthropo-genic activities were relatively large percentages, compared to other subbasins, (more than 20 percent in September) of total out-flows. Wastewater flows in the Assabet River accounted for 55, 32, and 20 percent of total nonstorm streamflow (base flow plus wastewater discharge) out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. The ground-water-flow models were used to evaluate water-management alternatives by simulating hypothetical scenarios of altered withdrawals and discharges. A scenario that included no water management quantified nonstorm stream-flows that would result without withdrawals, discharges, septic-system return flow, or consumptive use. Tributary flows in this scenario increased in most subbasins by 2 to 44 percent relative to 19972001 conditions. The increases resulted mostly from variable combinations of decreased withdrawals and decreased infiltration to sewers. Average annual nonstorm streamflow in the Assabet River decreased slightly in this scenario, by 2 to 3 percent annually, because gains in ground-water discharge were offset by the elimination of wastewater discharges. A second scenario quantified the effects of increasing withdrawals and discharges to currently permitted levels. In this simulation, average annual tributary flows decreased in most subbasins, by less than 1 to 10 percent relative to 19972001 conditions. In the Assabet River, flows increased slightly, 1 to 5 percent annually, and the percentage of wastewater in the river increased to 69, 42, and 27 percent of total nonstorm streamflow out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. A third set of scenarios quantified the effects of ground-water discharge of wastewater at four hypothetical sites, while maintaining 19972000 wastewater discharges to the Assabet River. Wastewater, discharged at a constant rate that varied among sites from 0.3 to 1
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui
2014-10-01
Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin.
Water-Resources Investigations in Wisconsin, 2001
Maertz, Diane E.; Fuller, Jan A.
2001-01-01
Runoff differed for rivers throughout the State and ranged from 33 percent in east central Wisconsin to 166 percent in south central Wisconsin. Runoff was lowest (33 percent of the average annual runoff from 1964- 2000) for the Lake Michigan tributary Kewaunee River near Kewaunee, and highest (166 percent of the average annual runoff from 1974-2000) for the Pheasant Branch at Middleton station in south central Wisconsin. Departures of runoff in the 2000 water year as a percent of long-term average runoff in the State (determined using stations with drainage areas greater than 150 square miles and at least 20 years of record) are shown in Figure 4.
Assessment of statewide annual streamflow in New Mexico, 1985-2013
Affinati, Joseph Anthony; Myers, Nathan C.
2015-01-01
The San Francisco River annual flows were relatively high compared to other years in the study in 1985, 1991–93, 1995, and 2005 but were near or below average for the rest of the years of the study. Both reaches on the San Francisco River were gaining reaches for all 29 years of the study.
Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.
2006-01-01
Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and sand concentrations at the South Yuba River (11417500) gage were typically higher than those at the Middle Yuba River (11410000) gage for a given streamflow throughout the three year project period. Factors contributing to differences in sediment loads and grain-size distributions at the Middle Yuba River (11410000) and South Yuba River (11417500) gages include contributing drainage area, flow diversions, and deposition of bed-material-sized sediment in reservoirs upstream of the Middle Yuba River (11410000) gage. Owing to its larger drainage area, higher flows, and absence of man-made structures that restrict sediment movement in the lower basin, the South Yuba River transports a greater and coarser sediment load.
Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia
NASA Astrophysics Data System (ADS)
Ismail, W. R.; Hashim, M.
2015-03-01
The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.
Surface-water availability, Tuscaloosa County, Alabama
Knight, Alfred L.; Davis, Marvin E.
1975-01-01
The average annual runoff, about 1,270 mgd (million gallons per day), originating in Tuscaloosa County is equivalent to 20 inches or 0.95 mgd per square mile. The Black Warrior and Sipsey Rivers, the largest streams in the county, have average flows of 5,230 mgd and 580 mgd, respectively, where they leave the county, and median annual 7-day low flows in excess of 150 mgd and 35 mgd, respectively. North River, Big Sandy Creek, and Hurricane Creek have average flows in excess of 100 mgd and median annual 7-day low flows in excess of 2 mgd. Surface water generally contains less than 100 mg/l (milligrams per liter) dissolved solids, less than 10 mg/l chloride, and is soft to moderately hard. Streams having the higher hardness and the higher dissolved-solids content are in eastern Tuscaloosa County.
NASA Astrophysics Data System (ADS)
Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John
2017-10-01
China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.
Flooding dynamics on the lower Amazon floodplain
NASA Astrophysics Data System (ADS)
Rudorff, C.; Melack, J. M.; Bates, P. D.
2013-05-01
We analyzed flooding dynamics of a large floodplain lake in the lower reach of the Amazon River for the period between 1995 through 2010. Floodplain inundation was simulated using the LISFLOOD-FP model, which combines one-dimensional river routing with two-dimensional overland flow, and a local hydrological model. Accurate representation of floodplain flows and inundation extent depends on the quality of the digital elevation model (DEM). We combined digital topography (derived from the Shuttle Radar Topography Mission) with extensive floodplain echo-sounding data to generate a hydraulically sound DEM. Analysis of daily water balances revealed that the dominant source of inflow alternated seasonally among direct rain and local runoff (October through January), Amazon River (March through August), and seepage (September). As inflows from the Amazon River increase during the rising limb of the hydrograph, regional floodwaters encounter the floodplain partially inundated from local hydrological inputs. At peak flow the floodplain routes, on average, 2.5% of the total discharge for this reach. The falling limb of the hydrograph coincides with the locally dry period, allowing seepage of water stored in sediments to become a dominant source. The average annual inflow from the Amazon River was 58.8 km3 (SD = 33.5), representing more than three thirds (80%) of inputs from all sources, with substantial inter-annual variability. The average annual net export of water from the floodplain to the Amazon River was 7.9 km3 (SD = 2.7).
Myers, Donna N.; Metzker, Kevin D.; Davis, Steven
2000-01-01
The relation of suspended-sediment discharges to conservation-tillage practices and soil loss were analyzed for the Maumee River Basin in Ohio, Michigan, and Indiana as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Cropland in the basin is the largest contributor to soil erosion and suspended-sediment discharge to the Maumee River and the river is the largest source of suspended sediments to Lake Erie. Retrospective and recently-collected data from 1970-98 were used to demonstrate that increases in conservation tillage and decreases in soil loss can be related to decreases in suspended-sediment discharge from streams. Average annual water and suspended-sediment budgets computed for the Maumee River Basin and its principal tributaries indicate that soil drainage and runoff potential, stream slope, and agricultural land use are the major human and natural factors related to suspended-sediment discharge. The Tiffin and St. Joseph Rivers drain areas of moderately to somewhat poorly drained soils with moderate runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the St. Joseph and Tiffin Rivers represent 29.0 percent of the basin area, 30.7 percent of the average-annual streamflow, and 9.31 percent of the average annual suspended-sediment discharge. The Auglaize and St. Marys Rivers drain areas of poorly to very poorly drained soils with high runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the Auglaize and St. Marys Rivers represent 48.7 percent of the total basin area, 53.5 percent of the average annual streamflow, and 46.5 percent of the average annual suspended-sediment discharge. Areas of poorly drained soils with high runoff potential appear to be the major source areas of suspended sediment discharge in the Maumee River Basin. Although conservation tillage differed in the degree of use throughout the basin, on aver-age, it was used on 55.4 percent of all crop fields in the Maumee River Basin from 1993-98. Conservation tillage was used at relatively higher rates in areas draining to the lower main stem from Defiance to Waterville, Ohio and at relatively lower rates in the St. Marys and Auglaize River Basins, and in areas draining to the main stem between New Haven, Ind. and Defiance, Ohio. The areas that were identified as the most important sediment-source areas in the basin were characterized by some of the lowest rates of conservation tillage. The increased use of conservation tillage was found to correspond to decreases in suspended-sediment discharge over time at two locations in the Maumee River Basin. A 49.8 percent decrease in suspended-sediment discharge was detected when data from 1970-74 were compared to data from 1996-98 for the Auglaize River near Ft. Jennings, Ohio. A decrease in suspended-sediment discharge of 11.2 percent was detected from 1970?98 for the Maumee River at Waterville, Ohio. No trends in streamflow at either site were detected over the period 1970-98. The lower rate of decline in suspended-sediment discharge for the Maumee River at Waterville, Ohio compared to the Auglaize River near Ft. Jennings, may be due to resuspension and export of stored sediments from drainage ditches, stream channels, and flood plains in the large drainage basin upstream from Waterville. Similar findings by other investigators about the capacity of drainage networks to store sediment are supported by this investigation. These findings go undetected when soil loss estimates are used alone to evaluate the effectiveness of conservation tillage. Water-quality data in combination with soil-loss estimates were needed to draw these conclusions. These findings provide information to farmers and soil conservation agents about the ability of conservation tillage to reduce soil erosion and suspended-sediment discharge from the Maumee River Basin.
Rea, Alan; Cederstrand, Joel R.
1994-01-01
The data sets on this compact disc are a compilation of several geographic reference data sets of interest to the global-change research community. The data sets were chosen with input from the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) Data Committee and the GCIP Hydrometeorology and Atmospheric Subpanels. The data sets include: locations and periods of record for stream gages, reservoir gages, and meteorological stations; a 500-meter-resolution digital elevation model; grid-node locations for the Eta numerical weather-prediction model; and digital map data sets of geology, land use, streams, large reservoirs, average annual runoff, average annual precipitation, average annual temperature, average annual heating and cooling degree days, hydrologic units, and state and county boundaries. Also included are digital index maps for LANDSAT scenes, and for the U.S. Geological Survey 1:250,000, 1:100,000, and 1:24,000-scale map series. Most of the data sets cover the conterminous United States; the digital elevation model also includes part of southern Canada. The stream and reservoir gage and meteorological station files cover all states having area within the Mississippi River Basin plus that part of the Mississippi River Basin lying within Canada. Several data-base retrievals were processed by state, therefore many sites outside the Mississippi River Basin are included.
Use of streamflow data to estimate base flowground-water recharge for Wisconsin
Gebert, W.A.; Radloff, M.J.; Considine, E.J.; Kennedy, J.L.
2007-01-01
The average annual base flow/recharge was determined for streamflow-gaging stations throughout Wisconsin by base-flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970-99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow-gaging stations that had long-term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple-regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low-flow partial-record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base-flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins. ?? 2007 American Water Resources Association.
Wu, Rong Jun; Xing, Xiao Yong
2016-06-01
The actual evapotranspiration was modelled utilizing the boreal ecosystem productivity simulator (BEPS) in Huaihe River Basin from 2001 to 2012. In the meantime, the quantitative analyses of the spatial-temporal variations of actual evapotranspiration characteristics and its influencing factors under different vegetation types were conducted. The results showed that annual evapotranspiration gradually decreased from southeast to northwest, tended to increase annually, and the monthly change for the average annual evapotranspiration was double-peak curve. The differences of evapotranspiration among vegetation types showed that the farmland was the largest contributor for the evapotranspiration of Huaihe Basin. The annual actual evapotranspiration of the mixed forest per unit area was the largest, and that of the bare ground per unit area was the smallest. The changed average annual evapotranspiration per unit area for various vegetation types indicated an increased tendency other than the bare ground, with a most significant increase trend for the evergreen broadleaf forest. The thermodynamic factors (such as average temperature) were the dominant factors affecting the actual evapotranspiration in the Huaihe Basin, followed by radiation and moisture factors.
Bassick, M.D.; Jones, M.L.
1992-01-01
The study area (see index map of Idaho), part of the Big Lost River drainage basin, is at the northern side of the eastern Snake River Plain. The lower Big Lost River Valley extends from the confluence of Antelope Creek and the Big Lost River to about 4 mi south of Arco and encompasses about 145 mi2 (see map showing water-level contours). The study area is about 18 mi long and, at its narrowest, 4 mi wide. Arco, Butte City, and Moore, with populations of 1,016, 59, and 190, respectively, in 1990, are the only incorporated towns. The entire study area, except the extreme northwestern part, is in Butte City. The study area boundary is where alluvium and colluvium pinch out and abut against the White Knob Mountains (chiefly undifferentiated sedimentary rock with lesser amounts of volcanic rock) on the west and the Lost River Range (chiefly sedimentary rock) on the east. Gravel and sand in the valley fill compose the main aquifer. The southern boundary is approximately where Big Lost River valley fill intercalates with or abuts against basalt of the Snake River Group. Spring ground-water levels and flow in the Big Lost River depend primarily on temperature and the amount and timing of precipitation within the entire drainage basin. Periods of abundant water supply and water shortages are, therefore, related to the amount of annual precipitation. Surface reservoir capacity in the valley (Mackay Reservoir, about 20 mi northwest of Moore) is only 20 percent of the average annual flow of the Big Lost River (Crosthwaite and others, 1970, p. 3). Stored surface water is generally unavailable for carryover from years of abundant water supply to help relieve drought conditions in subsequent years. Many farmers have drilled irrigation wells to supplement surface-water supplies and to increase irrigated acreage. Average annual flow of the Big Lost River below Mackay Reservoir near Mackay (gaging station 13127000, not shown) in water years 1905, 1913-14, and 1920-90 was about 224,600 acre-ft; average annual flow of the Big Lost River near Arco (gaging station 13132500; see map showing water-level contours) in water years 1947-61, 1967-80, and 1983-90 was about 79,000 acre-ft (Harenberg and others, 1991, p. 254-255). Moore Canal and East Side Ditch divert water from the Big Lost River at the Moore Diversion, 3 mi north of Moore (see map showing water-level contours) and supply water for irrigation near the margins of the valley. When water supply is average or greater, water in the Big Lost River flows through the study area and onto the Snake River Plain, where it evaporates or infiltrates into the Snake River Plain aquifer. When water supply is below average, water in the Big Lost River commonly does not reach Arco; rather, it is diverted for irrigation in the interior of the valley, evaporates, or infiltrates to the valley-fill aquifer. This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, to collect hydrologic data needed to help address water-supply problems in the Big Lost River Valley. Work involved (1) field inventory of 81 wells, including 46 irrigation wells; (2) measurement of water levels in 154 wells in March 1991; (3) estimation of annual ground-water pumpage for irrigation from 1984 through 1990; and (4) analysis of results of an aquifer test conducted southwest of Moore. All data obtained during this study may be inspected at the U.S. Geological Survey, Idaho District office, Boise.
Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA
Griffin, Eleanor R.; Friedman, Jonathan M.
2017-01-01
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p < 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.
Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013
NASA Astrophysics Data System (ADS)
Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua
2018-05-01
In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.
Dornblaser, Mark M.; Striegl, Robert G.
2009-01-01
Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001–2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a−1 and 387 Gg a−1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer‐autumn, with very little export in winter. On average, a minimum of 11 Mt a−1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.
NASA Astrophysics Data System (ADS)
Dornblaser, Mark M.; Striegl, Robert G.
2009-06-01
Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001-2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a-1 and 387 Gg a-1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer-autumn, with very little export in winter. On average, a minimum of 11 Mt a-1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.
Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.
2011-01-01
The average annual TSS yields ranged from 111 tons/mi2 in Apple Creek to 45 tons/mi2 in Duck Creek. All five watersheds yielded more TSS than the median value (32.4 tons/mi2) from previous studies in the Southeastern Wisconsin Till Plains (SWTP) ecoregion. The average annual TP yields ranged from 663 lbs/mi2 in Baird Creek to 382 lbs/mi2 in Duck Creek. All five watersheds yielded more TP than the median value from previous studies in the SWTP ecoregion, and the Baird Creek watershed yielded more TP than the statewide median of 650 lbs/mi2 from previous studies.Overall, Duck Creek had the lowest median and volumetric weighted concentrations and mean yield of TSS and TP. The same pattern was true for dissolved phosphorus (DP), except the volumetrically weighted concentration was lowest in the East River. In contrast, Ashwaubenon, Baird, and Apple Creeks had greater median and volumetrically weighted concentrations and mean yields of TSS, TP, DP than Duck Creek and the East River. Water quality in Duck Creek and East River were distinctly different from Ashwaubenon, Baird, and Apple Creeks. Loads from individual runoff events for all of these streams were important to the total annual mass transport of the constituents. On average, about 20 percent of the annual TSS loads and about 17 percent of the TP loads were transported in 1-day events in each stream.
Granato, Gregory E.; Barlow, Paul M.
2005-01-01
Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant annual instream-flow criterion of 0.5 cubic foot per second per square mile (ft3/s/mi2) at the four streamflow-constraint locations. An average withdrawal rate of 10 Mgal/d can meet estimates of future (2020) water-supply needs of surrounding communities in Rhode Island. This withdrawal rate represents about 13 percent of the average 2002 daily withdrawal from the Scituate Reservoir (76 Mgal/d), the State?s largest water supply. Average annual withdrawal rates of 6 to 7 Mgal/d are possible for more stringent instream-flow criteria that might be used during dry-period hydrologic conditions. Two example scenarios of dry-period instream-flow constraints were evaluated: first, a minimum instream flow of 0.1 cubic foot per second at any of the four constraint locations; and second, a minimum instream flow of 10 percent of the minimum monthly streamflow estimate for each streamflow-constraint location during the period 1961?2000. The State of Rhode Island is currently (2004) considering methods for establishing instream-flow criteria for streams within the State. Twelve alternative annual, seasonal, or monthly instream-flow criteria that have been or are being considered for application in southeastern New England were used as hypothetical constraints on maximum ground-water-withdrawal rates in management-model calculations. Maximum ground-water-withdrawal rates ranged from 5 to 16 Mgal/d under five alternative annual instream-flow criteria. Maximum ground-water-withdrawal rates ranged from 0 to 13.6 Mgal/d under seven alternative seasonal or monthly instream-flow criteria. The effect of ground-water withdrawals on seasonal variations in monthly average streamflows under each criterion also were compared. Evaluation of management-model results indicates that a single annual instream-flowcriterion may be sufficient to preserve seasonal variations in monthly average streamflows and meet water-supply demands in the Big River Area, because withdrawals from wells in the Big
Average Annual Rainfall Over the Globe
NASA Astrophysics Data System (ADS)
Agrawal, D. C.
2013-12-01
The atmospheric recycling of water is a very important phenomenon on the globe because it not only refreshes the water but it also redistributes it over land and oceans/rivers/lakes throughout the globe. This is made possible by the solar energy intercepted by the Earth. The half of the globe facing the Sun, on the average, intercepts 1.74×1017 J of solar radiation per second and it is divided over various channels as given in Table 1. It keeps our planet warm and maintains its average temperature2 of 288 K with the help of the atmosphere in such a way that life can survive. It also recycles the water in the oceans/rivers/ lakes by initial evaporation and subsequent precipitation; the average annual rainfall over the globe is around one meter. According to M. King Hubbert the amount of solar power going into the evaporation and precipitation channel is 4.0×1016 W. Students can verify the value of average annual rainfall over the globe by utilizing this part of solar energy. This activity is described in the next section.
Climatic control of bedrock river incision.
Ferrier, Ken L; Huppert, Kimberly L; Perron, J Taylor
2013-04-11
Bedrock river incision drives the development of much of Earth's surface topography, and thereby shapes the structure of mountain belts and modulates Earth's habitability through its effects on soil erosion, nutrient fluxes and global climate. Although it has long been expected that river incision rates should depend strongly on precipitation rates, quantifying the effects of precipitation rates on bedrock river incision rates has proved difficult, partly because river incision rates are difficult to measure and partly because non-climatic factors can obscure climatic effects at sites where river incision rates have been measured. Here we present measurements of river incision rates across one of Earth's steepest rainfall gradients, which show that precipitation rates do indeed influence long-term bedrock river incision rates. We apply a widely used empirical law for bedrock river incision to a series of rivers on the Hawaiian island of Kaua'i, where mean annual precipitation ranges from 0.5 metres to 9.5 metres (ref. 12)-over 70 per cent of the global range-and river incision rates averaged over millions of years can be inferred from the depth of river canyons and the age of the volcanic bedrock. Both a time-averaged analysis and numerical modelling of transient river incision reveal that the long-term efficiency of bedrock river incision across Kaua'i is positively correlated with upstream-averaged mean annual precipitation rates. We provide theoretical context for this result by demonstrating that our measurements are consistent with a linear dependence of river incision rates on stream power, the rate of energy expenditure by the flow on the riverbed. These observations provide rare empirical evidence for the long-proposed coupling between climate and river incision, suggesting that previously proposed feedbacks among topography, climate and tectonics may occur.
Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin
NASA Astrophysics Data System (ADS)
Peng, H.; Jia, Y.; Qiu, Y.
2011-12-01
The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin
Macek-Rowland, Kathleen M.
2000-01-01
Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak. The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek. Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin. Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998. Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98. Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River. Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River. Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River. The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries. The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile. The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area.
Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.
2012-01-01
Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment-associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages.
Trends and future challenges of water resources in the Tigris-Euphrates Rivers basin in Iraq
NASA Astrophysics Data System (ADS)
Issa, I. E.; Al-Ansari, N. A.; Sherwany, G.; Knutsson, S.
2013-12-01
Iraq is one of the riparian countries within basins of Tigris-Euphrates Rivers in the Middle East region. The region is currently facing water shortage problems due to the increase of the demand and climate changes. In the present study, average monthly water flow measurements for 15 stream flow gaging stations within basins of these rivers in Iraq with population growth rate data in some of its part were used to evaluate the reality of the current situation and future challenges of water availability and demand in Iraq. The results showed that Iraq receives annually 70.29 km3 of water 45.4 and 25.52 km3 from River Tigris and Euphrates respectively. An amount of 18.04 km3 is supplied by its tributaries inside Iraq. The whole amount of water in the Euphrates Rivers comes outside the Iraqi borders. Annual decrease of the water inflow is 0.1335 km3 yr-1 for Tigris and 0.245 km3 yr-1 for Euphrates. This implies the annual percentage reduction of inflow rates for the two rivers is 0.294 and 0.960% respectively. Iraq consumes annually 88.89% (63.05 km3) of incoming water from the two rivers, where about 60.43 and 39.57% are from Rivers Tigris and Euphrates respectively. Water demand increases annually by 0.896 km3; of which 0.5271 and 0.475 km3 within Tigris and Euphrates basins respectively. The average water demand in 2020 will increase to 42.844 km3 yr-1 for Tigris basin and for Euphrates 29.225 km3 yr-1 (total 72.069 km3 yr-1), while water availability will decrease to 63.46 km3 yr-1. This means that the overall water shortage will be restricted to 8.61 km3.
Harwell, Glenn R.; Mobley, Craig A.
2009-01-01
This report, done by the U.S. Geological Survey in cooperation with Dallas/Fort Worth International (DFW) Airport in 2008, describes the occurrence and distribution of fecal indicator bacteria (fecal coliform and Escherichia [E.] coli), and the physical and chemical indicators of water quality (relative to Texas Surface Water Quality Standards), in streams receiving discharge from DFW Airport and vicinity. At sampling sites in the lower West Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts for five of the eight West Fork Trinity River watershed sampling sites exceeded the Texas Commission on Environmental Quality E. coli criterion, thus not fully supporting contact recreation. Two of the five sites with geometric means that exceeded the contact recreation criterion are airport discharge sites, which here means that the major fraction of discharge at those sites is from DFW Airport. At sampling sites in the Elm Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts exceeded the geometric mean contact recreation criterion for seven (four airport, three non-airport) of 13 sampling sites. Under low-flow conditions in the lower West Fork Trinity River watershed, E. coli counts for airport discharge sites were significantly different from (lower than) E. coli counts for non-airport sites. Under low-flow conditions in the Elm Fork Trinity River watershed, there was no significant difference between E. coli counts for airport sites and non-airport sites. During stormflow conditions, fecal indicator bacteria counts at the most downstream (integrator) sites in each watershed were considerably higher than counts at those two sites during low-flow conditions. When stormflow sample counts are included with low-flow sample counts to compute a geometric mean for each site, classification changes from fully supporting to not fully supporting contact recreation on the basis of the geometric mean contact recreation criterion. All water temperature measurements at sampling sites in the lower West Fork Trinity River watershed were less than the maximum criterion for water temperature for the lower West Fork Trinity segment. Of the measurements at sampling sites in the Elm Fork Trinity River watershed, 95 percent were less than the maximum criterion for water temperature for the Elm Fork Trinity River segment. All dissolved oxygen concentrations were greater than the minimum criterion for stream segments classified as exceptional aquatic life use. Nearly all pH measurements were within the pH criterion range for the classified segments in both watersheds, except for those at one airport site. For sampling sites in the lower West Fork Trinity River watershed, all annual average dissolved solids concentrations were less than the maximum criterion for the lower West Fork Trinity segment. For sampling sites in the Elm Fork Trinity River, nine of the 13 sites (six airport, three non-airport) had annual averages that exceeded the maximum criterion for that segment. For ammonia, 23 samples from 12 different sites had concentrations that exceeded the screening level for ammonia. Of these 12 sites, only one non-airport site had more than the required number of exceedances to indicate a screening level concern. Stormflow total suspended solids concentrations were significantly higher than low-flow concentrations at the two integrator sites. For sampling sites in the lower West Fork Trinity River watershed, all annual average chloride concentrations were less than the maximum annual average chloride concentration criterion for that segment. For the 13 sampling sites in the Elm Fork Trinity River watershed, one non-airport site had an annual average concentration that exceeded the maximum annual average chloride concentration criterion for that segment.
NASA Astrophysics Data System (ADS)
Tian, Qing; Prange, Matthias; Merkel, Ute
2016-05-01
The variation characteristics of precipitation and temperature in the three major Chinese river basins (Yellow River, Yangtze River and Pearl River) in the period of 1957-2013 were analyzed on an annual and seasonal basis, as well as their links to sea surface temperature (SST) variations in the tropical Pacific and Indian Ocean on both interannual and decadal time scales. Annual mean temperature of the three river basins increased significantly overall since 1957, with an average warming rate of about 0.19 °C/10a, but the warming was characterized by a staircase form with steps around 1987 and 1998. The significant increase of annual mean temperature could mostly be attributed to the remarkable warming trend in spring, autumn and winter. Warming rates in the northern basins were generally much higher than in the southern basins. However, both the annual precipitation and seasonal mean precipitation of the three river basins showed little change in the study area average, but distinct interannual variations since 1957 and clear regional differences. An overall warming-wetting tendency was found in the northwestern and southeastern river basins in 1957-2013, while the central regions tended to become warmer and drier. Results from a Maximum Covariance Analysis (MCA) showed that the interannual variations of seasonal mean precipitation and surface air temperature over the three river basins were both associated with the El Niño-Southern Oscillation (ENSO) since 1957. ENSO SST patterns affected precipitation and surface air temperature variability throughout the year, but with very different response patterns in the different seasons. For instance, temperature in most of the river basins was positively correlated with central-eastern equatorial Pacific SST in winter and spring, but negatively correlated in summer and autumn. On the decadal time scale, the seasonal mean precipitation and surface air temperature variations were strongly associated with the Pacific Quasi-Decadal Oscillation.
Rasmussen, Teresa J.; Ziegler, Andrew C.; Rasmussen, Patrick P.
2005-01-01
The lower Kansas River is an important source of drinking water for hundreds of thousands of people in northeast Kansas. Constituents of concern identified by the Kansas Department of Health and Environment (KDHE) for streams in the lower Kansas River Basin include sulfate, chloride, nutrients, atrazine, bacteria, and sediment. Real-time continuous water-quality monitors were operated at three locations along the lower Kansas River from July 1999 through September 2004 to provide in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen and to estimate concentrations for constituents of concern. Estimates of concentration and densities were combined with streamflow to calculate constituent loads and yields from January 2000 through December 2003. The Wamego monitoring site is located 44 river miles upstream from the Topeka monitoring site, which is 65 river miles upstream from the DeSoto monitoring site, which is 18 river miles upstream from where the Kansas River flows into the Missouri River. Land use in the Kansas River Basin is dominated by grassland and cropland, and streamflow is affected substantially by reservoirs. Water quality at the three monitoring sites varied with hydrologic conditions, season, and proximity to constituent sources. Nutrient and sediment concentrations and bacteria densities were substantially larger during periods of increased streamflow, indicating important contributions from nonpoint sources in the drainage basin. During the study period, pH remained well above the KDHE lower criterion of 6.5 standard units at all sites in all years, but exceeded the upper criterion of 8.5 standard units annually between 2 percent of the time (Wamego in 2001) and 65 percent of the time (DeSoto in 2003). The dissolved oxygen concentration was less than the minimum aquatic-life-support criterion of 5.0 milligrams per liter less than 1 percent of the time at all sites. Dissolved solids, a measure of the dissolved material in water, exceeded 500 milligrams per liter about one-half of the time at the three Kansas River sites. Larger dissolved-solids concentrations upstream likely were a result of water inflow from the highly mineralized Smoky Hill River that is diluted by tributary flow as it moves downstream. Concentrations of total nitrogen and total phosphorus at the three monitoring sites exceeded the ecoregion water-quality criteria suggested by the U.S. Environmental Protection Agency during the entire study period. Median nitrogen and phosphorus concentrations were similar at all three sites, and nutrient load increased moving from the upstream to downstream sites. Total nitrogen and total phosphorus yields were nearly the same from site to site indicating that nutrient sources were evenly distributed throughout the lower Kansas River Basin. About 11 percent of the total nitrogen load and 12 percent of the total phosphorus load at DeSoto during 2000-03 originated from wastewater-treatment facilities. Escherichia coli bacteria densities were largest at the middle site, Topeka. On average, 83 percent of the annual bacteria load at DeSoto during 2000-03 occurred during 10 percent of the time, primarily in conjunction with runoff. The average annual sediment loads at the middle and downstream monitoring sites (Topeka and DeSoto) were nearly double those at the upstream site (Wamego). The average annual sediment yield was largest at Topeka. On average, 64 percent of the annual suspended-sediment load at DeSoto during 2000-03 occurred during 10 percent of the time. Trapping of sediment by reservoirs located on contributing tributaries decreases transport of sediment and sediment-related constituents. The average annual suspended-sediment load in the Kansas River at DeSoto during 2000-03 was estimated at 1.66 million tons. An estimated 13 percent of this load consisted of sand-size particles, so approximately 216,000 tons of sand were transported
Annual Coded Wire Tag Program; Oregon Missing Production Groups, 1995 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, Robert L.; Mallette, Christine; Lewis, Mark A.
1995-12-01
Bonneville Power Administration is the funding source for the Oregon Department of Fish and Wildlife`s Annual Coded Wire Tag Program - Oregon Missing Production Groups Project. Tule brood fall chinook were caught primarily in the British Columbia, Washington and northern Oregon ocean commercial fisheries. The up-river bright fall chinook contributed primarily to the Alaska and British Columbia ocean commercial fisheries and the Columbia River gillnet fishery. Contribution of Rogue fall chinook released in the lower Columbia River system occurred primarily in the Oregon ocean commercial and Columbia river gillnet fisheries Willamette spring chinook salmon contributed primarily to the Alaska andmore » British Columbia ocean commercial, Oregon freshwater sport and Columbia River gillnet fisheries. Restricted ocean sport and commercial fisheries limited contribution of the Columbia coho released in the Umatilla River that survived at an average rate of 1.05% and contributed primarily to the Washington, Oregon and California ocean sport and commercial fisheries and the Columbia River gillnet fishery. The 1987 to 1991 brood years of coho released in the Yakima River survived at an average rate of 0.64% and contributed primarily to the Washington, Oregon and California ocean sport and commercial fisheries and the Columbia River gillnet fishery. Survival rates of salmon and steelhead are influenced, not only by factors in the hatchery, disease, density, diet and size and time of release, but also by environmental factors in the river and ocean. These environmental factors are controlled by large scale weather patterns such as El Nino over which man has no influence. Man could have some influence over river flow conditions, but political and economic pressures generally out weigh the biological needs of the fish.« less
The topographic distribution of annual incoming solar radiation in the Rio Grande River basin
NASA Technical Reports Server (NTRS)
Dubayah, R.; Van Katwijk, V.
1992-01-01
We model the annual incoming solar radiation topoclimatology for the Rio Grande River basin in Colorado, U.S.A. Hourly pyranometer measurements are combined with satellite reflectance data and 30-m digital elevation models within a topographic solar radiation algorithm. Our results show that there is large spatial variability within the basin, even at an annual integration length, but the annual, basin-wide mean is close to that measured by the pyranometers. The variance within 16 sq km and 100 sq km regions is a linear function of the average slope in the region, suggesting a possible parameterization for sub-grid-cell variability.
1994-08-01
ANNUAL PRECIPITATION, 30-YEAR NORMALS (1951-1980) A-I-3 A-I-2 MEAN MONTHLY AND ANNUAL TEMPERATURE , 30-YEAR NORMALS (1951-1980) A-I-4 A-1-3 AVERAGE ...Environmental Quality (DEQ). CLIMATE The climate of the area is humid si!btropicl. AMual average temperature in the project area is 68°F, with monthly...normal temperatures varying from 82’F in July to 531F in Januwry. Average annual precipitation over tae area is 63 inche!, maiying from a monthly
Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82
Thompson, K.R.
1985-01-01
The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)
Recent trends and changes in freshwater discharge into Hudson, James, and Ungava Bays
NASA Astrophysics Data System (ADS)
Déry, S. J.; Stieglitz, M.; McKenna, E.; Wood, E. F.
2004-05-01
Recent trends and changes in the observed river discharge into Hudson, James, and Ungava Bays (HJUBs) for the period 1964-1994 will be presented. Forty-two rivers with outlets into these bays contribute on average 700 cubic kilometers (= 0.02 sverdrups) of freshwater to the Arctic Ocean. River discharge attains a mean annual peak of 4.2 cubic kilometers per day on average each 17 June for the system as a whole, whereas the minimum of 0.6 cubic kilometers occurs on average each 3 April. The Nelson River supplies as much as 30% of the daily discharge for the entire system during winter, but diminishes in relative importance during spring and summer. Runoff rates per contributing area are highest (lowest) on the eastern (western) shores of Hudson and James Bays. Linear trend analyses reveal decreasing discharge in 38 out of the 42 rivers over the 31-year period. By 1994, the total annual freshwater discharge into the Arctic Ocean diminished by 110 cubic kilometers from its values in 1964, equivalent to a reduction of 0.0035 sverdrups. The annual peak discharge rates associated with snowmelt advanced by 16 days between 1964 and 1994 and has diminished slightly in intensity. There is a direct correlation between the time of this hydrological event and the latitude of a river's mouth; the timing of the peak discharge rates varies by 5 days for each degree of latitude. Continental snowmelt induces a seasonal pulse of freshwater from HJUBs that is tracked along its path into the Labrador Current and that coincides with ocean salinity anomalies on the inner Newfoundland Shelf. The talk will end with a discussion on the implications of a changing freshwater regime in HJUBs.
Singer, Michael B.; Dunne, Thomas
2006-01-01
A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.
Wasiolek, Maryann
1995-01-01
Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.
Green, W. Reed; Haggard, Brian E.
2001-01-01
Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... grid. The proposed project would have an average annual generation of 788.0 gigawatt-hours (GWh), which... following: (1) Up to 360 TREK generating units installed in a matrix on the bottom of the river; (2) the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... power grid. The proposed project would have an average annual generation of 876.0 gigawatt-hours (GWh... following: (1) Up to 400 TREK generating units installed in a matrix on the bottom of the river; (2) the...
Long-term changes in the hydroclimatic characteristics in the Baikal region
NASA Astrophysics Data System (ADS)
Voropay, N. N.; Kichigina, N. V.
2018-01-01
Since the end of the 19th century, global air temperature has been increasing. The period after 1976 is called the period of the most intensive warming. In Russia, the average annual air temperature rises at a rate of + 0.43 ° C / 10 years. The change of precipitation over the last 50-60 years on average in Russia is not significant. In the Baikal region, precipitation increase during the warm period (10-11%) and decrease during the cold period (4%). It is reflected on hydrological regime and the factors of river flow formation. The regional features of the hydrological regime dynamics of the Baikal region against the background of climate change are considered. Groups of the rivers with similar alternations of low water and high-water periods are allocated. Trends in runoff are analyzed. The increase in air temperature leads to intra annual redistribution of river flow. The majority of statistically significant trends of river run off are observed during the cold period of year.
Holmes, Robert R.; Wiche, Gregg J.; Koenig, Todd A.; Sando, Steven K.
2013-01-01
During 2011, excessive precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Souris/Red River of the North (Souris/Red) and Mississippi River Basins. At different times, beginning in late February 2011 and extending through September 2011, various rivers in these basins had major flooding, with some locations receiving multiple rounds of flooding. Peak streamflow records were broken at 105 streamgages in the Souris/Red and Mississippi River Basins and annual runoff volume records set at 47 of the 211 streamgages analyzed for annual runoff. For the period of 1950 through 2011, the Ohio River provided almost one-half of the annual runoff at Vicksburg; the Missouri River contributed less than one-fourth, and the lower Mississippi River less than one-fourth. Those relative contribution patterns also occurred in 1973 and 2011, with the notable exception of the decrease in contribution of the lower Mississippi River tributaries and the increase in contribution from the upper Missouri River Basin in 2011 as compared to 1973 and the long-term average from 1950 to 2011.
Brabets, T.P.; Walvoord, Michelle Ann
2009-01-01
Streamflow characteristics in the Yukon River Basin of Alaska and Canada have changed from 1944 to 2005, and some of the change can be attributed to the two most recent modes of the Pacific Decadal Oscillation (PDO). Seasonal, monthly, and annual stream discharge data from 21 stations in the Yukon River Basin were analyzed for trends over the entire period of record, generally spanning 4-6 decades, and examined for differences between the two most recent modes of the PDO: cold-PDO (1944-1975) and warm-PDO (1976-2005) subsets. Between 1944 and 2005, average winter and April flow increased at 15 sites. Observed winter flow increases during the cold-PDO phase were generally limited to sites in the Upper Yukon River Basin. Positive trends in winter flow during the warm-PDO phase broadened to include stations in the Middle and Lower Yukon River drainage basins. Increases in winter streamflow most likely result from groundwater input enhanced by permafrost thawing that promotes infiltration and deeper subsurface flow paths. Increased April flow may be attributed to a combination of greater baseflow (from groundwater increases), earlier spring snowmelt and runoff, and increased winter precipitation, depending on location. Calculated deviations from long-term mean monthly discharges indicate below-average flow in the winter months during the cold PDO and above-average flow in the winter months during the warm PDO. Although not as strong a signal, results also support the reverse response during the summer months: above-average flow during the cold PDO and below-average flow during the warm PDO. Changes in the summer flows are likely an indirect consequence of the PDO, resulting from earlier spring snowmelt runoff and also perhaps increased summer infiltration and storage in a deeper active layer. Annual discharge has remained relatively unchanged in the Yukon River Basin, but a few glacier-fed rivers demonstrate positive trends, which can be attributed to enhanced glacier melting. A positive trend in annual flow during the warm PDO near the mouth of the Yukon River suggests that small increases in flow throughout the Yukon River Basin have resulted in an additive effect manifested in the downstream-most streamflow station. Many of the identified changes in streamflow patterns in the Yukon River Basin show a correlation to the PDO regime shift. This work highlights the importance of considering proximate climate forcings as well as global climate change when assessing hydrologic changes in the Arctic.
Characteristics and Trends of River Discharge into Hudson, James, and Ungava Bays, 1964-2000.
NASA Astrophysics Data System (ADS)
Déry, Stephen J.; Stieglitz, Marc; McKenna, Edward C.; Wood, Eric F.
2005-07-01
The characteristics and trends of observed river discharge into the Hudson, James, and Ungava Bays (HJUBs) for the period 1964-2000 are investigated. Forty-two rivers with outlets into these bays contribute on average 714 km3 yr-1 [= 0.023 Sv (1 Sv 106 m3s-1)] of freshwater to high-latitude oceans. For the system as a whole, discharge attains an annual peak of 4.2 km3 day-1 on average in mid-June, whereas the minimum of 0.68 km3 day-1 occurs on average during the last week of March. The Nelson River contributes as much as 34% of the daily discharge for the entire system during winter but diminishes in relative importance during spring and summer. Runoff rates per contributing area are highest (lowest) on the eastern (western) shores of the Hudson and James Bays. Linear trend analyses reveal decreasing discharge over the 37-yr period in 36 out of the 42 rivers. By 2000, the total annual freshwater discharge into HJUBs diminished by 96 km3 (-13%) from its value in 1964, equivalent to a reduction of 0.003 Sv. The annual peak discharge rate associated with snowmelt has advanced by 8 days between 1964 and 2000 and has diminished by 0.036 km3 day-1 in intensity. There is a direct correlation between the timing of peak spring discharge rates and the latitude of a river's mouth; the spring freshet varies by 5 days for each degree of latitude. Continental snowmelt induces a seasonal pulse of freshwater from HJUBs that is tracked along its path into the Labrador Current. It is suggested that the annual upper-ocean salinity minimum observed on the inner Newfoundland Shelf can be explained by freshwater pulses composed of meltwater from three successive winter seasons in the river basins draining into HJUBs. A gradual salinization of the upper ocean during summer over the period 1966-94 on the inner Newfoundland Shelf is in accord with a decadal trend of a diminishing intensity in the continental meltwater pulses.
Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.
2017-02-21
Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.
Low-flow study for southwest Ohio streams
Webber, Earl E.; Mayo, Ronald I.
1971-01-01
Low-flow discharges at 60 sites on streams in the Little Miami River, Mill Creek, Great Miami River and Wabash River basins are presented in this report. The average annual minimum flows in cubic feet per second (cfs) for a 7-day period of 10-year frequency and a 1-day period of 30-year frequency are computed for each of the 60 sites.
Minomo, Kotaro; Ohtsuka, Nobutoshi; Nojiri, Kiyoshi; Matsumoto, Rie
2018-02-01
Bulk (wet and dry) deposition samples were collected in Saitama Prefecture, Japan throughout a year (February 8, 2012 to February 7, 2013) to estimate the influence of dioxins emitting from waste incinerators on river water quality. The annual deposition flux of dioxins was 3.3ng-toxic equivalent (TEQ)/m 2 /year. Source identification using indicative congeners estimated that 82% of dioxin TEQ in the bulk deposition (2.7ng-TEQ/m 2 /year) was combustion-originated, indicating that most of the dioxins in the deposition were derived from waste incinerators. In Saitama prefecture the annual flux of combustion-originated dioxins in depositions was apparently consistent with that of dioxin emission into the air from waste incinerators. The TEQ of combustion-originated dioxins in the deposition per rainfall was 2.4pg-TEQ/L on annual average, exceeding the environmental quality standard (EQS) for water in Japan of 1pg-TEQ/L. This suggests there is a possibility that dioxins in atmospheric deposition have a significant influence on the water quality of urban rivers which rainwater directly flows into because of many paved areas in the basins. The influence of combustion-originated dioxin in the deposition on the water quality of Ayase River, an urban river heavily polluted with dioxins, was estimated at 0.29pg-TEQ/L on annual average in 2015. It seems that dioxins in atmospheric deposition from waste incinerators have a significant influence on water quality of some urban rivers via rainwater though the dioxins in the ambient air have achieved the EQS for atmosphere at all monitoring sites in Japan. Copyright © 2017. Published by Elsevier B.V.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Precipitation, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; J.W. Brakebill, U.S. Geological Survey, written commun., 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
An analysis of effect of land use change on river flow variability
NASA Astrophysics Data System (ADS)
Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang
2018-02-01
Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.
Variations in organic carbon fluxes from Long Island Sound to the Continental Shelf
NASA Astrophysics Data System (ADS)
Vlahos, P.; Whitney, M. M.
2017-12-01
Organic carbon balances for the Long Island Sound estuary over the years 2009-2012 are presented to assess the particulate and dissolved organic carbon contributions of the estuary to the adjacent shelf waters with respect to the Delaware and Chesapeake. Observations were coupled to a hydrodynamic model (ROMS) for both seasonal and annual estimates. During stratified summer periods, LIS was consistently a net exporter of OC to the continental shelf. LIS annual net carbon export however, varied with river flow. The heterotrophic or autotrophic nature of LIS also shifted seasonally and inter-annually. During the mass balance analysis period LIS ranged between net OC import from the continental shelf and heterotrophy in the lowest river flow year (2012) and net export of OC and autotrophy in the highest flow year (2011). Analysis suggests that LIS switches from net OC import to export when the annual river inputs exceed 19 km3 yr-1. Applying these thresholds to the annual river flow record suggests that net import occurred in 15% of the last 20 years and that LIS usually is a net exporter of OC (85%). Annually averaged LIS carbon export values based on river flow conditions over the last 20 yr are estimated at 56 ± 64 x 106 km3 yr-1. Analysis also suggests that LIS shifts from net heterotrophic to net autotrophic when annual river flow exceeds 26 km3 yr-1 (35% of the last 20 yr). Net heterotrophic conditions are most common, representing 65% of the last 20 yr.
Fluvial sediment in the little Arkansas River basin, Kansas
Albert, C.D.; Stramel, G.J.
1966-01-01
Characteristics and transport of sediment in the Little Arkansas River basin in south-central Kansas were studied to determine if the water from the river could be used as a supplemental source for municipal supply or would provide adequate recharge to aquifers that are sources of municipal and agricultural water supplies. During periods when overland 1low contributed a significant amount to streamflow, the suspended sediment in the Little Arkansas River at Valley Center averaged about 85 percent of clay, about 13 percent of silt, and about 2 percent of sand. The average annual suspended-sediment discharge for the water years 1958, 1959, 1960, and 1961 was about 306,000 tons, and about 80 percent of the load was transported during 133 days of the 1,461-day period. The average daily water discharge of 352 cubic feet per second for the period 1958-61 was more than the long-term (i}9-year) average of 245 cfs; therefore, the average annual sediment load for 1958-61 was probably greater than the average annual load for the same long-term period. Studies of seepage in a part of the channel of Kisiwa Creek indicated that an upstream gravel-pit operation yielded clays which, when deposited in the channel, reduced seepage. A change in plant operation and subsequent runoff that removed the deposited clays restored natural seepage conditions. Experiments by the Wichita Water Department showed that artificial recharge probably cannot be accomplished by using raw turbid water that is injected into wells or by using pits. Recharge by raw turbid water on large permeable areas or by seepage canals may be feasible. Studies of chemical quality of surface water at several sites in the Little Arkansas River basin indicate that Turkey. Creek is a major contributor of chloride and other dissolved solids to the Little Arkansas River and that the dissolved-solids content is probably highest during low-flow periods when suspended-sediment concentration is low. Data collected by the Wichita Water Department indicate that chloride concentrations are diminishing with time at sampled locations. and they receive recharge from rainwater and snowmelt moving through overlying alluvium and from storage in the De Chelly sandstone which encloses the east half of the diatreme. The quality of water from all areas is suitable for domestic use. However, special treatment may be necessary to make the water suitable for pulp processing.
NASA Astrophysics Data System (ADS)
Keith, Mackenzie K.; Sobieszczyk, Steven; Goldman, Jami H.; Rounds, Stewart A.
2014-11-01
Organic matter (OM) is abundant in Fanno Creek, Oregon, USA, and has been tied to a variety of water-quality concerns, including periods of low dissolved oxygen downstream in the Tualatin River, Oregon. The key sources of OM in Fanno Creek and other Tualatin River tributaries have not been fully identified, although isotopic analyses from previous studies indicated a predominantly terrestrial source. This study investigates the role of fine sediment erosion and deposition (mechanisms and spatial patterns) in relation to OM transport. Geomorphic mapping within the Fanno Creek floodplain shows that a large portion (approximately 70%) of the banks are eroding or subject to erosion, likely as a result of the imbalance caused by anthropogenic alteration. Field measurements of long- and short-term bank erosion average 4.2 cm/year and average measurements of deposition for the watershed are 4.8 cm/year. The balance between average annual erosion and deposition indicates an export of 3,250 metric tons (tonnes, t) of fine sediment to the Tualatin River-about twice the average annual export of 1,880 t of sediment at a location 2.4 km from the creek's mouth calculated from suspended sediment load regressions from continuous turbidity data and suspended sediment samples. Carbon content from field samples of bank material, combined with fine sediment export rates, indicates that about 29-67 t of carbon, or about 49-116 t of OM, from bank sediment may be exported to the Tualatin River from Fanno Creek annually, an estimate that is a lower bound because it does not account for the mass wasting of organic-rich O and A soil horizons that enter the stream.
Annual Sediment Budgets for Newly Formed Point Bars on Powder River, Montana, USA
NASA Astrophysics Data System (ADS)
Moody, John; Meade, Robert
2013-04-01
Morphodynamic processes have been monitored for 37 years on Powder River, a large, unregulated meandering river that drains an area of about 35,000 km2 in northeastern Wyoming and southeastern Montana, USA. Cross-sectional surveys of the channel and adjacent floodplains and terraces have been measured nearly annually (30 out of 37 years) by the U.S. Geological Survey (USGS) at 24 locations along 90 kilometers of the river. This long-term data set has provided insights into the natural morphological and sedimentary processes; and most recently, into the annual sediment budgets for three point bars that were created when an extreme flood in 1978 cut new channels across the necks of two former meander bends and radically shifted the location of a third bend. Because our cross-sectional surveys are generally made only once a year (during the low-flow period, usually September-October), we record only the net change in thickness of the annual deposition and erosion because some areas on a point bar may be scoured and refilled during multiple floods in a year. Point-bar sediment budgets vary spatially as well as annually. The long-term average of the net annual sediment budgets during the post-1978 years (n=26 surveys) indicates that the average annual increment of new sediment deposited on the three point bars has been three to four times the average annual increment of old sediment eroded from the point bars. This annual deposition-to-erosion ratio has varied at one point bar from a minimum of 0.14 (1986) to maximum of 275 (1995). At the other two point-bar sites the ratio ranged from 0.18 (1991) to 265 (2008) and from 0.023 (1980) to 479 (1987). The lack of correlation from year to year or from one point bar to the next suggests the importance of differences in the planimetric configurations and hydraulic histories of each point bar in the evolutionary process. All the deposited sediment we measured during an annual survey represents the same sediment year class, whereas the eroded sediment we measured is composed of different proportions of previous sediment year classes. An index of the preservation (completeness) of these sediment year classes was defined for each point-bar as the percent of the initial deposit (older than 10 years) that was still remaining in 2011. The average (n=20 surveys) completeness was 59, 81, and 64%, and in general, deposits had better chances for being preserved if they were deposited higher on the point bar surface, or if they were covered by new deposition in the following year. Net annual deposition correlated only weakly with annual peak water discharge, and we found no correlation between annual peak water discharge and the amount of sediment eroded from the point bars. These low correlations may be the result of our using only net deposition and erosion values, and not the total deposition and erosion. These results illustrate the dynamic nature of point bars that adds an important component to earlier uniform, lateral accretion models of point bars. This dynamic nature produces a range of vegetation year classes, and thus, a rich diverse habitat for terrestrial and aquatic populations. This abstract has described one application of this unique long-term data set, and the authors will be pleased to provide the data set to anyone who might need long-term fluvial geomorphic data to address other research questions such as floodplain contaminant storage, river restoration, and environmental change.
Hanslík, Eduard; Ivanovová, Diana; Juranová, Eva; Simonek, Pavel; Jedináková-Krízová, Vĕra
2009-02-01
The paper summarizes impacts of the Temelín Nuclear Power Plant (NPP) on the Vltava and Labe River basins. The study is based on the results of long-term monitoring carried out before the plant operation (1989-2000), and subsequently during the plant operation (2001-2005). In the first period, the main objective was to determine background radionuclide levels remaining in the environment after global fallout and due to the Chernobyl accident. A decrease in the concentrations of (90)Sr, (134)Cs and (137)Cs, which was observed before the plant operation, continued also during the subsequent period. Apart from tritium, the results of the observation did not indicate any impacts of the plant on the concentrations of activation and fission products in the hydrosphere. The annual average tritium concentrations in the Vltava River were in agreement with predicted values. The maximum annual average tritium concentration (13.5 Bq L(-1)) was observed in 2004 downstream from the wastewater discharge in the Vltava River at Solenice. Estimated radiation doses for adults due to intakes of river water as drinking water contaminated by tritium are below 0.1 microSv y(-1).
Runner, Michael S.; Turnipseed, D. Phil; Coupe, Richard H.
2002-01-01
Increased nutrient loading to the Gulf of Mexico from off-continent flux has been identified as contributing to the increase in the areal extent of the low dissolved-oxygen zone that develops annually off the Louisiana and Texas coast. The proximity of the Yazoo River Basin in northwestern Mississippi to the Gulf of Mexico, and the intensive agricultural activities in the basin have led to speculation that the Yazoo River Basin contributes a disproportionate amount of nitrogen and phosphorus to the Mississippi River and ultimately to the Gulf of Mexico. An empirical measurement of the flux of nitrogen and phosphorus from the Yazoo Basin has not been possible due to the hydrology of the lower Yazoo River Basin. Streamflow for the Yazoo River below Steele Bayou is affected by backwater from the Mississippi River. Flow at the gage is non-uniform and varying, with bi-directional and reverse flows possible. Streamflow was computed by using remote sensing and acoustic and conventional discharge and velocity measurement techniques. Streamflow from the Yazoo River for the 1996-2000 period accounted for 2.8 percent of the flow of the Mississippi River for the same period. Water samples from the Yazoo River were collected from February 1996 through December 2000 and were analyzed for total nitrogen, nitrate, total phosphorus, and orthophosphorus as part of the U.S. Geological Survey National Water-Quality Assessment Program. These data were used to compute annual loads of nitrogen and phosphorus discharged from the Yazoo River for the period 1996-2000. Annual loads of nitrogen and phosphorus were calculated by two methods. The first method used multivariate regression and the second method multiplied the mean annual concentration by the total annual flow. Load estimates based on the product of the mean annual concentration and the total annual flow were within the 95 percent confidence interval for the load calculated by multivariate regression in 10 of 20 cases. The Yazoo River loads, compared to average annual loads in the Mississippi River, indicated that the Yazoo River was contributing 1.4 percent of the total nitrogen load, 0.7 percent of the nitrate load, 3.4 percent of the total phosphorus load, and 1.6 percent of the orthophosphorus load during 1996 - 2000. The total nitrogen, nitrate, and orthophosphorus loads in the Yazoo River Basin were less than expected, whereas the total phosphorus load was slightly higher than expected based on discharge.
Suspended-sediment data in the Salt River basin, Missouri
Berkas, Wayne R.
1983-01-01
Suspended-sediment data collected at six stations in the Salt River basin during 1980-82 are presented. The estimated average annual suspended-sediment load is 1,390,000 tons per year from a geomorphic examination, and 1,330,000 tons per year from periodic sampling at Salt River near Monroe City, Mo. The suspended-sediment load from the major tributaries of the Salt River during 1981 was 1,610,000 tons, which is larger than the estimated values due to above-normal rainfall and runoff. (USGS)
Amazon River investigations, reconnaissance measurements of July 1963
Oltman, Roy Edwin; Sternberg, H. O'R.; Ames, F.C.; Davis, L.C.
1964-01-01
The first measurements of the flow of the Amazon River were made in July 1963 as a joint project of the University of Brazil, the Brazilian Navy, and the U.S. Geological Survey. The discharge of the Amazon River at Obidos was 7,640,000 cfs at an annual flood stage somewhat lower than the average. For comparison the maximum known discharge of the Mississippi River at Vicksburg is about 2,300,000 cfs. Dissolved-solids concentrations and sediment loads of the Amazon River and of several major tributaries were found to be low.
Rose, W.J.
1992-01-01
Average annual total-sediment load and the percentage transported as bedload were determined for a 10-year period (water years 1974-83)(October 1,1973-September 30, 1982). These loads and percentages were, respectively, 123,000 tons and 35 percent at Chippewa River near Caryville; 1,073,000 tons and 61 percent at Chippewa River at Durand; 940,000 tons and 44 percent at Chippewa River near Pepin; 277,000 tons and 43 percent at Black River near Galesville; and 558,000 tons and 49 percent at Wisconsin River at Muscoda.
NASA Astrophysics Data System (ADS)
Restrepo López, Juan Camilo; Orejarena R, Andrés F.; Torregroza, Ana Carolina
2017-12-01
Monthly averaged suspended sediment load data from seven rivers in northern Colombia (Caribbean alluvial plain) draining into the Caribbean Sea were analyzed to quantify magnitudes, estimate long-term trends, and evaluate variability patterns of suspended sediment load. Collectively these rivers deliver an average of around 146.3 × 106 t yr-1 of suspended sediments to the Colombian Caribbean coast. The largest sediment supply is provided by the Magdalena River, with a mean suspended sediment load of 142.6 × 106 t yr-1, or 38% of the total fluvial discharge estimated for the whole Caribbean littoral zone. Between 2000 and 2010, the annual suspended sediment load of these rivers increased by as much as 36%. Wavelet spectral analyses identified periods of intense variability between 1987-1990 and 1994-2002, where major oscillation processes appeared simultaneously. The semi-annual, annual and quasi-decadal bands are the main factors controlling suspended sediment load variability in fluvial systems, whereas the quasi-biennial and interannual bands constitute second-order sources of variability. The climatic and oceanographic drivers of the oscillations identified through wavelet spectral analyses define a signal of medium-long-term variability for the suspended sediment load, while the physiographic and environmental characteristics of the basins determine their ability to magnify, attenuate or modify this signal.
Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida
Leitman, Helen M.; Sohm, James E.; Franklin, Marvin A.
1984-01-01
The Apalachicola River in northwest Florida is part of a three-State drainage basin encompassing 50,800 km 2 in Alabama, Georgia, and Florida. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam from which it flows 171 km to Apalachicola Bay in the Gulf of Mexico. Its average annual discharge at Chattahoochee, Fla., is 690 m3/s (1958-80) with annual high flows averaging nearly 3,000 m3/s. Its flood plain supports 450 km 2 of bottom-land hardwood and tupelo-cypress forests. The Apalachicola River Quality Assessment focuses on the hydrology and productivity of the flood-plain forest. The purpose of this part of the assessment is to address river and flood-plain hydrology, flood-plain tree species and forest types, and water and tree relations. Seasonal stage fluctuations in the upper river are three times greater than in the lower river. Analysis of long-term streamflow record revealed that 1958-79 average annual and monthly flows and flow durations were significantly greater than those of 1929-57, probably because of climatic changes. However, stage durations for the later period were equal to or less than those of the earlier period. Height of natural riverbank levees and the size and distribution of breaks in the levees have a major controlling effect on flood-plain hydrology. Thirty-two kilometers upstream of the bay, a flood-plain stream called the Brothers River was commonly under tidal influence during times of low flow in the 1980 water year. At the same distance upstream of the bay, the Apalachicola River was not under tidal influence during the 1980 water year. Of the 47 species of trees sampled, the five most common were wet-site species constituting 62 percent of the total basal area. In order of abundance, they were water tupelo, Ogeechee tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined on the basis of species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Depth of water, duration of inundation and saturation, and water-level fluctuation, but not water velocity, were highly correlated with forest types. Most forest types dominated by tupelo and bald-cypress grew on permanently saturated soils that were inundated by flood waters 50 to 90 percent of the time, or an average of 75 to 225 consecutive days during the growing season from 1958 to 1980. Most forest types dominated by other species grew in areas that were saturated or inundated 5 to 25 percent of the time, or an average of 5 to 40 consecutive days during the growing season from 1958 to 1980. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream.
Generalized sediment budgets of the Lower Missouri River, 1968–2014
Heimann, David C.
2016-09-13
Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and determine a suspended-sediment budget for selected annual, monthly, and daily time increments. The temporal changes in the cumulative annual budget residuals were poorly correlated with the comparatively steady 1968–2011 annual stage trends at the Missouri River at Nebraska City, Nebr., station. An accurate total sediment budget is developed by having concurrent data available for all primary suspended and bedload components for a reach of interest throughout a period. Such a complete budget, with concurrent record for suspended-sediment load and bedload components, is unavailable for any reach and period in the Lower Missouri River. The primary data gaps are in bedload data, and also in suspended-sediment gains and losses including ungaged tributary inputs and sediment storage. Bedload data gaps in the Missouri River Basin are much more prevalent than suspended-sediment data gaps, and the first step in the development of reach bedload budgets is the establishment of a standardized bedload monitoring program at main-stem stations.The temporal changes in flow-adjusted suspended-sediment concentrations analyzed at main-stem Missouri River stations indicated an overall downward change in concentrations between 1968 and 2014. Temporary declines in flow-adjusted suspended-sediment concentrations during and following large floods were evident but generally returned to near pre-flood values within about 6 months.Data uncertainties associated with the development of a sediment budget include uncertainties associated with the collection of suspended-sediment and bedload data and the computation of suspended-sediment loads. These uncertainties vary depending on the frequency of data collection, the variability of conditions being represented by the discrete samples, and the statistical approach to suspended-sediment load computations. The coefficients of variation of suspended-sediment loads of Missouri River tributary stations for 1968–2014 were greater, 75.0 percent, than the main-stem stations, 47.1 percent. The lower coefficient of variation at main-stem stations compared to tributaries, primarily is the result of the lower variability in streamflow and sediment discharge identified at main-stem stations. To obtain similar accuracy between suspended-sediment loads at main-stem and tributary stations, a longer period of record is required of the tributary stations. During 1968–2014, however, the Missouri River main-stem station record was much more complete (87 percent) than the tributary station record (28 percent).
Modelling Inland Flood Events for Hazard Maps in Taiwan
NASA Astrophysics Data System (ADS)
Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.
2015-12-01
Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage. Major historical flood events have been successfully simulated along with spatial patterns of flows. Comparison of stochastic discharge statistics w.r.t. observed ones from Hydrological Year Books of Taiwan over all recorded years are also in good agreement.
Clark, Melanie L.; Mason, Jon P.
2007-01-01
Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the Tongue River to 1,460 ?S/cm at 25?C on Prairie Dog Creek. The Tongue River drainage basin has the largest percentage of area underlain by Mesozoic-age and older rocks and by more resistant rocks. In addition, the higher annual precipitation and a steeper gradient in this basin compared to basins in the plains produce relatively fast stream velocities, which result in a short contact time between stream waters and basin materials. The Powder River drainage basin, which has the largest drainage area and most diverse site conditions, had the largest range of median specific-conductance values among the four major drainage basins. Median values in that basin ranged from 680 ?S/cm at 25?C on Clear Creek to 5,950 ?S/cm at 25?C on Salt Creek. Median specific-conductance values among sites in the Cheyenne River drainage basin ranged from 1,850 ?S/cm at 25?C on Black Thunder Creek to 4,680 ?S/cm at 25?C on the Cheyenne River. The entire Cheyenne River drainage basin is in the plains, which have low precipitation, soluble geologic materials, and relatively low gradients that produce slow stream velocities and long contact times. Median specific-conductance values among sites in the Belle Fourche River drainage basin ranged from 1,740 ?S/cm at 25?C on Caballo Creek to 2,800 ?S/cm at 25?C on Donkey Creek. Water in the study area ranged from a magnesium-calcium-bicarbonate type for some sites in the Tongue River drainage basin to a sodium-sulfate type at many sites in the Powder, Cheyenne, and Belle Fourche River drainage basins. Little Goose Creek, Goose Creek, and the Tongue River in the Tongue River drainage basin, and Clear Creek in the Powder River drainage basin, which have headwaters in the Bighorn Mountains, consistently had the smallest median dissolved-sodium concentrations, sodium-adsorption ratios, dissolved-sulfate concentrations, and dissolved-solids concentrations. Salt Creek, Wild Horse Creek, Little Powder River, and the Cheyenne River, which have headwat
Battaglin, William A.; Aulenbach, Brent T.; Vecchia, Aldo; Buxton, Herbert T.
2010-01-01
Nutrients and freshwater delivered by the Mississippi and Atchafalaya Rivers drive algal production in the northern Gulf of Mexico, which eventually results in the widespread occurrence of hypoxic bottom waters along the Louisiana and Texas coast. Researchers have demonstrated a relation between the extent of the hypoxic zone and the magnitude of streamflow, nutrient fluxes, and nutrient concentrations in the Mississippi River, with springtime streamflows and fluxes being the most predictive. In 1999 the U.S. Geological Survey (USGS) estimated the flux of nitrogen, phosphorus, and silica at selected sites in the Mississippi Basin and to the Gulf of Mexico for 1980-1996. These flux estimates provided the baseline information used by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force to develop an Action Plan for reducing hypoxia in the northern Gulf of Mexico. The primary goal of the Action Plan was to achieve a reduction in the size (areal extent) of the hypoxic zone from an average of approximately 14,000 square kilometers in 1996-2000 to a 5-year moving average of less than 5,000 square kilometers by 2015. Improved statistical models and adjusted maximum likelihood estimation using USGS Load Estimator (LOADEST) software were used to estimate annual and seasonal nutrient fluxes for 1980-2007 at selected sites on the Mississippi River and its tributaries. These data provide a means to evaluate the influence of natural and anthropogenic effects on delivery of water and nutrients to the Gulf of Mexico; to define subbasins that are the most important contributors of nutrients to the gulf; and to investigate the relations among streamflow, nutrient fluxes, and the size and duration of the Gulf of Mexico hypoxic zone. A comparative analysis between the baseline period of 1980-1996 and 5-year moving averages thereafter indicate that the average annual streamflow and fluxes of total nitrogen, nitrate, orthophosphate, and silica to the Gulf of Mexico have decreased. However, the flux of total phosphorus between the baseline period and subsequent 5-year periods has increased. The average spring (April, May, and June) streamflow and fluxes of silica, total nitrogen, nitrate, and orthophosphate to the Gulf of Mexico also decreased, whereas the spring flux of total phosphorus has increased. Similar changes in streamflow and nutrient flux were observed at many sites Buxtonwithin the basin. The inputs of water, total nitrogen, and total phosphorus from the major subbasins of the Mississippi-Atchafalaya River Basin as a percentage of the to-the-gulf totals have increased from the Ohio River Basin, decreased from the Missouri River Basin, and remained relatively unchanged from the Upper Mississippi, Red, and Arkansas River Basins. Changes in streamflow and nutrient fluxes are related, but short-term variations in sources of streamflow and nutrients complicate the interpretation of factors that affect nutrient delivery to the Gulf of Mexico. Parametric time-series models are used to try and separate natural variability in nutrient flux from changes due to other causes. Results indicate that the decrease in annual nutrient fluxes that has occurred between the 1980-1996 baseline period and more recent years can be largely attributed to natural causes (climate and streamflow) and not management actions or other human controlled activities in the Mississippi-Atchafalaya River Basin. The downward trends in total nitrogen, nitrate, ammonium, and orthophosphate that were detected at either the Mississippi River near St. Francisville, La., or the Atchafalaya River at Melville, La., occurred prior to 1995. In spite of the general decrease in nutrient flux, the average size of the Gulf of Mexico hypoxic zone has increased between 1997 and 2007. The reasons for this are not clear but could be due to the type or nature of nutrient delivery. Whereas the annual flux of total nitrogen to the Gulf of Mexico has decreased, the proporti
Spatial and temporal variations of metal content and water quality in the Belaya River Basin
NASA Astrophysics Data System (ADS)
Fashchevskaia, T. B.; Motovilov, Y.
2016-12-01
The aim of this research is to identify the spatiotemporal regularities of iron, copper and zinc contents dynamics in the streams of the Belaya River basin. The Belaya River is situated in the South Ural region and is one of the biggest tributary in the Volga River basin with catchment area of 142 000 km2. More than sixty years the diverse economic activities are carried out in the Belaya River basin, the intensity of this activity is characterized by high temporal variability. The leading industries in the region are oil, mining, petroleum processing, chemistry and petro chemistry, mechanical engineering, metallurgy, power industry. The dynamics of human activities in the catchment and intra and inter-annual changes in the water quality are analyzed for the period 1969-2007 years. Inter-annual dynamics of the metal content in the river waters was identified on the basis of the long-term hydrological monitoring statistics at the 32 sites. It was found that the dynamics of intensity of economic activities in the Belaya River basin is the cause statistically significant changes in the metal content of the river network. Statistically homogeneous time intervals have been set for each monitoring site. Within these time intervals there were obtained averaged reliable quantitative estimations of water quality. Empirical probability distributions of iron, copper and zinc concentrations for various phases of the water regime in all investigated monitoring sites were approximated by Pearson type III curves and the averages of the concentration values, the coefficient of variation and asymmetry, as well as the values of the concentrations of metal in the range of 1-95% of frequency were estimated. It was found that by the end of the test period, the average long-term concentrations for iron and copper exceed MAC for fishery use, for zinc become smaller MAC in many streams of Belaya River basin. Acknowledgements. The work was financially supported by the Russian Foundation for Basic Research (Grant 15-05-09022)
Mercury export from the Yukon River Basin and potential response to a changing climate
Schuster, P. F.; Striegl, Robert G.; Aiken, G. R.; Krabbenhoft, D. P.; Dewild, J. F.; Butler, K.; Kamark, B.; Dornblaser, M.
2011-01-01
We measured mercury (Hg) concentrations and calculated export and yield from the Yukon River Basin (YRB) to quantify Hg flux from a large, permafrost-dominated, high-latitude watershed. Exports of Hg averaged 4400 kg Hg yr–1. The average annual yield for the YRB during the study period was 5.17 μg m–2 yr–1, which is 3–32 times more than Hg yields reported for 8 other major northern hemisphere river basins. The vast majority (90%) of Hg export is associated with particulates. Half of the annual export of Hg occurred during the spring with about 80% of 34 samples exceeding the U.S. EPA Hg standard for adverse chronic effects to biota. Dissolved and particulate organic carbon exports explained 81% and 50%, respectively, of the variance in Hg exports, and both were significantly (p < 0.001) correlated with water discharge. Recent measurements indicate that permafrost contains a substantial reservoir of Hg. Consequently, climate warming will likely accelerate the mobilization of Hg from thawing permafrost increasing the export of organic carbon associated Hg and thus potentially exacerbating the production of bioavailable methylmercury from permafrost-dominated northern river basins.
Mercury export from the Yukon River Basin and potential response to a changing climate
Schuster, Paul F.; Striegl, Robert G.; Aiken, George R.; Krabbenhoft, David P.; DeWild, John F.; Butler, Kenna D.; Kamark, Ben; Dornblaser, Mark
2011-01-01
We measured mercury (Hg) concentrations and calculated export and yield from the Yukon River Basin (YRB) to quantify Hg flux from a large, permafrost-dominated, high-latitude watershed. Exports of Hg averaged 4400 kg Hg yr-1. The average annual yield for the YRB during the study period was 5.17 μg m-2 yr-1, which is 3–32 times more than Hg yields reported for 8 other major northern hemisphere river basins. The vast majority (90%) of Hg export is associated with particulates. Half of the annual export of Hg occurred during the spring with about 80% of 34 samples exceeding the U.S. EPA Hg standard for adverse chronic effects to biota. Dissolved and particulate organic carbon exports explained 81% and 50%, respectively, of the variance in Hg exports, and both were significantly (p < 0.001) correlated with water discharge. Recent measurements indicate that permafrost contains a substantial reservoir of Hg. Consequently, climate warming will likely accelerate the mobilization of Hg from thawing permafrost increasing the export of organic carbon associated Hg and thus potentially exacerbating the production of bioavailable methylmercury from permafrost-dominated northern river basins.
Climate of the Frank Church-River of No Return Wilderness, central Idaho
Arnold I. Finklin
1988-01-01
Describes the climate of the largest designated wilderness in the conterminous United States. Contains numerous maps, graphs, and tables. Shows annual patterns and 10-day details during the fire season. Includes both average values and frequency distributions. Examines relationship of climatic averages to topography, persistence of weather, and climatic trends.
NASA Astrophysics Data System (ADS)
Eiriksdottir, Eydis Salome; Gislason, Sigurður Reynir; Oelkers, Eric H.
2015-10-01
Climate changes affect weathering, denudation and riverine runoff, and therefore elemental fluxes to the ocean. This study presents the climate effect on annual fluxes of 28 dissolved elements, and organic and inorganic particulate fluxes, determined over 26-42 year period in three glacial and three non-glacial river catchments located in Eastern Iceland. Annual riverine fluxes were determined by generating robust correlations between dissolved element concentrations measured from 1998 to 2003 and suspended inorganic matter concentrations measured from 1962 to 2002 with instantaneous discharge measured at the time of sampling in each of these rivers. These correlations were used together with measured average daily discharge to compute daily elemental fluxes. Integration of these daily fluxes yielded the corresponding annual fluxes. As the topography and lithology of the studied glacial and non-glacial river catchments are similar, we used the records of average annual temperature and annual runoff to examine how these parameters and glacier melting influenced individual element fluxes to the oceans. Significant variations were found between the individual elements. The dissolved fluxes of the more soluble elements, such as Mo, Sr, and Na are less affected by increasing temperature and runoff than the insoluble nutrients and trace elements including Fe, P, and Al. This variation between the elements tends to be more pronounced for the glacial compared to the non-glacial rivers. These observations are interpreted to stem from the stronger solubility control on the concentrations of the insoluble elements such that they are less affected by dilution. The dilution of the soluble elements by increasing discharge in the glacial rivers is enhanced by a relatively low amount of water-rock interaction; increased runoff due to glacial melting tend to be collected rapidly into river channels limiting water-rock interaction. It was found that the climate effect on particle transport from the glacial rivers is far higher than all other measured fluxes. This observation, together with the finding that the flux to the oceans of biolimiting elements such as P and Fe is dominated by particulates, suggests that particulate transport by melting glaciers have a relatively strong effect on the feedback between continental weathering, atmospheric chemistry, and climate regulation over geologic time.
Yin, Xiao-min; Lyu, Xian-guo; Liu, Xing-tu; Xue, Zhen-shan
2015-12-01
The present study was conducted to evaluate the influence of land use change on dissolved organic carbon (DOC) export in Naoli River watershed, Northeast China. Seasonal variation of DOC concentrations of the river water and its relationship with land use in the whole watershed and 100 m riparian zone at the annual average scale were analyzed using the method of field sampling, laboratory analysis, GIS and statistics analysis. The results showed that the concentrations of DOC under base flow conditions in spring and summer were significantly higher than that in fall in the study watershed. The seasonal trend of DOC concentrations in wetland-watersheds was similar to that in all the sub-watersheds, while significantly different from that in non-wetland watersheds. On the annual average scale, percentage of wetland in the whole watershed and paddy field in the 100 m riparian zone had positive relationship with the DOC concentration in the river water, while percentage of forest in the whole watershed had negative relationship with it (P < 0.05). It indicated that wetland in the sub-watershed played a significant role in the seasonal variation of DOC in river water of Naoli River watershed. Wetland in the watershed and paddy field in the 100 m riparian zone significantly promoted DOC export, while forest alleviated it. Land use change in the watershed in the past few decades dramatically changed the DOC balance of river water.
Hydrologic description of the Braden River watershed, west-central Florida
DelCharco, M.J.; Lewelling, B.R.
1997-01-01
The Braden River watershed drains an 83-square mile area in west-central Florida and is the largest tributary to the Manatee River. The hydrology of the Braden River was altered in 1936 when the city of Bradenton created Ward Lake, a reservoir with an 838-foot broad-crested weir 6 miles upstream from the mouth. In 1985 the reservoir, which is the sole source of drinking water for the city of Bradenton, was expanded and supplies an annual average of 5.7 million gallons of water per day. The Braden River can be hydrologically divided into three distinct sections that include an 8.6-mile reach of naturally incised, free-flowing channel; a 6.4-mile reach of impounded river created by the Ward Lake reservoir and weir; and a 6-mile reach of tidal estuary. Ten first-order and two second-order tributaries that flow into the Braden River were examined in this report. The Braden River watershed is dominated by low topographic relief. The two physiographic zones that contain the Braden River watershed, the Gulf Coast Lowlands and De Soto Plain, are both poorly drained and have numerous depressional features. The climate is subtropical with an annual average rainfall of 56 inches, annual average temperatures of 72 degrees Fahrenheit, and estimated annual lake evaporation of 52 inches. The soil series in the watershed are predominantly Myakka-Cassia and the EauGallie-Floridana; these series are characterized as nearly level and poorly drained soils. Land use within the watershed is the fastest changing characteristic that affects the hydrology of the system. The western half of the watershed is typically urban and includes parts of the city of Bradenton. Land use in the eastern half of the watershed is predominantly agricultural, but the explosive population growth of the area is driving the development of medium to high-density residential communities. The three major aquifers underlying the Braden River watershed are the surficial, intermediate, and Floridan aquifer systems. The surficial aquifer generally is underlain in places by a clay layer that enhances the ground-water flow of the surficial aquifer to surface-water bodies. The intermediate aquifer system has discontinuous water-bearing units, but retards ground-water movement between the surficial and Floridan aquifer system. The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by a middle confining unit. The Upper Floridan aquifer is the primary source for ground-water withdrawals in the watershed and has, at times, heads 20 feet higher than land-surface elevation. Discharge over the Ward Lake weir into the tidal estuary was measured using volumetric and standard discharge measurement techniques. Annual mean flow for water years 1993 and 1994 were 59.7 and 57.3 cubic feet per second, respectively. Weir coefficients, calculated from discharge measurements, ranged from 0.023 to 2.99, depending on the head of water over the weir, and the method of determining length of flow on the weir. Weir coefficients calculated from the theoretical rating ranged from 0.032 to 3.11. No significant seepage was found around the ends of the weir, and no leakage was detected through the weir.
Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom
2017-01-01
In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951–2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970–2000, with much greater variability seen for results using observed climate data.
Wang, Changyou; Guo, Jinqiang; Liang, Shengkang; Wang, Yunfei; Yang, Yanqun; Wang, Xiulin
2018-03-01
The concentrations of the potentially toxic dissolved elements (PTEs) As, Hg, Cr, Pb, Cd, and Cu in the main rivers into Jiaozhou Bay (JZB) during 1981-2006 were measured, and the impact of the fluvial PTE fluxes on their distributions in the bay was investigated. The overall average concentration in the rivers into JZB ranged from 8.8 to 39.6 μg L -1 for As, 10.1 to 632.6 ng L -1 for Hg, 4.1 to 3003.6 μg L -1 for Cr, 8.5 to 141.9 μg L -1 for Pb, 1.1 to 34.2 μg L -1 for Cd, and 13.2 to 1042.8 μg L -1 for Cu. The interannual average concentration variations of the PTEs in these rivers were enormous, with maximum differences of 41-21,680 times, while their relative seasonal changes were far smaller with maximum differences of 3-12 times. The total annual fluvial fluxes for As, Hg, and Cr into JZB exhibited the inverse "U" pattern, while those for Pb and Cd showed the "N" pattern. As a whole, the total annual Cu flux presented a growing tendency from 1998 to 2006. In general, the changing trends of the PTE concentrations in JZB were similar to those of their annual fluxes from the rivers, indicating a great impact of their fluvial fluxes on their distributions in JZB. The annual concentration of Cd in the bay almost remained constant and differed from the fluvial flux of Cd. The diversified pattern of the environmental Kuznets curve (EKC) represented China's approach to industrialization as "improving while developing."
Tobin, R.L.
1993-01-01
Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.
Keith, Mackenzie K.; Sobieszczyk, Steven; Goldman, Jami H.; Rounds, Stewart A.
2014-01-01
Organic matter (OM) is abundant in Fanno Creek, Oregon, USA, and has been tied to a variety of water-quality concerns, including periods of low dissolved oxygen downstream in the Tualatin River, Oregon. The key sources of OM in Fanno Creek and other Tualatin River tributaries have not been fully identified, although isotopic analyses from previous studies indicated a predominantly terrestrial source. This study investigates the role of fine sediment erosion and deposition (mechanisms and spatial patterns) in relation to OM transport. Geomorphic mapping within the Fanno Creek floodplain shows that a large portion (approximately 70%) of the banks are eroding or subject to erosion, likely as a result of the imbalance caused by anthropogenic alteration. Field measurements of long- and short-term bank erosion average 4.2 cm/year and average measurements of deposition for the watershed are 4.8 cm/year. The balance between average annual erosion and deposition indicates an export of 3,250 metric tons (tonnes, t) of fine sediment to the Tualatin River—about twice the average annual export of 1,880 t of sediment at a location 2.4 km from the creek’s mouth calculated from suspended sediment load regressions from continuous turbidity data and suspended sediment samples. Carbon content from field samples of bank material, combined with fine sediment export rates, indicates that about 29–67 t of carbon, or about 49–116 t of OM, from bank sediment may be exported to the Tualatin River from Fanno Creek annually, an estimate that is a lower bound because it does not account for the mass wasting of organic-rich O and A soil horizons that enter the stream.
Sediment Transport in Streams in the Umpqua River Basin, Oregon
Onions, C. A.
1969-01-01
This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.
Liang, Bian Bian; Shi, Pei Ji; Wang, Wei; Tang, Xiao; Zhou, Wen Xia; Jing, Ye
2017-01-01
The Shiyang River Basin is an important ecological area of the Eastern Hexi Corridor, and is one of the most prominent areas of water conflict and ecological environment problems. An assessment of ecosystem quality in the Shiyang River Basin can provide a reference for ecological protection in arid inland basin. Based on the concept of ecosystem quality and the statistical yearbook, remotely sensed and land cover data, an evaluation index was established with consideration of three aspects of ecosystem (i.e., productivity, stability and bearing capacity). Kruskal-Wallis (Φ 2 ) test and entropy method were applied to determine the weights of evaluation index. With the assistance of RS, GIS and SPSS software, a comprehensive evaluation and change analysis of ecosystem quality and corresponding index were conducted for various ecosystem types in the Shiyang River Basin in 2000, 2005, 2010 and 2015. Results showed that the average ecosystem quality of the Shiyang River Basin was 57.76, and presented an obvious decrease with a magnitude of 0.72 per year du-ring 2000-2015. The spatial pattern of ecosystem quality was that the upstream was better than the midstream, and the midstream was superior to the downstream. The mean values of production capacity, stability and carrying capacity of ecosystem were 67.52, 45.37, and 58.53, respectively. Production capacity and stability had increased slightly, while carrying capacity gradually decreased. Considering various ecosystem types, the highest quality was detected for forest ecosystem with average annual value of 78.12, and this ecosystem presented the lowest decreasing magnitude of 0.28 per year; for grassland, farmland and urban ecosystems, the average annual value was 62.45, 58.76 and 50.29, respectively; the quality of wetland ecosystem was the lowest, and suffered the largest decline with an average rate of 0.98 per year.
Sediment transport by streams in the Palouse River basin, Washington and Idaho, July 1961-June 1965
Boucher, P.R.
1970-01-01
The Palouse River basin covers about 3,300 square miles in southeastern Washington and northwestern Idaho. The eastern part of the basin is composed of steptoes and foothills which are generally above an altitude of 2,600 feet; the central part is of moderate local relief and is mantled chiefly by thick loess deposits; and the western part is characterized by low relief and scabland topography and is underlain mostly by basalt. Precipitation increases eastward across the study area. It ranges annually from 12 to 18 inches in the western part and from 14 to 23 inches in the central part, and it exceeds 40 inches in the eastern part. Surface runoff from the basin for the 4-year period of study (July 1961-June 1965) averaged 408,000 acre-feet per year, compared with 445,200 acre-feet per year for the 27-year period of record. The eastern part of the basin contributed about 55 percent of the total, whereas the central and western parts contributed 37 percent and 8 percent, respectively. Most sediment transport from the Palouse River basin and the highest sediment concentrations in streams occurred in the winter. Of the several storms during the study period, those of February 3-9, 1963, December 22-27, 1964, and January 27-February 4, 1965, accounted for 81 percent of the total 4-year suspended-sediment load; the storm of February 3-9, 1963, accounted for nearly one-half the total load. The discharge-weighted mean concentration of suspended sediment carried in the Palouse River past Hooper during the study period was 2,970 milligrams per liter. The average annual sediment discharge of the Palouse River at its mouth was about 1,580,000 tons per year, and the estimated average annual sediment yield was 480 tons per square mile. The yield ranged from 5 tons per square mile from the western part of the basin to 2,100 tons per square mile from the central part. The high yield from the central part is attributed to a scarcity of vegetal cover, to the fine-grained loess soils, and to rapid runoff during winter storms. Sediment yield from the eastern part of the basin ranged from 460 to more than 1,000 tons per square mile. During high flow, silt particles make up the largest part of the suspended-sediment load, whereas during low flow, clay particles represent the greatest part. On the average, the suspended sediment transported by the Palouse River past Hooper contained 3 percent sand, 68 percent silt, and 29 percent clay. Unmeasured sediment discharge was estimated to have been 5 percent of the total sediment discharge. Data collected during the 4-year period of study show that sediment loads were higher than those recorded by V. G. Kaiser during the longer period 1939-65. Whereas Kaiser's study showed an average annual soil loss of 9.6 million tons, the average annual loss during the recent study was 14.2 million tons. The factor that has had the greatest effect on the increase of sediment yields is land use. Lands once covered and protected by natural vegetation have been extensively, cultivated, and much of the soil has become susceptible to erosion, particularly in areas mantled by loessal soils.
NASA Astrophysics Data System (ADS)
Nagler, P. L.; Nguyen, U.; Bateman, H. L.; Jarchow, C.; van Riper, C., III; Waugh, W.; Glenn, E.
2016-12-01
Northern saltcedar beetles (Diorhabda carinata) have spread widely in riparian zones on the Colorado Plateau since their initial release in 2002. One goal of the releases was to reduce water consumption by saltcedar in order to conserve water through reduction of evapotranspiration (ET). The beetle moved south on the Virgin River and reached Big Bend State Park in Nevada in 2014, an expansion rate of 60 km/year. This is important because the beetle's photoperiod requirement for diapause was expected to prevent them from moving south of 37°N latitude, where endangered southwest willow flycatcher habitat occurs. In addition to focusing on the rate of dispersal of the beetles, we used remote sensing estimates of ET at 13 sites on the Colorado, San Juan, Virgin and Dolores rivers and their tributaries to estimate riparian zone ET before and after beetle releases. We estimate that water savings from 2007-2015 was 31.5 million m3/yr (25,547 acre-ft/yr), amounting to 0.258 % of annual river flow from the Upper Colorado River Basin to the Lower Basin. Reasons for the relatively low potential water savings are: 1) baseline ET before beetle release was modest (0.472 m/yr); 2) reduction in ET was low (0.061 m/yr) because saltcedar stands tended to recover after defoliation; 3) riparian ET even in the absence of beetles was only 1.8 % of river flows, calculated as the before beetle average annual ET (472 mm/yr) times the total area of saltcedar (51,588 ha) divided by the combined total average annual flows (1964-2015) from the upper to lower catchment areas of the Colorado River Basin at the USGS gages (12,215 million m3/yr or 9.90 million acre-ft). Further research is suggested to concentrate on the ecological impacts (both positive and negative) of beetles on riparian zones and on identifying management options to maximize riparian health.
Water temperature behaviour in the River Loire since 1976 and 1881
NASA Astrophysics Data System (ADS)
Moatar, Florentina; Gailhard, Joël
2006-05-01
Analysis of monthly mean river temperatures, recorded on an hourly basis in the middle reaches of the Loire since 1976, allows reconstruction by multiple linear regression of the annual, spring and summer water temperatures from equivalent information on air temperatures and river discharge. Since 1881, the average annual and summer temperatures of the Loire have risen by approximately 0.8 °C, this increase accelerating since the late 1980s due to the rise in air temperature and also to lower discharge rates. In addition, the thermal regime in the Orleans to Blois reach is considerably affected by the inflow of groundwater from the Calcaires de Beauce aquifer, as shown by the summer energy balance. To cite this article: F. Moatar, J. Gailhard, C. R. Geoscience 338 (2006).
Xue, Jie; Gui, Dongwei
2015-01-01
The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.
Xue, Jie
2015-01-01
The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River. PMID:26244113
Mooty, Will S.; Kidd, Robert E.
1997-01-01
Drought conditions in the 1980's focused attention on the multiple uses of the surface- and ground-water resources in the Apalachicola-Chattahooochee-Flint and Alabama-Coosa-Tallapoosa River basins in Georgia, Alabama, and Florida. State and Federal agencies also have proposed projects that would require additional water resources and revise operating practices within the river basins. The existing and proposed water projects create conflicting demands for water by the States and emphasize the problem of water-resource allocation. This study was initiated to describe ground-water availablity in the Cahaba River basin in Alabama, Subarea 7 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River basins, and to estimate the possible effects of increased ground-water use within the basin. Subarea 7 encompasses about 1,030 square miles in north-central Alabama. Subarea 7 encompasses parts of the Piedmont, Valley and Ridge, and Coastal Plain physiographic provinces. The Piedmont Province is underlain by a two-component aquifer system that is composed of a fractured, crystalline-rock aquifer characterized by little or no primary porosity or permeability; and the overlying regolith, which can behave as a porous-media aquifer. The Valley and Ridge Province is underlain by fracture- and solution-conduit aquifer systems, similar in some ways to those in the Piedmont Province. Fracture-conduit aquifers predominante in the well-consolidated sandstones and shales of Paleozoic age; solution-conduit aquifers dedominate in the carbonate rocks of Paleozoic age. The Coastal Plain is underlain by southward-dipping, poorly consolidated deposits of sand, gravel, and clay of fluvial and marine origin. The conceptual model described for this study qualitatively subdivides the ground-water flow system into local (shallow), intermediate, and regional (deep) flow regimes. Ground- water discharge to tributaries mainly is from local and intermediate flow regimes and varies seasonally. The regional flow regime probably approximates steady-state conditions and discharges chiefly to major drains such as the Cahaba River. Ground-water discharge to major drains originates from all flow regimes. Mean-annual ground-water discharge to streams (baseflow) is considered to approximate the long-term, average recharge to ground water. The mean-annual baseflow was estimated using an atuomated hydrograph-separation method, and represents discharge from the local, intermediate, and regional flow regimes of the ground-water flow system. Mean-annual baseflow in Georgia was estimated to be 763 cubic feet per second at Centreville, Ala., where the Cahaba River exits Subarea 7 into Subarea 8. Mean-annual baseflow represented about 48 percent of total mean-annual stream discharge for the period of record. Stream discharge for selected sites on the Cahaba River and its tributaries were compiled for the years 1941, 1954, and 1986, during which sustained droughts occurred throughout most of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River basin area. Stream discharges were assumed to be sustained entirely by baseflow during the latter periods of these droughts. Estimated baseflow near the end of these droughts averaged about 21 percent of the estimated mean-annual baseflow in Subarea 7 (ranged from about 16 to 25 percent for individual drought years). The potential exists for the development of ground-water resources on a regional scale throughout Subarea 7. Estimated ground-water use in 1990 was about 2 percent of the estimated mean-annual baseflow, and 9.7 percent of the average drought baseflow near the end of the droughts of 1941, 1954, and 1986. Because ground- water use in Subarea 7 represents a relatively minor percentage of ground- water recharge, even a large increase in ground-water use in Subarea 7 is likely to have little effect on ground-water and surface-water occurrernce in Alabama. Indications of long-term ground-water dec
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the 30-year (1971-2000) average annual maximum temperature in Celsius multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the "United States Average Monthly or Annual Precipitation, 1971 - 2000" raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the 30-year (1971-2000) average annual minimum temperature in Celsius multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the "United States Average Monthly or Annual Minimum Temperature, 1971 - 2000" raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Booth, Amanda C.; Soderqvist, Lars E.
2016-12-12
Freshwater flow to the Ten Thousand Islands estuary has been altered by the construction of the Tamiami Trail and the Southern Golden Gate Estates. The Picayune Strand Restoration Project, which is associated with the Comprehensive Everglades Restoration Plan, has been implemented to improve freshwater delivery to the Ten Thousand Islands estuary by removing hundreds of miles of roads, emplacing hundreds of canal plugs, removing exotic vegetation, and constructing three pump stations. Quantifying the tributary flows and salinity patterns prior to, during, and after the restoration is essential to assessing the effectiveness of upstream restoration efforts.Tributary flow and salinity patterns during preliminary restoration efforts and prior to the installation of pump stations were analyzed to provide baseline data and preliminary analysis of changes due to restoration efforts. The study assessed streamflow and salinity data for water years1 2007–2014 for the Faka Union River (canal flow included), East River, Little Wood River, Pumpkin River, and Blackwater River. Salinity data from the Palm River and Faka Union Boundary water-quality stations were also assessed.Faka Union River was the dominant contributor of freshwater during water years 2007–14 to the Ten Thousand Islands estuary, followed by Little Wood and East Rivers. Pumpkin River and Blackwater River were the least substantial contributors of freshwater flow. The lowest annual flow volumes, the highest annual mean salinities, and the highest percentage of salinity values greater than 35 parts per thousand (ppt) occurred in water year 2011 at all sites with available data, corresponding with the lowest annual rainfall during the study. The highest annual flow volumes and the lowest percentage of salinities greater than 35 ppt occurred in water year 2013 for all sites with available data, corresponding with the highest rainfall during the study.In water year 2014, the percentage of monitored annual flow contributed by East River increased and the percentage of flow contributed by Faka Union River decreased, compared to the earlier years. No changes in annual flow occurred at any sites west of Faka Union River. No changes in the relative flow contributions were observed during the wet season; however, the relative amounts of streamflow increased during the dry season at East River in 2014. East River had only 1 month of negative flow in 2014 compared to 6 months in 2011 and 7 months in 2008. Higher dry season flows in East River may be in response to restoration efforts. The sites to the west of Faka Union River had higher salinities on average than Faka Union River and East River. Faka Union River had the highest range in salinities, and Faka Union Boundary had the lowest range in salinities. Pumpkin River was the tributary with the lowest range in salinities.1Water year is defined as the 12-month period from October 1, for any given year, through September 30 of the following year.
Rosi, Emma J.; Post, David M.
2017-01-01
The annual migration of ∼1.2 million wildebeest (Connochaetes taurinus) through the Serengeti Mara Ecosystem is the largest remaining overland migration in the world. One of the most iconic portions of their migration is crossing of the Mara River, during which thousands drown annually. These mass drownings have been noted, but their frequency, size, and impact on aquatic ecosystems have not been quantified. Here, we estimate the frequency and size of mass drownings in the Mara River and model the fate of carcass nutrients through the river ecosystem. Mass drownings (>100 individuals) occurred in at least 13 of the past 15 y; on average, 6,250 carcasses and 1,100 tons of biomass enter the river each year. Half of a wildebeest carcass dry mass is bone, which takes 7 y to decompose, thus acting as a long-term source of nutrients to the Mara River. Carcass soft tissue decomposes in 2–10 wk, and these nutrients are mineralized by consumers, assimilated by biofilms, transported downstream, or moved back into the terrestrial ecosystem by scavengers. These inputs comprise 34–50% of the assimilated diet of fish when carcasses are present and 7–24% via biofilm on bones after soft tissue decomposition. Our results show a terrestrial animal migration can have large impacts on a river ecosystem, which may influence nutrient cycling and river food webs at decadal time scales. Similar mass drownings may have played an important role in rivers throughout the world when large migratory herds were more common features of the landscape. PMID:28630330
Tillman, Fred D.; Anning, David W.
2014-01-01
The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.
Average Annual Rainfall over the Globe
ERIC Educational Resources Information Center
Agrawal, D. C.
2013-01-01
The atmospheric recycling of water is a very important phenomenon on the globe because it not only refreshes the water but it also redistributes it over land and oceans/rivers/lakes throughout the globe. This is made possible by the solar energy intercepted by the Earth. The half of the globe facing the Sun, on the average, intercepts 1.74 ×…
Sether, Bradley A.; Berkas, Wayne R.; Vecchia, Aldo V.
2004-01-01
Data were collected at 11 water-quality sampling sites in the upper Red River of the North (Red River) Basin from May 1997 through September 1999 to describe the water-quality characteristics of the upper Red River and to estimate constituent loads and flow-weighted average concentrations for major tributaries of the Red River upstream from the bridge crossing the Red River at Perley, Minn. Samples collected from the sites were analyzed for 5-day biochemical oxygen demand, bacteria, dissolved solids, nutrients, and suspended sediment.Concentration data indicated the median concentrations for most constituents and sampling sites during the study period were less than existing North Dakota and Minnesota standards or guidelines. However, more than 25 percent of the samples for the Red River at Perley, Minn., site had fecal coliform concentrations that were greater than 200 colonies per 100 milliliters, indicating an abundance of pathogens in the upper Red River Basin. Although total nitrite plus nitrate concentrations generally increased in a downstream direction, the median concentrations for all sites were less than the North Dakota suggested guideline of 1.0 milligram per liter. Total and dissolved phosphorus concentrations also generally increased in a downstream direction, but, for those constituents, the median concentrations for most sampling sites exceeded the North Dakota suggested guideline of 0.1 milligram per liter.For dissolved solids, nutrients, and suspended sediments, a relation between constituent concentration and streamflow was determined using the data collected during the study period. The relation was determined by a multiple regression model in which concentration was the dependent variable and streamflow was the primary explanatory variable. The regression model was used to compute unbiased estimates of annual loads for each constituent and for each of eight primary water-quality sampling sites and to compute the degree of uncertainty associated with each estimated annual load. The estimated annual loads for the eight primary sites then were used to estimate annual loads for five intervening reaches in the study area. Results were used as a screening tool to identify which subbasins contributed a disproportionate amount of pollutants to the Red River. To compare the relative water quality of the different subbasins, an estimated flow-weighted average (FWA) concentration was computed from the estimated average annual load and the average annual streamflow for each subbasin.The 5-day biochemical oxygen demands in the upper Red River Basin were fairly small, and medians ranged from 1 to 3 milligrams per liter. The largest estimated FWA concentration for dissolved solids (about 630 milligrams per liter) was for the Bois de Sioux River near Doran, Minn., site. The Otter Tail River above Breckenridge, Minn., site had the smallest estimated FWA concentration (about 240 milligrams per liter). The estimated FWA concentrations for dissolved solids for the main-stem sites ranged from about 300 to 500 milligrams per liter and generally increased in a downstream direction.The estimated FWA concentrations for total nitrite plus nitrate for the main-stem sites increased from about 0.2 milligram per liter for the Red River below Wahpeton, N. Dak., site to about 0.9 milligram per liter for the Red River at Perley, Minn., site. Much of the increase probably resulted from flows from the tributary sites and intervening reaches, excluding the Otter Tail River above Breckenridge, Minn., site. However, uncertainty in the estimated concentrations prevented any reliable conclusions regarding which sites or reaches contributed most to the increase.The estimated FWA concentrations for total ammonia for the main-stem sites increased from about 0.05 milligram per liter for the Red River above Fargo, N. Dak., site to about 0.15 milligram per liter for the Red River near Harwood, N. Dak., site. The increase resulted from a decrease in flows in the Red River above Fargo, N. Dak., to the Red River near Harwood, N. Dak., intervening reach and the large load for that reach.The estimated FWA concentrations for total organic nitrogen for the main-stem sites were relatively constant and ranged from about 0.5 to 0.7 milligram per liter. The relatively constant concentrations were in sharp contrast to the total nitrite plus nitrate concentrations, which increased about fivefold between the Red River below Wahpeton, N. Dak., site and the Red River at Perley, Minn., site.The Red River near Harwood, N. Dak., to the Red River at Perley, Minn., intervening reach had the largest estimated FWA concentration for total nitrogen (about 2.9 milligrams per liter), but the estimate was highly uncertain. The Otter Tail River above Breckenridge, Minn., site had the smallest concentration (about 0.6 milligram per liter). The estimated FWA concentrations for total nitrogen for the main-stem sites increased from about 0.9 milligram per liter for the Red River at Hickson, N. Dak., site to about 1.6 milligrams per liter for the Red River at Perley, Minn., site.The Sheyenne River at Harwood, N. Dak., site had the largest estimated FWA concentration for total phosphorus (about 0.5 milligram per liter). The Otter Tail River above Breckenridge, Minn., site had the smallest concentration (about 0.1 milligram per liter). The estimated FWA concentrations for total phosphorus for the main-stem sites increased from about 0.15 milligram per liter for the Red River below Wahpeton, N. Dak., site to about 0.35 milligram per liter for the Red River at Perley, Minn., site.The estimated FWA concentrations for suspended sediment for the main-stem sites increased from about 50 milligrams per liter for the Red River below Wahpeton, N. Dak., site to about 300 milligrams per liter for the Red River at Perley, Minn., site. Much of the increase occurred as a result of the large yield of suspended sediment from the Red River below Wahpeton, N. Dak., to the Red River at Hickson, N. Dak., intervening reach.
Lind, Greg D.; Stonewall, Adam J.
2018-02-13
In this study, “naturalized” daily streamflow records, created by the U.S. Army Corps of Engineers and the Bureau of Reclamation, were used to compute 1-, 3-, 7-, 10-, 15-, 30-, and 60-day annual maximum streamflow durations, which are running averages of daily streamflow for the number of days in each duration. Once the annual maximum durations were computed, the floodduration frequencies could be estimated. The estimated flood-duration frequencies correspond to the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent probabilities of their occurring or being exceeded each year. For this report, the focus was on the Willamette River Basin in Oregon, which is a subbasin of the Columbia River Basin. This study is part of a larger one encompassing the entire Columbia Basin.
Alvarez, Nancy L.; Seiler, Ralph L.
2004-01-01
Discharge of treated municipal-sewage effluent to the Carson River in western Nevada and eastern California ceased by 1987 and resulted in a substantial decrease in phosphorus concentrations in the Carson River. Nonetheless, concentrations of total phosphorus and suspended sediment still commonly exceed beneficial-use criteria established for the Carson River by the Nevada Division of Environmental Protection. Potential sources of phosphorus in the study area include natural inputs from undisturbed soils, erosion of soils and streambanks, construction of low-head dams and their destruction during floods, manure production and grazing by cattle along streambanks, drainage from fields irrigated with streamwater and treated municipal-sewage effluent, ground-water seepage, and urban runoff including inputs from golf courses. In 2000, the U.S. Geological Survey (USGS), in cooperation with Carson Water Subconservancy District, began an investigation with the overall purpose of providing managers and regulators with information necessary to develop and implement total maximum daily loads for the Carson River. Two specific goals of the investigation were (1) to identify those reaches of the Carson River upstream from Lahontan Reservoir where the greatest increases in phosphorus and suspended-sediment concentrations and loading occur, and (2) to identify the most important sources of phosphorus within the reaches of the Carson River where the greatest increases in concentration and loading occur. Total-phosphorus concentrations in surface-water samples collected by USGS in the study area during water years 2001-02 ranged from <0.01 to 1.78 mg/L and dissolved-orthophosphate concentrations ranged from <0.01 to 1.81 mg/L as phosphorus. In streamflow entering Carson Valley from headwater areas in the East Fork Carson River, the majority of samples exceeding the total phosphorus water-quality standard of 0.1 mg/L occur during spring runoff (March, April, and May) when suspended-sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the
Dalton, Melinda S.; Aulenbach, Brent T.; Torak, Lynn J.
2004-01-01
Lake Seminole is a 37,600-acre impoundment formed at the confluence of the Flint and Chattahoochee Rivers along the Georgia?Florida State line. Outflow from Lake Seminole through Jim Woodruff Lock and Dam provides headwater to the Apalachicola River, which is a major supply of freshwater, nutrients, and detritus to ecosystems downstream. These rivers,together with their tributaries, are hydraulically connected to karst limestone units that constitute most of the Upper Floridan aquifer and to a chemically weathered residuum of undifferentiated overburden. The ground-water flow system near Lake Seminole consists of the Upper Floridan aquifer and undifferentiated overburden. The aquifer is confined below by low-permeability sediments of the Lisbon Formation and, generally, is semiconfined above by undifferentiated overburden. Ground-water flow within the Upper Floridan aquifer is unconfined or semiconfined and discharges at discrete points by springflow or diffuse leakage into streams and other surface-water bodies. The high degree of connectivity between the Upper Floridan aquifer and surface-water bodies is limited to the upper Eocene Ocala Limestone and younger units that are in contact with streams in the Lake Seminole area. The impoundment of Lake Seminole inundated natural stream channels and other low-lying areas near streams and raised the water-level altitude of the Upper Floridan aquifer near the lake to nearly that of the lake, about 77 feet. Surface-water inflow from the Chattahoochee and Flint Rivers and Spring Creek and outflow to the Apalachicola River through Jim Woodruff Lock and Dam dominate the water budget for Lake Seminole. About 81 percent of the total water-budget inflow consists of surface water; about 18 percent is ground water, and the remaining 1 percent is lake precipitation. Similarly, lake outflow consists of about 89 percent surface water, as flow to the Apalachicola River through Jim Woodruff Lock and Dam, about 4 percent ground water, and about 2 percent lake evaporation. Measurement error and uncertainty in flux calculations cause a flow imbalance of about 4 percent between inflow and outflow water-budget components. Most of this error can be attributed to errors in estimating ground-water discharge from the lake, which was calculated using a ground-water model calibrated to October 1986 conditions for the entire Apalachicola?Chattahoochee?Flint River Basin and not just the area around Lake Seminole. Evaporation rates were determined using the preferred, but mathematically complex, energy budget and five empirical equations: Priestley-Taylor, Penman, DeBruin-Keijman, Papadakis, and the Priestley-Taylor used by the Georgia Automated Environmental Monitoring Network. Empirical equations require a significant amount of data but are relatively easy to calculate and compare well to long-term average annual (April 2000?March 2001) pan evaporation, which is 65 inches. Calculated annual lake evaporation, for the study period, using the energy-budget method was 67.2 inches, which overestimated long-term average annual pan evaporation by 2.2 inches. The empirical equations did not compare well with the energy-budget method during the 18-month study period, with average differences in computed evaporation using each equation ranging from 8 to 26 percent. The empirical equations also compared poorly with long-term average annual pan evaporation, with average differences in evaporation ranging from 3 to 23 percent. Energy budget and long-term average annual pan evaporation estimates did compare well, with only a 3-percent difference between estimates. Monthly evaporation estimates using all methods ranged from 0.7 to 9.5 inches and were lowest during December 2000 and highest during May 2000. Although the energy budget is generally the preferred method, the dominance of surface water in the Lake Seminole water budget makes the method inaccurate and difficult to use, because surface water makes up m
NASA Astrophysics Data System (ADS)
Osadchiev, Alexander; Korshenko, Evgeniya
2017-06-01
This study focuses on the impact of discharges of small rivers on the delivery and fate of fluvial water and suspended matter at the northeastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers flow into the sea at the study region, and most of them, except for several of the largest, have little annual runoff and affect adjacent coastal waters to a limited extent under average climatic conditions. However, the discharges of these small rivers are characterized by a quick response to precipitation events and can significantly increase during and shortly after heavy rains, which are frequent in the considered area. The delivery and fate of fluvial water and terrigenous sediments at the study region, under average climatic and rain-induced flooding conditions, were explored and compared using in situ data, satellite imagery, and numerical modeling. It was shown that the point-source spread of continental discharge dominated by several large rivers under average climatic conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. The intense line-source runoff of water and suspended sediments forms a geostrophic alongshore current of turbid and freshened water, which induces the intense transport of suspended and dissolved constituents discharged with river waters in a northwestern direction. This process significantly influences water quality and causes active sediment load at large segments of the narrow shelf at the northeastern part of the Black Sea compared to average climatic discharge conditions.
Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.
2014-01-01
Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.
NASA Astrophysics Data System (ADS)
Skalak, K. J.; Pizzuto, J. E.
2006-12-01
The purpose of this research is to examine the origin, occurrence, persistence, residence time and general significance of fine-grained channel margin storage in South River, a steep gravel-bedded stream in western Virginia. Fine-grained channel margin (FGCM) deposits in this study refers to specific in-channel deposits of mud and sand. These deposits occur primarily in the margins and near-banks regions of the channel. Fine- grained sediment storage in the near-bank regions is a result of reduced velocity caused by the bank obstructions. Nearly all of these obstructions consist of LWD accumulations in the channel. Storage occurs in four different geomorphic settings: 1) long pooled sections caused by bedrock or old mill dams, 2) the upstream ends of pools in channel margins with LWD accumulations, 3) bank obstructions usually caused by trees, 4) side channel backwaters where flow separates around islands. In approximately 38 km of river, there is 3000 m3 of fine-grained sediment stored in these features. The channel stores approximately 15 percent its total annual suspended load as fine-grained channel margin deposits. Consequently, these features represent a significant component of an annual sediment budget for this river. On average, the FGCM deposits are about 35 cm deep, 20 m long, and 4 m wide. They average 30 percent mud, 68 percent sand, and 2 percent gravel. These deposits have been cored and analyzed for Hg, grain size, loss-on-ignition, and bomb radiocarbon. Results from bomb radiocarbon analysis indicate that these features have an average age of 13 years. High Hg concentrations in fish tissue are an ongoing problem along South River, further motivating detailed study of these deposits.
Spatial and temporal variations of water quality in the Belaya River Basin
NASA Astrophysics Data System (ADS)
Fashchevskaia, Tatiana; Motovilov, Yuri
2016-04-01
The aim of this research is to identify the spatiotemporal regularities of the maintenance of nitrogen compounds in the streams of the Belaya River basin. The dynamics of human activities in the catchment and intra and inter-annual changes in the water quality are analyzed for the period 1969-2007 years. The Belaya River is situated in the South Ural region and is one of the biggest tributary in the Volga River basin with catchment area of 142 000 km2. The Belaya River provides drinking water for a lot of settlements, it is used for industrial and agricultural water supply, fishery use, it is also a wastewater receiver for industry and housing and communal services. More than sixty years the diverse economic activities are carried out in the Belaya River basin, the intensity of this activity is characterized by high temporal variability. The leading industries in the region are oil mining, petroleum processing, chemistry and petro chemistry, mechanical engineering, metallurgy, power industry, timber industry. About 50% of the river basin is used for agriculture. Inter-annual dynamics of the nitrogen content in the river waters was identified on the basis of the long-term hydrological monitoring statistics at the 32 sites. It was found that the dynamics of the intensity of economic activities in the Belaya River basin is the cause statistically significant changes in the content of nitrogen compounds of the river network. Statistically homogeneous time intervals have been set for each monitoring site. Within these time intervals there were obtained averaged reliable quantitative estimations of water quality. Calculations showed that from the end of 1980 to 2007 the average long-term content of nutrients in the river waters is reduced in comparison with the previous period: ammonium nitrogen - in 1,6-7,5 times, nitrite nitrogen - 1,9-37,3 times, but the average concentration of nitrate nitrogen is increased in 1,4-6,6 times. Empirical probability distributions of ammonia nitrogen, nitrite nitrogen and nitrate nitrogen concentrations for various phases of the water regime in all investigated monitoring sites were approximated by Pearson type III curve and the averages of the concentration values for the water regime phases, the coefficient of variation and asymmetry, as well as the values of the concentrations of nitrogen compounds in the range of 1-95% of frequency ware estimated. It was found that by the end of the test period, the average long-term values for nitrogen compounds become smaller MAC in many streams of Belaya River basin that points to the suitability of river water quality for fishery use. However, in some points of river network there may be excess of MAC. Acknowledgements. The work was financially supported by the Russian Foundation for Basic Research (Grant 15-05-09022)
Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads.
Qi, Weixiao; Müller, Beat; Pernet-Coudrier, Benoit; Singer, Heinz; Liu, Huijuan; Qu, Jiuhui; Berg, Michael
2014-02-15
Twenty percent of the water run-off from China's land surface drains into the Yangtze River and carries the sewage of approximately 400 million people out to sea. The lower stretch of the Yangtze therefore offers the opportunity to assess the pollutant discharge of a huge population. To establish a comprehensive assessment of micropollutants, river water samples were collected monthly from May 2009 to June 2010 along a cross-section at the lowermost hydrological station of the Yangtze River not influenced by the tide (Datong Station, Anhui province). Following a prescreening of 268 target compounds, we examined the occurrence, seasonal variation, and annual loads of 117 organic micropollutants, including 51 pesticides, 43 pharmaceuticals, 7 household and industrial chemicals, and 16 polycyclic aromatic hydrocarbons (PAHs). During the 14-month study, the maximum concentrations of particulate PAHs (1-5 μg/g), pesticides (11-284 ng/L), pharmaceuticals (5-224 ng/L), and household and industrial chemicals (4-430 ng/L) were generally lower than in other Chinese rivers due to the dilution caused of the Yangtze River's average water discharge of approximately 30,000 m(3)/s. The loads of most pesticides, anti-infectives, and PAHs were higher in the wet season compared to the dry season, which was attributed to the increased agricultural application of chemicals in the summer, an elevated water discharge through the sewer systems and wastewater treatment plants (WWTP) as a result of high hydraulic loads and the related lower treatment efficiency, and seasonally increased deposition from the atmosphere and runoff from the catchment. The estimated annual load of PAHs in the river accounted for some 4% of the total emission of PAHs in the whole Yangtze Basin. Furthermore, by using sucralose as a tracer for domestic wastewater, we estimate a daily disposal of approximately 47 million m(3) of sewage into the river, corresponding to 1.8% of its average hydraulic load. In summary, the annual amounts flushed by the Yangtze River into the East China Sea were 2.9×10(6)tons of dissolved and particulate organic carbon (DOC and POC), 369 tons of PAHs, 98 tons of pesticides, 152 tons of pharmaceuticals, and 273 tons of household and industrial chemicals. While the concentrations seem comparably moderate, the pollutant loads are considerable and pose an increasing burden to the health of the marine coastal ecosystem. Copyright © 2013 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... with the power grid. The proposed project would have an average annual generation of 394.0 gigawatt...; (2) the total capacity of the installation would be up to 45,000 kilowatts; (3) shielded underwater...
Wilson, Timothy P.; Bonin, Jennifer L.
2008-01-01
Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating curves developed from historical U.S. Geological Survey (USGS) suspended-sediment and discharge data, where available. Average annual loads of suspended sediment, in millions of kilograms per year (Mkg/yr), were estimated to be 0.190 for the Second River, 0.23 for the Third River, 1.00 for the Saddle River, 1.76 for the Pompton River, and 7.40 for the upper Passaic River. On the basis of the available discharge records, the upper Passaic River was estimated to provide approximately 60 percent of the water and 80 percent of the total suspended-sediment load at the Passaic River head-of-tide, whereas the Pompton River provided roughly 20 percent of the total suspended-sediment load estimated at the head-of-tide. The combined suspended-sediment loads of the upper Passaic and Pompton Rivers (9.2 Mkg/yr), however, represent only 40 percent of the average annual suspended-sediment load estimated for the head-of-tide (23 Mkg/yr) at Little Falls, N.J. The difference between the combined suspended-sediment loads of the tributaries and the estimated load at Little Falls represents either sediment trapped upriver from the dam at Little Falls, additional inputs of suspended sediment downstream from the tributary confluence, or uncertainty in the suspended-sediment and discharge data that were used. The concentrations of total suspended sediment-bound polychlorinated biphenyls (PCBs) in the tributaries to the Passaic River were 194 ng/g (nanograms per gram) in the Second River, 575 ng/g in the Third River, 2,320 ng/g in the Saddle River, 200 ng/g in the Pompton River, and 87 ng/g in the upper Passic River. The dissolved PCB concentrations in the tributaries were 563 pg/L (picograms per liter) in the Second River, 2,510 pg/L in the Third River, 2,270 pg/L in the Saddle River, 887 pg/L in the Pompton River, and 1,000 pg/L in the upper Passaic River. Combined with the sediment loads and discharge, these concentrations resulted in annual loads of suspended sediment-bound PCBs, i
Surface waters of Illinois River basin in Arkansas and Oklahoma
Laine, L.L.
1959-01-01
The estimated runoff from the Illinois River basin of 1,660 square miles has averaged 1,160,000 acre-feet per year during the water years 1938-56, equivalent to an average annual runoff depth of 13.1 inches. About 47 percent of the streamflow is contributed from drainage in Arkansas, where an average of 550,000 acre-ft per year runs off from 755 square miles, 45.5 percent of the total drainage area. The streamflow is highly variable. Twenty-two years of record for Illinois River near Tahlequah, Okla., shows a variation in runoff for the water year 1945 in comparison with 1954 in a ratio of almost 10 to 1. Runoff in 1927 may have exceeded that of 1945, according to records for White River at Beaver, Ark., the drainage basin just east of the Illinois River basin. Variation in daily discharge is suggested by a frequency analysis of low flows at the gaging station near Tahlequah, Okla. The mean flow at that site is 901 cfs (cubic feet per second), the median daily flow is 350 cfs, and the lowest 30-day mean flow in a year probably will be less than 130 cfs half of the time and less than 20 cfs every 10 years on the average. The higher runoff tends to occur in the spring months, March to May, a 3-month period that, on the average, accounts for almost half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is the lowest in the summer. The mean monthly flow of Illinois River near Tahlequah, Okla., for September is about 11 percent of that for May. Records show that there is flow throughout the year in Illinois River and its principal tributaries Osage Creek, Flint Creek and Barren Fork. The high variability in streamflow in this region requires the development of storage by impoundment if maximum utilization of the available water supplies is to be attained. For example, a 120-day average low flow of 22 cfs occurred in 1954 at Illinois River near Tahlequah, Okla. To have maintained the flow at 350 cfs, the median daily flow during the 19-year base period, an impoundment at that site would have required a usable storage of 185,000 acre-ft to satisfy this demand during the drought years 1954-1956. The surface waters of the Illinois River basin are excellent quality being suitable for municipal, agriculture and most industrial uses. The average concentration of the dissolved mineral content is about 105 ppm (parts per million) and the hardness about 85 ppm. The water is slightly alkaline, having a range of pH values from 7.2 to 8.0. This report gives the estimated average discharge at gaging stations and approximations of average discharge at the State line for 3 sub-basins during the 19-year period October 1937 to September 1956, used as a base period in this report. Duration-of-flow data for various percentages of the time are shown for the period of observed record at the gaging stations; similar data are estimated for the selected base period. Storage requirements to sustain flow during the recent drought years are given for 3 stations. The streamflow records in the basin are presented on a monthly and annual basis through September 1957; provisional records for 3 stations are included through July 1958 for correlation purposes. Results of discharge measurements are given for miscellaneous sites where low-flow observations have been made. (available as photostat copy only)
NASA Astrophysics Data System (ADS)
Allison, M. A.; Biedenharn, D. S.; Dahl, T. A.; Kleiss, B.; Little, C. D.
2017-12-01
Annual suspended sediment loads and water discharges were calculated in the Mississippi River mainstem channel, and at the most downstream gaging station for major tributaries, from below the Missouri confluence near St. Louis, MO to Belle Chasse, LA, as well as down the Atchafalaya distributary for water years 1990 to 2013. The purpose of the present study was to assess changes in the Mississippi River sediment budget over the past half century, and to examine the continuing role that anthropogenic (e.g., dams, river control works, soil conservation practices) and natural (e.g., rainfall and denudation rates) factors have in controlling these changes. Sixteen of the 17 measured Mississippi River tributaries decreased in total suspended sediment load) from 1970-1978 to 1990-2013. The largest decreases occurred in the 2nd (Ohio River, 41% of 1970-1978) and 4th (Arkansas River, 45% of 1970-1978) largest water sources to the Mississippi. The Missouri River remains the largest Mississippi River tributary in terms of average annual suspended sediment flux; its relative contribution increased from 38% to 51% of the total flux from the 17 measured tributaries, even as its total suspended flux declined by 13%. Averaged over the period of study (WY 1990-2013), water flux increased by 468% and sediment flux increased by 37,418% downstream from the Gavin's Point Dam to the confluence with the Mississippi. Possible reasons for this disproportional increase in suspended sediment load downstream include sediment-rich contributions from 2nd order rivers below the dams and channel incision. Suggested station improvements to the system include improved monitoring of the Upper Mississippi and Arkansas River tributaries, establishing additional mainstem stations in the reach between Thebes, IL and Arkansas City, AR, and standardization of laboratory and field methodologies to eliminate a major source of station-to-station and time-series variability in the sediment budgeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochnauer, Tim; Claire, Christopher
2009-05-07
Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based onmore » potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.« less
Bumgarner, Johnathan R.; Thompson, Florence E.
2012-01-01
The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board and the Upper Guadalupe River Authority, developed and calibrated a Soil and Water Assessment Tool watershed model of the upper Guadalupe River watershed in south-central Texas to simulate streamflow and the effects of brush management on water yields in the watershed and to Canyon Lake for 1995-2010. Model simulations were done to quantify the possible change in water yield of individual subbasins in the upper Guadalupe River watershed as a result of the replacement of ashe juniper (Juniperus ashei) with grasslands. The simulation results will serve as a tool for resource managers to guide their brush-management efforts. Model hydrology was calibrated with streamflow data collected at the U.S. Geological Survey streamflow-gaging station 08167500 Guadalupe River near Spring Branch, Tex., for 1995-2010. Simulated monthly streamflow showed very good agreement with measured monthly streamflow: a percent bias of -5, a coefficient of determination of 0.91, and a Nash-Sutcliffe coefficient of model efficiency of 0.85. Modified land-cover input datasets were generated for the model in order to simulate the replacement of ashe juniper with grasslands in 23 brush-management subbasins in the watershed. Each of the 23 simulations showed an increase in simulated water yields in the targeted subbasins and to Canyon Lake. The simulated increases in average annual water yields in the subbasins ranged from 6,370 to 119,000 gallons per acre of ashe juniper replaced with grasslands with an average of 38,900 gallons. The simulated increases in average annual water yields to Canyon Lake from upstream subbasins ranged from 6,640 to 72,700 gallons per acre of ashe juniper replaced with grasslands with an average of 34,700 gallons.
Water in the Humboldt River Valley near Winnemucca, Nevada
Cohen, Philip M.
1966-01-01
Most of the work of the interagency Humboldt River Research Project in the Winnemucca reach of the Humboldt River valley has been completed. More than a dozen State and Federal agencies and several private organizations and individuals participated in the study. The major objective of the project, which began in 1959, is to evaluate the water resources of the entire Humboldt River basin. However, because of the large size of the basin, most of the work during the first 5 years of the project was done in the Winnemucca area. The purpose of this report is to summarize briefly and simply the information regarding the water resources of the Winnemucca area-especially the quantitative aspects of the flow system-given in previous reports of the project. The Winnemucca reach of the Humboldt River valley, which is in north-central Nevada, is about 200 miles downstream from the headwaters of the Humboldt River and includes that part of the valley between the Comus and Rose Creek gaging stations. Average annual inflow to the storage area (the valley lowlands) in the Winnemucca reach in water years 1949-62 was about 250,000 acre-feet. Of this amount, about 68 percent was Humboldt River streamflow, as measured at the Comus gaging station, 23 percent was precipitation directly on the storage area, 6 percent was ground-water inflow, and about 3 percent was tributary streamflow. Average annual streamflow at the Rose Creek gaging station during the same period was about 155,000 acre-feet, or about 17,000 acre-feet less than that at the Comus gaging station. Nearly all the streamflow lost was consumed by evapotranspiration in the project area. Total average annual evapotranspiration loss during the period was about 115,000 acre-feet, or about 42 percent of the total average annual outflow. The most abundant ions in the ground and surface water in the area are commonly sodium and bicarbonate. Much of the water has a dissolved-solids content that ranges from 500 to 750 parts per million; however, locally, the dissolved-solids content of the ground water is more than 5,000 parts per million. The chemical quality of the Humboldt River, especially during periods of low flow, reflects the chemical quality of ground-water inflow from tributary areas that discharges into the river. Almost all water in the project area is moderately hard to very hard; otherwise, it is generally suitable for most uses. Increased ground-water development, the conjunctive use of ground and surface water, and increased irrigation efficiency would probably conserve much of the water presently consumed by nonbeneficial evapotranspiration. Intensive ground-water development, especially from the highly permeable medial gravel subunit, will, however, decrease the flow of the Humboldt River to the extent that some pumpage may not be offset by a corresponding decrease in natural evapotranspiration losses. Such streamflow depletions will therefore infringe upon downstream surface-water rights. The results of this study indicate that the Humboldt River and ground water in the unconsolidated deposits beneath and adjacent to the river in the Winnemucca area are closely related. Somewhat similar conditions probably exist elsewhere in the Humboldt River valley. Additional detailed studies are needed-both upstream and downstream from the Winnemucca area-to adequately define the flow system and the interrelations among the components of the system in the remainder of the valley. Before proceeding with additional detailed studies, however, a 1-year overall appraisal of the water resources of the basin should be considered. A major objective of this study would be to provide information that would help select the next subarea of the valley to be studied in detail and to decide which of the methods of study used in the Winnemucca area could be most effectively used in the future studies.
Salmon restoration in the Umatilla River: A study of straying and risk containment
Hayes, M.C.; Carmichael, R.W.
2002-01-01
The use of artificial propagation may produce unexpected results and the need for risk containment. Stray chinook salmon (Oncorhynchus tshawytscha) from Umatilla River releases put the threatened Snake River stock at risk, caused conflict between two plans, altered management, and greatly increased the costs for hatchery-based restoration. Stray Umatilla returns captured or observed in the Snake River averaged more than 200 fish annually and comprised up to 26% of the escapement. The risk to the threatened population stimulated a series of containment actions, including wire tagging 2-3 million fish annually, use of acclimation ponds, altering release locations, flow enhancement, and broodstock management changes. Actions for the use of artificial propagation where straying or unexpected results are a concern include marking or tagging most or all fish, limiting the number of fish initially released, recognizing environmental variables that influence straying, ensuring that funding for risk containment is available when undesirable results occur, and recognizing that unexpected results may not be manifested or identified immediately.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... with the power grid. The proposed project would have an average annual generation of 1,007.0 gigawatt...; (2) the total capacity of the installation would be up to 115,000 kilowatts; (3) shielded underwater...
Parrett, Charles
2006-01-01
To address concerns expressed by the State of Montana about the apportionment of water in the St. Mary and Milk River basins between Canada and the United States, the International Joint Commission requested information from the United States government about water that originates in the United States but does not cross the border into Canada. In response to this request, the U.S. Geological Survey synthesized monthly and annual streamflow records for Big Sandy, Clear, Peoples, and Beaver Creeks, all of which are in the Milk River basin in Montana, for water years 1950-2003. This report presents the synthesized values of monthly and annual streamflow for Big Sandy, Clear, Peoples, and Beaver Creeks in Montana. Synthesized values were derived from recorded and estimated streamflows. Statistics, including long-term medians and averages and flows for various exceedance probabilities, were computed from the synthesized data. Beaver Creek had the largest median annual discharge (19,490 acre-feet), and Clear Creek had the smallest median annual discharge (6,680 acre-feet). Big Sandy Creek, the stream with the largest drainage area, had the second smallest median annual discharge (9,640 acre-feet), whereas Peoples Creek, the stream with the second smallest drainage area, had the second largest median annual discharge (11,700 acre-feet). The combined median annual discharge for the four streams was 45,400 acre-feet. The largest combined median monthly discharge for the four creeks was 6,930 acre-feet in March, and the smallest combined median monthly discharge was 48 acre-feet in January. The combined median monthly values were substantially smaller than the average monthly values. Overall, synthesized flow records for the four creeks are considered to be reasonable given the prevailing climatic conditions in the region during the 1950-2003 base period. Individual estimates of monthly streamflow may have large errors, however. Linear regression was used to relate logarithms of combined annual streamflow to water years 1950-2003. The results of the regression analysis indicated a significant downward trend (regression line slope was -0.00977) for combined annual streamflow. A regression analysis using data from 1956-2003 indicated a slight, but not significant, downward trend for combined annual streamflow.
The Great Basin Canada goose in southcentral Washington: A 40-year nesting history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzner, R.E.; Rickard, W.H.; Eberhardt, L.E.
1991-04-01
Overall, the nesting population of Great Basin Canada geese (Branta canadensis moffitti) on the Hanford Site in southcentral Washington State is doing well and appears to be increasing. The average annual total nests for the period 1981 through 1990 was 215 nests, which is slightly above the average reported for the period 1950 through 1970. The nesting population has shifted its nucleus from upriver islands (1--10) to the lower river islands (11--20) with over 70% of the present-day nesting occurring on Islands 17, 18, 19, 20. The annual percent-successful nests from 1981 through 1990 was 80%. This is above themore » 71% reported for 1950 to 1970, but is below the 82% reported for 1971 to 1980. Average annual clutch size for 1981 to 1990 was 6.05, which is above the 1971-to-1980 average of 5.6 and the 1950-to-70 average of 5.5. Next desertions for 1981 to 1990 averaged 8%. This rate is well below the 14% reported for 1950 to 1970. Predators were responsible for an annual predation rate of 9% from 1981 to 1990. This is below the 1950-to-1970 annual average predation rate of 14%. Flooding losses to nests were low during the 1980s, except for 1989 and 1990 when 6% and 9% of the total nests, respectively, were destroyed by flooding. 9 refs., 4 figs., 1 tab.« less
Low-flow characteristics of streams in South Carolina
Feaster, Toby D.; Guimaraes, Wladmir B.
2017-09-22
An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.Between 2008 and 2016, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, updated low-flow statistics at 106 continuous-record streamgages operated by the U.S. Geological Survey for the eight major river basins in South Carolina. The low-flow frequency statistics included the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamflow-gaging station. Computations of daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also were included.This report summarizes the findings from publications generated during the 2008 to 2016 investigations. Trend analyses for the annual minimum 7-day average flows are provided as well as trend assessments of long-term annual precipitation data. Statewide variability in the annual minimum 7-day average flow is assessed at eight long-term (record lengths from 55 to 78 years) streamgages. If previous low-flow statistics were available, comparisons with the updated annual minimum 7-day average flow, having a 10-year recurrence interval, were made. In addition, methods for estimating low-flow statistics at ungaged locations near a gaged location are described.
Changes in the channel-bed level of the western Carpathian rivers over the last 40years
NASA Astrophysics Data System (ADS)
Kijowska-Strugała, Małgorzata; Bucała-Hrabia, Anna
2017-04-01
Channel-bed level is constantly changing in time and space, and the process is dependent on both natural and anthropogenic factors. In mountain areas this is one of the more visible morphological processes. The main aim of the research was to analyze the dynamics of the position of river channel beds. Three rivers located within the western part of Polish Carpathians were chosen for the analysis: the Ropa river, the Kamienica Nawojowska river and the Ochotnica river. They are typical rivers for the Beskidy Mountains, medium Flysch mountains. To assess changes in the position of channel bed long-term series of data of minimum water stages in the river were used. The Ropa river is the biggest left tributary of the Wisłoka river (basin a of the upper Vistula River). The total length of the river amounts to 80 km, its gradient equals 58.9‰ and the water basin area amounts to 974 km2. The Kamienica Nawojowska river, with a length of 32.2 km is a right tributary of Dunajec river. The average decrease for the entire watercourse is 18.1‰. The catchment area is 238 km2. The Ochotnica river is 22.7 km long and it is a left tributary of the Dunajec river. The average slope for the entire watercourse is 36.1‰. The Ochotnica river characterized by deep valleys (catchment area 107.6 km2). Analysis of trends in minimum annual water stages in the alluvial Ropa river channel throughout the multi-year period of 1995-2014 shows an increasing trend amounting to 0.8 cm/year. In the Kamienica Nawojowska river the tendency of incision was observed starting from the 1960 to 2014. Average annual rate of increase of the minimum stages was between 0.4 to 1.2 cm/year. On the basis of the analysis of the minimum water levels in the years 1972-2011 two periods can be seen with different tendencies to change the position of the Ochotnica channel bottom. The first covers the years 1972-1996, where aggradation (3.9 cm/year) was the predominant process while in the period 1997-2011 incision (3.2 cm/year) was dominated. Two main factors determine changes in the position of the rivers channel beds: natural (floods, tributaries, type of the channel bed substrate) and anthropogenic (control works in the channel, extraction gravels, reservoir backwater. The deep erosion observed in the Carpathians rivers in the last decade is also associated with changes in land use that have increased due to the economic transformation of the country, and in recent years, the Polish accession to the EU.
Response of Colorado river runoff to dust radiative forcing in snow
Painter, T.H.; Deems, J.S.; Belnap, J.; Hamlet, A.F.; Landry, C.C.; Udall, B.
2010-01-01
The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Hereweuse the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ???5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.
Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada.
Shrestha, Narayan Kumar; Du, Xinzhong; Wang, Junye
2017-12-01
Proper management of blue and green water resources is important for the sustainability of ecosystems and for the socio-economic development of river basins such as the Athabasca River Basin (ARB) in Canada. For this reason, quantifying climate change impacts on these water resources at a finer temporal and spatial scale is often necessary. In this study, we used a Soil and Water Assessment Tool (SWAT) to assess climate change impacts on fresh water resources, focusing explicitly on the impacts to both blue and green water. We used future climate data generated by the Canadian Center for Climate Modelling and Analysis Regional Climate Model (CanRCM4) with a spatial resolution of 0.22°×0.22° (~25km) for two emission scenarios (RCP 4.5 and 8.5). Results projected the climate of the ARB to be wetter by 21-34% and warmer by 2-5.4°C on an annual time scale. Consequently, the annual average blue and green water flow was projected to increase by 16-54% and 11-34%, respectively, depending on the region, future period, and emission scenario. Furthermore, the annual average green water storage at the boreal region was expected to increase by 30%, while the storage was projected to remain fairly stable or decrease in other regions, especially during the summer season. On average, the fresh water resources in the ARB are likely to increase in the future. However, evidence of temporal and spatial heterogeneity could pose many future challenges to water resource planners and managers. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
A method of estimating in-stream residence time of water in rivers
NASA Astrophysics Data System (ADS)
Worrall, F.; Howden, N. J. K.; Burt, T. P.
2014-05-01
This study develops a method for estimating the average in-stream residence time of water in a river channel and across large catchments, i.e. the time between water entering a river and reaching a downstream monitoring point. The methodology uses river flow gauging data to integrate Manning's equation along a length of channel for different percentile flows. The method was developed and tested for the River Tees in northern England and then applied across the United Kingdom (UK). The study developed methods to predict channel width and main channel length from catchment area. For an 818 km2 catchment with a channel length of 79 km, the in-stream residence time at the 50% exceedence flow was 13.8 h. The method was applied to nine UK river basins and the results showed that in-stream residence time was related to the average slope of a basin and its average annual rainfall. For the UK as a whole, the discharge-weighted in-stream residence time was 26.7 h for the median flow. At median flow, 50% of the discharge-weighted in-stream residence time was due to only 6 out of the 323 catchments considered. Since only a few large rivers dominate the in-stream residence time, these rivers will dominate key biogeochemical processes controlling export at the national scale. The implications of the results for biogeochemistry, especially the turnover of carbon in rivers, are discussed.
Reed, Lloyd A.; Koerkle, Edward H.; Takita, Charles S.
1997-01-01
Water samples were collected from four streams in Lancaster County from 1992 through 1995 and analyzed for selected herbicides. Samples were collected from the Little Conestoga Creek near Churchtown, Mill Creek (a tributary to the Conestoga River) at Elshelman Mill Road near Lyndon, the Conestoga River at Conestoga, and Pequea Creek at Martic Forge. Most samples were collected from stormflow that occurred during the growing season. Samples were analyzed for alachlor, aldrin, atrazine, chlordane, cyanazine, dieldrin, malathion, metolachlor, propazine, simazine, and toxaphene. Most samples had detectable concentrations of alachlor, atrazine, metolachlor, and simazine, and the loads of these constituents that were transported during each of the 4 years were computed.Of the samples collected from each of the streams—Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—10, 12, 15, and 18 percent, respectively, had atrazine concentrations greater than 3.0 micrograms per liter, the U.S. Environmental Protection Agency maximum contaminant level. Loads of atrazine, metolochlor, and simazine were greater than loads of any other herbicides. The largest loads were transported during 1994. Loads of atrazine transported by the four streams during periods of storm- flow from May to September 1994 totaled 3.46, 28.3, 263, and 46.8 pounds, respectively. The total loads of atrazine transported by the four streams?Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—during calendar year 1994 were 6.48, 54.1, 498, and 102 pounds, respectively. A little less than half the atrazine load transported by each stream—45, 39, 42, and 42 percent, respectively—was transported during storms that occurred from May through September.Average annual yields of atrazine for the period 1992-95 were 0.59, 0.64, 0.68, and 0.51 pounds per square mile from the Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek, respectively. Average annual yields of simazine were 0.36, 1.2, 0.54, and 0.48 pounds per square mile, respectively, and average annual yields of metolachlor were 0.46, 0.49, 0.54, and 0.31 pounds per square mile, respectively. Less than 1 percent of both the atrazine and metolachlor that was applied to all basins was transported by streamflow.
Miller, Lisa D.; Watts, Kenneth R.; Ortiz, Roderick F.; ,
2010-01-01
In 2007, the U.S. Geological Survey (USGS), in cooperation with City of Aurora, Colorado Springs Utilities, Colorado Water Conservation Board, Lower Arkansas Valley Water Conservancy District, Pueblo Board of Water Works, Southeastern Colorado Water Activity Enterprise, Southeastern Colorado Water Conservancy District, and Upper Arkansas Water Conservancy District began a retrospective evaluation to characterize the occurrence and distribution of dissolved-solids (DS), selenium, and uranium concentrations in groundwater and surface water in the Arkansas River Basin based on available water-quality data collected by several agencies. This report summarizes and characterizes available DS, dissolved-selenium, and dissolved-uranium concentrations in groundwater and surface water for 1970-2009 and describes DS, dissolved-selenium, and dissolved-uranium loads in surface water along the main-stem Arkansas River and selected tributary and diversion sites from the headwaters near Leadville, Colorado, to the USGS 07137500 Arkansas River near Coolidge, Kansas (Ark Coolidge), streamgage, a drainage area of 25,410 square miles. Dissolved-solids concentrations varied spatially in groundwater and surface water in the Arkansas River Basin. Dissolved-solids concentrations in groundwater from Quaternary alluvial, glacial drift, and wind-laid deposits (HSU 1) increased downgradient with median values of about 220 mg/L in the Upper Arkansas subbasin (Arkansas River Basin from the headwaters to Pueblo Reservoir) to about 3,400 mg/L in the Lower Arkansas subbasin (Arkansas River Basin from John Martin Reservoir to Ark Coolidge). Dissolved-solids concentrations in the Arkansas River also increased substantially in the downstream direction between the USGS 07086000 Arkansas River at Granite, Colorado (Ark Granite), and Ark Coolidge streamgages. Based on periodic data collected from 1976-2007, median DS concentrations in the Arkansas River ranged from about 64 mg/L at Ark Granite to about 4,060 mg/L at Ark Coolidge representing over a 6,000 percent increase in median DS concentrations. Temporal variations in specific conductance values (which are directly related to DS concentrations) and seasonal variations in DS concentrations and loads were investigated at selected sites in the Arkansas River from Ark Granite to Ark Coolidge. Analyses indicated that, for the most part, specific conductance values (surrogate for DS concentrations) have remained relatively constant or have decreased in the Arkansas River since about 1970. Dissolved-solids concentrations in the Arkansas River were higher during the nonirrigation season (November-February) than during the irrigation season (March-October). Average annual DS loads, however, were higher during the irrigation season than during the nonirrigation season. Average annual DS loads during the irrigation season were at least two times and as much as 23 times higher than average annual DS loads during the nonirrigation season with the largest differences occurring at sites located downstream from the two main-stem reservoirs at USGS 07099400 Arkansas River above Pueblo, Colorado (Ark Pueblo), (which is below Pueblo Reservoir) and USGS 07130500 Arkansas River below John Martin Reservoir, Colorado (Ark below JMR). View report for unabridged abstract.
Water resources inventory of Connecticut Part 1: Quinebaug River basin
Randall, Allan D.; Thomas, Mendall P.; Thomas, Chester E.; Baker, John A.
1966-01-01
The Quinebaug River basin is blessed with a relatively abundant supply of water of generally good quality which is derived from precipitation that has fallen on the basin. Annual precipitation has ranged from about 30 to 67 inches and has averaged about 45 inches over a 44-year period. Approximately 21 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the basin in the Quinebaug River. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the basin, whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced streamflow and lowered ground-water levels.
Parsley, M.J.; Kofoot, P.
2007-01-01
River discharge and water temperatures that occurred during April through July 2005 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Optimal spawning temperatures in the four tailraces occurred for 3-4 weeks and coincided with the peak of the river hydrograph. However, the peak of the hydrograph occurred in mid May and discharges dropped quickly and water temperature rose during June, which is reflected in the monthly and annual indices of suitable spawning habitat. Indices of available spawning habitat for the month of June 2005 were less than one-half of the average of the period from 1985-2004. Bottom-trawl sampling in the Bonneville Reservoir revealed the presence of young-of-the-year (YOY) white sturgeon but the proportion of positive tows was quite low at 0.06.
NASA Astrophysics Data System (ADS)
Rong, Q. Q.; Su, M. R.; Yang, Z. F.; Cai, Y. P.; Yue, W. C.; Dang, Z.
2018-02-01
In this research, the Dongjiang River basin was taken as the study area to analyze the spatial distribution and output characteristics of nonpoint source pollution, based on the export coefficient model. The results showed that the annual total nitrogen and phosphorus (i.e. TN and TP) loads from the Dongjiang River basin were 67916114.6 and 7215279.707 kg, respectively. Residents, forestland and pig were the main contributors for the TN load in the Dongjiang River basin, while residents, forestland and rainfed croplands were the three largest contributors for the TP load. The NPS pollution had a significant spatial variation in this area. The pollution loads overall decreased from the northeast to the southwest part of the basin. Also, the pollution loads from the gentle slope area were larger than those from steep slope areas. Among the ten tributary watersheds in the Dongjiang River basin, the TN and TP loads from the Hanxi River watershed were the largest. On the contrary, the Gongzhuang River watershed contributed least to the total pollution loads of the Dongjiang River basin. For the average pollution load intensities, Hanxi River watershed was still the largest. However, the smallest average TN and TP load intensities were in the Xinfeng River watershed.
Changes in flow in the Beaver-North Canadian River basin upstream from Canton Lake, western Oklahoma
Wahl, Kenneth L.; Tortorelli, Robert L.
1997-01-01
This report presents the results of an evaluation of hydrologic data for the Beaver-North Canadian River basin upstream from Canton Lake in western Oklahoma. It examines the climatic and hydrologic data for evidence of trends. The hydrologic data examined includes total annual flow, base flow, and annual peak discharges. This study was conducted to determine if there is evidence of trends present in hydrologic and climatic data. All available streamflow-gaging station data, with at least 10 or more years of record, were examined for trends. In addition, the data were divided into an 'early' period (ending in 1971), representing conditions before ground-water levels had declined appreciably, and a 'recent' period (1978-1994), reflecting the condition of declining ground-water levels, including the effects of storage reservoirs. Tests for trend, moving averages, and comparisons of median and average flows for an early period (ending in 1971) with those for the recent period (1978-1994) show that the total annual volume of flow and the magnitudes of instantaneous annual peak discharges measured at most gaging stations in the Beaver- North Canadian River basin have decreased in recent years. Precipitation records for the panhandle, however, show no corresponding changes. The changes in flow are most pronounced in the headwaters upstream from Woodward, but also are evident at Woodward and near Seiling, which represents the inflow to Canton Lake. The average annual discharge decreased between the early period and the recent period by the following amounts: near Guymon, 18,000 acre-feet; at Beaver, 68,000 acre-feet; at Woodward, 72,000 acre-feet; and near Seiling, 63,000 acre-feet. These decreases, expressed as a percentage of the average flows for the early period, were 91 percent near Guymon, 82 percent at Beaver, 49 percent at Woodward, and 37 percent near Seiling. The medians of the annual peak discharges decreased from the early period to the recent period by the following amounts: near Guymon, 98 percent; at Beaver, 86 percent; at Woodward, 80 percent; and near Seiling, 53 percent. The Guymon gage is not affected by reservoirs; the other three mainstem gaging stations are influenced by reservoirs, but the decreases in annual peak discharges are greater than can be explained by storage in those reservoirs. Base flows have undergone substantial change, but unlike the annual volumes the base flows show some increases and some decreases. Flow duration analyses show a shift in the distribution of annual flows. Less contribution is coming from large floods that formerly added substantially to the yearly average flows. Near Seiling, for example, the magnitudes of the large flows that occur less than about 20 percent of the time were greatly reduced in the recent period. A primary mechanism producing these decreased streamflows appears to be the depletion of ground water in the High Plains aquifer that underlies more than 90 percent of the basin. Changes in farming and conservation practices and in water use also may be having an effect.
Sediment characteristics of small streams in southern Wisconsin, 1954-59
Collier, Charles R.
1963-01-01
The results of investigations of the sediment and water discharge characteristics of Black Earth Creek, Mount Vernon Creek, and Yellowstone River from 1954 to 1959 and Dell Creek for 1958 and 1959 indicate large differences in annual runoff and sediment yields. The suspended-sediment discharge of Black Earth Creek averaged 3,260 tons per year or 71 tons per square mile : the annual yields ranged from 27 to 102 tons per square mile. The annual suspended-sediment yield of Mount Vernon Creek ranged from 48 to 171 tons per square mile and averaged 96 tons per square mile. The maximum daily discharge was 1,120 tons on April 1, 1960, during a storm which produced 67 percent of the suspended load for that water year and exceeded the discharge for the preceding 3 years. The sediment discharge of the Yellowstone River averaged 6,870 tons per year or 236 tons per square riffle. The maximum daily sediment discharge, 3,750 tons on April 1, 1959, occurred during a 14-day period of high flow during which the sediment discharge was 15,480 tons. In 1958 and 1959, Dell Creek had suspended-sediment yields of 4.7 and 26 tons per square mile of drainage area. The suspended sediment transported by Black Earth and Mount Vernon Creeks is about two-thirds clay and one-third silt. For Yellowstone River the particle-size distribution of the suspended sediment ranged from three-fourths clay and one-fourth silt during periods of low sediment discharge to one-third clay and two-thirds silt during high sediment discharges. For Dell Creek nearly all of the suspended sediment is clay, but the bed load is sand. The mean sediment concentration of storm runoff averaged two to three times more in the summer than in the winter. No significant changes with time occurred in the relation between storm runoff and sediment yield.
The twenty-first century Colorado River hot drought and implications for the future
NASA Astrophysics Data System (ADS)
Udall, Bradley; Overpeck, Jonathan
2017-03-01
Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this loss is due to unprecedented temperatures (0.9°C above the 1906-1999 average), confirming model-based analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming will continue with additional emissions of greenhouse gases to the atmosphere, there has been no observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in the coming century, indicating that any increase in mean precipitation will likely be offset during periods of prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature combined with a large number of recent climate model-based temperature projections indicate that continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively -20% by midcentury and -35% by end-century, with support for losses exceeding -30% at midcentury and -55% at end-century. Precipitation increases may moderate these declines somewhat, but to date no such increases are evident and there is no model agreement on future precipitation changes. These results, combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate change impacts on the Colorado River flows will be much more serious than currently assumed, especially if substantial reductions in greenhouse gas emissions do not occur.
NASA Astrophysics Data System (ADS)
Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva
2016-08-01
The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.
Clarks Hill Lake Water Quality Study.
1982-06-01
multipurpose project designed to reduce flooding on the Savannah River, generate electric power and increase the depth of the Savannah River for... power plant at the dam has seven generators, each with a capacity of 40,000 kilowatts. The average annual energy output of Clarks Hill Power Plant is 700...feet) from the top of power pool elevation of 100.6 meters (330 feet msl) to a minimum pool elevation of 95.1 meters (312 feet msl). Because of below
Multi-criteria Evaluation of Discharge Simulation in Dynamic Global Vegetation Models
NASA Astrophysics Data System (ADS)
Yang, H.; Piao, S.; Zeng, Z.; Ciais, P.; Yin, Y.; Friedlingstein, P.; Sitch, S.; Ahlström, A.; Guimberteau, M.; Huntingford, C.; Levis, S.; Levy, P. E.; Huang, M.; Li, Y.; Li, X.; Lomas, M.; Peylin, P. P.; Poulter, B.; Viovy, N.; Zaehle, S.; Zeng, N.; Zhao, F.; Wang, L.
2015-12-01
In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modelled well in the low and mid latitudes, but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore the 30-year trend of discharge is also under-estimated. For the inter-annual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e. models account for 50% of observed inter-annual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change, but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modelling capability, a regional-weighted average of multi-model ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.
Bonin, Jennifer L.
2010-01-01
Samples of surface water and suspended sediment were collected from the two branches that make up the Elizabeth River in New Jersey - the West Branch and the Main Stem - from October to November 2008 to determine the concentrations of selected chlorinated organic and inorganic constituents. The sampling and analyses were conducted as part of Phase II of the New York-New Jersey Harbor Estuary Plan-Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted by the U.S. Geological Survey to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. This portion of the Phase II study was conducted on the two branches of the Elizabeth River, which were previously sampled during July and August of 2003 at low-flow conditions. Samples were collected during 2008 from the West Branch and Main Stem of the Elizabeth River just upstream from their confluence at Hillside, N.J. Both tributaries were sampled once during low-flow discharge conditions and once during high-flow discharge conditions using the protocols and analytical methods that were used in the initial part of Phase II of the Workplan. Grab samples of streamwater also were collected at each site and were analyzed for cadmium, suspended sediment, and particulate organic carbon. The measured concentrations, along with available historical suspended-sediment and stream-discharge data were used to estimate average annual loads of suspended sediment and organic compounds in the two branches of the Elizabeth River. Total suspended-sediment loads for 1975 to 2000 were estimated using rating curves developed from historical U.S. Geological Survey suspended-sediment and discharge data, where available. Concentrations of suspended-sediment-bound polychlorinated biphenyls (PCBs) in the Main Stem and the West Branch of the Elizabeth River during low-flow conditions were 534 ng/g (nanograms per gram) and 1,120 ng/g, respectively, representing loads of 27 g/yr (grams per year) and 416 g/yr, respectively. These loads were estimated using contaminant concentrations during low flow, and the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound PCBs in the Main Stem and the West Branch of the Elizabeth River during high-flow conditions were 3,530 ng/g and 623 ng/g, respectively, representing loads of 176 g/yr and 231 g/yr, respectively. These loads were estimated using contaminant concentrations during high-flow conditions, the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-difuran compounds (PCDD/PCDFs) during low-flow conditions were 2,880 pg/g (picograms per gram) and 5,910 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 0.14 g/yr and 2.2 g/yr, respectively. Concentrations of suspended-sediment-bound PCDD/PCDFs during high-flow conditions were 40,900 pg/g and 12,400 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 2.05 g/yr and 4.6 g/yr, respectively. Total toxic equivalency (TEQ) loads (sum of PCDD/PCDF and PCB TEQs) were 3.1 mg/yr (milligrams per year) (as 2, 3, 7, 8-TCDD) in the Main Stem and 28 mg/yr in the West Branch during low-flow conditions. Total TEQ loads (sum of PCDD/PCDFs and PCBs) were 27 mg/yr (as 2, 3, 7, 8-TCDD) in the Main Stem and 32 mg/yr in the West Branch during high-flow conditions. All of these load estimates, however, are directly related to the assumed annual discharge for the two branches. Long-term measurement of stream discharge and suspended-sediment concentrations would be needed to verify these loads. On the basis of the loads cal
Petsch, Harold E.
1979-01-01
Statistical summaries of daily streamflow data for 246 stations east of the Continental Divide in Colorado and adjacent States are presented in this report. Duration tables, high-flow sequence tables, and low-flow sequence tables provide information about daily mean discharge. The mean, variance, standard deviation, skewness, and coefficient of variation are provided for monthly and annual flows. Percentages of average flow are provided for monthly flows and first-order serial-correlation coefficients are provided for annual flows. The text explains the nature and derivation of the data and illustrates applications of the tabulated information by examples. The data may be used by agencies and individuals engaged in water studies. (USGS)
Trend detection in river flow indices in Poland
NASA Astrophysics Data System (ADS)
Piniewski, Mikołaj; Marcinkowski, Paweł; Kundzewicz, Zbigniew W.
2018-02-01
The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly `no trend' results. However, the spatial gradient is apparent only for the data for the period 1981-2016 rather than for 1956-2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.
Hydrological simulation of a small ungauged agricultural watershed Semrakalwana of Northern India
NASA Astrophysics Data System (ADS)
Mishra, Himanshu; Denis, Derrick Mario; Suryavanshi, Shakti; Kumar, Mukesh; Srivastava, Santosh Kumar; Denis, Anjelo Francis; Kumar, Rajendra
2017-10-01
A study was conducted to develop a hydrological model for agriculture dominated Semra watershed (4.31 km2) and Semrakalwana village at Allahabad using a semi distributed Soil and Water Assessment Tool (SWAT) model. In model evaluation it was found that the SWAT does not require much calibration, and therefore, can be employed in unguaged watershed. A seasonal (Kharif, Rabi and Zaid seasons) and annual water budget analysis was performed to quantify various components of the hydrologic cycle. The average annual surface runoff varied from 379 to 386 mm while the evapotranspiration of the village was in the range of 359-364 mm. The average annual percolation and return flow was found to be 265-272 mm and 147-255 mm, respectively. The initial soil water content of the village was found in the range of 328-335 mm while the final soil water content was 356-362 mm. The study area fall under a rain-fed river basin (Tons River basin) with no contribution from snowmelt, the winter and summer season is highly affected by less water availability for crops and municipal use. Seasonal (Rabi, Kharif and Zaid crop seasons) and annual water budget of Semra watershed and Semrakalwana village evoke the need of conservation structures such as check dams, farm ponds, percolation tank, vegetative barrier, etc. to reduce monsoon runoff and conserve it for basin requirements for winter and summer period.
Gerner, Steven J.; Thiros, Susan A.; Gerner, Steven J.; Thiros, Susan A.
2014-01-01
The Virgin River contributes a substantial amount of dissolved solids (salt) to the Colorado River at Lake Mead in the lower Colorado River Basin. Degradation of Colorado River water by the addition of dissolved solids from the Virgin River affects the suitability of the water for municipal, industrial, and agricultural use within the basin. Dixie Hot Springs in Utah are a major localized source of dissolved solids discharging to the Virgin River. The average measured discharge from Dixie Hot Springs during 2009–10 was 11.0 cubic feet per second (ft3/s), and the average dissolved-solids concentration was 9,220 milligrams per liter (mg/L). The average dissolved-solids load—a measurement that describes the mass of salt that is transported per unit of time—from Dixie Hot Springs during this period was 96,200 tons per year (ton/yr). Annual dissolved-solids loads were estimated at 13 monitoring sites in the Virgin River Basin from streamflow data and discrete measurements of dissolved-solids concentrations and (or) specific conductance. Eight of the sites had the data needed to estimate annual dissolved-solids loads for water years (WYs) 1999 through 2010. During 1999–2010, the smallest dissolved-solids loads in the Virgin River were upstream of Dixie Hot Springs (59,900 ton/yr, on average) and the largest loads were downstream of Littlefield Springs (298,200 ton/yr, on average). Annual dissolved-solids loads were smallest during 2002–03, which was a period of below normal precipitation. Annual dissolved-solids loads were largest during 2005—a year that included a winter rain storm that resulted in flooding throughout much of the Virgin River Basin. An average seepage loss of 26.7 ft3/s was calculated from analysis of monthly average streamflow from July 1998 to September 2010 in the Virgin River for the reach that extends from just upstream of the Utah/Arizona State line to just above the Virgin River Gorge Narrows. Seepage losses from three river reaches in the Virgin River Gorge containing known fault zones accounted for about 48 percent of this total seepage loss. An additional seepage loss of 6.7 ft3/s was calculated for the reach of the Virgin River between Bloomington, Utah, and the Utah/Arizona State line. This loss in flow is small compared to total flow in the river and is comparable to the rated error in streamflow measurements in this reach; consequently, it should be used with caution. Littlefield Springs were studied to determine the fraction of its discharge that originates as upstream seepage from the Virgin River and residence time of this water in the subsurface. Geochemical and environmental tracer data from groundwater and surface-water sites in the Virgin River Gorge area suggest that discharge from Littlefield Springs is a mixture of modern (post-1950s) seepage from the Virgin River upstream of the springs and older groundwater from a regional carbonate aquifer. Concentrations of the chlorofluorocarbons (CFCs) CFC-12 and CFC-113, chloride/fluoride and chloride/bromide ratios, and the stable isotope deuterium indicate that water discharging from Littlefield Springs is about 60 percent seepage from the Virgin River and about 40 percent discharge from the regional carbonate aquifer. The river seepage component was determined to have an average subsurface traveltime of about 26 ±1.6 years before discharging at Littlefield Springs. Radiocarbon data for Littlefield Springs suggest groundwater ages from 1,000 to 9,000 years. Because these are mixed waters, the component of discharge from the carbonate aquifer is likely much older than the groundwater ages suggested by the Littlefield Springs samples. If the dissolved-solids load from Dixie Hot Springs to the Virgin River were reduced, the irrigation water subsequently applied to agricultural fields in the St. George and Washington areas, which originates as water from the Virgin River downstream of Dixie Hot Springs, would have a lower dissolved-solids concentration. Dissolved-solids concentrations in excess irrigation water draining from the agricultural fields are about 1,700 mg/L higher than the concentrations in the Virgin River water that is currently (2014) used for irrigation that contains inflow from Dixie Hot Springs; this increase results from evaporative concentration and dissolution of mineral salts in the irrigated agricultural fields. The water samples collected from drains downgradient from the irrigated areas are assumed to include the dissolution of all available minerals precipitated in the soil during the previous irrigation season. Based on this assumption, a change to more dilute irrigation water will not dissolve additional minerals and increase the dissolved-solids load in the drain discharge. Following the hypothetical reduction of salts from Dixie Hot Springs, which would result in more dilute Virgin River irrigation water than is currently used, the dissolution of minerals left in the soil from the previous irrigation season would result in a net increase in dissolved-solids concentrations in the drain discharge, but this increase should only last one irrigation season. After one (or several) seasons of irrigating with more dilute irrigation water, mineral precipitation and subsequent re-dissolution beneath the agricultural fields should be greatly reduced, leading to a reduction in dissolved-solids load to the Virgin River below the agricultural drains. A mass-balance model was used to predict changes in the dissolved-solids load in the Virgin River if the salt discharging from Dixie Hot Springs were reduced or removed. Assuming that 33.4 or 26.7 ft3/s of water seeps from the Virgin River to the groundwater system upstream of the Virgin River Gorge Narrows, the immediate hypothetical reduction in dissolved-solids load in the Virgin River at Littlefield, Arizona is estimated to be 67,700 or 71,500 ton/yr, respectively. The decrease in dissolved-solids load in seepage from the Virgin River to the groundwater system is expected to reduce the load discharging from Littlefield Springs in approximately 26 years, the estimated time lag between seepage from the river and discharge of the seepage water, after subsurface transport, from Littlefield Springs. At that time, the entire reduction in dissolved solids seeping from the Virgin River is expected to be realized as a reduction in dissolved solids discharging from Littlefield Springs, resulting in an additional reduction of 24,700 ton/yr (based on 33.4 ft3/s of seepage loss) or 21,000 ton/yr (based on 26.7 ft3/s of seepage loss) in the river’s dissolved-solids load at Littlefield.
1978-09-01
approximately 30 miles west of the Minnesota border, and flows southeast to Big Stone Lake. From Big Stone Lake the Minnesota River flows southeast to...storage is available in lakes and wetlands in the study area. Average annual runoff varies from 3 inches in the southeast to 1 inch in the northwest...UNCLASSIFIED NL E NI//////IE mIhNI-EIIIIIIE E-EIIIIIIIIIIu EIIIIIIIIIIIIu IIIIIIIIIIIIII II IEEIIEIh U. S. DEPARTMENT OF AGRICULTURE ga Il 0 YELLOW
Sauer, S.P.; Harkness, W.E.; Krejmas, B.E.; Vogel, K.L.
1987-01-01
A Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River Basin (Figure 1) and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually, were stipulated. During the 1986 report year, December 1, 1985, to November 30, 1986, precipitation and runoff varied from below average to above average in the Delaware River Basin. For the year as a whole, precipitation was 4.3 inches above average. Runoff was near average. Operations were under a status of drought at the beginning of the report year. The drought emergency was terminated on December 18, 1985, by the Delaware River Basin Commission, and operations were returned to normal as prescribed by the Decree for the remainder of the report yr. Storage in the reservoirs increased to capacity during the winter months and all New York City Delaware River Basin reservoirs spilled throughout the year. Diversions from Delaware River Basin by New York City and New Jersey did not exceed those authorized by the terms of the Amended Decree. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 69 days during the June to November period. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. The excess release quantity as defined by the Decree was not expended by end of the report year. New York City complied fully with the terms of the Decree and with the directives of the River Master during the year. (See also W89-04133) (USGS)
Response of Colorado River runoff to dust radiative forcing in snow.
Painter, Thomas H; Deems, Jeffrey S; Belnap, Jayne; Hamlet, Alan F; Landry, Christopher C; Udall, Bradley
2010-10-05
The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Here we use the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ∼5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.
Surface water pollution in three urban territories of Nepal, India, and Bangladesh.
Karn, S K; Harada, H
2001-10-01
In South Asian countries such as Nepal, India, and Bangladesh, pollution of rivers is more severe and critical near urban stretches due to huge amounts of pollution load discharged by urban activities. The Bagmati River in the Kathmandu valley, the Yamuna River at Delhi, and peripheral rivers (mainly Buriganga River) of Dhaka suffer from severe pollution these days. The observed dry season average of biochemical oxygen demand (BOD) in all these rivers is in the range of 20-30 mg/liter and total coliform are as high as 104-105 MPN/100 ml. Per capita pollution load discharge of urban areas has been estimated to be about 31, 19, and 25 g BOD/capita/day in Bagmati, Yamuna, and the rivers of Dhaka, respectively. Regression analysis reveals pollution loads steadily increasing nearly in step with the trend in urbanization. The dissolved oxygen (DO) level of the Bagmati and Buriganga rivers is declining at an average annual rate of nearly 0.3 mg/liter/year. Unplanned urbanization and industrialization occurring in these cities may be largely responsible for this grave situation. Inadequate sewerage, on-site sanitation, and wastewater treatment facilities in one hand, and lack of effective pollution control measures and their strict enforcement on the other are the major causes of rampant discharge of pollutants in the aquatic systems.
Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine
Hodgkins, Glenn A.
2001-01-01
The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that would represent all gaged and ungaged tributaries to Sebago Lake. Outside the PWD tributary-monitoring program, the largest ungaged tributary to Sebago Lake contains 1.5 percent of the area draining to the lake. In the absence of unique point or nonpoint sources of phosphorus, ungaged tributaries are unlikely to have total phosphorus concentrations that differ significantly from those in the small tributaries that have concentration data. The regression method, also known as the rating-curve method, was used to estimate the annual total phosphorus load for Crooked River, Northwest River, and Rich Mill Pond Outlet for water years 1996-98. The MOVE.1 method was used to estimate daily streamflows for the regression method at Northwest River and Rich Mill Pond Outlet, where streamflows were not continuously monitored. An averaging method also was used to compute annual loads at the three sites. The difference between the regression estimate and the averaging estimate for each of the three tributaries was consistent with what was expected from previous studies.
Curran, Christopher A.; Grossman, Eric E.; Magirl, Christopher S.; Foreman, James R.
2016-05-26
On average, the Nisqually River delivers about 100,000 metric tons per year (t/yr) of suspended sediment to Puget Sound, western Washington, a small proportion of the estimated 1,200,000 metric tons (t) of sediment reported to flow in the upper Nisqually River that drains the glaciated, recurrently active Mount Rainier stratovolcano. Most of the upper Nisqually River sediment load is trapped in Alder Lake, a reservoir completed in 1945. For water year 2011 (October 1, 2010‒September 30, 2011), daily sediment and continuous turbidity data were used to determine that 106,000 t of suspended sediment were delivered to Puget Sound, and 36 percent of this load occurred in 2 days during a typical winter storm. Of the total suspended-sediment load delivered to Puget Sound in the water year 2011, 47 percent was sand (particle size >0.063 millimeters), and the remainder (53 percent) was silt and clay. A sediment-transport curve developed from suspended-sediment samples collected from July 2010 to November 2011 agreed closely with a curve derived in 1973 using similar data-collection methods, indicating that similar sediment-transport conditions exist. The median annual suspended-sediment load of 73,000 t (water years 1980–2014) is substantially less than the average load, and the correlation (Pearson’s r = 0.80, p = 8.1E-9, n=35) between annual maximum 2-day sediment loads and normalized peak discharges for the period indicates the importance of wet years and associated peak discharges of the lower Nisqually River for sediment delivery to Puget Sound. The magnitude of peak discharges in the lower Nisqually River generally is suppressed by flow regulation, and relative to other free-flowing, glacier-influenced rivers entering Puget Sound, the Nisqually River delivers proportionally less sediment because of upstream sediment trapping from dams.
Water scarcity in Beijing and countermeasures to solve the problem at river basins scale
NASA Astrophysics Data System (ADS)
Wang, Lixia; Gao, Jixi; Zou, Changxin; Wang, Yan; Lin, Naifeng
2017-11-01
Beijing has been subject to water scarcity in recent decades. Over-exploitation of water resources reduced water availability, and water-saving measures were not enough to mitigate the water scarcity. To address this problem, water transfer projects across river basins are being built. This paper assessed water scarcity in Beijing and the feasibility of solving the problem at river basins scale. The results indicate that there was an average annual water deficit of 13×108 m3 y-1 in Beijing, which totaled 208.9 ×108 m3 for 1998-2014, despite the adoption of various measures to alleviate water scarcity. Three of the adjacent four sub-river basins suffered a serious water deficit from 1998-2014. It was therefore impossible to transfer enough water from the adjacent river basins to mitigate the water scarcity in Beijing. However, the annual water deficit will be eliminated after the comprehensive operation of the world’s largest water transfer project (the South-to-North Water Transfer Project, SNWTP) in 2020, but it will take approximately 200 years before Beijing’s water resources are restored to the 1998 levels.
Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere
NASA Technical Reports Server (NTRS)
Devol, Allan H.; Richey, Jeffrey E.; Forsberg, Bruce R.; Martinelli, Luiz A.
1990-01-01
Methane fluxes to the troposphere from the three principal habitats of the floodplain of the Amazon River main stem (open waters, emergent macrophyte beds, and flooded forests) were determined along a 1700-km reach of the river during the low-water period of the annual flood cycle (November-December 1988). Overall, emissions averaged 68 mg CH4/sq m per day and were significantly lower than similar emissions determined previously for the high-water period, 184 mg CH4/sq m per day (July-August 1986). This difference was due to significantly lower emissions from floating macrophyte environments. Low-water emissions from open waters and flooded forest areas were not significantly different than at high water. A monthly time series of methane emission from eight lakes located in the central Amazon basis showed similar results. The data were used to calculate a seasonally weighted annual emission to the troposphere from the Amazon River main stem floodplain of 5.1 Tg/yr, which indicates the importance of the area in global atmospheric chemistry.
[Variation characteristics of runoff coefficient of Taizi River basin in 1967-2006].
Deng, Jun-Li; Zhang, Yong-Fang; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Wu, Jia-Bing
2011-06-01
Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River. All the embranchments except Xihe River had an obvious abrupt change in the annual runoff coefficient, and the beginning year of the abrupt change differed with embranchment. Annual precipitation had significant effects on the annual runoff coefficient.
Larsen, M.C.; Webb, R.M.T.
2009-01-01
Coral reefs, the foundation and primary structure of many highly productive and diverse tropical marine ecosystems, have been degraded by human activity in much of the earth's tropical oceans. To contribute to improved understanding of this problem, the potential relation between river sediment and nutrient discharges and degradation of coral reefs surrounding Puerto Rico was studied using streamflow, suspended-sediment, and water-quality data. Mean annual runoff for the 8711 km2 island is 911 mm, about 57% of mean annual precipitation (1600 mm). Mean annual suspended-sediment discharge from Puerto Rico to coastal waters is estimated at 2.7-9.0 million metric tonnes. Storm runoff transports a substantial part of sediment: the highest recorded daily sediment discharge is 1-3.6 times the mean annual sediment discharge. Hurricane Georges (1998) distributed an average of 300 mm of rain across the island, equivalent to a volume of about 2.6 billion m3. Runoff of more than 1.0 billion m3 of water and as much as 5 to 10 million metric tonnes of sediment were discharged to the coast and shelf. Nitrogen and phosphorous concentrations in river waters are as much as 10 times the estimated presettlement levels. Fecal coliform and fecal streptococcus concentrations in many Puerto Rico rivers are near or above regulatory limits. Unlike sediment discharges, which are predominantly episodic and intense, river-borne nutrient and fecal discharge is a less-intense but chronic stressor to coral reefs found near the mouths of rivers. Negative effects of riverderived sediment and nutrient discharge on coral reefs are especially pronounced on the north, southwest, and west coasts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Rebecca A.; Skalski, John R.
2007-12-07
In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite tomore » Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the Snake River Basin averaged 0.45% (SE=0.11%), including age-1-ocean returns, for release years 1996 through 2003. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2003), it was estimated that on average approximately 86% of the total integrated mortality for nontransported, tagged hatchery spring and summer Chinook, and 74% for steelhead, occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the systemwide T/I are weighted averages of the dam-specific T/I ratios for each transport dam (with {ge} 5,000 tagged fish transported), weighted by the probabilities of being transported at each dam. The systemwide T/I compares the observed SAR under the existing transportation system with the expected SAR if the transportation system had not been operated. Estimates of 1.0 indicate that the systemwide transportation program has no effect on SAR, while estimates > 1.0 indicate that the transportation program increases SAR. Excluding the 2001 release group, the geometric mean of the systemwide T/I estimates for hatchery spring Chinook salmon from the Snake River Basin was 1.15 (SE=0.03) for release years 1997 through 2003. The geometric mean of the systemwide T/I estimates for hatchery summer Chinook salmon from the Snake River Basin was 1.28 (SE=0.13) for release years 1997 through 2000 and 2003. Estimates were much higher for the 2001 release groups. These estimates reflect transportation from Lower Granite and/or Little Goose for most release years, depending on the number of tagged smolts actually transported at each dam during each release year. Differential post-Bonneville mortality (D) is the ratio of post-Bonneville survival to Lower Granite Dam of transported fish to that of nontransported ('inriver') fish. Excluding the 2001 release year, the geometric mean of the D estimates for hatchery spring Chinook salmon from the Snake River Basin was 1.00 (SE=0.09) for release years 1997 through 2003. For hatchery summer Chinook salmon from the Snake River Basin, the geometric mean of the D estimates was 1.32 (SE=0.27) for release years 1997 through 2000 and 2003. These estimates reflect transportation from Lower Granite and/or Little Goose, depending on the number of tagged smolts actually transported at each dam during each release year. Approximately half the point estimates of D for both spring and summer Chinook salmon were 1.0 or greater, indicating that for those release groups, transported fish did not have lower ocean and adult survival than nontransported fish. For those years with estimates of D < 1.0, the systemwide T/I estimates were always {ge} 1.0, indicating that despite lower ocean and adult survival of transported fish, transportation did not lower SAR overall.« less
NASA Astrophysics Data System (ADS)
Levi, L.; Cvetkovic, V.; Destouni, G.
2015-12-01
This study compiles estimates of waterborne nutrient concentrations and loads in the Sava River Catchment (SRC). Based on this compilation, we investigate hotspots of nutrient inputs and retention along the river, as well as concentration and load correlations with river discharge and various human drivers of excess nutrient inputs to the SRC. For cross-regional assessment and possible generalization, we also compare corresponding results between the SRC and the Baltic Sea Drainage Basin (BSDB). In the SRC, one small incremental subcatchment, which is located just downstream of Zagreb and has the highest population density among the SRC subcatchments, is identified as a major hotspot for net loading (input minus retention) of both total nitrogen (TN) and total phosphorus (TP) to the river and through it to downstream areas of the SRC. The other SRC subcatchments exhibit relatively similar characteristics with smaller net nutrient loading. The annual loads of both TN and TP along the Sava River exhibit dominant temporal variability with considerably higher correlation with annual river discharge (R2 = 0.51 and 0.28, respectively) than that of annual average nutrient concentrations (R2 = 0.0 versus discharge for both TN and TP). Nutrient concentrations exhibit instead dominant spatial variability with relatively high correlation with population density among the SRC subcatchments (R2=0.43-0.64). These SRC correlation characteristics compare well with corresponding ones for the BSDB, even though the two regions are quite different in their hydroclimatic, agricultural and wastewater treatment conditions. Such cross-regional consistency in dominant variability type and explanatory catchment characteristics may be a useful generalization basis, worthy of further investigation, for at least first-order estimation of nutrient concentration and load conditions in less data-rich regions.
Topping, David J.; Rubin, David M.; Vierra, L.E.
2000-01-01
Analyses of flow, sediment‐transport, bed‐topographic, and sedimentologic data suggest that before the closure of Glen Canyon Dam in 1963, the Colorado River in Marble and Grand Canyons was annually supply‐limited with respect to fine sediment (i.e., sand and finer material). Furthermore, these analyses suggest that the predam river in Glen Canyon was not supply‐limited to the same degree and that the degree of annual supply limitation increased near the head of Marble Canyon. The predam Colorado River in Grand Canyon displays evidence of four effects of supply limitation: (1) seasonal hysteresis in sediment concentration, (2) seasonal hysteresis in sediment grain size coupled to the seasonal hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4∥ development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Analyses of sediment budgets provide additional support for the interpretation that the predam river was annually supply‐limited with respect to fine sediment, but it was not supply‐limited with respect to fine sediment during all seasons. In the average predam year, sand would accumulate and be stored in Marble Canyon and upper Grand Canyon for 9 months of the year (from July through March) when flows were dominantly below 200–300 m3/s; this stored sand was then eroded during April through June when flows were typically higher. After closure of Glen Canyon Dam, because of the large magnitudes of the uncertainties in the sediment budget, no season of substantial sand accumulation is evident. Because most flows in the postdam river exceed 200–300 m3/s, substantial sand accumulation in the postdam river is unlikely.
Long-term trends of metal content and water quality in the Belaya River Basin
NASA Astrophysics Data System (ADS)
Fashchevskaia, Tatiana; Motovilov, Yuri
2017-04-01
The aim of this research is to identify the spatiotemporal regularities of iron, copper and zinc contents in the streams of the Belaya River basin. The Belaya River is situated in the South Ural region and it is one of the biggest tributary in the Volga River basin with catchment area of 142 000 km2. More than sixty years the diverse economic activities are carried out in the Belaya River basin, the intensity of this activity is characterized by high temporal variability. The leading industries in the region are metallurgy, oil production, petroleum processing, chemistry and petro chemistry, mechanical engineering, power industry. The dynamics of human activities in the catchment and intra and inter-annual changes in the water quality were analyzed for the period 1969-2007 years. Inter-annual dynamics of the metal content in the river waters was identified on the basis of the long-term hydrological monitoring statistics at the 32 sites. It was found that the dynamics of intensity of economic activities in the Belaya River basin was the cause statistically significant changes in the metal content of the river network. Statistically homogeneous time intervals have been set for each monitoring site. Within these time intervals there were obtained averaged reliable quantitative estimations of water quality. Calculations showed that the content of iron, copper and zinc did not change during the analyzed period at the sites, located in the mountain and foothill parts of the basin. At other sites, located on the plains areas of the Belaya River Basin and in the areas of functioning of large industrial facilities, metal content varies. A period of increased concentrations of metals is since the second half of 1970 until the end of the 1990s. From the end of 1990 to 2007 the average metal content for a long-term period in the river waters is reduced in comparison with the previous period: iron - to 7.4 times, copper - to 6.7 times, zinc - to 15 times. As a result, by the end of the test period the average long-term metal content in the river waters is: iron 0.07-1.21 mg/l, copper 0.9-7.0 μg/l, zinc 2,0-12.5 μg/l. Empirical probability distributions of iron, copper and zinc concentrations for various phases of the water regime in all investigated monitoring sites were approximated by Pearson type III curves and the average of the concentration values, the coefficient of variation and asymmetry, as well as the values of the concentrations of metal in the range of 1-95% of frequency were estimated. It was found that by the end of the test period, the average long-term concentrations for iron and copper exceed MAC for fishery use, for zinc become smaller MAC in many streams of Belaya River basin. The probability of exceeding the iron and copper content of MAC level increases during floods, the zinc content of MAC level increases during the winter low. Acknowledgements. The work was financially supported by the Russian Foundation for Basic Research (Grant 15-05-09022)
Yard, M.D.; Bennett, G.E.; Mietz, S.N.; Coggins, L.G.; Stevens, L.E.; Hueftle, S.; Blinn, D.W.
2005-01-01
Rugged topography along the Colorado River in Glen and Grand Canyons, exemplifies features common to canyon-bound streams and rivers of the arid southwest. Physical relief influences regulated river systems, especially those that are altered, and have become partially reliant on aquatic primary production. We measured and modeled instantaneous solar flux in a topographically complex environment to determine where differences in daily, seasonal and annual solar insolation occurred in this river system. At a system-wide scale, topographic complexity generates a spatial and temporal mosaic of varying solar insolation. This solar variation is a predictable consequence of channel orientation, geomorphology, elevation angles and viewshed. Modeled estimates for clear conditions corresponded closely with observed measurements for both instantaneous photosynthetic photon flux density (PPFD: ??mol m-2 s-1) and daily insolation levels (relative error 2.3%, CI ??0.45, S.D. 0.3, n = 29,813). Mean annual daily insolation levels system-wide were estimated to be 36 mol m-2 d -1 (17.5 S.D.), and seasonally varied on average from 13.4-57.4 mol m-2 d-1, for winter and summer, respectively. In comparison to identical areas lacking topographic effect (idealized plane), mean daily insolation levels were reduced by 22% during summer, and as much as 53% during winter. Depending on outlying topography, canyon bound regions having east-west (EW) orientations had higher seasonal variation, averaging from 8.1 to 61.4 mol m-2 d-1, for winter and summer, respectively. For EW orientations, 70% of mid-channel sites were obscured from direct incidence during part of the year; and of these sites, average diffuse light conditions persisted for 19.3% of the year (70.5 days), and extended upwards to 194 days. This predictive model has provided an initial quantitative step to estimate and determine the importance of autotrophic production for this ecosystem, as well as a broader application for other canyon systems. ?? 2004 Published by Elsevier B.V.
Evaluation of blue and green water resources in the upper Yellow River basin of China
NASA Astrophysics Data System (ADS)
Gao, Xiaoxi; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Xianming, Han
2018-06-01
The total amount of water resources severely affects socioeconomic development of a region or watershed, which means that accurate quantification of the total amount of water resources is vital for the area, especially for the arid and semi-arid regions. Traditional evaluation of water resources only focused on the qualification of blue water, while the importance of green water was not fully considered. As the second largest river in China, the Yellow River plays an important role in socioeconomic development of the Yellow River basin. Therefore, the blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability of the blue water and green water is relatively similar during the same period. The higher temperature, the greater difference between the blue and green water. The inter-annual variability of the blue and green water shows that the trends in precipitation, blue and green water have a relatively similar characteristic. The spatial distribution of the blue and green water is characteristic with gradually decreasing from the northwest to the southeast, and the blue water around the main stream is greater than that in the other areas.
NASA Astrophysics Data System (ADS)
Wallick, R.; Anderson, S.; Keith, M.; Cannon, C.; O'Connor, J. E.
2010-12-01
Gravel bed rivers in the Pacific Northwest and elsewhere provide an important source of commercial aggregate. Mining in-stream gravel, however, can alter channel and bar morphology, resulting in habitat degradation for aquatic species. In order to sustainably manage rivers subject to in-stream gravel extraction, regulatory agencies in Oregon have requested that the USGS complete a series of comprehensive geomorphic and sediment transport studies to provide context for regulatory-agency management of in-stream gravel extraction in Oregon streams. The Umpqua River in western Oregon poses special challenges to this type of assessment. Whereas most rivers subject to gravel extraction are relatively rich in bed-material sediment, the Umpqua River is a mixed bedrock-alluvium system draining a large (1,804 km2) basin; hence typical bed-material transport analyses and ecologic and geomorphic lessons of in-stream gravel extraction on more gravel-rich rivers have limited applicability. Consequently, we have relied upon multiple analyses, including comprehensive historical mapping, bedload transport modeling, and a GIS-based sediment yield analysis to assess patterns of bed-material transport and annual rates of bed-material flux. These analyses, combined with numerous historical accounts, indicate that since at least the 1840’s, the Umpqua River planform has been stable, as bar geometry is largely fixed by valley physiography and the channel itself is underlain mainly by bedrock. Preliminary estimates of annual bedload transport rates calculated for the period 1951-2008 from bed-material transport capacity relations at 42 bars along the South Umpqua and mainstem Umpqua Rivers vary from 0 to 600,000 metric tons per year, with this large spread reflecting variability in bar geometry and grainsize. Large stable bars are activated only during exceptionally large floods and have negligible transport during most years whereas smaller, low elevation bars serve as transient storage for gravel transported during typical flood events. A more plausible range of average annual transport rates, based on bedload transport capacity estimates for bars with reasonable values for reference shear stress, is 500-50,000 metric tons/year. Our sediment yield and mapping analyses support these more conservative estimates, providing annual transport rates of 13,000-50,000 metric tons per year for the South Umpqua River and mainstem Umpqua River through the Coast Range. Downstream, predicted flux rates decrease as attrition exceeds input of bed material, gradually diminishing to 30,000-40,000 metric tons at the head of tide. Because bed-material transport along the supply-limited Umpqua River is highly variable in time and space, the range of predicted flux values is thought to characterize the upper bounds of annual gravel transport.
Stream restoration in dynamic fluvial systems: Scientific approaches, analyses, and tools
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-04-01
In the United States the average annual investment in river restoration programs is approximately $1 billion. Despite this burgeoning industry, the National Water Quality Inventory, which tracks the health of the nation's rivers, has shown no serious improvement in cumulative river health since the early 1990s. In the AGU monographStream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools, editors Andrew Simon, Sean J. Bennett, and Janine M. Castro pull together the latest evidence-based understanding of stream restoration practices, with an aim of guiding the further development of the field and helping to right its apparently unsuccessful course. In this interview, Eos talks to Sean J. Bennett, University of Buffalo, about the culture, practice, and promise of restoring rivers.
Report of the River Master of the Delaware River for the period December 1, 1983 - November 30, 1984
Schaefer, F.T.; Harkness, W.E.; Baebenroth, R.W.; Speight, D.W.
1985-01-01
A Decree of the U.S. Supreme Court in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River basin and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually were stipulated. During the 1984 report year, December 1, 1983 to November 30, 1984, precipitation and runoff varied from above average to below average in the Delaware River basin. For the year as a whole, precipitation and runoff were near average. Operations were under a status of drought warning December 1, 1983; however, the above normal precipitation the first half of the year increased storage in the reservoirs to record levels by June 1, 1984. Below normal precipitation from August to November coupled with large releases to maintain the Montague flow objective and customary diversions for water supply reduced storage in the reservoirs to the drought-warning level by November 27. Diversions from the Delaware River basin by New York City and New Jersey conformed to the terms of the Amended Decree throughout the year. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 127 days between June 23 and November 30. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. (USGS)
Cronan, Christopher S
2012-07-01
Watershed exports of carbon, nitrogen, phosphorus, major solutes, and suspended sediments were examined during five water years in the Penobscot River basin, which forms part of the Gulf of Maine watershed. Mean annual exports of dissolved organic carbon (DOC) in the Penobscot River were 58 kg C ha(-1) year(-1), whereas cumulative yearly watershed flux of DOC during the study period ranged from 8.6 to 16.1 × 10(10) g C year(-1) and averaged 11.7 × 10(10) g C year(-1). Watershed exports of total soluble N (TN) and total soluble P in the Penobscot River averaged 1.9 and 0.02 kg ha(-1) year(-1), respectively. Companion studies in two other major Maine rivers indicated that mean annual exports of DOC and TN in the Androscoggin River were 40 kg C ha(-1) year(-1) and 2.0 kg N ha(-1) year(-1), whereas exports in the Kennebec River were 43 kg C ha(-1) year(-1) and 2.2 kg N ha(-1) year(-1). Extrapolation of results from this investigation and a previous complementary study indicates that estuaries and coastal waters in the Gulf of Maine receive at least 1.0 × 10(10) g N year(-1) and 2.5 × 10(11) g C year(-1) in combined runoff from the four largest Maine river basins. Soluble exports of Ca + Mg + Na minus wet deposition inputs of cations in the Penobscot system were approximately 1,840 mol(c) ha(-1) year(-1), which represents a minimum estimate of cation denudation from the watershed. Based on its low N and P export rates, the Penobscot River watershed represents an example of reference conditions for use as a benchmark in ecological assessments of river water quality restoration or impairment. In addition, the biogeochemical metrics from this study provide an historical baseline for analysis of future trends in nutrient exports from the Penobscot watershed as a function of changing climatic and land use patterns.
Gu, Yingxin; Wylie, Bruce K.; Bliss, Norman B.
2013-01-01
This study assessed and described a relationship between satellite-derived growing season averaged Normalized Difference Vegetation Index (NDVI) and annual productivity for grasslands within the Greater Platte River Basin (GPRB) of the United States. We compared growing season averaged NDVI (GSN) with Soil Survey Geographic (SSURGO) database rangeland productivity and flux tower Gross Primary Productivity (GPP) for grassland areas. The GSN was calculated for each of nine years (2000–2008) using the 7-day composite 250-m eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. Strong correlations exist between the nine-year mean GSN (MGSN) and SSURGO annual productivity for grasslands (R2 = 0.74 for approximately 8000 pixels randomly selected from eight homogeneous regions within the GPRB; R2 = 0.96 for the 14 cluster-averaged points). Results also reveal a strong correlation between GSN and flux tower growing season averaged GPP (R2 = 0.71). Finally, we developed an empirical equation to estimate grassland productivity based on the MGSN. Spatially explicit estimates of grassland productivity over the GPRB were generated, which improved the regional consistency of SSURGO grassland productivity data and can help scientists and land managers to better understand the actual biophysical and ecological characteristics of grassland systems in the GPRB. This final estimated grassland production map can also be used as an input for biogeochemical, ecological, and climate change models.
Assessing climate change impacts on soil salinity development with proximal and satellite sensors
USDA-ARS?s Scientific Manuscript database
Changes in climate patterns have dramatically influenced some agricultural areas. Examples include the historic 5-year drought in California’s San Joaquin Valley (SJV) and the 20-year above average annual rainfall in the Red River Valley (RRV) of the Midwestern USA. Climate change may have impacted ...
Annual flood sensitivities to El Niño-Southern Oscillation at the global scale
Ward, Philip J.; Eisner, S.; Flörke, M.; Dettinger, Michael D.; Kummu, M.
2013-01-01
Floods are amongst the most dangerous natural hazards in terms of economic damage. Whilst a growing number of studies have examined how river floods are influenced by climate change, the role of natural modes of interannual climate variability remains poorly understood. We present the first global assessment of the influence of El Niño–Southern Oscillation (ENSO) on annual river floods, defined here as the peak daily discharge in a given year. The analysis was carried out by simulating daily gridded discharges using the WaterGAP model (Water – a Global Assessment and Prognosis), and examining statistical relationships between these discharges and ENSO indices. We found that, over the period 1958–2000, ENSO exerted a significant influence on annual floods in river basins covering over a third of the world's land surface, and that its influence on annual floods has been much greater than its influence on average flows. We show that there are more areas in which annual floods intensify with La Niña and decline with El Niño than vice versa. However, we also found that in many regions the strength of the relationships between ENSO and annual floods have been non-stationary, with either strengthening or weakening trends during the study period. We discuss the implications of these findings for science and management. Given the strong relationships between ENSO and annual floods, we suggest that more research is needed to assess relationships between ENSO and flood impacts (e.g. loss of lives or economic damage). Moreover, we suggest that in those regions where useful relationships exist, this information could be combined with ongoing advances in ENSO prediction research, in order to provide year-to-year probabilistic flood risk forecasts.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
Vegetation Response to Changing Climate - A Case Study from Gandaki River Basin in Nepal Himalaya
NASA Astrophysics Data System (ADS)
Panthi, J., Sr.; Kirat, N. H.; Dahal, P.
2015-12-01
The climate of the Himalayan region is changing rapidly - temperature is increasingly high and rainfall has become unpredictable. IPCC predicts that average annual mean temperature over the Asian land mass, including the Himalayas, will increase by about 3°C by the 2050s and about 5°C by the 2080s and the average annual precipitation in this region will increase by 10-30% by 2080s. Climate and the human activities can influence the land cover status and the eco-environmental quality. There are enough evidences that there is strong interaction between climate variability and ecosystems. A project was carried out in Gandaki river basin in central Nepal to analyze the relationship of NDVI vegetation index with the temperature, rainfall and snowcover information. The relationships were analyzed for different landuses classes-grassland, forest and agriculture. Results show that the snowcover area is decreasing at the rate of 0.15% per year in the basin. The NDVI shows seasonal fluctuations and lightly correlated with the rainfall and temperature.
Report of the River Master of the Delaware River for the period December 1, 1984 - November 30, 1985
Schaefer, F.T.; Harkness, W.E.; Cecil, L.D.
1986-01-01
A Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River basin and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually, were stipulated. During the 1985 report year, December 1, 1984, to November 30, 1985, precipitation and runoff varied from below average to above average in the Delaware River basin. For the year as a whole, precipitation was near average. Runoff was below average. Operations were under a status of drought warning or drought from January 23, 1984, through the end of the report year. Below-normal precipitation the first half of the year resulted in decreased storage in the reservoirs to record low levels by March 1, 1985. Storage remained at record low levels from March through September. Above-normal precipitation in September and November served to break the drought and increase storage into the normal zone of the operating curves for the reservoirs. Diversions from the Delaware River basin by New York City did not exceed those authorized by the terms of the Amended Decree or those invoked by the several emergency conservation measures throughout the year. There were no diversions from the Delaware River basin by New Jersey during the year. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 82 days between June 14 and September 28. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. (See also W89-04133) (USGS)
A stacking ensemble learning framework for annual river ice breakup dates
NASA Astrophysics Data System (ADS)
Sun, Wei; Trevor, Bernard
2018-06-01
River ice breakup dates (BDs) are not merely a proxy indicator of climate variability and change, but a direct concern in the management of local ice-caused flooding. A framework of stacking ensemble learning for annual river ice BDs was developed, which included two-level components: member and combining models. The member models described the relations between BD and their affecting indicators; the combining models linked the predicted BD by each member models with the observed BD. Especially, Bayesian regularization back-propagation artificial neural network (BRANN), and adaptive neuro fuzzy inference systems (ANFIS) were employed as both member and combining models. The candidate combining models also included the simple average methods (SAM). The input variables for member models were selected by a hybrid filter and wrapper method. The performances of these models were examined using the leave-one-out cross validation. As the largest unregulated river in Alberta, Canada with ice jams frequently occurring in the vicinity of Fort McMurray, the Athabasca River at Fort McMurray was selected as the study area. The breakup dates and candidate affecting indicators in 1980-2015 were collected. The results showed that, the BRANN member models generally outperformed the ANFIS member models in terms of better performances and simpler structures. The difference between the R and MI rankings of inputs in the optimal member models may imply that the linear correlation based filter method would be feasible to generate a range of candidate inputs for further screening through other wrapper or embedded IVS methods. The SAM and BRANN combining models generally outperformed all member models. The optimal SAM combining model combined two BRANN member models and improved upon them in terms of average squared errors by 14.6% and 18.1% respectively. In this study, for the first time, the stacking ensemble learning was applied to forecasting of river ice breakup dates, which appeared promising for other river ice forecasting problems.
NASA Astrophysics Data System (ADS)
LI, E.; Li, D.; Wang, Y.; Fu, X.
2017-12-01
The Yellow River is well known for its high sediment load and serious water shortage. The long-term averaged sediment load is about 1.6´103 million tons per year, resulting in aggrading and perched lower reaches. In recent years, however, dramatic decreases in runoff and sediment load have been observed. The annual sediment load has been less than 150 million tons in the last ten years. Extrapolation of this trend into the future would motivate substantial change in the management strategies of the Lower Yellow River. To understand the possible trend and its coevolving drivers, we performed a case study of the Huangfuchuang River, which is a tributary to the Middle Yellow River, with a drainage area of 3246 km2 and an annual precipitation of 365 mm. Statistical analysis of historical data from 1960s to 2015 showed a significantly decreasing trend in runoff and sediment load since 1984. As potential drivers, the precipitation does not show an obvious change in annual amount, while the vegetation cover and the number of check dams have been increased gradually as a result of the national Grain for Green project. A simulation with the Soil and Water Assessment Tool (SWAT) reproduced the historical evolution processes, and showed that human activities dominated the reduction in runoff and sediment load, with a contribution of around 80%. We then projected the runoff and sediment load for the next 50 years (2016-2066), considering typical scenarios of climate change and accounting for vegetation cover development subject to climate conditions and storage capacity loss of check dams due to sediment deposition. The differences between the projected trend and the historical record were analyzed, so as to highlight the coevolving processes of climate, vegetation, and check dam retention on a time scale of decades. Keywords: Huangfuchuan River Basin, sediment load, vegetation cover, check dams, annual precipitation, SWAT.
Relationship of sediment discharge to streamflow
Colby, B.R.
1956-01-01
The relationship between rate of sediment discharge and rate of water discharge at a cross section of a stream is frequently expressed by an average curve. This curve is the sediment rating curve. It has been widely used in the computation of average sediment discharge from water discharge for periods when sediment samples were not collected. This report discusses primarily the applications of sediment rating curves for periods during which at least occasional sediment samples were collected. Because sediment rating curves are of many kinds, the selection of the correct kind for each use is important. Each curve should be carefully prepared. In particular, the correct dependent variable must be used or the slope of the sediment rating curve may be incorrect for computing sediment discharges. Sediment rating curves and their applications were studied for the following gaging stations: 1. Niobrara River near Cody, Nebr. 2. Colorado River near Grand Canyon, Ariz. 3. Rio Grande at San Martial, N. Mex. 4. Rio Puerto near Bernardo, N. Mex. 5. White River near Kadoka, S. Dak. 6. Sandusky River near Fremont, Ohio Except for the Sandusky River and the Rio Puerco, which transport mostly fine sediment, one instantaneous sediment rating curve was prepared for the discharge of suspended sands, at each station, and another for the discharge of sediment finer than 0.082 millimeter. Each curve was studied separately, and by trial-end-error multiple correlation some of the factors that cause scatter from the sediment rating curves were determined. Average velocity at the cross section, Water temperature, and erratic fluctuations in concentration seemed to be the three major factors that caused departures from the sediment rating curves for suspended sands. The concentration of suspended sands varied with about the 2.8 power of the mean velocity for the four sediment, rating curves for suspended sands. The effect of water temperature was not so consistent as that of velocity and theoretically should vary considerably with differences in the size composition of the suspended sands. Scatter from the sediment rating curves for sediments finer than 0.082 millimeter seemed to be caused by changes in supply of these sediments. Some of the scatter could be explained by seasonal variations, by a pattern of change in concentration of fine sediment following a rise, or by source of the runoff as indicated by the measured relative flows of certain tributaries. Daily or instantaneous sediment rating curves adjusted for factors that account for some of the scatter from an average curve often can be used to compute approximate daily, monthly, and annual sediment discharges. Accuracy of the computed sediment discharges should be better than average for streams that transport mostly sands rather than fine sediments and for some ephemeral or intermittent streams, such as Rio Puerco, in semiarid regions. Accuracy of computed sediment discharges can be much improved for many streams by shifting the sediment rating curve on the basis of 2 or 4 measurements of sediment discharge per month. Of 26 annual sediment discharges that were computed by shifting sediment rating curves to either 2 or 4 measured sediment discharges per month, 18 were within I0 percent of the annual-sediment discharges that were computed on the basis of a daily sampling program. Monthly and daily sediment discharges computed from daily or instantaneous sediment rating curves, either shifted or unshifted, were less accurate than similarly computed annual sediment discharges. Even so, the difference in cost between occasional sediment samples and daily samples is so great that the added accuracy from daily sampling may not Justify the added cost. Monthly and annual sediment-rating curves can be applied simply, with adjustments if required, to compute monthly and annual sediment discharges with reasonably good accuracy for gaging stations like the Rio Puerco near Bernardo,
Riverbed Hydrologic Exchange Dynamics in a Large Regulated River Reach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tian; Bao, Jie; Huang, Maoyi
Hydrologic exchange flux (HEF) is an important hydrologic component in river corridors that includes both bidirectional (hyporheic) and unidirectional (gaining/losing) surface water – groundwater exchanges. Quantifying HEF rates in a large regulated river is difficult due to the large spatial domains, complexity of geomorphologic features and subsurface properties, and the great stage variations created by dam operations at multiple time scales. In this study, we developed a method that combined numerical modeling and field measurements for estimating HEF rates across the river bed in a 7‐km long reach of the highly regulated Columbia River. A high‐resolution computational fluid dynamics (CFD)more » modeling framework was developed and validated by field measurements and other modeling results to characterize the HEF dynamics across the river bed. We found that about 85% of the time from 2008‐2014 the river was losing water with an annual average net HEF rates across the river bed (Qz) of ‐2.3 m3 s−1 (negative indicating downwelling). June was the only month that the river gained water, with monthly averaged Qz of 0.8 m3 s−1. We also found that the daily dam operations increased the hourly gross gaining and losing rate over an average year of 8% and 2%, respectively. By investigating the HEF feedbacks at various time scales, we suggest that the dam operations could reduce the HEF at seasonal time scale by decreasing the seasonal flow variations, while also enhance the HEF at sub‐daily time scale by generating high frequency discharge variations. These changes could generate significant impacts on biogeochemical processes in the hyporheic zone.« less
Timing of spring surveys for midcontinent sandhill cranes
Pearse, Aaron T.; Krapu, Gary L.; Brandt, David A.; Sargeant, Glen A.
2015-01-01
The U.S. Fish and Wildlife Service has used spring aerial surveys to estimate numbers of migrating sandhill cranes (Grus canadensis) staging in the Platte River Valley of Nebraska, USA. Resulting estimates index the abundance of the midcontinent sandhill crane population and inform harvest management decisions. However, annual changes in the index have exceeded biologically plausible changes in population size (>50% of surveys between 1982 and 2013 indicate >±20% change), raising questions about nuisance variation due to factors such as migration chronology. We used locations of cranes marked with very-high-frequency transmitters to estimate migration chronology (i.e., proportions of cranes present within the Platte River Valley). We also used roadside surveys to determine the percentage of cranes staging at the Platte River Valley but outside of the survey area when surveys occur. During March 2001–2007, an average of 86% (71–94%; SD = 7%) of marked cranes were present along the Platte River during scheduled survey dates, and 0–11% of cranes that were present along the Platte River were not within the survey boundaries. Timing of the annual survey generally corresponded with presence of the greatest proportion of marked cranes and with least inter-annual variation; consequently, accuracy of estimates could not have been improved by surveying on different dates. Conducting the survey earlier would miss birds not yet arriving at the staging site; whereas, a later date would occur at a time when a larger portion of birds may have already departed the staging site and when a greater proportion of birds occurred outside of the surveyed area. Index values used to monitor midcontinent sandhill crane abundance vary annually, in part, due to annual variation in migration chronology and to spatial distribution of cranes in the Platte River Valley; therefore, managers should interpret survey results cautiously, with awareness of a continuing need to identify and understand components of variation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Saha, Gopal Chandra; Li, Jianbing; Thring, Ronald W.; Hirshfield, Faye; Paul, Siddhartho Shekhar
2017-08-01
Groundwater-surface water (GW-SW) interaction plays a vital role in the functioning of riparian ecosystem, as well as sustainable water resources management. In this study, temporal dynamics of GW-SW interaction were investigated under climate change. A case study was chosen for a study area along the Kiskatinaw River in Mainstem sub-watershed of the Kiskatinaw River Watershed, British Columbia, Canada. A physically based and distributed GW-SW interaction model, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), was used. Two different greenhouse gas (GHG) emission scenarios (i.e., A2: heterogeneous world with self-reliance and preservation of local identities, and B1: more integrated and environmental friendly world) of SRES (Special Report on Emissions Scenarios) from Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) were used for climate change study for 2020-2040. The simulation results showed that climate change influences significantly the temporal patterns of GW-SW interaction by generating variable temporal mean groundwater contributions to streamflow. Due to precipitation variability, these contributions varied monthly, seasonally, and annually. The mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to be 74.5% (σ = 2%) and 75.6% (σ = 3%), respectively. As compared to that during the base modeling period (2007-2011), the mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to decrease by 5.5% and 4.4%, respectively, due to the increased precipitation (on average 6.7% in the A2 and 4.8% in the B1 scenarios) and temperature (on average 0.83 °C in the A2 and 0.64 °C in the B1 scenarios). The results obtained from this study will provide useful information in the long-term seasonal and annual water extractions from the river for future water supply, as well as for evaluating the ecological conditions of the stream, which will be beneficial to aquatic ecosystems.
Pluri-annual sediment budget in a navigated river system: the Seine River (France).
Vilmin, Lauriane; Flipo, Nicolas; de Fouquet, Chantal; Poulin, Michel
2015-01-01
This study aims at quantifying pluri-annual Total Suspended Matter (TSM) budgets, and notably the share of river navigation in total re-suspension at a long-term scale, in the Seine River along a 225 km stretch including the Paris area. Erosion is calculated based on the transport capacity concept with an additional term for the energy dissipated by river navigation. Erosion processes are fitted for the 2007-2011 period based on i) a hydrological typology of sedimentary processes and ii) a simultaneous calibration and retrospective validation procedure. The correlation between observed and simulated TSM concentrations is higher than 0.91 at all monitoring stations. A variographic analysis points out the possible sources of discrepancies between the variabilities of observed and simulated TSM concentrations at three time scales: sub-weekly, monthly and seasonally. Most of the error on the variability of simulated concentrations concerns sub-weekly variations and may be caused by boundary condition estimates rather than modeling of in-river processes. Once fitted, the model permits to quantify that only a small fraction of the TSM flux sediments onto the river bed (<0.3‰). The river navigation contributes significantly to TSM re-suspension in average (about 20%) and during low flow periods (over 50%). Given the significant impact that sedimentary processes can have on the water quality of rivers, these results highlight the importance of taking into account river navigation as a source of re-suspension, especially during low flow periods when biogeochemical processes are the most intense. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of trends in selected streamflow statistics for the Concho River Basin, Texas, 1916-2009
Barbie, Dana L.; Wehmeyer, Loren L.; May, Jayne E.
2012-01-01
Six U.S. Geological Survey streamflow-gaging stations were selected for analysis. Streamflow-gaging station 08128000 South Concho River at Christoval has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1931-95, 2002-9. Streamflow-gaging station 08128400 Middle Concho River above Tankersley has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1962-95, 2002-9. Streamflow-gaging station 08128500 Middle Concho River near Tankersley has no significant trends in the streamflow statistics considered for the period 1931-60. Streamflow-gaging station 08134000 North Concho River near Carlsbad has downward trends for annual mean daily discharge, annual 7-day minimum daily discharge, annual maximum daily discharge, and annual instantaneous peak discharge for the period 1925-2009. Streamflow-gaging stations 08136000 Concho River at San Angelo and 08136500 Concho River at Paint Rock have downward trends for 1916-2009 for all streamflow statistics calculated, but streamflow-gaging station 08136000 Concho River at San Angelo has an upward trend for annual maximum daily discharge during 1964-2009. The downward trends detected during 1916-2009 for the Concho River at San Angelo are not unexpected because of three reservoirs impounding and profoundly regulating streamflow.
Wang, Ranghui; Lu, Xinming; Song, Yudong; Fan, Zili; Ma, Yingjie
2003-04-01
Ecological water demand has some characteristics. The ecological water demand that was used for protection of the green corridor in the lower reaches of Tarim River was chiefly water demand by natural vegetation below Daxihaizi reservoir, and it included gross restoration water amount of ground water level and gross stand water amount in all over the lower reaches of Tarim River. The gross restoration water amount of ground water level mainly included restoration water amount of ground water level and lateral discharge, as well as evaporation of the course. Based on the drainage target of Alagan in 2005, gross ecological water demand was the gross water amount of restoration ground water level between Daxihaizi and Alagan, which would be 13.20 x 10(8) m3. Meanwhile, the annual average water demand would be 2.64 x 10(8) m3. Because the drainage target and vegetation protection target would be all Taitema lake in 2010, the gross ecological water demand included not only the gross water amount of restoration ground water level between Alagan and Taitema lake, but also the ecological stand water amount between Daxihaizi and Taitema lake, which would be 18.32 x 10(8) m3. Meanwhile, the annual average water demand would be 3.66 x 10(8) m3. From the year 2010 to 2030, the gross ecological water demand would be consisted of two parts (the gross stand water amount between Daxihaizi and Alagan, and the water demand by increased vegetation of 18.67 x 10(4) hm2), and the total ecological water demand during the 20 years would be 139.00 x 10(8) m3. Meanwhile, the annual average water demand would be 6.95 x 10(8) m3.
Janney, E.C.; Shively, R.S.; Hayes, B.S.; Barry, P.M.; Perkins, D.
2008-01-01
We used 13 years (1995-2007) of capture-mark-recapture data to assess population dynamics of endangered Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate survival, and information theoretic modeling was used to assess variation due to time, gender, species, and spawning subpopulations. Length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Average annual survival probability was 0.88 for Lost River suckers and 0.76 for shortnose suckers. Mean life span estimates based on these survival rates indicated that Lost River suckers survived long enough on average to attempt reproduction eight times, whereas shortnose suckers only survived to spawn three to four times. Shortnose sucker survival was not only poor in years of fish kills (1995-1997) but also was low in years without fish kills (i.e., 2002 and 2004). This suggests that high mortality occurs in some years but is not necessarily associated with fish kills. Annual survival probabilities were not only different between the two species but also differed between two spawning subpopulations of Lost River suckers. Length composition data indicated that recruitment into spawning populations only occurred intermittently. Populations of both species transitioned from primarily old individuals with little size diversity and consistently poor recruitment in the late 1980s and early 1990s to mostly small, recruit-sized fish by the late 1990s. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.
NASA Astrophysics Data System (ADS)
Fabricius, Katharina E.; De'ath, Glenn; Humphrey, Craig; Zagorskis, Irena; Schaffelke, Britta
2013-01-01
Seawater turbidity is a fundamental driver of the ecology of coastal marine systems, and is widely used as indicator for environmental reporting. However, the time scales and processes leading to changes in turbidity in tropical coastal waters remain poorly understood. This study investigates the main determinants of inshore turbidity in four inshore regions along ˜1000 km of the Australian Great Barrier Reef, based on ˜3 years of almost continuous in situ turbidity logger data on 14 reefs. Generalized additive mixed models were used to predict spatial and temporal variation in weekly mean turbidity based on variation in resuspension and runoff conditions. At any given wave height, wave period and tidal range, turbidity was significantly affected by river flow and rainfall. Averaged across all reefs, turbidity was 13% lower (range: 5-37%) in weeks with low compared with high rainfall and river flows. Additionally, turbidity was on average 43% lower 250 days into the dry season than at the start of the dry season on reefs with long-term mean turbidity >1.1 NTU. The data suggest the time scale of winnowing or consolidation of newly imported materials in this zone is months to years. In contrast, turbidity returned to low levels within weeks after river flows and rainfall on reefs with long-term mean turbidity of <1.1 NTU. Turbidity was also up to 10-fold higher on reefs near compared to away from river mouths, suggesting inter-annual accumulation of fine resuspendible sediments. The study suggests that a reduction in the river loads of fine sediments and nutrients through improved land management should lead to measurably improved inshore water clarity in the most turbid parts of the GBR.
Hydrologic data for the Obed River watershed, Tennessee
Knight, Rodney R.; Wolfe, William J.; Law, George S.
2014-01-01
The Obed River watershed drains a 520-square-mile area of the Cumberland Plateau physiographic region in the Tennessee River basin. The watershed is underlain by conglomerate, sandstone, and shale of Pennsylvanian age, which overlie Mississippian-age limestone. The larger creeks and rivers of the Obed River system have eroded gorges through the conglomerate and sandstone into the deeper shale. The largest gorges are up to 400 feet deep and are protected by the Wild and Scenic Rivers Act as part of the Obed Wild and Scenic River, which is managed by the National Park Service. The growing communities of Crossville and Crab Orchard, Tennessee, are located upstream of the gorge areas of the Obed River watershed. The cities used about 5.8 million gallons of water per day for drinking water in 2010 from Lake Holiday and Stone Lake in the Obed River watershed and Meadow Park Lake in the Caney Fork River watershed. The city of Crossville operates a wastewater treatment plant that releases an annual average of about 2.2 million gallons per day of treated effluent to the Obed River, representing as much as 10 to 40 percent of the monthly average streamflow of the Obed River near Lancing about 35 miles downstream, during summer and fall. During the past 50 years (1960–2010), several dozen tributary impoundments and more than 2,000 small farm ponds have been constructed in the Obed River watershed. Synoptic streamflow measurements indicate a tendency towards dampened high flows and slightly increased low flows as the percentage of basin area controlled by impoundments increases.
A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River
NASA Astrophysics Data System (ADS)
Park, E.; Latrubesse, E. M.
2017-12-01
Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.
Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.
2014-01-01
Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines River at Jackson. Regression analysis indicated that 7 out of 14 sites had poor or no relation between SSC and streamflow. Only two sites, the Knife River and the Wild Rice River at Twin Valley, had strong correlations between SSC and streamflow, with coefficient of determination (R2) values of 0.82 and 0.80, respectively. In contrast, turbidity had moderate to strong relations with SSC at 10 of 14 sites and was superior to streamflow for estimating SSC at all sites. These results indicate that turbidity may be beneficial as a surrogate for SSC in many of Minnesota’s rivers. Suspended-sediment loads and annual basin yields indicated that the Minnesota River had the largest average annual sediment load of 1.8 million tons per year and the largest mean annual sediment basin yield of 120 tons of sediment per year per square mile. Annual TSS loads were considerably lower than suspended-sediment loads. Overall, the largest suspended-sediment and TSS loads were transported during spring snowmelt runoff, although loads during the fall and summer seasons occasionally exceeded spring runoff at some sites. This study provided data from which to characterize suspended sediment across Minnesota’s diverse geographical settings. The data analysis improves understanding of sediment transport relations, provides information for improving sediment budgets, and documents baseline data to aid in understanding the effects of future land use/land cover on water quality. Additionally, the data provides insight from which to evaluate the effectiveness and efficiency of best management practices at the watershed scale.
Rostad, C.E.
1997-01-01
Technical chlordane, a formerly widely used organochlorine pesticide, has become widespread in the environment. The distribution of technical chlordane in riverine environments may be due in part to resuspension and aqueous transport of contaminated bed sediment. To test this hypothesis, the Mississippi River was sampled for suspended sediment five times over a two- year period, at up to 17 sites from St. Louis to below New Orleans, including major tributaries. The ratio of chlordane to nonachlor concentrations averaged 3.6 during May-June 1988 for the Mississippi River below its confluence with the Ohio River. During March-April 1989, the ratio was 0.6, suggesting weathered technical chlordane contributions to the suspended sediment. During June 1989, the ratio averaged 1.1, indicating some input of less weathered technical chlordane. During February-March and May-June 1990, the ratios again shifted, from 0.8 to 1.3. This shifting ratio is likely due to resuspension of weathered technical chlordane associated with bed sediment during spring runoff. Annual transport by suspended sediment from the Mississippi River to the Gulf of Mexico was estimated to be 110 kg of chlordane and 100 kg of nonachlor.
2014 Gulf of Mexico Hypoxia Forecast
Scavia, Donald; Evans, Mary Anne; Obenour, Dan
2014-01-01
The Gulf of Mexico annual summer hypoxia forecasts are based on average May total nitrogen loads from the Mississippi River basin for that year. The load estimate, recently released by USGS, is 4,761 metric tons per day. Based on that estimate, we predict the area of this summer’s hypoxic zone to be 14,000 square kilometers (95% credible interval, 8,000 to 20,000) – an “average year”. Our forecast hypoxic volume is 50 km3 (95% credible interval, 20 to 77).
Population dynamics of the Concho water snake in rivers and reservoirs
Whiting, M.J.; Dixon, J.R.; Greene, B.D.; Mueller, J.M.; Thornton, O.W.; Hatfield, J.S.; Nichols, J.D.; Hines, J.E.
2008-01-01
The Concho Water Snake (Nerodia harteri paucimaculata) is confined to the Concho–Colorado River valley of central Texas, thereby occupying one of the smallest geographic ranges of any North American snake. In 1986, N. h. paucimaculata was designated as a federally threatened species, in large part because of reservoir projects that were perceived to adversely affect the amount of habitat available to the snake. During a ten-year period (1987–1996), we conducted capture–recapture field studies to assess dynamics of five subpopulations of snakes in both natural (river) and man-made (reservoir) habitats. Because of differential sampling of subpopulations, we present separate results for all five subpopulations combined (including large reservoirs) and three of the five subpopulations (excluding large reservoirs). We used multistate capture–recapture models to deal with stochastic transitions between pre-reproductive and reproductive size classes and to allow for the possibility of different survival and capture probabilities for the two classes. We also estimated both the finite rate of increase (λ) for a deterministic, stage-based, female-only matrix model using the average litter size, and the average rate of adult population change, λ ˆ, which describes changes in numbers of adult snakes, using a direct capture–recapture approach to estimation. Average annual adult survival was about 0.23 and similar for males and females. Average annual survival for subadults was about 0.14. The parameter estimates from the stage-based projection matrix analysis all yielded asymptotic values of λ < 1, suggesting populations that are not viable. However, the direct estimates of average adult λ for the three subpopulations excluding major reservoirs were λ ˆ = 1.26, SE ˆ(λ ˆ) = 0.18 and λ ˆ = 0.99, SE ˆ(λ ˆ) = 0.79, based on two different models. Thus, the direct estimation approach did not provide strong evidence of population declines of the riverine subpopulations, but the estimates are characterized by substantial uncertainty.
NASA Astrophysics Data System (ADS)
Abeysingha, N. S.; Singh, Man; Sehgal, V. K.; Khanna, Manoj; Pathak, Himanshu
2016-02-01
Trend analysis of hydro-climatic variables such as streamflow, rainfall, and temperature provides useful information for effective water resources planning, designing, and management. Trends in observed streamflow at four gauging stations in the Gomti River basin of North India were assessed using the Mann-Kendall and Sen's slope for the 1982 to 2012 period. The relationships between trends in streamflow and rainfall were studied by correlation analyses. There was a gradual decreasing trend of annual, monsoonal, and winter seasonal streamflow ( p < 0.05) from the midstream to the downstream of the river and also a decreasing trend of annual streamflow for the 5-year moving averaged standardized anomalies of streamflow for the entire basin. The declining trend in the streamflow was attributed partly to the increased water withdrawal, to increased air temperature, to higher population, and partly to significant reducing trend of post monsoon rainfall especially at downstream. Upstream gauging station showed a significant increasing trend of streamflow (1.6 m3/s/year) at annual scale, and this trend was attributed to the significant increasing trend of catchment rainfall (9.54 mm/year). It was further evident in the significant coefficient of positive correlation ( ρ = 0.8) between streamflow and catchment rainfall. The decreasing trend in streamflow and post-monsoon rainfall especially towards downstream area with concurrent increasing trend of temperature indicates a drying tendency of the Gomti River basin over the study period. The results of this study may help stakeholders to design streamflow restoration strategies for sustainable water management planning of the Gomti River basin.
Flood of June 11, 2010, in the Upper Little Missouri River watershed, Arkansas
Holmes, Robert R.; Wagner, Daniel M.
2011-01-01
Catastrophic flash flooding occurred in the early morning hours of June 11, 2010, in the upper Little Missouri River and tributary streams in southwest Arkansas. The flooding, which resulted in 20 fatalities and substantial property damage, was caused by as much as 4.7 inches of rain falling in the upper Little Missouri River watershed in 3 hours. The 4.7 inches of rain in 3 hours corresponds to estimated annual exceedance probability of approximately 2 percent for a 3-hour duration storm. The maximum total estimated rainfall in the upper Missouri River watershed was 5.3 inches in 6 hours. Peak streamflows and other hydraulic properties were determined at five ungaged locations and one gaged location in the upper Little Missouri River watershed.The peak streamflow for the Little Missouri River at Albert Pike, Arkansas was 40,100 cubic feet per second, estimated to have occurred between 4:00 AM and 4:30 AM the morning of June 11, 2010. The peak streamflow resulted in average water depths in the nearby floodplain (Area C of the Albert Pike Campground) of 7 feet flowing at velocities potentially as great as 11 feet per second. Peak streamflow 9.1 miles downstream on the Little Missouri at the U.S. Geological Survey streamgage near Langley, Arkansas was 70,800 cubic feet per second, which corresponds to an estimated annual exceedance probability of less than 1 percent.
Stamer, J.K.; Cherry, R.N.; Faye, R.E.; Kleckner, R.L.
1978-01-01
On an average annual basis and during the storm period of March 12-15, 1976, nonpoint-source loads for most constituents were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 miles downstream from Atlanta, GA. Most of the nonpoint-source constituent loads in the Atlanta to Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads and about 70 percent of the dissolved phosphorus loads at Whitesburg. During a low-flow period, June 1-2, 1977, five municipal point-sources contributed 63 percent of the ultimate biochemical oxygen demand, and 97 percent of the ammonium nitrogen loads at the Franklin station, at the upstream end of West Point Lake. Dissolved-oxygen concentrations of 4.1 to 5.0 milligrams per liter occurred in a 22-mile reach of the river downstream from Atlanta due about equally to nitrogenous and carbonaceous oxygen demands. The heat load from two thermoelectric powerplants caused a decrease in dissolved-oxygen concentration of about 0.2 milligrams per liter. Phytoplankton concentrations in West Point Lake, about 70 miles downstream from Atlanta, could exceed three million cells per millimeter during extended low-flow periods in the summer with present point-source phosphorus loads. (Woodard-USGS)
USDA-ARS?s Scientific Manuscript database
Changes in climatic patterns have impacted some agricultural areas. Examples include the historic drought in California’s San Joaquin Valley (2011-2015) and the recent 18-year above average annual rainfall and snowfall in the Red River Valley of the Midwestern USA (1993-2011). Climate change has imp...
Low-head hydropower assessment of the Brazilian State of São Paulo
Artan, Guleid A.; Cushing, W. Matthew; Mathis, Melissa L.; Tieszen, Larry L.
2014-01-01
This study produced a comprehensive estimate of the magnitude of hydropower potential available in the streams that drain watersheds entirely within the State of São Paulo, Brazil. Because a large part of the contributing area is outside of São Paulo, the main stem of the Paraná River was excluded from the assessment. Potential head drops were calculated from the Digital Terrain Elevation Data,which has a 1-arc-second resolution (approximately 30-meter resolution at the equator). For the conditioning and validation of synthetic stream channels derived from the Digital Elevation Model datasets, hydrography data (in digital format) supplied by the São Paulo State Department of Energy and the Agência Nacional de Águas were used. Within the study area there were 1,424 rain gages and 123 streamgages with long-term data records. To estimate average yearly streamflow, a hydrologic regionalization system that divides the State into 21 homogeneous basins was used. Stream segments, upstream areas, and mean annual rainfall were estimated using geographic information systems techniques. The accuracy of the flows estimated with the regionalization models was validated. Overall, simulated streamflows were significantly correlated with the observed flows but with a consistent underestimation bias. When the annual mean flows from the regionalization models were adjusted upward by 10 percent, average streamflow estimation bias was reduced from -13 percent to -4 percent. The sum of all the validated stream reach mean annual hydropower potentials in the 21 basins is 7,000 megawatts (MW). Hydropower potential is mainly concentrated near the Serra do Mar mountain range and along the Tietê River. The power potential along the Tietê River is mainly at sites with medium and high potentials, sites where hydropower has already been harnessed. In addition to the annual mean hydropower estimates, potential hydropower estimates with flow rates with exceedance probabilities of 40 percent, 60 percent, and 90 percent were made.
NASA Astrophysics Data System (ADS)
Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.; Wada, Yoshihide
2016-01-01
The Yellow River Basin (YRB), the second largest river basin of China, has experienced a booming agriculture over the past decades. But data on variability of and trends in water consumption, pollution and scarcity in the YRB are lacking. We estimate, for the first time, the inter- and intra-annual water footprint (WF) of crop production in the YRB for the period 1961-2009 and the variation of monthly scarcity of blue water (ground and surface water) for 1978-2009, by comparing the blue WF of agriculture, industry and households in the basin to the maximum sustainable level. Results show that the average overall green (from rainfall) and blue (from irrigation) WFs of crops in the period 2001-2009 were 14% and 37% larger, respectively, than in the period 1961-1970. The annual nitrogen- and phosphorus-related grey WFs (water required to assimilate pollutants) of crop production grew by factors of 24 and 36, respectively. The green-blue WF per ton of crop reduced significantly due to improved crop yields, while the grey WF increased because of the growing application of fertilizers. The ratio of blue to green WF increased during the study period resulting from the expansion of irrigated agriculture. In the period 1978-2009, the annual total blue WFs related to agriculture, industry and households varied between 19% and 52% of the basin's natural runoff. The blue WF in the YRB generally peaks around May-July, two months earlier than natural peak runoff. On average, the YRB faced moderate to severe blue water scarcity during seven months (January-July) per year. Even in the wettest month in a wet year, about half of the area of the YRB still suffered severe blue water scarcity, especially in the basin's northern part.
NASA Astrophysics Data System (ADS)
Kerrigan, Elizabeth A.; Kienast, Markus; Thomas, Helmuth; Wallace, Douglas W. R.
2017-12-01
A weekly time-series of oxygen isotope (δ18O) measurements was collected over a 16-month period from near-surface (1 m) and near-bottom (60 m) waters of Bedford Basin, a coastal fjord adjacent to the Scotian Shelf, off eastern Canada. The time-series was complemented with δ18O measurements of local precipitation (rain and snow), river, and wastewater runoff. The isotopic composition of precipitation displayed strong seasonality with an average (volume-weighted) δ18O value of -5.39‰ (±0.96) for summer and a depleted value of -10.37‰ (±2.96) over winter. Winter precipitation exhibited more depleted and variable δ18O of solid precipitation relative to rainfall. The annual, amount-weighted average δ18O of Sackville River discharge (-6.49‰ ± 0.82) was not statistically different from precipitation (-7.24‰ ± 0.92), but exhibited less seasonal variation. Freshwater end-members (zero-salinity intercepts) estimated from annual and seasonal regressions of δ18O versus salinity (S) for Bedford Basin near-surface samples were consistent with the δ18O of summer precipitation and the annual, amount-weighted average for the Sackville River. However, the isotopically depleted signature of winter precipitation was not observed clearly in near-surface waters of Bedford Basin, which might reflect isotope enrichment during sublimation from accumulated snowfall prior to melting and discharge, or retention and mixing within the drainage basin. In near bottom waters, most of the δ18O-S variation (average freshwater end-member: 7.47‰ ± 2.17) could be explained by vertical mixing with near-surface waters (average freshwater end-member: -6.23‰ ± 0.34) and hence with locally-derived freshwater. However the near-bottom δ18O-S variation suggested an additional contribution of a freshwater end-member with a δ18O of -15.55‰ ± 2.3, consistent with a remotely-derived freshwater end-member identified previously for the Scotian Shelf. Residuals from a long-term regression of δ18O-S were generally within the range expected due to analytical uncertainty (±0.05); however near-surface waters exhibited seasonal variability of small amplitude, which was consistent with the timing and δ18O variability of local freshwater inputs.
Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002-06
Landon, Matthew K.; Rus, David L.; Dietsch, Benjamin J.; Johnson, Michaela R.; Eggemeyer, Kathleen D.
2009-01-01
Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable than precipitation. Annual ET fluctuated about 7 percent from the 4-year mean, ranging from about 514 to 586 millimeters per year (551 on average) at the Odessa site and 535 to 616 millimeters per year (575 on average) at the Gothenburg site. Conversely, annual precipitation fluctuated by about 35 percent from the 4-year mean, ranging from 429 to 844 millimeters per year at Odessa and 359 to 791 millimeters per year at Gothenburg. Of this precipitation, 14 to 15 percent was intercepted by the forest canopy before it could infiltrate into the soil. For the 4-year period, annual ground-water recharge from the riparian measurement zone averaged 76 and 13 millimeters at Odessa and Gothenburg, respectively, to satisfy the water balance at each site. This indicates that, from an annual perspective, ground-water reductions caused by ET may be minimal. This effect varied somewhat and primarily was affected by fluctuations in precipitation. Ground-water discharge occurred during the driest study year (2002), whereas ground-water recharge occurred from 2003 to 2005. These results do not exclude ground water as an important source of water to riparian vegetation - especially to phreatophytes that have the capability of directly using water from the saturated zone - during periods of high ET in the summer, particularly during periods of lower than normal precipitation. However, the calculations indicate that, on an annual (or longer) net-flux basis, ground-water use by riparian forests is likely to be balanced by periods of recharge from excess precipitation at other times of the year. In contrast to more arid settings, where scientific literature indicates that ground water may supply a large fraction of the water used for ET by riparian vegetation, precipitation along the Platte River of Nebraska was great enough - and generally greater than ET - that most or all of the annual ET demand was satisfied by available precipitation. Crop coefficients developed for 15-
Are Equilibrium Multichannel Networks Predictable? the Case of the Indus River, Pakistan
NASA Astrophysics Data System (ADS)
Darby, S. E.; Carling, P. A.
2017-12-01
Focusing on the specific case of the Indus River, we argue that the equilibrium planform network structure of large, multi-channel, rivers is predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264 km long multiple-channel reach. Remote sensing imagery, including a period of time that encompasses the occurrence of major floods in 2007 and 2010, shows that Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the monsoon. We show that the network structure, if not detailed planform, remains stable, even for the record 2010 flood (27,100 m3s-1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6,000 m3s-1 ( 80% of mean annual flow). Maximum Flow Efficiency (MFE) principle demonstrates the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3s-1. Rather, the network is in near-equilibrium with the mean annual flood (7,530 m3s-1). MFE principle indicates stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the time-scale for network adjustment is much longer than the time-scale of the monsoon hydrograph, with the annual excess water being stored on floodplains, rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.
Surface Water Qualit: Revisiting Nitrate Concentrations in the Des Moines River: 1945 and 1976-2001
McIsaac, G.F.; Libra, R.D.
2003-01-01
Recent compilations of historical and contemporary riverine nitrate (NO3) concentrations indicate that concentrations in many rivers in the north-central USA increased during the second half of the 20th century. The Des Moines River near Des Moines, Iowa, however, was reported to have had similar NO3 concentrations in 1945 and the 1980s, in spite of substantially greater N input to the watershed during the latter period. The objective of this study was to reconsider the comparison of historical and contemporary NO3 concentrations in the Des Moines River near Des Moines in light of the following: (i) possible errors in the historical data used, (ii) variations in methods of sample collection, (iii) variations in location of sampling, and (iv) additional data collected since 1990. We discovered that an earlier study had compared the flow-weighted average concentration in 1945 to arithmetic annual average concentrations in the 1980s. The intertemporal comparison also appeared to be influenced by differences in sample collection methods and locations used at different times. Depending on the model used and the estimated effects of composite sample collection, the 1945 arithmetic average NO3 concentration was between 44 and 57% of the expected mean value at a similar water yield during 1976-2001. The flow-weighted average NO3 concentration for 1945 was between 54 and 73% of the expected mean value at a similar water yield during 1976-2001. The difference between NO3 concentrations in 1945 and the contemporary period are larger than previously reported for the Des Moines River.
Pope, L.M.; Brewer, L.D.; Foley, G.A.; Morgan, S.C.
1996-01-01
A study of the distribution and transport of atrazine in surface water in the 1,117 square-mile Delaware River Basin in northeast Kansas was conducted from July 1992 through September 1995. The purpose of this report is to present information to assess the present (1992-95) conditions and possible future changes in the distribution and magnitude of atrazine concentrations, loads, and yields spatially, temporally, and in relation to hydrologic conditions and land-use characteristics. A network of 11 stream-monitoring and sample-collection sites was established within the basin. Stream- water samples were collected during a wide range of hydrologic conditions throughout the study. Nearly 5,000 samples were analyzed by enzyme- linked immunosorbent assay (ELISA) for triazine herbicide concentrations. Daily mean triazine herbicide concentrations were calculated for all sampling sites and subsequently used to estimate daily mean atrazine concentrations with a linear- regression relation between ELISA-derived triazine concentrations and atrazine concentrations determined by gas chromatography/mass spectrometry for 141 dual-analyzed surface-water samples. During May, June, and July, time-weighted, daily mean atrazine concentrations in streams in the Delaware River Basin commonly exceeded the value of 3.0-ug/L (micrograms per liter) annual mean Maximum Contaminant Level (MCL) established by the U.S. Environmental Protection Agency for drinking-water supplies. Time-weighted, daily mean concentrations equal to or greater than 20 ug/L were not uncommon. However, most time- weighted, daily mean concentrations were less than 1.0 ug/L from August through April. The largest time-weighted, monthly mean atrazine concentrations occurred during May, June, and July. Most monthly mean concentrations between August and April were less than 0.50 ug/L. Large differences were documented in monthly mean concentrations within the basin. Sites receiving runoff from the northern and northeastern parts of the Delaware River Basin had the largest monthly and annual mean atrazine concentrations. Time- weighted, annual mean atrazine concentrations did not exceed the MCL in water from any sampling site for either the 1993 or 1994 crop years (April-March); however, concentrations were during 1994 than during 1993. Time-weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 0.27 to 1.5 ug/L and from 0.36 to 2.8 ug/L during the 1994 crop year. Furthermore, concentrations in samples from the outflow of Perry Lake were larger during the first 6 months of the 1995 crop year than during the previous year. Flow-weighted, annual mean atrazine concentrations were larger than time-weighted, annual mean concentrations in water from all sampling sites upstream of Perry Lake, and samples from several sites had concentrations were substantially larger than the MCL. This difference explained why time-weighted, annual mean concentrations in the outflow of Perry Lake were larger than corresponding time-weighted concentrations in water from sampling sites upstream of Perry Lake. Flow- weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 1.0 to 4.4 ug/L and from 1.0 to 8.9 ug/L during the 1994 crop year. Statistically significant linear-regression equations were identified relating the percentage of subbasin in cropland to time- and flow-weighted, average annual mean atrazine concentrations. The relations indicate that time-weighted, average annual mean atrazine concentrations may not exceed the MCL in water from subbasins with at least about 70-percent cropland. However, flow-weighted, average annual mean atrazine concentrations may exceed the MCL when the percentage of cropland is greater than about 40 percent. Approximately 90 percent of the annual atrazine load is transport from May through July. Atrazine loads and yields were larger during the 1993 cro
Spatio-temporal monitoring of suspended sediments in the Solimões River (2000-2014)
NASA Astrophysics Data System (ADS)
Espinoza-Villar, Raul; Martinez, Jean-Michel; Armijos, Elisa; Espinoza, Jhan-Carlo; Filizola, Naziano; Dos Santos, Andre; Willems, Bram; Fraizy, Pascal; Santini, William; Vauchel, Philippe
2018-01-01
The Amazon River sediment discharge has been estimated at between 600 and 1200 Mt/year, of which more than 50% comes from the Solimões River. Because of the area's inaccessibility, few studies have examined the sediment discharge spatial and temporal pattern in the upper Solimões region. In this study, we use MODIS satellite images to retrieve and understand the spatial and temporal behaviour of suspended sediments in the Solimões River from Peru to Brazil. Six virtual suspended sediment gauging stations were created along the Solimões River on a 2050-km-long transect. At each station, field-derived river discharge estimates were available and field-sampling trips were conducted for validation of remote-sensing estimates during different periods of the annual hydrological cycle between 2007 and 2014. At two stations, 10-day surface suspended sediment data were available from the SO-HYBAM monitoring program (881 field SSS samples). MODIS-derived sediment discharge closely matched the field observations, showing a relative RMSE value of 27.3% (0.48 Mtday) overall. Satellite-retrieved annual sediment discharge at the Tamshiyacu (Peru) and Manacapuru (Brazil) stations is estimated at 521 and 825 Mt/year, respectively. While upstream the river presents one main sediment discharge peak during the hydrological cycle, a secondary sediment discharge peak is detected downstream during the declining water levels, which is induced by sediment resuspension from the floodplain, causing a 72% increase on average from June to September.
Maurer, Douglas K.; Paul, Angela P.; Berger, David L.; Mayers, C. Justin
2008-01-01
Changes in land and water use and increasing development of water resources in the Carson River basin may affect flow of the river and, in turn, affect downstream water users dependent on sustained river flows to Lahontan Reservoir. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, Churchill County, and the Truckee-Carson Irrigation District, began a study in April 2006 to compile data on changes in land and water use, ground-water levels and pumping, streamflow, and water quality, and to make preliminary analyses of ground-water and surface-water interactions in the Carson River basin upstream of Lahontan Reservoir. The part of the basin upstream of Lahontan Reservoir is called the upper Carson River basin in this report. In 2005, irrigated agricultural land covered about 39,000 acres in Carson Valley, 3,100 acres in Dayton Valley, and 1,200 acres in Churchill Valley. Changes in land use in Carson Valley from the 1970s to 2005 included the development of about 2,700 acres of native phreatophytes, the development of 2,200 acres of irrigated land, 900 acres of land irrigated in the 1970s that appeared fallow in 2005, and the irrigation of about 2,100 acres of new agricultural land. In Dayton and Churchill Valleys, about 1,000 acres of phreatophytes and 900 acres of irrigated land were developed, about 140 acres of phreatophytes were replaced by irrigation, and about 600 acres of land irrigated in the 1970s were not irrigated in 2006. Ground-water pumping in the upper Carson River basin increases during dry years to supplement surface-water irrigation. Total annual pumping exceeded 20,000 acre-ft in the dry year of 1976, exceeded 30,000 acre-ft in the dry years from 1987 to 1992, and increased rapidly during the dry years from 1999 to 2004, and exceeded 50,000 acre-ft in 2004. As many as 67 public supply wells and 46 irrigation wells have been drilled within 0.5 mile of the Carson River. Pumping from these wells has the potential to affect streamflow of the Carson River. It is not certain, however, if all these wells are used currently. Annual streamflow of the Carson River is extremely variable, ranging from a low of about 26,000 acre-ft in 1977 to slightly more than 800,000 acre-ft in 1983 near Fort Churchill. Graphs of the cumulative annual streamflow and differences in the cumulative annual streamflow at Carson River gaging stations upstream and downstream of Carson and Dayton Valleys show an annual decrease in streamflow. The annual decrease in Carson River streamflow averaged about 47,000 acre-ft through Carson Valley, and about 11,000 acre-ft through Dayton Valley for water years 1940-2006. The decrease in streamflow through Carson and Dayton Valleys is a result of evapotranspiration on irrigated lands and losses to ground-water storage, with greater losses in Carson Valley than in Dayton Valley because of the greater area of irrigated land in Carson Valley.
Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota
Maderak, Marion L.
1966-01-01
The Heart River drainage basin of southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.
Kriging analysis of mean annual precipitation, Powder River Basin, Montana and Wyoming
Karlinger, M.R.; Skrivan, James A.
1981-01-01
Kriging is a statistical estimation technique for regionalized variables which exhibit an autocorrelation structure. Such structure can be described by a semi-variogram of the observed data. The kriging estimate at any point is a weighted average of the data, where the weights are determined using the semi-variogram and an assumed drift, or lack of drift, in the data. Block, or areal, estimates can also be calculated. The kriging algorithm, based on unbiased and minimum-variance estimates, involves a linear system of equations to calculate the weights. Kriging variances can then be used to give confidence intervals of the resulting estimates. Mean annual precipitation in the Powder River basin, Montana and Wyoming, is an important variable when considering restoration of coal-strip-mining lands of the region. Two kriging analyses involving data at 60 stations were made--one assuming no drift in precipitation, and one a partial quadratic drift simulating orographic effects. Contour maps of estimates of mean annual precipitation were similar for both analyses, as were the corresponding contours of kriging variances. Block estimates of mean annual precipitation were made for two subbasins. Runoff estimates were 1-2 percent of the kriged block estimates. (USGS)
Exploring the causes of Colorado River streamflow declines
NASA Astrophysics Data System (ADS)
Xiao, M.; Lettenmaier, D. P.; Udall, B. H.
2016-12-01
As the major river of the Southwestern U.S., the Colorado River (CR) is central to the region's water resources. Over the period 1916-2014, the river's naturalized Apr-Sep flow at Lee's Ferry declined by 18.4%, a number that is closely matched (19.8%) by reconstructions for the same period using the Variable Infiltration Capacity (VIC) hydrology model. However, basin-average annual precipitation over that period declined by only 4.4%. In order to examine the causes of the runoff declines, we performed experiments with the VIC model in which we detrended the model's temperature forcings (about 1.6°C over the 100-year record) for each of 24 sub-basins that make up the basin. We find that decreases in winter precipitation (the season that controls annual runoff) mostly occured in the northeast part of the basin while summer precipitation decreases (which have much less effect on annual runoff) occurred over much of the lower basin. Our model simulations suggest that about 2/3 of observed runoff declines are attributable to decreases in winter precipitation (most importantly, in the upper basin, where most of the basin's runoff is generated). The remaining 1/3 is attributable to warming temperatures. We also examine what appear to be changing characteristics of droughts in the basin. Compared with a prolonged drought in the 1960s, which was characterized by abnormally low precipitation and cool temperatures, temperatures during the ongoing millennial drought have been much warmer, but winter precipitation anomalies have been only slightly negative. During the 2000s drought, the basin-wide runoff anomaly has been about -3.8 km3/yr, with four sub-basins in the northeastern part of the basin accounting for about 2/3 of the annual runoff anomaly.
Flynn, Robert H.
2011-01-01
During May 13-16, 2006, rainfall in excess of 8.8 inches flooded central and southern New Hampshire. On May 15, 2006, a breach in a bank of the Suncook River in Epsom, New Hampshire, caused the river to follow a new path. In order to assess and predict the effect of the sediment in, and the subsequent flooding on, the river and flood plain, a study by the U.S. Geological Survey (USGS) characterizing sediment transport in the Suncook River was undertaken in cooperation with the Federal Emergency Management Agency (FEMA) and the New Hampshire Department of Environmental Services (NHDES). The U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Center-River Analysis System (HEC-RAS) model was used to simulate flow and the transport of noncohesive sediments in the Suncook River from the upstream corporate limit of Epsom to the river's confluence with the Merrimack River in the Village of Suncook (Allenstown and Pembroke, N.H.), a distance of approximately 16 miles. In addition to determining total sediment loads, analyses in this study reflect flooding potentials for selected recurrence intervals that are based on the Suncook River streamgage flow data (streamgage 01089500) and on streambed elevations predicted by HEC-RAS for the end of water year 2010 (September 30, 2010) in the communities of Epsom, Pembroke, and Allenstown. This report presents changes in streambed and water-surface elevations predicted by the HEC-RAS model using data through the end of water year 2010 for the 50-, 10-, 2-, 1-, 0.2-percent annual exceedence probabilities (2-, 10-, 50-, 100-, and 500-year recurrence-interval floods, respectively), calculated daily and annual total sediment loads, and a determination of aggrading and degrading stream reaches. The model was calibrated and evaluated for a 400-day span from May 8, 2008 through June 11, 2009; these two dates coincided with field collection of stream cross-sectional elevation data. Seven sediment-transport functions were evaluated in the model with the Laursen (Copeland) sediment-transport function best describing the sediment load, transport behavior, and changes in streambed elevation for the specified spatial and temporal conditions of the 400-day calibration period. Simulation results from the model and field-collected sediment data indicate that, downstream of the avulsion channel, for the average daily mean flow during the study period, approximately 100 to 400 tons per day of sediment (varying with daily mean flow) was moving past the Short Falls Road Bridge over the Suncook River in Epsom, while approximately 0.05 to 0.5 tons per day of sediment was moving past the Route 28 bridge in Pembroke and Allenstown, and approximately 1 to 10 tons per day was moving past the Route 3 bridge in Pembroke and Allenstown. Changes in water-surface elevation that the model predicted for the end of water year 2010 to be a result of changes in streambed elevation ranged from a mean increase of 0.20 feet (ft) for the 50-percent annual exceedence-probability flood (2-year recurrence-interval flood) due to an average thalweg increase of 0.88 ft between the Short Falls Road Bridge and the Buck Street Dams in Pembroke and Allenstown to a mean decrease of 0.41 ft for the 50-percent annual exceedence-probability flood due to an average thalweg decrease of 0.49 ft above the avulsion in Epsom. An analysis of shear stress (force created by a fluid acting on sediment particles) was undertaken to determine potential areas of erosion and deposition. Based on the median grain size (d50) and shear stress analysis, the study found that in general, for floods greater than the 50-percent annual exceedence probability flood, the shear stress in the streambed is greater than the critical shear stress in much of the river study reach. The result is an expectation of streambed-sediment movement and erosion even at high exceedence-probability events, pending although the stream ultimately attains equilibrium through stream-stabilization measures or the adjustment of the river over time. The potential for aggradation in the Suncook River is greatest in the reach downstream of the avulsion. Specifically, these reaches are (1) downstream of the former sand pit from adjacent to Round Pond to downstream of the flood chute at the large meander bends, and (2) downstream of the Short Falls Road Bridge to approximately 3,800 ft upstream of the Route 28 bridge. The potential for degradation-net lowering of the streambed-is greatest for the reach upstream of the avulsion to the Route 4 bridge.
Wu, Lei; Long, Tian-Yu; Liu, Xia; Mmereki, Daniel
2012-06-01
Jialing River is the largest tributary in the catchment area of Three Gorges Reservoir, and it is also one of the important areas of sediment yield in the upper reaches of the Yangtze River. In recent years, significant changes of water and sediment characteristics have taken place. The "Long Control" Project implemented since 1989 had greatly changed the surface appearance of the Jialing River Watershed (JRW), and it had made the environments of the watershed sediment yield and sediment transport change significantly. In this research, the Revised Universal Soil Loss Equation was selected and used to predict the annual average amount of soil erosion for the special water and sediment environments in the JRW after the implementation of the "Long Control" Project, and then the rainfall-runoff modulus and the time factor of governance were both considered as dynamic factors, the dynamic sediment transport model was built for soil erosion monitoring and forecasting based on the average sediment yield model. According to the dynamic model, the spatial and temporal distribution of soil erosion amount and sediment transport amount of the JRW from 1990 to 2007 was simulated using geographic information system (GIS) technology and space-grid algorithm. Simulation results showed that the average relative error of sediment transport was less than 10% except for the extreme hydrological year. The relationship between water and sediment from 1990 to 2007 showed that sediment interception effects of the soil and water conservation projects were obvious: the annual average sediment discharge reduced from 145.3 to 35 million tons, the decrement of sediment amount was about 111 million tons, and decreasing amplitude was 76%; the sediment concentration was also decreased from 2.01 to 0.578 kg/m(3). These data are of great significance for the prediction and estimation of the future changing trends of sediment storage in the Three Gorges Reservoir and the particulate non-point source pollution load carried by sediment transport from watershed surface.
Alley, William M.; Bauer, D.P.; Veenhuis, J.E.; Brennan, Robert
1979-01-01
Because of the increased demands for water in eastern Colorado, principally in the urbanizing Denver metropolitan area, increased diversions of water from Dillon Reservoir are planned. Estimates of end-of-month storage in Dillon Reservoir, assuming the reservoir was in place and 131,000 acre-feet of water were diverted from the reservoir each year, were reconstructed by mass balance for the 1931-77 water years. Based on the analysis, the annual maximum end-of-month drawdown below the elevation at full storage would have averaged 54 feet. The maximum end-of-month drawdown below the elevation at full storage would have been 171 feet. The mean-annual discharge-weighted dissolved-solids concentrations in the Colorado River near Glenwood Springs and Cameo, Colo., and Cisco, Utah, for the 1942-77 water years, were computed assuming an annual diversion of 131,000 acre-feet of water from Dillon Reservoir. The average increases in the dissolved-solids concentrations with the 131 ,000-acre-foot diversion were 15 to 16 milligrams per liter at the three sites. (Woodard-USGS)
Kelly, Valerie J.; Hooper, Richard P.; Aulenbach, Brent T.; Janet, Mary
2001-01-01
This report contains concentrations and annual mass fluxes (loadings) for a broad range of water-quality constituents measured during 1996-2000 as part of the U.S. Geological Survey National Stream Quality Accounting Network (NASQAN). During this period, NASQAN operated a network of 40-42 stations in four of the largest river basins of the USA: the Colorado, the Columbia, the Mississippi (including the Missouri and Ohio), and the Rio Grande. The report contains surface-water quality data, streamflow data, field measurements (e.g. water temperature and pH), sediment-chemistry data, and quality-assurance data; interpretive products include annual and average loads, regression parameters for models used to estimate loads, sub-basin yield maps, maps depicting percent detections for censored constituents, and diagrams depicting flow-weighted average concentrations. Where possible, a regression model relating concentration to discharge and season was used for flux estimation. The interpretive context provided by annual loads includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean.
McKean, Sarah E.; Anderholm, Scott K.
2014-01-01
The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow at Azotea Tunnel Outlet occurred from May through June, with a median duration of slightly longer than a month. Years with higher maximum daily streamflow generally are associated with higher annual streamflow than years with lower maximum daily streamflow. The amount of water that can be diverted for the SJCP is controlled by the availability of streamflow and is limited by several factors including legal limits for diversion, limits from the SJCP infrastructure including the size of the diversion dams and tunnels, the capacity of Heron Reservoir, and operational constraints that limit when water can be diverted. The average annual streamflow at Azotea Tunnel Outlet was 94,710 acre-feet, and the annual streamflow at Azotea Tunnel Outlet was approximately 75 percent of the annual streamflow available for the SJCP. The average annual percentage of available streamflow not diverted for the SJCP was 14 percent because of structural limitations of the capacity of infrastructure, 1 percent because of limitations of the reservoir storage capacity, and 29 percent because of the limitations from operations. For most years, the annual available streamflow not diverted for unknown reasons exceeded the sum of the water not diverted because of structural, capacity, and operational limitations.
NASA Astrophysics Data System (ADS)
Worrall, F.; Howden, N. J. K.; Burt, T. P.
2012-10-01
SummaryThis paper analyses the world's longest fluvial record of water hardness and calcium (Ca) concentration. We used records of permanent and temporary hardness and river flow for the UK's River Thames (catchment area 9998 km2) to estimate annual Ca flux from the river since 1883. The Thames catchment has a mix of agricultural and urban land use; it is dominated by mineral soils with groundwater contributing around 60% of river flow. Since the late 1800s, the catchment has undergone widespread urbanisation and climate warming, but has also been subjected to large-scale land-use change, especially during World War II and agricultural intensification in the 1960s. Here, we use a range of time series methods to explore the relative importance of these drivers in determining catchment-scale biogeochemical response. Ca concentrations in the Thames rose to a peak in the late 1980s (106 mg Ca/l). The flux of Ca peaked in 1916 at 385 ktonnes Ca/yr; the minimum was in 1888 at 34 ktonnes Ca/yr. For both the annual average Ca concentration and the annual flux of Ca, there were significant increases with time; a significant positive memory effect relative to the previous year; and significant correlation with annual water yield. No significant correlation was found with either temperature or land use, but sulphate deposition was found to be significant. It was also possible, for a shorter time series, to show a significant relationship with inorganic nitrogen inputs into the catchment. We suggest that ionic inputs did not acidify the mineral soils of the catchment but did cause the leaching of metals, so we conclude that the decline in river Ca concentrations is caused by the decline in both S and N inputs.
Barker, J.L.
1989-01-01
The water quality of the West Branch Lackawaxen River and the limnology of Prompton Lake in northeastern Pennsylvania were studied from October 1986 through September 1987 to determine past and present water-quality conditions in the basin, and to determine the possible effects of raising the lake level on the water quality of the Lake, of the river downstream, and of ground water. Past and present water quality of the West Branch Lackawaxen River and Prompton Lake generally meets State standards for high-quality waters that sup- port the maintenance and propagation of cold-water fishes. However, suggested criteria by the U.S. Environmental Protection Agency intended to control excessive algal growth in the lake are exceeded most, if not all, of the time for nitrogen and most of the time for phosphorus. The average annual total nitrogen load entering the lake is 114 tons. Of this total, 41 tons is inorganic nitrate plus nitrate, 48 tons organic nitrogen, and 25 tons ammonia nitrogen. Estimated annual yields of total nitrogen, inorganic nitrite plus nitrate, organic nitrogen, and ammonia nitrogen are 1.9, 9.7, 0.8, and 0.4 tons/mi2 (tons per square mile), respectively. The average annual phosphorus load is estimated to be 4.7 tons, which is equivalent to a yield of 0.08 tons/mi2. About 62 percent, or 2.9 tons, is dissolved phosphorus that is readily available for plant assimilation. The waters of the West Branch Lackawaxen River and Prompton Lake are decidedly phosphorus limited. The long-term average annual suspended-sediment yield to the lake is about 70 tons/mi2. Life expectancy of the 774 acre-feet of space allocated for sediment loads in the raised pool is estimated to be about 287 years. During the 1987 water year, about 51 percent of the annual sediment load was transported during 7 days by storm-water runoff. The maximum sediment discharge during the study period was 400 tons per day. Lake-profile studies show that thermal and chemical stratification develops in early June and persists through September. Water below a depth of about 20 feet becomes anoxic, or nearly so, by mid-July. Summer concentrations of chlorophyll are indicative of eutropic conditions. Although raising of the lake level is expected to increase the efficiency of the lake in trapping nutrients, the increased depth and volume will reduce the concentrations of available nutrients and, thereby, reduce the eutrophication potential of the lake. The water level in about 30 wells near the lake probably will rise after the lake level is raised, and the well yields probably will increase slightly. Flow of water form the lake to the aquifer as the lake is being raised may temporarily increase mineral content of water in the aquifer. After a new equilibrium is reached, however, water will again flow from the aquifer to the lake, thereby restoring the aquifer's water quality.
Wise, Daniel R.; Rinella, Frank A.; Rinella, Joseph F.; Fuhrer, Greg J.; Embrey, Sandra S.; Clark, Gregory M.; Schwarz, Gregory E.; Sobieszczyk, Steven
2007-01-01
This study focused on three areas that might be of interest to water-quality managers in the Pacific Northwest: (1) annual loads of total nitrogen (TN), total phosphorus (TP) and suspended sediment (SS) transported through the Columbia River and Puget Sound Basins, (2) annual yields of TN, TP, and SS relative to differences in landscape and climatic conditions between subbasin catchments (drainage basins), and (3) trends in TN, TP, and SS concentrations and loads in comparison to changes in landscape and climatic conditions in the catchments. During water year 2000, an average streamflow year in the Pacific Northwest, the Columbia River discharged about 570,000 pounds per day of TN, about 55,000 pounds per day of TP, and about 14,000 tons per day of SS to the Pacific Ocean. The Snake, Yakima, Deschutes, and Willamette Rivers contributed most of the load discharged to the Columbia River. Point-source nutrient loads to the catchments (almost exclusively from municipal wastewater treatment plants) generally were a small percentage of the total in-stream nutrient loads; however, in some reaches of the Spokane, Boise, Walla Walla, and Willamette River Basins, point sources were responsible for much of the annual in-stream nutrient load. Point-source nutrient loads generally were a small percentage of the total catchment nutrient loads compared to nonpoint sources, except for a few catchments where point-source loads comprised as much as 30 percent of the TN load and as much as 80 percent of the TP load. The annual TN and TP loads from point sources discharging directly to the Puget Sound were about equal to the annual loads from eight major tributaries. Yields of TN, TP, and SS generally were greater in catchments west of the Cascade Range. A multiple linear regression analysis showed that TN yields were significantly (p < 0.05) and positively related to precipitation, atmospheric nitrogen load, fertilizer and manure load, and point-source load, and were negatively related to average slope. TP yields were significantly related positively to precipitation, and point-source load and SS yields were significantly related positively to precipitation. Forty-eight percent of the available monitoring sites for TN had significant trends in concentration (2 increasing, 19 decreasing), 32 percent of the available sites for TP had significant trends in concentration (7 increasing, 9 decreasing), and 40 percent of the available sites for SS had significant trends in concentration (4 increasing, 15 decreasing). The trends in load followed a similar pattern, but with fewer sites showing significant trends. The results from this study indicate that inputs from nonpoint sources of nutrients probably have decreased over time in many of the catchments. Despite the generally small contribution of point-source nutrient loads, they still may have been partially responsible for the significant decreasing trends for nutrients at sites where the total point-source nutrient loads to the catchments equaled a substantial proportion of the in-stream load.
33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Annual River Race Augusta; Savannah River, Augusta GA. 100.732 Section 100.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.732 Annual...
Thomas, Blakemore E.; Pool, Don R.
2006-01-01
This study was done to improve the understanding of trends in streamflow of the San Pedro River in southeastern Arizona. Annual streamflow of the river at Charleston, Arizona, has decreased by more than 50 percent during the 20th century. The San Pedro River is one of the few remaining free-flowing perennial streams in the arid Southwestern United States, and the riparian forest along the river supports several endangered species and is an important habitat for migratory birds. Trends in seasonal and annual precipitation and streamflow were evaluated for surrounding areas in southeastern Arizona and southwestern New Mexico to provide a regional perspective for the trends of the San Pedro River. Seasonal and annual streamflow trends and the relation between precipitation and streamflow in the San Pedro River Basin were evaluated to improve the understanding of the causes of trends. There were few significant trends in seasonal and annual precipitation or streamflow for the regional study area. Precipitation and streamflow records were analyzed for 11 time periods ranging from 1930 to 2002; no significant trends were found in 92 percent of the trend tests for precipitation, and no significant trends were found in 79 percent of the trend tests for streamflow. For the trends in precipitation that were significant, 90 percent were positive and most of those positive trends were in records of winter, spring, or annual precipitation that started during the mid-century drought in 1945-60. For the trends in streamflow that were significant, about half were positive and half were negative. Trends in precipitation in the San Pedro River Basin were similar to regional precipitation trends for spring and fall values and were different for summer and annual values. The largest difference was in annual precipitation, for which no trend tests were significant in the San Pedro River Basin, and 23 percent of the trend tests were significantly positive in the rest of the study area. Streamflow trends for the San Pedro River were different from regional streamflow trends. All seasonal flows for the San Pedro River, except winter flows, had significant decreasing trends, and seasonal flows for most streams in the rest of the study area had either no trend or a significant increasing trend. Two streams adjacent to the San Pedro River Basin (Whitewater Draw and Santa Cruz River), however, had significant decreasing trends in summer streamflow. Factors that caused the decreasing trends in streamflow of the San Pedro River at Charleston were investigated. Possible factors were fluctuations in precipitation and air temperature, changes in watershed characteristics, human activities, or changes in seasonal distribution of bank storage. This study statistically removed or accounted for the variation in streamflow caused by fluctuations in precipitation. Thus, the remaining variation or trend in streamflow was caused by factors other than precipitation. Two methods were used to partition the variation in streamflow and to determine trends in the partitioned variation: (1) regression analysis between precipitation and streamflow using all years in the record and evaluation of time trends in regression residuals, and (2) development of regression equations between precipitation and streamflow for three time periods (early, middle, and late parts of the record) and testing to determine if the three regression equations were significantly different. The methods were applied to monthly values of total flow (average flow) and storm runoff (maximum daily mean flow) for 1913-2002, and to monthly values of low flow (3-day low flow) for 1931-2002. Statistical tests provide strong evidence that factors other than precipitation caused a decrease in streamflow of the San Pedro River. Factors other than precipitation caused significant decreasing trends in streamflows for late spring through early winter and did not cause significant trends f
Grubbs, J.W.; Crandall, C.A.
2007-01-01
Exchanges of water between the Upper Floridan aquifer and the Lower Suwannee River were evaluated using historic and current hydrologic data from the Lower Suwannee River Basin and adjacent areas that contribute ground-water flow to the lowest 76 miles of the Suwannee River and the lowest 28 miles of the Santa Fe River. These and other data were also used to develop a computer model that simulated the movement of water in the aquifer and river, and surface- and ground-water exchanges between these systems over a range of hydrologic conditions and a set of hypothetical water-use scenarios. Long-term data indicate that at least 15 percent of the average annual flow in the Suwannee River near Wilcox (at river mile 36) is derived from ground-water discharge to the Lower Suwannee and Lower Santa Fe Rivers. Model simulations of ground-water flow to this reach during water years 1998 and 1999 were similar to these model-independent estimates and indicated that ground-water discharge accounted for about 12 percent of the flow in the Lower Suwannee River during this time period. The simulated average ground-water discharge to the Lower Suwannee River downstream from the mouth of the Santa Fe River was about 2,000 cubic feet per second during water years 1998 and 1999. Simulated monthly average ground-water discharge rates to this reach ranged from about 1,500 to 3,200 cubic feet per second. These temporal variations in ground-water discharge were associated with climatic phenomena, including periods of strong influence by El Ni?o-associated flooding, and La Ni?a-associated drought. These variations showed a relatively consistent pattern in which the lowest rates of ground-water inflow occurred during periods of peak flood levels (when river levels rose faster than ground-water levels) and after periods of extended droughts (when ground-water storage was depleted). Conversely, the highest rates of ground-water inflow typically occurred during periods of receding levels that followed peak river levels.
Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques
NASA Astrophysics Data System (ADS)
Romulus, Costache; Iulia, Fontanine; Ema, Corodescu
2014-09-01
S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.
Scholten, G.D.; Bettoli, P.W.
2005-01-01
Paddlefish Polyodon spathula (n = 576) were collected from Kentucky Lake, Kentucky-Tennessee, with experimental gill nets in 2003-2004 to assess population characteristics and the potential for commercial overfishing. Additional data were collected from 1,039 paddlefish caught by commercial gillnetters in this impoundment. Since the most recent study in 1991, size and age structure have been reduced and annual mortality has tripled. In the 1991 study, 37% of the fish collected were older than the maximum age we observed (age 11), and in 2003 annual mortality for paddlefish age 7 and older was high (A = 68%). Natural mortality is presumably low (<10%) for paddlefish; therefore, exploitation in recent years is high. Estimates of total annual mortality were negatively related to river discharge in the years preceding each estimate. The number of paddlefish harvested since 1999 was also negatively related to river discharge because gill nets cannot be easily deployed when discharge exceeds approximately 850 m3/s. Large females spawn annually because all females longer than 1,034 mm eye-fork length (EFL) were gravid. No mature females were protected by the current 864-mm minimum EFL limit. At a low natural mortality rate, higher size limits when exploitation was high (40-70%) increased simulated flesh yields by 10-20%. Even at low levels of exploitation (21%), spawning potential ratios (SPRs) under the current 864-mm minimum EFL size limit fell below 20%. If the size limit was raised to 1,016 mm EFL, the population could withstand up to 62% exploitation before the SPR falls below 20%. An analysis of annual mortality caps indicated that the best way to increase the average size of harvested fish is to increase the minimum size limit. Recruitment overfishing probably occurs during drought years; however, variation in river discharge has prevented the population from being exploited at unsustainable rates in the past. ?? Copyright by the American Fisheries Society 2005.
Malcolm, R.L.; Durum, W.H.
1976-01-01
The organic carbon load during 1969-70 of each of the six rivers in this study is substantial. The 3.4-billion-kilogram (3.7-million-ton) and 47-million-kilogram (52-thousandton) annual organic carbon loads of the Mississippi River and the Brazos River (Tex.), respectively, were approximately equally distributed between dissolved and suspended phases, whereas the 725-million-kilogram (79.8-million-ton) organic load of the Missouri River was primarily in the suspended phase. The major portion of the 6.4-million-kilogram (7.3 thousand-ton) and the 19-million-kilogram (21-thousand-ton) organic carbon loads of the Sopchoppy River (Fla.) and the Neuse River (N.C.), respectively, was in the dissolved phase. DOC (dissolved organic carbon) concentrations in most rivers were usually less than 8 milligrams per litre. SOC (suspended organic carbon) concentrations fluctuated markedly with discharge, ranging between 1 and 14 percent, by weight, in sediment of most rivers. DOC concentrations were found to be independent of discharge, whereas SOC and SIC (suspended inorganic carbon) concentrations were positively correlated with discharge. Seasonal fluctuations in DOC and SOC were exhibited by the Missouri, Neuse, Ohio, and Brazos Rivers, but both SOC and DOC concentrations were relatively constant throughout the year in the Mississippi and Sopchoppy Rivers. The carbon-nitrogen ratio in the sediment phase of all river waters averaged less than 8 1 as compared with 12:1 or greater for most soils. This high nitrogen content shows a nitrogen enrichment of the stream sediment over that in adjacent soils, which suggests that different decomposition and humification processes are operating in streams than in the soils. The abundance of organic material in the dissolved and suspended phase of all river waters in this study indicate a large capacity factor for various types of organic reactivity within all streams and the quantitative importance of organic constituents in relation to the water quality of rivers and streams.
Abbott, Marvin M.; Tortorelli, R.L.; Becker, M.F.; Trombley, T.J.
2003-01-01
This report is an overview of water resources in and near the Wichita and Affiliated Tribes treaty lands in western Oklahoma. The tribal treaty lands are about 1,140 square miles and are bordered by the Canadian River on the north, the Washita River on the south, 98? west longitude on the east, and 98? 40' west longitude on the west. Seventy percent of the study area lies within the Washita River drainage basin and 30 percent of the area lies within the Canadian River drainage basin. March through June are months of greatest average streamflow, with 49 to 57 percent of the annual streamflow occurring in these four months. November through February, July, and August have the least average streamflow with only 26 to 36 percent of the annual streamflow occurring in these six months. Two streamflow-gaging stations, Canadian River at Bridgeport and Cobb Creek near Fort Cobb, indicated peak streamflows generally decrease with regulation. Two other streamflow-gaging stations, Washita River at Carnegie and Washita River at Anadarko, indicated a decrease in peak streamflows after regulation at less than the 100-year recurrence and an increase in peak streamflows greater than the 100-year recurrence. Canadian River at Bridgeport and Washita River at Carnegie had estimated annual low flows that generally increased with regulation. Cobb Creek near Fort Cobb had a decrease of estimated annual low flows after regulation. There are greater than 900 ground-water wells in the tribal treaty lands. Eighty percent of the wells are in Caddo County.The major aquifers in the study area are the Rush Springs Aquifer and portions of the Canadian River and Washita River valley alluvial aquifers. The Rush Springs Aquifer is used extensively for irrigation as well as industrial and municipal purposes, especially near population centers.The Canadian River and Washita River valley alluvial aquifers are not used extensively in the study area. Well yields from the Rush Springs Aquifer ranged from 11 to greater than 850 gallons per minute. The Rush Springs Aquifer is recharged by the infiltration of precipitation. The estimated recharge is about 1.80 inches per year evenly distributed over the outcrop of the aquifer in the study area. Principal factors affecting the water quality in the study area include geology, agricultural practices,and oil and gas production. Calcium, magnesium, sulfate, and bicarbonate are the dominant dissolved constituents in water in the study area. Interquartile dissolved-solids concentrations in surface-water samples in the study area generally were greater than interquartile concentrations in ground-water samples. Median dissolved-solids concentrations for ground-water samples from Canadian River, Ionine Creek, Spring Creek,and Washita River Basins, which ranged from 535 to 1,195 milligrams per liter,exceeded the U.S. Environmental Protection Agency Secondary Drinking Water Standard of 500 milligrams per liter. Interquartile sulfate concentrations in surface-water samples in the study area generally were greater than interquartile concentrations in ground-water samples. Median sulfate concentrations from ground-water samples in the Canadian River, IonineCreek,and Spring Creek Basins, which ranged from 385 to 570 milligrams per liter, exceeded the U.S. Environmental Protection Agency Secondary Drinking Water Standard of 250 milligrams per liter. Nitrite plus nitrate as nitrogen concentrations in surface-water samples in the study area generally were less than concentrations in ground-water samples. The median nitrite plus nitrate as nitrogen concentration in ground water was 9.8 milligrams per liter, suggesting almost one-half the ground-water samples exceeded the U.S. Environmental Protection Agency Primary Drinking Water Standard (10 milligrams per liter). An estimated 100 million gallons of water per day were withdrawn from surface and ground water for all uses in
Reaeration capacity of the Rock River between Lake Koshkonong, Wisconsin and Rockton, Illinois
Grant, R. Stephen
1978-01-01
The reaeration capacity of the Rock River from Lake Koshkonong, Wisconsin, to Rockton, Illinois, was determined using the energy-dissipation model. The model was calibrated using data from radioactive-tracer measurements in the study reach. Reaeration coefficients (K2) were computed for the annual minimum 7-day mean discharge that occurs on the average of once in 10 years (Q7,10). A time-of-travel model was developed using river discharge, slope, and velocity data from three dye studies. The model was used to estimate traveltime for the Q7,10 for use in the energy-dissipation model. During one radiotracer study, 17 mile per hour winds apparently increased the reaeration coefficient about 40 times. (Woodard-USGS)
2017-01-01
A crossdated, replicated, chronology of 114 years (1901–2014) was developed from internal growth increments in the shells of Glycymeris glycymeris samples collected monthly from the Bay of Brest, France. Bivalve sampling was undertaken between 2014 and 2015 using a dredge. In total 401 live specimens and 243 articulated paired valves from dead specimens were collected, of which 38 individuals were used to build the chronology. Chronology strength, assessed as the Expressed Population Signal, was above 0.7 throughout, falling below the generally accepted threshold of 0.85 before 1975 because of reduced sample depth. Significant positive correlations were identified between the shell growth and the annual averages of rainfall (1975–2008; r = 0.34) and inflow from the river Elorn (1989–2009; r = 0.60). A significant negative correlation was identified between shell growth and the annual average salinity (1998–2014; r = -0.62). Analysis of the monthly averages indicates that these correlations are associated with the winter months (November–February) preceding the G. glycymeris growth season suggesting that winter conditions predispose the benthic environment for later shell growth. Concentration of suspended particulate matter within the river in February is also positively correlated with shell growth, leading to the conclusion that food availability is also important to the growth of G. glycymeris in the Bay of Brest. With the addition of principle components analysis, we were able to determine that inflow from the River Elorn, nitrite levels and salinity were the fundamental drivers of G. glycymeris growth and that these environmental parameters were all linked. PMID:29261749
Naus, Cheryl A.; McAda, Douglas P.; Myers, Nathan C.
2006-01-01
A study of the hydrology of the Red River Basin of northern New Mexico, including development of a pre- mining water balance, contributes to a greater understanding of processes affecting the flow and chemistry of water in the Red River and its alluvial aquifer. Estimates of mean annual precipitation for the Red River Basin ranged from 22.32 to 25.19 inches. Estimates of evapotranspiration for the Red River Basin ranged from 15.02 to 22.45 inches or 63.23 to 94.49 percent of mean annual precipitation. Mean annual yield from the Red River Basin estimated using regression equations ranged from 45.26 to 51.57 cubic feet per second. Mean annual yield from the Red River Basin estimated by subtracting evapotranspiration from mean annual precipitation ranged from 55.58 to 93.15 cubic feet per second. In comparison, naturalized 1930-2004 mean annual streamflow at the Red River near Questa gage was 48.9 cubic feet per second. Although estimates developed using regression equations appear to be a good representation of yield from the Red River Basin as a whole, the methods that consider evapotranspiration may more accurately represent yield from smaller basins that have a substantial amount of sparsely vegetated scar area. Hydrograph separation using the HYSEP computer program indicated that subsurface flow for 1930-2004 ranged from 76 to 94 percent of streamflow for individual years with a mean of 87 percent of streamflow. By using a chloride mass-balance method, ground-water recharge was estimated to range from 7 to 17 percent of mean annual precipitation for water samples from wells in Capulin Canyon and the Hansen, Hottentot, La Bobita, and Straight Creek Basins and was 21 percent of mean annual precipitation for water samples from the Red River. Comparisons of mean annual basin yield and measured streamflow indicate that streamflow does not consistently increase as cumulative estimated mean annual basin yield increases. Comparisons of estimated mean annual yield and measured streamflow profiles indicates that, in general, the river is gaining ground water from the alluvium in the reach from the town of Red River to between Hottentot and Straight Creeks, and from Columbine Creek to near Thunder Bridge. The river is losing water to the alluvium from upstream of the mill area to Columbine Creek. Interpretations of ground- and surface-water interactions based on comparisons of mean annual basin yield and measured streamflow are supported further with water-level data from piezometers, wells, and the Red River.
Doctor, Daniel H.
2008-01-01
A review of past research on the hydrogeology of the Classical Karst (Kras) region and new information obtained from a two- year study using environmental tracers are presented in this paper. The main problems addressed are 1) the sources of water to the Kras aquifer resurgence zone-including the famous Timavo springs-under changing flow regimes; 2) a quantification of the storage volumes of the karst massif corresponding to flow regimes defined by hydrograph recessions of the Timavo springs; and 3) changing dynamics between deep phreatic conduit flow and shallow phreatic and epiphreatic storage within the aquifer resurgence zone as determined through changes in chemical and isotopic composition at springs and wells. Particular focus was placed on addressing the long-standing question of the influence of the Soca River on the ground waters of the aquifer resurgence zone. The results indicate that the alluvial aquifer supplied by the sinking of the Soca River on the northwestern edge of the massif contributes approximately 75% of the mean annual outflow to the smaller springs of the aquifer resurgence zone, and as much as 53% to the mean annual outflow of the Timavo springs. As a whole, the Soca River is estimated to contribute 56% of the average outflow of the Kras aquifer resurgence. The proportions of Soca River water increase under drier conditions, and decrease under wetter conditions. Time series analysis of oxygen stable isotope records indicate that the transit time of Soca River water to the Timavo springs, Sardos spring, and well B-4 is on the order of 1-2 months, depending on hydrological conditions. The total baseflow storage of the Timavo springs is estimated to be 518 million m3, and represents 88.5% of the storage capacity estimated for all flow regimes of the springs. The ratio of baseflow storage volume to the average annual volume discharged at the Timavo springs is 0.54. The Reka River sinking in Slovenia supplies substantial allogenic recharge to the aquifer; however, its influence on the northwest resurgence zone is limited to the Timavo springs, and is only a significant component of the spring discharge under flood conditions for relatively brief periods (several days to weeks). Sustainability of the trans-boundary aquifer of the Kras will benefit from maintaining high water quality in the Soca River, as well as focused water tracing experiments within the epiphreatic zone of the aquifer to better delineate the recharge zone and to identify sources of potential contamination to the Brestovica water supply well.
Jeton, A.E.; Dettinger, M.D.; Smith, J. LaRue
1996-01-01
Precipitation-runoff models of the East Fork Carson and North Fork American Rivers were developed and calibrated for use in evaluating the sensitivity of streamflow in the north-central Sierra Nevada to climate change. The East Fork Carson River drains part of the rain-shadowed, eastern slope of the Sierra Nevada and is generally higher than the North Fork American River, which drains the wetter, western slope. First, a geographic information system was developed to describe the spatial variability of basin characteristics and to help estimate model parameters. The result was a partitioning of each basin into noncontiguous, but hydrologically uniform, land units. Hydrologic descriptions of these units were developed and the Precipitation- Runoff Modeling System (PRMS) was used to simulate water and energy balances for each unit in response to daily weather conditions. The models were calibrated and verified using historical streamflows over 22-year (Carson River) and 42-year (American River) periods. Simulated annual streamflow errors average plus 10 percent of the observed flow for the East Fork Carson River basin and plus 15 percent for the North Fork American River basin. Interannual variability is well simulated overall, but, at daily scales, wet periods are simulated more accurately than drier periods. The simulated water budgets for the two basins are significantly different in seasonality of streamflow, sublimation, evapotranspiration, and snowmelt. The simulations indicate that differences in snowpack and snowmelt timing can play pervasive roles in determining the sensitivity of water resources to climate change, in terms of both resource availability and amount. The calibrated models were driven by more than 25 hypothetical climate-change scenarios, each 100 years long. The scenarios were synthesized and spatially disaggregated by methods designed to preserve realistic daily, monthly, annual, and spatial statistics. Simulated streamflow timing was not very sensitive to changes in mean precipitation, but was sensitive to changes in mean temperatures. Changes in annual streamflow amounts were amplified reflections of imposed mean precipitation changes, with especially large responses to wetter climates. In contrast, streamflow amount was surprisingly insensitive to mean temperature changes as a result of temporal links between peak snowmelt and the beginning of warm-season evapotranspiration. Comparisons of simulations driven by temporally detailed climate-model changes in which mean temperature changes vary from month to month and simulations in which uniform climate changes were imposed throughout the year indicate that the snowpack accumulates the influences of short-term conditions so that season average climate changes were more important than shorter term changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chuck; Scofield, Ben; Pavlik, Deanne
2003-03-01
A slightly dryer than normal year yielded flows in Lake Roosevelt that were essentially equal to the past ten year average. Annual mean inflow and outflow were 3,160.3 m3/s and 3,063.4 m3/s respectively. Mean reservoir elevation was 387.2 m above sea level at the Grand Coulee Dam forebay. The forebay elevation was below the mean elevation for a total of 168 days. During the first half of the 2000 forebay elevation changed at a rate of 0.121 m/d and during the last half changed at a rate of 0.208 m/d. The higher rate of elevation change earlier in the yearmore » is due to the drawdown to accommodate spring runoff. Mean annual water retention time was 40 days. Annual mean total dissolved gas was 108%. Total dissolved gas was greatest at upriver locations (110% = US/Canada Border annual mean) and decreased moving toward Grand Coulee Dam (106% = Grand Coulee Dam Forebay annual mean). Total dissolved gas was greatest in May (122% reservoir wide monthly mean). Gas bubble trauma was observed in 16 fish primarily largescale suckers and was low in severity. Reservoir wide mean temperatures were greatest in August (19.5 C) and lowest in January (5.5 C). The Spokane River and Sanpoil River Arms experienced higher temperatures than the mainstem reservoir. Brief stratification was observed at the Sanpoil River shore location in July. Warm water temperatures in the Spokane Arm contributed to low dissolved oxygen concentrations in August (2.6 mg/L at 33 m). However, decomposition of summer algal biomass was likely the main cause of depressed dissolved oxygen concentrations. Otherwise, dissolved oxygen profiles were relatively uniform throughout the water column across other sampling locations. Annual mean Secchi depth throughout the reservoir was 5.7 m. Nutrient concentrations were generally low, however, annual mean total phosphorus (0.016 mg/L) was in the mesotrophic range. Annual mean total nitrogen was in the meso-oligotrophic range. Total nitrogen to total phosphorus ratios were large (31:1 annual mean) likely indicating phosphorus limitations to phytoplankton.« less
NASA Astrophysics Data System (ADS)
Wang, B.; Xu, Y. J.
2016-02-01
A recent study reported that about 44% of the total Mississippi River suspended load reaching the Old River Control Structure (ORCS) was trapped upstream of the Gulf of Mexico by overbank storage and channel bed aggradation. Considering an average annual sediment load of 120 million metric tons passing ORCS to the Mississippi River main channel, the trapped sediment load would be equivalent to annually rebuilding 44-km2 coastal land of 1 meter in depth, assuming a sedimentation bulk density of 1.2 tons m-3. No study has yet demonstrated such a high sediment accumulation rate within the confined river channel or on a floodplain area that surrounds the only unleeved stretch ( 30-km long) of the Lower Mississippi River downstream of ORCS. In this study, we utilized satellite images taken from 1983 to 2013 and analyzed changes in surface area of nine major mid-channel and point bars over a 130-km river reach from ORCS to Baton Rouge. Using river stage records and the estimated surface areas, we developed a stage - surface area rating curve for each of the bars and estimated changes in bar volume over time. We found that more than half of the bars have grown, while the others have shrunken in the past three decades. As a whole, there was a substantial net gain of surface area and volume accretion. Sediment trapping was most prevalent during the spring floods, especially during the period from 2007 to 2011 when two large floods occurred. This paper presents the channel morphological change and sediment accumulation rates under different flow conditions, and discusses their implications for the current understanding and practices of the Mississippi River sediment diversion.
Export of Nitrogen From the Yukon River Basin to the Bering Sea
NASA Astrophysics Data System (ADS)
Dornblaser, M. M.; Striegl, R. G.
2005-12-01
The US Geological Survey measured nitrogen export from the 831,400 km2 Yukon River basin during 2001-04 as part of a five year water quality study of the Yukon River and its major tributaries. Concentrations of NO2+NO3, NH4+DON, and particulate N were measured ~6 times annually during open water and once under ice cover at three locations on the Yukon River, and on the Porcupine and Tanana Rivers. Concentration and continuous flow data were used to generate daily and annual loads of N species. NH4 concentration was generally negligible when compared to DON concentration, allowing for comparison of the relative importance of DIN vs. DON export at various watershed scales. NO2 concentration was also small compared to NO3. At Pilot Station, the last site on the Yukon before it flows into the Yukon Delta and the Bering Sea, DIN, DON, and particulate N loads averaged 19.3 × 106 kg/yr, 52.6 × 106 kg/yr, and 39.1 × 106 kg/yr, respectively. Normalized for the watershed area at Pilot Station, corresponding N yields were 1.65, 4.52, and 3.35 mmol/m2/yr. DIN yield for the Yukon at Pilot Station is substantially less than the NO3 flux reported for tropical/temperate rivers such as the Amazon, the Yangtze, and the Mississippi. DIN yield in the upper Yukon River basin is similar to that of the Mackenzie and other arctic rivers, but increases substantially downstream. This is likely due to development around Fairbanks in the Tanana River basin. When compared to other headwater basins in the upper Yukon, the Tanana basin yields about four times more DIN and two times more particulate N, while DON yields are only slightly elevated.
Neal, Colin; Robinson, Mark; Reynolds, Brian; Neal, Margaret; Rowland, Philip; Grant, Simon; Norris, David; Williams, Bronwen; Sleep, Darren; Lawlor, Alan
2010-10-01
This paper presents new information on the hydrology and water quality of the eroding peatland headwaters of the River Severn in mid-Wales and links it to the impact of plantation conifer forestry further down the catchment. The Upper Hafren is dominated by low-growing peatland vegetation, with an average annual precipitation of around 2650 mm with around 250 mm evaporation. With low catchment permeability, stream response to rainfall is "flashy" with the rising limb to peak stormflow typically under an hour. The water quality is characteristically "dilute"; stormflow is acidic and enriched in aluminium and iron from the acid organic soil inputs. Baseflow is circum-neutral and calcium and bicarbonate bearing due to the inputs of groundwater enriched from weathering of the underlying rocks. Annual cycling is observed for the nutrients reflecting uptake and decomposition processes linked to the vegetation and for arsenic implying seasonal water-logging within the peat soils and underlying glacial drift. Over the decadal scale, sulphate and nitrate concentrations have declined while Gran alkalinity, dissolved organic carbon and iron have increased, indicating a reduction in stream acidification. Within the forested areas the water quality is slightly more concentrated and acidic, transgressing the boundary for acid neutralisation capacity as a threshold for biological damage. Annual sulphate and aluminium concentrations are double those observed in the Upper Hafren, reflecting the influence of forestry and the greater ability of trees to scavenge pollutant inputs from gaseous and mist/cloud-water sources compared to short vegetation. Acidification is decreasing more rapidly in the forest compared to the eroding peatland possibly due to the progressive harvesting of the mature forest reducing the scavenging of acidifying inputs. For the Lower Hafren, long-term average annual precipitation is slightly lower, with lower average altitude, at around 2520mm and evaporation is around double that of the Upper Hafren. Copyright 2010 Elsevier B.V. All rights reserved.
Sloto, Ronald A.
2004-01-01
This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Delaware River Basin Commission, to develop a regional ground-water-flow model of the French Creek Basin in Chester County, Pa. The model was used to assist water-resource managers by illustrating the interconnection between ground-water and surface-water systems. The 70.7-mi2 (square mile) French Creek Basin is in the Piedmont Physiographic Province and is underlain by crystalline and sedimentary fractured-rock aquifers. Annual water budgets were calculated for 1969-2001 for the French Creek Basin upstream of streamflow measurement station French Creek near Phoenixville (01472157). Average annual precipitation was 46.28 in. (inches), average annual streamflow was 20.29 in., average annual base flow determined by hydrograph separation was 12.42 in., and estimated average annual ET (evapotranspiration) was 26.10 in. Estimated average annual recharge was 14.32 in. and is equal to 31 percent of the average annual precipitation. Base flow made up an average of 61 percent of streamflow. Ground-water flow in the French Creek Basin was simulated using the finite-difference MODFLOW-96 computer program. The model structure is based on a simplified two-dimensional conceptualization of the ground-water-flow system. The modeled area was extended outside the French Creek Basin to natural hydrologic boundaries; the modeled area includes 40 mi2 of adjacent areas outside the basin. The hydraulic conductivity for each geologic unit was calculated from reported specific-capacity data determined from aquifer tests and was adjusted during model calibration. The model was calibrated for aboveaverage conditions by simulating base-flow and water-level measurements made on May 1, 2001, using a recharge rate of 20 in/yr (inches per year). The model was calibrated for below-average conditions by simulating base-flow and water-level measurements made on September 11 and 17, 2001, using a recharge rate of 6.2 in/yr. Average conditions were simulated by adjusting the recharge rate until simulated streamflow at streamflow-measurement station 01472157 matched the long-term (1968-2001) average base flow of 54.1 cubic feet per second. The recharge rate used for average conditions was 15.7 in/yr. The effect of drought in the French Creek Basin was simulated using a drought year recharge rate of 8 in/yr for 3 months. After 3 months of drought, the simulated streamflow of French Creek at streamflow-measurement station 01472157 decreased 34 percent. The simulations show that after 6 months of average recharge (15.7 in/yr) following drought, streamflow and water levels recovered almost to pre-drought conditions. The effect of increased ground-water withdrawals on stream base flow in the South Branch French Creek Subbasin was simulated under average and drought conditions with pumping rates equal to 50, 75, and 100 percent of the Delaware River Basin Commission Ground Water Protected Area (GWPA) withdrawal limit (1,393 million gallons per year) with all pumped water removed from the basin. For average recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 18, 28, and 37 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. After 3 months of drought recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 27, 40, and 52 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. The effect of well location on base flow, water levels, and the sources of water to the well was simulated by locating a hypothetical well pumping 200 gallons per minute in different places in the Beaver Run Subbasin with all pumped water removed from the basin. The smallest reduction in the base flow of Beaver Run was from a well on the drainage divide
Designing adaptive operating rules for a large multi-purpose reservoir
NASA Astrophysics Data System (ADS)
Geressu, Robel; Rougé, Charles; Harou, Julien
2017-04-01
Reservoirs whose live storage capacity is large compared with annual inflow have "memory", i.e., their storage levels contain information about past inflows and reservoir operations. Such "long-memory" reservoirs can be found in basins in dry regions such as the Nile River Basin in Africa, the Colorado River Basin in the US, or river basins in Western and Central Asia. There the effects of a dry year have the potential to impact reservoir levels and downstream releases for several subsequent years, prompting tensions in transboundary basins. Yet, current reservoir operation rules in those reservoirs do not reflect this by integrating past climate history and release decisions among the factors that influence operating decisions. This work proposes and demonstrates an adaptive reservoir operating rule that explicitly accounts for the recent history of release decisions, and not only current storage level and near-term inflow forecasts. This implies adding long-term (e.g., multiyear) objectives to the existing short-term (e.g., annual) ones. We apply these operating rules to the Grand Ethiopian Renaissance Dam, a large reservoir under construction on the Blue Nile River. Energy generation has to be balanced with the imperative of releasing enough water in low flow years (e.g., the minimum 1, 2 or 3 year cumulative flow) to avoid tensions with downstream countries, Sudan and Egypt. Maximizing the minimum multi-year releases could be of interest for the Nile problem to minimize the impact on performance of the large High Aswan Dam in Egypt. Objectives include maximizing the average and minimum annual energy generation and maximizing the minimum annual, two year and three year cumulative releases. The system model is tested using 30 stochastically generated streamflow series. One can then derive adaptive release rules depending on the value of one- and two-year total releases with respect to thresholds. Then, there are 3 sets of release rules for the reservoir depending on whether one or both thresholds are not met, vs. only one with a non-adaptive rule. Multi-objective evolutionary algorithms (MOEAs) are used to obtain the Pareto front, i.e., non-dominated adaptive and non-adaptive operating rule sets. Implementing adaptive rules is found to improve the trade-offs between energy generation criteria and minimum release targets. Compared with non-adaptive operations, an adaptive operating policy shows an increase of around 3 and 10 Billion cubic meters in the minimum 1 and 3-year cumulative releases for a given value of the same average annual energy generation.
NASA Astrophysics Data System (ADS)
Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping
2017-05-01
Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure and prevent soil moisture depletion (e.g. artificial soil cover and water conveyance channels) were suggested to better protect desert riparian forests under climate change and intensive human disturbance.
Radiotelemetry to estimate stream life of adult chum salmon in the McNeil River, Alaska
Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.
2011-01-01
Estimating salmon escapement is one of the fundamental steps in managing salmon populations. The area-under-the-curve (AUC) method is commonly used to convert periodic aerial survey counts into annual salmon escapement indices. The AUC requires obtaining accurate estimates of stream life (SL) for target species. Traditional methods for estimating SL (e.g., mark–recapture) are not feasible for many populations. Our objective in this study was to determine the average SL of chum salmon Oncorhynchus keta in the McNeil River, Alaska, through radiotelemetry. During the 2005 and 2006 runs, 155 chum salmon were fitted with mortality-indicating radio tags as they entered the McNeil River and tracked until they died. A combination of remote data loggers, aerial surveys, and foot surveys were used to determine the location of fish and provide an estimate of time of death. Higher predation resulted in tagged fish below McNeil Falls having a significantly shorter SL (12.6 d) than those above (21.9 d). The streamwide average SL (13.8 d) for chum salmon at the McNeil River was lower than the regionwide value (17.5 d) previously used to generate AUC indices of chum salmon escapement for the McNeil River. We conclude that radiotelemetry is an effective tool for estimating SL in rivers not well suited to other methods.
Seasonal water chemistry variability in the Pangani River basin, Tanzania.
Selemani, Juma R; Zhang, Jing; Muzuka, Alfred N N; Njau, Karoli N; Zhang, Guosen; Maggid, Arafa; Mzuza, Maureen K; Jin, Jie; Pradhan, Sonali
2017-11-01
The stable isotopes of δ 18 O, δ 2 H, and 87 Sr/ 86 Sr and dissolved major ions were used to assess spatial and seasonal water chemistry variability, chemical weathering, and hydrological cycle in the Pangani River Basin (PRB), Tanzania. Water in PRB was NaHCO 3 type dominated by carbonate weathering with moderate total dissolved solids. Major ions varied greatly, increasing from upstream to downstream. In some stations, content of fluoride and sodium was higher than the recommended drinking water standards. Natural and anthropogenic factors contributed to the lowering rate of chemical weathering; the rate was lower than most of tropical rivers. The rate of weathering was higher in Precambrian than volcanic rocks. 87 Sr/ 86 Sr was lower than global average whereas concentration of strontium was higher than global average with mean annual flux of 0.13 × 10 6 mol year -1 . Evaporation and altitude effects have caused enrichment of δ 18 O and δ 2 H in dry season and downstream of the river. Higher d-excess value than global average suggests that most of the stations were supplied by recycled moisture. Rainfall and groundwater were the major sources of surface flowing water in PRB; nevertheless, glacier from Mt. Kilimanjaro has insignificant contribution to the surface water. We recommend measures to be taken to reduce the level of fluoride and sodium before domestic use.
Aqueous geochemistry and diagenesis in the eastern Snake River Plain aquifer system, Idaho
Wood, Warren W.; Low, Walton H.
1986-01-01
Water budget and isotopic analyses of water in the eastern Snake River Plain aquifer system confirm that most, if not all, of the water is local meteoric in origin. Solute mass-balance arguments suggest that ∼5 × 109 moles of calcite and 2.6 × 109 moles of silica are precipitated annually in the aquifer. Isotopic evaluations of calcite and petrographic observation of silica support the low-temperature origin of these deposits. Approximately 2.8 × 109 moles of chloride, 4.5 × 109 moles of sodium, 1.4 × 109 moles of sulfate, and 2 × 109 moles of magnesium are removed annually from the aquifer framework by solution. Proposed weathering reactions are shown to be consistent with mass balance, carbon isotopes, observed mineralogy, and chemical thermodynamics. Large quantities of sodium, chloride, and sulfate are being removed from the system relative to their abundances in the rock. Sedimentary interbeds, which are estimated to compose <10% of the aquifer volume, may yield as much as 20% of the solutes generated within the aquifer. Weathering rate of the aquifer framework of the eastern Snake River Plain is 14 (Mg/km2)/yr or less than half the average of the North American continent. This contrasts with the rate for the eastern Snake River basin, 34 (Mg/km2)/yr, which is almost identical to the average for the North American continent. Identification and quantification of reactions controlling solute concentrations in ground water in the eastern plain indicate that the aquifer is not an “inert bathtub” that simply stores and transmits water and solutes but is undergoing active diagenesis and is both a source and sink for solutes.
NASA Astrophysics Data System (ADS)
Carlo Espinoza, Jhan; Ronchail, Josyane; Loup Guyot, Jean; Junquas, Clementine; Drapeau, Guillaume; Martinez, Jean Michel; Santini, William; Vauchel, Philippe; Lavado, Waldo; Ordoñez, Julio; Espinoza, Raúl
2012-06-01
In this work we document and analyze the hydrological annual cycles characterized by a rapid transition between low and high flows in the Amazonas River (Peruvian Amazon) and we show how these events, which may impact vulnerable riverside residents, are related to regional climate variability. Our analysis is based on comprehensive discharge, rainfall and average suspended sediment data sets. Particular attention is paid to the 2010-11 hydrological year, when an unprecedented abrupt transition from the extreme September 2010 drought (8300 m3 s-1) to one of the four highest discharges in April 2011 (49 500 m3 s-1) was recorded at Tamshiyacu (Amazonas River). This unusual transition is also observed in average suspended sediments. Years with a rapid increase in discharge are characterized by negative sea surface temperature anomalies in the central equatorial Pacific during austral summer, corresponding to a La Niña-like mode. It originates a geopotential height wave train over the subtropical South Pacific and southeastern South America, with a negative anomaly along the southern Amazon and the southeastern South Atlantic convergence zone region. As a consequence, the monsoon flux is retained over the Amazon and a strong convergence of humidity occurs in the Peruvian Amazon basin, favoring high rainfall and discharge. These features are also reported during the 2010-11 austral summer, when an intense La Niña event characterized the equatorial Pacific.
Geomorphology and river dynamics of the lower Copper River, Alaska
Brabets, Timothy P.; Conaway, Jeffrey S.
2009-01-01
Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the effects that betterments, such as guide banks or bridge extensions, would have on flow conditions and to provide sound conceptual information that could help decide if a proposed betterment will work or determine potential problems that need to be addressed for a particular betterment. The ability of the model to simulate these hydraulic conditions was constrained by the accuracy and level of channel geometry detail, which is constantly changing in the lower Copper River.
Hydrologic Drought in the Colorado River Basin
NASA Astrophysics Data System (ADS)
Timilsena, J.; Piechota, T.; Hidalgo, H.; Tootle, G.
2004-12-01
This paper focuses on drought scenarios of the Upper Colorado River Basin (UCRB) for the last five hundred years and evaluates the magnitude, severity and frequency of the current five-year drought. Hydrologic drought characteristics have been developed using the historical streamflow data and tree ring chronologies in the UCRB. Historical data include the Colorado River at Cisco and Lees Ferry, Green River, Palmer Hydrologic Drought Index (PHDI), and the Z index. Three ring chronologies were used from 17 spatially representative sites in the UCRB from NOAA's International Tree Ring Data. A PCA based regression model procedures was used to reconstruct drought indices and streamflow in the UCRB. Hydrologic drought is characterized by its duration (duration in year in which cumulative deficit is continuously below thresholds), deficit magnitude (the cumulative deficit below the thresholds for consecutive years), severity (magnitude divided by the duration) and frequency. Results indicate that the current drought ranks anywhere from the 5th to 20th worst drought during the period 1493-2004, depending on the drought indicator and magnitude. From a short term perspective (using annual data), the current drought is more severe than if longer term average (i.e., 5 or 10 year averages) are used to define the drought.
NASA Astrophysics Data System (ADS)
Avery, G. Brooks; Kieber, Robert J.; Willey, Joan D.; Shank, G. Christopher; Whitehead, Robert F.
2004-09-01
The hurricane flux of rain and river water dissolved organic carbon (DOC) to Long Bay located on the southeastern coast of the United States was determined for four hurricanes that made landfall in the Cape Fear region of North Carolina. Riverine flux of DOC following hurricanes Fran (1996) and Floyd (1999) represented one third and one half of the entire annual river flux of DOC to Long Bay, respectively. The majority of this DOC was recalcitrant and not available for biological consumption. The high flux of DOC from hurricane Floyd resulted from extremely high precipitation amounts (in excess of 50 cm) associated with the hurricane and subsequent flooding. High riverine DOC fluxes were observed following hurricane Fran but not hurricanes Bertha (1996) and Bonnie (1998). The westerly path of Fran deposited rain inland along the Cape Fear River watershed, causing high river flow conditions, while Bonnie and Bertha took an eastern path, resulting in a minimal effect to the Cape Fear River flow rates. The rainwater flux of total DOC to Long Bay from the four hurricanes was not as dramatic as that observed for riverine fluxes. However, unlike river water DOC that is refractory, rainwater DOC is highly labile. Rainwater from the four hurricanes in this study deposited 2-5 times the DOC deposited in an average storm. This represented a flux of 3-9% of the entire annual budget of bioavailable DOC to Long Bay being deposited over a 1 or 2 day period, likely spurring short-term secondary productivity following the hurricanes.
Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.
2018-02-28
The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.
Jiang, Chong; Zhang, Linbo
2015-09-25
This study analyzes the impact of climate change on the eco-environment of the Three-Rivers Headwater Region (TRHR), Tibetan Plateau, China. Temperature and precipitation experienced sharp increases in this region during the past 57 years. A dramatic increase in winter temperatures contributed to a rise in average annual temperatures. Moreover, annual runoff in the Lancang (LRB) and Yangtze (YARB) river basins showed an increasing trend, compared to a slight decrease in the Yellow River Basin (YRB). Runoff is predominantly influenced by rainfall, which is controlled by several monsoon systems. The water temperature in the YRB and YARB increased significantly from 1958 to 2007 (p < 0.001), driven by air temperature changes. Additionally, owing to warming and wetting trends in the TRHR, the net primary productivity (NPP) and normalized difference vegetation index (NDVI) showed significant increasing trends during the past half-century. Furthermore, although an increase in water erosion due to rainfall erosivity was observed, wind speeds declined significantly, causing a decline in wind erosion, as well as the frequency and duration of sandstorms. A clear regional warming trend caused an obvious increasing trend in glacier runoff, with a maximum value observed in the 2000s.
Jiang, Chong; Zhang, Linbo
2015-01-01
This study analyzes the impact of climate change on the eco-environment of the Three-Rivers Headwater Region (TRHR), Tibetan Plateau, China. Temperature and precipitation experienced sharp increases in this region during the past 57 years. A dramatic increase in winter temperatures contributed to a rise in average annual temperatures. Moreover, annual runoff in the Lancang (LRB) and Yangtze (YARB) river basins showed an increasing trend, compared to a slight decrease in the Yellow River Basin (YRB). Runoff is predominantly influenced by rainfall, which is controlled by several monsoon systems. The water temperature in the YRB and YARB increased significantly from 1958 to 2007 (p < 0.001), driven by air temperature changes. Additionally, owing to warming and wetting trends in the TRHR, the net primary productivity (NPP) and normalized difference vegetation index (NDVI) showed significant increasing trends during the past half-century. Furthermore, although an increase in water erosion due to rainfall erosivity was observed, wind speeds declined significantly, causing a decline in wind erosion, as well as the frequency and duration of sandstorms. A clear regional warming trend caused an obvious increasing trend in glacier runoff, with a maximum value observed in the 2000s. PMID:26404333
NASA Astrophysics Data System (ADS)
Harrington, Seán T.; Harrington, Joseph R.
2013-03-01
This paper presents an assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue in Ireland. The rivers, located in the South of Ireland, are underlain by sandstone, limestones and mudstones, and the catchments are primarily agricultural. A comprehensive database of suspended sediment data is not available for rivers in Ireland. For such situations, it is common to estimate suspended sediment concentrations from the flow rate using the suspended sediment rating curve approach. These rating curves are most commonly constructed by applying linear regression to the logarithms of flow and suspended sediment concentration or by applying a power curve to normal data. Both methods are assessed in this paper for the Rivers Bandon and Owenabue. Turbidity-based suspended sediment loads are presented for each river based on continuous (15 min) flow data and the use of turbidity as a surrogate for suspended sediment concentration is investigated. A database of paired flow rate and suspended sediment concentration values, collected between the years 2004 and 2011, is used to generate rating curves for each river. From these, suspended sediment load estimates using the rating curve approach are estimated and compared to the turbidity based loads for each river. Loads are also estimated using stage and seasonally separated rating curves and daily flow data, for comparison purposes. The most accurate load estimate on the River Bandon is found using a stage separated power curve, while the most accurate load estimate on the River Owenabue is found using a general power curve. Maximum full monthly errors of - 76% to + 63% are found on the River Bandon with errors of - 65% to + 359% found on the River Owenabue. The average monthly error on the River Bandon is - 12% with an average error of + 87% on the River Owenabue. The use of daily flow data in the load estimation process does not result in a significant loss of accuracy on either river. Historic load estimates (with a 95% confidence interval) were hindcast from the flow record and average annual loads of 7253 ± 673 tonnes on the River Bandon and 1935 ± 325 tonnes on the River Owenabue were estimated to be passing the gauging stations.
Shi, Guohua; Peng, Changhui; Wang, Meng; Shi, Shengwei; Yang, Yanzheng; Chu, Junyao; Zhang, Junjun; Lin, Guanghui; Shen, Yan; Zhu, Qiuan
2016-01-01
The lateral transport of dissolved organic carbon (DOC) plays an important role in linking the carbon cycles of terrestrial and aquatic ecosystems. Neglecting the lateral flow of dissolved organic carbon can lead to an underestimation of the organic carbon budget of terrestrial ecosystems. It is thus necessary to integrate DOC concentrations and flux into carbon cycle models, particularly with regard to the development of models that are intended to directly link terrestrial and ocean carbon cycles. However, to achieve this goal, more accurate information is needed to better understand and predict DOC dynamics. In this study, we compiled an inclusive database of available data collected from the Yangtze River, Yellow River and Pearl River in China. The database is collected based on online literature survey and analysed by statistic method. Overall, our results revealed a positive correlation between DOC flux and discharge in all three rivers, whereas the DOC concentration was more strongly correlated with the regional net primary productivity (NPP). We estimated the total DOC flux exported by the three rivers into the China Sea to be approximately 2.73 Tg yr-1. Specifically, the annual flux of DOC from the Yangtze River, Yellow River and Pearl River was estimated to be 1.85 Tg yr-1, 0.06 Tg yr-1 and 0.82 Tg yr-1, respectively, and the average annual DOC concentrations were estimated to be 2.24 ± 0.53 mg L-1, 2.70 ± 0.38 mg L-1 and 1.51 ± 0.09 mg L-1, respectively. Seasonal variations in DOC concentrations are greatly influenced by the interaction between temperature and precipitation. NPP is significantly and positively related to the DOC concentration in the Yangtze River and the Pearl River. In addition, differences in climate and the productivity of the vegetation may influence both the flux and concentrations of DOC transported by the rivers and thus potentially affect estuarine geochemistry. PMID:27755581
Berkas, W.R.; Femmer, Suzanne R.; Mesko, T.O.; Thompson, B.W.
1987-01-01
The U. S. Department of Agriculture, Soil Conservation Service, in accordance with Public Law 566, is implementing various types of water-land improvement practices in the Little Black River basin in southeastern Missouri. These practices are designed, in part, to decrease the suspended sediment (SS) transport in the basin, decrease flood damage in the basin, and improve drainage in the agricultural area. The general features of the basin, such as geology, groundwater hydrology, soils, land use, water use, and precipitation are described; surface water quantity, quality, and suspended sediment discharge are also described. The aquifers are the Mississippi River valley alluvial aquifer, which can yield about 3,500 gal/min to properly constructed wells, and the Ozark and St. Francois aquifers, which can yield from about 30 to 500 gal/min to properly constructed wells. Soils in the area have formed in loess and cherty residuum in the uplands or have formed in alluvial sediment in the lowlands. About 93% of the estimated 3 billion gal/year of water used in the basin is for crop irrigation. The average monthly precipitation varies slightly throughout the year, with an average annual precipitation of about 47 inches. Water quality data were collected at seven stations. Specific conductance values ranged from 50 to 400 microsiemens/cm at 25 C. Water temperatures ranged from 0.0 C in the winter to 33.5 C in summer. pH values ranged from 6.4 to 8.5 units. Dissolved oxygen concentrations ranged from 2.2 to 12.8 ml/l. Total nitrogen concentrations ranged from 0.13 to 2.20 ml/l as nitrogen, with organic nitrogen as the most abundant form. Phosphorus concentrations ranged from zero to 0.29 ml/l as phosphorus. Bacterial counts were largest during storm runoff in the basin with livestock waste as the significant contributor. For the period from October 1, 1980, to September 30, 1984, the average annual SS discharge ranged from 2,230 tons/yr in the headwater areas to 27,800 tons/yr at the most downstream station. The average annual SS yield ranged from 59.6 to 85.9 tons/sq mi. (Author 's abstract)
Lower Granite Dam Smolt Monitoring Program, 2005-2006 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mensik, Fred; Rapp, Shawn; Ross, Doug
2007-01-01
The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam,more » 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers between years, considering both annual river flows and annual project operations, because both affect fish migration and collection.« less
Lower Granite Dam Smolt Monitoring Program, Annual Report 2005-2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menski, Fred
2007-01-01
The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam,more » 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers between years, considering both annual river flows and annual project operations, because both affect fish migration and collection.« less
Harwell, Glenn R.; Stengel, Victoria G.; Bumgarner, Johnathan R.
2016-04-20
The calibrated watershed model was used to perform brush-management simulations. The National Land Cover Database 2006, which was the land-cover data used to develop the watershed model, was modified to simulate shrubland replacement with grassland in each of the 35 model subbasins. After replacement of shrubland with grassland in areas with land slope less than 20 percent and excluding riparian areas, the modeled 20-year (1994 through 2013) water yields to Lake Alan Henry increased by 114,000 acre-feet or about 5,700 acre-feet per year. In terms of the increase in water yield per acre of shrubland replaced with grassland, the average annual increase in water yield was 17,300 gallons per acre. Within the modeled subbasins, the increase in average annual water yield ranged from 5,850 to 34,400 gallons per acre of shrubland replaced with grassland. Subbasins downstream from the Justiceburg gage had a higher average annual increase in water yield (21,700 gallons per acre) than subbasins upstream from the streamflow-gaging station (16,800 gallons per acre).
Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.
2017-02-13
This report describes a study of the hydrogeology and simulation of groundwater flow for the Canadian River alluvial aquifer in western and central Oklahoma conducted by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board. The report (1) quantifies the groundwater resources of the Canadian River alluvial aquifer by developing a conceptual model, (2) summarizes the general water quality of the Canadian River alluvial aquifer groundwater by using data collected during August and September 2013, (3) evaluates the effects of estimated equal proportionate share (EPS) on aquifer storage and streamflow for time periods of 20, 40, and 50 years into the future by using numerical groundwater-flow models, and (4) evaluates the effects of present-day groundwater pumping over a 50-year period and sustained hypothetical drought conditions over a 10-year period on stream base flow and groundwater in storage by using numerical flow models. The Canadian River alluvial aquifer is a Quaternary-age alluvial and terrace unit consisting of beds of clay, silt, sand, and fine gravel sediments unconformably overlying Tertiary-, Permian-, and Pennsylvanian-age sedimentary rocks. For groundwater-flow modeling purposes, the Canadian River was divided into Reach I, extending from the Texas border to the Canadian River at the Bridgeport, Okla., streamgage (07228500), and Reach II, extending downstream from the Canadian River at the Bridgeport, Okla., streamgage (07228500), to the confluence of the river with Eufaula Lake. The Canadian River alluvial aquifer spans multiple climate divisions, ranging from semiarid in the west to humid subtropical in the east. The average annual precipitation in the study area from 1896 to 2014 was 34.4 inches per year (in/yr).A hydrogeologic framework of the Canadian River alluvial aquifer was developed that includes the areal and vertical extent of the aquifer and the distribution, texture variability, and hydraulic properties of aquifer materials. The aquifer areal extent ranged from less than 0.2 to 8.5 miles wide. The maximum aquifer thickness was 120 feet (ft), and the average aquifer thickness was 50 ft. Average horizontal hydraulic conductivity for the Canadian River alluvial aquifer was calculated to be 39 feet per day, and the maximum horizontal hydraulic conductivity was calculated to be 100 feet per day.Recharge rates to the Canadian River alluvial aquifer were estimated by using a soil-water-balance code to estimate the spatial distribution of groundwater recharge and a water-table fluctuation method to estimate localized recharge rates. By using daily precipitation and temperature data from 39 climate stations, recharge was estimated to average 3.4 in/yr, which corresponds to 8.7 percent of precipitation as recharge for the Canadian River alluvial aquifer from 1981 to 2013. The water-table fluctuation method was used at one site where continuous water-level observation data were available to estimate the percentage of precipitation that becomes groundwater recharge. Estimated annual recharge at that site was 9.7 in/yr during 2014.Groundwater flow in the Canadian River alluvial aquifer was identified and quantified by a conceptual flow model for the period 1981–2013. Inflows to the Canadian River alluvial aquifer include recharge to the water table from precipitation, lateral flow from the surrounding bedrock, and flow from the Canadian River, whereas outflows include flow to the Canadian River (base-flow gain), evapotranspiration, and groundwater use. Total annual recharge inflows estimated by the soil-water-balance code were multiplied by the area of each reach and then averaged over the simulated period to produce an annual average of 28,919 acre-feet per year (acre-ft/yr) for Reach I and 82,006 acre-ft/yr for Reach II. Stream base flow to the Canadian River was estimated to be the largest outflow of groundwater from the aquifer, measured at four streamgages, along with evapotranspiration and groundwater use, which were relatively minor discharge components.Objectives for the numerical groundwater-flow models included simulating groundwater flow in the Canadian River alluvial aquifer from 1981 to 2013 to address groundwater use and drought scenarios, including calculation of the EPS pumping rates. The EPS for the alluvial and terrace aquifers is defined by the Oklahoma Water Resources Board as the amount of fresh water that each landowner is allowed per year per acre of owned land to maintain a saturated thickness of at least 5 ft in at least 50 percent of the overlying land of the groundwater basin for a minimum of 20 years.The groundwater-flow models were calibrated to water-table altitude observations, streamgage base flows, and base-flow gain to the Canadian River. The Reach I water-table altitude observation root-mean-square error was 6.1 ft, and 75 percent of residuals were within ±6.7 ft of observed measurements. The average simulated stream base-flow residual at the Bridgeport streamgage (07228500) was 8.8 cubic feet per second (ft3/s), and 75 percent of residuals were within ±30 ft3/s of observed measurements. Simulated base-flow gain in Reach I was 8.8 ft3/s lower than estimated base-flow gain. The Reach II water-table altitude observation root-mean-square error was 4 ft, and 75 percent of residuals were within ±4.3 ft of the observations. The average simulated stream base-flow residual in Reach II was between 35 and 132 ft3/s. The average simulated base-flow gain residual in Reach II was between 11.3 and 61.1 ft3/s.Several future predictive scenarios were run, including estimating the EPS pumping rate for 20-, 40-, and 50-year life of basin scenarios, determining the effects of current groundwater use over a 50-year period into the future, and evaluating the effects of a sustained drought on water availability for both reaches. The EPS pumping rate was determined to be 1.35 acre-feet per acre per year ([acre-ft/acre]/yr) in Reach I and 3.08 (acre-ft/acre)/yr in Reach II for a 20-year period. For the 40- and 50-year periods, the EPS rate was determined to be 1.34 (acre-ft/acre)/yr in Reach I and 3.08 (acre-ft/acre)/yr in Reach II. Storage changes decreased in tandem with simulated groundwater pumping and were minimal after the first 15 simulated years for Reach I and the first 8 simulated years for Reach II.Groundwater pumping at year 2013 rates for a period of 50 years resulted in a 0.2-percent decrease in groundwater-storage volumes in Reach I and a 0.6-percent decrease in the groundwater-storage volumes in Reach II. The small changes in storage are due to groundwater use by pumping, which composes a small percentage of the total groundwater-flow model budgets for Reaches I and II.A sustained drought scenario was used to evaluate the effects of a hypothetical 10-year drought on water availability. A 10-year period was chosen where the effects of drought conditions would be simulated by decreasing recharge by 75 percent. In Reach I, average simulated stream base flow at the Bridgeport streamgage (07228500) decreased by 58 percent during the hypothetical 10-year drought compared to average simulated stream base flow during the nondrought period. In Reach II, average simulated stream base flows at the Purcell streamgage (07229200) and Calvin streamgage (07231500) decreased by 64 percent and 54 percent, respectively. In Reach I, the groundwater-storage drought scenario resulted in a storage decline of 30 thousand acre-feet, or an average decline in the water table of 1.2 ft. In Reach II, the groundwater-storage drought scenario resulted in a storage decline of 71 thousand acre-feet, or an average decline in the water table of 2.0 ft.
Schramm, Harold; Richardson, William B.; Knights, Brent C.
2015-01-01
Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the longitudinal gradient of the Mississippi River and provide informative contrasts to guide floodplain management. Prediction of the effects of climate change on this system will be complicated by the magnitude of the watershed that encompasses 41 % of the continental USA and multiple climatic regions.
Burns, Alan W.
1980-01-01
A hydrologic analysis of the proposed Badger-Beaver Creeks artificial-recharge project in Morgan County, Colo., was made with the aid of three digital computer models: A canal-distribution model, a ground-water flow model, and a stream-aquifer model. Statistical summaries of probable diversions from the South Platte River based on a 27-year period of historical flows indicate that an average-annual diversion of 96,000 acre-feet and a median-annual diversion of 43,000 acre-feet would be available. Diversions would sustain water in ponds for waterfowl habitat for an average of about five months per year, with a miximum pond surface area of about 300 acres with the median diversions and a maximum pond surface area of about 1,250 acres at least one-half of the years with the historic diversions. If the annual diversion were 43,000 acre-feet, recharge to the two alluvial aquifers would raise water levels sufficiently to create flowing streams in the channels of Beaver and Badger Creeks while allowing an increase in current ground-water pumping. The only area of significant waterlogging would be along the proposed delivery canal on the west edge of Badger Creek valley. If the total water available were diverted, the aquifer system could not transmit the water fast enough to the irrigation areas to avoid considerable waterlogging in the recharge areas. The impact of the proposed project on the South Platte River basin would be minimal once the ground-water system attained steady-state conditions, but that may take decades with a uniform diversion of the 43,000 acre-feet annually. (USGS)
Flow-duration-frequency behaviour of British rivers based on annual minima data
NASA Astrophysics Data System (ADS)
Zaidman, Maxine D.; Keller, Virginie; Young, Andrew R.; Cadman, Daniel
2003-06-01
A comparison of different probability distribution models for describing the flow-duration-frequency behaviour of annual minima flow events in British rivers is reported. Twenty-five catchments were included in the study, each having stable and natural flow records of at least 30 years in length. Time series of annual minima D-day average flows were derived for each record using durations ( D) of 1, 7, 30, 60, 90, and 365 days and used to construct low flow frequency curves. In each case the Gringorten plotting position formula was used to determine probabilities (of non-exceedance). Four distribution types—Generalised Extreme Value (GEV), Generalised Logistic (GL), Pearson Type-3 (PE3) and Generalised Pareto (GP)—were used to model the probability distribution function for each site. L-moments were used to parameterise individual models, whilst goodness-of-fit tests were used to assess their match to the sample data. The study showed that where short durations (i.e. 60 days or less) were considered, high storage catchments tended to be best represented by GL and GEV distribution models whilst low storage catchments were best described by PE3 or GEV models. However, these models produced reasonable results only within a limited range (e.g. models for high storage catchments did not produce sensible estimates of return periods where the prescribed flow was less than 10% of the mean flow). For annual minima series derived using long duration flow averages (e.g. more than 90 days), GP and GEV models were generally more applicable. The study suggests that longer duration minima do not conform to the same distribution types as short durations, and that catchment properties can influence the type of distribution selected.
Regional precipitation trend analysis at the Langat River Basin, Selangor, Malaysia
NASA Astrophysics Data System (ADS)
Palizdan, Narges; Falamarzi, Yashar; Huang, Yuk Feng; Lee, Teang Shui; Ghazali, Abdul Halim
2014-08-01
Various hydrological and meteorological variables such as rainfall and temperature have been affected by global climate change. Any change in the pattern of precipitation can have a significant impact on the availability of water resources, agriculture, and the ecosystem. Therefore, knowledge on rainfall trend is an important aspect of water resources management. In this study, the regional annual and seasonal precipitation trends at the Langat River Basin, Malaysia, for the period of 1982-2011 were examined at the 95 % level of significance using the regional average Mann-Kendall (RAMK) test and the regional average Mann-Kendall coupled with bootstrap (RAMK-bootstrap) method. In order to identify the homogeneous regions respectively for the annual and seasonal scales, firstly, at-site mean total annual and separately at-site mean total seasonal precipitation were spatialized into 5 km × 5 km grids using the inverse distance weighting (IDW) algorithm. Next, the optimum number of homogeneous regions (clusters) is computed using the silhouette coefficient approach. Next, the homogeneous regions were formed using the K-mean clustering method. From the annual scale perspective, all three regions showed positive trends. However, the application of two methods at this scale showed a significant trend only in the region AC1. The region AC2 experienced a significant positive trend using only the RAMK test. On a seasonal scale, all regions showed insignificant trends, except the regions I1C1 and I1C2 in the Inter-Monsoon 1 (INT1) season which experienced significant upward trends. In addition, it was proven that the significance of trends has been affected by the existence of serial and spatial correlations.
A 25-Year Retrospective Analysis of River Nitrogen Fluxes in the Atchafalaya
NASA Astrophysics Data System (ADS)
Xu, Y.
2005-05-01
Nitrogen enrichment from the upper Mississippi River Basin has been attributed to be the major cause for the hypoxia in the Northern Gulf of Mexico. The hypoxia threatens not only the aquatic ecosystem health but Louisiana's fishery industry directly among other problems. Although fresh water diversion from the lower Mississippi River into the region's wetlands has been considered an alternative means for reducing nitrogen loading, it is largely uncertain how much nitrogen can actually be retained from the overflowing waters in these natural wetlands. Generally, there is a knowledge gap in what tools are available for accurate assessment of nitrogen inflow, outflow and removal potential for the complex and diverse coastal floodplain systems. This study is to seek answers to three critical questions: (1) Does the Atchafalaya River Swamp remove a significant amount of nitrogen from the overflowing water or release more nitrogen into the Gulf than removing it? (2) How seasonally and annually do the nitrogen removal or release rates fluctuate? (3) What are the relationships between the nitrogen removal capacity and the basin's hydrologic conditions such as river stage and discharge? By utilizing river's long-term discharge and water quality data (1978-2002), monthly and annual nitrogen fluxes were quantified, and their relationships with the basin's hydrologic conditions were investigated. A total Kjeldahl nitrogen (TKN) mass input-output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the organic nitrogen removal potential for this largest freshwater swamp basin in North America. The results showed that on average, TKN input into the Atchafalaya was 200,323 Mg yr-1 and TKN output leaving the basin was 145,917 Mg yr-1, resulting in a 27% removal rate of nitrogen. Monthly nitrogen input and output in the basin were highest from March to June (input vs. output: 25,000 vs. 18,000 Mg mon-1) and lowest from August to November (8,000 vs. 6,000 Mg mon-1). There was a large variation in both annual and inter-annual nitrogen removals, and the variability was positively correlated with the amount of inflow water at Simmesport. However, no close relationship between the river inflow and percentage nitrogen removal rate was found. The results gained from this study suggest that regulating the river's inflow will help reduce nitrogen loading of the Mississippi River to the Gulf of Mexico. The in-stream loss of nitrogen indicates that previous studies may have overestimated nitrogen discharge from the Mississippi-Atchafalaya River system. Furthermore, the study found that knowledge on spatial hydrological conditions in the basin is needed to understand nitrogen dynamics in the Atchafalaya River Swamp.
Map showing length of freeze-free season in the Salina quadrangle, Utah
Covington, Harry R.
1972-01-01
In general, long freeze-free periods occur at low elevations, and short freeze-free periods occur at high elevations. But some valley floors have shorter freeze-free seasons than the glancing foothills because air cooled at high elevations flows downward and is trapped in the valleys. This temperature pattern occurs in the western part of the quadrangle in Rabbit Valley, Grass Valley, and the Sevier River Valley near Salina.Because year-round weather stations are sparse in Utah, a special technique for estimating length of freeze-free season was developed by Dr. Gaylen L. Ashcroft, Assistant Professor of Climatology, Utah State University, and E. Arlo Richardson, State Climatologist, U.S. Weather Bureau, based on average annual temperature, average annual temperature range, average daily temperature range, and average july maximum temperature. This technique was used in preparation of the map showing “Length of 32°F freeze-free season for Utah,” figure 23 in Hydrologic Atlas of Utah (Utah State University and Utah Division of Water Resources, 1968), from which the data for this map were taken.
Wilson, Timothy P.; Bonin, Jennifer L.
2007-01-01
A study was undertaken to determine the concentrations and loads of sediment and chemicals delivered to Newark and Raritan Bays by five major tributaries: the Raritan, Passaic, Rahway, Elizabeth, and Hackensack Rivers. This study was initiated by the State of New Jersey as Study I-C of the New Jersey Toxics Reduction Workplan for the New York-New Jersey Harbor, working under the NY-NJ Harbor Estuary Program (HEP) Contaminant Assessment and Reduction Program (CARP). The CARP is a comprehensive effort to evaluate the levels and sources of toxic contaminants to the tributaries and estuarine areas of the NY-NJ Harbor, including Newark and Raritan Bays. The Raritan and Passaic Rivers are large rivers (mean daily discharges of 1,189 and 1,132 cubic feet per second (ft3/s), respectively), that drain large, mixed rural/urban basins. The Elizabeth and Rahway Rivers are small rivers (mean daily discharges of 25.9 and 49.1 ft3/s, respectively) that drain small, highly urbanized and industrialized basins. The Hackensack River drains a small, mixed rural/urban basin, and its flow is highly controlled by an upstream reservoir (mean daily discharge of 90.4 ft3/s). These rivers flow into urbanized estuaries and ultimately, to the Atlantic Ocean. Each of these tributaries were sampled during two to four storm events, and twice each during low-flow discharge conditions. Samples were collected using automated equipment installed at stations adjacent to U.S. Geological Survey streamflow-gaging stations near the heads-of-tide of these rivers. Large-volume (greater than 50 liters of water and a target of 1 gram of sediment), flow-weighted composite samples were collected for chemical analysis using filtration to collect suspended particulates and exchange resin (XAD-2) to sequester dissolved contaminants. Composite whole-water samples were collected for dissolved polycyclic aromatic hydrocarbons (PAH) and for trace element analysis. Additional discrete grab samples were collected throughout each event for trace-element analysis, and multiple samples were collected for suspended sediment (SS), particulate carbon (POC), and dissolved organic carbon (DOC) analysis. The suspended sediment and exchange resin were analyzed for 114 polychlorinated biphenyls (PCBs, by US EPA method 1668A, modified), seven 2,3,7,8-substituted chlorinated dibenzo-p-dioxins (CDD) and 10 dibenzo-p-difurans (CDF) (by US EPA method 1613), 24 PAHs (by low-resolution isotope dilution/mass-spectral methods), 27 organo-chlorine pesticides (OCPs) (by high resolution isotope dilution/mass-spectral methods), and the trace elements mercury (Hg), methyl-mercury (MeHg), lead (Pb), and cadmium (Cd). Isotope dilution methods using gas chromatography and high-and low-resolution mass spectral (GC/MS) detection were used to accurately identify and quantify organic compounds in the sediment and water phases. Trace elements were measured using inductively coupled plasma-mass spectrometry and cold-vapor atomic fluorescence spectrometry methods. The loads of sediment, carbon, and chemicals were calculated for each storm and low-flow event sampled. Because only a few storm events were sampled, yearly loads of sediment were calculated from rating curves developed using historical SS and POC data. The average annual loads of sediment and carbon were calculated for the period 1975-2000, along with the loads for the selected water years being modeled as part of the New York New Jersey Harbor Estuary Program CARP. Comparison of loads calculated using the rating curve method to loads measured during the sampled storm events indicated that the rating curve method likely underpredicts annual loads. Average annual loads of suspended sediment in the tributaries were estimated to be 395,000 kilograms per year (kg/yr) in the Hackensack River, 417,000 kg/yr in the Elizabeth River, 882,000 kg/yr in the Rahway River, 22,700,000 kg/yr in the Passaic River, and 93,100,000 kg/yr in the Raritan River. Averag
Barton, Gary J.
2004-01-01
The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated high flows. Conveyance losses in the Pebble-Topaz reach were greatest, about 283 cubic feet per second, during the spring regulated high flows and were attributed to a hydroelectric project.Comparison of water levels in 30 wells in the Portneuf Valley during September and October 1968 and 2001 indicated long-term declines since 1968; the median decline was 3.4 feet. September and October were selected for characterizing long-term ground-water-level fluctuations because declines associated with irrigation reach a maximum at the end of the irrigation season. The average annual snowpack in the study area has declined significantly; 1945 85 average annual snowpack was 16.1 inches, whereas 1986 through 2002 average annual snowpack was 11.6 inches. Water-level declines during 1998 2002 may be partially attributable to the extended dry climatic conditions. It is unclear whether the declines could be partially attributed to increases in ground-water withdrawals. Between 1968 and 1980, water rights for ground-water withdrawals nearly doubled from 23,500 to 46,000 acre-feet per year. During this period, ground-water levels were relatively constant and did not exhibit a declining trend that could be related to increased ground-water withdrawal rights. However, ground-water withdrawals are not measured in the valley; thus, the amount of water pumped is not known. Since the 1990s, there have been several years when the Chesterfield Reservoir has not completely refilled, and the water in storage behind the reservoir has been depleted by the middle of the irrigation season. In this situation, surface-water diversions for irrigation were terminated before the end of the irrigation season, and irrigators, who were relying in part on diversions from the Portneuf River, had to rely solely on ground water as an alternate supply. Smaller volumes of water in the Chesterfield Reservoir since the 1990s indicate a growing demand for ground-water supplies.
Jeton, Anne E.; Maurer, Douglas K.
2011-01-01
The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To allow for water budget comparisons to the ephemeral models, the two perennial models were then run from 1980 to 2007, the time period constrained somewhat by the later record for the high-altitude climate station used in the simulation. The daily mean values of precipitation, runoff, evapotranspiration, and groundwater inflow simulated from the watershed models were summed to provide mean annual rates and volumes derived from each year of the simulation. Mean annual bias for the calibration period for Ash Canyon Creek and Clear Creek watersheds was within 6 and 3 percent, and relative errors were about 18 and -2 percent, respectively. For the 1980-2007 period of record, mean recharge efficiency and runoff efficiency (percentage of precipitation as groundwater inflow and runoff) averaged 7 and 39 percent, respectively, for Ash Canyon Creek, and 8 and 31 percent, respectively, for Clear Creek. For this same period, groundwater inflow volumes averaged about 500 acre-feet for Ash Canyon and 1,200 acre-feet for Clear Creek. The simulation period for the ephemeral watersheds ranged from water years 1978 to 2007. Mean annual simulated precipitation ranged from 6 to 11 inches. Estimates of recharge efficiency for the ephemeral watersheds ranged from 3 percent for Eureka Canyon to 7 percent for Eldorado Canyon. Runoff efficiency ranged from 7 percent for Eureka Canyon and 15 percent at Brunswick Canyon. For the 1978-2007 period, mean annual groundwater inflow volumes ranged from about 40 acre-feet for Eureka Canyon to just under 5,000 acre-feet for Churchill Canyon watershed. Watershed model results indicate significant interannual variability in the volumes of groundwater inflow caused by climate variations. For most of the modeled watersheds, little to no groundwater inflow was simulated for years with less than 8 inches of precipitation, unless those years were preceded by abnormally high precipitation years with significant subsurface storage carryover.
Inventory of interbasin transfers of water in the western conterminous United States
Petsch, H.E.
1989-01-01
Information is presented on the quantity of water transferred from one river basin to another in the western conterminous United States. The information is needed by water system managers and planners to develop water budgets for major river basins, to examine the relative extent of existing interbasin transfers, and to define the importance of transferring water to meet regional water demands. All or parts of 11 major water resources regions and 111 complete subregions comprise the study area; water is exported from 39 of these subregions. The average quantity of water exported annually during 1973-82 was about 12 million acre-feet. (USGS)
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2001-01-01
Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.
Robinson, James L.; Journey, Celeste A.; Atkins, J. Brian
1997-01-01
Drought conditions in the 1980's focused attention on the multiple uses of the surface- and ground-water resources in the Apalachicola-Chattahoochee-Flint (ACF) and Alabama-Coosa-Tallapoosa (ACT) River basins in Georgia, Alabama, and Florida. State and Federal agencies also have proposed projects that would require additional water resources and revise operating practices within the river basins. The existing and proposed water projects create conflicting demands for water by the States and emphasize the problem of water-resource allocation. This study was initiated to describe ground-water availability in the Coosa River basin of Georgia and Alabama, Subarea 6 of the ACF and ACT River basins, and estimate the possible effects of increased ground-water use within the basin. Subarea 6 encompasses about 10,060 square miles in Georgia and Alabama, totaling all but about 100 mi2 of the total area of the Coosa River basin; the remainder of the basin is in Tennessee. Subarea 6 encompasses parts of the Piedmont, Blue Ridge, Cumberland Plateau, Valley and Ridge, and Coastal Plain physiographic provinces. The major rivers of the subarea are the Oostanaula, Etowah, and Coosa. The Etowah and Oostanaula join in Floyd County, Ga., to form the Coosa River. The Coosa River flows southwestward and joins with the Tallapoosa River near Wetumpka, Ala., to form the Alabama River. The Piedmont and Blue Ridge Provinces are underlain by a two-component aquifer system that is composed of a fractured, crystalline-rock aquifer characterized by little or no primary porosity or permeability; and the overlying regolith, which generally behaves as a porous-media aquifer. The Valley and Ridge and Cumberland Plateau Provinces are underlain by fracture- and solution-conduit aquifer systems, similar in some ways to those in the Piedmont and Blue Ridge Provinces. Fracture-conduit aquifers predominate in the well-consolidated sandstones and shales of Paleozoic age; solution-conduit aquifers predominate in the carbonate rocks of Paleozoic age. The Coastal Plain is underlain by southward-dipping, poorly consolidated deposits of sand, gravel, and clay of fluvial and marine origin. The conceptual model described for this study qualitatively subdivides the ground-water flow system into local (shallow), intermediate, and regional (deep) flow regimes. Ground-water discharge to tributaries mainly is from local and intermediate flow regimes and varies seasonally. The regional flow regime probably approximates steady-state conditions and discharges chiefly to major drains such as the Coosa River, and in upstream areas, to the Etowah and Oostanaula Rivers. Ground-water discharge to major drains originates from all flow regimes. Mean-annual ground-water discharge to streams (baseflow) is considered to approximate the long-term, average recharge to ground water. The mean-annual baseflow was estimated using an automated hydrograph-separation method, and represents discharge from the local, intermediate, and regional flow regimes of the ground-water flow system. Mean-annual baseflow in Georgia was estimated to be about 4,000 cubic feet per second (ft3/s) (from the headwaters to the Georgia-Alabama State Line), 5,360 ft3/s in Alabama, and 9,960 ft3/s for all of Subarea 6 (at the Subarea 7-Subarea 8 boundary). Mean annual baseflow represented about 60 percent of total mean-annual stream discharge for the period of record. Stream discharge for selected sites on the Coosa River and its tributaries were compiled for the years 1941, 1954, and 1986, during which sustained droughts occurred throughout most of the ACF-ACT area. Stream discharges were assumed to be sustained entirely by baseflow during the latter periods of these droughts. Estimated baseflow near the end of the individual drought years ranged from about 11 to 27 percent of the estimated mean-annual baseflow in Subarea 6. The potential exists for the development of ground-water resources on a regional scale throughout Su
NASA Astrophysics Data System (ADS)
Richardson, M. J.; Zuck, N.; Gardner, W. D.
2016-02-01
Flow from the Mississippi-Atchafalaya River System generally peaks during the spring freshet, discharging nutrient-rich fresh water and sediment into the northern Gulf of Mexico. The peak discharge varies year to year as a result of varying drought or flood conditions in the Mississippi watershed. When compared to an 8-year climatological average, summer 2012 is characterized by low discharge into the northern Gulf of Mexico, whereas summer 2013 is characterized by average discharge conditions. Water samples were collected during four cruises during June and August of 2012 and 2013 to assess the changes in concentration and composition of bulk particulate matter. While no consistent relationship between particulate matter composition and hypoxia was observed, there are several statistically significant seasonal and inter-annual changes in the concentration and composition of particulate matter associated with varying river discharge. There is also evidence that some sub-pycnocline turbidity and chlorophyll-a may be due to in situ primary productivity, rather than settled plankton containing chlorophyll-a.
Methane emissions to the troposphere from the Amazon floodplain
NASA Technical Reports Server (NTRS)
Devol, Allen H.; Richey, Jeffrey E.; Clark, Wayne A.; King, Stagg L.; Martinelli, Luiz A.
1988-01-01
The magnitudes of CH4 emissions to the troposphere from the Amazon River floodplain and the mechanism of these emissions were investigated using the data of 94 individual flux measurements made along a 1700-km stretch of the river during July/August 1985. The overall average rate of CH4 emission from wetlands was found to be 390 mg CH4/sq m per day, with the highest emissions (590 mg CH4/sq m per day) attributed to the water surfaces covered by aquatic macrophytes. Ebullition was the dominant mechanism of emission, accounting for 85 percent of the total. Surface-water CH4 concentrations were highly supersaturated, averaging 6.4 micromolar. The annual emission of CH4 from the Amazon Basin to the troposphere, estimated from the area and the known emission rate, is about 10 CH4 Tg/yr, indicating the importance of the area in the global atmospheric CH4 cycle.
Hall, Brent M.; Rus, David L.
2013-01-01
The Platte River is a vital natural resource for the people, plants, and animals of Nebraska. A recent study quantified water use by riparian woodlands along central reaches of the Platte River, Nebraska, finding that water use was mainly regulated below maximum predicted levels. A comparative study was launched through a cooperative partnership between the U.S. Geological Survey, the Central Platte Natural Resources District, the Nebraska Department of Natural Resources, and the Nebraska Environmental Trust to compare water use of a riparian woodland with that of a grazed riparian grassland along the central Platte River. This report describes the results of the 3-year study by the U.S. Geological Survey to measure the evapotranspiration (ET) rates in the two riparian vegetation communities. Evapotranspiration was measured during 2008–09 and 2011 using the eddy-covariance method at a riparian woodland near Odessa, hereinafter referred to as the “woodland site,” and a riparian grassland pasture near Elm Creek, hereinafter referred to as the “grassland site.” Overall, annual ET totals at the grassland site were 90 percent of the annual ET measured at the woodland site, with averages of 653 millimeters (mm) and 726 mm, respectively. Evapotranspiration rates were similar at the grassland site and the woodland site during the spring and fall seasons, but at the woodland site ET rates were higher than those of the grassland site during the peak-growth summer months of June through August. These seasonal differences and the slightly lower ET rates at the grassland site were likely the result of differing plant communities, disturbance effects related to grazing and flooding, and climatic differences between the sites. The annual water balance was calculated for each site and indicated that the predominant factors in the water balance at both sites were ET and precipitation. Annual precipitation for the study period ranged from near to above the normal precipitation of 640 mm. Substantial precipitation fell in May and October 2008 that caused flooding along the Platte River in May of this especially wet year. There was a deficit in precipitation compared to ET at both sites in 2009 and 2011, leading to a net groundwater use of greater than 140 mm per year at the woodland site and greater than 55 mm per year at the grassland site. This indicates that the net annual groundwater use or recharge depends predominately upon the relation between ET and precipitation in these riparian areas with shallow soil layers above the groundwater table. Prior research at the woodland site provided four additional annual water balances dating back to 2002 for comparison with the study period at the woodland site. Perhaps most striking in this comparison was the 25-percent increase in annual ET for 2008–09 and 2011 despite precipitation totals and potential ET rates that were within the range of those measured in 2002–05. As a result, the water balance indicates that groundwater was discharged 2 of the 3 years of the study. This likely was caused by higher groundwater levels and a healthier plant community in 2008–09 and 2011 relative to the drought-affected years of 2002–05. As a result of these changes, the crop coefficients developed for riparian woodlands during the prior research underestimated 2008–09 and 2011 annual ET rates by an average of 35 percent. Though new crop coefficients were developed by this study, the importance of soil-moisture stress and plant community successional dynamics need to be considered when applying these coefficients at other riparian sites or into the future. Nonetheless, their development and the data on which they are based may provide improved understanding of water consumption by riparian grasslands and riparian woodlands along the central Platte River.
Giesy, J.P.; Verbrugge, D.A.; Othoudt, R. A.; Bowerman, W.W.; Mora, M.A.; Jones, P.D.; Newsted, J.L.; Vandervoort, C.; Heaton, S. N.; Aulerich, R.J.; Bursian, S.J.; Ludwig, J. P.; Dawson, G. A.; Kubiak, T.J.; Best, D. A.; Tillitt, D. E.
1994-01-01
Populations of mink (Mustela vison) have declined in many areas of the world. Such declines have been linked to exposures to synthetic, halogenated hydrocarbons. In the Great Lakes region, mink are fewer in areas along the shore of the Great Lakes and their tributaries where mink have access to fish from the Great Lakes. Recently, there has been discussion of the relative merits of passage of fishes around hydroelectric dams on rivers in Michigan. A hazard assessment was conducted to determine the potential for adverse effects on mink, which could consume such fishes from above or below dams on the rivers. Concentrations of organochlorine insecticides, polychlorinated biphenyls (PCBs), 2,3,7,8-tetrachloridibenzo-p-dioxin equivalents (TCDD-EQ), and total mercury were measured in composite samples of fishes from above or below hydroelectric dams on the Manistee and Muskegon Rivers, which flow into Lake Michigan, and the Au Sable River, which flows into Lake Huron. Concentrations of organochlorine insecticides, PCBs, and TCDD-EQ were all greater in fishes from below the dams than those from above. Concentrations of neither organochlorine insecticides nor mercury in fishes are currently a risk to mink above or below the dams. All of the species of fishes collected from downstream of the dams contained concentrations of PCBs and TCDD-EQ, which represent a hazard to mink. The hazard index for PCBs was less than one for the average of all species from the upstream reaches of the Manistee and Au Sable Rivers, but not the Muskegon. The hazard index (concentration in fish/NOAEC) was greater than 1 for all of the species collected from below the dams, in all three rivers. The greatest hazard index was observed for carp (Cyprinus carpio) downstream on the Muskegon River. Because the concentrations of PCBs used in the hazard assessment were corrected for relative toxic potencies, the hazard ratios based on PCBs should be similar to those based on TCDD-EQ. This was found to be true. Thus, either total PCBs or TCDD-EQ could be used as the critical toxicant in the hazard assessment. However, if uncorrected concentrations of PCBs, expressed as Aroclors®, were used in the hazard assessment, the toxicity of the weathered mixture would have been underestimated by approximately five-fold, and, in that instance, TCDD-EQ would be the critical contaminant for the hazard assessment. The average maximum allowable percentage of fish from above the dams, which would result in no observable adverse effects of TCDD-EQ, was 70%. Based on the average TCDD-EQ concentrations in the fishes, an average of 8.6% of the diet could be made up of fishes from below dams on the rivers. The most restrictive daily allowable intakes were for carp on the Muskegon and steelhead trout (Onchorhyncus mykiss) on the Manistee Rivers. Only 2.7% of the diet could be made up of these two species from influenced portion of the Au Sable River, they would be exposed to 390 μg PCBs and 8.55 ng of TCDD-EQ per day, respectively (Giesy et al. 1994b). Thus, it would take 15.1 or 77 days for mink to receive their total annual dose of PCBs or TCDD-EQ, respectively. At least for chinook salmon, the critical contaminant for the purposes of hazard assessment would be total concentrations of PCBs. Consuming chinook salmon for as little as 2 weeks would deliver the annual allowable dose of PCBs to mink.
Reynolds, R.J.
2004-01-01
The hydrogeology of the 372-square-mile Pepacton Reservoir watershed (herein called the East Branch Delaware River Basin) in the southwestern Catskill Mountain region of Southeastern New York is described and depicted in a detailed surficial geologic map and two geologic sections. An analysis of stream discharge records and estimates of mean annual ground-water recharge and stream base flow for eight subbasins in the basin are included.Analysis of surficial geologic data indicates that the most widespread geologic unit within the basin is till, which occurs as masses of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till covers about 91.5 percent of the Pepacton Reservoir watershed, whereas stratified drift (alluvium, outwash, and ice-contact deposits) accounts for 6.3 percent. The Pepacton Reservoir occupies about 2.3 percent of the basin area. Large outwash and ice-contact deposits occupy the valleys of the upper East Branch Delaware River, the Tremper Kill, the Platte Kill, the Bush Kill, and Dry Brook. These deposits form stratified-drift aquifers that range in thickness from 90 feet in parts of the upper East Branch Delaware River Valley to less than 30 feet in the Dry Brook valley, and average about 50 feet in the main East Branch Delaware River Valley near Margaretville.An analysis of daily mean stream discharge for the six eastern subbasins for 1998–2001, and for two western subbasins for 1945–52, was performed using three computer programs to obtain estimates of mean annual base flow and mean annual ground-water recharge for the eight subbasins. Mean annual base flow ranged from 15.3 inches per year for the Tremper Kill subbasin to 22.3 inches per year for the Mill Brook subbasin; the latter reflects the highest mean annual precipitation of all the subbasins studied. Estimated mean annual ground-water recharge ranged from 24.3 inches per year for Mill Brook to 15.8 inches per year for the Tremper Kill. The base flow index, which is the mean annual base flow expressed as a percentage of mean annual streamflow, ranged from 69.1 percent for Coles Clove Kill to 75.6 percent for the upper East Branch Delaware River; most subbasin indices were greater than 70 percent. These high base flow indices indicate that because stratified drift covers only a small percentage of subbasin areas (generally 5 to 7 percent), most of the base flow is derived from the fractured sandstone bedrock that underlies the basin.
Nutrient Uptake and Cycles of Change: the Ventura River in Southern California
NASA Astrophysics Data System (ADS)
Leydecker, A.; Simpson, J.; Grabowski, L.
2003-12-01
Watersheds in Mediterranean climates are characterized by extreme seasonal and inter-annual rainfall variability. This variability engenders cycles of sediment deposition and removal, algal growth, and the advance and retreat of riparian and aquatic vegetation. In turn, these changes dramatically alter the appearance and biological functioning of rivers and streams, regulating the uptake of nutrients. The Ventura River drains 580 sq. km of mountainous coastal watershed 100 km northwest of Los Angles, Ca. More than 90 % of the average annual rainfall of 500 mm falls between December and March with most of the annual runoff occurring within a few days. Since 1930, annual runoff has varied from 0.01 to 70 cm/ha, with a mean of 12 and median of 4 cm. We have been measuring dissolved nutrient concentrations at four locations on the lower 9 kilometers of the river for the past 3 years (annual runoff of 19, 0.6 and 14 cm, respectively) and quantifying the relative abundance of plants and algae during 2003. A subsequent decrease in nutrient concentrations below a treated sewage outfall at km 8 provides estimates of nutrient uptake under changing conditions. Nitrate concentrations on the river peak in early winter, presumably from mineralization and mobilization after the advent of the rainy season, and decrease to a minimum by late summer. Phosphate, controlled by dry-season treatment plant outflows, has an opposite pattern. The seasonal variation in both is considerable (0 to 380 microM for nitrate, 0 to 35 microM for phosphate). Major winter storms, such as occur during severe El Nino years (peak flows > 1000 cms), begin a transformational cycle by completely scouring the channel of vegetation and fine sediment; this occurs, on average, once every 10 to 12 years (the interval has varied from 3 to 30 years). The scoured channel, with warmer water temperatures, the absence of shade and a nutrient rich environment, becomes dominated by filamentous algae (principally Cladophora, Rhizoclonium, Enteromorpha and Spirogyra spp.). In contrast, drought years occasion exuberant plant growth and the competitive replacement of algae by aquatic vegetation. Absent scouring winter flows, perennial aquatic plants become established, trapping fine sediment and narrowing the wetted channel; the rapid growth of riparian vegetation (Arundo donax and Salix spp.) provides increased shade to the narrowed waterway. These processes increasingly stabilize the channel and elevate the threshold flow of a scouring storm; the major storm of 2003, following the 2002 drought year (peak flow of 5 cms), produced appreciably less channel transformation than a similarly-sized storm in 2001 (peak flow of 500 cms). During the 2002 drought year, dry-season nitrate concentrations at the river mouth were reduced to near zero, likely due to reduced flows, extensive vascular plant growth supporting high rates of denitrification and vegetative uptake, and enhanced sediment processes from increased fine sediment entrapment. Higher nitrate concentrations at the same location in 2003 (circa 60 microM) exhibited a 3-fold increase compared with 2001, an algal dominated year with a similar flow regime, and N uptake below the treatment plant appears to be substantially decreased.
Qin, Yue; Yang, Dawen; Gao, Bing; Wang, Taihua; Chen, Jinsong; Chen, Yun; Wang, Yuhan; Zheng, Guanheng
2017-12-15
The Yellow River source region is located in the transition region between permafrost and seasonally frozen ground on the northeastern Qinghai-Tibet Plateau. The region has experienced severe climate change, especially air temperature increases, in past decades. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to assess the impacts of climate change on the frozen ground and eco-hydrological processes in the region. Based on a long-term simulation from 1981 to 2015, we found that the areal mean maximum thickness of seasonally frozen ground ranged from 1.1-1.8m and decreased by 1.2cm per year. Additionally, the ratio of the permafrost area to the total area decreased by 1.1% per year. These decreasing trends are faster than the average in China because the study area is on the sensitive margin of the Qinghai-Tibet Plateau. The annual runoff exhibited variations similar to those of the annual precipitation (R 2 =0.85), although the annual evapotranspiration (ET) exhibited an increasing trend (14.3mm/10a) similar to that of the annual mean air temperature (0.66°C/10a). The runoff coefficient (annual runoff divided by annual precipitation) displayed a decreasing trend because of the increasing ET, and the vegetation responses to climate warming and permafrost degradation were manifested as increases in the leaf area index (LAI) and ET at the start of the growing season. Furthermore, the results showed that changes to the frozen ground depth affected vegetation growth. Notably, a rapid decrease in the frozen ground depth (< -3.0cm/a) decreased the topsoil moisture and then decreased the LAI. This study showed that the eco-hydrological processes in the headwater area of the Yellow River have changed because of permafrost degradation, and these changes could further influence the water resources availability in the middle and lower reaches of the basin. Copyright © 2017 Elsevier B.V. All rights reserved.
Luo, Dongliang; Jin, Huijun; Wu, Qingbai; Bense, Victor F; He, Ruixia; Ma, Qiang; Gao, Shuhui; Jin, Xiaoying; Lü, Lanzhi
2018-03-15
Ecology, hydrology, and natural resources in the source areas of the Yangtze and Yellow rivers (SAYYR) are closely linked to interactions between climate and permafrost. However, a comprehensive study of the interactions is currently hampered by sparsely- and unevenly-distributed monitoring sites and limited field investigations. In this study, the thermal regime of warm-dry permafrost in the SAYYR was systematically analyzed based on extensive data collected during 2010-2016 of air temperature (T a ), ground surface temperature (GST) and ground temperature across a range of areas with contrasting land-surface characteristics. Mean annual T a (MAAT) and mean annual GST (MAGST) were regionally averaged at -3.19±0.71°C and -0.40±1.26°C. There is a close relationship between GST and T a (R 2 =0.8477) as obtained by a linear regression analysis with all available daily averages. The mean annual temperature at the bottom of the active layer (T TOP ) was regionally averaged at -0.72±1.01°C and mostly in the range of -1.0°C and 0°C except at Chalaping (~-2.0°C). Surface offset (MAGST-MAAT) was regionally averaged at 2.54±0.71°C. Thermal offset (T TOP -MAGST) was regionally averaged at -0.17±0.84°C, which was generally within -0.5°C and 0.5°C. Relatively consistent thermal conductivity between the thawed and frozen states of the soils may be responsible for the small thermal offset. Active layer thickness was generally smaller at Chalaping than that on other parts of the QTP, presumably due to smaller climatic continentality index and the thermal dampening of surface temperature variability under the presence of dense vegetation and thick peaty substrates. We conclude that the accurate mapping of permafrost on the rugged elevational QTP could be potentially obtained by correlating the parameters of GST, thermal offset, and temperature gradient in the shallow permafrost. Copyright © 2017 Elsevier B.V. All rights reserved.
33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Annual River Race Augusta... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area... Race Augusta each day, and during intervals between scheduled events, at the discretion of the Coast...
33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Annual River Race Augusta... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area... Race Augusta each day, and during intervals between scheduled events, at the discretion of the Coast...
33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Annual River Race Augusta... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area... Race Augusta each day, and during intervals between scheduled events, at the discretion of the Coast...
33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Annual River Race Augusta... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area... Race Augusta each day, and during intervals between scheduled events, at the discretion of the Coast...
NASA Astrophysics Data System (ADS)
Bianchi, Thomas S.; Galler, John J.; Allison, Mead A.
2007-06-01
Over the course of two years, four cruises were conducted at varying levels of discharge in the lower Mississippi and Atchafalaya Rivers (MR and AR) where grab samples were collected from sand- and mud-dominated sediments. The tetramethylammonium hydroxide (TMAH) thermochemolysis method was used to determine sources of terrestrially derived organic carbon (OC) in these two sediment types, to examine the effects of hydrodynamic sorting on lignin sources in river sediments. Average lignin concentrations in the lower MR were 1.4 ± 1.1 mg gOC -1 at English Turn (ET) and 10.4 ± 27.4 mg gOC -1 at Venice. Using these concentrations, annual lignin fluxes to the Gulf of Mexico, from tidal and estuarine mud remobilization at ET and Venice, were 3.1 ± 2.5 × 10 5 kg and 11.4 ± 30.0 × 10 5 kg, respectively. Much of the lignin-derived materials in muddy sediments appeared to be derived from non-woody grass-like sources - which should decay more quickly than the woody materials typically found in the sandy deposits. The average total OC% (1.93 ± 0.47) of English Turn sands yields an annual flux of 0.34 ± 0.09 × 10 9 kg. Lignin flux in the English Turn sands (3.6 ± 2.6 mg gC -1) using the numbers above would be 12.2 ± 9.4 × 10 5 kg. The extensive amounts of sand-sized woody materials (coffee-grinds) found in the sandy sediments in both the AR and MR are likely derived from woody plant materials. This is the first time it has been demonstrated that sandy sediments in the MR provide an equally important pathway (compared to muds) for the transport of terrestrially derived organic matter to the northern Gulf of Mexico. Using the AR average %OC in sand (1.16 ± 0.72), we estimated an annual flux of OC to the shelf of 0.13 ± 0.07 × 10 9 kg. Lignin flux for AR sands was estimated to be 12.4 ± 12.1 × 10 5 kg. Despite the high error associated with these numbers, we observe for the first time that the flux of lignin in sandy sediments in the AR to the northern Gulf of Mexico is comparable to that found in the MR. These results further support the likelihood of grain-size related hydrodynamic sorting of terrestrially derived organic carbon in the lower Mississippi and Atchafalaya Rivers, suggesting that there is a distinct sandy sediment organic fraction contributed by major rivers to the global carbon cycle.
Galat, D.L.; Lipkin, R.
2000-01-01
Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust reservoir operations.
Civilization’s Drying Cradle: Water Politics in the Tigris-Euphrates River Basin
2012-03-22
pollution will ensure that water disputes increasingly shape Middle East politics for the foreseeable future. Exacerbating the water supply problem is...tolls in water withdrawals, damaged land, and polluted watersheds. One hectare of irrigated land requires an average of 12,000 m3 water annually.21...communities are forced to use polluted runoff from upstream irrigation projects, already highly saline and contaminated with herbicides. Soil salinization
River of Interests: Water Management in South Florida and the Everglades, 1948-2010
2011-07-01
Facing Significant Delays, Implementa- tion Challenges, and Rising Costs . GAO-07-520. Washington, D.C: U.S. Government Accountability Office, 2007...General Accounting Office HQUSACE Headquarters, U.S. Army Corps of Engineers IIF Internal Improvement Fund JDAR Jacksonville District...Florida has two seasons: wet and dry. The wet season, extending roughly from May through October, accounts for three- quarters of the average annual
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Christopher Daly of the Spatial Climate Analysis Service, Oregon State University, and George Taylor of the Oregon Climate Service, Oregon State University (2002). The ERF1_2 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
NASA Astrophysics Data System (ADS)
Moquet, Jean-Sébastien; Guyot, Jean-Loup; Morera, Sergio; Crave, Alain; Rau, Pedro; Vauchel, Philippe; Lagane, Christelle; Sondag, Francis; Lavado, Casimiro Waldo; Pombosa, Rodrigo; Martinez, Jean-Michel
2018-01-01
In Ecuador and Peru, geochemical information from Pacific coastal rivers is limited and scarce. Here, we present an unedited database of major element concentrations from five HYBAM observatory stations monitored monthly between 4 and 10 years, and the discrete sampling of 23 Andean rivers distributed along the climate gradient of the Ecuadorian and Peruvian Pacific coasts. Concentration (C) vs. discharge (Q) relationships of the five monitored basins exhibit a clear dilution behavior for evaporites and/or pyrite solutes, while the solute concentrations delivered by other endmembers are less variable. Spatially, the annual specific fluxes for total dissolved solids (TDS), Ca2+, HCO3-, K+, Mg2+, and SiO2 are controlled on the first order by runoff variability, while Cl-, Na+ and SO42- are controlled by the occurrence of evaporites and/or pyrite. The entire Pacific basin in Ecuador and Peru exported 30 Mt TDS·yr-1, according to a specific flux of ∼70 t·km-2·yr-1. This show that, even under low rainfall conditions, this orogenic context is more active, in terms of solute production, than the global average.
Barnard, P.L.; Warrick, J.A.
2010-01-01
Record flooding on the Santa Clara River of California (USA) during January 2005 injected ∼ 5 million m3 of littoral-grade sediment into the Santa Barbara Littoral Cell, approximately an order of magnitude more than both the average annual river loads and the average annual alongshore littoral transport in this portion of the cell. This event appears to be the largest sediment transport event on record for a Southern California river. Over 170 m of local shoreline (mean high water (MHW)) progradation was observed as a result of the flood, followed by 3 years of rapid local shoreline recession. During this post-flood stage, linear regression-determined shoreline change rates are up to −45 m a− 1 on the subaerial beach (MHW) and − 114 m a− 1 on the submarine delta (6 m isobath). Starting approximately 1 km downdrift of the river mouth, shoreline progradation persisted throughout the 3-year post-flood monitoring period, with rates up to + 19 m a− 1. Post-flood bathymetric surveys show nearshore (0 to 12 m depth) erosion on the delta exceeding 400 m3/m a− 1, more than an order of magnitude higher than mean seasonal cross-shore sediment transport rates in the region. Changes were not constant with depth, however; sediment accumulation and subsequent erosion on the delta were greatest at − 5 to − 8 m, and accretion in downdrift areas was greatest above –2 m. Thus, this research shows that the topographic bulge (or “wave”) of sediment exhibited both advective and diffusive changes with time, although there were significant variations in the rates of change with depth. The advection and diffusion of the shoreline position was adequately reproduced with a simple “one line” model, although these modeling techniques miss the important cross-shore variations observed in this area. This study illustrates the importance of understanding low-frequency, high volume coastal discharge events for understanding short- and long-term sediment supply, littoral transport, and beach and nearshore evolution in coastal systems adjacent to river mouths.
Study of Spatial Interrelationship of Long-term River Runoff Variability
NASA Astrophysics Data System (ADS)
Jouk, V.; Romanova, H.; Polianin, V.
To do a number of practical tasks related to water resources management, planning a hydrological monitoring network, estimation of economic activity influence on river runoff, recollection of runoff rows for rivers with short period of observation and other, it is necessary to know about spatial distribution of an annual river runoff. Most of the methods including optimal interpolation that are being used nowadays to solve such problems can deal only with homogeneous and isotropic fields what isn't true in case of an annual river runoff. To find the causes that make an annual river runoff non- isotropic, first of all it is necessary to learn the field structure of its main climatic factors such as precipitation and air humidity deficit. The analyses of anisotropy of these fields can be performed by using unrolled spatially-correlation functions (USCF): Ri,j =f(Si,j;a), Ri,j - empirical correlation of observed rows; Si,j - distance between meteorological stations; a - an anngle between a parallel and the lines that join the centers of river catchments. The form of lines of equal level of USCF shows the direction of bigger or smaller spa- tial interrelationship of the field. In this work an annual river runoff field, precipitation and air humidity deficit fields were studied. The data of 55 meteorological stations was used and the data on water discharge of more than 255 rivers within the East-Europe plain was processed (a period of runoff observation for every river is about 60 years and a catchment area varies from 1 to 20 thousand sq. km.). Joint analyses of the USCFs shows that anisotropy of an annual river runoff field de- pends strongly on anisotropy of the fields of precipitation forming river runoff. In other words, stronger interrelationship of annual river runoff is observed in the direction of dominant moisture transfer. Landscape features of a catchment also have considerable influence on interrelation- ship between annual runoff values of different rivers. This influence was studied by us- ing conditional spatially-correlation functions or CSCF (i.e. spatially-correlation func- 1 tions constructed according to certain conditions applied to some landscape features). The following factors that affect annual river runoff were studied: catchment area, slope, mean elevation of a catchment, percentage of a forest cover of a catchment. As the study shows, the last factor mentioned above is the most important one which affects spatial interrelationship of an annual river runoff. It can be explained by the fact that the forest is a considerable seasonal and annual runoff redistributor. Moreover a forested area of river catchments varies greatly over the studied region. The influence of elevation occurred to be less obvious than that of the forest because of its small variation within the territory. The use of interpolation schemes taking into account anisotropy and heterogeneity of the field made it possible to improve quality of recollection of runoff rows. So considering heterogeneity of an annual runoff field using the information of percent- age of forest cover of a river catchment and mean elevation of a catchment lessened inaccuracy of runoff rows recollection by more than 7%. In principle, quality of in- terpolation can be enhanced more by taking into consideration not only the factors mentioned above, but also all possible landscape features of a river catchment.But this is the task of further researches. 2
Annual Coded Wire Tag Program; Oregon Missing Production Groups, 1996 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mark A.; Mallette, Christine; Murray, William M.
1998-03-01
This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Annual Coded Wire Tag Program - Oregon Missing Production Groups Project. Tule stock fall chinook were caught primarily in British Columbia and Washington ocean, and Oregon freshwater fisheries. Up-river bright stock fall chinook contributed primarily to Alaska and British Columbia ocean commercial, and Columbia River gillnet and other freshwater fisheries. Contribution of Rogue stock fall chinook released in the lower Columbia River occurred primarily in Oregon ocean commercial and Columbia river gillnet fisheries. Willamettemore » stock spring chinook contributed primarily to Alaska and British Columbia ocean commercial, Oregon freshwater sport and Columbia River gillnet fisheries. Willamette stock spring chinook released by CEDC contributed to similar fisheries as the same stocks released in the Willamette system. Up-river stocks of spring chinook contributed almost exclusively to Columbia River sport fisheries and other freshwater recovery areas. The up-river stocks of Columbia River summer steelhead contributed primarily to the Columbia River gillnet and other freshwater fisheries. Coho ocean fisheries from Washington to California were closed or very limited in 1994 and 1995 (1991 and 1992 broods). This has resulted in a greater average percent of catch for other fishery areas. Coho stocks released by ODFW below Bonneville Dam contributed mainly to Oregon and Washington ocean, Columbia Gillnet and other freshwater fisheries. Coho stocks released in the Klaskanine River and Youngs Bay area had much higher contribution to gillnet fisheries than the other coho releases. Coho stocks released above Bonneville Dam contributed to the same fisheries as those released below Bonneville Dam. Survival rates of salmon and steelhead are influenced, not only by factors in the hatchery (disease, density, diet, size and time of release) but also by environmental factors in the river and ocean. These environmental factors are controlled by large scale weather patterns such as El Nino over which man has no influence. Changes in rearing conditions in the hatchery, over which man has some influence, do impact the survival rates. However, these impacts can be offset by impacts caused by environmental factors. Brood years of salmon and steelhead that were in the ocean during the 1983 El Nino event exhibited poor survival all along the Pacific coast of California, Oregon, and Washington. However, stocks of chinook and coho that entered the ocean in the fall of 1984 following the El Nino experienced remarkably improved survival rates. In some instances, tule fall chinook experienced survival rates almost ten times higher than for the previous brood years of the same stock. Coho salmon released in the Columbia River generally experience better survival rates when released later in the spring. However, for the 1990 brood year June releases of Columbia River coho had much lower survival than May releases, for all ODFW hatcheries. In general survival of ODFW Columbia River hatchery coho has declined to low levels since the 1989 brood year.« less
NASA Astrophysics Data System (ADS)
Mondal, A.; Chandniha, S. K.; Lakshmi, V.; Kundu, S.; Hashemi, H.
2017-12-01
This study compares the monthly precipitation from the gridded rain gauge data collected by India Meteorological Department (IMD) and the retrievals from the Tropical Rainfall Measurement Mission (TRMM) for the river basins of India using the TRMM Multisatellite Precipitation Analysis (TMPA) version 7 (V7). The IMD and TMPA datasets have the same spatial resolution (0.25°×0.25°) and extend from 1998 to 2013. The TRMM data accuracy for the river basins is assessed by comparison with IMD using root mean square error (RMSE), normalized mean square error (NMSE), Nash-Sutcliffe coefficient (NASH) and correlation coefficient (CC) methods. The Mann-Kendall (MK) and modified Mann-Kendall (MMK) tests have been applied for analyzing the data trend, and the change has been detected by Sen's Slope using both data sets for annual and seasonal time periods. The change in intensity of precipitation is estimated by percentage for comparing actual differences in various river basins. Variation in precipitation is high (>100 mm represents >15% of average annual precipitation) in Brahmaputra, rivers draining into Myanmar (RDM), rivers draining into Bangladesh (RDB), east flowing rivers between Mahanadi and Godavari (EMG), east flowing rivers between Pennar and Cauvery (EPC), Cauvery and Tapi. The NASH and CC values vary between 0.80 to 0.98 and 0.87 to 0.99 in all river basins except area of north Ladakh not draining into Indus (NLI) and east flowing rivers south of Cauvery (ESC), while RMSE and NMSE vary from 15.95 to 101.68 mm and 2.66 to 58.38 mm, respectively. The trends for TMPA and IMD datasets from 1998 to 2013 are quite similar in MK (except 4 river basins) and MMK (except 3 river basins). The estimated results imply that the TMPA precipitation show good agreement and can be used in climate studies and hydrological simulations in locations/river basins where the number of rain gauge stations is not adequate to quantify the spatial variability of precipitation. Keywords: Precipitation data comparison, IMD, TRMM, river basins, Mann-Kendall test
Harris, David Dell; Williams, Robert Charles
1971-01-01
Data collected during the prelogging period 1959-65 indicate an average annual runoff for Needle Branch and Deer and Flynn Creeks of 74.2, 75.1, and 77.7 inches, respectively. The measured precipitation at Flynn Creek of 92.9 inches was 5 inches less than at either Needle Branch or Deer Creek. Unit flood runoff during the prelogging period was found to be lowest on Flynn Creek and highest on Needle Branch. On Needle Branch, there appear to be two distinct low-flow patterns, one for a saturated and one for an unsaturated soil condition. The average annual sediment yield was highest on Flynn Creek, 321 tons per square mile, and lowest on Needle Branch, 166 tons per square mile. Maximum water temperatures were 62?F on Flynn Creek and 61?F on Needle Branch and Deer Creek.
Nagler, Pamela L; Glenn, Edward P; Hinojosa-Huerta, Osvel; Zamora, Francisco; Howard, Keith
2008-09-01
Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000 ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1 m yr(-1) and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4 x 10(8)m(3)yr(-1), about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the riparian corridor for birds and other wildlife. Conservation and water management strategies to enhance the delta habitats are discussed in light of the findings.
Nagler, P.L.; Glenn, E.P.; Hinojosa-Huerta, O.; Zamora, F.; Howard, K. J.
2008-01-01
Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000 ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1 m yr-1 and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4??108 m3 yr-1, about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the riparian corridor for birds and other wildlife. Conservation and water management strategies to enhance the delta habitats are discussed in light of the findings. ?? 2007 Elsevier Ltd. All rights reserved.
Water resources of King County, Washington
Richardson, Donald; Bingham, J.W.; Madison, R.J.; Williams, R.
1968-01-01
Although the total supply of water in King County is large, water problems are inevitable because of the large and rapidly expanding population. The county contains a third of the 3 million people in Washington, most of the population being concentrated in the Seattle metropolitan area. King County includes parts of two major physiographic features: the western area is part of the Puget Sound Lowland, and the eastern area is part of the Cascade Range. In these two areas, the terrain, weather, and natural resources (including water) contrast markedly. Average annual precipitation in the county is about 80 inches, ranging from about 30 inches near Puget Sound to more than 150 inches in parts of the Cascades. Annual evapotranspiration is estimated to range from 15 to 24 inches. Average annual runoff ranges from about 15 inches in the lowlands to more than 100 inches in the mountains. Most of the streamflow is in the major basins of the county--the Green-Duwamish, Lake Washington, and Snoqualmie basins. The largest of these is the Snoqualmie River basin (693 square miles), where average annual runoff during the period 1931-60 was about 79 inches. During the same period, annual runoff in the Lake Washington basin ( 607 square miles) averaged about 32 inches, and in the Green-Duwamish River basin (483 square miles), about 46 inches. Seasonal runoff is generally characterized by several high-flow periods in the winter, medium flows in the spring, and sustained low flows in the summer and fall. When floods occur in the county they come almost exclusively between October and March. The threat of flood damage is greatest on the flood plaits of the larger rivers, but in the Green-Duwamish Valley the threat was greatly reduced with the completion of Howard A. Hanson Dam in 1962. In the Snoqualmie River basin, where no such dam exists, the potential damage from a major flood increases each year as additional land is developed in the Snoqualmie Valley. 0nly moderate amounts of sediment are transported by most streams in the county, except during short periods of heavy rain in the winter. The temperature and chemical quality of surface waters are well suited to the requirements of fisheries and for municipal, industrial, and domestic supplies. Little treatment is needed for most uses of surface water, except where the water is subject to pollution. Most recoverable ground water in the county occurs in the Puget Sound Lowland, where great volumes of unconsolidated sedimentary deposits were left by the continental glaciers of the Pleistocene Epoch. Bedrock, most of which is in the Cascade Range, contains very little ground water. Numerous springs, largely undeveloped, occur in several parts of the county. Most of the ground water is of good to excellent quality except for excessive iron, which in some places may require treatment of the water before it is suitable for domestic or industrial use. Excluding water used for hydroelectric-power, recreation, and fisheries, more than 80 percent of the water used in the county is provided by municipal-supply systems. Each of the major river basins includes municipal watersheds that provide large supplies of excellent water. By the 1980's, more than 90 percent of the county's population will probably be served by the Seattle municipal supply. With full development, Seattle's water system would have a capacity sufficient to supply more than 2 million people with 300 gallons per person per day. Most industrial and commercial establishments in the county obtain water from public supply systems. The most .serious water problem in the county at present (1965) is the threat of pollution in the densely populated areas. The immediate threat in the Seattle area is being reduced by the sewage-treatment program of the Municipality of Metropolitan Seattle, which will eliminate the discharge of waste into Lake Washington. Expected increases in population and industry will introd
Response of Colorado River runoff to dust radiative forcing in snow
Painter, Thomas H.; Deems, Jeffrey S.; Belnap, Jayne; Hamlet, Alan F.; Landry, Christopher C.; Udall, Bradley
2010-01-01
The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river’s historical mean. Climate models project runoff losses of 7–20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river’s runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Here we use the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916–2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ∼5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change. PMID:20855581
NASA Astrophysics Data System (ADS)
Lind, P.; McDowell, P. F.
2017-12-01
Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport were made through high-resolution repeat photogrammetric surveys (Structure From Motion). As some of the first research of this type on a steep tropical montane system, this study expands our knowledge of tropical rivers and sediment transport by providing a broad view of bedload sediment flux in a hydrologically dynamic humid tropical montane system.
Estimations of evapotranspiration and water balance with uncertainty over the Yukon River Basin
Yuan, Wenping; Liu, Shuguang; Liang, Shunlin; Tan, Zhengxi; Liu, Heping; Young, Claudia
2012-01-01
In this study, the revised Remote Sensing-Penman Monteith model (RS-PM) was used to scale up evapotranspiration (ET) over the entire Yukon River Basin (YRB) from three eddy covariance (EC) towers covering major vegetation types. We determined model parameters and uncertainty using a Bayesian-based method in the three EC sites. The 95 % confidence interval for the aggregate ecosystem ET ranged from 233 to 396 mm yr−1 with an average of 319 mm yr−1. The mean difference between precipitation and evapotranspiration (W) was 171 mm yr−1 with a 95 % confidence interval of 94–257 mm yr−1. The YRB region showed a slight increasing trend in annual precipitation for the 1982–2009 time period, while ET showed a significant increasing trend of 6.6 mm decade−1. As a whole, annual W showed a drying trend over YRB region.
Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River.
Donner, Simon D; Kucharik, Christopher J
2008-03-18
Corn cultivation in the United States is expected to increase to meet demand for ethanol. Nitrogen leaching from fertilized corn fields to the Mississippi-Atchafalaya River system is a primary cause of the bottom-water hypoxia that develops on the continental shelf of the northern Gulf of Mexico each summer. In this study, we combine agricultural land use scenarios with physically based models of terrestrial and aquatic nitrogen to examine the effect of present and future expansion of corn-based ethanol production on nitrogen export by the Mississippi and Atchafalaya Rivers to the Gulf of Mexico. The results show that the increase in corn cultivation required to meet the goal of 15-36 billion gallons of renewable fuels by the year 2022 suggested by a recent U.S. Senate energy policy would increase the annual average flux of dissolved inorganic nitrogen (DIN) export by the Mississippi and Atchafalaya Rivers by 10-34%. Generating 15 billion gallons of corn-based ethanol by the year 2022 will increase the odds that annual DIN export exceeds the target set for reducing hypoxia in the Gulf of Mexico to >95%. Examination of extreme mitigation options shows that expanding corn-based ethanol production would make the already difficult challenges of reducing nitrogen export to the Gulf of Mexico and the extent of hypoxia practically impossible without large shifts in food production and agricultural management.
Space-Time Variability in River Flow Regimes of Northeast Turkey
NASA Astrophysics Data System (ADS)
Saris, F.; Hannah, D. M.; Eastwood, W. J.
2011-12-01
The northeast region of Turkey is characterised by relatively high annual precipitation totals and river flow. It is a mountainous region with high ecological status and also it is of prime interest to the energy sector. These characteristics make this region an important area for a hydroclimatology research in terms of future availability and management of water resources. However, there is not any previous research identifying hydroclimatological variability across the region. This study provides first comprehensive and detailed information on river flow regimes of northeast Turkey which is delimited by two major river basins namely East Black Sea (EBS) and Çoruh River (ÇRB) basins. A novel river flow classification is used that yields a large-scale perspective on hydroclimatology patterns of the region and allows interpretations regarding the controlling factors on river flow variability. River flow regimes are classified (with respect to timing and magnitude of flow) to examine spatial variability based on long-term average regimes, and also by grouping annual regimes for each station-year to identify temporal (between-year) variability. Results indicate that rivers in northeast Turkey are characterised by marked seasonal flow variation with an April-May-June maximum flow period. Spatial variability in flow regime seasonality is dependent largely on the topography of the study area. The EBS Basin, for which the North Anatolian Mountains cover the eastern part, is characterised by a May-June peak; whereas the ÇRB is defined by an April-May flow peak. The timing of river flows indicates that snowmelt is an important process and contributor of river flow maxima for both basins. The low flow season is January and February. Intermediate and low regime magnitude classes dominate in ÇRB and EBS basins, respectively, while high flow magnitude class is observed for one station only across the region. Result of regime stability analysis (year-to-year variation) shows that April-May and May-June peak shape classes together with low and intermediate magnitude classes are the most frequent and persistent flow regimes. This research has advanced understanding of hydroclimatological processes in northeast Turkey by identifying river flow regimes and together with explanations regarding the controlling factors on river flow variability.
An evaluation of the latitudinal gradient of chlorophyll in the California Current
NASA Astrophysics Data System (ADS)
Dietrich, W.; Broughton, J.; Kudela, R. M.
2013-12-01
Tracking of spatial and temporal trends in phytoplankton abundance and distribution is an important step toward understanding large-scale macroecological processes in the ocean. Measurements of ocean radiance from satellite-borne sensors, such as SeaWiFS and MODIS, can be used to estimate surface chlorophyll concentration, which is a good indicator of phytoplankton biomass. The primary goal of this study was to evaluate the latitudinal gradient in chlorophyll concentration within the California Current first reported by Ware and Thomson (2005). They found that average chlorophyll concentration tended to increase steadily from 32-48°N latitude. This concentration gradient was reevaluated using a longer dataset and an algorithm refined for the region. Radiance data from the MODIS-Aqua instrument were obtained for every year from 2002 through 2013. Data included annual averages of remote sensing radiance as well as monthly averages for February, April, and August. These months were chosen to represent each of the three oceanographic seasons present in the California Current. Estimates of chlorophyll concentration were derived from these data using the CALFIT algorithm developed by Kahru et al. (2012). The resulting maps of chlorophyll concentration were processed in MATLAB and linear regressions were performed using SYSTAT 13 software. A statistically significant (p < 0.05) latitudinal trend in chlorophyll was observed in the annual averaged data as well as in the averaged seasonal data from February and August. No significant trend was observed in the averaged April data. Chlorophyll concentration was positively correlated with latitude in every instance, except in April 2003 and April 2005, where a negative correlation was observed. The positive latitudinal trend was strongest during August and weakest during April. Strong peaks in chlorophyll were observed near San Francisco Bay and the mouth of the Columbia River, suggesting that river-borne nutrient input may be the dominant factor responsible for the existence of this chlorophyll gradient.
Lizarraga, Joy S.; Ockerman, Darwin J.
2010-01-01
The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, configured, calibrated, and tested a watershed model for a study area consisting of about 2,150 square miles of the lower San Antonio River watershed in Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties in south-central Texas. The model simulates streamflow, evapotranspiration (ET), and groundwater recharge using rainfall, potential ET, and upstream discharge data obtained from National Weather Service meteorological stations and USGS streamflow-gaging stations. Additional time-series inputs to the model include wastewater treatment-plant discharges, withdrawals for cropland irrigation, and estimated inflows from springs. Model simulations of streamflow, ET, and groundwater recharge were done for 2000-2007. Because of the complexity of the study area, the lower San Antonio River watershed was divided into four subwatersheds; separate HSPF models were developed for each subwatershed. Simulation of the overall study area involved running simulations of the three upstream models, then running the downstream model. The surficial geology was simplified as nine contiguous water-budget zones to meet model computational limitations and also to define zones for which ET, recharge, and other water-budget information would be output by the model. The model was calibrated and tested using streamflow data from 10 streamflow-gaging stations; additionally, simulated ET was compared with measured ET from a meteorological station west of the study area. The model calibration is considered very good; streamflow volumes were calibrated to within 10 percent of measured streamflow volumes. During 2000-2007, the estimated annual mean rainfall for the water-budget zones ranged from 33.7 to 38.5 inches per year; the estimated annual mean rainfall for the entire watershed was 34.3 inches. Using the HSPF model it was estimated that for 2000-2007, less than 10 percent of the annual mean rainfall on the study watershed exited the watershed as streamflow, whereas about 82 percent, or an average of 28.2 inches per year, exited the watershed as ET. Estimated annual mean groundwater recharge for the entire study area was 3.0 inches, or about 9 percent of annual mean rainfall. Estimated annual mean recharge was largest in water-budget zone 3, the zone where the Carrizo Sand outcrops. In water-budget zone 3, the estimated annual mean recharge was 5.1 inches or about 15 percent of annual mean rainfall. Estimated annual mean recharge was smallest in water-budget zone 6, about 1.1 inches or about 3 percent of annual mean rainfall. The Cibolo Creek subwatershed and the subwatershed of the San Antonio River upstream from Cibolo Creek had the largest and smallest basin yields, about 4.8 inches and 1.2 inches, respectively. Estimated annual ET and annual recharge generally increased with increasing annual rainfall. Also, ET was larger in zones 8 and 9, the most downstream zones in the watershed. Model limitations include possible errors related to model conceptualization and parameter variability, lack of data to quantify certain model inputs, and measurement errors. Uncertainty regarding the degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error.
River export of triclosan from land to sea: A global modelling approach.
van Wijnen, Jikke; Ragas, Ad M J; Kroeze, Carolien
2018-04-15
Triclosan (TCS) is an antibacterial agent that is added to commonly used personal care products. Emitted to the aquatic environment in large quantities, it poses a potential threat to aquatic organisms. Triclosan enters the aquatic environment mainly through sewage effluent. We developed a global, spatially explicit model, the Global TCS model, to simulate triclosan transport by rivers to coastal areas. With this model we analysed annual, basin-wide triclosan export for the year 2000 and two future scenarios for the year 2050. Our analyses for 2000 indicate that triclosan export to coastal areas in Western Europe, Southeast Asia and the East Coast of the USA is higher than in the rest of the world. For future scenarios, the Global TCS model predicts an increase in river export of triclosan in Southeast Asia and a small decrease in Europe. The number of rivers with an annual average triclosan concentration at the river mouth that exceeds a PNEC of 26.2ng/L is projected to double between 2000 and 2050. This increase is most prominent in Southeast Asia, as a result of fast population growth, increasing urbanisation and increasing numbers of people connected to sewerage systems with poor wastewater treatment. Predicted triclosan loads correspond reasonably well with measured values. However, basin-specific predictions have considerable uncertainty due to lacking knowledge and location-specific data on the processes determining the fate of triclosan in river water, e.g. sorption, degradation and sedimentation. Additional research on the fate of triclosan in river systems is therefore recommended. We developed a global spatially explicit model to simulate triclosan export by rivers to coastal seas. For two future scenarios this Global TCS model projects an increase in river export of triclosan to several seas around the world. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantity and quality of streamflow in the White River basin, Colorado and Utah
Boyle, J.M.; Covay, K.J.; Bauer, D.P.
1984-01-01
The water quality and flow of existing streams in the White River basin, located in northwestern Colorado and northeastern Utah, are adequate for present uses, but future development (such as energy) may affect stream quality and quantity. Present conditions are described as a baseline to enable planners to allocate available water and to measure changes in quantity and quality of water in the future. The White River basin contains extensive energy resources consisting of oil, natural gas, coal, and oil shale. Large quantities of water will be required for energy-resource development and associated municipal and industrial uses. An average of 70% of the annual flow in the White River occurs during May, June, and July as a result of snowmelt runoff. The 7-day, 10-year low-flow discharges/sq mi and the 1-day, 25-year high-flow discharges/sq mi are larger in the eastern part of the basin than in the western part. Flow-duration curves indicate that high flows in the White River and the North and South Fork White Rivers result mainly from snowmelt runoff and that base flow is sustained throughout the year by groundwater discharge from the alluvial and bedrock aquifers. Water type varies in the basin; however, calcium and sodium are the dominantly occurring cations and sulfate and bicarbonate are the dominantly occurring anions. Computed total annual dissolved-solids loads in the White River range from 31 ,800 tons/yr in the North Fork White River to 284,000 tons/yr at the mouth. A 10% increase to a 14% decrease of the dissolved-solids load could result at the mouth of the White River near Ouray, Utah. This corresponds to a 5% increase to a 10% decrease in dissolved-solids concentration. The seasonal pattern of stream temperatures was found to fit a harmonic curve. (Lantz-PTT)
Changes in the timing of high river flows in New England over the 20th Century
Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G.
2003-01-01
The annual timing of river flows is a good indicator of climate-related changes, or lack of changes, for rivers with long-term data that drain unregulated basins with stable land use. Changes in the timing of annual winter/spring (January 1 to May 31) and fall (October 1 to December 31) center of volume dates were analyzed for 27 rural, unregulated river gaging stations in New England, USA with an average of 68 years of record. The center of volume date is the date by which half of the total volume of water for a given period of time flows past a river gaging station, and is a measure of the timing of the bulk of flow within the time period. Winter/spring center of volume (WSCV) dates have become significantly earlier (p < 0.1) at all 11 river gaging stations in areas of New England where snowmelt runoff has the most effect on spring river flows. Most of this change has occurred in the last 30 years with dates advancing by 1-2 weeks. WSCV dates were correlated with March through April air temperatures (r = -0.72) and with January precipitation (r = -0.37). Three of 16 river gaging stations in the remainder of New England had significantly earlier WSCV dates. Four out of 27 river gaging stations had significantly earlier fall center of volume dates in New England. Changes in the timing of winter/spring and fall peak flow dates were consistent with the changes in the respective center of volume dates, given the greater variability in the peak flow dates. Changes in the WSCV dates over the last 30 years are consistent with previous studies of New England last-frost dates, lilac bloom dates, lake ice-out dates, and spring air temperatures. This suggests that these New England spring geophysical and biological changes all were caused by a common mechanism, temperature increases.
Mount St. Helens Long-Term Sediment Management Plan for Flood Risk Reduction
2010-06-01
one dredge would direct pump to the Wasser Winters disposal site, located along the southern bank of the Cowlitz River mouth. The average annual...dredge would pipeline pump either upstream to disposal site 20cde or downstream to the Wasser Winters site. Pumping distances would not exceed 6.0...estimates referenced the Wasser Winters upland preparation estimates and were based on the relationship between acreage and effort. Total site
Are equilibrium multichannel networks predictable? The case of the regulated Indus River, Pakistan
NASA Astrophysics Data System (ADS)
Carling, P. A.; Trieu, H.; Hornby, D. D.; Huang, He Qing; Darby, S. E.; Sear, D. A.; Hutton, C.; Hill, C.; Ali, Z.; Ahmed, A.; Iqbal, I.; Hussain, Z.
2018-02-01
Arguably, the current planform behaviour of the Indus River is broadly predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264-km-long multiple-channel reach. Remote sensing imagery, encompassing major floods in 2007 and 2010, shows that the Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the annual monsoon. Thus, the network structure, if not detailed planform, remains stable even for the record 2010 flood (27,100 m3 s- 1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6000 m3 s- 1 ( 80% of mean annual flood). The Maximum Flow Efficiency (MFE) principle demonstrates that the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3 s- 1. Rather, the network is in near-equilibrium with the mean annual flood (7530 m3 s- 1). The MFE principle indicates that stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the timescale for network adjustment is much longer than the timescale of the monsoon hydrograph, with the annual excess water being stored on floodplains rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.
Ground water resources of southeastern Oakland County, Michigan
Ferris, J.G.; Burt, E.M.; Stramel, G.J.; Crosthwaite, E.G.
1954-01-01
The area covered by this report comprises a square which measures three townships on a side and enclose 318 square miles in southeastern Oakland County. The investigation of the ground-water resources of this area was made by the U.S. Geological Survey in cooperation with the Detroit Metropolitan Area Regional Planning Commission, the Michigan Department of Conservation, and the Michigan Water Resources Commission.In 1950 the population of this nine-township area exceeded 341,000, or more than 86 percent of the total population of Oakland County. This county ranks third in the state in number of industrial establishments and workers and is fifteenth in agricultural importance. Its numerous lakes and rolling uplands contribute to its top rank in the state in the number of recreational enterprises in rural or suburban areas.The climate is moderately humid. The average annual precipitation is 30 inches and the mean air temperature is 47.2° F. Snowfall averages 38 inches in the November-April interval. The growing season averages 151 days.The regional land surface slopes from northwest to southeast and has a total relief of 360 feet. Pitted outwash plains and morainal hills that are more than 1,000 feet above sea level in the northwest corner of the area give way southeastward to a sequence of terminal moraines and intervening till plains in the middle part. These give way to the broad lake plains that cover the southeastern third of the area.The area lies on the southeast edge of the Michigan Basin and the bedrock is composed of northwest dipping strata of the Devonian and Mississippian systems. The Antrim shale, of Lake Devonian and early Mississippian age, is the oldest formation cropping out beneath the mantle of glacial Berea sandstone, and Sunbury shale overlie the Antrim and are overlain by the Coldwater shale, their areas of outcrop beneath the drift lying successively farther northwest. These formations are of early Mississippian age.Throughout the area the bedrock is covered by glacial drift which ranges in thickness from 25 to more than 350 feet. The drift increases in thickness from southeast to northwest, but considerable relief on the underlying bedrock surface greatly modifies this trend. Extensive moraines, till plains, lake plains, and gravel outwash plains cover the area. In the northwestern third of the area an extensive upland of gravel plains is dotted with lakes ranging from a few feet to more than 100 feet in depth.Precipitation is the perennial source of all water in this area, whether on the surface of underground. The average annual rainfall on the nine-townships is equivalent to a continuous supply of 450 m.g.d. or 9 times the combined annual withdrawal from all wells in the area.About 53 percent of the area is drained by the Clinton River, 44 percent by the River Rouge, and the remaining 3 percent by the Huron River. Less than one-third of the annual precipitation reappears as surface discharge from the watersheds of this area.About two-thirds of the annual precipitation on the area is lost by evaporation from water and land surfaces and by transpirations from vegetative cover. A substantial part of this large annual water loss is from the many lakes and other exposed water surfaces and from contiguous lands where the depth to the water table is slight. Average annual water losses by evapotranspiration are equivalent to about 280 m.g.d. or nearly 6 times the combined withdrawal from all ground-water supplies in the area.The principal aquifers are the alluvial deposits bordering streams and the buried outwash deposits which represent alluvial fills in preglacial or interglacial stream channels. Intensive well developments in the urban areas have greatly lowered ground-water levels in the buried outwash deposits, have brought localized problems of declining well yield, and have induced migration of mineralized waters from the underlying consolidated formations. During 1952, withdrawals of ground water in the nine township area averages about 50 m.g.d., most of this quantity being pumped from municipal wells. This annual pumpage was distributed as follows: 60 percent in Pontiac and environs; 20 percent in Birmingham, Royal Oak and Troy Township; and the remaining 20 percent throughout the suburban and rural areas.
de Jong, Pieter; Tanajura, Clemente Augusto Souza; Sánchez, Antonio Santos; Dargaville, Roger; Kiperstok, Asher; Torres, Ednildo Andrade
2018-09-01
By the end of this century higher temperatures and significantly reduced rainfall are projected for the Brazilian North and Northeast (NE) regions due to Global Warming. This study examines the impact of these long-term rainfall changes on the Brazilian Northeast's hydroelectric production. Various studies that use different IPCC models are examined in order to determine the average rainfall reduction by the year 2100 in comparison to baseline data from the end of the 20th century. It was found that average annual rainfall in the NE region could decrease by approximately 25-50% depending on the emissions scenario. Analysis of historical rainfall data in the São Francisco basin during the last 57years already shows a decline of more than 25% from the 1961-90 long-term average. Moreover, average annual rainfall in the basin has been below its long-term average every year bar one since 1992. If this declining trend continues, rainfall reduction in the basin could be even more severe than the most pessimistic model projections. That is, the marked drop in average rainfall projected for 2100, based on the IPCC high emissions scenario, could actually eventuate before 2050. Due to the elasticity factor between rainfall and streamflow and because of increased amounts of irrigation in the São Francisco basin, the reduction in the NE's average hydroelectric production in the coming decades could be double the predicted decline in rainfall. Conversely, it is estimated that wind power potential in the Brazilian NE will increase substantially by 2100. Therefore both wind and solar power will need to be significantly exploited in order for the NE region to sustainably replace lost hydroelectric production. Copyright © 2018 Elsevier B.V. All rights reserved.
Annual Report Card Shows Water Quality Improvements in Parts of the Mystic River Watershed in 2017
The U.S. Environmental Protection Agency (EPA), in collaboration with the Mystic River Watershed Association (MyRWA), announced its annual Water Quality Report Card on the Mystic River watershed for 2017.
Van, Tran Thi; Bat, Luu Tam; Nhan, Dang Duc; Quang, Nguyen Hao; Cam, Bui Duy; Hung, Luu Viet
2018-02-16
Radioactivity concentrations of nuclides of the 232 Th and 238 U radioactive chains and 40 K, 90 Sr, 137 Cs, and 239+240 Pu were surveyed for raw and cooked food of the population in the Red River delta region, Vietnam, using α-, γ-spectrometry, and liquid scintillation counting techniques. The concentration of 40 K in the cooked food was the highest compared to those of other radionuclides ranging from (23 ± 5) (rice) to (347 ± 50) Bq kg -1 dw (tofu). The 210 Po concentration in the cooked food ranged from its limit of detection (LOD) of 5 mBq kg -1 dw (rice) to (4.0 ± 1.6) Bq kg -1 dw (marine bivalves). The concentrations of other nuclides of the 232 Th and 238 U chains in the food were low, ranging from LOD of 0.02 Bq kg -1 dw to (1.1 ± 0.3) Bq kg -1 dw. The activity concentrations of 90 Sr, 137 Cs, and 239+240 Pu in the food were minor compared to that of the natural radionuclides. The average annual committed effective dose to adults in the study region was estimated and it ranged from 0.24 to 0.42 mSv a -1 with an average of 0.32 mSv a -1 , out of which rice, leafy vegetable, and tofu contributed up to 16.2%, 24.4%, and 21.3%, respectively. The committed effective doses to adults due to ingestion of regular diet in the Red River delta region, Vietnam are within the range determined in other countries worldwide. This finding suggests that Vietnamese food is safe for human consumption with respect to radiation exposure.
Toohey, Ryan C; Herman-Mercer, Nicole M.; Schuster, Paul F.; Mutter, Edda A.; Koch, Joshua C.
2016-01-01
The Yukon River Basin, underlain by discontinuous permafrost, has experienced a warming climate over the last century that has altered air temperature, precipitation, and permafrost. We investigated a water chemistry database from 1982 to 2014 for the Yukon River and its major tributary, the Tanana River. Significant increases of Ca, Mg, and Na annual flux were found in both rivers. Additionally, SO4 and P annual flux increased in the Yukon River. No annual trends were observed for dissolved organic carbon (DOC) from 2001 to 2014. In the Yukon River, Mg and SO4 flux increased throughout the year, while some of the most positive trends for Ca, Mg, Na, SO4, and P flux occurred during the fall and winter months. Both rivers exhibited positive monthly DOC flux trends for summer (Yukon River) and winter (Tanana River). These trends suggest increased active layer expansion, weathering, and sulfide oxidation due to permafrost degradation throughout the Yukon River Basin.
Kume, Jack; Lindgren, R.J.; Stullken, L.E.
1985-01-01
A two-dimensional finite difference computer model was used to project changes in the potentiometric surface, saturated thickness, and stream aquifer leakage in an alluvial aquifer resulting from four instances of projected groundwater development. The alluvial aquifer occurs in the South Fork Solomon River valley between Webster Reservoir and Waconda Lake in north-central Kansas. In the first two projections, pumpage for irrigation was held constant at 1978 rates throughout the projection period (1979-2020). In the second two projections, the 1978 pumpage was progressively increased each yr through 2020. In the second and fourth projections, surface water diversions in the Osborne Irrigation Canal were decreased by 50 %. For the third and fourth projections, each grid-block in the modeled area was classified initially as one of six types according to whether it represented irrigable or nonirrigable land, to its saturated thickness, to its location inside or outside the canal-river area, and to its pumping rate. The projected base-flow rates (leakage from the aquifer to the river) were lower during the irrigation season (June, July, and August) than during the other months of the yr because of the decline in hydraulic head produced by groundwater pumpage. Stream depletion, calculated as a decrease below the average (1970-78) estimated winter base-flow rate of 16.5 cu ft/sec, varied inversely with base flow. For the first two projections, a constant annual cycle of well pumpage and recharge was used throughout the projection period. Aquifer leakage to the river was nearly constant by the mid-to-late 1990's, implying that flow conditions had attained a stabilized annual cycle. The third and fourth projections never attained an annual stabilized cycle because the irrigation pumpage rate was increased each year. By the early 1980's, the hydraulic head had fallen below river stage, reversing the hydraulic gradient at the stream-aquifer interface and resulting in net leakage from the river to the aquifer during the summer months. By the early 1990 's, the projected potentiometric surface of the aquifer was lower than the river stage even during the winter and spring months. (Author 's abstract)
Summary of the river-quality assessment of the upper Chattahoochee River basin, Georgia
Cherry, R.N.; Faye, R.E.; Stamer, J.K.; Kleckner, R.L.
1980-01-01
The river-quality assessment of the Upper Chattahoochee River Basin included studies of (1) the impact of heat loads on river quality, (2) sediment transport and deposition, (3) magnitude and nature of point and nonpoint discharges, and (4) phytoplankton growth in the river and reservoirs. The combined thermal effects of flow regulation and powerplants effluents resulted in mean daily river temperature downstream of the powerplants about equal to or less than computed natural temperatures. The average annual river temperature in 1976 was 14.0 ? Celsius just upstream of the Atkinson-McDonough thermoelectric powerplants and 16.0 ? Celsius just downstream from the powerplants. During a low-flow period in June 1977 the heat load from the two powerplants caused an increase in river temperatures of about 7 ? Celsius and a subsequent decrease in the dissolved-oxygen concentration of about 0.2 milligrams per liter. During the June low-flow period, point sources contributed 63 percent of the ultimate biochemical oxygen demand and 97 percent of ammonium as nitrogen at the Franklin station. Oxidation of ultimate biochemical demand and ammonium caused dissolved-oxygen concentrations to decrease from about 8.0 milligrams per liter at river mile 299 to about 4.5 milligrams per liter at river mile 271. Dissolved orthophosphate is the nutrient presently limiting phytoplankton growth in the West Point Lake when water temperatures are greater than about 26 ? Celsius.
Some General Laws of Chemical Elements Composition Dynamics in the Hydrosphere
NASA Astrophysics Data System (ADS)
Korzh, V.
2012-12-01
The biophysical oceanic composition is a result of substance migration and transformation on river-sea and ocean- atmosphere boundaries. Chemical composition of oceanic water is a fundamental multi-dimensional constant for our planet. Detailed studies revealed three types of chemical element distribution in the ocean: 1) Conservative: concentration normalized to salinity is constant in space and time; 2) Nutrient-type: element concentration in the surface waters decreases due to the biosphere consumption; and 3) Litho-generative: complex character of distribution of elements, which enter the ocean with the river runoff and interred almost entirely in sediments (Fig. 1). The correlation between the chemical compositions of the river and oceanic water is high (r = 0.94). We conclude that biogeochemical features of each element are determined by the relationship between its average concentration in the ocean and the intensity of its migration through hydrosphere boundary zones. In Fig.1 we show intensities of global migration and average concentrations in the ocean in the coordinates lgC - lg τ, where C is an average element concentration and τ is its residual time in the ocean. Fig. 1 shows a relationship between three main geochemical parameters of the dissolved forms of chemical elements in the hydrosphere: 1) average concentration in the ocean, 2) average concentration in the river runoff and 3) the type of distribution in oceanic water. Using knowledge of two of these parameters, it allows gaining theoretical knowledge of the third. The System covers all chemical elements for the entire range of observed concentrations. It even allows to predict the values of the annual river transport of dissolved Be, C, N, Ge, Tl, Re, to refine such estimates for P, V, Zn, Br, I, and to determine the character of distribution in the ocean for Au and U. Furthermore, the System allowed to estimate natural (unaffected by anthropogenic influence) mean concentrations of elements in the river runoff and use them as ecological reference data. Finally, due to the long response time of the ocean, the mean concentrations of elements and patterns of their distribution in the ocean can be used to determine pre-technogenic concentrations of elements in the river runoff. An example of such studies for the Northern Eurasia Arctic Rivers will be presented at the conference. References Korzh 1974: J. de Recher. Atmos, 8, 653-660. Korzh 2008: J. Ecol., 15, 13-21. Korzh 2012: Water: Chem. & Ecol., No. 1, 56-62; Fig.1. The System of chemical elements distribution in the hydrosphere. Types of distribution in the ocean: 1) conservative; 2) nutrient-type; 3) litho-generative.
Petsch, Harold E.
1979-01-01
Statistical summaries of daily streamflow data for 189 stations west of the Continental Divide in Colorado are presented in this report. Duration tables, high-flow sequence tables, and low-flow sequence tables provide information about daily mean discharge. The mean, variance, standard deviation, skewness, and coefficient of variation are provided for monthly and annual flows. Percentages of average flow are provided for monthly flows and first-order serial-correlation coefficients are provided for annual flows. The text explain the nature and derivation of the data and illustrates applications of the tabulated information by examples. The data may be used by agencies and individuals engaged in water studies. (USGS)
NASA Astrophysics Data System (ADS)
Caldwell, P. V.; Sun, G.; McNulty, S. G.; Cohen, E. C.; Moore Myers, J. A.
2012-08-01
Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC) watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic demand for water, relocation of agricultural production, and/or water conservation measures. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modeling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.
Pesticides in the rivers and streams of two river basins in northern Greece.
Papadakis, Emmanouil-Nikolaos; Tsaboula, Aggeliki; Vryzas, Zisis; Kotopoulou, Athina; Kintzikoglou, Katerina; Papadopoulou-Mourkidou, Euphemia
2018-05-15
The pollution caused by pesticides, and their ecotoxicological implications were investigated in water samples from the Strymonas and Nestos river basins (Northern Greece). Chlorpyrifos was the most frequently detected pesticide in both basins (42 and 37% in the Strymonas and Nestos basins, respectively), followed by fluometuron and terbuthylazine (25 and 12%, Strymonas), and bentazone and boscalid (24 and 10%, Nestos). The Annual Average and the Maximum Allowable Concentration of Environmental Quality Standards set in European Union Directives were exceeded in several cases by alphamethrin and chlorpyrifos. Risk Quotient assessment revealed significant ecological risk towards the aquatic organisms in over 20% of the water samples. Insecticides (mostly pyrethroids and organophosphosphates) contributed more in the ecotoxicological risk than herbicides and fungicides. The three main rivers in the current study (Strymonas, Aggitis, Nestos) exhibited similar sum of RQs indicating that aquatic life in all three of them was at the same risk level. However, the sums of RQs were higher in the various streams monitored than the three rivers. Copyright © 2017 Elsevier B.V. All rights reserved.
Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models
NASA Astrophysics Data System (ADS)
Yang, Hui; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Yin, Yi; Friedlingstein, Pierre; Sitch, Stephen; Ahlström, Anders; Guimberteau, Matthieu; Huntingford, Chris; Levis, Sam; Levy, Peter E.; Huang, Mengtian; Li, Yue; Li, Xiran; Lomas, Mark R.; Peylin, Philippe; Poulter, Ben; Viovy, Nicolas; Zaehle, Soenke; Zeng, Ning; Zhao, Fang; Wang, Lei
2015-08-01
In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modeled well in the low and middle latitudes but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore, the 30 year trend of discharge is also underestimated. For the interannual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e., models account for 50% of observed interannual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modeling capability, a regional-weighted average of multimodel ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.
Childhood drowning in Malaysia.
Hss, Amar-Singh; Tan, Pui San; Hashim, Lina
2014-01-01
This study aimed to collate data on childhood drowning in Malaysia and review existing drowning prevention measures. This study used secondary data from governmental and non-governmental agencies. All reported fatal drownings from 2000 to 2007 and all reported non-fatal drownings from 2000 to 2008 were included. Data were analysed to provide understanding of the epidemiology of drowning incidents, risk factors and available preventive efforts. On average 286 (range 248-344) children died yearly due to drowning with a death rate of 3.05 per 100,000 annually. An additional average of 207 children drowned but survived annually (1.99 per 100,000). The estimated burden of drowning in children (death and non-death) is 5 per 100,000. There was no reduction in annual drowning fatalities over time. Most drowning took place in east coast regions during the annual monsoon season. It was 3.52 (2.80-4.41) times more common in boys and most prevalent among 10-14 years. Most prevalent sites of all-age drowning were seas and rivers. Limited water safety regulations are currently available in the country. This is the first comprehensive national study in Malaysia on paediatric drowning and highlights the magnitude of the problem. It calls for concerted effort to devise effective national drowning prevention measures.
Annual Coded Wire Tag Program; Oregon Missing Production Groups, 1997 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mark A.; Mallette, Christine; Murray, William M.
1998-03-01
This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Annual Coded Wire Tag Program - Oregon Missing Production Groups Project. Tule stock fall chinook were caught primarily in British Columbia and Washington ocean, and Oregon freshwater fisheries. Up-river bright stock fall chinook contributed primarily to Alaska and British Columbia ocean commercial, and Columbia River gillnet and other freshwater fisheries. Contribution of Rogue stock fall chinook released in the lower Columbia River occurred primarily in Oregon ocean commercial and Columbia river gillnet fisheries. Willamettemore » stock spring chinook contributed primarily to Alaska and British Columbia ocean commercial, Oregon freshwater sport and Columbia River gillnet fisheries. Willamette stock spring chinook released by CEDC contributed to similar ocean fisheries, but had much higher catch in gillnet fisheries than the same stocks released in the Willamette system. Up-river stocks of spring chinook contributed almost exclusively to Columbia River sport fisheries and other freshwater recovery areas. The up-river stocks of Columbia River summer steelhead contributed primarily to the Columbia River gillnet and other freshwater fisheries. Coho ocean fisheries from Washington to California were closed or very limited from 1994 through 1997 (1991 through 1994 broods). This has resulted in a greater average percent of catch for other fishery areas. Coho stocks released by ODFW below Bonneville Dam contributed mainly to Oregon and Washington ocean, Columbia Gillnet and other freshwater fisheries. Coho stocks released in the Klaskanine River and Youngs Bay area had similar ocean catch, but much higher contribution to gillnet fisheries than the other coho releases. Coho stocks released above Bonneville Dam had similar contribution to ocean fisheries as other coho releases. However, they contributed more to gillnet fisheries above Bonneville Dam than coho released below the dam. Survival rates of salmon and steelhead are influenced, not only by factors in the hatchery (disease, density, diet, size and time of release) but also by environmental factors in the river and ocean. These environmental factors are influenced by large scale weather patterns such as El Nino over which man has no influence. Changes in rearing conditions in the hatchery, over which man has some influence, do impact the survival rates. However, these impacts can be offset by impacts caused by environmental factors. Coho salmon released in the Columbia River generally experience better survival rates when released later in the spring. However, for the 1990 brood year June releases of Columbia River coho had much lower survival than May releases, for all ODFW hatcheries. In general survival of ODFW Columbia River hatchery coho has declined to low levels since the 1989 brood year. In an effort to evaluate photonic marking as a tool to mass mark salmonids, two groups of 1995 brood juvenile coho salmon were marked at Sandy Hatchery. The first group (Group A) received a fluorescent red mark, adipose fin clip and coded-wire tag. The second group (Group B) received a cryptic blue mark, adipose fin clip and coded-wire tag. Both groups were released in the spring of 1997. No photonic marks were detected in the precocious males (jacks) returning to Sandy hatchery in the fall of 1997.« less
Pederson, G. L.; Smith, M.M.
1989-01-01
The U.S Geological Survey (USGS) compiled and analyzed existing hydrologic and water-quality data from over 200 stream and estuary stations of the Abemarle-Pamlico estuarine system (A/P) to identify long-term temporal and spatial trends. The dataset included seven stations of the USGS National Stream Quality Accounting Network, two stations of the National Atmospheric Precipitation Deposition monitoring network, stations of the N.C. Department of Natural Resources and Community Development, and stations from 25 reports by individual investigators. Regression-residuals analysis, the seasonal Kendall's Tau test for trends, and graphical analysis using annual box plots were employed to determine trends. Profound change has occurred in the water quality of the A/P area over the last 30 years. Analysis of water-quality data upstream from the estuaries indicates increases of discharge-adjusted values of specific conductance, alkalinity, phosphorous, hardness, chloride, and dissolved solids. In the estuaries, pH is increasing except in the Pamlico River, where it is decreasing. There is a generalized decrease in suspended inorganic material in the system. Salinities are decreasing for sections of the Pamlico River, and increasing for parts of Albemarle Sound. Nitrogen concentrations are decreasing except in the Pamlico River, where they are increasing. Phosphorus concentrations are increasing in the Pamlico River and decreasing elsewhere. Annual average data show that nitrogen is the limiting nutrient in the Neuse and Pamlico Rivers. Phosphorus is limiting in the rest of the area. Chlorophyll-a levels are increasing in parts of the Neuse and Pamlico Rivers and decreasing in parts of the Chowan River. To evaluate the effect of basin characteristics on water quality, linear correlation was used. Agricultural crop variables produced the most correlations with water-quality data. Fertilizer usage had little detectable relation to water quality in the study area. In the section of the Pamlico River near Aurora, relations between employment, road mileages, and water quality indicated effects of development in the area.
NASA Astrophysics Data System (ADS)
Troselj, Josko; Sayama, Takahiro; Varlamov, Sergey M.; Sasaki, Toshiharu; Racault, Marie-Fanny; Takara, Kaoru; Miyazawa, Yasumasa; Kuroki, Ryusuke; Yamagata, Toshio; Yamashiki, Yosuke
2017-12-01
This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme typhoon events provides more realistic coastal SSS and may allow a different scenario analysis with various precipitation inputs for developing a nowcasting analysis in the future.
NASA Astrophysics Data System (ADS)
Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.
2016-05-01
Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.
Effects of climate change and land use on water resources in the Upper Colorado River Basin
Belnap, Jayne; Campbell, D.H.
2011-01-01
The health of the Colorado River watershed is critical to the socioeconomic and ecosystem well-being of the Southwestern United States. Water in springs, streams, and rivers supports a range of aquatic and riparian ecosystems that contain many endangered species. Terrestrial habitats support a wide array of plants and wildlife. In addition, this region is enjoyed by millions of people annually for its recreational and esthetic opportunities. The Colorado River provides water for about 25 million people and is used to irrigate 2.5 million acres of farmland. However, competition for this water is expected to increase as human populations dependent on this water are projected to increase to 38 million by 2020. Climate change is expected to further exacerbate water issues in this region. Drought in the Southwest during 2000-04, caused by both reduced precipitation and a series of the hottest years on record, resulted in streamflows lower than during the 1930s Dust Bowl or the 1950s. Increased temperatures alone are a major factor in reducing surface-water flows in this region. For instance, precipitation received during the winter of 2005 was at the 100-year average. However, low soil moisture and high January-July temperatures resulted in flows that were only 75 percent of average. Climate models predict future warmer temperatures and reduced precipitation in the Upper Colorado River Basin (UCRB), which would reduce water available to humans and ecosystems.
NASA Astrophysics Data System (ADS)
Tomenchok, K.; Hill, M.; Jimerson, C.; Talbot-Wendlandt, , H.; Schmidt, A.; Frey, H. M.
2017-12-01
With 9 active volcanic centers, frequent tropical storms, and widespread landslides, the topography of Dominica is rugged and dynamic. This study aims to fingerprint sediment source dynamics in this relatively unstudied region with fallout radionuclides, clay mineralogy, and acid-extractable grain coating concentration measured in detrital sediments. We also aim to measure basin average erosion rates and determine river incision rates into the underlying ignimbrites. Baseline data on the effects of volcanoes, landslides, land use, and topography in setting erosional dynamics will be established. We sampled outlets of 20 large (>10 km2) rivers as well as 11 points in the Roseau River watershed for a network analysis. Block and ash flows and ignimbrites underlie 89% of the study area. Steep topography (mean slope = 19.6˚) and high levels of rainfall (mean annual rainfall = 1981.41 mm) are consistent throughout the 89% forested island. 934 landslides affect 13% of the study area. We hypothesize that basin average parameters and landslide frequency will correlate with erosion rates and fallout radionuclide activities. In addition, we used topographic data and published ignimbrite ages to calculate river incision rates that ranged from 0.448 - 113.9 mm/yr in the north and 0.86 - 44 mm/yr in the south. Basin average erosion rates will be compared to incision rates to quantify differences between basin wide erosional and river incision processes. We will fingerprint sediment sources with 7Be, 210Pbex, and 137Cs, concentration of grain coatings, and clay mineralogy. We hypothesize that watersheds with erosion from stabilizing landslide scars will have high 7Be, low 210Pbex and 137Cs, low concentrations of grain coatings, and less weathered clays. Watersheds with river bank/scarp erosion or active landslides will have little 7Be, 210Pbex, and 137Cs, less weathered clays, and low concentrations of grain coatings. Watersheds with widespread surface erosion will have high activities, weathered clays, and high concentrations of grain coatings. We will correlate basin average statistics with measured fingerprints to provide a better understanding of sediment source dynamics in an understudied region of the world. With the potential for future landslides, further information will advance hazard mitigation in Dominica.
Phosphorus and suspended sediment load estimates for the Lower Boise River, Idaho, 1994-2002
Donato, Mary M.; MacCoy, Dorene E.
2004-01-01
The U.S. Geological Survey used LOADEST, newly developed load estimation software, to develop regression equations and estimate loads of total phosphorus (TP), dissolved orthophosphorus (OP), and suspended sediment (SS) from January 1994 through September 2002 at four sites on the lower Boise River: Boise River below Diversion Dam near Boise, Boise River at Glenwood Bridge at Boise, Boise River near Middleton, and Boise River near Parma. The objective was to help the Idaho Department of Environmental Quality develop and implement total maximum daily loads (TMDLs) by providing spatial and temporal resolution for phosphorus and sediment loads and enabling load estimates made by mass balance calculations to be refined and validated. Regression models for TP and OP generally were well fit on the basis of regression coefficients of determination (R2), but results varied in quality from site to site. The TP and OP results for Glenwood probably were affected by the upstream wastewater-treatment plant outlet, which provides a variable phosphorus input that is unrelated to river discharge. Regression models for SS generally were statistically well fit. Regression models for Middleton for all constituents, although statistically acceptable, were of limited usefulness because sparse and intermittent discharge data at that site caused many gaps in the resulting estimates. Although the models successfully simulated measured loads under predominant flow conditions, errors in TP and SS estimates at Middleton and in TP estimates at Parma were larger during high- and low-flow conditions. This shortcoming might be improved if additional concentration data for a wider range of flow conditions were available for calibrating the model. The average estimated daily TP load ranged from less than 250 pounds per day (lb/d) at Diversion to nearly 2,200 lb/d at Parma. Estimated TP loads at all four sites displayed cyclical variations coinciding with seasonal fluctuations in discharge. Estimated annual loads of TP ranged from less than 8 tons at Diversion to 570 tons at Parma. Annual loads of dissolved OP peaked in 1997 at all sites and were consistently higher at Parma than at the other sites. The ratio of OP to TP varied considerably throughout the year at all sites. Peaks in the OP:TP ratio occurred primarily when flows were at their lowest annual stages; estimated seasonal OP:TP ratios were highest in autumn at all sites. Conversely, when flows were high, the ratio was low, reflecting increased TP associated with particulate matter during high flows. Parma exhibited the highest OP:TP ratio during all seasons, at least 0.60 in spring and nearly 0.90 in autumn. Similar OP:TP ratios were estimated at Glenwood. Whereas the OP:TP ratio for Parma and Glenwood peaked in November or December, decreased from January through May, and increased again after June, estimates for Diversion showed nearly the opposite pattern ? ratios were highest in July and lowest in January and February. This difference might reflect complex biological and geochemical processes involving nutrient cycling in Lucky Peak Lake, but further data are needed to substantiate this hypothesis. Estimated monthly average SS loads were highest at Diversion, about 400 tons per day (ton/d). Average annual loads from 1994 through 2002 were 144,000 tons at Diversion, 33,000 tons at Glenwood, and 88,000 tons at Parma. Estimated SS loads peaked in the spring at all sites, coinciding with high flows. Increases in TP in the reach from Diversion to Glenwood ranged from 200 to 350 lb/d. Decreases in TP were small in this reach only during high flows in January and February 1997. Decreases in SS, were large during high-flow conditions indicating sediment deposition in the reach. Intermittent data at Middleton indicated that increases and decreases in TP in the reach from Glenwood to Middleton were during low- and high-flow conditions, respectively. All constituents increased in the r
House, L.B.
1995-01-01
The mass of PCB's transported from the lake in streamflow during 1987-88 was calculated to be 110 kilograms annually. The PCB's transport rate decreased 50 percent from 1987 to 1988, for the period April through September. Transport of PCB's was greatest during April and May of each year. The average flux rate of PCB's into the water column from the bottom sediment in the lake was estimated to be 1.2 milligrams per square meter per day. The PCB's load seems to increase at river discharges greater than 212 cubic meters per second. This increase in PCB's load might be caused by resuspension of PCB's-contaminated bottom-sediment deposits. There was little variation in PCB's load at flows less than 170 cubic meters per second. The bottom sediments are a continuing source of PCB's to Little Lake Butte des Morts and the lower Fox River.
Zhang, Z.; Jiang, H.; Liu, J.; Zhu, Q.; Wei, X.; Jiang, Z.; Zhou, G.; Zhang, X.; Han, J.
2011-01-01
The climate change has significantly affected the carbon cycling in Yangtze River Basin. To better understand the alternation pattern for the relationship between carbon cycling and climate change, the net primary production (NPP) were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the average annual NPP per square meter was about 0.518 kg C in Yangtze River Basin. The high NPP levels were mainly distributed in the southeast area of Sichuan, and the highest value reached 1.05 kg C/m2. The NPP increased based on the simulated temporal trends. The spatiotemporal variability of the NPP in the vegetation types was obvious, and it was depended on the climate and soil condition. We found the drought climate was one of critical factor that impacts the alterations of the NPP in the area by the simulation. ?? 2011 IEEE.
Report of the River Master of the Delaware River for the Period December 1, 2002-November 30, 2003
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2009-01-01
A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 50th Annual Report of the River Master of the Delaware River. It covers the 2003 River Master report year; that is, the period from December 1, 2002 to November 30, 2003. During the report year, precipitation in the upper Delaware River Basin was 13.40 inches (131 percent) greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was above the long-term median on December 1, 2002. Reservoir storage increased rapidly in mid-March 2003 and all the reservoirs filled and spilled. The reservoirs remained nearly full for the remainder of the report year. Delaware River operations throughout the report year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 10 days during the report year. Releases were made at experimental conservation rates - or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs - on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semi-monthly basis.
Report of the River Master of the Delaware River for the Period December 1, 2003-November 30, 2004
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2009-01-01
A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 51st Annual Report of the River Master of the Delaware River. It covers the 2004 River Master report year; that is, the period from December 1, 2003, to November 30, 2004. During the report year, precipitation in the upper Delaware River Basin was 9.03 in. (121 percent) greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was at a record high level on December 1, 2003. Reservoir storage remained high throughout the year with at least one reservoir spilling every month of the year. Delaware River operations throughout the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 30 days during the report year. Releases were made at conservation rates - or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs - on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semi-monthly basis.
Report of the River Master of the Delaware River for the period December 1, 2006–November 30, 2007
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2011-01-01
A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 54th Annual Report of the River Master of the Delaware River. It covers the 2007 River Master report year—the period from December 1, 2006, to November 30, 2007. During the report year, precipitation in the upper Delaware River Basin was 46.72 inches (in.) or 107 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was high on December 1, 2006. Reservoir storage remained high throughout the winter, declined seasonally during the summer, and began to recover in mid-October. Delaware River operations throughout the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 123 days during the report year. Releases were made at conservation rates—or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 19 sites on a twice–monthly basis and at 3 sites on a monthly basis.
Report of the River Master of the Delaware River for the period December 1, 2004-November 30, 2005
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2011-01-01
A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey. In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 52nd Annual Report of the River Master of the Delaware River. It covers the 2005 River Master report year; that is, the period from December 1, 2004, to November 30, 2005. During the report year, precipitation in the upper Delaware River Basin was 7.56 in., or 117 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high from December 2004 to May 2005 and reached a record high level on April 3, 2005. Reservoir storage decreased steadily from May to early October, then increased rapidly through the end of November. Delaware River operations throughout the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 120 days during the report year. Releases were made at conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a twice-monthly basis.
Report of the River Master of the Delaware River for the period December 1, 2005-November 30, 2006
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2010-01-01
A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 53rd Annual Report of the River Master of the Delaware River. It covers the 2006 River Master report year-the period from December 1, 2005, to November 30, 2006. During the report year, precipitation in the upper Delaware River Basin was 55.03 inches (in.) or 126 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was above the long-term median level on December 1, 2005. Reservoir storage remained above long–term median levels throughout the report year. Delaware River operations during the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 27 days during the report year. Releases were made at conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 19 sites on a twice-monthly basis and at 3 sites on a monthly basis.
Report of the River Master of the Delaware River for the period December 1, 2007-November 30, 2008
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2014-01-01
A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 55th Annual Report of the River Master of the Delaware River. It covers the 2008 River Master report year, the period from December 1, 2007, to November 30, 2008. During the report year, precipitation in the upper Delaware River Basin was 49.79 inches (in.) or 114 percent of the 67 report-year average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high from December 2007 to May 2008. Reservoir storage decreased seasonally from June to late October, then increased gradually through the end of November. Delaware River operations during the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 107 days during the report year. Releases were made at conservation rates—rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. Data on water temperature and specific conductance were collected intermittently at one site. In addition, selected water-quality data were collected at 19 sites on a twice-monthly basis and at 3 sites on a monthly basis.
Adams, D. Briane; Bauer, Daniel P.; Dale, Robert H.; Steele, Timothy Doak
1983-01-01
Development of coal resources and associated economy is accelerating in the Yampa River basin in northwestern Colorado and south-central Wyoming. Increased use of the water resources of the area will have a direct impact on their quantity and quality. As part of 18 surface-water projects, 35 reservoirs have been proposed with a combined total storage of 2.18 million acre-feet, 41% greater than the mean annual outflow from the basin. Three computer models were used to demonstrate methods of evaluating future impacts of reservoir development in the Yampa River basin. Four different reservoir configurations were used to simulate the effects of different degrees of proposed reservoir development. A multireservoir-flow model included both within-basin and transmountain diversions. Simulations indicated that in many cases diversion amounts would not be available for either type of diversion. A corresponding frequency analysis of reservoir storage levels indicated that most reservoirs would be operating with small percentages of total capacities and generally with less than 20% of conservation-pool volumes. Simulations using a dissolved-solids model indicated that extensive reservoir development could increase average annual concentrations at most locations. Simulations using a single-reservoir model indicated no significant occurrence of water-temperature stratification in most reservoirs due to limited reservoir storage. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paragamian, Valughn L.; Laude Dorothy C.
2008-12-26
Objectives of this investigation were to (1) monitor the population status and recruitment of burbot Lota lota in the Kootenai River, Idaho and British Columbia, Canada during the winter of 2006-2007; (2) evaluate the selective withdrawal system in place at Libby Dam to maintain the river temperature near Bonners Ferry between 1-4 C (November-December) to improve burbot migration and spawning activity; and (3) determine if a hatching success of 10% of eyed burbot embryos could be achieved through extensive rearing and produce fingerlings averaging 9.8 cm in six months. Water temperature did not fall below the upper limit (4 C)more » until mid-January but was usually maintained between 1-4 C January through February and was acceptable. Snowpack was characterized by a 101% of normal January runoff forecast. Adult burbot were sampled with hoop nets and slat traps. Only three burbot were captured in hoop nets, all at Ambush Rock (rkm 244.5). No burbot were caught in either slat traps or juvenile sampling gear, indicating the population is nearly extirpated. Burbot catch per unit effort in hoop nets was 0.003 fish/net d. Extensive rearing was moved to a smaller private pond and will be reported in the 2008-2009 annual report.« less
Hayden, Todd A.; Binder, Thomas; Holbrook, Christopher; Vandergoot, Christopher; Fielder, David G.; Cooke, Steven J.; Dettmers, John M.; Krueger, Charles C.
2018-01-01
Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.
NASA Astrophysics Data System (ADS)
Yu, J.; Lau, A. K.; Wu, C.; Ng, W.; Yuan, Z.; Wu, D.
2009-12-01
The Pearl River Delta (PRD) is among the most economically fast-developing regions in China. The region has been experiencing increasing levels of particulate matter (PM) pollution. In an effort of establishing long-term trend in chemical characteristics of PM2.5 and understanding PM sources important at regional scale, filter-based samples have been collected at three sites in the PRD concurrently in one-in-six-day schedule since August 2007. We here report observation results of PM2.5 over one-year period (August 2007-June 2008). The three sites include an urban downtown location in Guangzhou, Nansha, a rural receptor site at the mouth of the Pearl River, and Tsuen Wan, an urban background site in Hong Kong. Guangzhou recorded the highest annual average PM2.5 concentration of 78.2 μgm-3, followed by Nansha (65.9 μgm-3) and Tsuen Wan (42.8 μgm-3). Organic matter (OM) and sulfate are the top two constituents, accounting for ~70% of PM2.5 mass. The annual average nitrate contributions were similar at GZ and NS (~13%), but lower at TW (~7%). Inter-site correlations of PM2.5 and major constituents indicate that GZ strongly influenced ambient PM2.5 levels at NS, but GZ’s influence on TW was much reduced. Sulfate, ammonium, and OM showed strong regional characteristics. To the contrary, EC at the three sites had no correlations, suggesting a dominating local origin. Examples of high PM2.5 episodes are also analyzed to identify the conditions conducive for high PM.
Hydrogeologic reconnaissance of part of the headwaters area of the Price River, Utah
Cordova, Robert M.
1963-01-01
The area investigated comprises 33 square miles in the Price River drainage basin ad is in the High Plateaus section of Utah. Precipitation on most of the area ranges from about 20 to 23 inches per year, and the average annual precipitation for the entire area was assumed to be 22 inches, of which approximately 65 percent is lost by evapotranspiration. The geologic formations underlying the area are the Blackhawk and Price River Formations of Cretaceous age, the North Horn Formation of Cretaceous and Tertiary age, the Flagstaff Limestone and Colton Formation of tertiary age, and unconsolidated deposits of probable Quaternary age.Some ground water issues from springs and seeps and is used by stock and the cities of Price and Helper. The annual discharge from the springs and seeps in the area averages about 3,000 acre-feet. Two deep wells supply about 400 acre-feet per year for use at a steam-generating plant. The aquifers penetrated by the wells are in the Flagstaff Limestone and the North Horn formation, the deepest aquifer being about 1,500 feet below the land surface. Most of the ground water in the area is suitable for municipal and industrial use.The surface discharge from the area is approximately 6,000 acre-feet per year. By means of a water budget, it is calculated that approximately 4,000 acre-feet per year leaves the area by subsurface flow. Further development of ground water on a large scale can be accomplished only by the use of wells. It is possible, however, that part of any newly developed supply from wells may be drawn from existing spring discharge or streamflow.
Deems, Jeffrey S.; Painter, Thomas H.; Barsugli, Joseph J.; Belnap, Jayne; Udall, Bradley
2013-01-01
The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases with increased climate forcing. These results have implications for water management and suggest that dust abatement efforts could be an important component of any climate adaptation strategies in the UCRB.
Magnitude and frequency of low flows in the Suwannee River Water Management District, Florida
Giese, G.L.; Franklin, M.A.
1996-01-01
Low-flow frequency statistics for 20 gaging stations having at least 10 years of continuous record and 31 other stations having less than 10 years of continu ous record or a series of at least two low- flow measurements are presented for unregulated streams in the Suwannee River Water Management District in north-central Florida. Statistics for the 20 continuous-record stations included are the annual and monthly minimum consecutive-day average low- flow magnitudes for 1, 3, 7, 14, and 30 consecutive days for recurrence intervals of 2, 5, 10, 20, and, for some long-term stations, 50 years, based on records available through the 1994 climatic year.Only theannual statistics are given for the 31 other stations; these are for the 7- and 30-consecutive day periods only and for recurrence intervals of 2 and 10 years only. Annual low-flow frequency statistics range from zero for many small streams to 5,500 cubic feet per second for the annual 30- consecutive-day average flow with a recurrenceinterval of 2 years for the Suwannee River near Wilcox (station 02323500). Monthly low-flow frequency statistics range from zero for many small streams to 13,800 cubic feet per second for the minimum 30-consecutive-day average flow with a 2-year recurrence interval for the month of March for the same station. Generally, low-flow characteristics of streams in the Suwannee River Water Management District are controlled by climatic, topographic, and geologic fac tors. The carbonate Floridan aquifer system underlies, or is at the surface of, the entire District. The terrane's karstic nature results in manysinkholes and springs. In some places, springs may contribute greatly to low streamflow and the contributing areas of such springs may include areasoutside the presumed surface drainage area of the springs. In other places, water may enter sinkholes within a drainage basin, then reappear in springs downstream from a gage. Many of the smaller streams in the District go dry or have no flow forseveral months in many years. In addition to the low-flow statistics, four synoptic low-flow measurement surveys were conducted on 161 sites during 1990, 1995, and 1996. Themeasurements were made to provide "snapshots" of flow conditions of streams throughout the Suwannee River Water Management District. Magnitudes of low flows during the 1990 series of measurements were in the range associated withminimum 7-consecutive-day 50-year recurrence interval to the minimum 7-consecutive-day 20-year recurrence interval, except in Taylor and Dixie Counties, where the magnitudes ranged from the minimum 7-consecutive-day 5-year flow level to the7-consecutive-day 2-year flow level. The magnitudes were all greater than the minimum 7- consecutive-day 2-year flow level during 1995 and 1996. Observations of no flow were recorded at many of the sites for all four series of measurements.
Moore, M.A.; Lamb, T.E.
1984-01-01
The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Compact, Arkansas-Oklahoma, are given in tables. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area are also given in tabular form. Monthly, maximum, minimum, and mean discharges are shown for the 14 streamflow stations used in computing annual yield. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin
The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in thismore » series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release groups were pooled across the entire Snake River Basin upstream of Lower Granite Dam for this report. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.92% with an estimated standard error (dSE) of 0.25% for wild spring and summer Chinook salmon for tagged groups released from 1996 through 2004, omitting age-1-ocean (jack) returns. Only for the 1999 and 2000 release years did the wild Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for wild steelhead from the Snake River Basin averaged 0.63% (dSE = 0.15%), including age-1-ocean returns, for release years 1996 through 2004. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2004), it was estimated that on average approximately 83% of the total integrated mortality for nontransported, tagged wild spring and summer Chinook, and 78% for steelhead (omitting the 2001 release year), occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the dam-specific T/I for Lower Granite Dam were available for the 2003 and 2004 release years for both wild Chinook salmon and wild steelhead. The estimated T/I for Lower Granite was significantly > 1.0 for Chinook in 2004 (P < 0.0001) and for steelhead in both 2003 (P < 0.0001) and 2004 (P < 0.0001), indicating that for these release years, wild fish transported at Lower Granite returned there in higher proportions than fish that were returned to the river at Lower Granite, or that passed Lower Granite without detection as juveniles. Annual estimates of the dam-specific T/I for Little Goose Dam were available for wild Chinook salmon for both 2003 and 2004. The estimated T/I for Little Goose was significantly > 1.0 for wild Chinook in 2004 (P = 0.0024), but not in 2003 (P = 0.1554). Differential post-Bonneville mortality (D) is the ratio of post-Bonneville survival to Lower Granite Dam of transported fish to that of nontransported ('inriver') fish. Estimates of D were available for transportation from Lower Granite and Little Goose dams in 2003 and 2004 for wild Chinook, and from Lower Granite Dam in 2003 and 2004 for wild steelhead. Point estimates ranged from 0.74 (dSE = 0.29) for transportation of wild Chinook salmon from Lower Granite Dam in 2003 to 1.91 (dSE = 0.61) for transportation of wild steelhead from Lower Granite Dam in 2003. Small transport groups resulted in high uncertainty on the point estimates, and only for 2003 steelhead transported from Lower Granite Dam did transported fish have significantly greater post-Bonneville survival than nontransported fish (P = 0.0213).« less
Changes in streamflow characteristics in Wisconsin as related to precipitation and land use
Gebert, Warren A.; Garn, Herbert S.; Rose, William J.
2016-01-19
Streamflow characteristics were determined for 15 longterm streamflow-gaging stations for the periods 1915–2008, 1915–68, and 1969–2008 to identify trends. Stations selected represent flow characteristics for the major river basins in Wisconsin. Trends were statistically significant at the 95 percent confidence level at 13 of the 15 streamflow-gaging stations for various streamflow characteristics for 1915–2008. Most trends indicated increases in low flows for streams with agriculture as the dominant land use. The three most important findings are: increases in low flows and average flows in agricultural watersheds, decreases in flood peak discharge for many streams in both agricultural and forested watersheds, and climatic change occurred with increasing annual precipitation and changes in monthly occurrence of precipitation. When the 1915–68 period is compared to the 1969–2008 period, the annual 7-day low flow increased an average of 60 percent for nine streams in agricultural areas as compared to a 15 percent increase for the five forested streams. Average annual flow for the same periods increased 23 percent for the agriculture streams and 0.6 percent for the forested streams. The annual flood peak discharge for the same periods decreased 15 percent for agriculture streams and 8 percent for forested streams. The largest increase in the annual 7-day low flow was 117 percent, the largest increase in annual average flow was 41 percent, and the largest decrease in annual peak discharge was 51 percent. The trends in streamflow characteristics affect frequency characteristics, which are used for a variety of design and compliance purposes. The frequencies for the 1969–2008 period were compared to frequencies for the 1915–68 period. The 7-day, 10-year (Q7, 10) low flow increased 91 percent for nine agricultural streams, while the five forested streams had an increase of 18 percent. The 100-year flood peak discharge decreased an average of 15 percent for streams in the agriculture area and 27 percent for streams in the forested area. Increases in low flow for agriculture streams are attributed to changes in agricultural practices and land use as well as increased precipitation. The decrease in annual flood peak discharge with increased annual precipitation is less clear, but is attributed to increased infiltration from changes in agricultural practices and climatic changes. For future low-flow studies, the 1969–2008 period should be used to determine low-flow characteristics since it represents current (2014) conditions and was generally free of significant trends.
Risley, John C.; Hess, Glen W.; Fisher, Bruce J.
2006-01-01
Records of diversion and return flows for water years 1961?2004 along a reach of the Klamath River between Link River and Keno Dams in south-central Oregon were evaluated to determine the cause of a water-balance inconsistency in the hydrologic data. The data indicated that the reach was losing flow in the 1960s and 1970s and gaining flow in the 1980s and 1990s. The absolute mean annual net water-balance difference in flows between the first and second half of the 44-year period (1961-2004) was approximately 103,000 acre-feet per year (acre-ft/yr). The quality of the diversion and return-flow records used in the water balance was evaluated using U.S. Geological Survey (USGS) criteria for accuracy. With the exception of the USGS Klamath River at Keno record, which was rated as 'good' or 'excellent,' the eight other flow records, all from non-USGS flow-measurement sites, were rated as 'poor' by USGS standards due to insufficient data-collection documentation and a lack of direct discharge measurements to verify the rating curves. The record for the Link River site, the most upstream in the study area, included both river and westside power canal flows. Because of rating curve biases, the river flows might have been overestimated by 25,000 acre-ft/yr on average from water years 1961 to 1982 and underestimated by 7,000 acre-ft/yr on average from water years 1983 to 2004. For water years 1984-2004, westside power canal flows might have been underestimated by 11,000 acre-ft/yr. Some diversion and return flows (for mostly agricultural, industrial, and urban use) along the Klamath River study reach, not measured continuously and not included in the water-balance equation, also were evaluated. However, the sum of these diversion and return flows was insufficient to explain the water-balance inconsistency. The possibility that ground-water levels in lands adjacent to the river rose during water years 1961-2004 and caused an increase in ground-water discharge to the river also was evaluated. However, water-level data from local wells did not have a rising trend during the period. The most likely cause of the water-balance inconsistency was flow measurement error in the eight non-USGS flow records. Part of the water-balance inconsistency can be explained by a 43,000 acre-foot error in the river and canal flow portions of the Link River flow record. A remaining 60,000 acre-foot error might have been distributed among the seven other flow records, or much of the remaining 60,000 acre-foot error might have been in the Link River flow record because flows in that record had a greater magnitude than flows in the seven other records. As an additional analysis of the water-balance issue, flow records used in the water balance were evaluated for trends and compared to known changes in water management in the Bureau of Reclamation Klamath Project and Lower Klamath and Tule Lake National Wildlife Refuges over the 44-year period. Many of the water-management changes were implemented in the early 1980s. For three diversion flow records, 1983-2004 mean annual flows were 16,000, 8,000, and 21,000 acre-ft/yr greater than their 1961-82 mean annual flows. Return flows to the Klamath River at two flow-measurement sites decreased by 31,000 and 27,000 acre-ft/yr for 1983-2004 compared with the 1961-82 period.
Barlow, Paul M.; Ostiguy, Lance J.
2007-01-01
A numerical-modeling study was done to better understand hydrologic-system responses to ground-water withdrawals in the Hunt-Annaquatucket-Pettaquamscutt (HAP) stream-aquifer system of Rhode Island. System responses were determined by use of steady-state and transient numerical ground-water-flow models. These models were initially developed in the late 1990s as part of a larger study of the stream-aquifer system. The models were modified to incorporate new data made available since the original study and to meet the objectives of this study. Changes made to the models did not result in substantial changes to simulated ground-water levels, hydrologic budgets, or streamflows compared to those calculated by the original steady-state and transient models. Responses of the hydrologic system are described primarily by changes in simulated streamflows and ground-water levels throughout the basin and by changes to flow conditions in the aquifer in three wetland areas immediately east of the Lafayette State Fish Hatchery, which lies within the Annaquatucket River Basin in the town of North Kingstown. Ground water is withdrawn from the HAP aquifer at 14 large-capacity production wells, at an industrial well, and at 3 wells operated by the Rhode Island Department of Environmental Management at the fish hatchery. A fourth well has been proposed for the hatchery and an additional production well is under development by the town of North Kingstown. The primary streams of interest in the study area are the Hunt, Annaquatucket, and Pettaquamscutt Rivers and Queens Fort Brook. Total model-calculated streamflow depletions in these rivers and brook resulting from withdrawals at the production, industrial, and fish-hatchery wells pumping at average annual 2003 rates are about 4.8 cubic feet per second (ft3/s) for the Hunt River, 3.3 ft3/s for the Annaquatucket River, 0.5 ft3/s for the Pettaquamscutt River, and 0.5 ft3/s for Queens Fort Brook. The actual amount of streamflow reduction in the Annaquatucket River caused by pumping actually is less, 1.1 ft3/s, because ground water that is pumped at the fish-hatchery wells (2.2 ft3/s) is returned to the Annaquatucket River after use at the hatchery. One of the primary goals of the study was to evaluate the response of the hydrologic system to simulated withdrawals at the proposed well at the fish hatchery. Withdrawal rates at the proposed well would range from zero during April through September of each year to a maximum of 260 gallons per minute [about 0.4 million gallons per day (Mgal/d)] in March of each year. The average annual withdrawal rate at the fish hatchery resulting from the addition of the proposed well would increase by only 0.13 ft3/s, or about 5 percent of the 2003 withdrawal rate. The increased pumping rate at the hatchery would further reduce the average annual flow in Queens Fort Brook by less than 0.05 ft3/s and in the Annaquatucket River by about 0.1 ft3/s (which includes some model error). A new production well in the Annaquatucket River Basin is under development by the town of North Kingstown. A simulated pumping rate of 1.0 Mgal/d (1.6 ft3/s) at this new well resulted in additional streamflow depletions, compared to those calculated for the 2003 withdrawal conditions, of 0.8 and 0.2 ft3/s in the Annaquatucket and Pettaquamscutt Rivers, respectively. The source of water for about 30 percent of the well's pumping rate, or about 0.5 ft3/s, is derived from ground-water inflow from the Chipuxet River Basin across a natural ground-water drainage divide that separates the Annaquatucket and Chipuxet River Basins; the remaining 0.1 ft3/s of simulated pumping consists of reduced evapotranspiration from the water table. Model-calculated changes in water levels in the aquifer for the various withdrawal conditions simulated in this study indicate that ground-water-level declines caused by pumping are generally less than 5 feet (ft). However, ground-water-level declines of as
Zhong, Biao; Xu, Y Jun
2011-10-01
Exceeding 1.2 million acres (4856 km(2)) since the 1930s, coastal wetland loss has been the most threatening environmental problem in Louisiana, United States. This study utilized high-resolution LiDAR (Light Detection and Ranging) and DEM (Digital Elevation Model) data sets to assess the risk of potential wetland loss due to future sea level rises, their spatial distribution, and the associated loss of soil organic carbon (SOC) and organic nitrogen (SON) estimated from the State Soil Geographic (STATSGO) Database and National Wetlands Inventory (NWI) digital data. Potential inundation areas were divided into five elevation scales: < 0 cm, 0-50 cm, 50-100 cm, 100-150 cm, and 150-200 cm above mean sea level. The study found that southeastern Louisiana on the Mississippi River Delta, specifically the Pontchartrain and Barataria Basins, are most vulnerable to sea-level rise induced inundation. Accordingly, approximately 42,264,600 t of SOC and 2,817,640 t of SON would be inundated by 2050 using an average wetland SOC density (203 t per hectare) for the inundation areas between 0 and 50 cm. The estimated annual SOC and SON loss from Louisiana's coast is 17% of annual organic carbon and 6-8% of annual organic nitrogen inputs from the Mississippi River.
Can the Gila River reduce risk in the Colorado River Basin?
NASA Astrophysics Data System (ADS)
Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.
2012-12-01
The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation guidelines, and climate change scenario assumptions. This potential risk mitigation could be at least partly realized through enhancements to current management practices, possibly in the Gila River, that could improve the water supply reliability for all stakeholders in the Colorado River Basin.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
...-AA87 Security Zone; 23rd Annual North American International Auto Show, Detroit River, Detroit, MI... officials at the 23rd Annual North American International Auto Show (NAIAS) being held at Cobo Hall in... 23rd Annual North American International Auto Show (NAIAS) being held at Cobo Hall in downtown Detroit...
Snowmelt in the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Zhang, F.
2016-12-01
Snow accumulation and melting are important hydrological processes in the Tibetan Plateau (TP). Qualification of snow dynamics is helpful for water resources management. In this study, a case study of snow and runoff modeling in a glaciated catchment in south Tibet was firstly conducted and showed that MODIS snow cover data can be successfully used for snow model calibration. Following the method, snow accumulation and melting in the TP was simulated using a distributed degree-day model through zonal calibration. The simulation results showed that the spatial pattern of snowmelt is basically in accordance with that of precipitation with discrepancy mainly introduced by elevation and temperature lapse. During 1979-2010, average annual precipitation and snowmelt in the TP was 394 and 80 mm/yr, respectively, indicating that about 1/5 of the precipitation in the TP supplied the rivers, lakes, and groundwater etc in the form of snowmelt. Seasonal snowmelt accounted for 35%, 37%, 26%, and 2% of the annual gross in spring, summer, fall, and winter, respectively, with net accumulation of snow in fall and winter added to the snowmelt in the following spring and summer. The overall changing trends of annual precipitation and snowmelt in the TP were 4.1 and 0.4 mm/yr, respectively, with the most intensive snowmelt increase of about 3.0 mm/yr in the upstream of Tarim river basin (UTA) but decrease of about -1.4 mm/yr in the upstream of Mekong river basin (UME) due to the interacting impacts of temperature and precipitation. Significant increasing trend of snowmelt in spring shown in the UTA may benefit the local water use for irrigation etc.
NASA Astrophysics Data System (ADS)
Mutema, M.; Chaplot, V.; Jewitt, G.; Chivenge, P.; Blöschl, G.
2015-11-01
Process controls on water, sediment, nutrient, and organic carbon exports from the landscape through runoff are not fully understood. This paper provides analyses from 446 sites worldwide to evaluate the impact of environmental factors (MAP and MAT: mean annual precipitation and temperature; CLAY and BD: soil clay content and bulk density; S: slope gradient; LU: land use) on annual exports (RC: runoff coefficients; SL: sediment loads; TOCL: organic carbon losses; TNL: nitrogen losses; TPL: phosphorus losses) from different spatial scales. RC was found to increase, on average, from 18% at local scale (in headwaters), 25% at microcatchment and subcatchment scale (midreaches) to 41% at catchment scale (lower reaches of river basins) in response to multiple factors. SL increased from microplots (468 g m-2 yr-1) to plots (901 g m-2 yr-1), accompanied by decreasing TOCL and TNL. Climate was a major control masking the effects of other factors. For example, RC, SL, TOCL, TNL, and TPL tended to increase with MAP at all spatial scales. These variables, however, decreased with MAT. The impact of CLAY, BD, LU, and S on erosion variables was largely confined to the hillslope scale, where RC, SL, and TOCL decreased with CLAY, while TNL and TPL increased. The results contribute to better understanding of water, nutrient, and carbon cycles in terrestrial ecosystems and should inform river basin modeling and ecosystem management. The important role of spatial climate variability points to a need for comparative research in specific environments at nested spatiotemporal scales.
Rainfall and runoff variability in Ethiopia
NASA Astrophysics Data System (ADS)
Billi, Paolo; Fazzini, Massimiliano; Tadesse Alemu, Yonas; Ciampalini, Rossano
2014-05-01
Rainfall and river flow variability have been deeply investigated and and the impact of climate change on both is rather well known in Europe (EEA, 2012) or in other industrialized countries. Reports of international organizations (IPCC, 2012) and the scientific literature provide results and outlooks that were found contrasting and spatially incoherent (Manton et al., 2001; Peterson et al., 2002; Griffiths et al., 2003; Herath and Ratnayake, 2004) or weakened by limitation of data quality and quantity. According to IPCC (2012), in East Africa precipitation there are contrasting regional and seasonal variations and trends, though Easterling et al. (2000) and Seleshi and Camberlin (2006) report decreasing trends in heavy precipitation over parts of Ethiopia during the period 1965-2002. Literature on the impact of climate change on river flow is scarce in Africa and IPCC Technical Paper VI (IPCC, 2008) concluded that no evidence, based on instrumental records, has been found for a climate-driven globally widespread change in the magnitude/frequency of floods during the last decades (Rosenzweig et al., 2007), though increases in runoff and increased risk of flood events in East Africa are expected. Some papers have faced issues regarding rainfall and river flow variability in Ethiopia (e.g. Seleshi and Demaree, 1995; Osman and Sauerborn, 2002; Seleshi and Zanke, 2004; Meze-Hausken, 2004; Korecha and Barnston, 2006; Cheung et al., 2008) but their investigations are commonly geographically limited or used a small number of rain and flow gauges with the most recent data bound to the beginning of the last decade. In this study an attempt to depict rainfall and river flow variability, considering the longer as possible time series for the largest as possible number of meteo-stations and flow gauge evenly distributed across Ethiopia, is presented. 25 meteo-stations and 21 flow gauges with as much as possible continuous data records were selected. The length of the time series ranges between 35 to 50 and 9 to 49 years for rainfall and river flow, respectively. In order to improve the poor linear correlation model to describe rainfall gradient with altitude a simple topographic parameter is introduced capable to better depict the spatial variability of annual rainfall and its coefficient of variation. The small rains (Belg) were found to be much more unpredictable than the long, monsoon-type rains (Kiremt) and hence much more out of phase with the variation of annual precipitation amount that is significantly influenced by the Kiremt rains. In order to investigate the long term trends, rainfall anomalies were calculated as Z score for annual, Belg and Kiremt precipitation for all the stations and average values are calculated and plotted against time. The three Z trend lines obtained show no marked deviation from the mean as only an almost negligible decreasing trend is observed. Rainfall intensity in 24 hours is analyzed and the trend line of the maximum intensity averaged over the maximum value of each year recorded at each meteo-station is constructed. These data indicate a general decrease in daily rainfall intensity across Ethiopia with clear exceptions in a few selected areas. The same procedure, based on the Z scores, used to analyze rainfall variability is applied also to the river flow data and a similar result is obtained. If compared with rainfall, annual runoff shows a much wider range of variation among the study rivers. This issue is discussed and possible explanations are presented.
Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington
Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.
2009-01-01
Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.
Crain, Angela S.
2006-01-01
Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of 0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual yield of nitrite plus nitrate was observed at the South Fork Little River site. The North Fork Little River site had the largest estimated mean annual yield of suspended sediment (450,000 lb/yr/mi2). Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the Little River Basin. Commercial fertilizer and livestock-waste applications on row crops are a principal source of nutrients for most of the Little River Basin. Sources of nutrients in the urban areas of the basin mainly are from effluent discharge from wastewater-treatment facilities and fertilizer applications to lawns and golf courses.
Evaporation from Lake Mead, Arizona and Nevada, 1997-99
Westenburg, Craig L.; DeMeo, Guy A.; Tanko, Daron J.
2006-01-01
Lake Mead is one of a series of large Colorado River reservoirs operated and maintained by the Bureau of Reclamation. The Colorado River system of reservoirs and diversions is an important source of water for millions of people in seven Western States and Mexico. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, conducted a study from 1997 to 1999 to estimate evaporation from Lake Mead. For this study, micrometeorological and hydrologic data were collected continually from instrumented platforms deployed at four locations on the lake, open-water areas of Boulder Basin, Virgin Basin, and Overton Arm and a protected cove in Boulder Basin. Data collected at the platforms were used to estimate Lake Mead evaporation by solving an energy-budget equation. The average annual evaporation rate at open-water stations from January 1998 to December 1999 was 7.5 feet. Because the spatial variation of monthly and annual evaporation rates was minimal for the open-water stations, a single open-water station in Boulder Basin would provide data that are adequate to estimate evaporation from Lake Mead.
Meredith, Christy S.; Budy, Phaedra; Hooten, Mevin B.; Oliveira Prates, Marcos
2017-01-01
Trout species often segregate along elevational gradients, yet the mechanisms driving this pattern are not fully understood. On the Logan River, Utah, USA, exotic brown trout (Salmo trutta) dominate at low elevations but are near-absent from high elevations with native Bonneville cutthroat trout (Onchorhynchus clarkii utah). We used a spatially-explicit Bayesian modeling approach to evaluate how abiotic conditions (describing mechanisms related to temperature and physical habitat) as well as propagule pressure explained the distribution of brown trout in this system. Many covariates strongly explained redd abundance based on model performance and coefficient strength, including average annual temperature, average summer temperature, gravel availability, distance from a concentrated stocking area, and anchor ice-impeded distance from a concentrated stocking area. In contrast, covariates that exhibited low performance in models and/or a weak relationship to redd abundance included reach-average water depth, stocking intensity to the reach, average winter temperature, and number of days with anchor ice. Even if climate change creates more suitable summer temperature conditions for brown trout at high elevations, our findings suggest their success may be limited by other conditions. The potential role of anchor ice in limiting movement upstream is compelling considering evidence suggesting anchor ice prevalence on the Logan River has decreased significantly over the last several decades, likely in response to climatic changes. Further experimental and field research is needed to explore the role of anchor ice, spawning gravel availability, and locations of historical stocking in structuring brown trout distributions on the Logan River and elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yuelu; Huang, Shengzhi; Chang, Jianxia
It is of importance to comprehensively investigate the spatial-temporal changes in potential evaporation patterns, which helps guide the long-term water resource allocation and irrigation managements. In this study, the Cloud model was adopted to quantify the average, uniformity, and stability of annual potential evaporation in the Wei River Basin (WRB), a typical arid and semi-arid region in China.. The cross wavelet analysis was then applied to explore the correlations between potential evaporation and Arctic Oscillation (AO)/El Niño Southern Oscillation (ENSO) with an aim to determine the possible causes of potential evaporation variations. Results indicated that: (1) the average of annualmore » potential evaporation in the WRB first declined and then increased, which was similar with its stability, whilst its dispersion degree exhibited a decreasing trend, implying that potential evaporation has a small inter-annual variation; (2) the average of potential evaporation in the western basin was obviously smaller than that in the other areas, while its uniformity and stability in the Guanzhong plain and the Loess Plateau areas are larger than those in other areas, particularly in the western basin where the uniformity and stability are the smallest; (3) both AO and ENSO exhibited strong correlations with potential evaporation variations, indicating that both AO and ENSO have played an important role in the annual potential evaporation variations in the WRB.« less
33 CFR 100.713 - Annual Harborwalk Boat Race; Sampit River, Georgetown, SC.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Annual Harborwalk Boat Race... Annual Harborwalk Boat Race; Sampit River, Georgetown, SC. (a) Definitions—(1) Regulated Area. The... nonparticipants. (2) After the termination of the Harborwalk Boat Race, and during intervals between scheduled...
33 CFR 100.713 - Annual Harborwalk Boat Race; Sampit River, Georgetown, SC.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Annual Harborwalk Boat Race... Annual Harborwalk Boat Race; Sampit River, Georgetown, SC. (a) Definitions—(1) Regulated Area. The... nonparticipants. (2) After the termination of the Harborwalk Boat Race, and during intervals between scheduled...
33 CFR 100.713 - Annual Harborwalk Boat Race; Sampit River, Georgetown, SC.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Annual Harborwalk Boat Race... Annual Harborwalk Boat Race; Sampit River, Georgetown, SC. (a) Definitions—(1) Regulated Area. The... nonparticipants. (2) After the termination of the Harborwalk Boat Race, and during intervals between scheduled...
33 CFR 100.713 - Annual Harborwalk Boat Race; Sampit River, Georgetown, SC.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Annual Harborwalk Boat Race... Annual Harborwalk Boat Race; Sampit River, Georgetown, SC. (a) Definitions—(1) Regulated Area. The... nonparticipants. (2) After the termination of the Harborwalk Boat Race, and during intervals between scheduled...
N2O emissions from a nitrogen-enriched river
McMahon, P.B.; Dennehy, K.F.
1999-01-01
Nitrous oxide (N2O) emissions from the South Platte River in Colorado were measured using closed chambers in the fall, winter, and summer of 1994- 1995. The South Platte River was enriched in inorganic N (9-800 ??M) derived from municipal wastewater effluent and groundwater return flows from irrigated agricultural fields. River water was as much as 2500% supersaturated with N2O, and median N2O emission rates from the river surface ranged from less than 90 to 32 600 ??g-N m-2 d-1. Seventy-nine percent of the variance in N2O emission rates was explained by concentrations of total inorganic N in river water and by water temperature. The estimated total annual N2O emissions from the South Platte River were 2 x 1013-6 x 1013 ??g-N yr-1. This amount of annual N2O emissions was similar to the estimated annual N2O emissions from all primary municipal wastewater treatment processes in the United States (1). Results from this study indicate that N-enriched rivers could be important anthropogenic sources of N2O to the atmosphere. However, N2O emission measurements from other N-enriched rivers are needed to better quantify this source.Nitrous oxide (N2O) emissions from the South Platte River in Colorado were measured using closed chambers in the fall, winter, and summer of 1994-1995. The South Platte River was enriched in inorganic N (9-800 ??M) derived from municipal wastewater effluent and groundwater return flows from irrigated agricultural fields. River water was as much as 2500% supersaturated with N2O, and median N2O emission rates from the river surface ranged from less than 90 to 32 600 ??g-N m-2 d-1. Seventy-nine percent of the variance in N2O emission rates was explained by concentrations of total inorganic N in river water and by water temperature. The estimated total annual N2O emissions from the South Platte River were 2??1013-6??1013 ??g-N yr-1. This amount of annual N2O emissions was similar to the estimated annual N2O emissions from all primary municipal wastewater treatment processes in the United States. Results from this study indicate that N-enriched rivers could be important anthropogenic sources of N2O to the atmosphere. However, N2O emission measurements from other N-enriched rivers are needed to better quantify this source.
Global Water Resources Under Future Changes: Toward an Improved Estimation
NASA Astrophysics Data System (ADS)
Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.
2005-05-01
Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From the estimation of present stress level (withdrawal to resource ratio), the months between January to May was found to have the highest number of population above water stress level, while the months between June to August having lower population in stress. The regions suffering from high seasonal variability are those of Asian monsoon zone, south-central Africa and central-east part of South America. Inter-annual variability, on the other hand, is dominant mostly along the Middle-east or Sahara regions and the western part of South America and Latin America. Virtual water trading among countries was estimated on per capita basis. It shows that many Middle east countries are able to compensate their water stress significantly through virtual water trading. The overall effect of climate change on lowering of river runoff mostly affected Europe, southern part of China and Latin America. India or Central Africa have better runoff availability under changing climate, but still subject to a higher water stress because of socio-economic factors like high population growth and expected increase in rate of water uses. Decrease in population as well as saturation level of maximum water uses along most European countries, on the contrary, relaxed the pressure of lowering river runoff, causing no significant change in future stress.
Impact of possible climate changes on river runoff under different natural conditions
NASA Astrophysics Data System (ADS)
Gusev, Yeugeniy M.; Nasonova, Olga N.; Kovalev, Evgeny E.; Ayzel, Georgy V.
2018-06-01
The present study was carried out within the framework of the International Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) for 11 large river basins located in different continents of the globe under a wide variety of natural conditions. The aim of the study was to investigate possible changes in various characteristics of annual river runoff (mean values, standard deviations, frequency of extreme annual runoff) up to 2100 on the basis of application of the land surface model SWAP and meteorological projections simulated by five General Circulation Models (GCMs) according to four RCP scenarios. Analysis of the obtained results has shown that changes in climatic runoff are different (both in magnitude and sign) for the river basins located in different regions of the planet due to differences in natural (primarily climatic) conditions. The climatic elasticities of river runoff to changes in air temperature and precipitation were estimated that makes it possible, as the first approximation, to project changes in climatic values of annual runoff, using the projected changes in mean annual air temperature and annual precipitation for the river basins. It was found that for most rivers under study, the frequency of occurrence of extreme runoff values increases. This is true both for extremely high runoff (when the projected climatic runoff increases) and for extremely low values (when the projected climatic runoff decreases).
Kirsch, E.M.; Ickes, B.; Olsen, D.A.
2008-01-01
Approximately 7,610 to 3,175 pairs of Great Blue Herons (Ardea herodias) nested along 420 river km of the Uppert Mississippi River (UMR) from 1993 to 2003. Numbers declined precipitously in the mid-1990s stabilizing somewhat in the early 2000s. The average number of nests in colonies was 349 (SD = 283). Annual colony turn over rate for the eleven year period was 0.15 and ranged from 0.06 to 0.29 each year. The number of years that a colony was active was positively correlated with the average number of nests present while the colony was active. Of the eight colonies active in 1993 that averaged more than 349 nests, four were abandoned by 2003. Only one colony grew to greater than 349 nests during the study period. Custer et al. (2004) suggested that herons on the UMR may be limited by forage resources or foraging habitat and social factors, as evidenced by the even spacing of colonies that reflects the maximum feeding range of herons on the river. To rule out nesting and foraging habitat limitation, landscape habitat features of terrestrial and aquatic areas were examined for colony areas and areas without colonies. Available fish monitoring data were used to examine potential interactions between herons and forage resources. Colony areas did not differ from areas without colonies in any habitat feature. Indices of potential heron forage fish increased from 1993 to 2002, although low indices of fish abundance in 1993 were likely influenced by flood conditions that year. Although fish availability to herons is related to flows and water levels, available data suggested that herons did not negatively impact their potential forage base. Numbers of herons were not correlated with indices of fish abundance from the preceding year on a pool-wide scale. Indices of fish abundance were higher within 5 km of colonies than farther than 5 km from colonies, and indices of fish abundance increased from June through August both near and far from colonies. Numbers of herons and locations and sizes of colonies varied annually, whereas landscape features typically vary little if at all from year to year. Indices of fish abundance also varied greatly by sample location and year. Disturbance, particularly by humans in this highly used river, should be examined in relation to limiting foraging opportunities and influencing behavior (colony and individual) and productivity in colonies.
DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.
2002-01-01
Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were 12 to 13 percent of total annual flow in some subbasins and of total monthly flow throughout the basin in summer and early fall. Water-management alternatives were evaluated by simulating hypothetical scenarios of increased withdrawals and altered recharge for average 1989?98 conditions with the flow models. Increased withdrawals to maximum State-permitted levels would result in withdrawals of about 15 million gallons per day, or about 50 percent more than current withdrawals. Model-calculated effects of these increased withdrawals included reductions in stream base flow that were greatest (as a percentage of total flow) in late summer and early fall. These reductions ranged from less than 5 percent to more than 60 percent of model-calculated 1989?98 base flow along reaches of the Charles River and major tributaries during low-flow periods. Reductions in base flow generally were comparable to upstream increases in withdrawals, but were slightly less than upstream withdrawals in areas where septic-system return flow was simulated. Increased withdrawals also increased the proportion of wastewater in the Charles River downstream of treatment facilities. The wastewater component increased downstream from a treatment facility in Milford from 80 percent of September base flow under 1989?98 conditions to 90 percent of base flow, and from 18 to 27 percent of September base flow downstream of a treatment facility in Medway. In another set of hypothetical scenarios, additional recharge equal to the transfer of water out of a typical subbasin by sewers was found to increase model-calculated base flows by about 12 percent of model-calculated base flows. Addition of recharge equal to that available from artificial recharge of residential rooftop runoff had smaller effects, augmenting simulated September base flow by about 3 percent. Simulation-optimization methods were applied to an area near Populatic Pond and the confluence of the Mill and Charles Rivers in Franklin,
NASA Astrophysics Data System (ADS)
Núñez-Riboni, Ismael; Akimova, Anna
2017-05-01
New 67-year long (1948-2014) gridded time series of salinity in the North Sea at all depths allowed to quantify, spatially resolved, the amount of inter-annual salinity variability explained by each of its driving mechanisms: sea level pressure (SLP), precipitation, river run-off, zonal and meridional winds and currents over the eastern North Atlantic. For the current data, not only annual averages but also their deviations, as measure of turbulence, were considered. Our results summarize and expand the knowledge gathered in the last 50 years about the mechanisms driving inter-annual variability of salinity in the North Sea. Three mechanisms, uncorrelated with each other and acting over separate regions of the North Sea, arise as most important: (1) River run-off from continental Europe explains 50-80% of inter-annual salinity variations at lag 0 in the Southern and German Bights and the Norwegian Trench up to the connection with the North Atlantic, down to the seabed near the coasts and to the deep Norwegian Trench (100 m); (2) Remote variations of salinity in the Rockall Trough explain 70% of salinity variations of the tongue of high salinity in the northwestern North Sea with a lag of one year and down the water column; (3) The Neva discharge explains 60% of salinity changes in Skagerrak and southern Norwegian trench at lag 0. An explanation for this correlation might be the Baltic freshwater outflow being modulated by the Neva discharge through intensification of the estuarine gravitational circulation. We confirmed known relations between river run-off, precipitation over continental Europe, SLP over northern Europe and zonal wind over western Europe. Linked to these changes, we found also changes of meridional wind north of Scotland favoring eastward Ekman transport of salty North Atlantic waters into the North Sea off the Norwegian coast. Excluding this only case, we found no significant correlation between wind-driven currents and North Sea salinity changes. This result supports the notion that the Atlantic inflow into the North Sea is mainly density-driven. Salinity in the region east of Scotland and northern England was alienated from all driving mechanisms tested. An explanation was found in concomitant canceling changes of the intensity of the North Sea circulation and the discharge of the river Tay.
NASA Astrophysics Data System (ADS)
Pagan, Brianna; Ashfaq, Moetasim; Rastogi, Deeksha; Kao, Shih-Chieh; Naz, Bibi; Mei, Rui; Kendall, Donald; Pal, Jeremy
2016-04-01
The Western United States has a greater vulnerability to climate change impacts on water security due to a reliance on snowmelt driven imported water. The State of California, which is the most populous and agriculturally productive in the United States, depends on an extensive artificial water storage and conveyance system primarily for irrigated agriculture, municipal and industrial supply and hydropower generation. This study provides an integrated approach to assessing climate change impacts on the hydrologic cycle and hydrologic extremes for all water supplies to Southern California including the San-Joaquin River, Tulare Lake, Sacramento River, Owens Valley, Mono Lake, and Colorado River basins. A 10-member ensemble of coupled global climate models is dynamically downscaled forcing a regional and hydrological model resulting in a high-resolution 4-km output for the region. Greenhouse gas concentrations are prescribed according to historical values for the present-day (1965-2005) and the IPCC Representative Concentration Pathway 8.5 for the near to mid term future (2010-2050). While precipitation is projected to remain the same or slightly increase, rising temperatures result in a shift in precipitation type towards more rainfall, reducing cold season snowpack and earlier snowmelt. Associated with these hydrological changes are substantial increases in both dry and flood event frequency and intensity, which are evaluated by using the Generalized Extreme Value distribution, Standardized Precipitation Index and ratio of daily precipitation to annual precipitation. Daily annual maximum runoff and precipitation event events significantly increase in intensity and frequency. Return periods change such that extreme events in the future become much more common by mid-century. The largest changes occur in the Colorado River where the daily annual maximum runoff 100-year event, for example, becomes approximately ten times more likely and twice as likely in the other basins. Volumes for annual cumulative maximum runoff increase and in contrast decrease for annual cumulative minimum runoff. Intuitively, increased frequency of years with below historical average runoff put further strain on water supply. However, the escalating likelihood of runoff occurring earlier in the year and in significantly higher amounts poses a substantial flood control risk requiring the release of water from reservoirs, also potentially decreasing water availability. Significant reductions in snowpack and increases in extreme runoff necessitate additional multiyear storage solutions for urban and agricultural regions in the Western United States.
Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA
NASA Astrophysics Data System (ADS)
Sobota, D. J.; Compton, J.; Goodwin, K. E.
2012-12-01
We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and often 75%, of annual N yield occurring in fall and winter months. Our results suggest that that spatially explicit data on specific crop types and crop practices are valuable for explaining spatial and temporal variation of nutrient concentrations in WRB rivers. This emphasizes the need for careful tracking of non-point N inputs to inform water quality monitoring and management.
NASA Astrophysics Data System (ADS)
Kentel, E.; Cetinkaya, M. A.
2013-12-01
Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.
NASA Astrophysics Data System (ADS)
Strahm, Ivo; Munz, Nicole; Braun, Christian; Gälli, René; Leu, Christian; Stamm, Christian
2014-05-01
Water quality in the Swiss river network is affected by many micropollutants from a variety of diffuse sources. This study compares, for the first time, in a comprehensive manner the diffuse sources and the substance groups that contribute the most to water contamination in Swiss streams and highlights the major regions for water pollution. For this a simple but comprehensive model was developed to estimate emission from diffuse sources for the entire Swiss river network of 65 000 km. Based on emission factors the model calculates catchment specific losses to streams for more than 15 diffuse sources (such as crop lands, grassland, vineyards, fruit orchards, roads, railways, facades, roofs, green space in urban areas, landfills, etc.) and more than 130 different substances from 5 different substance groups (pesticides, biocides, heavy metals, human drugs, animal drugs). For more than 180 000 stream sections estimates of mean annual pollutant loads and mean annual concentration levels were modeled. This data was validated with a set of monitoring data and evaluated based on annual average environmental quality standards (AA-EQS). Model validation showed that the estimated mean annual concentration levels are within the range of measured data. Therefore simulations were considered as adequately robust for identifying the major sources of diffuse pollution. The analysis depicted that in Switzerland widespread pollution of streams can be expected. Along more than 18 000 km of the river network one or more simulated substances has a concentration exceeding the AA-EQS. In single stream sections it could be more than 50 different substances. Moreover, the simulations showed that in two-thirds of small streams (Strahler order 1 and 2) at least one AA-EQS is always exceeded. The highest number of substances exceeding the AA-EQS are in areas with large fractions of arable cropping, vineyards and fruit orchards. Urban areas are also of concern even without considering wastewater treatment plants. Only a small number of problematic substances are expected from grassland. Landfills and roadways are insignificant within the entire Swiss river network, but may locally lead to considerable water pollution. Considering all substance groups, pesticides and some heavy metals are the main polluters. Many pesticides are expected to exceed AA-EQS and in a substantial percentage of the river network. Modeling a large number of substances from many sources and a huge quantity of stream sections is only possible with a simple model. Nevertheless conclusions are robust and may indicate where and for what kind of substance groups additional efforts for water quality improvements should be undertaken.
Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.
He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan
2009-01-01
Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.
Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.
2007-01-01
Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices that would reduce the loading of nutrients and soil erosion from that land use.
Biological and ecological science for Wisconsin—A Great Lakes and Rivers State
,
2018-03-06
Wisconsin and natural resources go hand-in-hand. Tourism, which generates $19 billion annually and sustains about 200,000 jobs, depends on an abundance of lakes, rivers, shorelines, and woodlands for fishing, hunting, boating, and other outdoor recreation. Rivers and floodplains in the Upper Mississippi Basin, including the Mississippi River, are part of a five-State corridor that generates more than $300 billion annually and sustains millions of manufacturing, tourism, transportation, and agricultural jobs. Wisconsin also is a Great Lakes State with more than 800 miles of shoreline, and the fisheries of lakes Superior and Michigan deliver $185 million annually and provide thousands of jobs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 [Docket No. USCG-2013-0644] Special Local Regulations; Annual Marine Events on the Colorado River, Between Davis Dam (Bullhead City, Arizona... INFORMATION: The Coast Guard will enforce the special local regulations on the Colorado River for the...
DeLonay, Aaron J.; Jacobson, Robert B.; Chojnacki, Kimberly A.; Annis, Mandy L.; Braaten, P. J.; Elliott, Caroline M.; Fuller, D. B.; Haas, Justin D.; Haddix, Tyler M.; Ladd, Hallie L.A.; McElroy, Brandon J.; Mestl, Gerald E.; Papoulias, Diana M.; Rhoten, Jason C.; Wildhaber, Mark L.
2014-01-01
The Comprehensive Sturgeon Research Project is a multiyear, multiagency collaborative research framework developed to provide information to support pallid sturgeon recovery and Missouri River management decisions. The project strategy integrates field and laboratory studies of sturgeon reproductive ecology, early life history, habitat requirements, and physiology. The project scope of work is developed annually with cooperating research partners and in collaboration with the U.S. Army Corps of Engineers, Missouri River Recovery—Integrated Science Program. The research consists of several interdependent and complementary tasks that engage multiple disciplines. The research tasks in the 2011 scope of work emphasized understanding of reproductive migrations and spawning of adult sturgeon, and hatch and drift of larvae. These tasks were addressed in three hydrologically and geomorphologically distinct parts of the Missouri River Basin: the Lower Missouri River downstream from Gavins Point Dam, the Upper Missouri River downstream from Fort Peck Dam and including downstream reaches of the Milk River, and the Lower Yellowstone River. The research is designed to inform management decisions related to channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River, and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2011.
Langland, Michael J.; Hainly, Robert A.
1997-01-01
The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.
Norton, Parker A.; Anderson, Mark T.; Stamm, John F.
2014-01-01
The Missouri River and its tributaries are an important resource that serve multiple uses including agriculture, energy, recreation, and municipal water supply. Understanding historical streamflow characteristics provides relevant guidance to adaptive management of these water resources. Streamflow records in the Missouri River watershed were examined for trends in time series of annual, seasonal, and monthly streamflow. A total of 227 streamgages having continuous observational records for water years 1960–2011 were examined. Kendall’s tau nonparametric test was used to determine statistical significance of trends in annual, seasonal, and monthly streamflow. A trend was considered statistically significant for a probability value less than or equal to 0.10 that the Kendall’s tau value equals zero. Significant trends in annual streamflow were indicated for 101 out of a total of 227 streamgages. The Missouri River watershed was divided into six watershed regions and trends within regions were examined. The western and the southern parts of the Missouri River watershed had downward trends in annual streamflow (56 streamgages), whereas the eastern part of the watershed had upward trends in streamflow (45 streamgages). Seasonal and monthly streamflow trends reflected prevailing annual streamflow trends within each watershed region.
Rating curve estimation of nutrient loads in Iowa rivers
Stenback, G.A.; Crumpton, W.G.; Schilling, K.E.; Helmers, M.J.
2011-01-01
Accurate estimation of nutrient loads in rivers and streams is critical for many applications including determination of sources of nutrient loads in watersheds, evaluating long-term trends in loads, and estimating loading to downstream waterbodies. Since in many cases nutrient concentrations are measured on a weekly or monthly frequency, there is a need to estimate concentration and loads during periods when no data is available. The objectives of this study were to: (i) document the performance of a multiple regression model to predict loads of nitrate and total phosphorus (TP) in Iowa rivers and streams; (ii) determine whether there is any systematic bias in the load prediction estimates for nitrate and TP; and (iii) evaluate streamflow and concentration factors that could affect the load prediction efficiency. A commonly cited rating curve regression is utilized to estimate riverine nitrate and TP loads for rivers in Iowa with watershed areas ranging from 17.4 to over 34,600km2. Forty-nine nitrate and 44 TP datasets each comprising 5-22years of approximately weekly to monthly concentrations were examined. Three nitrate data sets had sample collection frequencies averaging about three samples per week. The accuracy and precision of annual and long term riverine load prediction was assessed by direct comparison of rating curve load predictions with observed daily loads. Significant positive bias of annual and long term nitrate loads was detected. Long term rating curve nitrate load predictions exceeded observed loads by 25% or more at 33% of the 49 measurement sites. No bias was found for TP load prediction although 15% of the 44 cases either underestimated or overestimate observed long-term loads by more than 25%. The rating curve was found to poorly characterize nitrate and phosphorus variation in some rivers. ?? 2010 .
Ecology of fall-migrating ducks in central Illinois: A radar perspective
NASA Astrophysics Data System (ADS)
O'Neal, Benjamin J.
Research from the last two decades has elucidated the importance of migration in the annual cycle of ducks, but many aspects of migration ecology remain poorly understood due to the difficulty of investigating movements that occur over large spatial scales, at substantial heights and at night. Weather surveillance radar (WSR) offers a unique tool for observing movements of birds aloft, but until now has been used primarily to address questions only relevant to broad taxonomic groups. Using thermal infrared imaging, portable radar, and natural history, I ground-truthed WSR echoes originating from a complex of wetlands in the central Illinois River valley to develop a technique for identifying and enumerating ducks as they emigrated from this important stopover area. With this technique, I quantified duck emigrations during 7 falls (1996, 1997, 2003, and 2005-2008). I used WSR-derived estimates of annual turnover in combination with aerial inventory estimates of duck use to estimate the average amount of time ducks spent at my study site during fall (stopover duration). The mean stopover duration estimate of 11 days (SD = 4 days) was much shorter than a historical estimate (28 days) that has been use for regional waterfowl conservation planning. I also regressed average annual stopover duration estimates against an index of annual foraging habitat quality and found a strong, positive relationship (r2 = 0.71), suggesting ducks assessed local habitat conditions and adjusted time spent at the site. Weather influences the timing of migration in many avian taxa, but this relationship is poorly understood for ducks. An evaluation of competing models including 15 years of data indicated following winds aloft, no precipitation, less cloud cover, decreasing temperatures, increasing barometric pressure and date best predicted emigration (R2 = 0.52). Based on this model, the odds of a duck emigration occurring when winds were following and precipitation was absent were 13.2 to 1.0 (95% CI 7.8--22.4). Finally, the notion that ducks rely on leading-lines of rivers for visual orientation during flight is a dominant paradigm in waterfowl science. I examined departure tracks of emigration events from my study site during 1995--2009 and found ducks had a significant SSE directional preference (152°; P < 0.05), which differed significantly in all years from the course of the Illinois River (220°; P ≤ 0.001). This pattern was markedly different than the river-oriented route described for ducks departing this site in the mid-20th century. Thus, leading lines appear to have been unimportant for orientation in the majority of duck emigration events from the major stopover area examined here.
Sloto, Ronald A.; Buxton, Debra E.
2005-01-01
This pilot study, done by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission, developed annual water budgets using available data for five watersheds in the Delaware River Basin with different degrees of urbanization and different geological settings. A basin water budget and a water-use budget were developed for each watershed. The basin water budget describes inputs to the watershed (precipitation and imported water), outputs of water from the watershed (streamflow, exported water, leakage, consumed water, and evapotranspiration), and changes in ground-water and surface-water storage. The water-use budget describes water withdrawals in the watershed (ground-water and surface-water withdrawals), discharges of water in the watershed (discharge to surface water and ground water), and movement of water of water into and out of the watershed (imports, exports, and consumed water). The water-budget equations developed for this study can be applied to any watershed in the Delaware River Basin. Data used to develop the water budgets were obtained from available long-term meteorological and hydrological data-collection stations and from water-use data collected by regulatory agencies. In the Coastal Plain watersheds, net ground-water loss from unconfined to confined aquifers was determined by using ground-water-flow-model simulations. Error in the water-budget terms is caused by missing data, poor or incomplete measurements, overestimated or underestimated quantities, measurement or reporting errors, and the use of point measurements, such as precipitation and water levels, to estimate an areal quantity, particularly if the watershed is hydrologically or geologically complex or the data-collection station is outside the watershed. The complexity of the water budgets increases with increasing watershed urbanization and interbasin transfer of water. In the Wissahickon Creek watershed, for example, some ground water is discharged to streams in the watershed, some is exported as wastewater, and some is exported for public supply. In addition, ground water withdrawn outside the watershed is imported for public supply or imported as wastewater for treatment and discharge in the watershed. A GIS analysis was necessary to quantify many of the water-budget components. The 89.9-square mile East Branch Brandywine Creek watershed in Pennsylvania is a rural watershed with reservoir storage that is underlain by fractured rock. Water budgets were developed for 1977-2001. Average annual precipitation, streamflow, and evapotranspiration were 46.89, 21.58, and 25.88 inches, respectively. Some water was imported (average of 0.68 inches) into the watershed for public-water supply and as wastewater for treatment and discharge; these imports resulted in a net gain of water to the watershed. More water was discharged to East Branch Brandywine Creek than was withdrawn from it; the net discharge resulted in an increase in streamflow. Most ground water was withdrawn (average of 0.25 inches) for public-water supply. Surface water was withdrawn (average of 0.58 inches) for public-water and industrial supply. Discharge of water by sewage-treatment plants and industries (average of 1.22 inches) and regulation by Marsh Creek Reservoir caused base flow to appear an average of 7.2 percent higher than it would have been without these additional sources. On average, 67 percent of the difference was caused by sewage-treatment-plant and industrial discharges, and 33 percent was caused by regulation of the Marsh Creek Reservoir. Water imports, withdrawals, and discharges have been increasing as the watershed becomes increasingly urbanized. The 64-square mile Wissahickon Creek watershed in Pennsylvania is an urban watershed underlain by fractured rock. Water budgets were developed for 1987-98. Average annual precipitation, streamflow, and evapotranspiration were 47.23, 22.24, and 23.12 inches, respectively. The watershed is highly u
Increased baseflow in Iowa over the second half of the 20th Century
Schilling, K.E.; Libra, R.D.
2003-01-01
Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight-digit hydrologic unit code (HUC-8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual baseflow, annual minimum flow, and the annual baseflow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as baseflow than as stormflow in the second half of the 20th Century. Reasons for the observed streamflow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.
Impacts of Climate Change on Agricultural Technology Management in the Transylvanian Plain, Romania
NASA Astrophysics Data System (ADS)
Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian; Cacovean, Horea
2013-04-01
The impact of climate changes varies considerably in Europe, with different degrees of vulnerability. Romania is situated in an area with the lowest capacity to adapt to existing climate change and those that will occur, and the Transylvanian Plain (TP) is one of the most affected areas. In these conditions, the climate monitoring and implementation of measures to adapt to these changes are essential for sustainable development of agricultural technologies. The TP name comes from the Latin "silva" which means forest, namely an area covered with forests approximately 55-60% in the early nineteenth century, but today reached an average of 6.8% in the TP area. In time, the rugged terrain, deforestation, erosive slopes, and irrational agro technical practices for crop production altogether brought about the degradation of large areas of agricultural land, reducing its productivity. The degree of soil degradation in TP and climate change in recent years, have radically modified climatic conditions for cultural crops. Monitoring of temperature and water supply in TP aims to evaluate these two resources for agricultural production. The TP is a geographical region located in north-central Romania and it is bordered by large rivers to the north and south: the Somes and the Mures rivers. The altitude of the TP ranges from 231 to 662 m. TP, with an area of approx. 395,616 ha, includes areas of three counties (Cluj - CJ, Mures -MS, Bistrita-Nasaud - BN), has a predominantly agricultural character, and is characterized by hilly climate with oceanic influences, 9-100C average annual temperatures and 500-700 mm/year average annual precipitations. Monitoring the thermal and water supplies from TP was performed with twenty HOBO micro stations which determine the temperature (to a height of 1 m) and rainfalls same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Average precipitation recorded during 2009-2011, is 498.97 mm, which is beneath the multiannual average of the area. The year 2009 indicated an average of 503.84 mm in TP, considered in the lower limit of the area, followed by the year 2010 with an annual average of 607.84 mm, the year with the closest values to normal area precipitation values. The year 2011 is extremely dry, with an average of 376.56 mm. This situation is reflected in rainfall humidity values, recorded at a depth of 10 cm in the soil, where the area average is about 0.249%. The inner hydrological network contains rivers with low flow inside a semi-permanent or intermittent flow supply. River flow is not related to the surface water supply, being tributary to rainfalls which have an uneven character. Since the supply is pluviometrical, floods are recorded from March to April due to snow melting and in May to July after torrential rains. Quantity and quality of groundwater in Transylvanian Plain represent problems that have conditioned economic and social development of rural habitats and determined the anthropic development and maintenance of the natural lakes. Groundwaters have a particular importance within the region revealing the possibility of development of settlements and location of others settlements and supporting an efficient agriculture. Reduced volume of groundwater induces a temporary or intermittent character to the majority of surface waters during summer and early autumn. The amount of real evapotranspiration adds up to these, which from April to October, is 550 - 600 mm, half of these being registered in the summer months. Hydrographical local organization exclusively, lack of alternative water sources and unproductive correlation between S-SV exhibition of the flanks with increased slopes, all these are images of a region tributary to the critical term. Average air temperature during 2009-2011 is 10.750C, in the soil at 10 cm depth being 11.150C, respectively 11.280C at depth of 50 cm. Low amounts of precipitation, especially their poor distribution during crop vegetation, are aggravated by the deficit of hydrological resources for TP. The average air temperature is above multiannual average of the area, which significantly influenced the optimum time of sowing and amount of biologically active degrees of temperature during the vegetation period.
Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.
2017-11-01
The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.
Huntington, Thomas G.; Billmire, M.
2014-01-01
Climate warming is projected to result in increases in total annual precipitation in northeastern North America. The response of runoff to increases in precipitation is likely to be more complex because increasing evapotranspiration (ET) could counteract increasing precipitation. This study was conducted to examine these competing trends in the historical record for 22 rivers having >70 yr of runoff data. Annual (water year) average precipitation increased in all basins, with increases ranging from 0.9 to 3.12 mm yr−1. Runoff increased in all basins with increases ranging from 0.67 to 2.58 mm yr−1. The ET was calculated by using a water balance approach in which changes in terrestrial water storage were considered negligible. ET increased in 16 basins and decreased in 6 basins. Temporal trends in temperature, precipitation, runoff, and ET were also calculated for each basin over their respective periods of record for runoff and for the consistent period (1927–2011) for the area-weighted average of the nine largest non-nested basins. From 1927 through 2011, precipitation and runoff increased at average rates of 1.6 and 1.7 mm yr−1, respectively, and ET increased slightly at a rate of 0.18 mm yr−1. For the more recent period (1970–2011), there was a positive trend in ET of 1.9 mm yr−1. The lack of a more consistent increase in ET, compared with the increases in precipitation and runoff, for the full periods of record, was unexpected, but may be explained by various factors including decreasing wind speed, increasing cloudiness, decreasing vapor pressure deficit, and patterns of forest growth.
NASA Astrophysics Data System (ADS)
Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu
2018-02-01
The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.
Geology and ground-water resources of upper Grande Ronde River Basin, Union County, Oregon
Hampton, E.R.; Brown, S.G.
1964-01-01
The upper Grande Ronde River basin is a 1,400-square-mile area in northeastern Oregon, between the Blue Mountains to the west and the Wallowa Mountains to the east. The area is drained by the Grande Ronde River, which flows northeast through this region and is tributary to the Snake River. The climate is generally moderate; temperature extremes recorded at La Grande are 22?F. below zero and 108?F. above. The average annual precipitation ranges from 13 to 20 inches in the Grande Ronde Valley to . more than 35 inches in the mountain highlands surrounding the valley. The topography of. the area is strongly controlled by the geologic structures, principally those related to block faulting. The terrain ranges from the nearly flat floors of the Grande Ronde and Indian Valleys, whose elevations are 2,600 to about 2,750 feet, to the mountainous uplands, whose average elevations are about 5,000 feet and which have local prominences exceeding 6,500 feet. The rocks in the upper Grande Ronde River basin, from oldest to youngest, are metamorphic rocks of pre-Tertiary age; igneous masses of diorite and granodiorite that intruded the metamorphic rocks; tuff-breccia, welded and silicified tuff, and andesite and dacite flows, of Tertiary age; the Columbia River basalt of Miocene and possibly early Pliocene age; fanglomerate and lacustrine deposits of Pliocene and Pleistocene age; and younger deposits . of alluvium, colluvium, and welded tuff. In the graben known as the Grande Ronde Valley, which is the principal populated district in the area, the valley fill deposits are as thick as 2,000 feet. The valley is bordered by the scarps of faults, the largest of which have displacements of more than 4.000 feet. Most of the wells in the area obtain small to moderate supplies of water from unconfined aquifers in the val1ey fill and alluvial fan deposits. Moderate to large quantities of water are obtained from aquifers carrying artesian water in the fan alluvium and the Columbia River basalt. The available supplies of ground water greatly exceed the relatively small amounts that are being used, and the natural supplies are ..adequate for foreseeable domestic, industrial, irrigation, and municipal. requirements. Yields of future wells probably could be improved appreciably over those of present wells by exercising close attention to subsurface conditions during construction, and by greater use of well screens, gravel envelopes, and well development techniques. The chemical quality of the ground water in general is excellent. All waters sampled are potable and are within the desired ranges of hardness and salinity for most public, industrial, and irrigation uses. The average temperature of shallow ground water drawn from, the alluvial fill was 3?F. above the mean annual air temperature. That of water obtained from the basalt is 6?F. above the temperatures computed from the 'normal' gradient of 1.8?F. per 100 feet of increased depth.
Coutinho, Paulo Eduardo Guzzo; Candido, Luiz Antonio; Tadei, Wanderli Pedro; da Silva Junior, Urbano Lopes; Correa, Honorly Katia Mestre
2018-04-26
A study was conducted at three sampling regions along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. The aim was to determine the influence of the local effects of climatic and hydrological variables on new malaria cases. Data was gathered on the river level, precipitation, air temperature, and the number of new cases of autochthonous malaria between January 2003 and December 2013. Monthly averages, time series decompositions, cross-correlations, and multiple regressions revealed different relationships at each location. The sampling region in the upper Rio Negro indicated no statistically significant results. However, monthly averages suggest that precipitation and air temperature correlate positively with the occurrence of new cases of malaria. In the mid Rio Negro and Puraquequara Lake, the river level positively correlated, and temperature negatively correlated with new transmissions, while precipitation correlated negatively in the mid Rio Negro and positively on the lake. Overall, the river level is a key variable affecting the formation of breeding sites, while precipitation may either develop or damage them. A negative temperature correlation is associated with the occurrence of new annual post-peak cases of malaria, when the monthly average exceeds 28.5 °C. This suggests that several factors contribute to the occurrence of new malaria cases as higher temperatures are reached at the same time as precipitation and the river levels are lowest. Differences between signals and correlation lags indicate that local characteristics have an impact on how different variables influence the disease vector's life cycle, pathogens, and consequently, new cases of malaria.
Fine-grained sediment storage conditioned by Large Woody Debris in a gravel-bed river
NASA Astrophysics Data System (ADS)
Skalak, K. J.; Narinesingh, P.; Pizzuto, J. E.
2006-05-01
The purposes of this study are 1) to determine the quantity of mud and sand stored in the channel margins and near-bank regions of South River, a steep gravel-bedded stream in western Virginia, and 2) to understand the geomorphic and hydrologic processes that control the erosion and deposition of these fine-grained deposits. The volume of storage in these deposits is equivalent to about 5-10 percent of the river's annual suspended sediment load. Sediment storage in the near-bank regions is a result of reduced velocity caused by the bank obstructions. Storage occurs in four different geomorphic settings: 1) long pooled sections caused by bedrock or old mill dams, 2) regions downstream of riffles in channel margins with LWD accumulations, 3) bank obstructions usually caused by trees, 4) side channel backwaters where flow separates around islands. Most storage occurs in regions downstream of riffles (approximately 44 percent of the total). Long pooled sections account for roughly 37 percent of the total storage, bank obstructions account for 13 percent, and backwaters account for roughly 6 percent. In approximately 17 km of river, there are 38 separate fine-grained deposits (total volume more than 1600 m3). On average, these deposits are about 35 cm deep, 20 m long, and 4 m wide. They average 30 percent mud, 68 percent sand, and 2 percent gravel. These deposits have been cored and analyzed for Hg, grain size, loss-on-ignition, and bomb radiocarbon. High Hg concentrations in fish tissue are an ongoing problem along South River, further motivating detailed study of these deposits.
NASA Astrophysics Data System (ADS)
Demaria, Eleonora M. C.; Dominguez, Francina; Hu, Huancui; von Glinski, Gerd; Robles, Marcos; Skindlov, Jonathan; Walter, James
2017-12-01
Atmospheric rivers (ARs), narrow atmospheric water vapor corridors, can contribute substantially to winter precipitation in the semiarid Southwest U.S., where natural ecosystems and humans compete for over-allocated water resources. We investigate the hydrologic impacts of 122 ARs that occurred in the Salt and Verde river basins in northeastern Arizona during the cold seasons from 1979 to 2009. We focus on the relationship between precipitation, snow water equivalent (SWE), soil moisture, and extreme flooding. During the cold season (October through March) ARs contribute an average of 25%/29% of total seasonal precipitation for the Salt/Verde river basins, respectively. However, they contribute disproportionately to total heavy precipitation and account for 64%/72% of extreme total daily precipitation (exceeding the 98th percentile). Excess precipitation during AR occurrences contributes to snow accumulation; on the other hand, warmer than normal temperatures during AR landfallings are linked to rain-on-snow processes, an increase in the basins' area contributing to runoff generation, and higher melting lines. Although not all AR events are linked to extreme flooding in the basins, they do account for larger runoff coefficients. On average, ARs generate 43% of the annual maximum flows for the period studied, with 25% of the events exceeding the 10 year return period. Our analysis shows that the devastating 1993 flooding event in the region was caused by AR events. These results illustrate the importance of AR activity on the hydrology of inland semiarid regions: ARs are critical for water resources, but they can also lead to extreme flooding that affects infrastructure and human activities.
Delonay, Aaron J.; Jacobson, Robert B.; Chojnacki, Kimberly A.; Braaten, Patrick J.; Buhl, Kevin J.; Eder, Brandon L; Elliott, Caroline M.; Erwin, Susannah O.; Fuller, David B.; Haddix, Tyler M.; Ladd, Hallie L.A.; Mestl, Gerald E.; Papoulias, Diana M.; Rhoten, Jason C.; Wesolek, Christopher J.; Wildhaber, Mark L.
2016-01-20
The research tasks in the 2013 scope of work emphasized understanding reproductive migrations and spawning of adult pallid sturgeon, and hatch and drift of free embryos and larvae. These tasks were addressed in four study sections located in three hydrologically and geomorphologically distinct parts of the Missouri River Basin: the Upper Missouri River downstream from Fort Peck Dam, including downstream reaches of the Milk River, the Lower Yellowstone River, and the Lower Missouri River downstream from Gavins Point Dam. The research is designed to inform management decisions related to channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River, and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2013.
Evapotranspiration from the Lower Walker River Basin, West-Central Nevada, Water Years 2005-07
Allander, Kip K.; Smith, J. LaRue; Johnson, Michael J.
2009-01-01
Evapotranspiration is the ultimate path of outflow of nearly all water from the Lower Walker River basin. Walker Lake is the terminus of the topographically closed Walker River basin, and the lake level has been declining at an average rate of about 1.6 feet per year (ft/yr) since 1917. As a result of the declining lake level, dissolved-solids concentrations are increasingly threatening the fishery and ecosystem health of the lake. Uncertainties in the water budget components of the Lower Walker River basin led the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, to undertake an investigation to refine estimates of the water budget. Evapotranspiration from the Lower Walker River basin represents a major component of this water budget. The specific objectives of this report are to provide estimates of total and net evapotranspiration for water years 2005-07 for areas in the Lower Walker River basin in which annual evapotranspiration exceeds annual precipitation, and to summarize these results for areas of similar vegetation and soil characteristics, hydrographic subareas, and Walker Lake and Weber Reservoir. The three hydrographic subareas include the area along Walker River north of Walker Lake, the area of and adjacent to Walker Lake, and the area south of Walker Lake. Areas of annual evapotranspiration exceeding annual precipitation were identified and mapped in the field and were further delineated using remote-sensing analysis. These areas were classified into 10 evapotranspiration units. A network of 11 evapotranspiration stations was operated in natural and agricultural vegetation and on Walker Lake. Measured evapotranspiration rates ranged from 0.5 ft/yr at a sparsely vegetated desert shrub site to 5.0 ft/yr from Walker Lake. The greatest evapotranspiration rate on land was 4.1 ft/yr at an irrigated alfalfa field, and the greatest rate for natural vegetation was 3.9 ft/yr in a riparian community along Walker River. At an evapotranspiration station in a saltcedar grove, measurements indicated a possible decrease in evapotranspiration of about 50 percent due to defoliation of the saltcedar by the saltcedar leaf beetle. Total evapotranspiration from the evapotranspiration units identified in the Lower Walker River basin was about 231,000 acre-feet per year (acre-ft/yr). Of this amount, about 45,000 acre-ft/yr originated from direct precipitation, resulting in net evapotranspiration of about 186,000 acre-ft/yr. More than 80 percent of net evapotranspiration in the Lower Walker River basin was through evaporation from Walker Lake. Total evaporation from Walker Lake was about 161,000 acre-ft/yr and net evaporation was about 149,000 acre-ft/yr. Some previous estimates of evaporation from Walker Lake based on water-budget analysis actually represent total evaporation minus ground-water inflow to the lake. Historical evaporation rates determined on the basis of water budget analysis were less than the evaporation rate measured directly during this study. The difference could represent ground-water inflow to Walker Lake of 16,000 to 26,000 acre-ft/yr or could indicate that ground-water inflow to Walker Lake is decreasing over time as the lake perimeter recedes.
NASA Astrophysics Data System (ADS)
Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung
2018-02-01
Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high proportion of large landslides in Taiwan contributes significantly to the high annual sediment yield, which is among the world's highest despite the small area of Taiwan.
Saleh, Dina K.
2010-01-01
Statistical summaries of streamflow data for all long-term streamflow-gaging stations in the Tigris River and Euphrates River Basins in Iraq are presented in this report. The summaries for each streamflow-gaging station include (1) a station description, (2) a graph showing annual mean discharge for the period of record, (3) a table of extremes and statistics for monthly and annual mean discharge, (4) a graph showing monthly maximum, minimum, and mean discharge, (5) a table of monthly and annual mean discharges for the period of record, (6) a graph showing annual flow duration, (7) a table of monthly and annual flow duration, (8) a table of high-flow frequency data (maximum mean discharge for 3-, 7-, 15-, and 30-day periods for selected exceedance probabilities), and (9) a table of low-flow frequency data (minimum mean discharge for 3-, 7-, 15-, 30-, 60-, 90-, and 183-day periods for selected non-exceedance probabilities).
Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.
2011-01-01
The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year. The Pacolet River had a mean annual total nitrogen load of 99,780 kilograms per year and yield of 1.82 kilograms per hectare per year. Mean annual total phosphorus loads of 2,576; 9,404; and 11,710 kilograms per year and yields of 0.180, 0.313, and 0.213 kilograms per hectare per year were estimated at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. Annually, the intervening subbasin of the Pacolet River contributed negligible amounts of total nitrogen and total phosphorus loads, and large losses of dissolved nitrate plus nitrite and orthophosphate loads were determined for the subbasin. Biological (algal) uptake in the two reservoirs in this intervening area was considered the likely explanation for the loss of these constituents. Estimated mean annual suspended-sediment loads were 21,190,000; 9,895,000; and 6,547,000 kilograms per year at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. In the intervening Pacolet River subbasin, computed annual suspended-sediment loads were consistently negative, indicating large percentage losses in annual suspended-sediment load. Sedimentation processes in the two reservoirs are the most likely explanations for these apparent losses. At all sites, the winter season tended to have the highest estimated seasonal dissolved orthophosphate and dissolved nitrate plus nitrite fluxes, and the summer and fall seasons tended to have the lowest fluxes. The reverse pattern, however, was observed in the intervening drainage area in the Pacolet River where the lowest fluxes of dissolved orthophosphate and nitrate plus nitrite occurred during the winter and spring seasons and the highest occurred during the summer and fall seasons. Synoptic samples were collected during a high-flow event in August 2009 at eight sites that represented shoreline and minor tributary drainages. The South Pacolet River site was identified as contributing greater than 80 percent of the cumulative nutrient and sediment l
Magirl, Christopher S.; Olsen, Theresa D.
2009-01-01
Using discharge and channel geometry measurements from U.S. Geological Survey streamflow-gaging stations and data from a geographic information system, regression relations were derived to predict river depth, top width, and bottom width as a function of mean annual discharge for rivers in the State of Washington. A new technique also was proposed to determine bottom width in channels, a parameter that has received relatively little attention in the geomorphology literature. These regression equations, when combined with estimates of mean annual discharge available in the National Hydrography Dataset, enabled the prediction of hydraulic geometry for any stream or river in the State of Washington. Predictions of hydraulic geometry can then be compared to thresholds established by the Washington State Department of Natural Resources to determine navigability potential of rivers. Rivers with a mean annual discharge of 1,660 cubic feet per second or greater are 'probably navigable' and rivers with a mean annual discharge of 360 cubic feet per second or less are 'probably not navigable'. Variance in the dataset, however, leads to a relatively wide range of prediction intervals. For example, although the predicted hydraulic depth at a mean annual discharge of 1,660 cubic feet per second is 3.5 feet, 90-percent prediction intervals indicate that the actual hydraulic depth may range from 1.8 to 7.0 feet. This methodology does not determine navigability - a legal concept determined by federal common law - instead, this methodology is a tool for predicting channel depth, top width, and bottom width for rivers and streams in Washington.
Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China
Gong, Yao; Yu, Zhigang; Yao, Qingzhen; Chen, Hongtao; Mi, Tiezhu; Tan, Jiaqiang
2015-01-01
The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR) watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1) with a lower concentration of dissolved silicate (average 131 μmol·L−1) and relatively low dissolved phosphate (average 0.35 μmol·L−1). Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth. PMID:26287226
Stamer, J.K.; Cherry, Rodney N.; Faye, R.E.; Kleckner, R.L.
1979-01-01
During the period April 1975 to June 1978, the U.S. Geological Survey conducted a river-quality assessment of the Upper Chattahoochee River basin in Georgia. One objective of the study was to assess the magnitudes, nature, and effects of point and non-point discharges in the Chattahoochee River basin from Atlanta to the West Point Dam. On an average annual basis and during the storm period of March 1215, 1976, non-point-source loads for most constituents analyzed were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 river miles downstream of Atlanta. Most of the non-point-source constituent loads in the Atlanta-to-Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads, and about 70 percent of the dissolved phosphorus loads at Whitesburg. During weekends, power generation at the upstream Buford Dam hydroelectric facility is minimal. Streamflow at the Atlanta station during dry-weather weekends is estimated to be about 1,200 ft3/s (cubic feet per second). Average daily dissolved-oxygen concentrations of less than 5.0 mg/L (milligrams per liter) occurred often in the river, about 20 river miles downstream from Atlanta during these periods from May to November. During a low-flow period, June 1-2, 1977, five municipal point sources contributed 63 percent of the ultimate biochemical oxygen demand, 97 percent of the ammonium nitrogen, 78 percent of the total nitrogen, and 90 percent of the total phosphorus loads at the Franklin station, at the upstream end of West Point Lake. Average daily concentrations of 13 mg/L of ultimate biochemical oxygen demand and 1.8 mg/L of ammonium nitrogen were observed about 2 river miles downstream from two of the municipal point sources. Carbonaceous and nitrogenous oxygen demands caused dissolved-oxygen concentrations between 4.1 and 5.0 mg/L to occur in a 22-mile reach of the river downstream from Atlanta. Nitrogenous oxygen demands were greater than carbonaceous oxygen demands in the reach from river mile 303 to 271, and carbonaceous demands were greater from river mile 271 to 235. The heat load from the Atkinson-McDonough thermoelectric power-plants caused a decrease in the dissolved-oxygen concentrations of about 0.2 mg/L. During a critical low-flow period, a streamflow at Atlanta of about 1,800 ft3/s, with present (1977) point-source flows of 185 ft3/s containing concentrations of 45 mg/L of ultimate biochemical oxygen demand and 15 mg/L of ammonium nitrogen, results in a computed minimum dissolved-oxygen concentration of 4.7 mg/L in the river downstream from Atlanta. In the year 2000, a streamflow at Atlanta of about 1,800 ft3/s with point-source flows of 373 ft3/s containing concentrations of 45 mg/L of ultimate biochemical oxygen demand and 5.0 mg/L of ammonium nitrogen, will result in a computed minimum dissolved-oxygen concentration of 5.0 mg/L. A streamflow of about 1,050 ft3/s at Atlanta in the year 2000 will result in a dissolved-oxygen concentration of 5.0 mg/L if point-source flows contain concentrations of 15 mg/L of ultimate biochemical oxygen demand and 5.0 mg/L of ammonium nitrogen. Phytoplankton concentrations in West Point Lake, about 70 river miles downstream from Atlanta, could exceed 3 million cells per milliliter during extended low-flow periods in the summer with present point- and non-point-source nitrogen and phosphorus loads. In the year 2000, phytoplankton concentrations in West Point Lake are not likely to exceed 700,000 cells per milliliter during extended low-flow periods in the summer, if phosphorus concentrations do not exceed 1.0 mg/L in point-source discharges.
Sediment Transport in the Lower Yampa River, Northwestern Colorado
Elliott, John G.; Kircher, James E.; Von Guerard, Paul
1984-01-01
Discharge measurements and sediment samples were taken at streamflow-gaging station 09260050 Yampa River at Deerlodge Park in 1982 and 1983 to determine the annual sediment supply to the Yampa Canyon in Dinosaur National Monument. Forty-three years of discharge records at two tributary sites were combined to determine the historic discharge of the Yampa River at Deerlodge Park. A mean annual hydrograph and flow-duration curve were derived from these data. Sediment-transport equations were derived for total sediment discharge, suspended-sediment discharge, bedload dischagre, and the discharge of sediment in several particle-sizes. Annual sediment discharge were determined by the flow-duration, sediment-rating-curve method and indicated annual total sediment discharge was approximately 2.0 million tons per year of which 0.8 million tons per year was sand-sized material. Bedload was almost entirely sand, and annual bedload discharge was 0.1 million tons per year. Development of water resources in the Yampa River basin could effect the geomorphic character of the Yampa River at Deerlodge Park and the Yampa Canyon. Several scenarios of altered streamflow frequency distribution, reduced streamflow volume, and reduced sediment supply are examined to estimate the effect on the sediment budget at Deerlodge Park. (USGS)
Code of Federal Regulations, 2012 CFR
2012-07-01
... Laughlin Tourism Committee. Event Description Fireworks Display Date First week in July. Location Laughlin... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Annual Firework Events on the... § 165.1124 Annual Firework Events on the Colorado River, between Davis Dam (Bullhead City, Arizona) and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Laughlin Tourism Committee. Event Description Fireworks Display Date First week in July. Location Laughlin... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Annual Firework Events on the... § 165.1124 Annual Firework Events on the Colorado River, between Davis Dam (Bullhead City, Arizona) and...
Reconnaissance investigations of the discharge and water quality of the Amazon River
Oltman, Roy Edwin
1968-01-01
Selected published estimates of the discharge of Amazon River in the vicinity of Obidos and the mouth are presented to show the great variance of available information. The most reasonable estimates prepared by those who measured some parameters of the flow were studied by Maurice Parde, who concluded that the mean annual discharge is 90,000 to 100,000 cms (cubic meters per second) or 3,200,000 to 3,500,000 cfs (cubic feet per second). A few published estimates of discharge at mouth of 110,000 cms (3,900,000 cfs) based on rainfall-runoff relationships developed for other humid regions of the world are available. Three measurements of discharge made at the Obidos narrows in 1963-64 by a joint Brazil-United States expedition at high, low, and medium river stage are referred to the datum used at the Obidos gage during the period of operation, 1928-46, and a relationship between stage and discharge prepared on the basis of the measurements and supplementary data and computations. Recovery of the original Obidos gage datum is verified by referring the 1963-64 concurrent river stages at Manaus, Obidos, and Taperinha to gage relation curves developed for Manaus-Obidos and Obidos-Taperinha for periods of concurrent operation, 1928-46 and 1931-46, respectively. The average discharge, based on the stage-discharge relation and record of river stage for the period 1928-46, is computed to be 5,500,000 cfs (157,000 cms) for the Obidos site. The greatest known flood at Obidos, that of June 1953, is computed to have been a flow of 12,500,000 cfs (350,000 cms) at stage of 7.6 meters (24.9 feet) in the main channel and an indeterminate amount of overflow which, under the best assumed overflow conditions, may have amounted to about 10 percent of the main channel flow. Overflow discharge at stage equivalent to mean annual discharge is judged to be an insignificant percentage of flow down the main channel. Miscellaneous data collected during the flow measurements show that the tidal effect reaches upstream to Obidos at extremely low flows, the distribution of velocities in stream verticals is affected by large-scale turbulence, the standard procedure of basing mean velocity in vertical on the average of point velocities measured at 20 and 80 percent of the total depth is valid, and there is a low Manning roughness coefficient of 0.019 (English units). Samples of suspended sediment taken with a point sampler at various depths in selected verticals show, for the Obidos site, a variation in concentration from 300 to 340 mg/l (milligram per liter) near the streambed to 50 to 70 mg/l in the upper part of the verticals. Median diameter of bed material at Obidos averaged about 0.20 mm (millimeter) in a range of 0.15 to 0.25 ram. Analyses of water samples collected at Obidos in July and November 1963 and August 1964 are presented. The reconnaissance measurements of 1963-64 provide a well-supported value of mean annual water discharge of Amazon River at Obidos and the mouth. Many more measurements of flow and water-quality characteristics are needed to obtain more exact values of discharge, suspended sediment, and salt load.
NASA Technical Reports Server (NTRS)
Lee, Hyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos
2011-01-01
The Congo Basin is the world's third largest in size (approx.3.7 million sq km), and second only to the Amazon River in discharge (approx.40,200 cu m/s annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3deg 3deg regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 cu km, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.
NASA Technical Reports Server (NTRS)
Lee, Lyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos
2011-01-01
The Congo Basin is the world's third largest in size (approximately 3.7 million km^2), and second only to the Amazon River in discharge (approximately 40,200 cms annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3 degree x 3 degree regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 km^3, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research also highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.
Sediment transport by streams in the Walla Walla basin, Washington and Oregon, July 1962-June 1965
Mapes, B.E.
1969-01-01
The Walla Walla River basin covers about 1,760 square miles in southeastern Washington and northeastern Oregon. From the 6,000-foot crest of the Blue Mountains on the east to the 340-foot altitude of Lake Wallula (Columbia River) on the west, the basin is drained by the Touchet River and Dry Creek, entirely within Washington, and by Mill Creek, North and South Forks Walla Walla River, and Pine Creek-Dry Creek, which all head in Oregon. The central lowland of the basin is bordered on the north by Eureka Flat, Touchet slope, and Skyrocket Hills, on the east by the Blue Mountains, and on the south by the Horse Heaven Hills. The basin is underlain by basalt of the Columbia River Group, which .is the only consolidated rock to crop out in the region. Various unconsolidated fluviatile, lacustrine, and eolian sediments cover the basalt. In the western part of the basin the basalt is overlain by lacustrine deposits of silt and sand which in places are mantled by varying thicknesses of loessal deposits. In the northern and central parts of the basin the loess is at least 100 feet thick. The mountainous eastern part of the basin is underlain at shallow depth by basalt which has a residual soil mantle weathered from the rock. The slopes of the mountains are characterized by alluvial fans and deeply cut stream valleys ,filled with alluvium of sand, gravel, and cobbles. Average annual precipitation in the basin ranges from less than 10 inches in the desert-like areas of the west to more than 45 inches in the timbered mountains of the east; 65 percent of the precipitation occurs from October through March. The average runoff from the basin is about 4.8 inches per year. Most of the runoff occurs during late winter and early spring. Exceptionally high runoff generally results from rainfall and rapid melting of snow on partially frozen ground. During the study period, July 1964-June 1965, average annual sediment yields in the basin ranged from 420 tons per square mile in the mountainous area to more than 4,000 tons per square mile in the extensively cultivated northern and central parts of the basin, which are drained by the Touchet River and Dry Creek. The Touchet River and Dry Creek transported approximately 80 percent of the total sediment load discharged from the Walla Walla River basin. The highest concentrations were contributed by the loessal deposits in the Dry Creek drainage. Two runoff events resulting from rain and snowmelt on partially frozen ground produced 76 percent of the suspended sediment discharged from the basin during the study period. The maximum concentration measured, 316,000 milligrams per liter, was recorded for Dry Creek at Lowden on December 23. 1964. Daily suspended-sediment concentrations for the Walla Walla River near Touchet exceeded 700 milligrams per liter about 10 percent of the time, and 14,000 milligrams per liter about 1 percent of the time. The discharge-weighted mean concentration for the 3-year period of study was 7,000 milligrams per liter. Silt predominates in the suspended sediment transported by all streams in the basin. On the average, sediment from streams draining the Blue Mountains was composed of 20 percent sand, 60 percent silt, and 20 percent clay ; for streams draining the Blue Mountains slope-Horse Heaven Hills area, the percentages are 9, 65, and 26, respectively ; and for those draining the Skyrocket Hills-Touchet slope, the percentages are 5, 75, and 20, respectively. The bedload in the mountain and upland streams was estimated to be about 5-12 percent as much as the suspended load. For the Walla Walla River and its tributaries in the lower basin area, the bedload was estimated to be only about 2-8 percent as much as the suspended load.
Mapping eutrophication risk from climate change: Future phosphorus concentrations in English rivers.
Charlton, Matthew B; Bowes, Michael J; Hutchins, Michael G; Orr, Harriet G; Soley, Rob; Davison, Paul
2018-02-01
Climate change is expected to increase eutrophication risk in rivers yet few studies identify the timescale or spatial extent of such impacts. Phosphorus concentration, considered the primary driver of eutrophication risk in English rivers, may increase through reduced dilution particularly if river flows are lower in summer. Detailed models can indicate change in catchment phosphorus concentrations but targeted support for mitigation measures requires a national scale evaluation of risk. In this study, a load apportionment model is used to describe the current relationship between flow and total reactive phosphorus (TRP) at 115 river sites across England. These relationships are used to estimate TRP concentrations for the 2050s under 11 climate change driven scenarios of future river flows and under scenarios of both current and higher levels of sewage treatment. National maps of change indicate a small but inconsistent increase in annual average TRP concentrations with a greater change in summer. Reducing the TRP concentration of final sewage effluent to 0.5mg/L P for all upstream sewage treatment works was inadequate to meet existing P standards required through the EU Water Framework Directive, indicating that more needs to be done, including efforts to reduce diffuse pollution. Copyright © 2017 Elsevier B.V. All rights reserved.
Billore, S K; Prashant; Sharma, J K
2009-01-01
The discharge of untreated wastewater in River Kshipra had brought annual average of BOD, TKN and TS levels up to 39 mg/l, 38 mg/l and 781 mg/l respectively in the study area. Treatment performance by Artificial Floating Reed Beds (AFRB) was evaluated for removal efficiency of TS, NH4-N, NO3-N, TKN and BOD from river water, initially, under a pilot scale by an AFRB of size 200 m2 planted with local reed grass, Phragmites karka, in the part of River Kshipra at the confluence with meeting point of a wastewater stream. The system performance was recorded as 43% reduction in TS, 38% reduction in TKN and 39% BOD reduction. The experimental AFRBs were buoyant structure planted with reed grass, each unit had a rectangular size and covered an effective surface area of 2 m2. The experiment with the mesocosms with treatment of River water resulted that AFRB was reducing pollution load by 55-60% of TS, 45-55% of NH4-N, 33-45% of NO3-N, 45-50% of TKN and 40-50% of BOD. AFRB may be recommended as an in-situ, eco-friendly river water treatment structures for small shallow, slow flowing (or slightly stagnant) water bodies.
Water-quality trends in New England rivers during the 20th century
Robinson, Keith W.; Campbell, Jean P.; Jaworski, Norbert A.
2003-01-01
Water-quality data from the Merrimack, Blackstone, and Connecticut Rivers in New England during parts of the 20th century were examined for trends in concentrations of sulfate, chloride, residue upon evaporation, nitrate, and total phosphorus. The concentrations of all five of these constituents show statistically significant trends during the century. Annual concentrations of sulfate and total phosphorus decreased during the second half of the century, whereas annual concentrations of nitrate, chloride, and residues increased throughout the century. In the Merrimack River, annual chloride concentrations increased by an order of magnitude. Annual nitrate concentrations also increased by an order of magnitude in the Merrimack and Connecticut Rivers. These changes in the water quality probably are related to changing human activities. Most notable is the relation between increasing use of road de-icing salts and chloride concentrations in rivers. In addition, changes in concentrations of nitrate and phosphorus probably are related to agricultural use of nitrogen and phosphorus fertilizers. For all the water-quality constituents assessed, concentrations were greatest in the Blackstone River. The Blackstone River Basin is smaller and more highly urbanized than the other basins studied. Data-collection programs that span multiple decades can provide valuable insight on the effects of changing human population and societal activities on the water quality of rivers. This study was done as part of the U.S. Geological Survey's National Water-Quality Assessment Program.
Delonay, Aaron J.; Chojnacki, Kimberly A.; Jacobson, Robert B.; Braaten, Patrick J.; Buhl, Kevin J.; Elliott, Caroline M.; Erwin, Susannah O.; Faulkner, Jacob D.A.; Candrl, James S.; Fuller, David B.; Backes, Kenneth M.; Haddix, Tyler M.; Rugg, Matthew L.; Wesolek, Christopher J.; Eder, Brandon L.; Mestl, Gerald E.
2016-03-16
The Comprehensive Sturgeon Research Project is a multiyear, multiagency collaborative research framework developed to provide information to support pallid sturgeon recovery and Missouri River management decisions. The project strategy integrates field and laboratory studies of sturgeon reproductive ecology, early life history, habitat requirements, and physiology. The project scope of work is developed annually with collaborating research partners and in cooperation with the U.S. Army Corps of Engineers, Missouri River Recovery Program–Integrated Science Program. The project research consists of several interdependent and complementary tasks that involve multiple disciplines.The project research tasks in the 2014 scope of work emphasized understanding of reproductive migrations and spawning of adult pallid sturgeon and hatch and drift of larvae. These tasks were addressed in three hydrologically and geomorphologically distinct parts of the Missouri River Basin: the Lower Missouri River downstream from Gavins Point Dam, the Upper Missouri River downstream from Fort Peck Dam and downstream reaches of the Milk River, and the Lower Yellowstone River. The project research is designed to inform management decisions related to channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2014.
From salmon to shad: Shifting sources of marine-derived nutrients in the Columbia River Basin
Haskell, Craig A.
2018-01-01
Like Pacific salmon (Oncorhynchus spp.), nonnative American shad (Alosa sapidissima) have the potential to convey large quantities of nutrients between the Pacific Ocean and freshwater spawning areas in the Columbia River Basin (CRB). American shad are now the most numerous anadromous fish in the CRB, yet the magnitude of the resulting nutrient flux owing to the shift from salmon to shad is unknown. Nutrient flux models revealed that American shad conveyed over 15,000 kg of nitrogen (N) and 3,000 kg of phosphorus (P) annually to John Day Reservoir, the largest mainstem reservoir in the lower Columbia River. Shad were net importers of N, with juveniles and postspawners exporting just 31% of the N imported by adults. Shad were usually net importers of P, with juveniles and postspawners exporting 46% of the P imported by adults on average. American shad contributed <0.2% of the total annual P load into John Day Reservoir, but during June when most adult shad are migrating into John Day Reservoir, they contributed as much as 2.0% of the P load. Nutrient inputs by American shad were similar to current but far less than historical inputs of Pacific salmon owing to their smaller size. Given the relatively high background P levels and low retention times in lower Columbia River reservoirs, it is unlikely that shad marine-derived nutrients affect nutrient balances or food web productivity through autotrophic pathways. However, a better understanding of shad spawning aggregations in the CRB is needed.
The System of Chemical Elements Distribution in the Hydrosphere
NASA Astrophysics Data System (ADS)
Korzh, Vyacheslav D.
2013-04-01
The chemical composition of the hydrosphere is a result of substance migration and transformation on lithosphere-river, river-sea, and ocean-atmosphere boundaries. The chemical elements composition of oceanic water is a fundamental multi-dimensional constant for our planet. Detailed studies revealed three types of chemical element distribution in the ocean: 1) Conservative: concentration normalized to salinity is the constant in space and time; 2) Nutrient-type: element concentration in the surface waters decreases due to the biosphere consumption; and 3) Litho-generative: complex character of distribution of elements, which enter the ocean with the river runoff and interred almost entirely in sediments. The correlation between the chemical elements compositions of the river and oceanic water is high (r = 0.94). We conclude that biogeochemical features of each chemical element are determined by the relationship between its average concentration in the ocean and the intensity of its migration through hydrosphere boundary zones. In our presentation, we shall show intensities of global migration and average concentrations in the ocean in the co ordinates lgC - lg [tau], where C is an average element concentration and [tau] is its residence time in the ocean. We have derived a relationship between three main geochemical parameters of the dissolved forms of chemical elements in the hydrosphere: 1) average concentration in the ocean, 2) average concentration in the river runoff and 3) the type of distribution in oceanic water. Using knowledge of two of these parameters, it allows gaining theoretical knowledge of the third. The System covers all chemical elements for the entire range of observed concentrations. It even allows to predict the values of the annual river transport of dissolved Be, C, N, Ge, Tl, Re, to refine such estimates for P, V, Zn, Br, I, and to determine the character of distribution in the ocean for Au and U. Furthermore, the System allowed estimating natural (unaffected by anthropogenic influence) mean concentrations of elements in the river runoff and using them as ecological reference data. Finally, due to the long response time of the ocean, the mean concentrations of elements and patterns of their distribution in the ocean can be used to determine pre-techno-generative concentrations of elements in the river runoff. In our presentation, we shall show several examples of implementation of the System for studying the sediments' transport by the rivers of the Arctic slope of Northern Eurasia. References 1. Korzh V.D. 1974: Some general laws governing the turnover of substance within the ocean-atmosphere-continent-ocean cycle. Journal de Recherches Atmospheriques, 8, 653-660. 2. Korzh V.D. 2008: The general laws in the formation of the element composition of the Hydrosphere and Biosphere. J. Ecologica, 15, 13-21. 3. Korzh V.D. 2012: Determination of general laws of the chemical element composition in Hydrosphere. Water: Chemistry & Ecology, Journal of Water Science and its Practical Application. No. 1, 56-62.
Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08
Bragg, Heather M.; Uhrich, Mark A.
2010-01-01
Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.
Salmon River Habitat Enhancement. 1990 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Mike
1991-12-01
The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.
77 FR 47519 - Annual Marine Events in the Eighth Coast Guard District, Sabine River; Orange, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 [Docket No. USCG-2012-0656] Annual Marine Events in the Eighth Coast Guard District, Sabine River; Orange, TX AGENCY: Coast Guard, DHS... Regulations for the S.P.O.R.T. Power Boat Neches River in Orange, TX from 3 p.m. on September 21, 2012...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
...-AA00 Eighth Coast Guard District Annual Safety Zones; Boomsday Festival; Tennessee River 646.0-649.0... Guard will enforce a Safety Zone for the Boomsday Festival Fireworks on the Tennessee River 646.0-649.0... Festival Fireworks. During the enforcement period, entry into, transiting or anchoring in the Safety Zone...
Xiong, Lihua; Jiang, Cong; Du, Tao
2014-01-01
Time-varying moments models based on Pearson Type III and normal distributions respectively are built under the generalized additive model in location, scale and shape (GAMLSS) framework to analyze the nonstationarity of the annual runoff series of the Weihe River, the largest tributary of the Yellow River. The detection of nonstationarities in hydrological time series (annual runoff, precipitation and temperature) from 1960 to 2009 is carried out using a GAMLSS model, and then the covariate analysis for the annual runoff series is implemented with GAMLSS. Finally, the attribution of each covariate to the nonstationarity of annual runoff is analyzed quantitatively. The results demonstrate that (1) obvious change-points exist in all three hydrological series, (2) precipitation, temperature and irrigated area are all significant covariates of the annual runoff series, and (3) temperature increase plays the main role in leading to the reduction of the annual runoff series in the study basin, followed by the decrease of precipitation and the increase of irrigated area.
Behavior of 226Ra in the Mississippi River mixing zone
NASA Astrophysics Data System (ADS)
Moore, Daniel G.; Scott, Martha R.
1986-12-01
The behavior of 226Ra in the Mississippi River mixing zone is strongly nonconservative and includes desorption similar to that reported for the Hudson, Pee Dee, and Amazon rivers. However, dissolved and desorbed 226Ra concentrations in the Mississippi are 2 to 5 times greater than in the other rivers at the same salinity. Radium concentrations vary inversely with the water discharge rate. The 226Ra desorption maximum occurs at a salinity of 5.0, much lower than the 18 to 28 salinity values for the maxima of the other three rivers. High concentrations of dissolved 226Ra (up to 82 dpm per 100 L) and the low salinity values for the desorption maximum in the Mississippi River result from three major factors. Suspended sediments include a large fraction of montmorillonite, which gives the sediment a high cation exchange capacity, 0.54 meq/g. The average suspended sediment load is large, about 510 mg/L, and contains 1.9 dpm/g desorbable 226Ra. The dissolved 226Ra river water end-member (9.6 dpm per 100 L) is higher than in surface seawater. The annual contribution of 226Ra to the ocean from the Mississippi River is 3.7 × 1014 dpm/yr, based on data from three cruises. Evidence of flux of 226Ra from estuarine and shelf sediments is common in vertical profile sampling of the deltaic waters but is not reflected in calculations made with an "apparent" river water Ra value extrapolated to zero salinity.
Kjelstrom, L.C.
1995-01-01
Many individual springs and groups of springs discharge water from volcanic rocks that form the north canyon wall of the Snake River between Milner Dam and King Hill. Previous estimates of annual mean discharge from these springs have been used to understand the hydrology of the eastern part of the Snake River Plain. Four methods that were used in previous studies or developed to estimate annual mean discharge since 1902 were (1) water-budget analysis of the Snake River; (2) correlation of water-budget estimates with discharge from 10 index springs; (3) determination of the combined discharge from individual springs or groups of springs by using annual discharge measurements of 8 springs, gaging-station records of 4 springs and 3 sites on the Malad River, and regression equations developed from 5 of the measured springs; and (4) a single regression equation that correlates gaging-station records of 2 springs with historical water-budget estimates. Comparisons made among the four methods of estimating annual mean spring discharges from 1951 to 1959 and 1963 to 1980 indicated that differences were about equivalent to a measurement error of 2 to 3 percent. The method that best demonstrates the response of annual mean spring discharge to changes in ground-water recharge and discharge is method 3, which combines the measurements and regression estimates of discharge from individual springs.
NASA Astrophysics Data System (ADS)
Kalejta, B.; Hockey, P. A. R.
1991-08-01
Twenty-five benthic invertebrate species were identified from samples taken monthly over 17 months at four sites on the Berg River estuary, South Africa. Gastropods and polychaetes dominated the macrofauna in terms of both numbers and biomass. Abundance of the dominant species fluctuated in response to seasonal growth of eelgrass Zostera capensis and filamentous alga Cladophora sp. Differences in distributions of invertebrates on the estuary were attributed to differences in physical properties of the substratum and in vegetation cover. Hydrobia sp., Ceratonereis erythraeensis and C. keiskama were the most important species in terms of biomass and accounted for an average of 75% of total biomass at all study sites. Biomass peaked during the austral winter, early spring and again in autumn. An increase in biomass in winter was due to somatic production, whereas spring and autumn increases were attributed to recruitment of juveniles following reproduction. Mean annual biomass for the whole estuary was 19·36 g m -2, and mean annual production 87·58 g m -2 year -1, yielding a net P/B ratio of 4·52. Production and P/B ratios of invertebrates in estuaries and coastal lagoons at temperate and subtropical latitudes were positively correlated with mean annual ambient temperature and negatively with distance from the equator. Production data are lacking from tropical estuaries.
Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine
Dudley, Robert W.
2004-01-01
Hydraulic-geometry relations (curves) were derived for 15 sites on 12 rivers in coastal and central Maine on the basis of site-specific (at-a-station) hydraulic-geometry relations and hydraulic models. At-a-station hydraulic-geometry curves, expressed as well-established power functions, describe the relations between channel geometry, velocity, and flow at a given point on a river. The derived at-a-station hydraulic-geometry curves indicate that, on average, a given increase in flow at a given river cross section in the study area will be nearly equally conveyed by increases in velocity and channel cross-sectional area. Regional curves describing the bankfull streamflow and associated channel geometry as functions of drainage area were derived for use in stream-channel assessment and restoration projects specific to coastal and central Maine. Regional hydraulic-geometry curves were derived by combining hydraulic-geometry information for 15 river cross sections using bankfull flow as the common reference streamflow. The exponents of the derived regional hydraulic-geometry relations indicate that, in the downstream direction, most of the conveyance of increasing contribution of flow is accommodated by an increase in cross-sectional area?with about 50 percent of the increase in flow accommodated by an increase in channel width, and 32 percent by an increase in depth. The remaining 18 percent is accommodated by an increase in streamflow velocity. On an annual-peak-series basis, results of this study indicate that the occurrence of bankfull streamflow for rivers in Maine is more frequent than the 1.5-year streamflow. On a flow-duration basis, bankfull streamflow for rivers in coastal and central Maine is equaled or exceeded approximately 8.1 percent of the time on mean?or about 30 days a year. Bankfull streamflow is roughly three times that of the mean annual streamflow for the sites investigated in this study. Regional climate, snowmelt hydrology, and glacial geology may play important roles in dictating the magnitude and frequency of occurrence of bankfull streamflows observed for rivers in coastal and central Maine.
Tobin, R.L.
1996-01-01
The construction and filling of Stagecoach Reservoir on the Yampa River during 1988-91 were done to enhance water management and to use local water resources. To assess the initial effects of the reservoir on the hydrology of the upper Yampa River, physical, chemical, and biological data were collected at a site upstream (YR-1) during water years 1989-92 and a site downstream (YR-2) from the reservoir during water years 1985-92 and at two sites in the reservoir during 1990-92. Annual suspended-sediment loads were determined for the Yampa River for water years 1985-92, and sediment retention in Stagecoach Reservoir was estimated. The initial filling of the 33,275-acre-foot reservoir proceeded slower than expected because inflow from the Yampa River was about 50 to 73 percent of average during water years 1989-91. Secchi-disk measurements in Stagecoach Reservoir ranged from 2.5 to 18 feet. Algal growth and sediment transport during stormy weather decreased water clarity, and possible algal grazing by zooplankton and sediment deposition improved water clarity. Water temperature in the reservoir ranged from 0 to 22 degrees Celsius, and thermal stratification was maintained during summer. Values of pH ranged from 7.2 in the hypolimnion to 8.9 in the epilimnion. Changes in pH were related to photosynthesis and respiration. Concentrations of dissolved oxygen in the reservoir ranged from 0 milligram per liter in the hypolimnion to 13 milligrams per liter in the epilimnion. Average 5-day biochemical-oxygen-demand rates ranged from 0.33 to 0.46 milligram per liter per day. Oxygen production from photosynthesis was greatest in the epilimnion; oxygen depletion from respiration was characteristic in the hypolimnion. Near or above average inflow might decrease the incidence of anaerobic conditions. Specific conductance in the reservoir ranged from 414 to 520 microsiemens per centimeter at 25 degrees Celsius, depending on the specific conductance of inflow from the Yampa River. The water was a very hard, calcium bicarbonate type. Nitrogen input to the reservoir was mostly as organic nitrogen that ranged in concentration from less than 0.18 to about 1.0 milligram per liter. Concentrations of dissolved phosphorus in the inflow of the Yampa River ranged from less than 0.01 to 0.06 milligram per liter. Decomposition of organic material and release of nutrients from sediments under reducing conditions were probable causes for dissolved-ammonia concentrations near the reservoir bottom to increase to maximum values of 0.9 to 1.6 milligrams per liter as nitrogen during thermal stratification in summer. Dissolved phosphorus also increased in the same conditions to a range of 0.32 to 0.35 milligram per liter. Except for concentrations of total recoverable manganese that ranged from 210 to 440 micrograms per liter near the reservoir bottom, most concentrations of 20 trace constituents were measured at or near analytical detection limits. A total of 119 phytoplankton from 7 phyla was identified in Stagecoach Reservoir during 1990-92. Cyanophyta (blue-green algae) accounted for most of the cell counts. Cyanophyta blooms of Aphanizomenon and Aphanocapsa developed during 1990-92, and photosynthesis caused concentrations of dissolved oxygen to exceed 150-percent saturation in the epilimnion. Diversity index values for phytoplankton ranged from 0.05 to 3.06. Values of diversity index during the summer of 1992 indicated that the community diversity of algae could be greatest in spring and least in fall. All colony counts of fecal coliform bacteria in the reservoir during 1990-92 were less than criteria limits set by the State of Colorado. During water years 1985-88 (preconstruction period), at a site on the Yampa River downstream from the proposed damsite, and water years 1989-92 (post-construction period), at a site upstream from the dam, annual loads of suspended sediment ranged from 2,480 to 22,650 tons. The average annual suspended-sediment load for th
Warrick, J.A.; Washburn, L.; Brzezinski, Mark A.; Siegel, D.A.
2005-01-01
The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (???1-3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1-3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Nin??o) contribute nutrients at rates approximately an order-of-magnitude greater than "average" winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel. ?? 2004 Elsevier Ltd. All rights reserved.
Feasibility of ground-water features of the alternate plan for the Mountain Home project, Idaho
Nace, Raymond L.; West, S.W.; Mowder, R.W.
1957-01-01
An early plan of the U. S. Bureau of Reclamation proposed to irrigate 183,000 acres on the arid Snake River Plain south of Boise, Idaho (Mountain Home project) with Boise River water. That water would have been replaced to the Boise Valley with water imported from the Payette River. An alternate plan, proposed in 1953, would divert water from the Boise River to the plain; part of the water would be replaced by pumping ground water in the Boise valley and by importing water from the Snake River. Pumping of ground water in the Boise Valley also would help to drain waterlogged land. The present report evaluates the feasibility of the alternate plan in relation to geology and the occurrence and quality of ground water. The mean annual temperature at Boise is 50.8 ? F and there is an average of 172 days between killing frosts. The annual evaporation rate from open-water surfaces in the area is about 33 inches. Runoff in the Boise River is chiefly from precipitation on mountain slopes at altitudes above 3,000 feet, east of Boise Diversion Dam. The surface-water supply of the Boise Valley is more Than ample for the valley, owing to large upstream storage and regulatory dams and reservoirs. The valley also contains a large volume of ground water in storage, and the perennial rate of recharge is large. The computed consumptive depletion of surface water in the valley is nearly 600,000 acre-feet a year. Apparent depletion, computed from adjusted runoff at Notus, is 1,070,000 acre-feet. The difference of 470,000 acre-feet represents ground-water underflow and ungaged surface outflow from the area east of Notus. After the beginning of irrigation, around the turn of the century, the water table in the Boise Valley rose steadily; the amount of rise at some places was as much as 140 feet. Shallow perched zones of saturation were created locally. More than 100,000 acres of Boise Valley land now is waterlogged or threatened with waterlogging, despite the presence of more than 325 miles of surface drains. Successful operation of the alternate plan would depend, not only on providing adequate water to replace that exported from the Boise Valley, but also on satisfactory drainage of waterlogged land. That is, water management in the valley would have to couple economical pumping of irrigation water with effective drainage by pumping. The average of recorded yearly diversions from the Boise River is 1,280,000 acre-feet of live water (natural flow in a stream) and 201,000 acre-feet cf recycled water. Gross diversions of record in some recent single years of ample water supply reportedly exceeded 1,800,000 acre-feet. Ground water, on the other hand is used on a relatively small scale, yearly pumpage being only about 150,000 acre-feet. The feasibility of exporting 600,000 acre-feet of Boise River water would depend on the availability of replacement water in the Boise Valley and on the availability of the required surface water in the South Fork of the Boise River at the proposed point of diversion to the Mountain Home project. In 6 of the 20 years, 1931-50, recorded diversions of live and return water from th2 Boise River exceeded the live flow at the Boise Diversion Dam by 3,865 to 107,640 acre-feet. Moreover, although the average residual discharge in the river post Notus was 701,000 acre-feet, in most years some river reaches above Notus were dry at times, owing to diversion of all water from the river. Much of the flow past Notus is surface waste and effluent ground water, which averages about 422,000 acre-feet a year. The total of potential yearly ground water recharge in the Boise Valley, derived from precipitation, incoming underflow, and infiltration of irrigation water, is about 554,000 acre-feet in the feasible exchange-pumping area and areas tributary thereto. Identified and estimated consumptive depletion of ground water in the valley is about 230,000 acre-feet a year, but not all that depletion is within the exchange are
Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009
Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.
2014-01-01
Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.
Hydrology of the middle San Pedro area, southeastern Arizona
Cordova, Jeffrey T.; Dickinson, Jesse; Beisner, Kimberly R.; Hopkins, Candice B.; Kennedy, Jeffrey R.; Pool, Donald R.; Glenn, Edward P.; Nagler, Pamela L.; Thomas, Blakemore E.
2015-05-05
In the middle San Pedro Watershed in southeastern Arizona, groundwater is the primary source of water supply for municipal, domestic, industrial, and agricultural use. The watershed comprises two smaller subareas, the Benson subarea and the Narrows-Redington subarea. Early 21st century projections for heavy population growth in the watershed have not yet become a reality, but increased groundwater withdrawals could have undesired consequences - such as decreased base flow to the San Pedro River, and groundwater-level declines - that would lead to the need to deepen existing wells. This report describes the hydrology, hydrochemistry, water quality, and development of a groundwater budget for the middle San Pedro Watershed, focusing primarily on the elements of groundwater movement that could be most useful for the development of a groundwater modelPrecipitation data from Tombstone, Arizona, and base flow at the stream-gaging station on the San Pedro River at Charleston both show relatively dry periods during the 1960s through the mid-1980s and in the mid-1990s to 2009, and wetter periods from the mid-1980s through the mid-1990s. Water levels in four out of five wells near the mountain fronts show cyclical patterns of recharge, with rates of recharge greatest in the early 1980s through the mid-1990s. Three wells near the San Pedro River recorded their lowest levels during the 1950s to the mid-1960s. The water-level record from one well, completed in the confined part of the coarse-grained lower basin fill, showed a decline of approximately 21 meters.Annual flow of the San Pedro River, measured at the Charleston and Redington gages, has decreased since the 1940s. The median annual streamflow and base flow at the gaging station on the river near Tombstone has decreased by 50 percent between the periods 1968–1986 and 1997–2009. Estimates of streamflow infiltration along the San Pedro River during 1914–2009 have decreased 44 percent, with the largest decreases in the months June–October in the Benson subarea. In the Narrows-Redington subarea, streamflow infiltration has decreased about 65 percent during 1914–2009.The average annual outflow (27.6 hm3/year [cubic hectometers per year]) from the Benson subarea aquifer for water years 2001 through 2009 exceeded the inflows (20.0 hm3/ yr) by 7.60 hm3/yr. In the Narrows-Redington subarea for the same period, the average annual outflow (15.7 hm3/yr) from the aquifer system exceeded the inflows (13.8 hm3/yr) by nearly 2 hm3/yr. The largest withdrawals of groundwater in both subareas are for irrigation; these withdrawals peaked in 1973 and have been steadily decreasing since then. Recharge from streamflow infiltration exceeded recharge from the mountain-front and from ephemeral channels in the Benson subarea. In the Narrows-Redington subarea, however, recharge from mountain-front and ephemeral channel recharge exceeded recharge from streamflow infiltration. Evapotranspiration by phreatophytes accounts for the largest outflow of groundwater for both subareas—78 percent of the outflow in the Narrows-Redington subarea and 62 percent of the outflow in the Benson subarea.Precipitation, surface-water, and groundwater chemistry and isotope data indicated the relative age and residence time of groundwater, the amount of interaction between geologic sources and groundwater, and how recharge elevation and season were related to the presence of modern water. The bedrock aquifer receives modern recharge (
Environmental Flow Assessments in the McKenzie and Santiam River Basins, Oregon
NASA Astrophysics Data System (ADS)
Risley, J. C.; Bach, L.; Budai, C.; Duffy, K.
2012-12-01
The McKenzie and Santiam Rivers are tributaries of the Willamette River in northwestern Oregon, draining areas of 3,370 and 4,690 square kilometers, respectively. The river basins are heavily forested and contain streams that historically provided critical habit for salmonid rearing, salmonid spawning, and bull trout. In the 1950s and 1960s, hydropower and flood control dams were constructed in both basins. In 2008, the U.S. Geological Survey (USGS), in cooperation with The Nature Conservancy (TNC) and the U.S. Army Corps of Engineers (Corps), began assessing the impacts of dam regulation in the two basins on streamflow, geomorphic, and ecological processes (Risley et. al., 2010; 2012). The baseline assessments were made under the auspices of the Sustainable Rivers Project (SRP), formed in 2002 by TNC and the Corps. SRP is a nation-wide partnership aimed at developing, implementing, and refining environmental flows downstream of dams. Environmental flows can be defined as the streamflow needed to sustain ecosystems while continuing to meet human needs. Determining environmental flows is an iterative collective process involving stakeholders, workshops, bio-monitoring, and follow-up assessments. The dams on the McKenzie and Santiam Rivers have decreased the frequency and magnitude of floods and increased the magnitude of low flows. In the Santiam River study reaches, for example, annual 1-day maximum streamflows decreased by 46-percent on average because of regulated streamflow conditions. Annual 7-day minimum flows in six of the seven study reaches increased by 146 percent on average. On a seasonal basis, median monthly streamflows in both river basins decreased from February to May and increased from September to January. However, the magnitude of these impacts usually decreased farther downstream from the dams because of the cumulative inflow from unregulated tributaries and groundwater discharge below the dams. In addition to streamflow assessments, the USGS studies included a geomorphic and ecological characterization of both rivers using reach characterization, historical channel mapping, aerial photography, and specific gage analysis methods. Decreased flooding and decreased sediment supply resulting from the dams likely contributed to a decrease in gravel bars, which are critical to salmonid spawning. Secondary channel features and sinuosity also decreased. However, other anthropogenic factors, such as bank stabilization revetments, land filling, and channel dredging, have also impacted channel morphology in both basins. Exemplar native terrestrial and aquatic species of interest and used in developing environmental flows for both river basins include black cottonwood, red alder, bull trout, spring Chinook, Oregon chub, red-legged frogs, and western pond turtles. Suggestions for future bio-monitoring and investigations were also provided in the study reports. References: Risley, John, Wallick, J.R., Waite, Ian, and Stonewall, Adam, 2010, Development of an environmental flow framework for the McKenzie River basin, Oregon: U.S. Geological Survey Scientific Investigations Report 2010-5016, 94 p. Risley, J.C., Wallick, J.R., Mangano, J.F., and Jones, K.F., 2012, An environmental streamflow assessment for the Santiam River basin, Oregon: U.S. Geological Survey Open-File Report 2012-1133, 66 p.
Sedimentation and chemical quality of surface waters in the Wind River basin, Wyoming
Colby, B.R.; Hembree, C.H.; Rainwater, F.H.
1956-01-01
This report gives results of an investigation by the U. S. Geological Survey of chemical quality of surface waters and sedimentation in the Wind River Basin, Wyo. The sedimentation study was begun in 1946 to determine the quantity of sediment that is transported by the streams in the basin; the probable sources of the sediment; the effect of large irrigation projects on sediment yield, particularly along Fivemile Creek; and the probable specific weight of the sediment when initially deposited in a reservoir. The study of the chemical quality of the water was begun in 1945 to obtain information on the sources, nature, and amounts of dissolved material that is transported by streams and on the suitability of the waters for different uses. Phases of geology and hydrology pertinent to the sedimentation and chemical quality were studied. Results of the investigation through September 30, 1952, and some special studies that were made during the 1953 and 1954 water years are reported. The rocks in the Wind River Basin are granite, schist, and gneiss of Precambrian age and a thick series of sedimentary strata that range in age from Cambrian to Recent. Rocks of Precambrian and Paleozoic age are confined to the mountains, rocks of Mesozoic age crop out along the flank of the Wind River and Owl Creek Mountains and in denuded anticlines in the floor of the basin, and rocks of Tertiary age cover the greater part of the floor of the basin. Deposits of debris from glaciers are in the mountains, and remnants of gravel-capped terraces of Pleistocene age are on the floor of the basin. The lateral extent and depth of alluvial deposits of Recent age along all the streams are highly variable. The climate of the floor of the basin is arid. The foothills probably receive a greater amount of intense rainfall than the areas at lower altitudes. Most precipitation in the Wind River Mountains falls as snow. The foothill sections, in general, are transitional zones between the cold, humid climate of the high mountains and the warmer, drier climate of the basin floor. Average annual runoff in the basin is about 3.6 inches on the basis of adjusted streamflow records for the Bighorn River near Thermopolis. Runoff from the mountains is high and is mostly from melting of snow and from spring and early summer rains. It does not vary greatly from year to year because annual water losses are small in comparison to annual precipitation. In the areas on the floor of the basin, where runoff is low, the runoff is mostly the result of storms in late spring and early summer. The annual water losses nearly equal the annual precipitation; therefore, runoff is extremely variable, in terms of percentage changes, from year to year and from point to point during any 1 year.
Nutrient Loading and Algal Response in West Thompson Lake, Thompson, Connecticut, 2003-2005
Morrison, Jonathan; Colombo, Michael J.
2008-01-01
Water quality and nutrient loads were characterized for parts of the Quinebaug River and West Thompson Lake in northeastern Connecticut during 2003 to 2005. The West Thompson Lake watershed is a mainly forested watershed that receives treated municipal wastewater from several point sources in Massachusetts. The lake is a flood-control reservoir formed in 1966 by impoundment of the Quinebaug River. Median concentrations of total phosphorus in two inflow (upstream) and one outflow (downstream) sampling stations on the Quinebaug River were higher than the nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) for rivers and streams in aggregate Ecoregion XIV. In general, concentrations of total phosphorus in West Thompson Lake also were above the nutrient criteria recommended by USEPA for lakes and impoundments in aggregate Ecoregion XIV. The trophic status of West Thompson Lake has changed since 1995 from a hypereutrophic lake to a eutrophic lake; however, the lake still has large algal blooms. These blooms are predominated by blue-green algae, with chlorophyll-a concentrations of more than 30 micrograms per liter and algal cell counts as high as 73,000 cells/mL. Water samples collected during the summer of 2005 identified phosphorus as the primary limiting nutrient early in the season, but algal growth is probably co-limited by phosphorus and nitrogen later in the season. Lake-bottom sediments were collected from several areas throughout the lake and ranged in thickness from less than 1 foot (ft) to more than 3 ft. Concentrations of phosphorus in sediments differed throughout the lake; the highest values were found in the middle of the lake. Concentrations of total phosphorus also increased from an average 1,800 milligrams per kilogram (mg/kg) in the upper layers of sediment to more than 6,000 mg/kg at depth in the sediment. Annual, seasonal, and monthly loads and yields of nutrients were calculated for the three sampling locations on the Quinebaug River to develop a nutrient mass-balance model (budget) for West Thompson Lake. The average annual yields of total phosphorus during 2000 to 2005 were 115 pounds per square mile per year (lb/mi2/yr) at Quinebaug (inflow station), 116 lb/mi2/yr at Red Bridge Road (inflow station), and 97.9 lb/mi2/yr at West Thompson (outflow station). The 18-percent decrease in the average annual yield of total phosphorus between the inflow station at Red Bridge Road and the outlet of West Thompson Lake at West Thompson indicates that a significant part of the phosphorus load is retained in the lake. Annual yields of total phosphorus at Quinebaug have decreased significantly since the 1980s, from 362 lb/mi2/yr (for 1981-1990) to 115 lb/mi2/yr (1996-2005). The annual net export of phosphorus in West Thompson Lake during water years 2000 to 2005 ranged from -36 percent (2005) to 1 percent (2002) of the incoming load. Seasonal mass-balance data for total phosphorus during the summers of 2000 to 2003, when streamflow was at or lower than normal, indicated a net export of phosphorus that ranged from 3.4 percent (2003) to 30.7 percent (2002) of the incoming load. During the summer of 2004, however, streamflows were much higher than normal, and there was a negative export of phosphorus in West Thompson Lake of -3.9 percent. The annual net export of nitrogen in West Thompson Lake during water years 2000 to 2005 ranged from -5 percent (2002) to 4 percent (2001) of the incoming load. No clear pattern was evident to relate total nitrogen export to seasonal variables or runoff. Removal of phosphorus during the summer by wastewater-treatment plants (WWTPs) in Massachusetts reduces the concentration and load of total phosphorus entering West Thompson Lake in the summer; however, the large amount of phosphorus retained in the lake during the other seasons, in addition to the phosphorus stored in the lake-bottom sediments, may become available to fuel algal blooms in the lake
Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan
NASA Astrophysics Data System (ADS)
Fang, H. T.
2015-12-01
The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface to input parameter. The simulation of water level and chloride concentration already showed the real situation, and the result can be applied to the future study of the Chi-Ken subsurface reservoir salinity problems.
Buck, Stephanie D.
2014-01-01
The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.
Flow characteristics of rivers in northern Australia: Implications for development
NASA Astrophysics Data System (ADS)
Petheram, Cuan; McMahon, Thomas A.; Peel, Murray C.
2008-07-01
SummaryAnnual, monthly and daily streamflows from 99 unregulated rivers across northern Australia were analysed to assess the general surface water resources of the region and their implications for development. The potential for carry-over storages was assessed using the Gould-Dincer Gamma method, which utilises the mean, standard deviation, skewness and lag-one serial correlation coefficient of annual flows. Runs Analysis was used to describe the characteristics of drought in northern Australia and the potential for 'active' water harvesting was evaluated by Base Flow Separation, Flow Duration Curves and Spells Analysis. These parameters for northern Australia were compared with data from southern Australia and data for similar Köppen class from around the world. Notably, the variability and seasonality of annual streamflow across northern Australia were observed to be high compared with that of similar Köppen classes from the rest of the world (RoW). The high inter-annual variability of runoff means that carry-over storages in northern Australia will need to be considerably larger than for rivers from the RoW (assuming similar mean annual runoff, yield and reliability). For example, in the three major Köppen zones across the North, it was possible (theoretically) to only exploit approximately 33% (Köppen Aw; n = 6), 25% (Köppen BSh; n = 12) and 13% (Köppen BWh; n = 11) of mean annual streamflow (assuming a hypothetical storage size equal to the mean annual flow). Over 90% of north Australian rivers had a Base Flow Index of less than 0.4, 72% had negative annual lag-one autocorrelation values and in half the rivers sampled greater than 80% of the total flow occurred during the 3-month peak period. These data confirm that flow in the rivers of northern Australia is largely event driven and that the north Australian environment has limited natural storage capacity. Hence, there is relatively little opportunity in many northern rivers to actively harvest water for on-farm storage, particularly under environmental flow rules that stipulate that water can only be extracted during the falling limb of a hydrograph. Streamflow drought severity, the product of drought length and magnitude, was found to be greater in northern Australia than in similar climatic regions of the RoW, due to higher inter-annual variability increasing the drought magnitude over the course of normal drought lengths. The high likelihood of severe drought means that agriculturalists seeking to irrigate from rivers in northern Australia should have especially well developed drought contingency plans.
Seven-Day Low Streamflows in the United States, 1940-2014
This map shows percentage changes in the minimum annual rate of water carried by rivers and streams across the country, based on the long-term rate of change from 1940 to 2014. Minimum streamflow is based on the consecutive seven-day period with the lowest average flow during a given year. Blue triangles represent an increase in low stream flow volumes, and brown triangles represent a decrease. Streamflow data were collected by the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators
NASA Astrophysics Data System (ADS)
Nagy, B. K.; Mohssen, M.; Hughey, K. F. D.
2017-04-01
This study addresses technical questions concerning the use of the partial duration series (PDS) within the domain of flood frequency analysis. The recurring questions which often prevent the standardised use of the PDS are peak independence and threshold selection. This paper explores standardised approaches to peak and threshold selection to produce PDS samples with differing average annual exceedances, using six theoretical probability distributions. The availability of historical annual maximum (AMS) data (1930-1966) in addition to systemic AMS data (1967-2015) enables a unique comparison between the performance of the PDS sample and the systemic AMS sample. A recently derived formula for the translation of the PDS into the annual domain, simplifying the use of the PDS, is utilised in an applied case study for the first time. Overall, the study shows that PDS sampling returns flood magnitudes similar to those produced by AMS series utilising historical data and thus the use of the PDS should be preferred in cases where historical flood data is unavailable.
Hydrologic Contributions of Springs to the Logan River, Utah
NASA Astrophysics Data System (ADS)
Gooseff, M. N.; Evans, J.; Kolesar, P.; Lachmar, T.; Payn, R.
2005-05-01
The Logan River flows through a fractured karst watershed of the Bear River mountain range in northern Utah, and provides significant water supply to the city of Logan, Utah. Springs flowing into the Logan River are important sources of water after annual snowmelt has been exhausted. In this work, we present results from a year of monitoring water chemistry and stable isotopes (D, 18O, and 13C) in two major springs and in the Logan River upstream and downstream of the combined spring inputs. The two springs, DeWitt and Spring Hollow, flow into the river within 1.5 km of each other. Annual patterns of Si and Mg suggest a flushing pattern, with reduced concentrations during snowmelt, and increasing concentrations throughout baseflow recession, at all for sampling locations. Cl concentrations are likewise greatly depressed after the snowmelt pulse but afterward remain consistently low at all four sites. Stable isotope data show that spring water is generally more enriched in D and 18O than river water, with an enriching pattern throughout annual stream flow recession.
Burned forests impact water supplies.
Hallema, Dennis W; Sun, Ge; Caldwell, Peter V; Norman, Steven P; Cohen, Erika C; Liu, Yongqiang; Bladon, Kevin D; McNulty, Steven G
2018-04-10
Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize long-term records of wildland fire, climate, and river flow for 168 locations across the United States. We show that annual river flow changed in 32 locations, where more than 19% of the basin area was burned. Wildland fires enhanced annual river flow in the western regions with a warm temperate or humid continental climate. Wildland fires increased annual river flow most in the semi-arid Lower Colorado region, in spite of frequent droughts in this region. In contrast, prescribed burns in the subtropical Southeast did not significantly alter river flow. These extremely variable outcomes offer new insights into the potential role of wildfire and prescribed fire in regional water resource management, under a changing climate.
Hotchkiss, W.R.; Levings, J.F.
1986-01-01
The Powder River, Bull Mountains, and Williston basins of Montana and Wyoming were investigated to understand the geohydrology and subsurface water flow. Rocks were separated into: Fox Hills-lower Hell Creek aquifer (layer 1), upper Hell Creek confining layer (layer 2), Tullock aquifer (layer 3), Lebo confining layer (layer 4), and Tongue River aquifer (layer 5). Aquifer transmissivities were estimated from ratios of sand and shale and adjusted for kinematic viscosity and compaction. Vertical hydraulic conductance per unit area between layers was estimated. Potentiometric surface maps were drawn from limited data. A three-dimensional finite-difference model was used for simulation. Five stages of simulation decreased and standard error of estimate for hydraulic head from 135 to 110 feet for 739 observation nodes. The resulting mean transmissivities for layers 1-5 were 443, 191, 374, 217, and 721 sq ft/d. The corresponding mean vertical hydraulic conductances per unit area between the layers were simulated; they ranged from 0.000140 to 0.0000150. Mean annual recharge across the study area was about 0.26 percent of average annual precipitation. Large volumes of interlayer flow indicate the vertical flow may be significant. (USGS)
Water resources of Ponape, Caroline Islands
Van der Brug, Otto
1984-01-01
Ponape is the third largest island in the western Pacific, with a land area of 129 square miles. The island is volcanic, nearly circular in shape, and covered with lush tropical vegetation. The mountainous interior has the highest peaks in the western Pacific. Annual rainfall at Kolonia and other coastal areas is 191 inches. Inland at higher elevations, the rainfall is considerably higher. The upper Nanpil River basin averages about 340 inches annually. Runoff-to-rainfall ratios for Ponapean streams show that about two thirds of the rain falling on the island runs off. Flow-duration curves show the similarity of the geology, vegetation, and rainfall of the drainage basins and indicate little ground-water contribution to surface runoff. Surface-water quality is excellent as shown by 53 chemical anlyses of water from 19 streams. Water of the Nanpil River, the source of water for the central water system, is especially low in dissolved elements and solids. This report summarizes in one volume all the hydrologic data collected and provides analyses that may be used by planning and public works officials as a basis for making decisions on the development and management of their water resources. (USGS)
Lewis, Jason M.; Smith, S. Jerrod; Buck, Stephanie D.; Strong, Scott A.
2011-01-01
An understanding of fluvial sediment transport and changing channel morphology can assist planners in making responsible decisions with future riverine development or restoration projects. Sediment rating curves can serve as simple models and can provide predictive tools to estimate annual sediment fluxes. Sediment flux models can aid in the design of river projects by providing insight to past and potential future sediment fluxes. Historical U.S. Geological Survey suspended-sediment and discharge data were evaluated to estimate annual suspended-sediment fluxes for two stations on the Arkansas River located downstream from Keystone Dam in Tulsa County. Annual suspended-sediment fluxes were estimated from 1931-95 for the Arkansas River at Tulsa streamflow-gaging station (07164500) and from 1973-82 for the Arkansas River near Haskell streamflow-gaging station (07165570). The annual flow-weighted suspended-sediment concentration decreased from 1,970 milligrams per liter to 350 milligrams per liter after the completion of Keystone Dam at the Tulsa station. The streambed elevation at the Arkansas River at Tulsa station has changed less than 1 foot from 1970 to 2005, but the thalweg has shifted from a location near the right bank to a position near the left bank. There was little change in the position of most of the banks of the Arkansas River channel from 1950 to 2009. The most substantial change evident from visual inspection of aerial photographs was an apparent decrease in sediment storage in the form of mid-channel and meander bars. The Arkansas River channel between Keystone Dam and the Tulsa-Wagoner County line showed a narrowing and lengthening (increase in sinuosity) over the transition period 1950-77 followed by a steady widening and shortening of the river channel (decrease in sinuosity) during the post-dam (Keystone) periods 1977-85, 1985-2003, and 2003-10.
NASA Satellite Images Annual Spring Thaw, Red River, North Dakota
2011-04-21
NASA Terra spacecraft shows the annual spring thaw in the upper Midwest is underway. Snow-covered ground contrasts with the dark tones of water under broken cloud cover. Along the Red River in North Dakota, floodwaters are moving northward into Canada.
Simulated and observed 2010 floodwater elevations in the Pawcatuck and Wood Rivers, Rhode Island
Zarriello, Phillip J.; Straub, David E.; Smith, Thor E.
2014-01-01
Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models of Pawcatuck River (26.9 miles) and Wood River (11.6 miles) were updated from the most recent approved U.S. Department of Homeland Security-Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) for specified flows and boundary conditions. The hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) using steady-state simulations and incorporate new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were used to simulate the 0.2-percent annual exceedance probability (AEP) flood, which is the AEP determined for the 2010 flood in the Pawcatuck and Wood Rivers. The simulated WSEs were compared to high-water mark (HWM) elevation data obtained in a related study following the March–April 2010 flood, which included 39 HWMs along the Pawcatuck River and 11 HWMs along the Wood River. The 2010 peak flow generally was larger than the 0.2-percent AEP flow, which, in part, resulted in the FIS and updated model WSEs to be lower than the 2010 HWMs. The 2010 HWMs for the Pawcatuck River averaged about 1.6 feet (ft) higher than the 0.2-percent AEP WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The 2010 HWMs for the Wood River averaged about 1.3 ft higher than the WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The improved agreement of the updated simulated water elevations to observed 2010 HWMs provides a measure of the hydraulic model performance, which indicates the updated models better represent flooding at other AEPs than the existing FIS models.
Bjorneberg, David L; Leytem, April B; Ippolito, James A; Koehn, Anita C
2015-03-01
Watersheds using surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000-ha Upper Snake Rock (USR) watershed from 2005 to 2008 showed that, on average, water diverted from the Snake River annually supplied 547 kg ha of total suspended solids (TSS), 1.1 kg ha of total P (TP), and 0.50 kg ha of dissolved P (DP) to the irrigation tract. Irrigation return flow from the USR watershed contributed 414 kg ha of TSS, 0.71 kg ha of TP, and 0.32 kg ha of DP back to the Snake River. Significantly more TP flowed into the watershed than returned to the Snake River, whereas there was no significant difference between inflow and return flow loads for TSS and DP. Average TSS and TP concentrations in return flow were 71 and 0.12 mg L, respectively, which exceeded the TMDL limits of 52 mg L TSS and 0.075 mg L TP set for this section of the Snake River. Monitoring inflow and outflow for five water quality ponds constructed to reduce sediment and P losses from the watershed showed that TSS concentrations were reduced 36 to 75%, but DP concentrations were reduced only 7 to 16%. This research showed that continued implementation of conservation practices should result in irrigation return flow from the USR watershed meeting the total maximum daily load limits for the Snake River. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
A 184-year record of river meander migration from tree rings, aerial imagery, and cross sections
NASA Astrophysics Data System (ADS)
Schook, Derek M.; Rathburn, Sara L.; Friedman, Jonathan M.; Wolf, J. Marshall
2017-09-01
Channel migration is the primary mechanism of floodplain turnover in meandering rivers and is essential to the persistence of riparian ecosystems. Channel migration is driven by river flows, but short-term records cannot disentangle the effects of land use, flow diversion, past floods, and climate change. We used three data sets to quantify nearly two centuries of channel migration on the Powder River in Montana. The most precise data set came from channel cross sections measured an average of 21 times from 1975 to 2014. We then extended spatial and temporal scales of analysis using aerial photographs (1939-2013) and by aging plains cottonwoods along transects (1830-2014). Migration rates calculated from overlapping periods across data sets mostly revealed cross-method consistency. Data set integration revealed that migration rates have declined since peaking at 5 m/year in the two decades after the extreme 1923 flood (3000 m3/s). Averaged over the duration of each data set, cross section channel migration occurred at 0.81 m/year, compared to 1.52 m/year for the medium-length air photo record and 1.62 m/year for the lengthy cottonwood record. Powder River peak annual flows decreased by 48% (201 vs. 104 m3/s) after the largest flood of the post-1930 gaged record (930 m3/s in 1978). Declining peak discharges led to a 53% reduction in channel width and a 29% increase in sinuosity over the 1939-2013 air photo record. Changes in planform geometry and reductions in channel migration make calculations of floodplain turnover rates dependent on the period of analysis. We found that the intensively studied last four decades do not represent the past two centuries.
A 184-year record of river meander migration from tree rings, aerial imagery, and cross sections
Schook, Derek M.; Rathburn, Sara L.; Friedman, Jonathan M.; Wolf, J. Marshall
2017-01-01
Channel migration is the primary mechanism of floodplain turnover in meandering rivers and is essential to the persistence of riparian ecosystems. Channel migration is driven by river flows, but short-term records cannot disentangle the effects of land use, flow diversion, past floods, and climate change. We used three data sets to quantify nearly two centuries of channel migration on the Powder River in Montana. The most precise data set came from channel cross sections measured an average of 21 times from 1975 to 2014. We then extended spatial and temporal scales of analysis using aerial photographs (1939–2013) and by aging plains cottonwoods along transects (1830–2014). Migration rates calculated from overlapping periods across data sets mostly revealed cross-method consistency. Data set integration revealed that migration rates have declined since peaking at 5 m/year in the two decades after the extreme 1923 flood (3000 m3/s). Averaged over the duration of each data set, cross section channel migration occurred at 0.81 m/year, compared to 1.52 m/year for the medium-length air photo record and 1.62 m/year for the lengthy cottonwood record. Powder River peak annual flows decreased by 48% (201 vs. 104 m3/s) after the largest flood of the post-1930 gaged record (930 m3/s in 1978). Declining peak discharges led to a 53% reduction in channel width and a 29% increase in sinuosity over the 1939–2013 air photo record. Changes in planform geometry and reductions in channel migration make calculations of floodplain turnover rates dependent on the period of analysis. We found that the intensively studied last four decades do not represent the past two centuries
Collar, Stefanie; Roby, Daniel D.; Lyons, Donald E.
2017-01-01
Our study investigated the influence of bottom-up and top-down drivers on the declining fledging success at a once thriving breeding colony of Caspian terns (Hydroprogne caspia). Situated at the mouth of the Columbia River, OR, East Sand Island (ESI) is home to the largest Caspian tern breeding colony in North America. Since 2001, the decline in fledging success of Caspian terns at ESI has been associated with a significant increase in average river discharge during May and June. During the years 2001–2011, the abundance of forage fish available to terns in the estuary was inversely related to river discharge. This relationship also apparently affected the reliance of nest predators on the tern colony as a food source, resulting in increased disturbance and decreased fledging success at the tern colony in years of higher river discharge. There was a significant longitudinal increase in disturbance rates by bald eagles (Haliaeetus leucocephalus) during June for terns nesting at the ESI colony, and eagle disturbance rates were positively associated with May river discharge. We also found a significant increase in kleptoparasitism rates of terns by hybrid glaucous-winged/western gulls (Larus glaucescens x Larus occidentalis) since 2001, and Caspian tern fledging success at ESI decreased with increasing average annual rates of gull kleptoparasitism. Our results support the hypothesis that the decline in Caspian tern fledging success at this large estuarine colony was primarily driven by the interaction of bottom-up and top-down factors, influencing tern fledging success through the food supply and triggering potential predators to identify the tern breeding colony as an alternative source of prey.
NASA Astrophysics Data System (ADS)
Domagalski, J. L.; Majewski, M. S.; Alpers, C. N.; Eckley, C.
2015-12-01
Many streams in the western United States (US) are listed as impaired by mercury (Hg), and it is important to understand the magnitudes of the various sources in order to implement management strategies. Atmospheric deposition of Hg and can be a major source of aquatic contamination, along with mine wastes, and other sources. Prior studies in the eastern US have shown that streams deliver less than 50% of the atmospherically deposited Hg on an annual basis. In this study, we compared annual stream Hg loads for 20 watersheds in the western US to measured wet and modeled dry deposition. Land use varies from undisturbed to mixed (agricultural, urban, forested, mining). Data from the Mercury Deposition Network was used to estimate Hg input from precipitation. Dry deposition was not directly measured, but can be modeled using the Community Multi-scale Air Quality model. At an undeveloped watershed in the Rocky Mountains, the ratio of stream Hg load to atmospheric deposition was 0.2 during a year of average precipitation. In contrast, at the Carson River in Nevada, with known Hg contamination from historical silver mining with Hg amalgamation, stream export exceeded atmospheric deposition by a factor of 60, and at a small Sierran watershed with gold mining, the ratio was 70. Larger watersheds with mixed land uses, tend to have lower ratios of stream export relative to atmospheric deposition suggesting storage of Hg. The Sacramento River was the largest watershed for which Hg riverine loads were available with an average ratio of stream Hg export to atmospheric deposition of 0.10. Although Hg was used in upstream historical mining operations, the downstream river Hg load is partially mitigated by reservoirs, which trap sediment. This study represents the first compilation of riverine Hg loads in comparison to atmospheric deposition on a regional scale; the approach may be useful in assessing the relative importance of atmospheric and non-atmospheric Hg sources.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average monthly minimum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average monthly maximum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Water quality of arctic rivers in Finnish Lapland.
Niemi, Jorma
2010-02-01
The water quality monitoring data of eight rivers situated in the Finnish Lapland above the Arctic Circle were investigated. These rivers are icebound annually for about 200 days. They belong to the International River Basin District founded according to the European Union Water Framework Directive and shared with Norway. They are part of the European river monitoring network that includes some 3,400 river sites. The water quality monitoring datasets available varied between the rivers, the longest comprising the period 1975-2003 and the shortest 1989-2003. For each river, annual medians of eight water quality variables were calculated. In addition, medians and fifth and 95th percentiles were calculated for the whole observation periods. The medians indicated good river water quality in comparison to other national or foreign rivers. However, the river water quality oscillated widely. Some rivers were in practice in pristine state, whereas some showed slight human impacts, e.g., occasional high values of hygienic indicator bacteria.
Report of the River Master of the Delaware River for the period December 1, 2008–November 30, 2009
Krejmas, Bruce E.; Paulachok, Gary N.; Mason, Jr., Robert R.; Owens, Marie
2016-04-06
A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 56th Annual Report of the River Master of the Delaware River. It covers the 2009 River Master report year, the period from December 1, 2008, to November 30, 2009.During the report year, precipitation in the upper Delaware River Basin was 50.89 inches (in.) or 116 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high throughout the year and did not decline below 80 percent of combined capacity at any time. Delaware River operations during the year were conducted as stipulated by the Decree and the Flexible Flow Management Program (FFMP).Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 25 days during the report year. Releases were made at conservation rates—rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days.During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master.As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 22 sites on a monthly basis.The Delaware River Basin Commission (DRBC) collects monthly samples from March through October at 22 sites between Biles Channel and South Brown Shoal. Samples were collected and analyzed by the State of Delaware for the DRBC. At each site, water samples were collected at a single point near the center of the channel near the surface and analyzed for selected physical properties, and chemical and biological constituents including routine chemical substances, nutrients and bacteria. These consist of analyses of field measurements and laboratory determinations.
Ground Water Atlas of the United States: Segment 9, Iowa, Michigan, Minnesota, Wisconsin
Olcott, Perry G.
1992-01-01
Segment 9, which consists of Minnesota, Iowa, Wisconsin, and Michigan, abuts the Canadian border in the upper Midwest and lies adjacent to or surrounds four of the Great Lakes-Superior, Michigan, Huron, and Erie. Thousands of small to large lakes similar to the one shown in figure 1 dot the landscape, which is drained by numerous rivers and streams tributary primarily to the Mississippi River in the west and to the Great Lakes-St. Lawrence River system in the east. These abundant surface-water sources represent an ample supply of water to large users, such as the cities of Milwaukee, Wis., and Detroit, Mich. However, water stored in unconsolidated and consolidated sedimentary-rock aquifers that underlie the four States also is in abundant supply and is an economical source that can be used for nearly any purpose, usually with little or no treatment. In more than 95 percent of the four-State area, these aquifers supply water to a broad spectrum of consumers-from individual households to cities, such as St. Paul, Minn., Madison, Wis., and Lansing, Mich. These aquifers are the subject of this chapter. The geology and the hydrology of each of the principal aquifers are illustrated and discussed insofar as information was available from the literature. Hydrogeology, ground-water flow, availability and quality of water, and freshwater withdrawals from each of the aquifers are the principal subjects of discussion. Population in the four States is concentrated in the cities and is thinly dispersed in the broad agricultural areas of the States (fig. 2). Minneapolis-St. Paul, Minn., Des Moines, Iowa, Milwaukee and Madison, Wis., and Detroit and Lansing, Mich., are a few of the principal cities. Many of these cities and other large population centers represent areas of concentrated ground-water withdrawals. Precipitation is the source of all water in Segment 9. Average annual precipitation ranges from about 20 to 40 inches across the segment and generally increases from northwest to southeast (fig. 3). Precipitation is least in the northwestern part of the segment because of the orographic effect of the Rocky Mountains, which are hundreds of miles to the west. Annual precipitation in excess of 36 inches that falls south and east of Lakes Superior and Michigan (fig. 3) is a result of the prevailing westerly winds that evaporate moisture from the lakes; this moisture subsequently condenses and falls as precipitation over the land. Average annual runoff in rivers and streams (fig. 4) generally reflects average annual precipitation patterns (fig. 3). Runoff generally increases from less than 1 to more than 20 inches. Runoff also tends to be substantial downwind from Lakes Superior and Michigan. However, in no part of the segment does runoff exceed precipitation. Much of the water from precipitation is returned to the atmosphere by evapotranspiration-evaporation from the land and water surfaces, and transpiration by plants. Some of the water is stored in aquifers through ground-water recharge or is stored on the land surface in lakes, marshes, and reservoirs. Runoff represents water from precipitation that runs directly off the land surface to streams and water discharged to streams that was stored in lakes, marshes, reservoirs, or aquifers.
NASA Astrophysics Data System (ADS)
Wang, J.; Nathan, R.; Horne, A.
2017-12-01
Traditional approaches to characterize water-dependent ecosystem outcomes in response to flow have been based on time-averaged hydrological indicators, however there is increasing recognition for the need to characterize ecological processes that are highly dependent on the sequencing of flow conditions (i.e. floods and droughts). This study considers the representation of flow regimes when considering assessment of ecological outcomes, and in particular, the need to account for sequencing and variability of flow. We conducted two case studies - one in the largely unregulated Ovens River catchment and one in the highly regulated Murray River catchment (both located in south-eastern Australia) - to explore the importance of flow sequencing to the condition of a typical long-lived ecological asset in Australia, the River Red Gum forests. In the first, the Ovens River case study, the implications of representing climate change using different downscaling methods (annual scaling, monthly scaling, quantile mapping, and weather generator method) on the sequencing of flows and resulting ecological outcomes were considered. In the second, the Murray River catchment, sequencing within a historic drought period was considered by systematically making modest adjustments on an annual basis to the hydrological records. In both cases, the condition of River Red Gum forests was assessed using an ecological model that incorporates transitions between ecological conditions in response to sequences of required flow components. The results of both studies show the importance of considering how hydrological alterations are represented when assessing ecological outcomes. The Ovens case study showed that there is significant variation in the predicted ecological outcomes when different downscaling techniques are applied. Similarly, the analysis in the Murray case study showed that the drought as it historically occurred provided one of the best possible outcomes for River Red Gum forests when compared to other re-arrangements of flow within the same drought. These results have implications for the way we represent climate change impacts and drought risk assessments where ecological outcomes are a key management objective.
Downs, S.C.; Appel, David H.
1986-01-01
Construction of the four-lane Appalachian Corridon G highway disturbed about 2 sq mi in the Coal River and 0.35 sq mi of the 4.75 sq mi Trace Fork basin in southern West Virginia. Construction had a negligible effect on runoff and suspended-sediment load in the Coal River and its major tributaries, the Little Coal and Big Coal Rivers. Drainage areas of the mainstem sites in the Coal River basin ranged from 269 to 862 sq mi, and average annual suspended-sediment yields ranged from 535 to 614 tons/sq mi for the 1975-81 water years. Suspended-sediment load in the smaller Trace Fork basin (4.72 sq mi) was significantly affected by the highway construction. Based on data from undisturbed areas upstream from construction, the normal background load at Trace Fork downstream from construction during the period July 1980 to September 1981 was estimated to be 830 tons; the measured load was 2,385 tons. Runoff from the 0.35 sq mi area disturbed by highway construction transported approximately 1,550 tons of sediment. Suspended-sediment loads from the construction zone were also higher than normal background loads during storms. (USGS)
NASA Astrophysics Data System (ADS)
Bunk, D. A.; Piechota, T. C.
2012-12-01
Observed and projected trends in riparian evapotranspiration (ET) and free-water evaporation are examined to improve water demand forecasting for use in modeling of lower Colorado River system reservoir operations. While most previous research has focused on the impacts of climate change and climate variability on water supply, the impacts on water demand under changing climate conditions have not been adequately addressed (NRC, 2007 and Reclamation, 2009). Increases in temperatures and changes in precipitation and wind patterns are expected to increase evaporative demands (Bates and others, 2008), potentially increasing free-water evaporation and ET from riparian vegetation; increasing infiltration rates; altering cropping patterns; and changing the temporal and spatial distribution of water deliveries. This study uses observations and projections under changing climate scenarios of hydroclimatic variables, such as temperature, wind, and precipitation, to analyze their impacts on riparian ET and free-water evaporation in the lower Colorado River mainstream downstream of Lake Mead and Hoover Dam. The projected changes in evaporative demands were assessed to determine their impacts on water supply and reservoir operations in the Colorado River basin under changing climate conditions. Based on analysis of observed and projected hydroclimatic data from the Variable Infiltration Capacity (VIC) hydrologic model, mean annual daily temperature in the lower Colorado River mainstream reach has increased by 0.8° Celsius (C) from the 30-year period ending in 1980 to period ending in 2010 and is projected to increase by an additional 1.7° C by 30-year period ending in 2060. Analysis of riparian ET derived from the ASCE Penman-Monteith method (Allen et al., 2005, from Monteith, 1965 and 1981) and Westenburg et al. (2006) and free-water evaporation derived from the Penman combination model in Dingman (2008) indicates that combined evaporative demand in the lower Colorado River mainstream increased by 14,800 acre-feet, or 1.8 percent, during the 30-year period ending in 2010, and may increase by an additional 16,600 acre-feet, or 2.0 percent, during the 30-year period ending in 2060, when compared to the period from 1951 to 1980. With this projected increase in evaporative demands, the combined storage of Lake Powell and Lake Mead are projected to decrease by a cumulative volume of 75,400 acre-feet, or 0.15 percent of total conservation capacity, based on 10-year running averages ending in years 2020 to 2060. In addition, average annual shortage volumes in the lower Colorado River basin are projected to increase by 40,000 acre-feet, or 0.30 percent, from 2013 to 2060.
Pumphrey, Harold L.
1955-01-01
West Fork Carson River offers the best opportunity for power development in the Carson River basin. The Hope Valley reservoir site could be developed to provide adequate storage regulation and concentration of fall would permit utilization of 1,400 feet of head in 51h miles below the clam site, or 1,900 feet of head in about 972 miles below the dam site; however, the average annual runoff susceptible of development is only about 70,000 acre-feet which limits the power that could be developed continuously in an average year with regulation to about 8,700 kilowatts utilizing 1,400 feet of head, or 12,000 kilowatts utilizing 1,900 feet of head. The method and degree of development will be determined to large extent by the method devised to supplement regulated flows from the Hope Valley reservoir to supply the water already appropriated for irrigation. If the Hope Valley site and the Watasheamu site on East Fork Carson River were developed coordinately water could be transferred to the West Fork for distribution through canals leading from that stream thus satisfying the deficiency due to regulation at Hope Valley and release of stored water on a power schedule. This would permit utilization of the entire 1,900 feet of fall. Independent development of the West Fork for optimum power production would require re-regulation of releases from Hope Valley reservoir and storage of a considerable part of the fall and winter flow for use during the irrigation season. Adequate storage capacity is apparently not available on the West Fork below Hope Valley; but offstream storage may be available in Diamond Valley which could be utilized by diversion from the West Fork near Woodfords. This would limit the utilization of the stream for power purposes to the development of the 1,400 feet of head between the Hope Valley dam site and Wood fords. In a year of average discharge East Fork Carson River and three of its principal tributaries could be developed to produce about 13,500 kilowatts of firm power upstream of the Watasheamu site, which has been proposed as the location of a storage reservoir, the principal use of which would be for irrigation and flood control purposes. Substantial storage regulation would be required because of the seasonal variation in flow; and while sufficient storage capacity is available for such regulation, its value for power development is limited because of the lack of concentration of fall below the storage sites where head could be economically developed. The Watasheamu reservoir with a powerplant near the Horseshoe: Bend site could be operated to develop about 5,400 kilowatts of continuous power in a year of average discharge; however, priority to use of water for irrigation purposes would undoubtedly require operation of the Watasheamu reservoir on a schedule unfavorable to the production of firm power. It is estimated that 47 million kilowatt-hours represents the maximum generation capability of a plant at the Horseshoe Bend site in year of average discharge and a large proportion of this amount would be generated during the period of peak irrigation demand and would be seasonal in nature. Installation of about 7,000 kilowatts of capacity in a plant at the Horseshoe Bend site appears feasible. Annual energy generation would probably be less than the maximum represented by streamflow, depending on the magnitude of releases from the Watasheamu reservoir for irrigation and the demand for seasonal power. It is judged, from a general consideration of the probable cost of the required Structures in relation to the benefits which would accrue from the power that could be produced, that development of East and West Forks Carson River for power purposes only would not be feasible.
Light, H.M.; Darst, M.R.; MacLaughlin, M.T.; Sprecher, S.W.
1993-01-01
A study of hydrologic conditions, vegetation, and soils was made in wetland forests of four north Florida streams from 1987 to 1990. The study was conducted by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Regulation to support State and Federal efforts to improve wetland delineation methodology in flood plains. Plant communities and soils were described and related to topographic position and long-term hydrologic conditions at 10 study plots located on 4 streams. Detailed appendixes give average duration, frequency, and depth of flooding; canopy, subcanopy, and ground-cover vegetation; and taxonomic classification, series, and profile descriptions of soils for each plot. Topographic relief, range in stage, and depth of flooding were greatest on the alluvial flood plain of the Ochlockonee River, the largest of the four streams. Soils were silty in the lower elevations of the flood plain, and tree communities were distinctly different in each topographic zone. The Aucilla River flood plain was dominated by levees and terraces with very few depressions or low backwater areas. Oaks dominated the canopy of both lower and upper terraces of the Aucilla flood plain. Telogia Creek is a blackwater stream that is a major tributary of the Ochlockonee River. Its low, wet flood plain was dominated by Wyssa ogeche (Ogeechee tupelo) trees, had soils with mucky horizons, and was inundated by frequent floods of very short duration. The St. Marks River, a spring-fed stream with high base flow, had the least topographic relief and lowest range in stage of the four streams. St. Marks soils had a higher clay content than the other streams, and limestone bedrock was relatively close to the surface. Wetland determinations of the study plots based on State and Federal regulatory criteria were evaluated. Most State and Federal wetland determinations are based primarily on vegetation and soil characteristics because hydrologic records are usually not available. In this study, plots were located near long-term gaging stations, thus wetland determinations based on plant and soil characteristics could be evaluated at sites where long-term hydrologic conditions were known. Inconsistencies among hydrology, vegetation, and soil determinations were greatest on levee communities of the Ochlockonee and Aucilla River flood plains. Duration of average annual longest flood was almost 2 weeks for both plots. The wetland species list currently used (1991) by the State lacks many ground-cover species common to forested flood plains of north Florida rivers. There were 102 ground-cover species considered upland plants by the State that were present on the nine annually flooded plots of this study. Among them were 34 species that grew in areas continuously flooded for an average of 5 weeks or more each year. Common flood-plain species considered upland plants by the State were: Hypoxis leptocarpa (yellow star-grass), and two woody vines, Brunnichia ovata (ladies' eardrops) and Campsis radicans (trumpet-creeper), which were common in areas flooded continuously for 6 to 9 weeks a year; Sebastiania fruticosa (Sebastian-bush), Chasmanthium laxum (spikegrass), and Panicum dichotomum (panic grass), which typically grew in areas flooded an average of 2 to 3 weeks or more per year; Vitis rotundifolia (muscadine) and Toxicodendron radicans (poison-ivy), usually occurring in areas flooded an average of 1 to 2 weeks a year; and Quercus virginiana (live oak) present most often in areas flooded approximately 1 week a year. Federal wetland regulations (1989) limited wetland jurisdiction to only those areas that are inundated or saturated during the growing season. However, year-round hydrologic records were chosen in this report to describe the influence of hydrology on vegetation, because saturation, inundation, or flowing water can have a variety of both beneficial and adverse effects on flood-plain vegetation at any time of the
Methane emissions from a human-dominated lowland coastal river network (Shanghai, China)
NASA Astrophysics Data System (ADS)
Wang, D.; Yu, Z.
2017-12-01
Evasion of methane (CH4) in streams and rivers play a critical role in global carbon (C) cycle, offsetting the C uptake by terrestrial ecosystems. However, little is known about CH4 emissions from lowland coastal rivers profoundly modified by anthropogenic perturbations. Here, we report results from a long-term, large-scale study of CH4 partial pressures (pCH4) and evasion rates in the Shanghai river network. The spatiotemporal variability of pCH4 was examined along a land-use gradient and the annual CH4 evasion were estimated to assess its role in regional C budget. During the study period, the median pCH4 from 87 surveyed rivers was 241 μatm. CH4 was oversaturated throughout the river network, CH4 hotpots were concentrated in the small urban rivers and highly discharge-dependent. The annual median fCH4 for each site ranged from 3.1 mg C•m-2•d-1 to 296.6 mg C•m-2•d-1. The annual CH4 evasion were 105 Gg CO2-eq•yr-1 and 96 Gg CO2-eq•yr-1 for the entire river network and the mainland rivers, respectively. Given the rapid urbanization in global coastal areas, more research is needed to quantify the role of lowland coastal rivers as a major landscape C source in global C budget.
Lindskov, K.L.; Kimball, B.A.
1984-01-01
Proposed oil-shale mining in northeastern Utah is expected to impact the water resources of a 3,000-square-mile area. This report summarizes a comprehensive hydrologic investigation of the area which resulted in 13 published reports. Hydrologic information obtained during 1974-80 was used to evaluate the availability of water and to evaluate potential impacts of an oil-shale industry on the water resources.The study area is the southeastern part of the Uinta Basin, Utah and Colorado, where the hydrology is extremely variable. The normal annual precipitation averages 11 inches and varies with altitude. It ranges from less than 8 inches at altitudes below 5,000 feet along the White and Green Rivers to more than 20 inches where altitudes exceed 9,000 feet on the Roan Plateau.The White and Green Rivers are large streams that flow through the area. They convey an average flow of 4.3 million acre-feet per year from outside drainage areas of about 34,000 square miles, which is more than 150 times as much flow as that originating within the area. Streams originating in areas where precipitation is less than 10 inches are ephemeral. Mean annual runoff from the study area is about 28,000 acre-feet and ranges from less than 0.1 to 1.6 inches, depending on the location. At any given site, runoff varies greatly-from year to year and season to season. Potential evapotranspiration is large, exceeding precipitation in all years. Three major aquifers occur in the area. They are alluvial deposits of small areal extent along the major stream valleys; the bird's-nest aquifer of the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer of the Douglas Creek Member of the Green River Formation, which underlies most of the area. Total recoverable water in storage in the three aquifers is about 18 million acre-feet. Yields of individual wells and interference between wells limit the maximum practical withdrawal to about 20,000 acre-feet per year.An oil-shale industry in the southeastern Uinta Basin with a peak production of 400,000 barrels of oil per day would require a water supply of about 70,000 acre-feet per year. Sources of water supply considered for such an industry were: diversion from the natural flow of the White River, a proposed reservoir on the White River, diversion from the White River combined with proposed off-stream storage in Hells Hole Canyon, diversion from the Green River, and conjunctive use of ground and surface water.The proposed reservoir on the White River would trap about 90 percent of the sediment moving in the river and in turn would release almost sediment-free water. Possible impacts are changes in channel gradient in the downstream 18 miles of the White River and changes in bank stability. In some parts of the area, annual sheet-erosion rates are as great as 2.2 acre-feet per square mile but sediment yield to the White River is less than might be expected because the runoff is small. If process water from retort operations or water used in the construction of surface facilities is discharged into a normally dry streambed, increased channel erosion and sediment in tributary streams could result in increased sediment loads in the White River. In addition, sediment yields from retorted-shale piles with minimum slopes could exceed 0.1 acrefoot per square mile during a common storm. Thus, without safeguards, the useful life of any proposed reservoir or holding pond could be decreased considerably.Leachate water from retorted-shale piles has large concentrations of sodium and sulfate, and the chemical composition of retort waters differs considerably from that of the natural waters of the area. The retort waters contain a greater concentration of dissolved solids and more organic carbon and nutrients. Without proper disposal or impoundment of retort and leachate waters, the salinity of downstream waters in the Colorado River Basin would be increased.
Environmental and hydrologic overview of the Yukon River basin, Alaska and Canada
Brabets, Timothy P.; Wang, Bronwen; Meade, Robert H.
2000-01-01
The Yukon River, located in northwestern Canada and central Alaska, drains an area of more than 330,000 square miles, making it the fourth largest drainage basin in North America. Approximately 126,000 people live in this basin and 10 percent of these people maintain a subsistence lifestyle, depending on the basin's fish and game resources. Twenty ecoregions compose the Yukon River Basin, which indicates the large diversity of natural features of the watershed, such as climate, soils, permafrost, and geology. Although the annual mean discharge of the Yukon River near its mouth is more than 200,000 cubic feet per second, most of the flow occurs in the summer months from snowmelt, rainfall, and glacial melt. Eight major rivers flow into the Yukon River. Two of these rivers, the Tanana River and the White River, are glacier-fed rivers and together account for 29 percent of the total water flow of the Yukon. Two others, the Porcupine River and the Koyukuk River, are underlain by continuous permafrost and drain larger areas than the Tanana and the White, but together contribute only 22 percent of the total water flow in the Yukon. At its mouth, the Yukon River transports about 60 million tons of suspended sediment annually into the Bering Sea. However, an estimated 20 million tons annually is deposited on flood plains and in braided reaches of the river. The waters of the main stem of the Yukon River and its tributaries are predominantly calcium magnesium bicarbonate waters with specific conductances generally less than 400 microsiemens per centimeter. Water quality of the Yukon River Basin varies temporally between summer and winter. Water quality also varies spatially among ecoregions
Nagler, P.L.; Glenn, E.P.; Didan, K.; Osterberg, J.; Jordan, F.; Cunningham, J.
2008-01-01
Tamarix spp. removal has been proposed to salvage water and allow native vegetation to recolonize western U.S. riparian corridors. We conducted wide-area studies on the Lower Colorado River to answer some of the scientific questions about Tamarix water use and the consequences of removal, combining ground surveys with remote sensing methods. Tamarix stands had moderate rates of evapotranspiration (ET), based on remote sensing estimates, averaging 1.1 m/yr, similar to rates determined for other locations on the river and other rivers. Leaf area index values were also moderate, and stands were relatively open, with areas of bare soil interspersed within stands. At three Tamarix sites in the Cibola National Wildlife Refuge, groundwater salinity at the site nearest to the river (200 m) was relatively low (circa 2,250 mg/L) and was within 3 m of the surface. However, 750 and 1,500 m from the river, the groundwater salinity was 5,000-10,000 mg/L due to removal of water by the Tamarix stands. Despite the high groundwater salinity, the sites away from the river did not have saline surface soils. Only 1% of the mean annual river flow is lost to Tamarix ET on the Lower Colorado River in the United States, and the opportunities for water salvage through Tamarix removal are constrained by its modest ET rates. A possible alternative to Tamarix removal is to intersperse native plants among the stands to improve the habitat value of the riparian zone. ?? 2008 Society for Ecological Restoration International.
Occurrence and load of selected herbicides and metabolites in the lower Mississippi River
Clark, G.M.; Goolsby, D.A.
2000-01-01
Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991-1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1-2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico. Copyright (C) 2000 Elsevier Science B.V.
Occurrence and load of selected herbicides and metabolites in the lower Mississippi River
Clark, Gregory M.; Goolsby, Donald A.
2000-01-01
Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991–1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1–2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico.
Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.
2014-01-01
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.
Climate change impact assessment on hydrology of a small watershed using semi-distributed model
NASA Astrophysics Data System (ADS)
Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak
2017-07-01
This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.
Re-assessing the flood risk in Scotland.
Black, Andrew R; Burns, John C
2002-07-22
This paper presents a review of changes in flood risk estimation on Scottish rivers resulting from re-analysis of flood records or from the application of new methods. The review arises at a time when flood damages have received recent prominence through the occurrence of a number of extreme floods in Scotland, and when the possible impacts of climate change on flood risk are receiving considerable attention. An analysis of the nine longest available peaks-over-threshold (POT) flood series for Scottish rivers reveals that, for thresholds yielding two events per year on average, annual POT frequencies on western rivers have increased in the 1980s/1990s to maximum recorded values, while in the east, values were highest in the 1950s/1960s. These results support the results of flood modelling work based on rainfall and temperature records from the 1870s, which indicate that, in western catchments, annual POT frequencies in the 1980s/1990s are unprecedented. No general trends in flood magnitude series were found, but an unexpected cluster of extreme floods is identified as having occurred since 1988, resulting in eight of Scotland's 16 largest gauged rivers producing their maximum recorded flows since then. These shifts are related to recent increases in the dominance of westerly airflows, share similarities with the results of climate change modelling, and collectively point to increases in flood risk in many parts of Scotland. The paper also reviews advances in flood risk estimation arising from the publication of the UK Flood Estimation Handbook, developments in the collection and use of historic flood estimation and the production of maps of 100-year flood areal extent. Finally the challenges in flood risk estimation posed by climate change are examined, particularly in relation to the assumption of stationarity.
NASA Astrophysics Data System (ADS)
Cordeira, J. M.
2015-12-01
Extreme precipitation and attendant floods annually result in 80 fatalities and $5 Billion in damages across the U.S. and account for 50% of annual average U.S. natural disaster losses. The mechanisms that produce extreme precipitation are well known and are relatively well simulated by modern numerical weather prediction models in conjunction with synoptic-scale and mesoscale lift, instability, moisture, and boundaries. The focus of this presentation is on moisture in the form of synoptic-scale water vapor transport and its role in extreme precipitation along the U.S. West Coast. Many different terms have been used to describe synoptic-scale water vapor transport over the Northeast Pacific, including: moisture conveyor belts, warm conveyor belts, tropical moisture exports, tropical plumes, moisture plumes, pineapple express events, and atmospheric rivers. Each term respectively attempts to quantify or represent the propagation or instantaneous movement of water vapor from the Lagrangian and Eulerian frameworks in which they exist. These differences in frameworks often makes comparing and contrasting, for example, warm conveyor belts and atmospheric rivers difficult and may lead to misguided interpretations of long-range trans-oceanic water vapor transport. The purpose of this presentation is to discuss the dynamics of water vapor transport over the Northeast Pacific from the Eulerian and Lagrangian frameworks and illustrate to what degree the two- and three-dimensional structures of these rivers, exports, and belts overlap. Illustration of overlap between these processes will be shown via case study analysis of synoptic-scale water vapor transport over the Northeast Pacific that led to heavy precipitation along the U.S. West Coast during February 2014 and February 2015.
Li, Ye-fang; Huang, Yi-xin; Wang, He-sheng; Hang, De-rong; Chen, Xiang-ping; Xie, Yi-feng; Zhang, Lian-heng
2015-12-01
To evaluate the effect and the benefits of the projects of water storage and aquaculture on Oncomelania hupensis snail control in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River. The projects of water storage and aquaculture on 0. hupensis snail control were implemented in the tidal flats wetlands of islet-beach type of lower reaches of the Yangtze River. The breed situation of the snails was investigated by the conventional method before and after the project implementation and the effect of control and elimination of the snails by the projects were evaluated. At the same time, the cost-benefit analysis of two projects among them was performed by the static benefit-cost ratio method. All of 0. hupensis snails were eliminated in the first year after the implementation of seven water storage and aquaculture projects. The costs of detection and control of snails saved by each project was 69.20 thousand yuan a year on average. The annual net benefits of the "Nanhao Group 10 beach" project and "Wutao Group 6-14 beach" project were 2 039.40 thousand yuan and 955.00 thousand yuan respectively, and the annual net benefit-cost ratios were 1.09: 1 and 1.07: 1 respectively. The O. hupensis snails could be rapidly eliminated by the water storage and aquaculture, and the economic benefit is obvious, but the wetland ecological protection and flood control safety should be considered in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River.
Ground-water conditions in Avra Valley, Pima and Pinal Counties, Arizona -1985
Cuff, Melinda K.; Anderson, S.R.
1987-01-01
Avra Valley is a north-trending alluvial basin about 15 mi west of Tucson in Pima and Pinal Counties in south-central Arizona. The valley includes about 520 sq mi of which about 100 sq mi is in the San Xavier Indian Reservation. The basin is bounded on the east by the Tortolita, Tucson, and Sierrita Mountains and on the west by the Picacho, Silverbell, and Roskruge Mountains. The climate of the valley is semiarid, the average annual precipitation ranges from 8 to 12 in., and the average annual lake evaporation ranges from 58 to 62 in. Two major ephemeral streams--Santa Cruz River and Brawley Wash--drain the area. Santa Cruz River and Brawley Wash and their tributaries provide a source of recharge to an extensive alluvial aquifer that underlies the valley floor. Since 1940, the amount of groundwater pumped from the aquifer has been greater than the amount of natural recharge from infiltration and underflow. Overdraft of the aquifer resulted in substantial water level declines throughout the valley. Until 1969, use of groundwater in Avra Valley was for irrigation. Since 1969, the city of Tucson has pumped and transported groundwater for municipal use in the adjacent Tucson basin from lands that were purchased and retired from agriculture. The purpose of this report is to describe groundwater conditions in Avra Valley as of 1985. A brief discussion of the geohydrologic setting and history of groundwater development are given to define aquifer characteristics, changes in groundwater levels, and groundwater pumpage since 1940. (Lantz-PTT)
Bed material transport in the Virgin River, Utah
Andrews, E.D.
2000-01-01
Detailed information concerning the rate and particle size distribution of bed material transport by streamflows can be very difficult and expensive to obtain, especially where peak streamflows are brief and bed material is poorly sorted, including some very large boulders. Such streams, however, are common in steep, arid watersheds. Any computational approach must consider that (1) only the smaller particle sizes present on the streambed move even during large floods and (2) the largest bed particles exert a significant form drag on the flow. Conventional methods that rely on a single particle size to estimate the skin friction shear stress acting on the mobile fraction of the bed material perform poorly. Instead, for this study, the skin friction shear stress was calculated for the observed range of streamflows by calculating the form drag exerted on the reach‐averaged flow field by all particle sizes. Suspended and bed load transported rates computed from reach‐averaged skin friction shear stress are in excellent agreement with measured transport rates. The computed mean annual bed material load, including both bed load and suspended load, of the East Fork Virgin River for the water years 1992‐1996 was approximately 1.3×10 5 t. A large portion of the bed material load consists of sand‐sized particles, 0.062–1.0 mm in diameter, that are transported in suspension. Such particles, however, constituted only 10% of the surface bed material and less than 25% of the subsurface bed material. The mean annual quantity of bed load transported was 1060 t/yr with a median size of 15 mm.
Liu, Jinling; Feng, Xinbin; Zhu, Wei; Zhang, Xian; Yin, Runsheng
2012-01-01
The distribution and speciation of mercury in surface water of East River, Guangdong province, China were investigated. All told 63 water samples were collected during a bi-weekly sampling campaign from July 15th to 26th, 2009. Total mercury (THg) concentrations in water samples ranged from 11 to 49 ng/L. Maximum levels of THg were measured in the lower reaches of East River, where it passes through a major industrial area adjacent to Dongguang city. Higher ratios of dissolved mercury (THg (aq)) in proportion to THg were restricted to the downstream section of East River. Concentrations of the minor constituent methyl mercury varied in the range from 0.08 to 0.21 ng/L. On average, methyl mercury made up 0.8% and 0.56% of THg (aq) and THg, respectively. Dissolved species dominated the speciation of methyl mercury in proportions up to 81%, which may imply that methyl mercury is largely produced in situ within the river water. Environmental factors (such as water temperature, dissolved oxygen, etc.) are regarded to play an important role in Hg methylation processes were monitored and assessed. In an international perspective, East River must be classified as a polluted river with considerably sources within its industrial areas. The THg (aq) and particle mercury fluxes to the Pearl River Estuary by East River run-off were estimated to be 0.31 ± 0.11 and 0.17 ± 0.13 t/year, respectively. Hence, in total nearly 0.5 t Hg is annually released to the sea from the East River tributary.
Cory, Robert L.; Nauman, Jon W.
1970-01-01
The effect of power plant cooling water in raising natural water temperatures at a location near the power plant on the Patuxent River estuary is clearly evident from thermograph records. Surface temperature at a station 333 m (1,000 ft) downstream from the discharge canal was raised an average of about 4 C, and at times by as much as 8 C. Temperature rises were greatest during the winter. Infrared imagery showed that elevated surface temperatures could be detected about 5.5 km (3 nautical miles) upstream at flood tide. Temperature profiles obtained from airborne radiation equipment revealed a complicated surface temperature pattern and also showed the effects of density differences and wind action on the steam-electric station (S.E.S.) effluent plume. Mean annual salinity for a 5-year period (1963–1967) was highest in 1966, about 12.3 ‰, and lowest in 1967, about 9.9‰. Dissolved oxygen values for 1966–1967 ranged from 3.2 to 15.6 mg/l, and saturation ranged from 55 to 152%. Turbidity levels were inversely related to salinity, with the highest annual, mean of 28 JCU (Jackson Candle Units) occurring in 1967, the lowest salinity year. The extreme tide range was 2.1 m (6.7 ft); mean water levels at the Patuxent Bridge were highest in summer and lowest in winter. Water stages are more affected by wind speed and direction than by flow in the river.
NASA Astrophysics Data System (ADS)
Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli
2018-01-01
Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were assessed and implemented to alleviate water shortages. The negative impacts from the South-to-North Water Transfer Project (Middle Route) in the mid-lower reaches of the Hanjiang River Basin can be avoided through the dynamic control of FLWLs in Danjiangkou Reservoir, under the historical and future RCP2.6 and RCP4.5 scenarios. However, the effects of adaptation measures are limited due to their own constraints, such as the characteristics of the reservoirs influencing the FLWLs. The utilization of storm water appears necessary to meet future water demand. Overall, the results indicate that the framework for assessing the effects of adaptation measures on water resources allocation might aid water resources management, not only in the study area but also in other places where water availability conditions vary due to climate change and human activities.
Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada
NASA Astrophysics Data System (ADS)
Bash, E. A.; Marshall, S. J.; White, E. C.
2009-12-01
Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of landscape, relative to the average areal contributions in the basin, accounting for 2-4% of the total flow in an average year, with glacier ice representing about 50% of this total. Future research is examining the impact of ongoing glacier retreat on these contributions and the seasonality of runoff.
Report for the River Master of the Delaware River for the Period December 1, 2001-November 30, 2002
Krejmas, Bruce E.; Paulachok, Gary N.; Carswell, William J.
2006-01-01
A Decree of the United States Supreme Court in 1954 established the position of Delaware River Master within the U.S. Geological Survey. In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 49th Annual Report of the River Master of the Delaware River. It covers the 2002 River Master report year, that is, the period from December 1, 2001, to November 30, 2002. During the report year, precipitation in the upper Delaware River Basin was 2.73 in. greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was at a record low level on December 1, 2001. Reservoir storage increased steadily from mid-winter until late June. Storage declined steadily from early July to mid-October then increased through the end of the year. Delaware River operations were conducted at reduced levels from December 1, 2001, to May 25, 2002, when drought emergency conditions prevailed, and as prescribed by the Decree from May 26, 2002, to November 30, 2002. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the terms of the Decree or with the reduced limits in effect during drought emergency conditions. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 101 days during the report year. Releases were made at experimental conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and during drought emergency conditions, with the terms of the 'Interstate Water Management Recommendations of the Parties to the Decree' (DRBC Resolution 83-13), and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected by electronic instruments at four sites, and data on water temperature and specific conductance were collected at one site. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semimonthly basis.
NASA Astrophysics Data System (ADS)
Hao, Y.; Ma, J.
2017-12-01
The global warming of 1.5° and 2.0° proposed in Paris Agreement has became the iconic threshold of climate change impact research and discussion. In order to provide useful reference to the effective water resource management and planning for the capital city of China, this study aims to assessing the potential impact of 1.5° and 2.0° global warming on river discharge in Chaobai River Basin(CRB) which is main water supply source of Beijing. A semi-distributed hydrological model SWAT was driven by climate projections from five General Circulation Models(GCMs) under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5) to simulate the future discharge in CRB under 1.5° and 2.0° global warming respectively. On this basis, climate change impact on annual and monthly discharge, seasonal discharge distribution, extreme monthly discharge in CRB were assessed and the uncertainty associated with GCMs and RCPs were analyzed quantitatively. The results indicate that the average annual discharge will increase slightly and more concentrate in midsummer and early autumn under 1.5° global warming. When the global average temperature rise 2°, the annual discharge in CRB show an evident positive tendency with the magnitude increasing by approximate 30% and the extreme monthly runoff will significantly increase. However, the proportion of discharge in summer which is the peak water usage period will decline. It is obvious that the increment of 0.5° will lead to more flood events and bring great challenge to water resource management. There is a certain uncertainty in the projection of temperature, precipitation and discharge, by contrast, uncertainty of discharge projection is far greater than that of other two meteorological elements. Compared with RCPs, GCMs are proved to be the main factor which are responsible for the impact uncertainty in CRB under two global warming horizons. The uncertainty will be larger as the warming magnitude increase. In a word, the additional 0.5 will be crucial to flood control and water security, therefore, it is better to pursue efforts to limit the temperature increase to 1.5C above pre-industrial levels.
Spatial and temporal patterns of dengue in Guangdong province of China.
Wang, Chenggang; Yang, Weizhong; Fan, Jingchun; Wang, Furong; Jiang, Baofa; Liu, Qiyong
2015-03-01
The aim of the study was to describe the spatial and temporal patterns of dengue in Guangdong for 1978 to 2010. Time series analysis was performed using data on annual dengue incidence in Guangdong province for 1978-2010. Annual average dengue incidences for each city were mapped for 4 periods by using the geographical information system (GIS). Hot spot analysis was used to identify spatial patterns of dengue cases for 2005-2010 by using the CrimeStat III software. The incidence of dengue in Guangdong province had fallen steadily from 1978 to 2010. The time series was a random sequence without regularity and with no fixed cycle. The geographic range of dengue fever had expanded from 1978 to 2010. Cases were mostly concentrated in Zhanjiang and the developed regions of Pearl River Delta and Shantou. © 2013 APJPH.
Yorke, Thomas H.; Stamer, John K.; Pederson, Gary L.
1985-01-01
Heavy use of the Schuylkill River for municipal water supplies and a history of accidental spills and discharges of trace metals and organic substances have been a concern of State and local officials for many years. The U.S. Geological Survey, as part of their River Quality Assessment Program, developed a study to assess the occurrence and distribution of trace substances that pose a threat to human health and aquatic life. This report presents the results of the part of the study that evaluates the effects of low-level dams in the lower basin on the distribution and transport of sediment and trace substances. A combination of historical and current data were used in the assessment. Suspended-sediment data collected at several mainstem and tributary sites from 1954 to 1979 and sedimentation surveys of the six pools in the lower basin were used to define the sediment-transport characteristics of the river. These data provided a base for assessing the transport of trace substances, which are associated closely with riverbed sediments and suspended particles. Water and riverbed samples were collected for analyses of trace substances at numerous sites in the lower basin from 1978 to 1980. The six dams on the river between Pottstown and Philadelphia have had a significant effect on the transport of sediment and trace substances. Between 1954 and 1970, more than 4.7 million cubic yards of sediment accumulated in the pools formed by the dams. The quantity of sediment deposited in the pools ranged from 150,000 cubic yards in Plymouth Pool to 1.6 million cubic yards in Fairmount Pool. The rate of accumulation in the pools was a function of pool size and geometry and the frequency of storms. About 35 percent of the total sediment discharged by the river was stored in the six pools from 1954 to 1970. Since 1970, the net change in sediment accumulation has been minimal. More than 24 percent of the sediment in Fairmount Pool in 1970 was scoured from the pool during Hurricane Agnes in 1972; however, total sediment accumulation returned to the 1970 level within 2 years. Analyses of water samples showed that some trace substances are associated closely with particulate material transported by the river. The concentration of suspended and total cadmium, chromium, copper, lead, nickel, and zinc correlated well with the concentration of suspended sediment and suspended organic carbon. The average annual discharge of metals in suspension as a percentage of total average annual discharge ranged from 46 percent for nickel to 94 percent for lead for the Schuylkill River at Manayunk. The average annual discharge of each metal remained about the same or decreased between Pottstown and Philadelphia. Synoptic sampling of the inflow and outflow of several pools during storm runoff showed that the pools limit the transport of trace metals. More than 50 percent of the suspended copper transported by the river at Pottstown was deposited in Vincent Pool during the storm of May 12-15, 1980. Similar reductions were observed between Port Kennedy and Manayunk as the storm runoff passed through Norristown, Plymouth, and Flat Rock Pools. Analyses of riverbed sediments showed that concentrations of trace substances were higher in sediments that included all particles finer than 0.062 millimeter than in sediments that included only particles finer than 0.016 millimeter. This suggests that medium and coarse silt particles or conglomerates of finer particles sorb as much or more trace constituents as the individual fine silts and clay particles. Concentrations of trace metals were as much as 90 percent higher in the sediments that included coarse silt. Concentrations of trace organic substances were several times higher in the sediments that included coarse silt than in sediments consisting of only fine silt or clay. Surficial and core samples of riverbed sediments were used to define the present and historical distribution of trace substances in
Shore erosion as a sediment source to the tidal Potomac River, Maryland and Virginia
Miller, Andrew J.
1987-01-01
The shoreline of the tidal Potomac River attained its present form as a result of the Holocene episode of sea-level rise; the drowned margins of the system are modified by wave activity in the shore zone and by slope processes on banks steepened by basal-wave erosion. Shore erosion leaves residual sand and gravel in shallow water and transports silt and clay offshore to form a measurable component of the suspended-sediment load of the tidal Potomac River. Erosion rates were measured by comparing digitized historical shoreline maps and modern maps, and by comparing stereopairs of aerial photographs taken at different points in time, with the aid of an interactive computer-graphics system and a digitizing stereoplotter. Cartographic comparisons encompassed 90 percent of the study reach and spanned periods of 38 to 109 years, with most measurements spanning at least 84 years. Photogrammetric comparisons encompassed 49 percent of the study reach and spanned 16 to 40 years. Field monitoring of erosion rates and processes at two sites, Swan Point Neck, Maryland, and Mason Neck, Virginia, spanned periods of 10 to 18 months. Estimated average recession rates of shoreline in the estuary, based on cartographic and photogrammetric measurements, were 0.42 to 0.52 meter per annum (Virginia shore) and 0.31 to 0.41 meter per annum (Maryland shore). Average recession rates of shoreline in the tidal river and transition zone were close to 0.15 meter per annum. Estimated average volume-erosion rates along the estuary were 1.20 to 1.87 cubic meters per meter of shoreline per annum (Virginia shore) and 0.56 to 0.73 cubic meter per meter of shoreline per annum (Maryland shore); estimated average volume-erosion rates along the shores of the tidal river and transition zone were 0.55 to 0.74 cubic meter per meter of shoreline per annum. Estimated total sediment contributed to the tidal Potomac River by shore erosion was 0.375 x 10 6 to 0.565 x 10 6 metric tons per annum; of this, the estimated amount of silt and clay ranged from 0.153x10 6 to 0.226x10 6 metric tons per annum. Between 49 and 60 percent of the sediment was derived from the Virginia shore of the estuary; 14 to 18 percent was derived from the Maryland shore of the estuary; and 23 to 36 percent was derived from the shores of the tidal river and transition zone. The adjusted modern estimate of sediment eroded from the shoreline of the estuary is about 55 percent of the historical estimate. Sediment eroded from the shoreline accounted for about 6 to 9 percent of the estimated total suspended load for the tidal Potomac River during water years 1979 through 1981 and for about 11 to 18 percent of the suspended load delivered to the estuary during the same period. Annual suspended-sediment loads derived from upland source areas fluctuated by about an order of magnitude during the 3 years of record (1979-81); shore erosion may have been a more important component of the sediment budget during periods of low flow than during periods of higher discharges. Prior to massive land clearance during the historical period of intensive agriculture in the 18th and 19th centuries, annual sediment loads from upland sources probably were smaller than they are at present; under these circumstances shore erosion would have been an important component of the sediment budget. At current rates of sediment supply, relative sea-level rise, and shoreline recession, the landward parts of the tidal Potomac River are rapidly being filled by sediment. If these rates were to remain constant over time, and no sediment were to escape into Chesapeake Bay, the tidal river and transition zone would be filled within 600 years, and the total system would be filled in less than 4,000 years. Given a slower rate of sediment supply, comparable to the measured rate during the low-flow 1981 water year, the volume of the tidal Potomac River might remain relatively stable or even increase over time. Changes in rates
A century of hydrological variability and trends in the Fraser River Basin
NASA Astrophysics Data System (ADS)
Déry, Stephen J.; Hernández-Henríquez, Marco A.; Owens, Philip N.; Parkes, Margot W.; Petticrew, Ellen L.
2012-06-01
This study examines the 1911-2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in hydrological extremes, may influence ecological processes and human usage throughout the FRB in the 21st century.
33 CFR 100.724 - Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA. 100.724 Section 100.724 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunke, Michael A.; Broxton, Patrick; Pelletier, Jon
2016-05-01
One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness due to the lack of global estimates of bedrock depth. Using a 30 arcsecond global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9° latitude x 1.25° longitude grid cell. Including variable soil thickness affects the simulations most inmore » regions with shallow bedrock corresponding predominantly to areas of mountainous terrain. The greatest changes are to baseflow, with the annual minimum generally occurring earlier, while smaller changes are seen in surface fluxes like latent heat flux and surface runoff in which only the annual cycle amplitude is increased. These changes are tied to soil moisture changes which are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies do not change much over most river basins around the globe, since most basins contain mostly deep soils. However, it was found that TWS anomalies substantially differ for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature are affected by including realistic soil thicknesses due to changes to heat capacity and thermal conductivity.« less
Driscoll, Daniel G.; Southard, Rodney E.; Koenig, Todd A.; Bender, David A.; Holmes, Robert R.
2014-01-01
During 2011, excess precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Red River of the North, Souris, and Mississippi River Basins. At different times from late February 2011 through September 2011, various rivers in these basins had major flooding, with some locations having multiple rounds of flooding. This report provides broadscale characterizations of annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for selected streamgages in the Central United States in areas affected by 2011 flooding. Annual exceedance probabilities (AEPs) were analyzed for 321 streamgages for annual peak streamflow and for 211 streamgages for annual runoff volume. Some of the most exceptional flooding was for the Souris River Basin, where of 11 streamgages considered for AEP analysis of peak streamflow, flood peaks in 2011 exceeded the next largest peak of record by at least double for 6 of the longest-term streamgages (75 to 108 years of peak-flow record). AEPs for these six streamgages were less than 1 percent. AEPs for 2011 runoff volumes were less than 1 percent for all seven Souris River streamgages considered for AEP analysis. Magnitudes of 2011 runoff volumes exceeded previous maxima by double or more for 5 of the 7 streamgages (record lengths 52 to 108 years). For the Red River of the North Basin, AEPs for 2011 runoff volumes were exceptional, with two streamgages having AEPs less than 0.2 percent, five streamgages in the range of 0.2 to 1 percent, and four streamgages in the range of 1 to 2 percent. Magnitudes of 2011 runoff volumes also were exceptional, with all 11 of the aforementioned streamgages eclipsing previous long-term (62 to 110 years) annual maxima by about one-third or more. AEPs for peak streamflows in the upper Mississippi River Basin were not exceptional, with no AEPs less than 1 percent. AEPs for annual runoff volumes indicated less frequent recurrence, with 11 streamgages having AEPs of less than 1 percent. The 2011 runoff volume for streamgage 05331000 (at Saint Paul, Minnesota) exceeded the previous record (112 years of record) by about 24 percent. An especially newsworthy feature was prolonged flooding along the main stem of the Missouri River downstream from Garrison Dam (located upstream from Bismarck, North Dakota) and extending downstream throughout the length of the Missouri River. The 2011 runoff volume for streamgage 06342500 (at Bismarck) exceeded the previous (1975) maximum by about 50 percent, with an associated AEP in the range of 0.2 to 1 percent. In the Ohio River Basin, peak-streamflow AEPs were less than 2 percent for only four streamgages. Runoff-volume AEPs were less than 2 percent for only three streamgages. Along the lower Mississippi River, the largest streamflow peak in 91 years was recorded for streamgage 07289000 (at Vicksburg, Mississippi), with an associated AEP of 0.8 percent. Trends in peak streamflow were analyzed for 98 streamgages, with 67 streamgages having upward trends, 31 with downward trends, and zero with no trend. Trends in annual runoff volume were analyzed for 182 streamgages, with 145 streamgages having upward trends, 36 with downward trends, and 1 with no trend. The trend analyses used descriptive methods that did not include measures of statistical significance. A dichotomous spatial distribution in trends was apparent for both peak streamflow and annual runoff volume, with a small number of streamgages in the northwestern part of the study area having downward trends and most streamgages in the eastern part of the study area having upward trends.
Sand deposition in shoreline eddies along five Wild and Scenic Rivers, Idaho
Andrews, E.D.; Vincent, K.R.
2007-01-01
Sand bars deposited along the lateral margin of a river channel are frequently a focus of recreational activities. Sand bars are appealing sites on which to camp, picnic, fish and relax because they are relatively flat, soft, non-cohesive sand, free of vegetation and near the water's edge. The lack of vegetation and cohesion make sand bars easily erodible. Without appreciable deposition of new material, number and size of bars through a given reach of river will decline substantially over a period of years. We studied 63 beaches and their associated eddies located throughout 10 selected reaches within the designated Wild and Scenic River sections of the Lochsa, Selway, Middle Fork Clearwater, Middle Fork Salmon and Salmon Rivers in Idaho to determine the relation of beaches to the frequency and magnitude of streamflows that deposit appreciable quantities of sand. At present, these rivers have been altered little, if at all, by flow regulation, and only the Salmon River has substantial diversion upstream of a study reach. The river reaches studied have an abundance of sand bar beaches of appreciable size, in spite of suspended sand concentrations that rarely exceeded a few hundred milligrams per litre even during the largest floods. Calculated mean annual rates of deposition in an eddy vary from 5.8 to more than 100 cm depending primarily on: (1) the duration of streamflows that inundate the eddy sand bar depositions; (2) the rate of the flow exchange between the channel and an eddy and (3) the concentrations of suspended sand in the primary channel. The annual thickness of sand deposition in an eddy varies greatly from year to year depending on the duration of relatively large streamflows. Maximum annual sand depositions in an eddy are three to nine times the estimated long-term mean values. Relatively large, sustained floods deposit an appreciable portion of total deposition over a period of years. For the period of record, 1930-2002, the seven largest annual depositions, which represent more than 40% of all material deposited over the Lochsa River 21.9 km eddy, occurred in the years with the seven largest instantaneous annual peak floods. Beach area and volume for most beaches, however, are less variable year-to-year than the variation in annual deposition would indicate. Accumulative 10-year weighed deposition rate was computed to estimate the effective variability of beach deposition. Although less variable than the annual deposition, the cumulative 10-year deposition calculated for the longest hydrologic records, 71 years, existing on the Idaho Wild and Scenic Rivers varied by more than an order of magnitude from less than 20 cm to more than 220 cm.
NASA Astrophysics Data System (ADS)
Fan, Yaoshen; Chen, Shenliang; Zhao, Bo; Pan, Shunqi; Jiang, Chao; Ji, Hongyu
2018-01-01
The Active Yellow River (Huanghe) Delta (AYRD) is a complex landform in which rapid deposition takes place due to its geologic formation and evolution. Continuous monitoring of shoreline dynamics at high-temporal frequency is crucial for understanding the processes and the driving factors behind this rapidly changing coast. Great efforts have been devoted to map the changing shoreline of the Yellow River delta and explain such changes through remote sensing data. However, the temporal frequency of shoreline in the obtained datasets are generally not fine enough to reflect the detailed or subtly variable processes of shoreline retreat and advance. To overcome these limitations, we continuously monitored the dynamics of this shoreline using time series of Landsat data based on tidal-level calibration model and orthogonal-transect method. The Abrupt Change Value (ACV) results indicated that the retreat-advance patterns had a significant impact regardless of season or year. The Water-Sediment Regulation Scheme (WSRS) plays a dominant role in delivering river sediment discharge to the sea and has an impact on the annual average maximum ACV, especially at the mouth of the river. The positive relationship among the average ACV, runoff and sediment load are relatively obvious; however, we found that the Relative Exposure Index (REI) that measures wave energy was able to explain only approximately 20% of the variation in the data. Based on the abrupt change at the shoreline of the AYRD, river flow and time, we developed a binary regression model to calculate the critical sediment load and water discharge for maintaining the equilibrium of the active delta from 2002 to 2015. These values were approximately 0.48 × 108 t/yr and 144.37 × 108 m3/yr. If the current water and sediment proportions released from the Xiaolangdi Reservoir during the WSRS remain stable, the erosion-accretion patterns of the active delta will shift from rapid accretion to a dynamic balance.
Detection of Hydrologic Response at the River Basin Scale Caused by Land Use Change
NASA Astrophysics Data System (ADS)
McCormick, B. C.; Eshleman, K. N.; Griffith, J. L.; Townsend, P. A.
2008-05-01
The 187.5 km2 Georges Creek watershed, located on the Appalachian Plateau in western Maryland (USA), has experienced significant land use change due to surface mining of bituminous coal. We estimate that over 17% of the Georges Creek watershed is being actively surface-mined or was mined and reclaimed previously. The adjacent Savage River watershed (127.2 km2) is completely unaffected by surface mining. Both watersheds have long (>60 year) streamflow records maintained by USGS that were analyzed as part of this project, using Savage River as a control. Temporal analysis of the moments of the flood frequency distributions using a moving-window technique indicated that climatic variability affected both watersheds equally. Normalizing annual maximum flows by antecedent streamflow and causative precipitation allowed trends in the Georges Creek watershed flooding response to become more evident. An analysis of sixteen contemporary warm season storm events based on hourly streamflow and NEXRAD Stage III derived precipitation data provided clear evidence of differences in watershed response to rainfall. Georges Creek events (normalized by basin area and precipitation) are, on average, characterized by slightly greater (7%) peak runoff and shorter (3 hr) centroid lags than Savage River, even though the opposite was expected considering relative basin areas. These differences in stormflow response are most likely attributable to differences in current land use in the basins, particularly the large area of reclaimed minelands in Georges Creek. Interestingly, we found that Georges Creek events produce, on average, only 2/3 of the stormflow volume as Savage River, apparently due to infiltration of water into abandoned deep mine workings and an associated trans-basin drainage system that dates to the early 20th century. Long-term trend analysis at the river basin scale using empirical hydrologic methods is thus complicated by climatic variability and the legacy of deep mining in this system.
Water resources of Spink County, South Dakota
Hamilton, L.J.; Howells, L.W.
1996-01-01
Spink County, an agricultural area of about 1,505 square miles, is in the flat to gently rolling James River lowland of east-central South Dakota. The water resources are characterized by the highly variable flows of the James River and its tributaries and by aquifers both in glacial deposits of sand and gravel, and in sandstone in the bedrock. Glacial aquifers underlie about half of the county, and bedrock aquifers underlie most of the county. The James River is an intermittent prairie stream that drains nearly 8,900 square miles north of Spink County and has an average annual discharge of about 124 cubic feet per second where it enters the county. The discharge is augmented by the flow of Snake and Turtle Creeks, each of which has an average annual flow of about 25 to 30 cubic feet per second. Streamflow is unreliable as a water supply because precipitation, which averages 18.5 inches annually, is erratic both in volume and in distribution, and because the average annual potential evapotranspiration rate is 43 inches. The flow of tributaries generally ceases by summer, and zero flows are common in the James River in fall and winter. Aquifers in glacial drift deposits store nearly 3.3 million acre-feet of fresh to slightly saline water at depths of from near land surface to more than 500 feet below land surface beneath an area of about 760 square miles. Yields of properly developed wells in the more productive aquifers exceed 1,000 gallons per minute in some areas. Withdrawals from the aquifers, mostly for irrigation, totaled about 15,000 acre-feet of water in 1990. Water levels in observation wells generally have declined less than 15 feet over several decades of increasing pumpage for irrigation, but locally have declined nearly 30 feet. Water levels generally rose during the wet period of 1983-86. In Spink County, bedrock aquifers store more than 40 million acre-feet of slightly to moderately saline water at depths of from 80 to about 1,300 feet below land surface. Yields of properly developed wells range from 2 to 600 gallons per minute. The artesian head of the heavily used Dakota aquifer has declined about 350 feet in the approximately 100 years since the first artesian wells were drilled in the county, but water levels have stabilized locally as a result of decreases in the discharge of water from the wells. Initial flows of from 4 gallons per minute to as much as 30 gallons per minute of very hard water can be obtained in the southwestern part of the county, where drillers report artesian heads of nearly 100 feet above land surface. The quality of water from aquifers in glacial drift varies greatly, even within an aquifer. Concentrations of dissolved solids in samples ranged from 151 to 9,610 milligrams per liter, and hardness ranged from 84 to 3,700 milligrams per liter. Median concentrations of dissolved solids, sulfate, iron, and manganese in some glacial aquifers are near or exceed Secondary Maximum Contaminant Levels (SMCL's) established by the U.S. Environmental Protection Agency (EPA). Some of the water from aquifers in glacial drift is suitable for irrigation use. Water samples from aquifers in the bedrock contained concentrations of dissolved solids that ranged from 1,410 to 2,670 milligrams per liter (sum of constituents) and hardness that ranged from 10 to 1,400 milligrams per liter; these concentrations generally are largest for aquifers below the Dakota aquifer. Median concentrations of dissolved solids, sulfate, iron, and manganese in Dakota wells either are near or exceed EPA SMCL's. Dissolved solids, sodium, and boron concentrations in water from bedrock aquifers commonly are too large for the water to be suitable for irrigation use.
Understanding performance measures of reservoirs
NASA Astrophysics Data System (ADS)
McMahon, Thomas A.; Adeloye, Adebayo J.; Zhou, Sen-Lin
2006-06-01
This paper examines 10 reservoir performance metrics including time and volume based reliability, several measures of resilience and vulnerability, drought risk index and sustainability. Both historical and stochastically generated streamflows are considered as inflows to a range of hypothetical storage on four rivers—Earn river in the United Kingdom, Hatchie river in the United States, Richmond river in Australia and the Vis river in South Africa. The monthly stochastic sequences were generated applying an autoregressive lag one model to Box-Cox transformed annual streamflows incorporating parameter uncertainty by the Stedinger-Taylor method and the annual flows disaggregated by the method of fragments.
Sources and transformations of anthropogenic nitrogen along an urban river-estuarine continuum
NASA Astrophysics Data System (ADS)
Pennino, Michael J.; Kaushal, Sujay S.; Murthy, Sudhir N.; Blomquist, Joel D.; Cornwell, Jeff C.; Harris, Lora A.
2016-11-01
Urbanization has altered the fate and transport of anthropogenic nitrogen (N) in rivers and estuaries globally. This study evaluates the capacity of an urbanizing river-estuarine continuum to transform N inputs from the world's largest advanced (e.g., phosphorus and biological N removal) wastewater treatment facility. Effluent samples and surface water were collected monthly along the Potomac River estuary from Washington D.C. to the Chesapeake Bay over a distance of 150 km. In conjunction with box model mass balances, nitrate stable isotopes and mixing models were used to trace the fate of urban wastewater nitrate. Nitrate concentrations and δ15N-NO3- values were higher down-estuary from the Blue Plains wastewater outfall in Washington D.C. (2.25 ± 0.62 mg L-1 and 25.7 ± 2.9 ‰, respectively) compared to upper-estuary concentrations (1.0 ± 0.2 mg L-1 and 9.3 ± 1.4 ‰, respectively). Nitrate concentration then decreased rapidly within 30 km down-estuary (to 0.8 ± 0.2 mg L-1), corresponding to an increase in organic nitrogen and dissolved organic carbon, suggesting biotic uptake and organic transformation. TN loads declined down-estuary (from an annual average of 48 000 ± 5000 kg day-1 at the sewage treatment plant outfall to 23 000 ± 13 000 kg day-1 at the estuary mouth), with the greatest percentage decrease during summer and fall. Annually, there was a 70 ± 31 % loss in wastewater NO3- along the estuary, and 28 ± 6 % of urban wastewater TN inputs were exported to the Chesapeake Bay, with the greatest contribution of wastewater TN loads during the spring. Our results suggest that biological transformations along the urban river-estuary continuum can significantly transform wastewater N inputs from major cities globally, and more work is necessary to evaluate the potential of organic nitrogen and carbon to contribute to eutrophication and hypoxia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blenden, Michael L.; Veach, Eric R.; Kucera, Paul A.
1998-10-01
For the fourth consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A screw trap was used to collect emigrating natural and hatchery chinook salmon (Uncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 25 to June 27, 1997. A total of 270 natural chinook salmon, 10,616 hatchery chinook salmon, 864 natural steelhead trout (and 13 natural steelhead parr), and 7,345 hatchery steelhead trout smolts were captured during emigration studies on the Imnaha River. Mortality associated with trapping, handling and tagging was low: 0.37% formore » natural chinook, 0.11% for hatchery chinook, 0.11% for natural steelhead, and 0.39% for hatchery steelhead trout smolts. Natural chinook salmon smolts emigrated from the Imnaha River from February 25 to June 10 and had a mean length of 108 mm, average weight of 13 g, and mean condition factor of 1.02. The peak period of natural chinook smolt emigration, based on number of fish collected, occurred between March 25 and April 30. Hatchery reared chinook salmon smolts were collected from April 9 to May 9, with 99% of the smolts being caught within 10 days after release. Hatchery chinook smolts mean length, weight, and condition factor were 131 mm, 25.4 g, and 1.12, respectively. Emigration of natural steelhead smolts in the Imnaha River occurred between March 14 and June 25. Peak emigration occurred from May 1 to May 15. Natural steelhead smolts averaged 175 mm in fork length, 55.8 g in weight and had a mean condition factor of 1 .OO. Hatchery steelhead smolts emigrated from the Imnaha River between April 15 and June 27. Hatchery steelhead smolts averaged 210 mm in fork length, 88 g in weight and had a mean condition factor of 0.93. Spring runoff water conditions in 1997 provided above average flows for emigrating anadromous salmonid smolts. Imnaha River mean daily discharge during spring emigration ranged from 7.4 cms (260 cfs) on March 9 to 96.6 cms (3,410 cfs) on April 20 at USGS gauge 13292000, Imnaha, OR. Snake River discharge measured at the Anatone gauge station, ranged from 61.1 to 152 kcfs from April 15 to May 18. River discharge at LGR ranged from 79.6 kcfs on March 6 to 225.3 kcfs on May 18. Flows at LGR were generally greater than 100 kcfs during most of the spring runoff period, and discharge exceeded 120 kcfs from March 20-31 and April 19 to June 24. The water spill period at LGR occurred continuously from April 10 to June 29 with peak spill of 101.9 kcfs occurring on May 17.« less
Channel change and bed-material transport in the Lower Chetco River, Oregon
Wallick, J. Rose; Anderson, Scott W.; Cannon, Charles; O'Connor, Jim E.
2010-01-01
The lower Chetco River is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. Since the early twentieth century, the large gravel bars have been a source of commercial aggregate for which ongoing permitting and aquatic habitat concerns have motivated this assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers shows that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, are zones of active sedimentation and channel migration.Multiple analyses, supported by direct measurements of bedload during winter 2008–09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000–100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5–30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably little bed material leaves the lower river under natural conditions, with most net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean.The year-to-year flux, however, varies tremendously. Some years may have less than 3,000 cubic meters of bed material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000–2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year. Mined volumes probably exceeded 140,000 cubic meters per year for several years in the late 1970s.Repeat surveys and map analyses indicate a reduction in bar area and sinuosity between 1939 and 2008, chiefly in the period 1965–95. Repeat topographic and bathymetric surveys show channel incision for substantial portions of the study reach, with local areas of bed lowering by as much as 2 meters. A specific gage analysis at the upstream end of the study reach indicates that incision and narrowing followed aggradation culminating in the late 1970s. These observations are all consistent with a reduction of sediment supply relative to transport capacity since channel surveys in the late 1970s, probably owing to a combination of (1) bed sediment removal and (2) transient river adjustments to large sediment volumes brought by floods such as those in 1964 and, to a lesser extent, 1996.
Channel change and bed-material transport in the Lower Chetco River, Oregon
Wallick, J. Rose; Anderson, Scott W.; Cannon, Charles; O'Connor, Jim E.
2009-01-01
The lower Chetco River is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. The large gravel bars have been a source of commercial aggregate since the early twentieth century for which ongoing permitting and aquatic habitat concerns have motivated this assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers show that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, have been zones of active sedimentation and channel migration.Multiple analyses, supported by direct measurements of bedload during winter 2008–09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000–100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5–30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably very little bed material leaves the lower river under natural conditions, with most of the net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean.The year-to-year flux, however, varies tremendously. Some years probably have less than 3,000 cubic meters of bed-material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000–2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year. Mined volumes probably exceeded 140,000 cubic meters per year for several years in the late 1970s.Repeat surveys and map analyses indicate a reduction in bar area and sinuosity between 1939 and 2008, chiefly in the period 1965–95. Repeat topographic and bathymetric surveys show channel incision for substantial portions of the study reach, with local areas of bed lowering by as much as 2 meters. A specific gage analysis at the upstream end of the study reach indicates that incision and narrowing followed aggradation culminating in the late 1970s. These observations are all consistent with a reduction of sediment supply relative to transport capacity since channel surveys in the late 1970s, probably owing to a combination of (1) bed-sediment removal and (2) transient river adjustments to large sediment volumes brought by floods such as those in 1964, and to a lesser extent, 1996.
Channel Change and Bed-Material Transport in the Lower Chetco River, Oregon
NASA Astrophysics Data System (ADS)
O'Connor, J. E.; Wallick, R.; Anderson, S.; Cannon, C.
2009-12-01
The Chetco River drains 914 square kilometers of the Klamath Mountains in far southwestern Oregon. For its lowermost 18 km, it is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. The large gravel bars have been a source of commercial aggregate since the early twentieth century for which ongoing permitting and aquatic habitat concerns have motivated an assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers show that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, have been zones of active sedimentation and channel migration. Multiple analyses, supported by direct measurements of bedload during winter 2008-09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000-100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5-30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably very little bed material leaves the lower river under natural conditions, with most of the net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean. The year-to-year flux, however, varies tremendously. Some years probably have less than 3,000 cubic meters of bed-material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000-2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year. Mined volumes probably exceeded 140,000 cubic meters per year for several years in the late 1970s. Repeat surveys and map analyses indicate a reduction in bar area and sinuosity between 1939 and 2008, chiefly in the period 1965-95. Repeat topographic and bathymetric surveys show channel incision for substantial portions of the study reach, with local areas of bed lowering by as much as 2 meters. A specific gage analysis at the upstream end of the study reach indicates that incision and narrowing followed aggradation culminating in the late 1970s. These observations are all consistent with a reduction of sediment supply relative to transport capacity since channel surveys in the late 1970s, probably owing to a combination of (1) bed-sediment removal and (2) transient river adjustments to large sediment volumes brought by floods such as those in 1964, and to a lesser extent, 1996.
NASA Astrophysics Data System (ADS)
Tian, H.; Zhu, C.
2015-12-01
Atmospheric emissions of typical toxic heavy metals from anthropogenic sources have received worldwide concerns due to their adverse effects on human health and the ecosystem. An integrated inventory of anthropogenic emissions of twelve HMs (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) in the three biggest metropolitan areas, including Beijing-Tianjin-Hebei (BTH) region, Yangtze River Delta (YRD) region and Pearl River Delta (PRD) region, are developed for 1980-2012 by combining with detailed activity data and inter-annual dynamic emission factors which are determined by S-shaped curves on account of technology progress, economic development, and emission control. The results indicate total emissions of twelve HMs in the three metropolitan regions have increased from 5448.8 tons in 1980 to 19054.9 tons in 2012, with an annual average growth rate of about 4.0%. Due to significant difference in industrial structures and energy consumption compositions, remarkable distinctions can be observed with respect to source contributions of total HM emissions from above three metropolitan areas. Specifically, the ferrous metal smelting sector, coal combustion by industrial boilers and coal combustion by power plants are found to be the primary source of total HM emissions in the BTH region (about 34.2%), YRD region (about 28.2%) and PRD region (about 24.3%), respectively. Furthermore, we allocate the annual emissions of these heavy metals in 2012 at a high spatial resolution of 9 km × 9 km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). The peak of HM emissions are mainly distributed over the grid cells of Beijing, Tianjin, Tangshan, Shijiazhuang, Handan and Baoding in the BTH region; Shanghai, Suzhou, Wuxi, Nanjing, Hangzhou, Ningbo in the YRD region; Guangzhou, Shenzhen, Dongguan, Foshan in the PYD region, respectively. Additionally, monthly emission profiles are established in order to further identify the temporal emission characteristics of HMs. Key words: heavy metals (HMs), emission inventory, time-varying dynamic emission factor, temporal and spatial characteristics, Beijing-Tianjin-Hebei (BTH) region, Yangtze River Delta (YRD) region, Pearl River Delta (PRD) region, China
NASA Astrophysics Data System (ADS)
Wei, Xiaohua; Zhang, Mingfang
2010-12-01
Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50 years) are available.
NASA Astrophysics Data System (ADS)
Boulariah, Ouafik; Longobardi, Antonia; Meddi, Mohamed
2017-04-01
One of the major challenges scientists, practitioners and stakeholders are nowadays involved in, is to provide the worldwide population with reliable water supplies, protecting, at the same time, the freshwater ecosystems quality and quantity. Climate and land use changes undermine the balance between water demand and water availability, causing alteration of rivers flow regime. Knowledge of hydro-climate variables temporal and spatial variability is clearly helpful to plan drought and flood hazard mitigation strategies but also to adapt them to future environmental scenarios. The present study relates to the coastal semi-arid Tafna catchment, located in the North-West of Algeria, within the Mediterranean basin. The aim is the investigation of streamflow and rainfall indices temporal variability in six sub-basins of the large catchment Tafna, attempting to relate streamflow and rainfall changes. Rainfall and streamflow time series have been preliminary tested for data quality and homogeneity, through the coupled application of two-tailed t test, Pettitt test and Cumsum tests (significance level of 0.1, 0.05 and 0.01). Subsequently maximum annual daily rainfall and streamflow and average daily annual rainfall and streamflow time series have been derived and tested for temporal variability, through the application of the Mann Kendall and Sen's test. Overall maximum annual daily streamflow time series exhibit a negative trend which is however significant for only 30% of the station. Maximum annual daily rainfall also e exhibit a negative trend which is intend significant for the 80% of the stations. In the case of average daily annual streamflow and rainfall, the tendency for decrease in time is unclear and, in both cases, appear significant for 60% of stations.
Wang, Lan; Zhang, Gui-ling; Sun, Ming-shuang; Ren, Jing-ling
2014-12-01
Distributions and air-sea fluxes of nitrous oxide (N2O) in the seawaters of the Yangtze River estuary and its adjacent marine area were investigated during two cruises in March and July 2012. Dissolved N2O concentrations in surface waters ranged from 9.34 to 49.08 nmol x L(-1) with an average of (13.27 ± 6.40) nmol x L(-1) in spring and ranged from 7.27 to 27.81 nmol x L(-1) with an average of (10.62 ± 5.03) nmol x L(-1) in summer. There was no obvious difference between surface and bottom N2O concentrations. N2O concentrations in both surface and bottom waters decreased along the freshwater plume from the river mouth to the open sea. High values of dissolved N2O were found in turbidity maximum zone, which suggests that maximal turbidity enhances nitrification. Temperature had dual effects on dissolved N2O concentrations. N2O saturations in surface waters ranged from 86.9% to 351.3% with an average of (111.5 ± 41.4)% in spring and ranged from 111.7% to 396.0% with an average of (155.9 ± 68.4)% in summer. N2O were over-saturated at most stations. The sea-to-air fluxes of N2O were estimated to be (3.2 ± 10.9), (5.5 ± 19.3) and (12.2 ±52.3) μmol x (m2 x d)(-1) in spring and (7.3 ± 12.4), (12.7 ± 20.4) and (20.4 ± 35.9) μmol x (m2 x d)(-1) in summer using the LM86, W92 and RC01 relationships, respectively. The annual emissions of N2O from the Yangtze River estuary and its adjacent marine area were estimated to be 0.6 x 10(-2) Tg x a(-1) (LM86), 1.1 x 10(-2) Tg x a(-1) (W92) and 2.0 x 10(-2) Tg x a(-1) (RC01). Although the area of the Yangtze River estuary and its adjacent marine area only accounts for 0.02% of the total area of the world's oceans, their emission of N2O accounts for 0.06% of global oceanic N2O emission, indicating that the Yangtze River estuary and its adjacent marine area is an active area to produce and emit N2O.
Savoie, Jennifer G.; DeSimone, Leslie A.; Mullaney, John R.; Zimmerman, Marc J.; Waldron, Marcus C.
2016-10-24
Treated effluent discharged from municipal wastewater-treatment plants to the Assabet River in central Massachusetts includes phosphorus, which leads to increased growth of nuisance aquatic plants that decrease the river’s water quality and aesthetics in impounded reaches during the growing season. To improve the river’s water quality and aesthetics, the U.S. Environmental Protection Agency approved a total maximum daily load for phosphorus in 2004 that directed the wastewater-treatment plants to reduce the amount of total phosphorus discharged to the river by 2012. The permitted total phosphorus monthly average of 0.75 milligrams per liter during the aquatic plant growing season (April 1 through October 31) was reduced by the total maximum daily load to a target of 0.1 milligrams per liter by 2012, and the nongrowing-season limit was unchanged at 1.0 milligrams per liter.From October 2008 through April 2014, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, measured streamflow and collected weekly flow-proportional, composite samples of water from the Assabet River for analysis of concentrations of total phosphorus and orthophosphate. Streamflow and concentration data were used to estimate total phosphorus and orthophosphate loads in the river. The purpose of this monitoring effort was to evaluate phosphorus concentrations and loads in the river before, during, and after the wastewater-treatment-plant upgrades and to assess the effects of seasonal differences in permitted discharges. The locations of water-quality-monitoring stations, with respect to the Hudson and Ben Smith impoundments, enabled examination of effects of phosphorus entering and leaving the impoundments.Annual median concentrations of total phosphorus in wastewater-treatment plants were reduced by more than 80 percent with the plant upgrades. Measured instream annual median concentrations of total phosphorus in the Assabet River decreased by about 38 to 50 percent at three of the four monitoring stations following the wastewater-treatment-plant upgrades. At the station farthest upstream, the median total phosphorus concentration remained unchanged throughout the study; this may be attributed to the site location and potential resuspension of particulate organic matter during periods of increased streamflow. Annual median loads from the wastewater-treatment plants were reduced by up to 91 percent following the upgrades, instream annual median total phosphorus loads at the three downstream stations decreased by 71 to 76 percent, and instream orthophosphate loads at the three downstream stations decreased by 79 to 87 percent.Seasonal fluctuations (growing versus nongrowing) of total phosphorus and orthophosphate were observed instream before the upgrades. However, after the upgrades, fluctuations in phosphorus released from the treatment plants were slight and seasonal changes were typically not observed instream.Annual loads entering and leaving the two impoundments were inconclusive in determining whether the impoundments were sources or sinks of total phosphorus during the study. Total phosphorus loads entering the Hudson impoundment were consistently greater than those leaving; however, there was uncertainty about the loads at the monitoring station upstream from this impoundment. At the Ben Smith impoundment, total phosphorus and orthophosphate loads downstream were slightly greater than those upstream from the impoundment, but the differences may reflect additions from tributaries and overland runoff.Estimated instream total phosphorus concentrations and loads indicated that the decreases in total phosphorus in wastewater-treatment-plant discharges were accompanied by reductions measured in the Assabet River. A statistical analysis which incorporates the effect of varying flow conditions demonstrated significant reductions in total phosphorus concentrations after the wastewater-treatment-plant upgrades at three of the four instream monitoring stations. No significant change was observed at the most upstream location, the Assabet River at Port Street at Hudson, Massachusetts (station number 01096835), which may have been affected by flow-related resuspension of particulate phosphorus.
Fischer, Jeffrey M.; Nichols, William D.; Dinwiddie, G.A.; Trask, N.J.
1986-01-01
A commercial low-level radioactive-waste disposal site has been operating near Beatty, Nevada, about 150 km northwest of Las Vegas, since 1962. The 32-ha site is situated in a desolate region of the Amargosa River Valley, sometimes referred to as the Amargosa Desert. Average annual precipitation is only about 114 mm. The site is underlain by 175 m of unconsolidated, generally coarse-grained, alluvial-fan and flood-plain deposits. The water table is at a depth of 90 m.
2013 Gulf of Mexico Hypoxia Forecast
Scavia, Donald; Evans, Mary Anne; Obenour, Dan
2013-01-01
The Gulf of Mexico annual summer hypoxia forecasts are based on average May total nitrogen loads from the Mississippi River basin for that year. The load estimate, recently released by USGS, is 7,316 metric tons per day. Based on that estimate, we predict the area of this summer’s hypoxic zone to be 18,900 square kilometers (95% credible interval, 13,400 to 24,200), the 7th largest reported and about the size of New Jersey. Our forecast hypoxic volume is 74.5 km3 (95% credible interval, 51.5 to 97.0), also the 7th largest on record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loranger, S.; Houde, L.; Schetagne, R.
1995-12-31
Hydro-Quebec is planning to build two hydroelectric reservoirs in the upper Saint-Maurice River, which would flood about 80% of the surrounding area. The methylmercury (MeHg) content in freshwater fish will therefore tend to increase during the first few years. This development will have a direct impact on the amount of MeHg that the actual users of this river section are exposed to. The objective of this study is to assess the consumption of local fish of these target groups using a Monte-Carlo approach. This study is part of a larger research project aimed at assessing human exposure and the healthmore » risks related to MeHg contamination in local fish. The fish consumption rate for recreational freshwater anglers was calculated using the duration of the average annual fishing trip, the average number of catches per species, the average fish weight per species exceeding a specific length of fish usually caught, and the edible portion of fish consumed. This rate was calculated for the native communities based on the total number of meals per year per species, the average fish weight per species, and the edible portion. Based on these calculations, average intake for sport fishermen is estimated at 6.9 g/day (sd = 6.4). This value is 5 to 25 times lower on average than for other North American native communities. However, it must be pointed out that the food habits of the native population were very similar to those of non-native populations; less than 30% of the food comes from traditional sources.« less
33 CFR 100.713 - Annual Harborwalk Boat Race; Sampit River, Georgetown, SC.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Annual Harborwalk Boat Race; Sampit River, Georgetown, SC. 100.713 Section 100.713 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.713...
78 FR 55214 - Annual Marine Events in the Eighth Coast Guard District, Sabine River; Orange, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 [Docket No. USCG-2013-0723] Annual Marine Events in the Eighth Coast Guard District, Sabine River; Orange, TX AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce Special Local...
NASA Astrophysics Data System (ADS)
Alexandre Diogo, Paulo; Nunes, João Pedro; Carmona Rodrigues, António; João Cruz, Maria; Grosso, Nuno
2014-05-01
Climate change in the Mediterranean region is expected to affect existing water resources, both in quantity and quality, as decreased mean annual precipitation and more frequent extreme precipitation events are likely to occur. Also, energy needs tend to increase, together with growing awareness that fossil fuels emissions are determinately responsible for global temperature rise, enhancing renewable energy use and reinforcing the importance of hydropower. When considered together, these facts represent a relevant threat to multipurpose reservoir operations. Great Lisbon main water supply (for c.a. 3 million people), managed by EPAL, is located in Castelo de Bode Reservoir, in the Tagus River affluent designated as Zêzere River. Castelo de Bode is a multipurpose infrastructure as it is also part of the hydropower network system of EDP, the main power company in Portugal. Facing the risk of potential climate change impacts on water resources availability, and as part of a wider project promoted by EPAL (designated as ADAPTACLIMA), climate change impacts on the Zêzere watershed where evaluated based on climate change scenarios for the XXI century. A sequential modeling approach was used and included downscaling climate data methodologies, hydrological modeling, volume reservoir simulations and water quality modeling. The hydrological model SWAT was used to predict the impacts of the A2 and B2 scenarios in 2010-2100, combined with changes in socio-economic drivers such as land use and water demands. Reservoir storage simulations where performed according to hydrological modeling results, water supply needs and dam operational requirements, such as minimum and maximum operational pool levels and turbine capacity. The Ce-Qual-W2 water quality model was used to assess water quality impacts. According to climate scenarios A2 and B2, rainfall decreases between 10 and 18% are expected by 2100, leading to drier climatic conditions and increased frequency and magnitude of drought periods, probably more acute by the year 2100 and in scenario A2. As a result, a decrease in inflows to the Castelo de Bode reservoir between 20 to 34% is expected, with emphasis in autumn. While for the near-term scenarios this is mostly due to a decrease in median annual inflow; for the long-term scenarios this is accompanied by lower inter-annual variability and a decrease of magnitude of wet year inflows. Associated with increased precipitation erosion potential, watershed sediment transport will probably tend to increase, enhancing phosphorous transport into surface water and thus contributing to potential eutrophication problems. However, modeling results do not indicate compromising water quality degradation. Decreased reservoir inflows should nevertheless be sufficient to sustain water supply, considering an average annual consumption of 160 hm3 y-1 and the legal prioritization of water supply over hydropower production, as worst case average annual inflows scenarios are estimated between 1 000 and 1 500 hm3 y-1. On the other hand, considering that hydropower comprises downstream releases averaging 1 400 hm3 y-1, restrictions to energy production will probably be required to compensate lower inflow periods and guaranty necessary water supply storage volumes. The presented modeling framework provided an adequate tool for assessing climate change impacts on water resources, demonstrating that climate scenarios are not likely to threaten Lisbon's water supply system but emphasizing the need for adequate reservoir management strategies contemplating the risk of competitive water uses in the Castelo de Bode reservoir.
Large-scale suspended sediment transport and sediment deposition in the Mekong Delta
NASA Astrophysics Data System (ADS)
Manh, N. V.; Dung, N. V.; Hung, N. N.; Merz, B.; Apel, H.
2014-08-01
Sediment dynamics play a major role in the agricultural and fishery productivity of the Mekong Delta. However, the understanding of sediment dynamics in the delta, one of the most complex river deltas in the world, is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains, and the scarcity of observations. This study quantifies, for the first time, the suspended sediment transport and sediment deposition in the whole Mekong Delta. To this end, a quasi-2D hydrodynamic model is combined with a cohesive sediment transport model. The combined model is calibrated using six objective functions to represent the different aspects of the hydraulic and sediment transport components. The model is calibrated for the extreme flood season in 2011 and shows good performance for 2 validation years with very different flood characteristics. It is shown how sediment transport and sediment deposition is differentiated from Kratie at the entrance of the delta on its way to the coast. The main factors influencing the spatial sediment dynamics are the river and channel system, dike rings, sluice gate operations, the magnitude of the floods, and tidal influences. The superposition of these factors leads to high spatial variability of sediment transport, in particular in the Vietnamese floodplains. Depending on the flood magnitude, annual sediment loads reaching the coast vary from 48 to 60% of the sediment load at Kratie. Deposited sediment varies from 19 to 23% of the annual load at Kratie in Cambodian floodplains, and from 1 to 6% in the compartmented and diked floodplains in Vietnam. Annual deposited nutrients (N, P, K), which are associated with the sediment deposition, provide on average more than 50% of mineral fertilizers typically applied for rice crops in non-flooded ring dike floodplains in Vietnam. Through the quantification of sediment and related nutrient input, the presented study provides a quantitative basis for estimating the benefits of annual Mekong floods for agriculture and fishery, and is an important piece of information with regard to the assessment of the impacts of deltaic subsidence and climate-change-related sea level rise on delta morphology.
NASA Astrophysics Data System (ADS)
Cook, K. L.; Gimbert, F.; Andermann, C.; Hovius, N.; Adhikari, B. R.
2017-12-01
The Himalaya is a region of rapid erosion where fluvial processes are assumed to be driven by precipitation delivered during the annual Indian Summer Monsoon. However, the rivers in this region are also subject to catastrophic floods caused by the failure of glacial lake and landslide dams. Because these floods are rarely observed, it has been difficult to isolate their impact on the rivers and adjacent hillslopes, and their importance for the long-term evolution of Himalayan valleys is largely unknown. In July 2016, the Bhotekoshi/Sunkoshi River in central Nepal was hit by a glacial lake outburst flood (GLOF) that caused substantial changes to the channel bed, banks, and adjacent hillslopes, causing at least 26 landslides and an average of 11 m of channel widening. The flood passed through a seismic and hydrological observatory installed along the river in June 2015, and we have used the resulting data to constrain the timing, duration, and bedload transport properties of the outburst flood. The impact of the flood on the river can be further observed with hourly time-lapse photographs, daily measurements of suspended sediment load, repeat lidar surveys, and satellite imagery. The outburst flood affected the river on several timescales. In the short term, it transported large amounts of coarse sediment and restructured the river bed during the hours of the flood pulse itself. Over intermediate timescales it resulted in elevated bedload and suspended load transport for several weeks following the flood. Over longer timescales the flood undercut and destabilized the river banks and hillslopes in a number of locations, leading to bank collapses, slumps, and landslides. Our data indicate that impacts of the GLOF far exceed those driven by the annual summer monsoon, likely due to extremely coarse sediment that armors much of the channel. The relatively frequent occurrence of GLOFs and the extremely high discharges relative to monsoon floods suggest that GLOFs may dominate the dynamics of fluvial systems and channel-hillslope coupling within a zone that can extend many tens of kilometres downstream of glaciated areas. Fluvial erosion in these regions may therefore be driven not by precipitation, but rather by GLOF frequency and magnitude, which may increase in response to climate change.
NASA Astrophysics Data System (ADS)
Ozsoy, Gokhan; Aksoy, Ertugrul; Dirim, M. Sabri; Tumsavas, Zeynal
2012-10-01
Sediment transport from steep slopes and agricultural lands into the Uluabat Lake (a RAMSAR site) by the Mustafakemalpasa (MKP) River is a serious problem within the river basin. Predictive erosion models are useful tools for evaluating soil erosion and establishing soil erosion management plans. The Revised Universal Soil Loss Equation (RUSLE) function is a commonly used erosion model for this purpose in Turkey and the rest of the world. This research integrates the RUSLE within a geographic information system environment to investigate the spatial distribution of annual soil loss potential in the MKP River Basin. The rainfall erosivity factor was developed from local annual precipitation data using a modified Fournier index: The topographic factor was developed from a digital elevation model; the K factor was determined from a combination of the soil map and the geological map; and the land cover factor was generated from Landsat-7 Enhanced Thematic Mapper (ETM) images. According to the model, the total soil loss potential of the MKP River Basin from erosion by water was 11,296,063 Mg year-1 with an average soil loss of 11.2 Mg year-1. The RUSLE produces only local erosion values and cannot be used to estimate the sediment yield for a watershed. To estimate the sediment yield, sediment-delivery ratio equations were used and compared with the sediment-monitoring reports of the Dolluk stream gauging station on the MKP River, which collected data for >41 years (1964-2005). This station observes the overall efficiency of the sediment yield coming from the Orhaneli and Emet Rivers. The measured sediment in the Emet and Orhaneli sub-basins is 1,082,010 Mg year-1 and was estimated to be 1,640,947 Mg year-1 for the same two sub-basins. The measured sediment yield of the gauge station is 127.6 Mg km-2 year-1 but was estimated to be 170.2 Mg km-2 year-1. The close match between the sediment amounts estimated using the RUSLE-geographic information system (GIS) combination and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.
Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001-2005
Striegl, Robert G.; Dornblaser, Mark M.; Aiken, George R.; Wickland, Kimberly P.; Raymond, Peter A.
2007-01-01
Loads and yields of dissolved and particulate organic and inorganic carbon (DOC, POC, DIC, PIC) were measured and modeled at three locations on the Yukon River (YR) and on the Tanana and Porcupine rivers (TR, PR) in Alaska during 2001–2005. Total YR carbon export averaged 7.8 Tg C yr−1, 30% as OC and 70% as IC. Total C yields (0.39–1.03 mol C m−2 yr−1) were proportional to water yields (139–356 mm yr−1; r2 = 0.84) at all locations. Summer DOC had an aged component (fraction modern (FM) = 0.94–0.97), except in the permafrost wetland‐dominated PR, where DOC was modern. POC had FM = 0.63–0.70. DOC had high concentration, high aromaticity, and high hydrophobic content in spring and low concentration, low aromaticity, and high hydrophilic content in winter. About half of annual DOC export occurred during spring. DIC concentration and isotopic composition were strongly affected by dissolution of suspended carbonates in glacial meltwater during summer.
NASA Astrophysics Data System (ADS)
Zongxing, Li; Qi, Feng; Wang, Q. J.; Yanlong, Kong; Aifang, Cheng; Song, Yong; Yongge, Li; Jianguo, Li; Xiaoyan, Guo
2016-11-01
Moisture recycling by terrestrial evaporation and transpiration has recently been confirmed as an important source of precipitation, but little is known of this contribution in inland river basins of China. This study determines the fractions contributed by terrestrial evaporation and transpiration to precipitation in the Shiyang river basin, located in Gansu province of northwestern China. The basin has an area of 4.16 × 104 km2 and mean annual precipitation of 300 mm/yr. Hundreds of samples of precipitation, surface water, plant stem water and soil water were collected and analyzed for their isotopic compositions. The Craig-Gordon model and a three-end-member mixing model were used to partition precipitation into water sourced from evaporation, transpiration and advection. On average, evaporation, transpiration and advection were responsible for 9%, 14% and 77%, respectively, of precipitation, and the contribution from terrestrial evaporation and transpiration also increased with elavation; they also varied with season, being highest in August. The significant contribution from transpiration highlights the importance of vegetation conservation in this ecologically fragile basin.
Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.
Forster, D Lynn; Rausch, Jonathan N
2002-01-01
During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding.
Smart licensing and environmental flows: Modeling framework and sensitivity testing
NASA Astrophysics Data System (ADS)
Wilby, R. L.; Fenn, C. R.; Wood, P. J.; Timlett, R.; Lequesne, T.
2011-12-01
Adapting to climate change is just one among many challenges facing river managers. The response will involve balancing the long-term water demands of society with the changing needs of the environment in sustainable and cost effective ways. This paper describes a modeling framework for evaluating the sensitivity of low river flows to different configurations of abstraction licensing under both historical climate variability and expected climate change. A rainfall-runoff model is used to quantify trade-offs among environmental flow (e-flow) requirements, potential surface and groundwater abstraction volumes, and the frequency of harmful low-flow conditions. Using the River Itchen in southern England as a case study it is shown that the abstraction volume is more sensitive to uncertainty in the regional climate change projection than to the e-flow target. It is also found that "smarter" licensing arrangements (involving a mix of hands off flows and "rising block" abstraction rules) could achieve e-flow targets more frequently than conventional seasonal abstraction limits, with only modest reductions in average annual yield, even under a hotter, drier climate change scenario.
Surface-water/ground-water relations in the Lemhi River Basin, east-central Idaho
Donato, Mary M.
1998-01-01
This report summarizes work carried out in cooperation with the Bureau of Reclamation to provide hydrologic information to help Federal, State, and local agencies meet the goals of the Lemhi River Model Watershed Project. The primary goal of the project is to maintain, enhance, and restore anadromous and resident fish habitat in the Lemhi River, while maintaining a balance between resource protection and established water uses. The main objectives of the study were to carry out seepage measurements to determine seasonal distributed gains and losses in the Lemhi River and to estimate annual ground-water underflow from the basin to the Salmon River. In 1997, seepage measurements were made during and after the irrigation season along a 60-mile reach of the Lemhi River between Leadore and Salmon. Except for one 4-mile reach that lost 1.3 cubic feet per second per mile, the river gained from ground water in early August when ground-water levels were high. Highest flows in the Lemhi River in early August were about 400 cubic feet per second. In October, when ground-water levels were low, river losses to ground water were about 1 to 16 cubic feet per second per mile. In October, highest flows in the Lemhi River were about 500 cubic feet per second, near the river's mouth. Annual ground-water underflow from the Lemhi River Basin to the Salmon River was estimated by using a simplified water budget and by using Darcy's equation. The water-budget method contained large uncertainties associated with estimating precipitation and evapotranspiration. Results of both methods indicate that the quantity of ground water leaving the basin as underflow is small, probably less than 2 percent of the basin's total annual water yield.
Temporal and Longitudinal Mercury Trends in Burbot (Lota lota) in the Russian Arctic.
Pelletier, Alexander R; Castello, Leandro; Zhulidov, Alexander V; Gurtovaya, Tatiana Yu; Robarts, Richard D; Holmes, Robert M; Zhulidov, Daniel A; Spencer, Robert G M
2017-11-21
Current understanding of mercury (Hg) dynamics in the Arctic is hampered by a lack of data in the Russian Arctic region, which comprises about half of the entire Arctic watershed. This study quantified temporal and longitudinal trends in total mercury (THg) concentrations in burbot (Lota lota) in eight rivers of the Russian Arctic between 1980 and 2001, encompassing an expanse of 118 degrees of longitude. Burbot THg concentrations declined by an average of 2.6% annually across all eight rivers during the study period, decreasing by 39% from 0.171 μg g -1 wet weight (w.w.) in 1980 to 0.104 μg g -1 w.w. in 2001. THg concentrations in burbot also declined by an average of 1.8% per 10° of longitude from west to east across the study area between 1988 and 2001. These results, in combination with those of previous studies, suggest that Hg trends in Arctic freshwater fishes before 2001 were spatially and temporally heterogeneous, as those in the North American Arctic were mostly increasing while those in the Russian Arctic were mostly decreasing. It is suggested that Hg trends in Arctic animals may be influenced by both depositional and postdepositional processes.