Streamflow characteristics and trends along Soldier Creek, Northeast Kansas
Juracek, Kyle E.
2017-08-16
Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.
Wiley, Jeffrey B.
2012-01-01
Base flows were compared with published streamflow statistics to assess climate variability and to determine the published statistics that can be substituted for annual and seasonal base flows of unregulated streams in West Virginia. The comparison study was done by the U.S. Geological Survey, in cooperation with the West Virginia Department of Environmental Protection, Division of Water and Waste Management. The seasons were defined as winter (January 1-March 31), spring (April 1-June 30), summer (July 1-September 30), and fall (October 1-December 31). Differences in mean annual base flows for five record sub-periods (1930-42, 1943-62, 1963-69, 1970-79, and 1980-2002) range from -14.9 to 14.6 percent when compared to the values for the period 1930-2002. Differences between mean seasonal base flows and values for the period 1930-2002 are less variable for winter and spring, -11.2 to 11.0 percent, than for summer and fall, -47.0 to 43.6 percent. Mean summer base flows (July-September) and mean monthly base flows for July, August, September, and October are approximately equal, within 7.4 percentage points of mean annual base flow. The mean of each of annual, spring, summer, fall, and winter base flows are approximately equal to the annual 50-percent (standard error of 10.3 percent), 45-percent (error of 14.6 percent), 75-percent (error of 11.8 percent), 55-percent (error of 11.2 percent), and 35-percent duration flows (error of 11.1 percent), respectively. The mean seasonal base flows for spring, summer, fall, and winter are approximately equal to the spring 50- to 55-percent (standard error of 6.8 percent), summer 45- to 50-percent (error of 6.7 percent), fall 45-percent (error of 15.2 percent), and winter 60-percent duration flows (error of 8.5 percent), respectively. Annual and seasonal base flows representative of the period 1930-2002 at unregulated streamflow-gaging stations and ungaged locations in West Virginia can be estimated using previously published values of statistics and procedures.
Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.
2008-01-01
A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370 hydrologic units in Pennsylvania predicted a range of ground-water recharge from about 6.0 to 22 inches per year. A map of the predicted recharge illustrates the general magnitude and variability of recharge throughout Pennsylvania.
Use of streamflow data to estimate base flowground-water recharge for Wisconsin
Gebert, W.A.; Radloff, M.J.; Considine, E.J.; Kennedy, J.L.
2007-01-01
The average annual base flow/recharge was determined for streamflow-gaging stations throughout Wisconsin by base-flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970-99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow-gaging stations that had long-term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple-regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low-flow partial-record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base-flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins. ?? 2007 American Water Resources Association.
Buck, Stephanie D.
2014-01-01
The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.
Storage requirements for Arkansas streams
Patterson, James Lee
1968-01-01
The supply of good-quality surface water in Arkansas is abundant. owing to seasonal and annual variability of streamflow, however, storage must be provided to insure dependable year-round supplies in most of the State. Storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 49 continuous-record gaging stations can be obtained from tabular data in this report. Through regional analyses of streamflow data, the State was divided into three regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, the mean annual flow, and the low-flow index are known. These data are tabulated for 53 gaging stations used in the analyses and for 132 partial-record sites where only base-flow measurements have been made. Mean annual flow can be determined for any stream whose drainage lies within the State by using the runoff map in this report. Low-flow indices can be estimated by correlating base flows, determined from several discharge measurements, with concurrent flows at nearby continuous-record gaging stations, whose low-flow indices have been determined.
Annual variability of PAH concentrations in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Dynamics of organic contaminant transport in a large river system is influenced by annual variability in organic contaminant concentrations. Surface runoff and groundwater input control the flow of river waters. They are also the two major inputs of contaminants to river waters. The annual variability of contaminant concentrations in rivers may or may not represent similar trends to the flow changes of river waters. The purpose of the research is to define the annual variability in concentrations of polycyclic aromatic hydrocarbons (PAH) in riverine environment. To accomplish this, from March 1992 to March 1995 samples of Potomac River water weremore » collected monthly or bimonthly downstream of the Chesapeake Bay fall line (Chain Bridge) during base flow and main storm flow hydrologic conditions. Concentrations of selected PAHs were measured in the dissolved phase and the particulate phase via GC/MS. The study of the annual variability of PAH concentrations will be performed through comparisons of PAH concentrations seasonally, annually, and through study of PAH concentration river discharge dependency and rainfall dependency. For selected PAHs monthly and annual loadings will be estimated based on their measured concentrations and average daily river discharge. The monthly loadings of selected PAHs will be compared by seasons and annually.« less
Koltun, G.F.; Kula, Stephanie P.
2013-01-01
This report presents the results of a study to develop methods for estimating selected low-flow statistics and for determining annual flow-duration statistics for Ohio streams. Regression techniques were used to develop equations for estimating 10-year recurrence-interval (10-percent annual-nonexceedance probability) low-flow yields, in cubic feet per second per square mile, with averaging periods of 1, 7, 30, and 90-day(s), and for estimating the yield corresponding to the long-term 80-percent duration flow. These equations, which estimate low-flow yields as a function of a streamflow-variability index, are based on previously published low-flow statistics for 79 long-term continuous-record streamgages with at least 10 years of data collected through water year 1997. When applied to the calibration dataset, average absolute percent errors for the regression equations ranged from 15.8 to 42.0 percent. The regression results have been incorporated into the U.S. Geological Survey (USGS) StreamStats application for Ohio (http://water.usgs.gov/osw/streamstats/ohio.html) in the form of a yield grid to facilitate estimation of the corresponding streamflow statistics in cubic feet per second. Logistic-regression equations also were developed and incorporated into the USGS StreamStats application for Ohio for selected low-flow statistics to help identify occurrences of zero-valued statistics. Quantiles of daily and 7-day mean streamflows were determined for annual and annual-seasonal (September–November) periods for each complete climatic year of streamflow-gaging station record for 110 selected streamflow-gaging stations with 20 or more years of record. The quantiles determined for each climatic year were the 99-, 98-, 95-, 90-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, 2-, and 1-percent exceedance streamflows. Selected exceedance percentiles of the annual-exceedance percentiles were subsequently computed and tabulated to help facilitate consideration of the annual risk of exceedance or nonexceedance of annual and annual-seasonal-period flow-duration values. The quantiles are based on streamflow data collected through climatic year 2008.
Stricker, Virginia
1983-01-01
The base flow component of streamflow was separated from hydrographs for unregulated streams in the Cretaceous and Tertiary clastic outcrop area of South Carolina, Georgia, Alabama, and Mississippi. The base flow values are used in estimating recharge to the sand aquifer. Relations developed between mean annual base flow and stream discharge at the 60- and 65-percent streamflow duration point can be used to approximate mean annual base flow in lieu of hydrograph separation methods for base flows above 10 cu ft/s. Base flow recession curves were used to derive estimates of hydraulic diffusivity of the aquifer which was converted to transmissivity using estimated specific yield. These base-flow-derived transmissivities are in general agreement with transmissivities derived from well data. The shape of flow duration curves of streams is affected by the lithology of the Coastal Plain sediments. Steep flow duration curves appear to be associated with basins underlain by clay or chalk where a low percentage of the discharge is base flow while flatter curves appear to be associated with basins underlain by sand and gravel where a high percentage of the discharge is base flow. (USGS)
Reynolds, R.J.
2004-01-01
The hydrogeology of the 372-square-mile Pepacton Reservoir watershed (herein called the East Branch Delaware River Basin) in the southwestern Catskill Mountain region of Southeastern New York is described and depicted in a detailed surficial geologic map and two geologic sections. An analysis of stream discharge records and estimates of mean annual ground-water recharge and stream base flow for eight subbasins in the basin are included.Analysis of surficial geologic data indicates that the most widespread geologic unit within the basin is till, which occurs as masses of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till covers about 91.5 percent of the Pepacton Reservoir watershed, whereas stratified drift (alluvium, outwash, and ice-contact deposits) accounts for 6.3 percent. The Pepacton Reservoir occupies about 2.3 percent of the basin area. Large outwash and ice-contact deposits occupy the valleys of the upper East Branch Delaware River, the Tremper Kill, the Platte Kill, the Bush Kill, and Dry Brook. These deposits form stratified-drift aquifers that range in thickness from 90 feet in parts of the upper East Branch Delaware River Valley to less than 30 feet in the Dry Brook valley, and average about 50 feet in the main East Branch Delaware River Valley near Margaretville.An analysis of daily mean stream discharge for the six eastern subbasins for 1998–2001, and for two western subbasins for 1945–52, was performed using three computer programs to obtain estimates of mean annual base flow and mean annual ground-water recharge for the eight subbasins. Mean annual base flow ranged from 15.3 inches per year for the Tremper Kill subbasin to 22.3 inches per year for the Mill Brook subbasin; the latter reflects the highest mean annual precipitation of all the subbasins studied. Estimated mean annual ground-water recharge ranged from 24.3 inches per year for Mill Brook to 15.8 inches per year for the Tremper Kill. The base flow index, which is the mean annual base flow expressed as a percentage of mean annual streamflow, ranged from 69.1 percent for Coles Clove Kill to 75.6 percent for the upper East Branch Delaware River; most subbasin indices were greater than 70 percent. These high base flow indices indicate that because stratified drift covers only a small percentage of subbasin areas (generally 5 to 7 percent), most of the base flow is derived from the fractured sandstone bedrock that underlies the basin.
Green, W. Reed; Haggard, Brian E.
2001-01-01
Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.
Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data
Gebert, Warren A.; Walker, John F.; Kennedy, James L.
2011-01-01
Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.
Regionalisation of low flow frequency curves for the Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Mamun, Abdullah A.; Hashim, Alias; Daoud, Jamal I.
2010-02-01
SUMMARYRegional maps and equations for the magnitude and frequency of 1, 7 and 30-day low flows were derived and are presented in this paper. The river gauging stations of neighbouring catchments that produced similar low flow frequency curves were grouped together. As such, the Peninsular Malaysia was divided into seven low flow regions. Regional equations were developed using the multivariate regression technique. An empirical relationship was developed for mean annual minimum flow as a function of catchment area, mean annual rainfall and mean annual evaporation. The regional equations exhibited good coefficient of determination ( R2 > 0.90). Three low flow frequency curves showing the low, mean and high limits for each region were proposed based on a graphical best-fit technique. Knowing the catchment area, mean annual rainfall and evaporation in the region, design low flows of different durations can be easily estimated for the ungauged catchments. This procedure is expected to overcome the problem of data unavailability in estimating low flows in the Peninsular Malaysia.
Koltun, G.F.
1995-01-01
This report describes the results of a study to estimate characteristics of base flow and sustained ground-water discharge at five streamflow-gaging stations on the Mad River in Ohio. The five streamflow-gaging stations are located at Zanesfield, near Urbana, at St. Paris Pike (at Eagle City), near Springfield, and near Dayton. The median of the annual-mean base flows, determined by means of hydrograph separation, ranged from 0.64 (ft3/s)/mi2 (cubic feet per second per square mile) at Zanesfield to 0.74 (ft3/s)/mi2 at St. Paris Pike. The median percentage of annual total streamflow attributed to base flow ranged from 61.8 percent at Zanesfield to 76.1 percent near Urbana. Estimates of an upper limit (or threshold) at which base flows can be considered to be composed predominately of sustained ground-water discharge were made by constructing and analyzing base- flow-duration curves. The sustained ground-water discharges (base flows less than or equal to the estimated sustained ground-water-discharge thresholds) are assumed to originate from ground-water- flow systems that are minimally affected by seasonal climatic changes. The median sustained ground- water discharge ranged from 0.11 (ft3/s)/mi2 at Zanesfield to 0.26 (ft3/s)/mi2 at St. Paris Pike (at Eagle City) and near Springfield. The median sustained ground-water discharge, expressed as a percentage of the median annual-mean base flow, ranged from 17.2 percent at Zanesfield to 38.6 percent near Springfield.
Streamflow conditions along Soldier Creek, Northeast Kansas
Juracek, Kyle E.
2017-11-14
The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.
Nelms, David L.; Messinger, Terence; McCoy, Kurt J.
2015-07-14
As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and covered the period of 1900 to 2011. Only complete calendar years (January to December) of streamflow record at each gage were used to determine estimates of base flow, which is that part of streamflow attributed to groundwater discharge; such estimates can serve as a proxy for annual recharge. For each year, estimates of annual base flow, runoff, and base-flow index were determined using computer programs—PART, HYSEP, and BFI—that have automated the separation procedures. These streamflow-hydrograph analysis methods are provided with version 1.0 of the U.S. Geological Survey Groundwater Toolbox, which is a new program that provides graphing, mapping, and analysis capabilities in a Windows environment. Annual values of precipitation were estimated by calculating the average of cell values intercepted by basin boundaries where previously defined in the GAGES–II dataset. Estimates of annual evapotranspiration were then calculated from the difference between precipitation and streamflow.
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2008-01-01
Atlanta, Georgia (City of Atlanta, COA), is one of the most rapidly growing urban areas in the US. Beginning in 2003, the US Geological Survey established a long-term water-quantity/quality monitoring network for the COA. The results obtained during the first 2 years have provided insights into the requirements needed to determine the extent of urban impacts on water quality, especially in terms of estimating the annual fluxes of suspended sediment, trace/major elements, and nutrients. During 2004/2005, suspended sediment fluxes from the City of Atlanta (COA) amounted to about 150 000 t year-1; ??? 94% of the transport occurred in conjunction with storm-flow, which also accounted for ??? 65% of the annual discharge. Typically, storm-flow averaged ??? 20% of theyear. Normally, annual suspended sediment fluxes are determined by summing daily loads based on a single calculation step using mean-daily discharge and a single rating curve-derived suspended sediment concentration. Due to the small and 'flashy' nature of the COAs streams, this approach could produce underestimates ranging from 25% to 64%. Accurate estimates (?? 15%) require calculation time-steps as short as every 2-3 h. Based on annual median base-flow/storm-flow chemical concentrations, the annual fluxes of ??? 75% of trace elements (e.g. Cu, Pb, Zn), major elements (e.g. Fe, Al), and total P occur in association with suspended sediment; in turn, ??? 90% of the transport of these constituents occur in conjunction with storm-flow. As such, base-flow sediment-associated and dissolved contributions represent relatively insignificant portions of the total annual load. An exception is total N, whose sediment-associated fluxes range from 50% to 60%; even so, storm-related transport typically exceeds 80%. Hence, in urban environments, non-point-source appear to be the dominant contributors to the fluxes of these constituents.
Estimating recharge rates with analytic element models and parameter estimation
Dripps, W.R.; Hunt, R.J.; Anderson, M.P.
2006-01-01
Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).
Historical changes in annual peak flows in Maine and implications for flood-frequency analyses
Hodgkins, Glenn A.
2010-01-01
Flood-frequency analyses use statistical methods to compute peak streamflows for selected recurrence intervals— the average number of years between peak flows that are equal to or greater than a specified peak flow. Analyses are based on annual peak flows at a stream. It has long been assumed that the annual peak streamflows used in these computations were stationary (non-changing) over very long periods of time, except in river basins subject to direct effects of human activities, such as urbanization and regulation. Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned. Maine has many streamgages with 50 to 105 years of recorded annual peak streamflows. In this study, this long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency. Changes over time in annual instantaneous peak streamflows at 28 U.S. Geological Survey streamgages with long-term data (50 or more years) and relatively complete records were investigated by examining linear trends for each streamgage’s period of record. None of the 28 streamgages had more than 5 years of missing data. Eight streamgages have substantial streamflow regulation. Because previous studies have suggested that changes over time may have occurred as a step change around 1970, step changes between each streamgage’s older record (start year to 1970) and newer record (1971 to 2006) also were computed. The median change over time for all 28 streamgages is an increase of 15.9 percent based on a linear change and an increase of 12.4 percent based on a step change. The median change for the 20 unregulated streamgages is slightly higher than for all 28 streamgages; it is 18.4 percent based on a linear change and 15.0 percent based on a step change. Peak flows with 100- and 5-year recurrence intervals were computed for the 28 streamgages using the full annual peak-flow record and multiple sub-periods of that record using the guidelines (Bulletin 17B) of the Interagency Advisory Committee on Water Data. Magnitudes of 100- and 5-year peak flows computed from sub-periods then were compared to those computed from the full period. Sub-periods of 30 years with starting years staggered by 10 years were evaluated (1907–36, 1917–46, 1927–56, 1937–66, 1947–76, 1957–86, 1967–96, and 1977–2006). Two other sub-periods were evaluated using older data (start-of-record to 1970) and newer data (1971 to 2006). The 5-year peak flow is used to represent small and relatively frequent flood flows in Maine, whereas the 100-year peak flow is used to represent large flood flows. The 1967–96 sub-period generated the highest 100- and 5-year peak flows overall when compared to peak flows based on the full period of record; the median difference for all 28 streamgages is 8 percent for 100- and 5-year peak flows. The 1977–2006 and 1971–2006 sub-periods also generated 100- and 5-year peak flows higher than peak flows based on the full period of record, but not as high as the peak flows based on the 1967–96 sub-period. The 1937–66 sub-period generated the lowest 100- and 5-year peak flows overall. The median difference from full-period peak flows is -11 percent for 100-year peak flows and -8 percent for 5-year peak flows. Overall, differences between peak flows based on the sub-periods and those based on the full periods, generated using the 20 unregulated streamgages, are similar to differences using all 28 streamgages. Increases in the 5- and 100-year peak flows based on recent years of record are, in general, modest when compared to peak flows based on complete periods of record. The highest peak flows are based on the 1967–96 sub-period rather than the most recent sub-period (1977-2006). Peak flows for selected recurrence intervals are sensitive to very high peak flows that may occur once in a century or even less frequently. It is difficult, therefore, to determine which approach will produce the most reliable future estimates of peak flows for selected recurrence intervals, using only recent years of record or the traditional method using the entire historical period. One possible conservative approach to computing peak flows of selected recurrence intervals would be to compute peak flows using recent annual peak flows and the entire period of record, then choose the higher computed value. Whether recent or entire periods of record are used to compute peak flows of selected recurrence intervals, the results of this study highlight the importance of using recent data in the computation of the peak flows. The use of older records alone could result in underestimation of peak flows, particularly peak flows with short recurrence intervals, such as the 5-year peak flows.
Annual research briefs, 1993. [Center for Turbulence Research
NASA Technical Reports Server (NTRS)
1993-01-01
The 1993 annual progress reports of the Research Fellow and students of the Center for Turbulence Research are included. The first group of reports are directed towards the theory and application of active control in turbulent flows including the development of a systematic mathematical procedure based on the Navier Stokes equations for flow control. The second group of reports are concerned with the prediction of turbulent flows. The remaining articles are devoted to turbulent reacting flows, turbulence physics, experiments, and simulations.
Gotvald, Anthony J.
2017-01-13
The U.S. Geological Survey, in cooperation with the Georgia Department of Natural Resources, Environmental Protection Division, developed regional regression equations for estimating selected low-flow frequency and mean annual flow statistics for ungaged streams in north Georgia that are not substantially affected by regulation, diversions, or urbanization. Selected low-flow frequency statistics and basin characteristics for 56 streamgage locations within north Georgia and 75 miles beyond the State’s borders in Alabama, Tennessee, North Carolina, and South Carolina were combined to form the final dataset used in the regional regression analysis. Because some of the streamgages in the study recorded zero flow, the final regression equations were developed using weighted left-censored regression analysis to analyze the flow data in an unbiased manner, with weights based on the number of years of record. The set of equations includes the annual minimum 1- and 7-day average streamflow with the 10-year recurrence interval (referred to as 1Q10 and 7Q10), monthly 7Q10, and mean annual flow. The final regional regression equations are functions of drainage area, mean annual precipitation, and relief ratio for the selected low-flow frequency statistics and drainage area and mean annual precipitation for mean annual flow. The average standard error of estimate was 13.7 percent for the mean annual flow regression equation and ranged from 26.1 to 91.6 percent for the selected low-flow frequency equations.The equations, which are based on data from streams with little to no flow alterations, can be used to provide estimates of the natural flows for selected ungaged stream locations in the area of Georgia north of the Fall Line. The regression equations are not to be used to estimate flows for streams that have been altered by the effects of major dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, or wastewater discharges. The regression equations should be used only for ungaged sites with drainage areas between 1.67 and 576 square miles, mean annual precipitation between 47.6 and 81.6 inches, and relief ratios between 0.146 and 0.607; these are the ranges of the explanatory variables used to develop the equations. An attempt was made to develop regional regression equations for the area of Georgia south of the Fall Line by using the same approach used during this study for north Georgia; however, the equations resulted with high average standard errors of estimates and poorly predicted flows below 0.5 cubic foot per second, which may be attributed to the karst topography common in that area.The final regression equations developed from this study are planned to be incorporated into the U.S. Geological Survey StreamStats program. StreamStats is a Web-based geographic information system that provides users with access to an assortment of analytical tools useful for water-resources planning and management, and for engineering design applications, such as the design of bridges. The StreamStats program provides streamflow statistics and basin characteristics for U.S. Geological Survey streamgage locations and ungaged sites of interest. StreamStats also can compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in Georgia.
Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data
Gebert, Warren A.; Walker, John F.; Hunt, Randall J.
2011-01-01
The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.
Changes in flow in the Beaver-North Canadian River basin upstream from Canton Lake, western Oklahoma
Wahl, Kenneth L.; Tortorelli, Robert L.
1997-01-01
This report presents the results of an evaluation of hydrologic data for the Beaver-North Canadian River basin upstream from Canton Lake in western Oklahoma. It examines the climatic and hydrologic data for evidence of trends. The hydrologic data examined includes total annual flow, base flow, and annual peak discharges. This study was conducted to determine if there is evidence of trends present in hydrologic and climatic data. All available streamflow-gaging station data, with at least 10 or more years of record, were examined for trends. In addition, the data were divided into an 'early' period (ending in 1971), representing conditions before ground-water levels had declined appreciably, and a 'recent' period (1978-1994), reflecting the condition of declining ground-water levels, including the effects of storage reservoirs. Tests for trend, moving averages, and comparisons of median and average flows for an early period (ending in 1971) with those for the recent period (1978-1994) show that the total annual volume of flow and the magnitudes of instantaneous annual peak discharges measured at most gaging stations in the Beaver- North Canadian River basin have decreased in recent years. Precipitation records for the panhandle, however, show no corresponding changes. The changes in flow are most pronounced in the headwaters upstream from Woodward, but also are evident at Woodward and near Seiling, which represents the inflow to Canton Lake. The average annual discharge decreased between the early period and the recent period by the following amounts: near Guymon, 18,000 acre-feet; at Beaver, 68,000 acre-feet; at Woodward, 72,000 acre-feet; and near Seiling, 63,000 acre-feet. These decreases, expressed as a percentage of the average flows for the early period, were 91 percent near Guymon, 82 percent at Beaver, 49 percent at Woodward, and 37 percent near Seiling. The medians of the annual peak discharges decreased from the early period to the recent period by the following amounts: near Guymon, 98 percent; at Beaver, 86 percent; at Woodward, 80 percent; and near Seiling, 53 percent. The Guymon gage is not affected by reservoirs; the other three mainstem gaging stations are influenced by reservoirs, but the decreases in annual peak discharges are greater than can be explained by storage in those reservoirs. Base flows have undergone substantial change, but unlike the annual volumes the base flows show some increases and some decreases. Flow duration analyses show a shift in the distribution of annual flows. Less contribution is coming from large floods that formerly added substantially to the yearly average flows. Near Seiling, for example, the magnitudes of the large flows that occur less than about 20 percent of the time were greatly reduced in the recent period. A primary mechanism producing these decreased streamflows appears to be the depletion of ground water in the High Plains aquifer that underlies more than 90 percent of the basin. Changes in farming and conservation practices and in water use also may be having an effect.
Streamflow characteristics at hydrologic bench-mark stations
Lawrence, C.L.
1987-01-01
The Hydrologic Bench-Mark Network was established in the 1960's. Its objectives were to document the hydrologic characteristics of representative undeveloped watersheds nationwide and to provide a comparative base for studying the effects of man on the hydrologic environment. The network, which consists of 57 streamflow gaging stations and one lake-stage station in 39 States, is planned for permanent operation. This interim report describes streamflow characteristics at each bench-mark site and identifies time trends in annual streamflow that have occurred during the data-collection period. The streamflow characteristics presented for each streamflow station are (1) flood and low-flow frequencies, (2) flow duration, (3) annual mean flow, and (4) the serial correlation coefficient for annual mean discharge. In addition, Kendall's tau is computed as an indicator of time trend in annual discharges. The period of record for most stations was 13 to 17 years, although several stations had longer periods of record. The longest period was 65 years for Merced River near Yosemite, Calif. Records of flow at 6 of 57 streamflow sites in the network showed a statistically significant change in annual mean discharge over the period of record, based on computations of Kendall's tau. The values of Kendall's tau ranged from -0.533 to 0.648. An examination of climatological records showed that changes in precipitation were most likely the cause for the change in annual mean discharge.
Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams
Stuckey, Marla H.
2006-01-01
Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.
The effects of forest cover on base flow of streams in the mountainous interior of Puerto Rico, 2010
Rodriguez-Martínez , Jesús; Santiago, Marilyn
2017-03-07
The U.S. Geological Survey, in cooperation with the Puerto Rico Department of Natural and Environmental Resources, completed a study to determine whether a relation exists between the extent of forest cover and the magnitude of base flow at two sets of paired drainage basins in the highlands of the municipalities of Adjuntas and Utuado within the mountainous interior of Puerto Rico. One set of paired basins includes the Río Guaónica and Río Tanamá, both tributaries of the Río Grande de Arecibo. The other set includes two smaller basins in the drainage basin of the Río Coabey, which is a tributary of the Río Tanamá. The paired basins in each set have similar rainfall patterns, geologic substrate, and aspect; the principal difference identified in the study is the extent of forest cover and related land uses such as the cultivation of shade and sun coffee. Data describing the hydrology, hydrogeology, and streamflow were used in the analysis. The principal objective of the study was to compare base flow per unit area among basins having different areal extents of forest cover and land uses such as shade coffee and sun coffee cultivation. Within the mountainous interior of Puerto Rico, a substantial amount of the annual rainfall (45 to 39 percent in the Rio Guaónica and Rio Tanamá, respectively) can migrate to the subsurface and later emerge as base flow in streams. The magnitude of base flow within the two sets of paired basins varies seasonally. Minimum base flows occur during the annual dry season (generally from January to March), and maximum base flows occur during the wet season (generally from August to October). During the dry season or periods of below-normal rainfall, base flow is either the primary or the sole component of streamflow. Daily mean base flow ranged from 3.2 to 20.5 cubic feet per second (ft3 /s) at the Rio Guaónica Basin, and from 4.2 to 23.0 ft3 /s at the Rio Tanamá Basin. The daily mean base flows during 2010 ranged from 0.28 to 0.98 ft3 /s at Tributary 1 and from 0.22 to 0.58 ft3 /s at Tributary 2 of the Rio Coabey. The normalized daily base flow at the Río Guaónica and Río Tanamá Basin during 2010 ranged from 1.3 to 8.1 cubic feet per second per square mile (ft3 /s)/mi2 and from 1.1 to 6.1 (ft3 /s)/mi2 , respectively. The normalized daily base flow for the basins of Tributary 1 and Tributary 2 of Río Coabey during 2010 ranged from 1.0 to 3.6 (ft3 /s)/mi2 and from 1.5 to 3.9 (ft3 /s)/mi2 , respectively. The normalized mean annual base flow is similar within the larger paired basins of Río Tanamá (2.74 [ft3 /s]/mi2 ) and Río Guaónica (3.15 [ft3 /s]/mi2 ). The mean annual base flow per unit area for both of these basins is about 79 percent of the mean annual streamflow. In the large paired basins, the proportion of Type I land use (forest patches, shade and mixed shade/sun coffee with associated cash crops) is substantially higher in Rio Guaónica Basin (81 percent) than in the Rio Tanamá Basin (59 percent), and the base flow per unit area is also higher. In the small paired basins of Rio Coabey, the proportion of Type I land use is much higher at Tributary 1 (52 percent) than at Tributary 2 (15 percent), but, in contrast to the large basins, the mean annual base flow per unit area is lower (2.22 and 2.62 [ft3 /s]/mi2 , respectively). There is no consistent relation between land use and normalized base flow between the two sets of paired basins in the study.
Regional estimation of base recharge to ground water using water balance and a base-flow index.
Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F
2003-01-01
Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.
Flow characteristics of rivers in northern Australia: Implications for development
NASA Astrophysics Data System (ADS)
Petheram, Cuan; McMahon, Thomas A.; Peel, Murray C.
2008-07-01
SummaryAnnual, monthly and daily streamflows from 99 unregulated rivers across northern Australia were analysed to assess the general surface water resources of the region and their implications for development. The potential for carry-over storages was assessed using the Gould-Dincer Gamma method, which utilises the mean, standard deviation, skewness and lag-one serial correlation coefficient of annual flows. Runs Analysis was used to describe the characteristics of drought in northern Australia and the potential for 'active' water harvesting was evaluated by Base Flow Separation, Flow Duration Curves and Spells Analysis. These parameters for northern Australia were compared with data from southern Australia and data for similar Köppen class from around the world. Notably, the variability and seasonality of annual streamflow across northern Australia were observed to be high compared with that of similar Köppen classes from the rest of the world (RoW). The high inter-annual variability of runoff means that carry-over storages in northern Australia will need to be considerably larger than for rivers from the RoW (assuming similar mean annual runoff, yield and reliability). For example, in the three major Köppen zones across the North, it was possible (theoretically) to only exploit approximately 33% (Köppen Aw; n = 6), 25% (Köppen BSh; n = 12) and 13% (Köppen BWh; n = 11) of mean annual streamflow (assuming a hypothetical storage size equal to the mean annual flow). Over 90% of north Australian rivers had a Base Flow Index of less than 0.4, 72% had negative annual lag-one autocorrelation values and in half the rivers sampled greater than 80% of the total flow occurred during the 3-month peak period. These data confirm that flow in the rivers of northern Australia is largely event driven and that the north Australian environment has limited natural storage capacity. Hence, there is relatively little opportunity in many northern rivers to actively harvest water for on-farm storage, particularly under environmental flow rules that stipulate that water can only be extracted during the falling limb of a hydrograph. Streamflow drought severity, the product of drought length and magnitude, was found to be greater in northern Australia than in similar climatic regions of the RoW, due to higher inter-annual variability increasing the drought magnitude over the course of normal drought lengths. The high likelihood of severe drought means that agriculturalists seeking to irrigate from rivers in northern Australia should have especially well developed drought contingency plans.
Thompson, Ronald E.; Hoffman, Scott A.
2006-01-01
A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.
Runoff characteristics of California streams
Rantz, S.E.
1972-01-01
California streams exhibit a wide range of runoff characteristics that are related to the climatologic, topographic, and geologic characteristics of the basins they drain. The annual volume of runoff of a stream, expressed in inches, may be large or small, and daily discharge rates may be highly variable or relatively steady. The bulk of the annual runoff may be storm runoff, or snowmelt runoff, or a combination of both. The streamflow may be ephemeral, intermittent, or perennial; if perennial, base flow may be well sustained or poorly sustained. In this report the various runoff characteristics are identified by numerical index values. They are shown to be related generally to mean annual precipitation, altitude, latitude, and location with respect to the 11 geomorphic provinces in the California Region. With respect to mean annual precipitation on the watershed, streamflow is generally (1) ephemeral if the mean annual precipitation is less than 10 inches, (2) intermittent if the mean annual precipitation is between 10 and 40 inches, and (3) perennial if the mean annual precipitation is more than 40 inches. Departures from those generalizations are associated with (a) the areal variation of such geologic factors as the infiltration and storage capacities of the rocks underlying the watersheds, and (b) the areal variation of evapotranspiration loss as influenced by varying conditions of climate, soil, vegetal cover, and geologic structure. Latitude and altitude determine the proportion of the winter precipitation that will be stored for subsequent runoff in the late spring and summer. In general, if a watershed has at least 30 percent of its area above the normal altitude of the snowline on April 1, it will have significant snowmelt runoff. Snowmelt runoff in California is said to be significant if at least 30 percent of the annual runoff occurs during the 4 months, April through July. Storm runoff is said to be predominant if at least 65 percent of the annual runoff occurs during the 6 months, October through March. Base flow (ground-water outflow), as a factor in the regimen of streamflow, is qualified on the basis of the percentage of the mean annual runoff that occurs during the fair-weather months of August and September. If the sum of the August and September runoff exceeds 3.0 percent of the annual runoff, base flow is considered to be well sustained; if the percentage is between 1.5 and 3.0, base flow is considered to be fairly well sustained; if the percentage is less than 1.5, baseflow is considered to be poorly sustained. The characteristics of duration curves of daily streamflow are influenced by the regimen of runoff. The distribution of daily flow is skewed for all streams, but it is more skewed for streams whose flow is predominantly storm runoff than for streams that carry significantly large quantities of snowmelt. Least skewed is the distribution for streams that carry large quantities of base flow. Either of two characteristics of the duration curve may be used as an index of skew--the percentage of time that the mean discharge is equaled or exceeded or the ratio of the median discharge to the mean discharge. As for variability of daily discharge, the variability of storm-runoff streams is greater than that of snowmelt streams, and the lowest values of variability are associated with streams that carry large quantities of base flow. The index of variability used in this study was the ratio of the discharge equaled or exceeded 10 percent of the time to the discharge equaled or exceeded 90 percent of the time. The identification of streamflow characteristics by numerical index figures greatly facilitates comparison of the diverse runoff regimens of streams in the California Region.
Variations in organic carbon fluxes from Long Island Sound to the Continental Shelf
NASA Astrophysics Data System (ADS)
Vlahos, P.; Whitney, M. M.
2017-12-01
Organic carbon balances for the Long Island Sound estuary over the years 2009-2012 are presented to assess the particulate and dissolved organic carbon contributions of the estuary to the adjacent shelf waters with respect to the Delaware and Chesapeake. Observations were coupled to a hydrodynamic model (ROMS) for both seasonal and annual estimates. During stratified summer periods, LIS was consistently a net exporter of OC to the continental shelf. LIS annual net carbon export however, varied with river flow. The heterotrophic or autotrophic nature of LIS also shifted seasonally and inter-annually. During the mass balance analysis period LIS ranged between net OC import from the continental shelf and heterotrophy in the lowest river flow year (2012) and net export of OC and autotrophy in the highest flow year (2011). Analysis suggests that LIS switches from net OC import to export when the annual river inputs exceed 19 km3 yr-1. Applying these thresholds to the annual river flow record suggests that net import occurred in 15% of the last 20 years and that LIS usually is a net exporter of OC (85%). Annually averaged LIS carbon export values based on river flow conditions over the last 20 yr are estimated at 56 ± 64 x 106 km3 yr-1. Analysis also suggests that LIS shifts from net heterotrophic to net autotrophic when annual river flow exceeds 26 km3 yr-1 (35% of the last 20 yr). Net heterotrophic conditions are most common, representing 65% of the last 20 yr.
Sloto, Ronald A.
2004-01-01
This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Delaware River Basin Commission, to develop a regional ground-water-flow model of the French Creek Basin in Chester County, Pa. The model was used to assist water-resource managers by illustrating the interconnection between ground-water and surface-water systems. The 70.7-mi2 (square mile) French Creek Basin is in the Piedmont Physiographic Province and is underlain by crystalline and sedimentary fractured-rock aquifers. Annual water budgets were calculated for 1969-2001 for the French Creek Basin upstream of streamflow measurement station French Creek near Phoenixville (01472157). Average annual precipitation was 46.28 in. (inches), average annual streamflow was 20.29 in., average annual base flow determined by hydrograph separation was 12.42 in., and estimated average annual ET (evapotranspiration) was 26.10 in. Estimated average annual recharge was 14.32 in. and is equal to 31 percent of the average annual precipitation. Base flow made up an average of 61 percent of streamflow. Ground-water flow in the French Creek Basin was simulated using the finite-difference MODFLOW-96 computer program. The model structure is based on a simplified two-dimensional conceptualization of the ground-water-flow system. The modeled area was extended outside the French Creek Basin to natural hydrologic boundaries; the modeled area includes 40 mi2 of adjacent areas outside the basin. The hydraulic conductivity for each geologic unit was calculated from reported specific-capacity data determined from aquifer tests and was adjusted during model calibration. The model was calibrated for aboveaverage conditions by simulating base-flow and water-level measurements made on May 1, 2001, using a recharge rate of 20 in/yr (inches per year). The model was calibrated for below-average conditions by simulating base-flow and water-level measurements made on September 11 and 17, 2001, using a recharge rate of 6.2 in/yr. Average conditions were simulated by adjusting the recharge rate until simulated streamflow at streamflow-measurement station 01472157 matched the long-term (1968-2001) average base flow of 54.1 cubic feet per second. The recharge rate used for average conditions was 15.7 in/yr. The effect of drought in the French Creek Basin was simulated using a drought year recharge rate of 8 in/yr for 3 months. After 3 months of drought, the simulated streamflow of French Creek at streamflow-measurement station 01472157 decreased 34 percent. The simulations show that after 6 months of average recharge (15.7 in/yr) following drought, streamflow and water levels recovered almost to pre-drought conditions. The effect of increased ground-water withdrawals on stream base flow in the South Branch French Creek Subbasin was simulated under average and drought conditions with pumping rates equal to 50, 75, and 100 percent of the Delaware River Basin Commission Ground Water Protected Area (GWPA) withdrawal limit (1,393 million gallons per year) with all pumped water removed from the basin. For average recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 18, 28, and 37 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. After 3 months of drought recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 27, 40, and 52 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. The effect of well location on base flow, water levels, and the sources of water to the well was simulated by locating a hypothetical well pumping 200 gallons per minute in different places in the Beaver Run Subbasin with all pumped water removed from the basin. The smallest reduction in the base flow of Beaver Run was from a well on the drainage divide
NASA Astrophysics Data System (ADS)
Rutkowska, Agnieszka; Kohnová, Silvia; Banasik, Kazimierz
2018-04-01
Probabilistic properties of dates of winter, summer and annual maximum flows were studied using circular statistics in three catchments differing in topographic conditions; a lowland, highland and mountainous catchment. The circular measures of location and dispersion were used in the long-term samples of dates of maxima. The mixture of von Mises distributions was assumed as the theoretical distribution function of the date of winter, summer and annual maximum flow. The number of components was selected on the basis of the corrected Akaike Information Criterion and the parameters were estimated by means of the Maximum Likelihood method. The goodness of fit was assessed using both the correlation between quantiles and a version of the Kuiper's and Watson's test. Results show that the number of components varied between catchments and it was different for seasonal and annual maxima. Differences between catchments in circular characteristics were explained using climatic factors such as precipitation and temperature. Further studies may include circular grouping catchments based on similarity between distribution functions and the linkage between dates of maximum precipitation and maximum flow.
NASA Astrophysics Data System (ADS)
Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia
2015-04-01
Climate uncertainty can affect water resources availability and management decisions. Sustainable water resources management therefore requires evaluation of policy and management decisions under a wide range of possible future water supply conditions. This study proposes a risk-based framework to integrate water supply uncertainty into a forward-looking decision making context. To apply this framework, a stochastic reconstruction scheme is used to generate a large ensemble of flow series. For the Rocky Mountain basins considered here, two key characteristics of the annual hydrograph are its annual flow volume and the timing of the seasonal flood peak. These are perturbed to represent natural randomness and potential changes due to future climate. 30-year series of perturbed flows are used as input to the SWAMP model - an integrated water resources model that simulates regional water supply-demand system and estimates economic productivity of water and other sustainability indicators, including system vulnerability and resilience. The simulation results are used to construct 2D-maps of net revenue of a particular water sector; e.g., hydropower, or for all sectors combined. Each map cell represents a risk scenario of net revenue based on a particular annual flow volume, timing of the peak flow, and 200 stochastic realizations of flow series. This framework is demonstrated for a water resources system in the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. Critical historical drought sequences, derived from tree-ring reconstructions of several hundred years of annual river flows, are used to evaluate the system's performance (net revenue risk) under extremely low flow conditions and also to locate them on the previously produced 2D risk maps. This simulation and analysis framework is repeated under various reservoir operation strategies (e.g., maximizing flood protection or maximizing water supply security); development proposals, such as irrigation expansion; and change in energy prices. Such risk-based analysis demonstrates relative reduction/increase of risk associated with management and policy decisions and allow decision makers to explore the relative importance of policy versus natural water supply change in a water resources system.
Puente, Celso; Atkins, John T.
1989-01-01
Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of the water budget for Drawdy Creek basin indicate that total annual runoff during 1972-73 averaged only 43 percent of average annual precipitation--the lowest of all study basins; annual evapotranspiration losses averaged 49 percent, and interbasin transfer of ground-water losses averaged about 8 percent. Of the total annual runoff, approximately 74 percent was surface and subsurface flow and 26 percent was ground-water discharge. The low total annual runoff at Drawdy Creek probably reflects increased recharge of precipitation and surface and subsurface flow losses to ground water. Most of the increase in ground-water storage is, in turn, lost to a ground-water sink--namely, interbasin transfer of ground water by gravity drainage and (or) mine pumpage from underground mines that extend to adjacent basins. Hypothetical mining situations were posed for model analysis to determine the effects of increased mining on streamflow in the mined basins. Results of model simulations indicate that streamflow characteristics, the water budget, and the seasonal distribution of streamflow would be significantly modified in response to an increase in mining in the basins. Simulations indicate that (1) total annual runoff in the basins would decrease because of increased surface- and subsurface-flow losses and increased recharge of precipitation to ground water (these losses would tend to reduce medium to high flows mainly during winter and spring when losses would be greatest), (2) extreme high flows in response to intense rainstorms would be negligibly affected, regardless of the magnitude of mining in the basins, (3) ground-water discharge also would decrease during winter and spring, but the amount and duration of low flows during summer and fall would substantially increase in response to increased ground-water storage in rocks and in underground mines, and (4) the increase in ground-water storage in the basins would be depleted, mostly by increased losses to a grou
Updating estimates of low streamflow statistics to account for possible trends
NASA Astrophysics Data System (ADS)
Blum, A. G.; Archfield, S. A.; Hirsch, R. M.; Vogel, R. M.; Kiang, J. E.; Dudley, R. W.
2017-12-01
Given evidence of both increasing and decreasing trends in low flows in many streams, methods are needed to update estimators of low flow statistics used in water resources management. One such metric is the 10-year annual low-flow statistic (7Q10) calculated as the annual minimum seven-day streamflow which is exceeded in nine out of ten years on average. Historical streamflow records may not be representative of current conditions at a site if environmental conditions are changing. We present a new approach to frequency estimation under nonstationary conditions that applies a stationary nonparametric quantile estimator to a subset of the annual minimum flow record. Monte Carlo simulation experiments were used to evaluate this approach across a range of trend and no trend scenarios. Relative to the standard practice of using the entire available streamflow record, use of a nonparametric quantile estimator combined with selection of the most recent 30 or 50 years for 7Q10 estimation were found to improve accuracy and reduce bias. Benefits of data subset selection approaches were greater for higher magnitude trends annual minimum flow records with lower coefficients of variation. A nonparametric trend test approach for subset selection did not significantly improve upon always selecting the last 30 years of record. At 174 stream gages in the Chesapeake Bay region, 7Q10 estimators based on the most recent 30 years of flow record were compared to estimators based on the entire period of record. Given the availability of long records of low streamflow, using only a subset of the flow record ( 30 years) can be used to update 7Q10 estimators to better reflect current streamflow conditions.
NASA Astrophysics Data System (ADS)
Yaghmaei, Hiva; Sadeghi, Seyed Hamidreza; Moradi, Hamidreza; Gholamalifard, Mehdi
2018-02-01
Trends in flow discharge, temperature and rainfall from the Qom Rood Watershed, Iran, for a period of 1979-2016 were analyzed at monthly and annual time scales. Trend analyses were conducted using the Mann-Kendall test, the double-mass curve of mean annual discharge versus rainfall, and rainfall-runoff relationship before and after the 15 Khordad Dam operation. Multiple regression of flow discharge against rainfall and temperature was used to determine the residual trend at four meteorological and hydrological stations located upstream and downstream of the Qom Rood Watershed. Results showed that the temperature at the upstream and downstream stations did not have any significant trend, but a significant decreasing trend (P < .05) in rainfall was detected only in May (z = -1.66) at the downstream stations. There was a significant positive trend (P < .05) in rainfall in February (z = 2.22) and July (z = 2.15) at the upstream stations, and in October (z = 2.3) and November (z = 1.8) at the downstream stations. However, there was a noticeable decrease in monthly and annual flow discharge, and residual trend at 99% significance level at the downstream stations. At the upstream stations, the flow discharges had significant (P < .05) declining trend in all months, but annual flow discharge did not change significantly. Analysis of double mass curve between runoff and rainfall at the downstream stations showed an inconsistency in the line slope concordant with the time of 15 Khordad Dam operation. Annual mean discharge at the upstream stations did not show a significant change before and after 15 Khordad Dam operation. However, annual flow magnitude decreased significantly by 87.5 and 81.7% in Shad Abad and KoohSefid, respectively. These results confirmed that natural driving forces did not affect flow discharge changes and the observed decreasing tendency in flow discharge at the downstream stations was due to 15 Khordad Dam, and at the upstream stations due to diversion/storage dams. These findings highlighted the role of human interference in changing the hydrologic regime in the study area based on which appropriate adaptive decisions can be made.
Tortorelli, Robert L.
2006-01-01
The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency over time. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, conducted an investigation to summarize nitrogen and phosphorus concentrations and provide estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than in base-flow samples at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma. Nitrogen concentrations in base-flow samples significantly increased in the downstream direction in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations. Nitrogen in base-flow samples from Beaty Creek was significantly less than in those from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek, probably due to a point source between those stations, then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base-flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek, and not significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads from 2002-2004 were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that of Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 percent, whereas, at the Spavinaw Creek stations, the range in the runoff component was 60 to 66 percent. Estimated mean annual phosphorus total loads from 2002-2004 were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2.5 times that of Maysville station. Estimated mean annual phosphorus base-flow loads at the Spavinaw Creek stations were about 2.5 to 19 times greater than at Beaty Creek. Phosphorus base-flow loads increased about 8 times from Maysville to Cherokee in Spavinaw Creek; the base-flow loads were about the same at the three downstream stations. The runoff component
Hydrology of Eagle Creek Basin and effects of groundwater pumping on streamflow, 1969-2009
Matherne, Anne Marie; Myers, Nathan C.; McCoy, Kurt J.
2010-01-01
Urban and resort development and drought conditions have placed increasing demands on the surface-water and groundwater resources of the Eagle Creek Basin, in southcentral New Mexico. The Village of Ruidoso, New Mexico, obtains 60-70 percent of its water from the Eagle Creek Basin. The village drilled four production wells on Forest Service land along North Fork Eagle Creek; three of the four wells were put into service in 1988 and remain in use. Local citizens have raised questions as to the effects of North Fork well pumping on flow in Eagle Creek. In response to these concerns, the U.S. Geological Survey, in cooperation with the Village of Ruidoso, conducted a hydrologic investigation from 2007 through 2009 of the potential effect of the North Fork well field on streamflow in North Fork Eagle Creek. Mean annual precipitation for the period of record (1942-2008) at the Ruidoso climate station is 22.21 inches per year with a range from 12.27 inches in 1970 to 34.81 inches in 1965. Base-flow analysis indicates that the 1970-80 mean annual discharge, direct runoff, and base flow were 2,260, 1,440, and 819 acre-ft/yr, respectively, and for 1989-2008 were 1,290, 871, and 417 acre-ft/yr, respectively. These results indicate that mean annual discharge, direct runoff, and base flow were less during the 1989-2008 period than during the 1970-80 period. Mean annual precipitation volume for the study area was estimated to be 12,200 acre-feet. Estimated annual evapotranspiration for the study area ranged from 8,730 to 8,890 acre-feet. Estimated annual basin yield for the study area was 3,390 acre-ft or about 28 percent of precipitation. On the basis of basin-yield computations, annual recharge was estimated to be 1,950 acre-ft, about 16 percent of precipitation. Using a chloride mass-balance method, groundwater recharge over the study area was estimated to average 490 acre-ft, about 4.0 percent of precipitation. Because the North Fork wells began pumping in 1988, 1969-80 represents the pre-groundwater-pumping period, and 1988-2009 represents the groundwater-pumping period. The 5-year moving average for precipitation at the Ruidoso climate station shows years of below-average precipitation during both time periods, but no days of zero flow were recorded for the 11-year period 1970-80 and no-flow days were recorded in 11 of 20 years for the 1988-2009 period. View report for unabridged abstract.
Historical changes in annual peak flows in Maine and implications for flood-frequency analyses
Hodgkins, Glenn A.
2010-01-01
To safely and economically design bridges, culverts, and other structures that are in or near streams (fig. 1 for example), it is necessary to determine the magnitude of peak streamflows such as the 100-year flow. Flood-frequency analyses use statistical methods to compute peak flows for selected recurrence intervals (100 years, for example). The recurrence interval is the average number of years between peak flows that are equal to or greater than a specified peak flow. Floodfrequency analyses are based on annual peak flows at a stream. It has long been assumed that annual peak streamflows are stationary over very long periods of time, except in river basins subject to urbanization, regulation, and other direct human activities. Stationarity is the concept that natural systems fluctuate within an envelope of variability that does not change over time (Milly and others, 2008). Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned (Milly and others, 2008). Maine has many streamgaging stations with 50 to 105 years of recorded annual peak streamflows. This long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency (Hodgkins, 2010). This fact sheet, prepared by the U.S. Geological Survey (USGS) in cooperation with the Maine Department of Transportation (MaineDOT), provides a partial summary of the results of the study by Hodgkins (2010).
Analyses of flood-flow frequency for selected gaging stations in South Dakota
Benson, R.D.; Hoffman, E.B.; Wipf, V.J.
1985-01-01
Analyses of flood flow frequency were made for 111 continuous-record gaging stations in South Dakota with 10 or more years of record. The analyses were developed using the log-Pearson Type III procedure recommended by the U.S. Water Resources Council. The procedure characterizes flood occurrence at a single site as a sequence of annual peak flows. The magnitudes of the annual peak flows are assumed to be independent random variables following a log-Pearson Type III probability distribution, which defines the probability that any single annual peak flow will exceed a specified discharge. By considering only annual peak flows, the flood-frequency analysis becomes the estimation of the log-Pearson annual-probability curve using the record of annual peak flows at the site. The recorded data are divided into two classes: systematic and historic. The systematic record includes all annual peak flows determined in the process of conducting a systematic gaging program at a site. In this program, the annual peak flow is determined for each and every year of the program. The systematic record is intended to constitute an unbiased and representative sample of the population of all possible annual peak flows at the site. In contrast to the systematic record, the historic record consists of annual peak flows that would not have been determined except for evidence indicating their unusual magnitude. Flood information acquired from historical sources almost invariably refers to floods of noteworthy, and hence extraordinary, size. Although historic records form a biased and unrepresentative sample, they can be used to supplement the systematic record. (Author 's abstract)
Regional flood-frequency relations for streams with many years of no flow
Hjalmarson, Hjalmar W.; Thomas, Blakemore E.; ,
1990-01-01
In the southwestern United States, flood-frequency relations for streams that drain small arid basins are difficult to estimate, largely because of the extreme temporal and spatial variability of floods and the many years of no flow. A method is proposed that is based on the station-year method. The new method produces regional flood-frequency relations using all available annual peak-discharge data. The prediction errors for the relations are directly assessed using randomly selected subsamples of the annual peak discharges.
Martin, Jeffrey D.; Duwelius, Richard F.; Crawford, Charles G.
1987-01-01
The watersheds studied include mined and reclaimed; mined and unreclaimed; and unmined, agricultural land uses, and are each < 3 sq mi in area. Surface water, groundwater, and meteorologic data for the 1981 and 1982 water years were used to describe and compare hydrologic systems of the six watersheds and to identify hydrologic effects of mining and reclamation. Peak discharges were greater at the agricultural watersheds than at the unreclaimed watersheds, primarily because of large final-cut lakes in the unreclaimed watersheds. Annual runoff was greatest at the unreclaimed watersheds, intermediate at the agricultural watersheds, and least at the reclaimed watersheds. Hydrologic effects of mining were identified by comparing the hydrologic systems at mined and unreclaimed watersheds with those at unmined, agricultural watersheds. Comparisons of the hydrologic systems of these watersheds indicate that surface coal mining without reclamation has the potential to increase annual runoff, base flow, and groundwater recharge to the bedrock; reduce peak flow rates and variation in flow; lower the water table in upland areas; change the relation between surface water and groundwater divides; and create numerous, local flow systems in the shallow groundwater. Hydrologic effects of reclamation were identified by comparing the hydrologic systems at mined and reclaimed watersheds with those at mined and unreclaimed watersheds. Reclamation has the potential to decrease annual runoff, base flow, and recharge to the bedrock; increase peak flow rates, variation in flow, and response to thunderstorms; reestablish the premining relation between surface and groundwater divides; and create fewer local flow systems in the shallow groundwater. (Lantz-PTT)
Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin
NASA Astrophysics Data System (ADS)
Lesack, Lance F. W.
1993-03-01
The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.
Stone, M.A.J.; Mann, Larry J.; Kjelstrom, L.C.
1993-01-01
Statistical summaries and graphs of streamflow data were prepared for 13 gaging stations with 5 or more years of continuous record on and near the Idaho National Engineering Laboratory. Statistical summaries of streamflow data for the Big and Little Lost Rivers and Birch Creek were analyzed as a requisite for a comprehensive evaluation of the potential for flooding of facilities at the Idaho National Engineering Laboratory. The type of statistical analyses performed depended on the length of streamflow record for a gaging station. Streamflow statistics generated for stations with 5 to 9 years of record were: (1) magnitudes of monthly and annual flows; (2) duration of daily mean flows; and (3) maximum, median, and minimum daily mean flows. Streamflow statistics generated for stations with 10 or more years of record were: (1) magnitudes of monthly and annual flows; (2) magnitudes and frequencies of daily low, high, instantaneous peak (flood frequency), and annual mean flows; (3) duration of daily mean flows; (4) exceedance probabilities of annual low, high, instantaneous peak, and mean annual flows; (5) maximum, median, and minimum daily mean flows; and (6) annual mean and mean annual flows.
Storage requirements for Georgia streams
Carter, Robert F.
1983-01-01
The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.
Sloto, Ronald A.; Reif, Andrew G.
2017-06-02
An evaluation of trends in hydrologic and water quality conditions and estimation of water budgets through 2013 was done by the U.S. Geological Survey in cooperation with the Chester County Water Resources Authority. Long-term hydrologic, meteorologic, and biologic data collected in Chester County, Pennsylvania, which included streamflow, groundwater levels, surface-water quality, biotic integrity, precipitation, and air temperature were analyzed to determine possible trends or changes in hydrologic conditions. Statistically significant trends were determined by applying the Kendall rank correlation test; the magnitudes of the trends were determined using the Sen slope estimator. Water budgets for eight selected watersheds were updated and a new water budget was developed for the Marsh Creek watershed. An average water budget for Chester County was developed using the eight selected watersheds and the new Marsh Creek water budget.Annual and monthly mean streamflow, base flow, and runoff were analyzed for trends at 10 streamgages. The periods of record at the 10 streamgages ranged from 1961‒2013 to 1988‒2013. The only statistically significant trend for annual mean streamflow was for West Branch Brandywine Creek near Honey Brook, Pa. (01480300) where annual mean streamflow increased 1.6 cubic feet per second (ft3/s) per decade. The greatest increase in monthly mean streamflow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 47 ft3/s per decade. No statistically significant trends in annual mean base flow or runoff were determined for the 10 streamgages. The greatest increase in monthly mean base flow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 26 ft3/s per decade.The magnitude of peaks greater than a base streamflow was analyzed for trends for 12 streamgages. The period of record at the 12 stream gages ranged from 1912‒2012 to 2004–11. Fifty percent of the streamgages showed a small statistically significant increase in peaks greater than the base streamflow. The greatest increase was for Brandywine Creek at Chadds Ford, Pa. (01481000) during 1962‒2012; the increase was 1.8 ft3/s per decade. There were no statistically significant trends in the number of floods equal to or greater than the 2-year recurrence interval flood flow.Twenty‒one monitoring wells were evaluated for statistically significant trends in annual mean water level, minimum annual water level, maximum annual water level, and annual range in water-level fluctuations. For four wells, a small statistically significant increase in annual mean water level was determined that ranged from 0.16 to 0.7 feet per decade. There was poor or no correlation between annual mean groundwater levels and annual mean streamflow and base flow. No correlation was determined between annual mean groundwater level and annual precipitation. Despite rapid population growth and land-use change since 1950, there appears to have been little or no detrimental effects on groundwater levels in 21 monitoring wells.Long-term precipitation and temperature data were available from the West Chester (1893‒2013) and Phoenixville, Pa. (1915‒2013) National Oceanic and Atmospheric Administration (NOAA) weather stations. No statistically significant trends in annual mean precipitation or annual mean temperature were determined for either station. Both weather stations had a significant decrease in the number of days per year with precipitation greater than or equal to 0.1 inch. Annual mean minimum and maximum temperatures from the NOAA Southeastern Piedmont Climate Division increased 0.2 degrees Fahrenheit (F) per decade between 1896 and 2014. The number of days with a maximum temperature equal to or greater than 90 degrees F increased at West Chester and decreased at Phoenixville. No statistically significant trend was determined for annual snowfall amounts.Data from 1974 to 2013 for three stream water-quality monitors in the Brandywine Creek watershed were evaluated. The monitors are on the West Branch Brandywine Creek at Modena, Pa. (01480617), East Branch Brandywine Creek below Downingtown, Pa. (01480870), and Brandywine Creek at Chadds Ford, Pa. (01481000). Statistically significant upward trends were determined for annual mean specific conductance at all three stations, indicating the total dissolved solids load has been increasing. If the current trend continues, the annual mean specific conductance could almost double from 1974 to 2050. The increase in specific conductance likely is due to increases in chloride concentrations, which have been increasing steadily over time at all three stations. No correlation was found between monthly mean specific conductance and monthly mean streamflow or base flow. Statistically significant upward trends in pH were determined for all three stations. Statistically significant upward trends in stream temperature were determined for East Branch Brandywine Creek below Downingtown, Pa. (01480870) and Brandywine Creek at Chadds Ford, Pa. (01481000). The stream water-quality data indicate substantial increases in the minimum daily dissolved oxygen concentrations in the Brandywine Creek over time.The Chester County Index of Biotic Integrity (CC-IBI) determined for 1998‒2013 was evaluated for the five biological sampling sites collocated with streamgages. CC-IBI scores are based on a 0‒100 scale with higher scores indicating better stream quality. Statistically significant upward trends in the CC-IBI were determined for West Branch Brandywine Creek at Modena, Pa. (01480617) and East Branch Brandywine Creek below Downingtown, Pa. (01480870). No correlation was found between the CC-IBI and streamflow, precipitation, or stream specific conductance, pH, temperature, or dissolved oxygen concentration.A Chester County average water budget was developed using the nine estimated watershed water budgets. Average precipitation was 48.4 inches, and average streamflow was 21.4 inches. Average runoff and base flow were 8.3 and 13.1 inches, respectively, and average evapotranspiration and estimation of errors was 27.2 inches."
Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.
2014-01-01
Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.
Flow-duration-frequency behaviour of British rivers based on annual minima data
NASA Astrophysics Data System (ADS)
Zaidman, Maxine D.; Keller, Virginie; Young, Andrew R.; Cadman, Daniel
2003-06-01
A comparison of different probability distribution models for describing the flow-duration-frequency behaviour of annual minima flow events in British rivers is reported. Twenty-five catchments were included in the study, each having stable and natural flow records of at least 30 years in length. Time series of annual minima D-day average flows were derived for each record using durations ( D) of 1, 7, 30, 60, 90, and 365 days and used to construct low flow frequency curves. In each case the Gringorten plotting position formula was used to determine probabilities (of non-exceedance). Four distribution types—Generalised Extreme Value (GEV), Generalised Logistic (GL), Pearson Type-3 (PE3) and Generalised Pareto (GP)—were used to model the probability distribution function for each site. L-moments were used to parameterise individual models, whilst goodness-of-fit tests were used to assess their match to the sample data. The study showed that where short durations (i.e. 60 days or less) were considered, high storage catchments tended to be best represented by GL and GEV distribution models whilst low storage catchments were best described by PE3 or GEV models. However, these models produced reasonable results only within a limited range (e.g. models for high storage catchments did not produce sensible estimates of return periods where the prescribed flow was less than 10% of the mean flow). For annual minima series derived using long duration flow averages (e.g. more than 90 days), GP and GEV models were generally more applicable. The study suggests that longer duration minima do not conform to the same distribution types as short durations, and that catchment properties can influence the type of distribution selected.
DeSimone, Leslie A.
2004-01-01
Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from anthropo-genic activities were relatively large percentages, compared to other subbasins, (more than 20 percent in September) of total out-flows. Wastewater flows in the Assabet River accounted for 55, 32, and 20 percent of total nonstorm streamflow (base flow plus wastewater discharge) out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. The ground-water-flow models were used to evaluate water-management alternatives by simulating hypothetical scenarios of altered withdrawals and discharges. A scenario that included no water management quantified nonstorm stream-flows that would result without withdrawals, discharges, septic-system return flow, or consumptive use. Tributary flows in this scenario increased in most subbasins by 2 to 44 percent relative to 19972001 conditions. The increases resulted mostly from variable combinations of decreased withdrawals and decreased infiltration to sewers. Average annual nonstorm streamflow in the Assabet River decreased slightly in this scenario, by 2 to 3 percent annually, because gains in ground-water discharge were offset by the elimination of wastewater discharges. A second scenario quantified the effects of increasing withdrawals and discharges to currently permitted levels. In this simulation, average annual tributary flows decreased in most subbasins, by less than 1 to 10 percent relative to 19972001 conditions. In the Assabet River, flows increased slightly, 1 to 5 percent annually, and the percentage of wastewater in the river increased to 69, 42, and 27 percent of total nonstorm streamflow out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. A third set of scenarios quantified the effects of ground-water discharge of wastewater at four hypothetical sites, while maintaining 19972000 wastewater discharges to the Assabet River. Wastewater, discharged at a constant rate that varied among sites from 0.3 to 1
Schilling, K.E.; Wolter, C.F.
2005-01-01
Nineteen variables, including precipitation, soils and geology, land use, and basin morphologic characteristics, were evaluated to develop Iowa regression models to predict total streamflow (Q), base flow (Qb), storm flow (Qs) and base flow percentage (%Qb) in gauged and ungauged watersheds in the state. Discharge records from a set of 33 watersheds across the state for the 1980 to 2000 period were separated into Qb and Qs. Multiple linear regression found that 75.5 percent of long term average Q was explained by rainfall, sand content, and row crop percentage variables, whereas 88.5 percent of Qb was explained by these three variables plus permeability and floodplain area variables. Qs was explained by average rainfall and %Qb was a function of row crop percentage, permeability, and basin slope variables. Regional regression models developed for long term average Q and Qb were adapted to annual rainfall and showed good correlation between measured and predicted values. Combining the regression model for Q with an estimate of mean annual nitrate concentration, a map of potential nitrate loads in the state was produced. Results from this study have important implications for understanding geomorphic and land use controls on streamflow and base flow in Iowa watersheds and similar agriculture dominated watersheds in the glaciated Midwest. (JAWRA) (Copyright ?? 2005).
Gazetteer of hydrologic characteristics of streams in Massachusetts; Housatonic River basin
Wandle, S.W.; Lippert, R.G.
1984-01-01
The Housatonic River basin includes streams that drain 504 square miles in western Massachusetts and 30.5 square miles in eastern New York. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics for four gaged streams were calculated using a new data base with daily flow records through 1981. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. Seven-day low-flow statistics are presented for 52 partial-record sites, and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are provided for selected gaging stations. This gazetteer will aid in the planning and siting of water-resources related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...
Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon
Risley, John; Stonewall, Adam J.; Haluska, Tana
2008-01-01
Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological habitat assessment, infrastructure design, and water-supply planning and management. The flow statistics, which included annual and monthly period of record flow durations (5th, 10th, 25th, 50th, and 95th percent exceedances) and annual and monthly 7-day, 10-year (7Q10) and 7-day, 2-year (7Q2) low flows, were computed at 466 streamflow-gaging stations at sites with unregulated flow conditions throughout Oregon and adjacent areas of neighboring States. Regression equations, created from the flow statistics and basin characteristics of the stations, can be used to estimate flow statistics at ungaged stream sites in Oregon. The study area was divided into 10 regression modeling regions based on ecological, topographic, geologic, hydrologic, and climatic criteria. In total, 910 annual and monthly regression equations were created to predict the 7 flow statistics in the 10 regions. Equations to predict the five flow-duration exceedance percentages and the two low-flow frequency statistics were created with Ordinary Least Squares and Generalized Least Squares regression, respectively. The standard errors of estimate of the equations created to predict the 5th and 95th percent exceedances had medians of 42.4 and 64.4 percent, respectively. The standard errors of prediction of the equations created to predict the 7Q2 and 7Q10 low-flow statistics had medians of 51.7 and 61.2 percent, respectively. Standard errors for regression equations for sites in western Oregon were smaller than those in eastern Oregon partly because of a greater density of available streamflow-gaging stations in western Oregon than eastern Oregon. High-flow regression equations (such as the 5th and 10th percent exceedances) also generally were more accurate than the low-flow regression equations (such as the 95th percent exceedance and 7Q10 low-flow statistic). The regression equations predict unregulated flow conditions in Oregon. Flow estimates need to be adjusted if they are used at ungaged sites that are regulated by reservoirs or affected by water-supply and agricultural withdrawals if actual flow conditions are of interest. The regression equations are installed in the USGS StreamStats Web-based tool (http://water.usgs.gov/osw/streamstats/index.html, accessed July 16, 2008). StreamStats provides users with a set of annual and monthly flow-duration and low-flow frequency estimates for ungaged sites in Oregon in addition to the basin characteristics for the sites. Prediction intervals at the 90-percent confidence level also are automatically computed.
Omang, R.J.; Parrett, Charles; Hull, J.A.
1983-01-01
Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)
Runner, Michael S.; Turnipseed, D. Phil; Coupe, Richard H.
2002-01-01
Increased nutrient loading to the Gulf of Mexico from off-continent flux has been identified as contributing to the increase in the areal extent of the low dissolved-oxygen zone that develops annually off the Louisiana and Texas coast. The proximity of the Yazoo River Basin in northwestern Mississippi to the Gulf of Mexico, and the intensive agricultural activities in the basin have led to speculation that the Yazoo River Basin contributes a disproportionate amount of nitrogen and phosphorus to the Mississippi River and ultimately to the Gulf of Mexico. An empirical measurement of the flux of nitrogen and phosphorus from the Yazoo Basin has not been possible due to the hydrology of the lower Yazoo River Basin. Streamflow for the Yazoo River below Steele Bayou is affected by backwater from the Mississippi River. Flow at the gage is non-uniform and varying, with bi-directional and reverse flows possible. Streamflow was computed by using remote sensing and acoustic and conventional discharge and velocity measurement techniques. Streamflow from the Yazoo River for the 1996-2000 period accounted for 2.8 percent of the flow of the Mississippi River for the same period. Water samples from the Yazoo River were collected from February 1996 through December 2000 and were analyzed for total nitrogen, nitrate, total phosphorus, and orthophosphorus as part of the U.S. Geological Survey National Water-Quality Assessment Program. These data were used to compute annual loads of nitrogen and phosphorus discharged from the Yazoo River for the period 1996-2000. Annual loads of nitrogen and phosphorus were calculated by two methods. The first method used multivariate regression and the second method multiplied the mean annual concentration by the total annual flow. Load estimates based on the product of the mean annual concentration and the total annual flow were within the 95 percent confidence interval for the load calculated by multivariate regression in 10 of 20 cases. The Yazoo River loads, compared to average annual loads in the Mississippi River, indicated that the Yazoo River was contributing 1.4 percent of the total nitrogen load, 0.7 percent of the nitrate load, 3.4 percent of the total phosphorus load, and 1.6 percent of the orthophosphorus load during 1996 - 2000. The total nitrogen, nitrate, and orthophosphorus loads in the Yazoo River Basin were less than expected, whereas the total phosphorus load was slightly higher than expected based on discharge.
Streamflow characteristics and trends in New Jersey, water years 1897-2003
Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.
2005-01-01
Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.
Peak-flow characteristics of Virginia streams
Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute
2011-01-01
Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.
Recession-based hydrological models for estimating low flows in ungauged catchments in the Himalayas
NASA Astrophysics Data System (ADS)
Rees, H. G.; Holmes, M. G. R.; Young, A. R.; Kansakar, S. R.
The Himalayan region of Nepal and northern India experiences hydrological extremes from monsoonal floods during July to September, when most of the annual precipitation falls, to periods of very low flows during the dry season (December to February). While the monsoon floods cause acute disasters such as loss of human life and property, mudslides and infrastructure damage, the lack of water during the dry season has a chronic impact on the lives of local people. The management of water resources in the region is hampered by relatively sparse hydrometerological networks and consequently, many resource assessments are required in catchments where no measurements exist. A hydrological model for estimating dry season flows in ungauged catchments, based on recession curve behaviour, has been developed to address this problem. Observed flows were fitted to a second order storage model to enable average annual recession behaviour to be examined. Regionalised models were developed, using a calibration set of 26 catchments, to predict three recession curve parameters: the storage constant; the initial recession flow and the start date of the recession. Relationships were identified between: the storage constant and catchment area; the initial recession flow and elevation (acting as a surrogate for rainfall); and the start date of the recession and geographic location. An independent set of 13 catchments was used to evaluate the robustness of the models. The regional models predicted the average volume of water in an annual recession period (1st of October to the 1st of February) with an average error of 8%, while mid-January flows were predicted to within ±50% for 79% of the catchments in the data set.
Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
Chapter C of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources, to provide an update of statewide peak-flow frequency analyses and results for Montana. The purpose of this report chapter is to present peak-flow frequency analyses and results for 725 streamflow-gaging stations in or near Montana based on data through water year 2011. The 725 streamflow-gaging stations included in this study represent nearly all streamflowgaging stations in Montana (plus some from adjacent states or Canadian Provinces) that have at least 10 years of peak-flow records through water year 2011. For 29 of the 725 streamflow-gaging stations, peak-flow frequency analyses and results are reported for both unregulated and regulated conditions. Thus, peak-flow frequency analyses and results are reported for a total of 754 analyses. Estimates of peak-flow magnitudes for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals.
DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.
2002-01-01
Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were 12 to 13 percent of total annual flow in some subbasins and of total monthly flow throughout the basin in summer and early fall. Water-management alternatives were evaluated by simulating hypothetical scenarios of increased withdrawals and altered recharge for average 1989?98 conditions with the flow models. Increased withdrawals to maximum State-permitted levels would result in withdrawals of about 15 million gallons per day, or about 50 percent more than current withdrawals. Model-calculated effects of these increased withdrawals included reductions in stream base flow that were greatest (as a percentage of total flow) in late summer and early fall. These reductions ranged from less than 5 percent to more than 60 percent of model-calculated 1989?98 base flow along reaches of the Charles River and major tributaries during low-flow periods. Reductions in base flow generally were comparable to upstream increases in withdrawals, but were slightly less than upstream withdrawals in areas where septic-system return flow was simulated. Increased withdrawals also increased the proportion of wastewater in the Charles River downstream of treatment facilities. The wastewater component increased downstream from a treatment facility in Milford from 80 percent of September base flow under 1989?98 conditions to 90 percent of base flow, and from 18 to 27 percent of September base flow downstream of a treatment facility in Medway. In another set of hypothetical scenarios, additional recharge equal to the transfer of water out of a typical subbasin by sewers was found to increase model-calculated base flows by about 12 percent of model-calculated base flows. Addition of recharge equal to that available from artificial recharge of residential rooftop runoff had smaller effects, augmenting simulated September base flow by about 3 percent. Simulation-optimization methods were applied to an area near Populatic Pond and the confluence of the Mill and Charles Rivers in Franklin,
Trend detection in river flow indices in Poland
NASA Astrophysics Data System (ADS)
Piniewski, Mikołaj; Marcinkowski, Paweł; Kundzewicz, Zbigniew W.
2018-02-01
The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly `no trend' results. However, the spatial gradient is apparent only for the data for the period 1981-2016 rather than for 1956-2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.
Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.
2010-01-01
Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.
Studying Faculty Flows Using an Interactive Spreadsheet Model. AIR 1997 Annual Forum Paper.
ERIC Educational Resources Information Center
Kelly, Wayne
This paper describes a spreadsheet-based faculty flow model developed and implemented at the University of Calgary (Canada) to analyze faculty retirement, turnover, and salary issues. The study examined whether, given expected faculty turnover, the current salary increment system was sustainable in a stable or declining funding environment, and…
Gazetteer of hydrologic characteristics of streams in Massachusetts; Blackstone River basin
Wandle, S.W.; Phipps, A.F.
1984-01-01
The Blackstone River basin encompasses 335 square miles in south-central Massachusetts, including parts of Bristol, Middlesex, Norfolk, and Worcester Counties. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics, were calculated using a new data base with records through 1980. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. The 7-day, 10-year low-flow values are presented for 31 partial-record sites and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are presented for the six gaged streams in the Blackstone River basin. This gazetteer will aid in the planning and siting of water-resources-related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)
Tortorelli, Robert L.; Pickup, Barbara E.
2006-01-01
The Illinois River and tributaries, Flint Creek and Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus levels in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30-day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to summarize phosphorus concentrations and provide estimates of phosphorus loads, yields, and flow-weighted concentrations in the Illinois River and tributaries from January 2000 through December 2004. Data from water-quality samples collected from 2000 to 2004 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and mean flow-weighted concentrations in the Illinois River basin for three 3-year periods - 2000-2002, 2001-2003, and 2002-2004, to update a previous report that used data from water-quality samples from 1997 to 2001. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Phosphorus concentrations in the Illinois River basin were significantly greater in runoff samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and decreased in the downstream direction in the Illinois River from the Watts to Tahlequah stations. Phosphorus concentrations generally increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and Baron Fork. Annual total loads in the Illinois River from Watts to Tahlequah, increased slightly for the period 2000-2002 and decreased slightly for the periods 2001-2003 and 2002-2004. Estimated mean annual base-flow loads at stations on the Illinois River were about 11 to 20 times greater than base-flow loads at the station on Baron Fork and 4 to 10 times greater than base-flow loads at the station on Flint Creek. Estimated mean annual runoff loads ranged from 68 to 96 percent of the estimated mean annual total phosphorus loads from 2000-2004. Estimated mean seasonal base-flow loads were generally greatest in spring (March through May) and were least in fall (September through November). Estimated mean seasonal runoff loads generally were greatest in summer (June through August) for the period 2000-2002, but were greatest in winter (December through February) for the period 2001-2003, and greatest in spring for the period 2002-2004. Estimated mean total yields of phosphorus ranged from 192 to 811 pounds per year per square mile, with greatest yields being reported for Illinois River near Watts (576 to 811 pounds per year per square mile), and the least yields being reported for Baron Fork at Eldon for the periods 2000-2002 and 2001-2003 (501 and 192 pounds per year per square mile) and for Illinois River near Tahlequah for the period 2002-2004 (370 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median (0.022 milligram per liter) and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.037 milligram per liter). In addition, flow-weighted phosphorus concentrations in 2000-2002 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment Program station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Shiraj; Ganguly, Auroop R; Bandyopadhyay, Sharba
Cross-spectrum analysis based on linear correlations in the time domain suggested a coupling between large river flows and the El Nino-Southern Oscillation (ENSO) cycle. A nonlinear measure based on mutual information (MI) reveals extrabasinal connections between ENSO and river flows in the tropics and subtropics, that are 20-70% higher than those suggested so far by linear correlations. The enhanced dependence observed for the Nile, Amazon, Congo, Paran{acute a}, and Ganges rivers, which affect large, densely populated regions of the world, has significant impacts on inter-annual river flow predictabilities and, hence, on water resources and agricultural planning.
Distributional changes in rainfall and river flow in Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun
2017-11-01
Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.
NASA Astrophysics Data System (ADS)
Pang, Aiping; Sun, Tao; Yang, Zhifeng
2013-03-01
SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.
Mao, De-Hua; Hu, Guang-Wei; Liu, Hui-Jie; Li, Zheng-Zui; Li, Zhi-Long; Tan, Zi-Fang
2014-02-01
The annual emergy and currency value of the main ecological service value of returning cropland to lake in Dongting Lake region from 1999 to 2010 was calculated based on emergy analysis. The calculation method of ecological compensation standard was established by calculating annual total emergy of ecological service function increment since the starting year of returning cropland to lake, and the annual ecological compensation standard and compensation area were analyzed from 1999 to 2010. The results indicated that ecological compensation standard from 1999 to 2010 was 40.31-86.48 yuan x m(-2) with the mean of 57.33 yuan x m(-2). The ecological compensation standard presented an increase trend year by year due to the effect of eco-recovery of returning cropland to lake. The ecological compensation standard in the research area presented a swift and steady growth trend after 2005 mainly due to the intensive economy development of Hunan Province, suggesting the value of natural ecological resources would increase along with the development of society and economy. Appling the emergy analysis to research the ecological compensation standard could reveal the dynamics of annual ecological compensation standard, solve the abutment problem of matter flow, energy flow and economic flow, and overcome the subjective and arbitrary of environment economic methods. The empirical research of ecological compensation standard in Dongting Lake region showed that the emergy analysis was feasible and advanced.
Galat, D.L.; Lipkin, R.
2000-01-01
Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust reservoir operations.
Are annual layers preserved in NorthGRIP Eemian ice?
NASA Astrophysics Data System (ADS)
Kettner, E.; Bigler, M.; Nielsen, M. E.; Steffensen, J. P.; Svensson, A.
2009-04-01
A newly developed setup for continuous flow analysis (CFA) of ice cores in Copenhagen is optimized for high resolution analysis of four components: Soluble sodium (mainly deriving from sea salt), soluble ammonium (related to biological processes and biomass burning events), insoluble dust particles (basically transported from Asian deserts to Greenland), and the electrolytic melt water conductivity (which is a bulk signal for all ionic constituents). Furthermore, we are for the first time implementing a flow cytometer to obtain high quality dust concentration and size distribution profiles based on individual dust particle measurements. Preliminary measurements show that the setup is able to resolve annual layers of 1 cm thickness. Ice flow models predict that annual layers in the Eemian section of the Greenland NorthGRIP ice core (130-115 ka BP) have a thickness of around 1 cm. However, the visual stratigraphy of the ice core indicates that the annual layering in the Eemian section may be disturbed by micro folds and rapid crystal growth. In this case study we will measure the impurity content of an Eemian segment of the NorthGRIP ice core with the new CFA setup. This will allow for a comparison to well-known impurity levels of the Holocene in both Greenland and Antarctic ice and we will attempt to determine if annual layers are still present in the ice.
Periodicity and Multi-scale Analysis of Runoff and Sediment Load in the Wulanghe River, Jinsha River
NASA Astrophysics Data System (ADS)
Chen, Yiming
2018-01-01
Based on the annual runoff and sediment data (1959-2014 ) of Zongguantian hydrological station, time-frequency wavelet transform characteristics and their periodic rules of high and low flow alternating change were analyzed in multi-time scales by the Morlet continue wavelet transformation (CWT). It is concluded that the primary periods of runoff and sediment load time series of the high and low annual flow in the different time scales were 12-year, 3-year and 26-year, 18-year, 13-year, 5-year, respectively, and predicted that the major variant trend of the two time series would been gradually decreasing and been in the high flow period around 8-year (from 2014 to 2022) and 10-year (from 2014 to 2020).
Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.
2013-01-01
Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater than 10 percent point-source flow contributions to streamflow had higher yields relative to undeveloped watersheds (having less than 10 and 15 percent developed and agricultural land uses, respectively) and watersheds with relatively low agricultural land use (between 15 and 30 percent). The statistical tests further indicated that the median annual yields for total P were statistically higher for watersheds with high agricultural land use (greater than 30 percent) compared to the undeveloped watersheds and watersheds with low agricultural land use. The total P yields also were higher for watersheds with low urban land use (between 10 and 30 percent developed land) compared to the undeveloped watersheds. The study data indicate that grouping and examining stream nutrient yields based on the land-use classifications used in this report can be useful for characterizing relations between watershed settings and nutrient yields in streams located throughout central and eastern North Carolina. Compiled study data also were analyzed with four regression tree models as a means of determining which watershed environmental variables or combination of variables result in basins that are likely to have high or low nutrient yields. The regression tree analyses indicated that some of the environmental variables examined in this study were useful for predicting yields of nitrate, total N, and total P. When the median annual nutrient yields for all 48 sites were evaluated as a group (Model 1), annual point-source flow yields had the greatest influence on nitrate and total N yields observed in streams, and annual streamflow yields had the greatest influence on yields of total P. The Model 1 results indicated that watersheds with higher annual point-source flow yields had higher annual yields of nitrate and total N, and watersheds with higher annual streamflow yields had higher annual yields of total P. When sites with high point-source flows (greater than 10 percent of total streamflow) were excluded from the regression tree analyses (Models 2–4), the percentage of forested land in the watersheds was identified as the primary environmental variable influencing stream yields for both total N and total P. Models 2, 3 and 4 did not identify any watershed environmental variables that could adequately explain the observed variability in the nitrate yields among the set of sites examined by each of these models. The results for Models 2, 3, and 4 indicated that watersheds with higher percentages of forested land had lower annual total N and total P yields compared to watersheds with lower percentages of forested land, which had higher median annual total N and total P yields. Additional environmental variables determined to further influence the stream nutrient yields included median annual percentage of point-source flow contributions to the streams, variables of land cover (percentage of forested land, agricultural land, and (or) forested land plus wetlands) in the watershed and (or) in the stream buffer, and drainage area. The regression tree models can serve as a tool for relating differences in select watershed attributes to differences in stream yields of nitrate, total N, and total P, which can provide beneficial information for improving nutrient management in streams throughout North Carolina and for reducing nutrient loads to coastal waters.
NASA Astrophysics Data System (ADS)
José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María
2017-04-01
Climatology trends, precipitation and temperature variations condition the hydrological evolution of the river flow response at basin and sub-basin scales. The link between both climate and flow trends is crucial in mountainous areas, where small variations in temperature can produce significant impacts on precipitation (occurrence as rainfall or snowfall), snowmelt and evaporation, and consequently very different flow signatures. This importance is greater in semiarid regions, where the high variability of the climatic annual and seasonal regimes usually amplifies this impact on river flow. The Sierra Nevada National Park (Southern Spain), with altitudes ranging from 2000 to 3500 m.a.s.l., is part of the global climate change observatories network and a clear example of snow regions in a semiarid environment. This mountain range is head of different catchments, being the Guadalfeo River Basin one of the most influenced by the snow regime. This study shows the observed 55-year (1961-2015) trends of annual precipitation and daily mean temperature, and the associated impacts on snowfall and snow persistence, and the resulting trend of the annual river flow in the Guadalfeo River Basin (Southern Spain), a semiarid abrupt mountainous area (up to 3450 m a.s.l.) facing the Mediterranean Sea where the Alpine and Mediterranean climates coexist in a domain highly influenced by the snow regime, and a significant seasonality in the flow regime. The annual precipitation and annual daily mean temperature experimented a decreasing trend of 2.05 mm/year and an increasing trend of 0.037 °C/year, respectively, during the study period, with a high variability on a decadal basis. However, the torrential precipitation events are more frequent in the last few years of the study period, with an apparently increasing associated dispersion. The estimated annual snowfall trend shows a decreasing trend of 0.24 mm/year, associated to the decrease of precipitation rather than to temperature increase. From the analyses of river flow observations and hydrological modelling, these trends result in an estimated decreasing annual trend of the mean river inflow to reservoirs of 0.091 m3/s, which is equivalent to a mean loss of 2.87 hm3/year during the study period. Nonetheless, these results are associated to a high variability of both extreme values and the annual and decadal values. Moreover, the decrease of the annual inflow is approximately a 25% higher than the loss of precipitation, due to the impact on the different water fluxes from the snowpack associated to the enhanced torrential behaviour of both snowfall/rainfall occurrence and snow persistence. The results show the complexity of hydrological processes in Mediterranean regions, especially under the snow influence, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area, with a decrease of the available water resource volume in the medium and long term. However, on an annual basis, years with an intense snowfall regime but mild and longer dry periods result in a significant increase of the annual river flow and water storage. Reservoir operation criteria and water allocation should undergo a revision based on hydrological modelling of the snow regions and scenario analysis.
Liang Wei; Timothy E. Link; Andrew T. Hudak; John D. Marshall; Kathleen L. Kavanagh; John T. Abatzoglou; Hang Zhou; Robert E. Pangle; Gerald N. Flerchinger
2016-01-01
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long-term water balances by explicitly simulating the internal...
Methods for estimating streamflow at mountain fronts in southern New Mexico
Waltemeyer, S.D.
1994-01-01
The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.
Ground-water recharge from streamflow data, NW Florida
Vecchioli, John; Bridges, W.C.; Rumenik, Roger P.; Grubbs, J.W.
1991-01-01
Annual base flows of streams draining Okaloosa County and adjacent areas in northwest Florida were determined through hydrograph separation and correlation techniques for purposes of evaluating variations in ground-water recharge rates. Base flows were least in the northern part of the county and greatest in the southern part. Topographic and soils data were then superimposed on the distribution of base flow by subbasin to produce a map showing distribution of ground-water recharge throughout the county. The highest recharge rate occurs in the southern part of the county where relatively flat upland areas underlain by excessively drained sandy soils result in minimal storm runoff and evapotranspiration.
Chichester, D.C.
1996-01-01
The U.S. Geological Survey conducted a study in a highly productive and complex regolith-mantled carbonate valley in the northeastern part of the Cumberland Valley, Pa., as part of its Appalachian Valleys and Piedmont Regional Aquifer-system Analysis program. The study was designed to quantify the hydrogeologic characteristics and understand the ground-water flow system of a highly productive and complex thickly mantled carbonate valley. The Cumberland Valley is characterized by complexly folded and faulted carbonate bedrock in the valley bottom, by shale and graywacke to the north, and by red-sedimentary and diabase rocks in the east-southeast. Near the southern valley hillslope, the carbonate rock is overlain by wedge-shaped deposit of regolith, up to 450 feet thick, that is composed of residual material, alluvium, and colluvium. Locally, saturated regolith is greater than 200 feet thick. Seepage-run data indicate that stream reaches, near valley walls, are losing water from the stream, through the regolith, to the ground-water system. Results of hydrograph-separation analyses indicate that base flow in stream basins dominated by regolith-mantled carbonate rock, carbonate rock, and carbonate rock and shale are 81.6, 93.0, and 67.7 percent of total streamflow, respectively. The relative high percentage for the regolith-mantled carbonate-rock basin indicates that the regolith stores precipitation and slowly, steadily releases this water to the carbonate-rock aquifer and to streams as base flow. Anomalies in water-table gradients and configuration are a result of topography and differences in the character and distribution of overburden material, permeability, rock type, and geologic structure. Most ground-water flow is local, and ground water discharges to nearby springs and streams. Regional flow is northeastward to the Susquehanna River. Average-annual water budgets were calculated for the period of record from two continuous streamflow-gaging stations. Average-annual precipitation range from 39.0 to 40.5 inches, and averages about 40 inches for the model area. Average-annual recharge, which was assumed equal to the average-annual base flow, ranged from 12 inches for the Conodoguinet Creek, and 15 inches for the Yellow Breeches Creek. The thickly-mantled carbonate system was modeled as a three- dimensional water-table aquifer. Recharge to, ground-water flow through, and discharge from the Cumberland Valley were simulated. The model was calibrated for steady-state conditions using average recharge and discharge data. Aquifer horizontal hydraulic conductivity was calculated from specific-capacity data for each geologic unit in the area. Particle-tracking analyses indicate that interbasin and intrabasin flows of groundwater occur within the Yellow Breeches Creek Basin and between the Yellow Breeches and Conodoguinet Creek Basins.
Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.
2005-01-01
This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing results. For example, although unsaturated-zone drainage from the gravity lysimeters provided the most direct measure of potential recharge, it does not incorporate spatial variability that is contained in watershed-wide estimates of net recharge from the Rorabaugh equations or base flow from streamflow-hydrograph separation. This study showed that water-level fluctuations, in particular, should be used with caution to estimate recharge in low-storage fractured-rock aquifers because of the variability of water-level response among wells and sensitivity of recharge to small errors in estimating specific yield. To bracket the largest range of plausible recharge, results from this study indicate that recharge derived from RORA should be compared with base flow from the Local-Minimum version of HYSEP.
NASA Astrophysics Data System (ADS)
Jawitz, J. W.
2011-12-01
What are the relative contributions of climatic variability, land management, and local geomorphology in determining the temporal dynamics of streamflow and the export of solutes from watersheds to receiving water bodies? A simple analytical framework is introduced for characterizing the temporal inequality of stream discharge and solute export from catchments using Lorenz diagrams and the associated Gini coefficient. These descriptors are used to illustrate a broad range of observed flow variability with a synthesis of multi-decadal flow data from 22 rivers in Florida. The analytical framework is extended to comprehensively link variability in flows and loads to climatically-driven inputs in terms of these inequality-based metrics. Further, based on a synthesis of data from the basins of the Baltic Sea, the Mississippi River, the Kissimmee River and other tributaries to Lake Okeechobee, FL, it is shown that inter-annual variations in exported loads for geogenic constituents, and for total N and total P, are dominantly controlled by discharge. Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. Multi-decadal phosphorus load data from 4 of the primary tributaries to Lake Okeechobee and sodium and nitrate load data from 9 of the Hubbard Brook, NH long-term study site catchments are used to examine the relation between inequality of climatic inputs, river flows and catchment loads. The intra-annual loads to Lake Okeechobee are shown to be highly unequal, such that 90% of annual load is delivered in as little as 15% of the time. Analytic expressions are developed for measures of inequality in terms of parameters of the lognormal distribution under general conditions that include intermittency. In cases where climatic variability is high compared to that of concentrations (chemostatic conditions), such as for P in the Lake Okeechobee basin and Na in Hubbard Brook, the temporal inequality of rainfall and flow are strong surrogates for load inequality. However, in cases where variability of concentrations is high compared to that of flows (chemodynamic conditions), such as for nitrate in the Hubbard Brook catchments, load inequality is greater than rainfall or flow inequality. The measured degree of correspondence between climatic, flow, and load inequality for these data sets are shown to be well described using the general inequality framework introduced here. Important implications are that (1) variations in hydro-climatic or anthropogenic forcing can be used to robustly predict inter-annual variations in flows and loads, (2) water quality problems in receiving inland and coastal waters may persist until the accumulated storages of nutrients have been substantially depleted, and (3) remedial measures designed to intercept or capture exported flows and loads must be designed with consideration of the intra-annual inequality.
NASA Astrophysics Data System (ADS)
van Noordwijk, Meine; Tanika, Lisa; Lusiana, Betha
2017-05-01
Flood damage reflects insufficient adaptation of human presence and activity to location and variability of river flow in a given climate. Flood risk increases when landscapes degrade, counteracted or aggravated by engineering solutions. Efforts to maintain and restore buffering as an ecosystem function may help adaptation to climate change, but this require quantification of effectiveness in their specific social-ecological context. However, the specific role of forests, trees, soil and drainage pathways in flow buffering, given geology, land form and climate, remains controversial. When complementing the scarce heavily instrumented catchments with reliable long-term data, especially in the tropics, there is a need for metrics for data-sparse conditions. We present and discuss a flow persistence metric that relates transmission to river flow of peak rainfall events to the base-flow component of the water balance. The dimensionless flow persistence parameter Fp is defined in a recursive flow model and can be estimated from limited time series of observed daily flow, without requiring knowledge of spatially distributed rainfall upstream. The Fp metric (or its change over time from what appears to be the local norm) matches local knowledge concepts. Inter-annual variation in the Fp metric in sample watersheds correlates with variation in the flashiness index
used in existing watershed health monitoring programmes, but the relationship between these metrics varies with context. Inter-annual variation in Fp also correlates with common base-flow indicators, but again in a way that varies between watersheds. Further exploration of the responsiveness of Fp in watersheds with different characteristics to the interaction of land cover and the specific realisation of space-time patterns of rainfall in a limited observation period is needed to evaluate interpretation of Fp as an indicator of anthropogenic changes in watershed conditions.
Flow characteristics at U.S. Geological Survey streamgages in the conterminous United States
Wolock, David
2003-01-01
This dataset represents point locations and flow characteristics for current (as of November 20, 2001) and historical U.S. Geological Survey (USGS) streamgages in the conterminous United States. The flow characteristics were computed from the daily streamflow data recorded at each streamgage for the period of record. The attributes associated with each streamgage include: Station number Station name Station latitude (decimal degrees in North American Datum of 1983, NAD 83) Station longitude (decimal degrees in NAD 83) First date (year, month, day) of streamflow data Last date (year, month, day) of streamflow data Number of days of streamflow data Minimum and maximum daily flow for the period of record (cubic feet per second) Percentiles (1, 5, 10, 20, 25, 50, 75, 80, 90, 95, 99) of daily flow for the period of record (cubic feet per second) Average and standard deviation of daily flow for the period of record (cubic feet per second) Mean annual base-flow index (BFI: see supplemental information) computed for the period of record (fraction, ranging from 0 to 1) Year-to-year standard deviation of the annual base-flow index computed for the period of record (fraction) Number of years of data used to compute the base-flow index (years) Reported drainage area (square miles) Reported contributing drainage area (square miles) National Water Information System (NWIS)-Web page URL for streamgage Hydrologic Unit Code (HUC, 8 digit) Hydrologic landscape region (HLR) River Reach File 1 (RF1) segment identification number (E2RF1##) Station numbers, names, locations, and drainage areas were acquired through the National Water Information System (NWIS)-Web (http://water.usgs.gov/nwis) on November 20, 2001. The streamflow data used to compute flow characteristics were copied from the Water server (water.usgs.gov:/www/htdocs/nwisweb/data1/discharge/) on November 2, 2001. The missing value indicator for all attributes is -99. Some streamflow characteristics are missing for: (1) streamgages measuring flow subject to tidal effects, which cause flow to reverse directions, (2) streamgages with site information but no streamflow data at the time the data were retrieved, and (3) streamgages with record length too short to compute the base-flow index.
Changes in streamflow characteristics in Wisconsin as related to precipitation and land use
Gebert, Warren A.; Garn, Herbert S.; Rose, William J.
2016-01-19
Streamflow characteristics were determined for 15 longterm streamflow-gaging stations for the periods 1915–2008, 1915–68, and 1969–2008 to identify trends. Stations selected represent flow characteristics for the major river basins in Wisconsin. Trends were statistically significant at the 95 percent confidence level at 13 of the 15 streamflow-gaging stations for various streamflow characteristics for 1915–2008. Most trends indicated increases in low flows for streams with agriculture as the dominant land use. The three most important findings are: increases in low flows and average flows in agricultural watersheds, decreases in flood peak discharge for many streams in both agricultural and forested watersheds, and climatic change occurred with increasing annual precipitation and changes in monthly occurrence of precipitation. When the 1915–68 period is compared to the 1969–2008 period, the annual 7-day low flow increased an average of 60 percent for nine streams in agricultural areas as compared to a 15 percent increase for the five forested streams. Average annual flow for the same periods increased 23 percent for the agriculture streams and 0.6 percent for the forested streams. The annual flood peak discharge for the same periods decreased 15 percent for agriculture streams and 8 percent for forested streams. The largest increase in the annual 7-day low flow was 117 percent, the largest increase in annual average flow was 41 percent, and the largest decrease in annual peak discharge was 51 percent. The trends in streamflow characteristics affect frequency characteristics, which are used for a variety of design and compliance purposes. The frequencies for the 1969–2008 period were compared to frequencies for the 1915–68 period. The 7-day, 10-year (Q7, 10) low flow increased 91 percent for nine agricultural streams, while the five forested streams had an increase of 18 percent. The 100-year flood peak discharge decreased an average of 15 percent for streams in the agriculture area and 27 percent for streams in the forested area. Increases in low flow for agriculture streams are attributed to changes in agricultural practices and land use as well as increased precipitation. The decrease in annual flood peak discharge with increased annual precipitation is less clear, but is attributed to increased infiltration from changes in agricultural practices and climatic changes. For future low-flow studies, the 1969–2008 period should be used to determine low-flow characteristics since it represents current (2014) conditions and was generally free of significant trends.
Annual Tropical Cyclone Report, 1983.
1983-01-01
impact on Ellen. In addition to were based primarily on the presence of interferring with Ellen’s outflow at upper- upper-level banding features...upper-level flow impacting Thelma is reflected in the rapidity with which the The first warning on Thelma, as a system sheared while moving...8217 %,d 4 "." ,"." .".-*. .*’,.--" * . . ." .’% .. .J *. " . . . . . . .. . . . . .• . ’ .".• -* ". FOREWORD The Annual Tropical Cyclone Report
Code of Federal Regulations, 2011 CFR
2011-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
Regionalization of winter low-flow characteristics of Tennessee streams
Bingham, R.H.
1986-01-01
Procedures were developed for estimating winter (December-April) low flows at ungaged stream sites in Tennessee based on surface geology and drainage area size. One set of equations applies to West Tennessee streams, and another set applies to Middle and East Tennessee streams. The equations do not apply to streams where flow is significantly altered by the activities of man. Standard errors of estimate of equations for West Tennessee are 22% - 35% and for middle and East Tennessee 31% - 36%. Statistical analyses indicate that summer low-flow characteristics are the same as annual low-flow characteristics, and that winter low flows are larger than annual low flows. Streamflow-recession indexes, in days per log cycle of decrease in discharge, were used to account for effects of geology on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that contribute to streamflows during periods of no surface runoff. Streamflow-recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)
The Significance of the Record Length in Flood Frequency Analysis
NASA Astrophysics Data System (ADS)
Senarath, S. U.
2013-12-01
Of all of the potential natural hazards, flood is the most costly in many regions of the world. For example, floods cause over a third of Europe's average annual catastrophe losses and affect about two thirds of the people impacted by natural catastrophes. Increased attention is being paid to determining flow estimates associated with pre-specified return periods so that flood-prone areas can be adequately protected against floods of particular magnitudes or return periods. Flood frequency analysis, which is conducted by using an appropriate probability density function that fits the observed annual maximum flow data, is frequently used for obtaining these flow estimates. Consequently, flood frequency analysis plays an integral role in determining the flood risk in flood prone watersheds. A long annual maximum flow record is vital for obtaining accurate estimates of discharges associated with high return period flows. However, in many areas of the world, flood frequency analysis is conducted with limited flow data or short annual maximum flow records. These inevitably lead to flow estimates that are subject to error. This is especially the case with high return period flow estimates. In this study, several statistical techniques are used to identify errors caused by short annual maximum flow records. The flow estimates used in the error analysis are obtained by fitting a log-Pearson III distribution to the flood time-series. These errors can then be used to better evaluate the return period flows in data limited streams. The study findings, therefore, have important implications for hydrologists, water resources engineers and floodplain managers.
Kessler, Erich W.; Lorenz, David L.; Sanocki, Christopher A.
2013-01-01
Peak-flow frequency analyses were completed for 409 streamgages in and bordering Minnesota having at least 10 systematic peak flows through water year 2011. Selected annual exceedance probabilities were determined by fitting a log-Pearson type III probability distribution to the recorded annual peak flows. A detailed explanation of the methods that were used to determine the annual exceedance probabilities, the historical period, acceptable low outliers, and analysis method for each streamgage are presented. The final results of the analyses are presented.
40 CFR 98.423 - Calculating CO2 supply.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Calculate the annual mass of CO2 captured, extracted, imported, or exported through each flow meter in... flow meters are used, you shall calculate the annual mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate...
Commercial aspects of semi-reusable launch systems
NASA Astrophysics Data System (ADS)
Obersteiner, M. H.; Müller, H.; Spies, H.
2003-07-01
This paper presents a business planning model for a commercial space launch system. The financing model is based on market analyses and projections combined with market capture models. An operations model is used to derive the annual cash income. Parametric cost modeling, development and production schedules are used for quantifying the annual expenditures, the internal rate of return, break even point of positive cash flow and the respective prices per launch. Alternative consortia structures, cash flow methods, capture rates and launch prices are used to examine the sensitivity of the model. Then the model is applied for a promising semi-reusable launcher concept, showing the general achievability of the commercial approach and the necessary pre-conditions.
Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma
Esralew, Rachel A.; Smith, S. Jerrod
2010-01-01
Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage-basin characteristics by using a k-means cluster analysis. Three regions were identified for Oklahoma on the basis of the clustering of gaging stations and a manual delineation of distinguishable hydrologic and geologic boundaries: Region 1 (western Oklahoma excluding the Oklahoma and Texas Panhandles), Region 2 (north- and south-central Oklahoma), and Region 3 (eastern and central Oklahoma). A total of 228 regression equations (225 flow-duration regressions and three annual mean-flow regressions) were developed using ordinary least-squares and left-censored (Tobit) multiple-regression techniques. These equations can be used to estimate 75 flow-duration statistics and annual mean-flow for ungaged streams in the three regions. Drainage-basin characteristics that were statistically significant independent variables in the regression analyses were (1) contributing drainage area; (2) station elevation; (3) mean drainage-basin elevation; (4) channel slope; (5) percentage of forested canopy; (6) mean drainage-basin hillslope; (7) soil permeability; and (8) mean annual, seasonal, and monthly precipitation. The accuracy of flow-duration regression equations generally decreased from high-flow exceedance (low-exceedance probability) to low-flow exceedance (high-exceedance probability) . This decrease may have happened because a greater uncertainty exists for low-flow estimates and low-flow is largely affected by localized geology that was not quantified by the drainage-basin characteristics selected. The standard errors of estimate of regression equations for Region 1 (western Oklahoma) were substantially larger than those standard errors for other regions, especially for low-flow exceedances. These errors may be a result of greater variability in low flow because of increased irrigation activities in this region. Regression equations may not be reliable for sites where the drainage-basin characteristics are outside the range of values of independent vari
NASA Astrophysics Data System (ADS)
Gelfan, Alexander; Kalugin, Andrei; Motovilov, Yury
2017-04-01
A regional hydrological model was setup to assess possible impact of climate change on the hydrological regime of the Amur drainage basin (the catchment area is 1 855 000 km2). The model is based on the ECOMAG hydrological modeling platform and describes spatially distributed processes of water cycle in this great basin with account for flow regulation by the Russian and Chinese reservoirs. Earlier, the regional hydrological model was intensively evaluated against 20-year streamflow data over the whole Amur basin and, being driven by 252-station meteorological observations as input data, demonstrated good performance. In this study, we firstly assessed the reliability of the model to reproduce the historical streamflow series when Global Climate Model (GCM) simulation data are used as input into the hydrological model. Data of nine GCMs involved in CMIP5 project was utilized and we found that ensemble mean of annual flow is close to the observed flow (error is about 14%) while data of separate GCMs may result in much larger errors. Reproduction of seasonal flow for the historical period turned out weaker; first of all because of large errors in simulated seasonal precipitation, so hydrological consequences of climate change were estimated just in terms of annual flow. We analyzed the hydrological projections from the climate change scenarios. The impacts were assessed in four 20-year periods: early- (2020-2039), mid- (2040-2059) and two end-century (2060-2079; 2080-2099) periods using an ensemble of nine GCMs and four Representative Concentration Pathways (RCP) scenarios. Mean annual runoff anomalies calculated as percentages of the future runoff (simulated under 36 GCM-RCP combinations of climate scenarios) to the historical runoff (simulated under the corresponding GCM outputs for the reference 1986-2005 period) were estimated. Hydrological model gave small negative runoff anomalies for almost all GCM-RCP combinations of climate scenarios and for all 20-year periods. The largest ensemble mean anomaly was about minus 8% by the end of XXI century under the most severe RCP8.5 scenario. We compared the mean annual runoff anomalies projected under the GCM-based data for the XXI century with the corresponding anomalies projected under a modified observed climatology using the delta-change (DC) method. Use of the modified observed records as driving forces for hydrological model-based projections can be considered as an alternative to the GCM-based scenarios if the latter are uncertain. The main advantage of the DC approach is its simplicity: in its simplest version only differences between present and future climates (i.e. between the long-term means of the climatic variables) are considered as DC-factors. In this study, the DC-factors for the reference meteorological series (1986-2005) of climate parameters were calculated from the GCM-based scenarios. The modified historical data were used as input into the hydrological models. For each of four 20-year period, runoff anomalies simulated under the delta-changed historical time series were compared with runoff anomalies simulated under the corresponding GCM-data with the same mean. We found that the compared projections are closely correlated. Thus, for the Amur basin, the modified observed climatology can be used as driving force for hydrological model-based projections and considered as an alternative to the GCM-based scenarios if only annual flow projections are of the interest.
Tortorelli, Robert L.
2008-01-01
The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized nitrogen and phosphorus concentrations and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for three 3-year periods - 2002-2004, 2003-2005, and 2004-2006, to update a previous report that used data from water-quality samples for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple agencies for interstate agreements. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples for all three periods at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than base-flow concentrations at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma except for phosphorus during 2003-2005. Nitrogen concentrations in base-flow samples significantly increased downstream in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations for all three periods. Nitrogen in base-flow samples from Beaty Creek was significantly less than in samples from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek for all three periods, probably because of a wastewater-treatment plant point source between those stations, and then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base-flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek for most of the three periods, except during 2003-2005 when runoff samples at the Colcord station were less than at the Sycamore station; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek and were significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station, only during 2004-2006. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads for the three 3-year periods were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased downstream from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that at Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 to 89 percent; whereas, the range in the runoff component at the Spavinaw Creek stations was 60 to 71 percent. Estimated mean annual phosphorus total loads for the three 3-year periods were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased downstream from Maysville to Colcord in Spavinaw Creek, wit
Exploring the Link Between Streamflow Trends and Climate Change in Indiana, USA
NASA Astrophysics Data System (ADS)
Kumar, S.; Kam, J.; Thurner, K.; Merwade, V.
2007-12-01
Streamflow trends in Indiana are evaluated for 85 USGS streamflow gaging stations that have continuous unregulated streamflow records varying from 10 to 80 years. The trends are analyzed by using the non-parametric Mann-Kendall test with prior trend-free pre-whitening to remove serial correlation in the data. Bootstrap method is used to establish field significance of the results. Trends are computed for 12 streamflow statistics to include low-, medium- (median and mean flow), and high-flow conditions on annual and seasonal time step. The analysis is done for six study periods, ranging from 10 years to more than 65 years, all ending in 2003. The trends in annual average streamflow, for 50 years study period, are compared with annual average precipitation trends from 14 National Climatic Data Center (NCDC) stations in Indiana, that have 50 years of continuous daily record. The results show field significant positive trends in annual low and medium streamflow statistics at majority of gaging stations for study periods that include 40 or more years of records. In seasonal analysis, all flow statistics in summer and fall (low flow seasons), and only low flow statistics in winter and spring (high flow seasons) are showing positive trends. No field significant trends in annual and seasonal flow statistics are observed for study periods that include 25 or fewer years of records, except for northern Indiana where localized negative trends are observed in 10 and 15 years study periods. Further, stream flow trends are found to be highly correlated with precipitation trends on annual time step. No apparent climate change signal is observed in Indiana stream flow records.
Koltun, G.F.; Kunze, Allison E.
2002-01-01
Monotonic upward trends in annual mean streamflows and annual 7-day low flows were identified statistically for the streamflow-gaging station on the Chagrin River at Willoughby, Ohio. No monotonic trends were identified for the annual peak streamflow series or partial-duration series of peak streamflows augmented with annual peak streamflows that did not exceed a base discharge of 4,000 cubic feet per second. A plot of cumulative departure of annual precipitation from the long-term mean annual precipitation for the weather-observation station at Hiram, Ohio, indicates a relatively dry period extending from about 1910 to about 1968, followed by a relatively wet period extending from about 1968 to the late 1990s. A plot of cumulative departure of annual mean streamflow from the mean annual streamflow for the Chagrin River at Willoughby, Ohio, closely mimics the shape of the precipitation departure plot, indicating that the annual mean streamflows increased in concert with annual precipitation. These synchronous trends likely explain why upward trends in annual mean streamflows and annual 7-day low flows were observed. A lack of trend in peak streamflows indicates that the intensity and severity of flood-producing storms did not increase appreciably along with the increases in annual precipitation. An analysis of point-of-zero-flow data indicates that the low-water control of the Chagrin River streamflow-gaging station tended to aggrade over the period 1930?93; however, the magnitude of aggradation is sufficiently small that its effect on stages of moderate to large floods would be negligible. Stage values associated with reference streamflows of 500 and 5,000 cubic feet per second tended to remain fairly stable during the period from about 1950 to 1970 and then decreased slightly during the period from about 1970 to 1980, suggesting that the flood-carrying capacity of the stream increased somewhat during the latter period. Since a large flood on May 26, 1989, significant changes have occurred in the relation between stage and streamflow. The most recent relation indicates that stage values associated with streamflows of 500 and 5,000 cubic feet per second are about 0.5 foot and 0.1 foot higher, respectively, than the pre-1989 levels.
Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.
2017-02-21
Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.
Statistical summaries of streamflow in Oklahoma through 1999
Tortorelli, R.L.
2002-01-01
Statistical summaries of streamflow records through 1999 for gaging stations in Oklahoma and parts of adjacent states are presented for 188 stations with at least 10 years of streamflow record. Streamflow at 113 of the stations is regulated for specific periods. Data for these periods were analyzed separately to account for changes in streamflow due to regulation by dams or other human modification of streamflow. A brief description of the location, drainage area, and period of record is given for each gaging station. A brief regulation history also is given for stations with a regulated streamflow record. This descriptive information is followed by tables of mean annual discharges, magnitude and probability of exceedance of annual high flows, magnitude and probability of exceedance of annual instantaneous peak flows, durations of daily mean flow, magnitude and probability of non-exceedance of annual low flows, and magnitude and probability of non-exceedance of seasonal low flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jiali; Li, Hongyi; Leung, Lai-Yung R.
This paper presents the results of a data based comparative study of several hundred catchments across continental United States belonging to the MOPEX dataset, which systematically explored the connection between the flood frequency curve and measures of mean annual water balance. Two different measures of mean annual water balance are used: (i) a climatic aridity index, AI, which is a measure of the competition between water and energy availability at the annual scale; and, (ii) baseflow index, BFI, the ratio of slow runoff to total runoff also at the annual time scale, reflecting the role of geology, soils, topography andmore » vegetation. The data analyses showed that the aridity index, AI, has a first order control on both the mean and Cv of annual maximum floods. While mean annual flood decreases with increasing aridity, Cv increases with increasing aridity. BFI appeared to be a second order control on the magnitude and shape of the flood frequency curve. Higher BFI, meaning more subsurface flow and less surface flow leads to a decrease of mean annual flood whereas lower BFI leads to accumulation of soil moisture and increased flood magnitudes that arise from many events acting together. The results presented in this paper provide innovative means to delineate homogeneous regions within which the flood frequency curves can be assumed to be functionally similar. At another level, understanding the connection between annual water balance and flood frequency will be another building block towards developing comprehensive understanding of catchment runoff behavior in a holistic way.« less
Low-flow characteristics of streams in South Carolina
Feaster, Toby D.; Guimaraes, Wladmir B.
2017-09-22
An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.Between 2008 and 2016, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, updated low-flow statistics at 106 continuous-record streamgages operated by the U.S. Geological Survey for the eight major river basins in South Carolina. The low-flow frequency statistics included the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamflow-gaging station. Computations of daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also were included.This report summarizes the findings from publications generated during the 2008 to 2016 investigations. Trend analyses for the annual minimum 7-day average flows are provided as well as trend assessments of long-term annual precipitation data. Statewide variability in the annual minimum 7-day average flow is assessed at eight long-term (record lengths from 55 to 78 years) streamgages. If previous low-flow statistics were available, comparisons with the updated annual minimum 7-day average flow, having a 10-year recurrence interval, were made. In addition, methods for estimating low-flow statistics at ungaged locations near a gaged location are described.
Statistical summaries of selected Iowa streamflow data through September 2013
Eash, David A.; O'Shea, Padraic S.; Weber, Jared R.; Nguyen, Kevin T.; Montgomery, Nicholas L.; Simonson, Adrian J.
2016-01-04
Statistical summaries of streamflow data collected at 184 streamgages in Iowa are presented in this report. All streamgages included for analysis have at least 10 years of continuous record collected before or through September 2013. This report is an update to two previously published reports that presented statistical summaries of selected Iowa streamflow data through September 1988 and September 1996. The statistical summaries include (1) monthly and annual flow durations, (2) annual exceedance probabilities of instantaneous peak discharges (flood frequencies), (3) annual exceedance probabilities of high discharges, and (4) annual nonexceedance probabilities of low discharges and seasonal low discharges. Also presented for each streamgage are graphs of the annual mean discharges, mean annual mean discharges, 50-percent annual flow-duration discharges (median flows), harmonic mean flows, mean daily mean discharges, and flow-duration curves. Two sets of statistical summaries are presented for each streamgage, which include (1) long-term statistics for the entire period of streamflow record and (2) recent-term statistics for or during the 30-year period of record from 1984 to 2013. The recent-term statistics are only calculated for streamgages with streamflow records pre-dating the 1984 water year and with at least 10 years of record during 1984–2013. The streamflow statistics in this report are not adjusted for the effects of water use; although some of this water is used consumptively, most of it is returned to the streams.
Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska
Lilledahl, Anna K.; Gadeke, Anne; O'Neel, Shad; Gatesman, T. A.; Douglas, T. A.
2017-01-01
Arctic river discharge has increased in recent decades although sources and mechanisms remain debated. Abundant literature documents permafrost thaw and mountain glacier shrinkage over the past decades. Here we link glacier runoff to aquifer recharge via a losing headwater stream in subarctic Interior Alaska. Field measurements in Jarvis Creek (634 km2), a subbasin of the Tanana and Yukon Rivers, show glacier meltwater runoff as a large component (15–28%) of total annual streamflow despite low glacier cover (3%). About half of annual headwater streamflow is lost to the aquifer (38 to 56%). The estimated long-term change in glacier-derived aquifer recharge exceeds the observed increase in Tanana River base flow. Our findings suggest a linkage between glacier wastage, aquifer recharge along the headwater stream corridor, and lowland winter discharge. Accordingly, glacierized headwater streambeds may serve as major aquifer recharge zones in semiarid climates and therefore contributing to year-round base flow of lowland rivers.
Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii
Gingerich, Stephen B.
1999-01-01
The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high-elevation saturated zone. Total average daily ground-water discharge from the high-elevation saturated zone upstream of 1,200 feet altitude is greater than 38 million gallons per day, all of which is eventually removed from the streams by surface-water diversion systems. Perennial streamflow has been measured at altitudes greater than 3,000 feet in several of the streams. Discharge from the high-elevation saturated zone is persistent even during periods of little rainfall. The total average annual streamflow of the gaged streams east of Keanae Valley is about 109 million gallons per day at about 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast nor at higher altitudes. All of the base flow measured east of Keanae Valley represents ground-water discharge from the vertically extensive freshwater-lens system. Total average daily ground-water discharge to gaged streams upstream of 1,200 feet altitude is about 27 million gallons per day. About 19 million gallons per day of ground water discharges through the Kula and Hana Volcanics between about 500 feet and 1,300 feet altitude in the gaged stream sub-basins. About 13 million gallons per day of this discharge is in Hanawi Stream. The total ground-water discharge above 500 feet altitude in this part of the study area is greater than 56 million gallons per day.
Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.
Huang, Hong; Zhang, Baifa; Lu, Jun
2014-01-01
We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.
Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.
2003-01-01
Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.
Overview of the FAF3 Freight Flow Matrix Construction Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprung, Michael J; Southworth, Frank; Davidson, Diane
PROJECT DESCRIPTION The FAF3 is a FHWA freight data product which provides a national O-D matrix of commodity flows to, from, and within the United States. FAF3 freight flows are reported in terms of both annual tons and annual dollars of freight moved by mode of transportation. Based largely on the 2007 CFS, FAF3 utilizes domestic freight flow characteristics, geographic regions, and the SCTG commodity coding system from CFS. However, many freight flows were not captured by the 2007 CFS due to scope and sample size limitations. Approximately 100,000 establishments were sampled out of some 754,000 freight moving establishments inmore » 2007 and imports are out of scope entirely. To estimate missing data values, the approach taken in FAF3 was to use a combination of a novel Log-linear modeling approach (LLM) with an iterative proportional fitting (IPF) routine that also uses additional data inputs to fill in the missing pieces. The complete FAF3 O-D Commodity Mode database is made up of 131 Origins x 131 Destinations x 43 Commodity Classes x 8 Modal categories, for annual tons and dollars. This poster illustrates how the 2007 CFS data were integrated with several additional data sources using LLM and IPF to create a comprehensive FAF3 national freight flow matrix. More detailed documentation on the sources and methods utilized in the development of FAF3 are available from the FHWA website at the following website: http://www.ops.fhwa.dot. gov/freight/freight_analysis/faf/index.htm.« less
Friedman, Jonathan M.
2018-01-01
needs of other riverine resources. Use of high flows to remove unwanted vegetation is constrained by current operational guidance for Flaming Gorge Dam, which attempts to limit spills (i.e., flows greater than 8600 ft3 /s) that might contribute to cavitation and lead to dam safety concerns. Therefore, reversing vegetation encroachment is more likely to succeed if implemented while plants are still small. Annual monitoring of near-channel vegetation and topography would enable managers to prescribe a timely hydrologic response in case the proposed flow experiments lead to vegetation encroachment and habitat degradation.
NASA Astrophysics Data System (ADS)
Stollsteiner, P.; Bessiere, H.; Nicolas, J.; Allier, D.; Berthet, O.
2015-04-01
This article is based on a BRGM study on piezometric indicators, threshold values of discharge and groundwater levels for the assessment of potentially-exploitable water resources of chalky watersheds. A method for estimating low water levels based on groundwater levels is presented from three examples representing chalk aquifers with different cycles: annual, combined and interannual. The first is located in Picardy and the two others in the Champagne-Ardennes region. Piezometers with annual cycles, used in these examples, are supposed to be representative of the aquifer hydro-dynamics. Except for multi-annual systems, the analysis between discharge measurements at a hydrometric station and groundwater levels measured at a piezometer representative of the main aquifer, leads to relatively precise and satisfactory relationships within a chalky context. These relationships may be useful for monitoring, validation, extension or reconstruction of the low water flow data. On the one hand, they allow definition of the piezometric levels corresponding to the different alert thresholds of river discharges. On the other hand, they clarify the proportions of low surface water flow from runoff or drainage of the aquifer. Finally, these correlations give an assessment of the minimum flow for the coming weeks. However, these correlations cannot be used to optimize the value of the exploitable water resource because it seems to be difficult to integrate the value of the effective rainfall that could occur during the draining period. Moreover, in the case of multi-annual systems, the solution is to attempt a comprehensive system modelling and, if it is satisfactory, using the simulated values to get rid of parasites or running the model for forecasting purposes.
Mastin, Mark C.; Konrad, Christopher P.; Veilleux, Andrea G.; Tecca, Alison E.
2016-09-20
An investigation into the magnitude and frequency of floods in Washington State computed the annual exceedance probability (AEP) statistics for 648 U.S. Geological Survey unregulated streamgages in and near the borders of Washington using the recorded annual peak flows through water year 2014. This is an updated report from a previous report published in 1998 that used annual peak flows through the water year 1996. New in this report, a regional skew coefficient was developed for the Pacific Northwest region that includes areas in Oregon, Washington, Idaho and western Montana within the Columbia River drainage basin south of the United States-Canada border, the coastal areas of Oregon and western Washington, and watersheds draining into Puget Sound, Washington. The skew coefficient is an important term in the Log Pearson Type III equation used to define the distribution of the log-transformed annual peaks. The Expected Moments Algorithm was used to fit historical and censored peak-flow data to the log Pearson Type III distribution. A Multiple Grubb-Beck test was employed to censor low outliers of annual peak flows to improve on the frequency distribution. This investigation also includes a section on observed trends in annual peak flows that showed significant trends (p-value < 0.05) in 21 of 83 long-term sites, but with small magnitude Kendall tau values suggesting a limited monotonic trend in the time series of annual peaks. Most of the sites with a significant trend in western Washington were positive and all the sites with significant trends (three sites) in eastern Washington were negative.Multivariate regression analysis with measured basin characteristics and the AEP statistics at long-term, unregulated, and un-urbanized (defined as drainage basins with less than 5 percent impervious land cover for this investigation) streamgages within Washington and some in Idaho and Oregon that are near the Washington border was used to develop equations to estimate AEP statistics at ungaged basins. Washington was divided into four regions to improve the accuracy of the regression equations; a set of equations for eight selected AEPs and for each region were constructed. Selected AEP statistics included the annual peak flows that equaled or exceeded 50, 20, 10, 4, 2, 1, 0.5 and 0.2 percent of the time equivalent to peak flows for peaks with a 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively. Annual precipitation and drainage area were the significant basin characteristics in the regression equations for all four regression regions in Washington and forest cover was significant for the two regression regions in eastern Washington. Average standard error of prediction for the regional regression equations ranged from 70.19 to 125.72 percent for Regression Regions 1 and 2 on the eastern side of the Cascade Mountains and from 43.22 to 58.04 percent for Regression Regions 3 and 4 on the western side of the Cascade Mountains. The pseudo coefficient of determination (where a value of 100 signifies a perfect regression model) ranged from 68.39 to 90.68 for Regression Regions 1 and 2, and 92.35 to 95.44 for Regions 3 and 4.The calculated AEP statistics for the streamgages and the regional regression equations are expected to be incorporated into StreamStats after the publication of this report. StreamStats is the interactive Web-based map tool created by the U.S. Geological Survey to allow the user to choose a streamgage and obtain published statistics or choose ungaged locations where the program automatically applies the regional regression equations and computes the estimates of the AEP statistics.
NASA Technical Reports Server (NTRS)
Hollyday, E. F. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Streamflow characteristics in the Delmarva Peninsula derived from the records of daily discharge of 20 gaged basins are representative of the full range in flow conditions and include all of those commonly used for design or planning purposes. They include annual flood peaks with recurrence intervals of 2, 5, 10, 25, and 50 years, mean annual discharge, standard deviation of the mean annual discharge, mean monthly discharges, standard deviation of the mean monthly discharges, low-flow characteristics, flood volume characteristics, and the discharge equalled or exceeded 50 percent of the time. Streamflow and basin characteristics were related by a technique of multiple regression using a digital computer. A control group of equations was computed using basin characteristics derived from maps and climatological records. An experimental group of equations was computed using basin characteristics derived from LANDSAT imagery as well as from maps and climatological records. Based on a reduction in standard error of estimate equal to or greater than 10 percent, the equations for 12 stream flow characteristics were substantially improved by adding to the analyses basin characteristics derived from LANDSAT imagery.
Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.
2014-01-01
Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1997-01-01
This report contains the 1997 annual progress reports of the research fellows and students supported by the Center for Turbulence Research (CTR). Titles include: Invariant modeling in large-eddy simulation of turbulence; Validation of large-eddy simulation in a plain asymmetric diffuser; Progress in large-eddy simulation of trailing-edge turbulence and aeronautics; Resolution requirements in large-eddy simulations of shear flows; A general theory of discrete filtering for LES in complex geometry; On the use of discrete filters for large eddy simulation; Wall models in large eddy simulation of separated flow; Perspectives for ensemble average LES; Anisotropic grid-based formulas for subgrid-scale models; Some modeling requirements for wall models in large eddy simulation; Numerical simulation of 3D turbulent boundary layers using the V2F model; Accurate modeling of impinging jet heat transfer; Application of turbulence models to high-lift airfoils; Advances in structure-based turbulence modeling; Incorporating realistic chemistry into direct numerical simulations of turbulent non-premixed combustion; Effects of small-scale structure on turbulent mixing; Turbulent premixed combustion in the laminar flamelet and the thin reaction zone regime; Large eddy simulation of combustion instabilities in turbulent premixed burners; On the generation of vorticity at a free-surface; Active control of turbulent channel flow; A generalized framework for robust control in fluid mechanics; Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries; and DNS of shock boundary-layer interaction - preliminary results for compression ramp flow.
Saleh, Dina K.
2010-01-01
Statistical summaries of streamflow data for all long-term streamflow-gaging stations in the Tigris River and Euphrates River Basins in Iraq are presented in this report. The summaries for each streamflow-gaging station include (1) a station description, (2) a graph showing annual mean discharge for the period of record, (3) a table of extremes and statistics for monthly and annual mean discharge, (4) a graph showing monthly maximum, minimum, and mean discharge, (5) a table of monthly and annual mean discharges for the period of record, (6) a graph showing annual flow duration, (7) a table of monthly and annual flow duration, (8) a table of high-flow frequency data (maximum mean discharge for 3-, 7-, 15-, and 30-day periods for selected exceedance probabilities), and (9) a table of low-flow frequency data (minimum mean discharge for 3-, 7-, 15-, 30-, 60-, 90-, and 183-day periods for selected non-exceedance probabilities).
Streamflow Characteristics of Streams in the Helmand Basin, Afghanistan
Williams-Sether, Tara
2008-01-01
Statistical summaries of streamflow data for all historical streamflow-gaging stations for the Helmand Basin upstream from the Sistan Wetlands are presented in this report. The summaries for each streamflow-gaging station include (1) manuscript (station description), (2) graph of the annual mean discharge for the period of record, (3) statistics of monthly and annual mean discharges, (4) graph of the annual flow duration, (5) monthly and annual flow duration, (6) probability of occurrence of annual high discharges, (7) probability of occurrence of annual low discharges, (8) probability of occurrence of seasonal low discharges, (9) annual peak discharge and corresponding gage height for the period of record, and (10) monthly and annual mean discharges for the period of record.
Gotvald, Anthony J.; Barth, Nancy A.; Veilleux, Andrea G.; Parrett, Charles
2012-01-01
Methods for estimating the magnitude and frequency of floods in California that are not substantially affected by regulation or diversions have been updated. Annual peak-flow data through water year 2006 were analyzed for 771 streamflow-gaging stations (streamgages) in California having 10 or more years of data. Flood-frequency estimates were computed for the streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Low-outlier and historic information were incorporated into the flood-frequency analysis, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low outliers. Special methods for fitting the distribution were developed for streamgages in the desert region in southeastern California. Additionally, basin characteristics for the streamgages were computed by using a geographical information system. Regional regression analysis, using generalized least squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins in California that are outside of the southeastern desert region. Flood-frequency estimates and basin characteristics for 630 streamgages were combined to form the final database used in the regional regression analysis. Five hydrologic regions were developed for the area of California outside of the desert region. The final regional regression equations are functions of drainage area and mean annual precipitation for four of the five regions. In one region, the Sierra Nevada region, the final equations are functions of drainage area, mean basin elevation, and mean annual precipitation. Average standard errors of prediction for the regression equations in all five regions range from 42.7 to 161.9 percent. For the desert region of California, an analysis of 33 streamgages was used to develop regional estimates of all three parameters (mean, standard deviation, and skew) of the log-Pearson Type III distribution. The regional estimates were then used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins. The final regional regression equations are functions of drainage area. Average standard errors of prediction for these regression equations range from 214.2 to 856.2 percent. Annual peak-flow data through water year 2006 were analyzed for eight streamgages in California having 10 or more years of data considered to be affected by urbanization. Flood-frequency estimates were computed for the urban streamgages by fitting a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Regression analysis could not be used to develop flood-frequency estimation equations for urban streams because of the limited number of sites. Flood-frequency estimates for the eight urban sites were graphically compared to flood-frequency estimates for 630 non-urban sites. The regression equations developed from this study will be incorporated into the U.S. Geological Survey (USGS) StreamStats program. The StreamStats program is a Web-based application that provides streamflow statistics and basin characteristics for USGS streamgages and ungaged sites of interest. StreamStats can also compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in California.
A new method for calculating ecological flow: Distribution flow method
NASA Astrophysics Data System (ADS)
Tan, Guangming; Yi, Ran; Chang, Jianbo; Shu, Caiwen; Yin, Zhi; Han, Shasha; Feng, Zhiyong; Lyu, Yiwei
2018-04-01
A distribution flow method (DFM) and its ecological flow index and evaluation grade standard are proposed to study the ecological flow of rivers based on broadening kernel density estimation. The proposed DFM and its ecological flow index and evaluation grade standard are applied into the calculation of ecological flow in the middle reaches of the Yangtze River and compared with traditional calculation method of hydrological ecological flow, method of flow evaluation, and calculation result of fish ecological flow. Results show that the DFM considers the intra- and inter-annual variations in natural runoff, thereby reducing the influence of extreme flow and uneven flow distributions during the year. This method also satisfies the actual runoff demand of river ecosystems, demonstrates superiority over the traditional hydrological methods, and shows a high space-time applicability and application value.
Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15
Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.
2017-02-23
The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.
Smith, Kirk P.
2008-01-01
Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual mean specific conductance for water year 2005 which was 737 uS/cm. However, the annual mean specific conductance at Stony Brook near Route 20 in Waltham (U.S. Geological Survey (USGS) station 01104460), on the principal tributary to the Stony Brook Reservoir, and at USGS station 01104475 on a smaller tributary to the Stony Brook Reservoir were about 15 and 13 percent lower, respectively, than the previous annual mean specific conductances of 538 and 284 uS/cm, respectively for water year 2005. The annual mean specific conductance for Fresh Pond Reservoir decreased from 553 uS/cm in the 2005 water year to 514 uS/cm in the 2006 water year. Water samples were collected in nearly all of the subbasins in the Cambridge drinking-water source area and from Fresh Pond during water year 2006. Discrete water samples were collected during base-flow conditions with an antecedent dry period of at least 4 days. Composite samples, consisting of as many as 100 subsamples, were collected by automatic samplers during storms. Concentrations of most dissolved constituents were generally lower in samples of stormwater than in samples collected during base flow; however, the average concentration of total phosphorus in samples of stormwater were from 160 to 1,109 percent greater than the average concentration in water samples collected during base-flow conditions. Concentrations of total nitrogen in water samples collected during base-flow conditions and composite samples of stormwater at USGS stations 01104415, 01104460, and 01104475 were similar, but mean concentrations of total nitrogen in samples of stormwater differed by about 0.5 mg/L (milligrams per liter) from those in water samples collected during base-flow conditions at U.S. Geological Survey stations 01104433 and 01104455. In six water samples, measurements of pH were lower than the U.S. Environmental Protection Agency (USEPA) national recommended freshwater quality criteria and the USEPA secondary drinking water-standa
Navrátil, Tomas; Norton, Stephen A; Fernandez, Ivan J; Nelson, Sarah J
2010-12-01
Mean annual concentration of SO4(-2) in wet-only deposition has decreased between 1988 and 2006 at the paired watershed study at Bear Brook Watershed in Maine, USA (BBWM) due to substantially decreased emissions of SO(2). Emissions of NO(x) have not changed substantially, but deposition has declined slightly at BBWM. Base cations, NH4+, and Cl(-) concentrations were largely unchanged, with small irregular changes of <1 μeq L(-1) per year from 1988 to 2006. Precipitation chemistry, hydrology, vegetation, and temperature drive seasonal stream chemistry. Low flow periods were typical in June-October, with relatively greater contributions of deeper flow solutions with higher pH; higher concentrations of acid-neutralizing capacity, Si, and non-marine Na; and low concentrations of inorganic Al. High flow periods during November-May were typically dominated by solutions following shallow flow paths, which were characterized by lower pH and higher Al and DOC concentrations. Biological activity strongly controlled NO3- and K(+). They were depressed during the growing season and elevated in the fall. Since 1987, East Bear Brook (EB), the reference stream, has been slowly responding to reduced but still elevated acid deposition. Calcium and Mg have declined fairly steadily and faster than SO4(-2), with consequent acidification (lower pH and higher inorganic Al). Eighteen years of experimental treatment with (NH(4))(2)SO(4) enhanced acidification of West Bear Brook's (WB) watershed. Despite the manipulation, NH4+ concentration remained below detection limits at WB, while leaching of NO3- increased. The seasonal pattern for NO3- concentrations in WB, however, remained similar to EB. Mean monthly concentrations of SO4(-2) have increased in WB since 1989, initially only during periods of high flow, but gradually also during base flow. Increases in mean monthly concentrations of Ca(2+), Mg(2+), and K(+) due to the manipulation occurred from 1989 until about 1995, during the depletion of base cations in shallow flow paths in WB. Progressive depletion of Ca and Mg at greater soil depth occurred, causing stream concentrations to decline to pre-manipulation values. Mean monthly Si concentrations did not change in EB or WB, suggesting that the manipulation had no effect on mineral weathering rates. DOC concentrations in both streams did not exhibit inter- or intra-annual trends.
Danz, Mari E.; Corsi, Steven R.; Graczyk, David J.; Bannerman, Roger T.
2010-01-01
Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area Ecoregion, the Northern Lakes and Forests Ecoregion, the North Central Hardwoods Ecoregion, and the Southeastern Wisconsin Till Plains Ecoregion. The Northern Lakes and Forests and the North Central Hardwoods Ecoregions were combined into one region for analysis due to a lack of sufficient data in each region. Urban watersheds, all located in the Southeastern Wisconsin Till Plains, were analyzed separately from rural watersheds as the Rural Southeastern Wisconsin Till Plains region and the Urban Southeastern Wisconsin Till Plains region. Results provide information on the distribution of loadings and streamflow between base flow and stormflow, the timing of loadings and streamflow throughout the year, and information regarding the number of days in which the majority of the annual loading is transported. The average contribution to annual solids loading from stormflow periods for the Driftless Area Ecoregion was 84 percent, the Northern Lakes and Forests/North Central Hardwoods region was 71 percent, the Rural Southeastern Wisconsin Till Plains region was 70 percent, and the Urban Southeastern Wisconsin Till Plains region was 90 percent. The average contributions to annual total phosphorus loading from stormflow periods were 72, 49, 61, and 76 percent for each of the respective regions. The average contributions to annual streamflow from stormflow periods are 20, 23, 31, and 50 percent for each of the respective regions. In all regions, the most substantial loading contributions for solids were in the late winter (February through March), spring (April through May), and early summer (June through July), with fall (October through November) and early winter (December through January) contributing the smallest loadings. The Northern Lakes and Forests/North Central Hardwoods region had some substantial loading in September. There was a similar pattern for total phosphorus loading in all regions, with the pattern somewhat less pronounced in urban watersheds. As with the loading results, average monthly streamflow values were greatest in late winter, spring, and early summer, with the lowest values typically in fall and early winter. Loading contributions were greater from stormflow than from base flow in all instances, except total phosphorus in the Northern Lakes and Forests/North Central Hardwoods region, which had equal or greater base-flow contribution for several months. Base flow constituted a greater percentage of the total streamflow than stormflow in all rural watersheds for all regions. Only a few storms each year dominated the annual loading totals for solids and total phosphorus. When daily loading values were ranked for the year, all regions reached 50 percent of the annual solids loading in the 5 highest loading days and nearly 50 percent of the annual total phosphorus loading in the 14 highest loading days.
Seven-Day Low Streamflows in the United States, 1940-2014
This map shows percentage changes in the minimum annual rate of water carried by rivers and streams across the country, based on the long-term rate of change from 1940 to 2014. Minimum streamflow is based on the consecutive seven-day period with the lowest average flow during a given year. Blue triangles represent an increase in low stream flow volumes, and brown triangles represent a decrease. Streamflow data were collected by the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators
Multiple causes of nonstationarity in the Weihe annual low-flow series
NASA Astrophysics Data System (ADS)
Xiong, Bin; Xiong, Lihua; Chen, Jie; Xu, Chong-Yu; Li, Lingqi
2018-02-01
Under the background of global climate change and local anthropogenic activities, multiple driving forces have introduced various nonstationary components into low-flow series. This has led to a high demand on low-flow frequency analysis that considers nonstationary conditions for modeling. In this study, through a nonstationary frequency analysis framework with the generalized linear model (GLM) to consider time-varying distribution parameters, the multiple explanatory variables were incorporated to explain the variation in low-flow distribution parameters. These variables are comprised of the three indices of human activities (HAs; i.e., population, POP; irrigation area, IAR; and gross domestic product, GDP) and the eight measuring indices of the climate and catchment conditions (i.e., total precipitation P, mean frequency of precipitation events λ, temperature T, potential evapotranspiration (EP), climate aridity index AIEP, base-flow index (BFI), recession constant K and the recession-related aridity index AIK). This framework was applied to model the annual minimum flow series of both Huaxian and Xianyang gauging stations in the Weihe River, China (also known as the Wei He River). The results from stepwise regression for the optimal explanatory variables show that the variables related to irrigation, recession, temperature and precipitation play an important role in modeling. Specifically, analysis of annual minimum 30-day flow in Huaxian shows that the nonstationary distribution model with any one of all explanatory variables is better than the one without explanatory variables, the nonstationary gamma distribution model with four optimal variables is the best model and AIK is of the highest relative importance among these four variables, followed by IAR, BFI and AIEP. We conclude that the incorporation of multiple indices related to low-flow generation permits tracing various driving forces. The established link in nonstationary analysis will be beneficial to analyze future occurrences of low-flow extremes in similar areas.
Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.
The contributions of climate and land cover impacts on streamflow in Norway
NASA Astrophysics Data System (ADS)
Huang, Shaochun; Eisner, Stephanie; Astrup, Rasmus; Beldring, Stein
2017-04-01
Located in high latitudes, Norway experienced significant changes in climate in the last 115 years. The average temperature rises at an average rate of 0.09 °C/decade while the annual precipitation increased by ca. 16% from 1900 to 2014 with statistical significance. In the meantime, the standing forest timber volume has increased continuously and almost tripled by the year 2012. Both the changes in climate and land cover would directly affect the streamflow and the hydropower production in Norway, which accounts for about 98% of the total electricity production of the whole country. However, there is a lack of understanding of the contribution of these different drivers to changes in streamflow in Norway, although such knowledge provides important information for future changes in water availability. This paper aims to quantify the relative contribution of climate and land cover impacts on the mean annual and seasonal streamflow (including total, quick and base flow) using the hydrological model HBV for 56 natural catchments in Norway. The changes in forest extend and structure are considered as the major land cover changes in these catchments. The discharge data are split into two periods (1961 - 1988 and 1989 - 2015) as the reference and changing periods. The HBV model was firstly calibrated in the reference period for all catchment separately and the simulated discharge in the changing period was used to calculate the relative contributions. The results show that the climate change played a bigger role than land cover change on annual total, quick and base flows in 62%, 48% and 82% studied basins, respectively. The climate change is the dominant driver on streamflows in winter and spring in most basins, while the land use change affected more significantly on summer flows as well as the base flow in autumn. Finally, the resulted contribution will be compared with the changes in climate and forest characteristics as external validation.
How to make a tree ring: Coupling stem water flow and cambial activity in mature Alpine conifers
NASA Astrophysics Data System (ADS)
Peters, Richard L.; Frank, David C.; Treydte, Kerstin; Steppe, Kathy; Kahmen, Ansgar; Fonti, Patrick
2017-04-01
Inter-annual tree-ring measurements are used to understand tree-growth responses to climatic variability and reconstruct past climate conditions. In parallel, mechanistic models use experimentally defined plant-atmosphere interactions to explain past growth responses and predict future environmental impact on forest productivity. Yet, substantial inconsistencies within mechanistic model ensembles and mismatches with empirical data indicate that significant progress is still needed to understand the processes occurring at an intra-annual resolution that drive annual growth. However, challenges arise due to i) few datasets describing climatic responses of high-resolution physiological processes over longer time-scales, ii) uncertainties on the main mechanistic process limiting radial stem growth and iii) complex interactions between multiple environmental factors which obscure detection of the main stem growth driver, generating a gap between our understanding of intra- and inter-annual growth mechanisms. We attempt to bridge the gap between inter-annual tree-ring width and sub-daily radial stem-growth and provide a mechanistic perspective on how environmental conditions affect physiological processes that shape tree rings in conifers. We combine sub-hourly sap flow and point dendrometer measurements performed on mature Alpine conifers (Larix decidua) into an individual-based mechanistic tree-growth model to simulate sub-hourly cambial activity. The monitored trees are located along a high elevational transect in the Swiss Alps (Lötschental) to analyse the effect of increasing temperature. The model quantifies internal tree hydraulic pathways that regulate the turgidity within the cambial zone and induce cell enlargement for radial growth. The simulations are validated against intra-annual growth patterns derived from xylogenesis data and anatomical analyses. Our efforts advance the process-based understanding of how climate shapes the annual tree-ring structures and could potentially improve our ability to reconstruct the climate of the past and predict future growth under changing climate.
Selected low-flow frequency statistics for continuous-record streamgages in Georgia, 2013
Gotvald, Anthony J.
2016-04-13
This report presents the annual and monthly minimum 1- and 7-day average streamflows with the 10-year recurrence interval (1Q10 and 7Q10) for 197 continuous-record streamgages in Georgia. Streamgages used in the study included active and discontinued stations having a minimum of 10 complete climatic years of record as of September 30, 2013. The 1Q10 and 7Q10 flow statistics were computed for 85 streamgages on unregulated streams with minimal diversions upstream, 43 streamgages on regulated streams, and 69 streamgages known, or considered, to be affected by varying degrees of diversions upstream. Descriptive information for each of these streamgages, including the U.S. Geological Survey (USGS) station number, station name, latitude, longitude, county, drainage area, and period of record analyzed also is presented.Kendall’s tau nonparametric test was used to determine the statistical significance of trends in annual and monthly minimum 1-day and 7-day average flows for the 197 streamgages. Significant negative trends in the minimum annual 1-day and 7-day average streamflow were indicated for 77 of the 197 streamgages. Many of these significant negative trends are due to the period of record ending during one of the recent droughts in Georgia, particularly those streamgages with record through the 2013 water year. Long-term unregulated streamgages with 70 or more years of record indicate significant negative trends in the annual minimum 7-day average flow for central and southern Georgia. Watersheds for some of these streamgages have experienced minimal human impact, thus indicating that the significant negative trends observed in flows at the long-term streamgages may be influenced by changing climatological conditions. A Kendall-tau trend analysis of the annual air temperature and precipitation totals for Georgia indicated no significant trends. A comprehensive analysis of causes of the trends in annual and monthly minimum 1-day and 7-day average flows in central and southern Georgia is outside the scope of this study. Further study is needed to determine some of the causes, including both climatological and human impacts, of the significant negative trends in annual minimum 1-day and 7-day average flows in central and southern Georgia.To assess the changes in the annual 1Q10 and 7Q10 statistics over time for long-term continuous streamgages with significant trends in record, the annual 1Q10 and 7Q10 statistics were computed on a decadal accumulated basis for 39 streamgages having 40 or more years of record that indicated a significant trend. Records from most of the streamgages showed a decline in 7Q10 statistics for the decades of 1980–89, 1990–99, and 2000–09 because of the recent droughts in Georgia. Twenty four of the 39 streamgages had complete records from 1980 to 2010, and records from 23 of these gages exhibited a decline in the 7Q10 statistics during this period, ranging from –6.3 to –76.2 percent with a mean of –27.3 percent. No attempts were made during this study to adjust streamflow records or statistical analyses on the basis of trends.The monthly and annual 1Q10 and 7Q10 flow statistics for the entire period of record analyzed in the study are incorporated into the USGS StreamStatsDB, which is a database accessible to users through the recently released USGS StreamStats application for Georgia. StreamStats is a Web-based geographic information system that provides users with access to an assortment of analytical tools that are useful for water-resources planning and management, and for engineering design applications, such as the design of bridges. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected streamgages.
Chalise, D. R.; Haj, Adel E.; Fontaine, T.A.
2018-01-01
The hydrological simulation program Fortran (HSPF) [Hydrological Simulation Program Fortran version 12.2 (Computer software). USEPA, Washington, DC] and the precipitation runoff modeling system (PRMS) [Precipitation Runoff Modeling System version 4.0 (Computer software). USGS, Reston, VA] models are semidistributed, deterministic hydrological tools for simulating the impacts of precipitation, land use, and climate on basin hydrology and streamflow. Both models have been applied independently to many watersheds across the United States. This paper reports the statistical results assessing various temporal (daily, monthly, and annual) and spatial (small versus large watershed) scale biases in HSPF and PRMS simulations using two watersheds in the Black Hills, South Dakota. The Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (r">rr), and coefficient of determination (R2">R2R2) statistics for the daily, monthly, and annual flows were used to evaluate the models’ performance. Results from the HSPF models showed that the HSPF consistently simulated the annual flows for both large and small basins better than the monthly and daily flows, and the simulated flows for the small watershed better than flows for the large watershed. In comparison, the PRMS model results show that the PRMS simulated the monthly flows for both the large and small watersheds better than the daily and annual flows, and the range of statistical error in the PRMS models was greater than that in the HSPF models. Moreover, it can be concluded that the statistical error in the HSPF and the PRMSdaily, monthly, and annual flow estimates for watersheds in the Black Hills was influenced by both temporal and spatial scale variability.
Smith, Kirk P.
2013-01-01
The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of ongoing development in the drinking-water source area, the Cambridge water supply has the potential to be affected by a wide variety of contaminants. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Hobbs Brook and Stony Brook Basins, which compose the drinking-water source area, since 1997 (water year 1997) through continuous monitoring and discrete sample collection and, since 2004, through systematic collection of streamwater samples during base-flow and stormflow conditions at five primary sampling stations in the drinking-water source area. Four primary sampling stations are on small tributaries in the Hobbs Brook and Stony Brook Basins; the fifth primary sampling station is on the main stem of Stony Brook and drains about 93 percent of the Cambridge drinking-water source area. Water samples also were collected at six secondary sampling stations, including Fresh Pond Reservoir, the final storage reservoir for the raw water supply. Storm runoff and base-flow concentrations of calcium (Ca), chloride (Cl), sodium (Na), and sulfate (SO4) were estimated from continuous records of streamflow and specific conductance for six monitoring stations, which include the five primary sampling stations. These data were used to characterize current water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Hobbs Brook and Stony Brook Basins. These data also were used to describe how streamwater quality is affected by various watershed characteristics and provide information to guide future watershed management. Water samples were analyzed for physical properties and concentrations of Ca, Cl, Na, and SO4, total nitrogen (TN), total phosphorus (TP), caffeine, and a suite of 59 polar pesticides. Values of physical properties and constituent concentrations varied widely, particularly in samples from tributaries. Median concentrations of Ca, Cl, Na, and SO4 in samples collected in the Hobbs Brook Basin (39.8, 392, 207, and 21.7 milligrams per liter (mg/L), respectively) were higher than those for the Stony Brook Basin (17.8, 87.7, 49.7, and 14.7 mg/L, respectively). These differences in major ion concentrations are likely related to the low percentages of developed land and impervious area in the Stony Brook Basin. Concentrations of dissolved Cl and Na in samples, and those estimated from continuous records of specific conductance (particularly during base flow), often were greater than the U.S. Environmental Protection Agency (USEPA) secondary drinking-water guideline for Cl (250 mg/L), the chronic aquatic-life guideline for Cl (230 mg/L), and the Commonwealth of Massachusetts, Executive Office of Energy and Environmental Affairs drinking-water guideline for Na (20 mg/L). Mean annual flow-weighted concentrations of Ca, Cl, and Na were generally positively correlated with the area of roadway land use in the subbasins. Correlations between mean annual concentrations of Ca and SO4 in base flow and total roadway, total impervious, and commercial-industrial land uses were statistically significant. Concentrations of TN (range of 0.42 to 5.13 mg/L in all subbasins) and TP (range of 0.006 to 0.80 mg/L in all subbasins) in tributary samples did not differ substantially between the Hobbs Brook and Stony Brook Basins. Concentrations of TN and TP in samples collected during water years 2004–07 exceeded proposed reference concentrations of 0.57 and 0.024 mg/L, in 94 and 56 percent of the samples, respectively. Correlations between annual flow-weighted concentrations of TN and percentages of recreational land use and water-body area were statistically significant; however, no significant relation was found between TP and available land-use information. The volume of streamflow affected water-quality conditions at the primary sampling stations. Turbidity and concentrations of TP were positively correlated with streamflow. In contrast, concentrations of major ions were negatively correlated with streamflow, indicating that these constituents were diluted during stormflows. Concentrations of TN were not correlated with streamflow. Twenty-five pesticides and caffeine were detected in water samples collected in the drinking-water source area and in raw water collected from the Cambridge water-treatment facility intake at the Fresh Pond Reservoir. Imidacloprid, norflurazon, and siduron were the most frequently detected pesticides with the frequency of detections ranging from about 24 to 41 percent. Caffeine was detected in about 37 percent of water samples at concentrations ranging from 0.003 to 1.82 micrograms per liter (μg/L). Although some of the detected pesticides degrade rapidly, norflurazon and siduron are relatively stable and are able to immigrate though the serial reservoir system. Concentrations of 2,4-D, carbaryl, imazaquin, MCPA (2-methyl-4-chlorophenoxyacetic acid), metsulfuron-methyl, norflurazon, siduron, and caffeine were detected more frequently in stormflow samples than in base-flow samples. Concentrations of pesticides did not exceed USEPA drinking-water guidelines or other health standards and were several orders of magnitude less than the lethal exposure level established for several fish species common to the drinking-water source area. Imidacloprid, an insecticide, was the only pesticide with a concentration exceeding available long-term aquatic-life guidelines. Several pesticides correlated significantly with the amount of recreational, residential, and commercial area in the tributary subbasins. Mean annual base-flow concentrations of caffeine correlated significantly with parking-lot land use. For most tributaries, about 70 percent of the annual loads of Ca, Cl, Na, and SO4 were associated with base flow. Upward temporal trends in annual loads of Cl and Na were identified on the basis of data for water years 1998 to 2008 for the outlet of the Cambridge Reservoir in the Hobbs Brook Basin; however, similar trends were not identified for the main stem of Stony Brook downstream from the reservoir. The proportions of the TN load attributed to base flow and stormflow were similar in each tributary. In contrast, more than 83 percent of the TP loads in the tributaries and about 73 percent of the TP load in main stem of Stony Brook were associated with stormflow. Mean annual yields of Ca, Cl, Na, and SO4 in the Stony Brook Reservoir watershed, which represents most of the drinking-water source area, were 14, 85, 46, and 9 metric tons per square kilometer, respectively. Mean annual yields among the individual tributary subbasins varied extensively. Mean annual yields for the respective constituents increased with an increase in roadway and parking-lot area in the tributary subbasins. Mean annual yields of TN in the tributary subbasins ranged from about 740 to more than 1,200 kilograms per square kilometer and exceeded the yield for the main stem of Stony Brook at USGS station 01104460 upstream from the Stony Brook Reservoir. Mean annual yields estimated for the herbicides 2,4-D and imidacloprid ranged from 34 to 310 grams per square kilometer (g/km2) and 3 to 170 g/km2, respectively. Annual loads for 2,4-D were entirely associated with stormflow. The largest annual load for imidacloprid was estimated for the main stem of Stony Brook; however, the highest annual yield for this pesticide, as well as for benomyl, carbaryl, metalaxyl, and propiconazole, was estimated for a tributary to the Stony Brook Reservoir that drains largely residential and recreational areas. Mean annual yields for the herbicide siduron ranged from 6.9 to 35 g/km2 with most of the loads associated with stormflow. Mean annual yields for the insecticide diuron ranged from 2.1 to 4.4 g/km2. Annual yields of caffeine ranged from 11 to 410 g/km2.
Application of effective discharge analysis to environmental flow decision-making
McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.
2016-01-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Application of Effective Discharge Analysis to Environmental Flow Decision-Making.
McKay, S Kyle; Freeman, Mary C; Covich, Alan P
2016-06-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Dynamics of Phosphorus export from small forested catchments in low mountain ranges in Germany
NASA Astrophysics Data System (ADS)
Julich, Stefan; Julich, Dorit; Benning, Raphael; Feger, Karl-Heinz
2017-04-01
Phosphorus (P) plays an important role in the nutrition of forest ecosystem. The transport of P in forest soils predominantly occurs along preferential water flow pathways bypassing large parts of the soil matrix. Therefore, rapid flow processes by preferential flow and/or during storm events may lead to significant P losses from forest soils. However only little knowledge about the dynamics, magnitude and driving processes of P exports into surface water exist. In this contribution, we present the results of two studies where two small forested catchments have been monitored for a period around 3 years. Both catchments are situated in low mountain ranges in Saxony (catchment size 21 ha) and Thuringia (catchment size 5 ha) representing medium P contents in the topsoil of 1142 mg kg-1 and 834 mg kg-1 respectively. During the regular sampling (monthly to weekly sampling frequency), the mean Total-P concentrations of 23 μg L-1(Thuringian Site) and 8 μg L-1(Saxonian Site) have been measured. However, during single storm events Total-P concentrations increased considerably with maximum concentrations of 134 μg L-1(Thuringian Site) and 203 μg L-1(Saxonian Site). Our findings indicate that during storm events, especially after longer dry periods, significant amounts of phosphorus can be exported from forest ecosystems. Comparison of discharge-concentration patterns of Total-P, Nitrogen and DOC, as well as dye tracer experiments, suggest that preferential flow along biopores and stone surfaces, and the interface between mineral soil and litter layer are main pathways of export from forests. For the site in Saxony we calculated mean annual export rates of 32.8 to 33.5 g ha-1 a-1 based on the weekly sampling with different load calculation methods (flow weighted methods up to linear regression models). If the events are included into the annual load calculation the mean annual export fluxes increase from 47.8 to 58.6 g ha-1 a-1 based on the different load calculation methods. This implies that the estimation of P-exports from forested catchments need to be based on appropriate monitoring schemes and load estimation methods.
Catalina Segura; Davide Lazzati; Arumugam Sankarasubramanian
2013-01-01
A recent study employed a broken power-law (BPL) distribution for understanding the scaling frequency of bankfull discharge in snowmelt-dominated basins. This study, grounded from those findings, investigated the ability of a BPL function to describe the distribution of daily flows above the mean annual flow in 1217 sites across the conterminous U.S. (CONUS). The...
Modeled future peak streamflows in four coastal Maine rivers
Hodgkins, Glenn A.; Dudley, Robert W.
2013-01-01
To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.
Böhlke, J.K.; Michel, R.L.
2009-01-01
Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO4= differ by a factor of 2, and seasonal variations in SO4= concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing 3H, 35S, ??34S, ??2H, ??18O, ??3He, CFC-12, SF6, and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO4= and radioactive 35S were about twice as high in throughfall as in open deposition, but the weighted composite values of 35S/S (11.1 and 12.1 ?? 10- 15) and ??34S (+ 3.8 and + 4.1???) were similar. In both streams (Shelter Run, Mill Run), 3H concentrations and ??34S values during high flow were similar to those of modern deposition, ??2H and ??18O values exhibited damped seasonal variations, and 35S/S ratios (0-3 ?? 10- 15) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO4= in both watersheds. In the Mill Run watershed, 3H concentrations in stream base flow (10-13??TU) were consistent with relatively young groundwater discharge, most ??34S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO4= was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, 3H concentrations in stream base flow (1-3??TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow ??34S values (+ 1.6???) were significantly lower than the modern deposition values, and the annual export rate of SO4= was less than the modern deposition rate. Concentrations of 3H and 35S in Shelter Run base flow, and of 3H, 3He, CFC-12, SF6, and 35S in a spring discharging to Shelter Run, all were consistent with a bimodal distribution of discharging ground-water ages with approximately 5-20% less than a few years old and 75-95% more than 40??years old. These results provide evidence for 3 important time-scales of SO4= transport through the watersheds: (1) short-term (weekly to monthly) storage and release of dry deposition in the forest canopy between precipitation events; (2) mid-term (seasonal to interannual) cycles in net storage in the near-surface environment, and (3) long-term (decadal to centennial) storage in deep ground water that appears to be related to relatively low SO4= concentrations in spring discharge that dominates Shelter Run base flow. It is possible that the relatively low concentrations and low ??34S values of SO4= in spring discharge and Shelter Run base flow may reflect those of atmospheric deposition before the middle of the 20th century. In addition to storage in soils and biota, variations in ground-water residence times at a wide range of time scales may have important effects on monitoring, modeling, and predicting watershed responses to changing atmospheric deposition in small watersheds.
Landers, Mark N.; Ankcorn, Paul D.
2008-01-01
The influence of onsite septic wastewater-treatment systems (OWTS) on base-flow quantity needs to be understood to evaluate consumptive use of surface-water resources by OWTS. If the influence of OWTS on stream base flow can be measured and if the inflow to OWTS is known from water-use data, then water-budget approaches can be used to evaluate consumptive use. This report presents a method to evaluate the influence of OWTS on ground-water recharge and base-flow quantity. Base flow was measured in Gwinnett County, Georgia, during an extreme drought in October 2007 in 12 watersheds that have low densities of OWTS (22 to 96 per square mile) and 12 watersheds that have high densities (229 to 965 per square mile) of OWTS. Mean base-flow yield in the high-density OWTS watersheds is 90 percent greater than in the low-density OWTS watersheds. The density of OWTS is statistically significant (p-value less than 0.01) in relation to base-flow yield as well as specific conductance. Specific conductance of base flow increases with OWTS density, which may indicate influence from treated wastewater. The study results indicate considerable unexplained variation in measured base-flow yield for reasons that may include: unmeasured processes, a limited dataset, and measurement errors. Ground-water recharge from a high density of OWTS is assumed to be steady state from year to year so that the annual amount of increase in base flow from OWTS is expected to be constant. In dry years, however, OWTS contributions represent a larger percentage of natural base flow than in wet years. The approach of this study could be combined with water-use data and analyses to estimate consumptive use of OWTS.
Weaver, J. Curtis
2015-03-12
In 2013, the U.S. Geological Survey, in cooperation with the North Carolina Division of Water Resources, compiled updated low-flow characteristics and flow-duration statistics for selected continuous-record streamgages in North Carolina. The compilation of updated streamflow statistics provides regulators and planners with relevant hydrologic information reflective of the recent droughts, which can be used to better manage the quantity and quality of streams in North Carolina. Streamflow records available through the 2012 water year1 were used to determine the annual (based on climatic year2) and winter 7-day, 10-year (7Q10, W7Q10) low-flow discharges, the 30-day, 2-year (30Q2) low-flow discharge, and the 7-day, 2-year (7Q2) low-flow discharge. Consequently, streamflow records available through March 31, 2012 (or the 2011 climatic year) were used to determine the updated low-flow characteristics. Low-flow characteristics were published for 177 unregulated sites, 56 regulated sites, and 33 sites known or considered to be affected by varying degrees of minor regulation and (or) diversions upstream from the streamgages (266 sites total). The updated 7Q10 discharges were compared for 63 streamgages across North Carolina where (1) long-term streamflow record consisted of 30 or more climatic years of data available as of the 1998 climatic year, and (2) streamflows were not known to be regulated. The 7Q10 discharges did not change for 3 sites, whereas increases and decreases were noted at 5 and 55 sites, respectively. Positive changes (increases) ranged from 4.3 percent (site 362) to 34.1 percent (site 112) with a median of 13.2 percent. Negative percentage changes (decreases) ranged from –3.3 percent (site 514) to –80.0 percent (site 308) with a median of –22.2 percent. The median percentage change for all 63 streamgages was –18.4 percent. Streamflow statistics determined as a part of this compilation included minimum, mean, maximum, and flow-duration statistics of daily mean discharges for categorical periods. Flow-duration statistics based on the daily mean discharge records were compiled in this study for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles. Flow-duration statistics were determined for each complete water year of record at a streamgage as well as the available period of record (or selected periods if flows were regulated) and selected seasonal, monthly, and calendar day periods. In addition to the streamflow statistics compiled for each of the water years, the number of days the daily mean discharge was at or below the 10th percentile was summed for each water year as well as the number of events during the water year when streamflow was consistently at or below the 10th percentile. All low-flow characteristics for the streamgages were added into the StreamStatsDB, which is a database accessible to users through the recently released USGS StreamStats application for North Carolina. The minimum, mean, maximum, and flow-duration statistics of daily mean discharges based on the available (or selected if regulated flows) period of record were updated in the North Carolina StreamStatsDB. However, for the selected seasonal, monthly, calendar day, and annual water year periods, tab-delimited American Standard Code for Information Interchange (ASCII) tables of the streamflow statistics are available online to users from a link provided in the StreamStats application. 1The annual period from October 1 through September 30, designated by the year in which the period ends. 2The annual period from April 1 through March 31, designated by the year in which the period begins.
40 CFR 98.473 - Calculating CO2 received.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...
40 CFR 98.473 - Calculating CO2 received.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...
40 CFR 98.473 - Calculating CO2 received.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...
40 CFR 98.473 - Calculating CO2 received.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...
Smith, S. Jerrod; Ellis, John H.; Wagner, Derrick L.; Peterson, Steven M.
2017-09-28
On September 8, 1981, the Oklahoma Water Resources Board established regulatory limits on the maximum annual yield of groundwater (343,042 acre-feet per year) and equal-proportionate-share (EPS) pumping rate (1.0 acre-foot per acre per year) for the North Fork Red River aquifer. The maximum annual yield and EPS were based on a hydrologic investigation that used a numerical groundwater-flow model to evaluate the effects of potential groundwater withdrawals on groundwater availability in the North Fork Red River aquifer. The Oklahoma Water Resources Board is statutorily required (every 20 years) to update the hydrologic investigation on which the maximum annual yield and EPS were based. Because 20 years have elapsed since the final order was issued, the U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an updated hydrologic investigation and evaluated the effects of potential groundwater withdrawals on groundwater flow and availability in the North Fork Red River aquifer in Oklahoma. This report describes a hydrologic investigation of the North Fork Red River aquifer that includes an updated summary of the aquifer hydrogeology. As part of this investigation, groundwater flow and availability were simulated by using a numerical groundwater-flow model.The North Fork Red River aquifer in Beckham, Greer, Jackson, Kiowa, and Roger Mills Counties in Oklahoma is composed of about 777 square miles (497,582 acres) of alluvium and terrace deposits along the North Fork Red River and tributaries, including Sweetwater Creek, Elk Creek, Otter Creek, and Elm Fork Red River. The North Fork Red River is the primary source of surface-water inflow to Lake Altus, which overlies the North Fork Red River aquifer. Lake Altus is a U.S. Bureau of Reclamation reservoir with the primary purpose of supplying irrigation water to the Lugert-Altus Irrigation District.A hydrogeologic framework was developed for the North Fork Red River aquifer and included a definition of the aquifer extent and potentiometric surface, as well as a description of the textural and hydraulic properties of aquifer materials. The hydrogeologic framework was used in the construction of a numerical groundwater-flow model of the North Fork Red River aquifer described in this report. A conceptual model of aquifer inflows and outflows was developed for the North Fork Red River aquifer to constrain the construction and calibration of a numerical groundwater-flow model that reasonably represented the groundwater-flow system. The conceptual-model water budget estimated mean annual inflows to and outflows from the North Fork Red River aquifer for the period 1980–2013 and included a sub-accounting of mean annual inflows and outflows for the portions of the aquifer that were upgradient and downgradient from Lake Altus. The numerical groundwater-flow model simulated the period 1980–2013 and was calibrated to water-table-altitude observations at selected wells, monthly base flow at selected streamgages, net streambed seepage as estimated for the conceptual model, and Lake Altus stage.Groundwater-availability scenarios were performed by using the calibrated numerical groundwater-flow model to (1) estimate the EPS pumping rate that guarantees a minimum 20-, 40-, and 50-year life of the aquifer, (2) quantify the potential effects of projected well withdrawals on groundwater storage over a 50-year period, and (3) simulate the potential effects of a hypothetical (10-year) drought on base flow and groundwater storage. The results of the groundwater-availability scenarios could be used by the Oklahoma Water Resources Board to reevaluate the maximum annual yield of groundwater from the North Fork Red River aquifer.EPS scenarios for the North Fork Red River aquifer were run for periods of 20, 40, and 50 years. The 20-, 40-, and 50-year EPS pumping rates under normal recharge conditions were 0.59, 0.52, and 0.52 acre-foot per acre per year, respectively. Given the 497,582-acre aquifer area, these rates correspond to annual yields of about 294,000, 259,000, and 259,000 acre-feet per year, respectively. Groundwater storage at the end of the 20-year EPS scenario was about 951,000 acre-feet, or about 1,317,000 acre-feet (58 percent) less than the starting EPS scenario storage. This decrease in storage was equivalent to a mean water-level decline of about 22 feet. Most areas of the active alluvium near the North Fork Red River, Elk Creek, and Elm Fork Red River remained partially saturated through the end of the EPS scenario because of streambed seepage. Lake Altus storage was reduced to zero after 6–7 years of EPS pumping in each scenario.Projected 50-year pumping scenarios were used to simulate the effects of selected well withdrawal rates on groundwater storage of the North Fork Red River aquifer and base flows in the North Fork Red River upstream from Lake Altus. The effects of well withdrawals were evaluated by comparing changes in groundwater storage and base flow between four 50-year scenarios using (1) no groundwater pumping, (2) mean pumping rates for the study period (1980–2013), (3) 2013 pumping rates, and (4) increasing demand pumping rates. The increasing demand pumping rates assumed a 20.4-percent increase in pumping over 50 years based on 2010–60 demand projections for southwest Oklahoma.Groundwater storage after 50 years with no pumping was about 2,606,000 acre-feet, or 137,000 acre-feet (5.5 percent) greater than the initial groundwater storage; this groundwater storage increase is equivalent to a mean water-level increase of 2.3 feet. Groundwater storage after 50 years with the mean pumping rate for the study period (1980–2013) was about 2,476,000 acre-feet, or about 7,000 acre-feet (0.3 percent) greater than the initial groundwater storage; this groundwater storage increase is equivalent to a mean water-level increase of 0.1 foot. Groundwater storage at the end of the 50-year period with 2013 pumping rates was about 2,398,000 acre-feet, or about 70,000 acre-feet (2.8 percent) less than the initial storage; this groundwater storage decrease is equivalent to a mean water-level decline of 1.2 feet. Groundwater storage at the end of the 50-year period with increasing demand pumping rates was about 2,361,000 acre-feet, or about 107,000 acre-feet (4.3 percent) less than the initial storage; this groundwater storage decrease is equivalent to a mean water-level decline of 1.8 feet. Mean annual base flow simulated at the Carter streamgage (07301500) on North Fork Red River increased by about 4,000 acre-feet (10 percent) after 50 years with no pumping and decreased by about 5,400 acre-feet (13 percent) after 50 years with increasing demand pumping rates. Mean annual base flow simulated at the North Fork Red River inflow to Lake Altus increased by about 7,400 acre-feet (15 percent) after 50 years with no pumping and decreased by about 5,800 acre-feet (12 percent) after 50 years with increasing demand pumping rates.A hypothetical 10-year drought scenario was used to simulate the effects of a prolonged period of reduced recharge on groundwater storage and Lake Altus stage and storage. Drought effects were quantified by comparing the results of the drought scenario to those of the calibrated numerical model (no drought). To simulate the hypothetical drought, recharge in the calibrated numerical model was reduced by 50 percent during the simulated drought period (1984–1993). Groundwater storage at the end of the drought period was about 2,271,000 acre-feet, or about 426,000 acre-feet (15.8 percent) less than the groundwater storage of the calibrated numerical model. This decrease in groundwater storage is equivalent to a mean water-table-altitude decline of 7.1 feet. At the end of the 10-year hypothetical drought period, base flows at the Sweetwater (07301420), Carter (07301500), Headrick (07305000), and Snyder (07307010) streamgages had decreased by about 37, 61, 44, and 45 percent, respectively. The minimum Lake Altus storage simulated during the drought period was 403 acre-feet, which was a decline of 92 percent from the nondrought storage. Reduced base flows in the North Fork Red River were the primary cause of Lake Altus storage declines.
Koltun, G.F.
2009-01-01
This report describes the results of a study to determine frequency characteristics of postregulation annual peak flows at streamflow-gaging stations at or near the Lockington, Taylorsville, Englewood, Huffman, and Germantown dry dams in the Miami Conservancy District flood-protection system (southwestern Ohio) and five other streamflow-gaging stations in the Great Miami River Basin further downstream from one or more of the dams. In addition, this report describes frequency characteristics of annual peak elevations of the dry-dam pools. In most cases, log-Pearson Type III distributions were fit to postregulation annual peak-flow values through 2007 (the most recent year of published peak-flow values at the time of this analysis) and annual peak dam-pool storage values for the period 1922-2008 to determine peaks with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. For one streamflow-gaging station (03272100) with a short period of record, frequency characteristics were estimated by means of a process involving interpolation of peak-flow yields determined for an upstream and downstream gage. Once storages had been estimated for the various recurrence intervals, corresponding dam-pool elevations were determined from elevation-storage ratings provided by the Miami Conservancy District.
Kuhn, Gerhard
2002-01-01
The U.S Geological Survey, in cooperation with the Grand Mesa, Uncompahgre, and Gunnison National Forests, began a study in 2000 to develop selected streamflow characteristics for 60 streamflow-gaging stations in and near the Grand Mesa, Uncompahgre, and Gunnison National Forests. The study area is located in southwestern Colorado within the Gunnison River, Dolores River, and Plateau Creek Basins, which are tributaries of the Colorado River. In addition to presenting the compiled daily, monthly, and annual discharge data for the 60 stations, the report presents tabular and graphical results for the following computed streamflow characteristics: (1) Instantaneous peak-flow frequency; (2) flow duration for daily mean discharges on an annual (water year) basis and on a monthly basis, and flow duration for the annual and monthly mean discharges; (3) low-flow and high-flow frequency of daily mean discharges for periods of 1, 3, 7, 15, 30, 60, 120, and 183 consecutive days; and (4) annual and monthly mean and median discharges for each year and month of record, and frequency of the annual and monthly mean and median discharges. All discharge data and results from the streamflow-characteristics analyses are presented in Microsoft Excel workbooks on the enclosed CD-ROM.
Urban base flow with low impact development
Bhaskar, Aditi; Hogan, Dianna M.; Archfield, Stacey A.
2016-01-01
A novel form of urbanization, low impact development (LID), aims to engineer systems that replicate natural hydrologic functioning, in part by infiltrating stormwater close to the impervious surfaces that generate it. We sought to statistically evaluate changes in a base flow regime because of urbanization with LID, specifically changes in base flow magnitude, seasonality, and rate of change. We used a case study watershed in Clarksburg, Maryland, in which streamflow was monitored during whole-watershed urbanization from forest and agricultural to suburban residential development using LID. The 1.11-km2 watershed contains 73 infiltration-focused stormwater facilities, including bioretention facilities, dry wells, and dry swales. We examined annual and monthly flow during and after urbanization (2004–2014) and compared alterations to nearby forested and urban control watersheds. We show that total streamflow and base flow increased in the LID watershed during urbanization as compared with control watersheds. The LID watershed had more gradual storm recessions after urbanization and attenuated seasonality in base flow. These flow regime changes may be because of a reduction in evapotranspiration because of the overall decrease in vegetative cover with urbanization and the increase in point sources of recharge. Precipitation that may once have infiltrated soil, been stored in soil moisture to be eventually transpired in a forested landscape, may now be recharged and become base flow. The transfer of evapotranspiration to base flow is an unintended consequence to the water balance of LID.
Retrospective Analysis of Low Flows at Headwater Watersheds in Wyoming
NASA Astrophysics Data System (ADS)
Voutchkova, D. D.; Miller, S. N.
2016-12-01
Understanding summer low-flow variability and change in the mountainous West has important implications for water allocations downstream and for maintaining water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs. Wildfires and insect infestations are classical disturbance hydrology topics. It is unclear, however, what are their effects on streamflow and in particular low-flows, when vegetation disturbances are overlapping in time and combined with highly variable and potentially changing local climate. The purpose of this study, therefore, is to quantify changes in low-flows resulting from disturbance in headwater streams. Here we present a retrospective analysis based on: (1) 49-75 complete water years (wy) of daily streamflow data (USGS) for 14 high-elevation headwater watersheds with varying areas (60-1730 km2, 86-100% of watershed area >2000masl) and evergreen forest cover (15-82%), (2) 25-36 complete wy of daily snow-water equivalent accumulation (SWE) and precipitation data from Wyoming SNOTEL stations, (3) burned area boundaries for 20wy (MTBS project), (4) aerial surveys by R1, R2, R4 Forest Service Regions for 18wy (data on tree mortality). We quantify the change in various low-flow characteristics (e.g. post-snowmelt baseflow, Q90 and Q95, 3-,7-, 30- and 90-day annual minima etc.) while accounting for local inter- and multi-annual climate variability by using SWE accumulation data, as it integrates both temperature and precipitation changes. Our approach differs from typical before-after field-based investigation for paired watersheds, as it provides a synthesis over large temporal and spatial scales, resulting in spectrum of possible hydrologic responses due to varying disturbance severity. Quantifying the changes in low-flows and low-flow variability will improve our understanding and will facilitate water management and planning at local state-wide level.
Wisconsin Recertification Manual for Public Librarians.
ERIC Educational Resources Information Center
Fox, Robert; And Others
Designed to assist public librarians certified after May 1, 1979, this manual explains Wisconsin recertification requirements based on continuing education. It provides continuing education guidelines, a flow chart of the recertification process, an individual learning activity form, an annual report form, a conversion chart for assignment of…
Global estimate of net annual carbon flow to phenylpropanoid metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, A.B.; Norman, E.G.; Turpin, D.H.
1993-05-01
The steady increase in the concentration of CO[sub 2] in the atmosphere is the focus of renewed interest in the global carbon cycle. Current research is centered upon modeling the effects of the increasing CO[sub 2] concentrations, and thus global warning, on global plant homeostasis. It has been estimated that the annual net primary production (NPP) values for terrestrial and oceanic biomes are 59.9 and 35 Pg C-yr[sup [minus]1], respectively (Melillo et al., 1990). Based on these NPP values, we have estimated the annual C flow to phenlpropanoid metabolism. In our calculation, lignin was used as a surrogate for phenylpropanoidmore » compounds, as lignin is the second most abundant plant polymer. This approach means that our estimate defines the lower limit of C flow to phenylpropanoid metabolism. Each biome was considered separately to determine the percent of the NPP which was directed to the biosynthesis of leaves, stems/branches, and roots. From published values of the lignin content of these organs, the total amount of C directed to the biosynthesis of lignin in each biome was determined. This was used to obtain a global value. Implications of these estimates will be discussed with reference to plant carbon and nitrogen metabolism.« less
Channel degradation in southeastern Nebraska Rivers
Wahl, Kenneth L.; Weiss, Linda S.; ,
1995-01-01
Many stream channels in southeastern Nebraska were dredged and straightened during 1904-15. The resulting channels were both shorter and steeper than the original channels. Tests for time trends were conducted using the nonparametric Kendall tau test to see if the channels have responded to these changes. Tests were conducted on the stages associated with specific discharges and on measurement characteristics at gaging stations. Tests also were conducted on hydrologic forcing variables (annual mean precipitation, annual peak discharges, annual mean discharge, and annual mean base flows). The null hypothesis (that the data were free from trend) was rejected for stages associated with the mean of the annual discharges for 6 of 7 gaging stations in the study area, but was accepted for all 3 gages on the main stem of the Missouri River. The trends at the 6 streamflow gaging stations were for decreasing stages (degrading channels) for specific discharges. The rates of change ranged from about 0.2 to 0.5 m per decade. Mean stream bed elevations computed for individual discharge measurements at these streamflow gaging stations confirmed that the channels are degrading. However, neither the precipitation nor flow variables show evidence of trends. The tendency for the channels to degrade thus cannot be attributed to changes in runoff characteristics and are assumed to be a response to the channel modifications in the early 1900's. Indications are that the channels presently are continuing to degrade.
Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble
NASA Astrophysics Data System (ADS)
Stahl, K.; Tallaksen, L. M.; Hannaford, J.; van Lanen, H. A. J.
2012-07-01
An overall appraisal of runoff changes at the European scale has been hindered by "white space" on maps of observed trends due to a paucity of readily-available streamflow data. This study tested whether this white space can be filled using estimates of trends derived from model simulations of European runoff. The simulations stem from an ensemble of eight global hydrological models that were forced with the same climate input for the period 1963-2000. The derived trends were validated for 293 grid cells across the European domain with observation-based trend estimates. The ensemble mean overall provided the best representation of trends in the observations. Maps of trends in annual runoff based on the ensemble mean demonstrated a pronounced continental dipole pattern of positive trends in western and northern Europe and negative trends in southern and parts of eastern Europe, which has not previously been demonstrated and discussed in comparable detail. Overall, positive trends in annual streamflow appear to reflect the marked wetting trends of the winter months, whereas negative annual trends result primarily from a widespread decrease in streamflow in spring and summer months, consistent with a decrease in summer low flow in large parts of Europe. High flow appears to have increased in rain-dominated hydrological regimes, whereas an inconsistent or decreasing signal was found in snow-dominated regimes. The different models agreed on the predominant continental-scale pattern of trends, but in some areas disagreed on the magnitude and even the direction of trends, particularly in transition zones between regions with increasing and decreasing runoff trends, in complex terrain with a high spatial variability, and in snow-dominated regimes. Model estimates appeared most reliable in reproducing observed trends in annual runoff, winter runoff, and 7-day high flow. Modelled trends in runoff during the summer months, spring (for snow influenced regions) and autumn, and trends in summer low flow were more variable - both among models and in the spatial patterns of agreement between models and the observations. The use of models to display changes in these hydrological characteristics should therefore be viewed with caution due to higher uncertainty.
Tanner, Chris C; Sukias, James P S
2011-01-01
Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.
Paybins, Katherine S.
2003-01-01
Characteristics of perennial and intermittent headwater streams were documented in the mountaintop removal coal-mining region of southern West Virginia in 2000?01. The perennial-flow origin points were identified in autumn during low base-flow conditions. The intermittent-flow origin points were identified in late winter and early spring during high base-flow conditions. Results of this investigation indicate that the median drainage area upstream of the origin of intermittent flow was 14.5 acres, and varied by an absolute median of 3.4 acres between the late winter measurements of 2000 and early spring measurements of 2001. Median drainage area in the northeastern part of the study unit was generally larger (20.4 acres), with a lower median basin slope (322 feet per mile) than the southwestern part of the study unit (12.9 acres and 465 feet per mile, respectively). Both of the seasons preceding the annual intermittent flow visits were much drier than normal. The West Virginia Department of Environmental Protection reports that the median size of permitted valley fills in southern West Virginia is 12.0 acres, which is comparable to the median drainage area upstream of the ephemeralintermittent flow point (14.5 acres). The maximum size of permitted fills (480 acres), however, is more than 10 times the observed maximum drainage area upstream of the ephemeral-intermittent flow point (45.3 acres), although a single valley fill may cover more than one drainage area. The median drainage area upstream of the origin of perennial flow was 40.8 acres, and varied by an absolute median of 18.0 acres between two annual autumn measurements. Only basins underlain with mostly sandstone bedrock produced perennial flow. Perennial points in the northeast part of the study unit had a larger median drainage area (70.0 acres) and a smaller median basin slope (416 feet per mile) than perennial points in the southwest part of the study unit (35.5 acres and 567 feet per mile, respectively). Some streams were totally dry for one or both of the annual October visits. Both of the seasons preceding the October visits had near normal to higher than normal precipitation. These dry streams were adjacent to perennial streams draining similarly sized areas, suggesting that local conditions at a firstorder- stream scale determine whether or not there will be perennial flow. Headwater-flow rates varied little from year to year, but there was some variation between late winter and early spring and autumn. Flow rates at intermittent points of flow origin ranged from 0.001 to 0.032 cubic feet per second, with a median of 0.017 cubic feet per second. Flow rates at perennial points of flow origin ranged from 0.001 to 0.14 cubic feet per second, with a median of 0.003 cubic feet per second.
Surface waters of North Boggy Creek basin in the Muddy Boggy Creek basin in Oklahoma
Laine, L.L.
1958-01-01
Analysis of short-term streamflow data in North Boggy Creek basin indicates that the average runoff in this region is substantial. The streamflow is highly variable from year to year and from month to month. The estimated total yield from the North Boggy Creek watershed of 231 square miles averages 155,000 acre-feet annually, equivalent to an average runoff depth of 12 1/2 inches. Almost a fourth of the annual volume is contributed by Chickasaw Creek basin, where about 35,000 acre-feet runs off from 46 square miles. Two years of records show a variation in runoff for the calendar year 1957 in comparison to 1956 in a ratio of 13 to 1 for the station on North Boggy Creek and a ratio of 18 to 1 for the station on Chickasaw Creek. In a longer-term record downstream on Muddy Boggy Creek near Farris, the corresponding range was 17 to 1, while the calendar years 1945 and 1956 show a 20-fold variation in runoff. Within a year the higher runoff tends to occur in the spring months, April to June, a 3-month period that, on the average, accounts for at least half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is relatively small in the summer. Records for the gaging stations noted indicate that there is little or no base flow in the summer, and thus there will be periods of no flow at times in most years. The variation in runoff during a year is suggested by a frequency analysis of low flows at the reference station on Muddy Boggy Creek near Farris. Although the mean flow at that site is 955 cfs (cubic feet per second), the median daily flow is only 59 cfs and the lowest 30-day flow in a year will average less than 1 cfs in 4 out of 10 years on the average. The estimated mean flow on North Boggy Creek near Stringtown is 124 cfs, but the estimated median daily flow is only 3 1/2 cfs. Because of the high variability in streamflow, development of storage by impoundment will be necessary to attain maximum utilization of the available water supplies in this region. The surface waters of the North Boggy Creek basin are of excellent quality, being suitable for municipal, agricultural and most industrial uses. The concentration of the dissolved mineral content is usually about 75 ppm (parts per million) and the hardness about 50 ppm. The water is slightly acidic, with a range of pH values from 6.5 to 7.0. This report gives the estimated average discharge at gaging stations and 3 selected other sites in the basin for the 16-year period October 1938 to September 1954, used as a base period in this report. Duration-of-flow data for selected percentages of the time are shown for the period of observed record on North Boggy and Chickasaw Creeks; similar data are estimated for the base period 1938-54. The basic records in the basin are presented on a monthly and annual basis (through March 1958). For other sites at which discharge measurements have been made, a tabulation of observed discharge is given. These data have been correlated to obtain information on the low-water portion of the duration curves at 2 of the sites. (available as photostat copy only)
Martin, Jeffrey D.; Duwelius, Richard F.; Crawford, Charles G.
1990-01-01
Hydrologic effects of mining and reclamation were identified by comparing the hydrologic systems at mined and reclaimed watersheds with those at unmined agricultural watersheds. The presence or absence of a large final-cut lake in the reclaimed watershed greatly influences the hydrologic systems and the effects of mining and reclamation. Surface coal mining and reclamation can decrease base flow, annual runoff, and peak flow rates; increase the variability of flow and recharge to the bedrock; reestablish the premining relation between surface- and ground-water divides; and lower the water table in upland areas.
Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling
NASA Astrophysics Data System (ADS)
Liu, D.; Guo, S.; Lian, Y.
2014-12-01
Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.
DOT National Transportation Integrated Search
2009-09-15
Average annual daily traffic (AADT) is perhaps the most fundamental measure of traffic flow. The data used to produce AADT estimates are largely collected by in-highway traffic counters operated by traffic monitoring crews who must cover thousands of...
Quantifying Temperature Effects on Snow, Plant and Streamflow Dynamics in Headwater Catchments
NASA Astrophysics Data System (ADS)
Wainwright, H. M.; Sarah, T.; Siirila-Woodburn, E. R.; Newcomer, M. E.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Carroll, R. W. H.
2017-12-01
Quantifying Temperature Effects on Snow, Plant and Streamflow Dynamics in Headwater Catchments Snow-dominated headwater catchments are critical for water resource throughout the world; particularly in Western US. Under climate change, temperature increases are expected to be amplified in mountainous regions. We use a data-driven approach to better understand the coupling among inter-annual variability in temperature, snow and plant community dynamics and stream discharge. We apply data mining methods (e.g., principal component analysis, random forest) to historical spatiotemporal datasets, including the SNOTEL data, Landsat-based normalized difference vegetation index (NDVI) and airborne LiDAR-based snow distribution. Although both snow distribution and NDVI are extremely heterogeneous spatially, the inter-annual variability and temporal responses are spatially consistent, providing an opportunity to quantify the effect of temperature in the catchment-scale. We demonstrate our approach in the East River Watershed of the Upper Colorado River Basin, including Rocky Mountain Biological Laboratory, where the changes in plant communities and their dynamics have been extensively documented. Results indicate that temperature - particularly spring temperature - has a significant control not only on the timing of snowmelt, plant NDVI and peak flow but also on the magnitude of peak NDVI, peak flow and annual discharge. Monthly temperature in spring explains the variability of snowmelt by the equivalent standard deviation of 3.4-4.4 days, and total discharge by 10-11%. In addition, the high correlation among June temperature, peak NDVI and annual discharge suggests a primary role of spring evapotranspiration on plant community phenology, productivity, and streamflow volume. On the other hand, summer monsoon precipitation does not contribute significantly to annual discharge, further emphasizing the importance of snowmelt. This approach is mostly based on a set of datasets typically available throughout the US, providing a powerful approach to link remote sensing techniques with long-term monitoring of temperature, snowfall, plant, and streamflow dynamics.
Low-flow characteristics of Indiana streams
Fowler, K.K.; Wilson, J.T.
1996-01-01
Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.
Burned forests impact water supplies.
Hallema, Dennis W; Sun, Ge; Caldwell, Peter V; Norman, Steven P; Cohen, Erika C; Liu, Yongqiang; Bladon, Kevin D; McNulty, Steven G
2018-04-10
Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize long-term records of wildland fire, climate, and river flow for 168 locations across the United States. We show that annual river flow changed in 32 locations, where more than 19% of the basin area was burned. Wildland fires enhanced annual river flow in the western regions with a warm temperate or humid continental climate. Wildland fires increased annual river flow most in the semi-arid Lower Colorado region, in spite of frequent droughts in this region. In contrast, prescribed burns in the subtropical Southeast did not significantly alter river flow. These extremely variable outcomes offer new insights into the potential role of wildfire and prescribed fire in regional water resource management, under a changing climate.
Foster, G.D.; Miller, C.V.; Huff, T.B.; Roberts, E.
2003-01-01
Concentrations of current-use pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine (OC) insecticides were determined above the reach of tide in the Chesterville Branch and Nanticoke River on the eastern shore of Chesapeake Bay during base-flow and storm-flow hydrologic regimes to evaluate mass transport to Chesapeake Bay. The two rivers monitored showed relatively high concentrations of atrazine, simazine, alachlor, and metolachlor in comparison to previously investigated western shore tributaries, and reflected the predominant agricultural land use in the eastern shore watersheds. The four current use pesticides showed the greatest seasonal contribution to annual loadings to tidal waters of Chesapeake Bay from the two rivers, and the relative order of annual loadings for the other contaminant classes was PAHs > PCBs > OC insecticides. Annual loadings normalized to the landscape areas of selected Chesapeake Bay watersheds showed correlations to identifiable source areas, with the highest pesticide yields (g/km2/yr) occurring in eastern shore agricultural landscapes, and the highest PAH yields derived from urban regions.
NASA Astrophysics Data System (ADS)
Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.
2007-03-01
Defining the control that hydrology exerts on organic carbon (OC) export at the watershed scale is important for understanding how the source and quantity of OC in streams and rivers is influenced by climate change or by landscape drainage. To this end, molecular (lignin phenol), stable carbon isotope, and dissolved organic carbon (DOC) data were collected over a range of flow conditions to examine the influence of hydrology on annual OC export from an 850 km 2 Midwestern United States agricultural watershed located in west central Indiana. In years 2002 and 2003, modeled annual DOC loads were 19.5 and 14.1 kg ha -1yr -1, while 71% and 85%, respectively, of the total annual OC was exported in flow events occurring during less than 20% of that time. These results highlight the importance of short-duration, high-discharge events (common in smaller watersheds) in controlling annual OC export. Based on reported increases in annual stream discharge coupled with current estimates of DOC export, annual DOC loads in this watershed may have increased by up to 40% over the past 50 years. Molecular (lignin phenol) characterization of quantity and relative degradation state of terrestrial OC shows as much temporal variability of lignin parameters (in high molecular weight dissolved organic carbon) in this one watershed as that demonstrated in previously published studies of dissolved organic matter in the Mississippi and Amazon Rivers. These results suggest that hydrologic variability is at least as important in determining the nature and extent of OC export as geographic variability. Moreover, molecular and bulk stable carbon isotope data from high molecular weight dissolved organic carbon and colloidal organic carbon showed that increased stream flow from the study watershed was responsible for increased export of agriculturally derived OC. When considered in the context of results from other studies that show the importance of flood events and in-stream processing of terrestrial organic carbon, our results show how hydrologic variability in smaller watersheds can reflect landscape-scale carbon dynamics in ways that cannot necessarily be measured at the outlets of large rivers due to multiple source signals and attenuated hydrology.
77 FR 11520 - Commission Information Collection Activities; Comment Request; Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
..., Gas Pipeline Certificates: Annual Reports of System Flow Diagrams and System Capacity. DATES: Comments... Certificates: Annual Reports of System Flow Diagrams and System Capacity. OMB Control No.: 1902-0005. Type of... June 1 of each year, diagrams reflecting operating conditions on the pipeline's main transmission...
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
Wilson Corners SWMU 001 2014 Annual Long Term Monitoring Report Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
Langenbach, James
2015-01-01
This document presents the findings of the 2014 Long Term Monitoring (LTM) that was completed at the Wilson Corners site, located at the National Aeronautics and Space Administration (NASA) John F. Kennedy Space Center (KSC), Florida. The goals of the 2014 annual LTM event were to evaluate the groundwater flow direction and gradient and to monitor the vertical and downgradient horizontal extent of the volatile organic compounds (VOCs) in groundwater at the site. The LTM activities consisted of an annual groundwater sampling event in December 2014, which included the collection of water levels from the LTM wells. During the annual groundwater sampling event, depth to groundwater was measured and VOC samples were collected using passive diffusion bags (PDBs) from 30 monitoring wells. In addition to the LTM sampling, additional assessment sampling was performed at the site using low-flow techniques based on previous LTM results and assessment activities. Assessment of monitoring well MW0052DD was performed by collecting VOC samples using low-flow techniques before and after purging 100 gallons from the well. Monitoring well MW0064 was sampled to supplement shallow VOC data north of Hot Spot 2 and east of Hot Spot 4. Monitoring well MW0089 was sampled due to its proximity to MW0090. MW0090 is screened in a deeper interval and had an unexpected detection of trichloroethene (TCE) during the 2013 LTM, which was corroborated during the March 2014 verification sampling. Monitoring well MW0130 was sampled to provide additional VOC data beneath the semi-confining clay layer in the Hot Spot 2 area.
NASA Astrophysics Data System (ADS)
Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.
2018-04-01
River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.
Development of a new IHA method for impact assessment of climate change on flow regime
NASA Astrophysics Data System (ADS)
Yang, Tao; Cui, Tong; Xu, Chong-Yu; Ciais, Philippe; Shi, Pengfei
2017-09-01
The Indicators of Hydrologic Alteration (IHA) based on 33 parameters in five dimensions (flow magnitude, timing, duration, frequency and change rate) have been widely used in evaluation of hydrologic alteration in river systems. Yet, inter-correlation seriously exists amongst those parameters, therefore constantly underestimates or overestimates actual hydrological changes. Toward the end, a new method (Representative-IHA, RIHA) is developed by removing repetitions based on Criteria Importance Through Intercriteria Correlation (CRITIC) algorithm. RIHA is testified in evaluating effects of future climate change on hydro-ecology in the Niger River of Africa. Future flows are projected using three watershed hydrological models forced by five general circulation models (GCMs) under three Representative Concentration Pathways (RCPs) scenarios. Results show that: (1) RIHA is able to eliminate self-correlations amongst IHA indicators and identify the dominant characteristics of hydrological alteration in the Upper Niger River, (2) March streamflow, September streamflow, December streamflow, 30-day annual maximum, low pluses duration and fall rates tends to increase over the period 2010-2099, while July streamflow and 90-day annual minimum streamflow shows decrease, (3) the Niger River will undergo moderate flow alteration under RCP8.5 in 2050s and 2080s and low alteration other scenarios, (4) future flow alteration may induce increase water temperatures, reduction dissolved oxygen and food resources. Consequently, aquatic biodiversity and fish community of Upper Niger River would become more vulnerable in the future. The new method enables more scientific evaluation for multi-dimensional hydrologic alteration under the context of climate change.
Petsch, Harold E.
1979-01-01
Statistical summaries of daily streamflow data for 189 stations west of the Continental Divide in Colorado are presented in this report. Duration tables, high-flow sequence tables, and low-flow sequence tables provide information about daily mean discharge. The mean, variance, standard deviation, skewness, and coefficient of variation are provided for monthly and annual flows. Percentages of average flow are provided for monthly flows and first-order serial-correlation coefficients are provided for annual flows. The text explain the nature and derivation of the data and illustrates applications of the tabulated information by examples. The data may be used by agencies and individuals engaged in water studies. (USGS)
Surface-water availability, Tuscaloosa County, Alabama
Knight, Alfred L.; Davis, Marvin E.
1975-01-01
The average annual runoff, about 1,270 mgd (million gallons per day), originating in Tuscaloosa County is equivalent to 20 inches or 0.95 mgd per square mile. The Black Warrior and Sipsey Rivers, the largest streams in the county, have average flows of 5,230 mgd and 580 mgd, respectively, where they leave the county, and median annual 7-day low flows in excess of 150 mgd and 35 mgd, respectively. North River, Big Sandy Creek, and Hurricane Creek have average flows in excess of 100 mgd and median annual 7-day low flows in excess of 2 mgd. Surface water generally contains less than 100 mg/l (milligrams per liter) dissolved solids, less than 10 mg/l chloride, and is soft to moderately hard. Streams having the higher hardness and the higher dissolved-solids content are in eastern Tuscaloosa County.
Maurer, Douglas K.; Watkins, Sharon A.; Burrowws, Robert L.
2004-01-01
Rapid population growth in Carson Valley has caused concern over the continued availability of water resources to sustain future growth. The U.S. Geological Survey, in cooperation with Douglas County, began a study to update estimates of water-budget components in Carson Valley for current climatic conditions. Data collected at 19 sites included 9 continuous records of tributary streamflows, 1 continuous record of outflow from the valley, and 408 measurements of 10 perennially flowing but ungaged drainages. These data were compiled and analyzed to provide updated computations and estimates of streamflows tributary to Carson Valley, 1990-2002. Mean monthly and annual flows were computed from continuous records for the period 1990-2002 for five streams, and for the period available, 1990-97, for four streams. Daily mean flow from ungaged drainages was estimated using multi-variate regressions of individual discharge measurements against measured flow at selected continuous gages. From the estimated daily mean flows, monthly and annual mean flows were calculated from 1990 to 2002. These values were used to compute estimates of mean monthly and annual flows for the ungaged perennial drainages. Using the computed and estimated mean annual flows, annual unit-area runoff was computed for the perennial drainages, which ranged from 0.30 to 2.02 feet. For the period 1990-2002, estimated inflow of perennial streams tributary to Carson Valley totaled about 25,900 acre-feet per year. Inflow computed from gaged perennial drainages totaled 10,300 acre-feet per year, and estimated inflow from ungaged perennial drainages totaled 15,600 acre-feet per year. The annual flow of perennial streams ranges from 4,210 acre-feet at Clear Creek to 450 acre-feet at Stutler Canyon Creek. Differences in unit-area runoff and in the seasonal timing of flow likely are caused by differences in geologic setting, altitude, slope, or aspect of the individual drainages. The remaining drainages are ephemeral and supply inflow to the valley floor only during spring runoff in wet years or during large precipitation events. Annual unit-area runoff for the perennial drainages was used to estimate inflow from ephemeral drainages totaling 11,700 acre-feet per year. The totaled estimate of perennial and ephemeral tributary inflows to Carson Valley is 37,600 acre-feet per year. Gaged perennial inflow is 27 percent of the total, ungaged perennial inflow is 42 percent, and ephemeral inflow is 31 percent. The estimate is from 50 to 60 percent greater than three previous estimates, one made for a larger area and similar to two other estimates made for larger areas. The combined uncertainty of the estimates totaled about 33 percent of the total inflow or about 12,000 acre-feet per year.
ESTIMATING LOW-FLOW FREQUENCIES OF UNGAGED STREAMS IN NEW ENGLAND.
Wandle, S. William
1987-01-01
Equations to estimate low flows were developed using multiple-regression analysis with a sample of 48 river basins, which were selected from the U. S. Geological Survey's network of gaged river basins in Massachusetts, New Hampshire, Rhode Island, Vermont, and southwestern Maine. Low-flow characteristics are represented by the 7Q2 and 7Q10 (the annual minimum 7-day mean low flow at the 2- and 10-year recurrence intervals). These statistics for each of the 48 basins were determined from a low-flow frequency analysis of streamflow records for 1942-71, or from a graphical or mathematical relationship if the record did not cover this 30-year period. Estimators for the mean and variance of the 7-day low flows at the index and short-term sites were used for two stations where discharge measurements of base flow were available and for two sites where the graphical technique was unsatisfactory.
Wiley, Jeffrey B.
2006-01-01
Five time periods between 1930 and 2002 are identified as having distinct patterns of annual minimum daily mean flows (minimum flows). Average minimum flows increased around 1970 at many streamflow-gaging stations in West Virginia. Before 1930, however, there might have been a period of minimum flows greater than any period identified between 1930 and 2002. The effects of climate variability are probably the principal causes of the differences among the five time periods. Comparisons of selected streamflow statistics are made between values computed for the five identified time periods and values computed for the 1930-2002 interval for 15 streamflow-gaging stations. The average difference between statistics computed for the five time periods and the 1930-2002 interval decreases with increasing magnitude of the low-flow statistic. The greatest individual-station absolute difference was 582.5 percent greater for the 7-day 10-year low flow computed for 1970-1979 compared to the value computed for 1930-2002. The hydrologically based low flows indicate approximately equal or smaller absolute differences than biologically based low flows. The average 1-day 3-year biologically based low flow (1B3) and 4-day 3-year biologically based low flow (4B3) are less than the average 1-day 10-year hydrologically based low flow (1Q10) and 7-day 10-year hydrologic-based low flow (7Q10) respectively, and range between 28.5 percent less and 13.6 percent greater. Seasonally, the average difference between low-flow statistics computed for the five time periods and 1930-2002 is not consistent between magnitudes of low-flow statistics, and the greatest difference is for the summer (July 1-September 30) and fall (October 1-December 31) for the same time period as the greatest difference determined in the annual analysis. The greatest average difference between 1B3 and 4B3 compared to 1Q10 and 7Q10, respectively, is in the spring (April 1-June 30), ranging between 11.6 and 102.3 percent greater. Statistics computed for the individual station's record period may not represent the statistics computed for the period 1930 to 2002 because (1) station records are available predominantly after about 1970 when minimum flows were greater than the average between 1930 and 2002 and (2) some short-term station records are mostly during dry periods, whereas others are mostly during wet periods. A criterion-based sampling of the individual station's record periods at stations was taken to reduce the effects of statistics computed for the entire record periods not representing the statistics computed for 1930-2002. The criterion used to sample the entire record periods is based on a comparison between the regional minimum flows and the minimum flows at the stations. Criterion-based sampling of the available record periods was superior to record-extension techniques for this study because more stations were selected and areal distribution of stations was more widespread. Principal component and correlation analyses of the minimum flows at 20 stations in or near West Virginia identify three regions of the State encompassing stations with similar patterns of minimum flows: the Lower Appalachian Plateaus, the Upper Appalachian Plateaus, and the Eastern Panhandle. All record periods of 10 years or greater between 1930 and 2002 where the average of the regional minimum flows are nearly equal to the average for 1930-2002 are determined as representative of 1930-2002. Selected statistics are presented for the longest representative record period that matches the record period for 77 stations in West Virginia and 40 stations near West Virginia. These statistics can be used to develop equations for estimating flow in ungaged stream locations.
Low-flow characteristics of Virginia streams
Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute
2011-01-01
Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.
Increased dry season water yield in burned watersheds in Southern California
NASA Astrophysics Data System (ADS)
Kinoshita, Alicia M.; Hogue, Terri S.
2015-01-01
The current work evaluates the effects of the 2003 Old Fire on semi-arid systems in the San Bernardino Mountains, California. Pre- and post-fire daily streamflow are used to analyze flow regimes in two burned watersheds. The average pre-fire runoff ratios in Devil Canyon and City Creek are 0.14 and 0.26, respectively, and both increase to 0.34 post-fire. Annual flow duration curves are developed for each watershed and the low flow is characterized by a 90% exceedance probability threshold. Post-fire low flow is statistically different from the pre-fire values (α = 0.05). In Devil Canyon the annual volume of pre-fire low flow increases on average from 2.6E + 02 to 3.1E + 03 m3 (1090% increase) and in City Creek the annual low flow volume increases from 2.3E + 03 to 5.0E + 03 m3 (118% increase). Predicting burn system resilience to disturbance (anthropogenic and natural) has significant implications for water sustainability and ultimately may provide an opportunity to utilize extended and increased water yield.
Developing Clinical Leaders in Primary Care: The US Air Force Diabetes Champion Course
2017-04-03
The US Air Force Diabetes Center of Excellence designed the Diabetes Champion Course (DCC), a semi-annual, 3-day course, to train primary care teams ...and patient flow in a team -based setting. Each team is tasked to identify local deficits and make a Plan of Action (POA) for implementation.
A tree-ring based reconstruction of Logan River streamflow, northern Utah
Eric B. Allen; Tammy M. Rittenour; R. Justin DeRose; Matthew F. Bekker; Roger Kjelgren; Brendan M. Buckley
2013-01-01
We created six new tree-ring chronologies in northern Utah, which were used with preexisting chronologies from Utah and western Wyoming to reconstruct mean annual flow for the Logan River, the largest tributary of the regionally important Bear River. Two reconstruction models were developed, a ''Local'' model that incorporated two Rocky Mountain...
Understanding performance measures of reservoirs
NASA Astrophysics Data System (ADS)
McMahon, Thomas A.; Adeloye, Adebayo J.; Zhou, Sen-Lin
2006-06-01
This paper examines 10 reservoir performance metrics including time and volume based reliability, several measures of resilience and vulnerability, drought risk index and sustainability. Both historical and stochastically generated streamflows are considered as inflows to a range of hypothetical storage on four rivers—Earn river in the United Kingdom, Hatchie river in the United States, Richmond river in Australia and the Vis river in South Africa. The monthly stochastic sequences were generated applying an autoregressive lag one model to Box-Cox transformed annual streamflows incorporating parameter uncertainty by the Stedinger-Taylor method and the annual flows disaggregated by the method of fragments.
Christensen, Victoria G.; Kieta, Kristen A.
2014-01-01
This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids in 2009 were affected by outlier concentrations documented in March 2009. Agricultural land-retirement data only were available through 2008; therefore, it was not possible to compare total phosphorus and total suspended solids concentrations to agricultural land-retirement data for 2009–11. A downward trend in annual flow-weighted mean total-phosphorus concentrations was related significantly to annual land retirement for 1999–2008. The relation between annual flow-weighted mean total suspended solids concentration and annual land retirement was not statistically significant for 1999–2008. If land-retirement data had been available for 2009–11, it is possible that the relation between total phosphorus and land retirement would no longer be evident because of the marked increase in flow-weighted concentrations during 2009. Alternatively, the increase in annual flow-weighted mean total-phosphorus concentrations during 2009–11 may be because of other factors, including industrial discharges, increases in drain tile installation, changes in land use including decreases in agricultural land retirement after 2008, increases in erosion, increases in phosphorus applications to fields, or unknown causes. Inclusion of land-retirement effects in agency planning along with other factors adds perspective with regard to the broader picture of interdependent systems and allows agencies to make informed decisions on the benefits of perpetual easements compared to limited duration easements.
Kennedy, Jeffrey R.; Paretti, Nicholas V.; Veilleux, Andrea G.
2014-01-01
Regression equations, which allow predictions of n-day flood-duration flows for selected annual exceedance probabilities at ungaged sites, were developed using generalized least-squares regression and flood-duration flow frequency estimates at 56 streamgaging stations within a single, relatively uniform physiographic region in the central part of Arizona, between the Colorado Plateau and Basin and Range Province, called the Transition Zone. Drainage area explained most of the variation in the n-day flood-duration annual exceedance probabilities, but mean annual precipitation and mean elevation were also significant variables in the regression models. Standard error of prediction for the regression equations varies from 28 to 53 percent and generally decreases with increasing n-day duration. Outside the Transition Zone there are insufficient streamgaging stations to develop regression equations, but flood-duration flow frequency estimates are presented at select streamgaging stations.
Petsch, Harold E.
1979-01-01
Statistical summaries of daily streamflow data for 246 stations east of the Continental Divide in Colorado and adjacent States are presented in this report. Duration tables, high-flow sequence tables, and low-flow sequence tables provide information about daily mean discharge. The mean, variance, standard deviation, skewness, and coefficient of variation are provided for monthly and annual flows. Percentages of average flow are provided for monthly flows and first-order serial-correlation coefficients are provided for annual flows. The text explains the nature and derivation of the data and illustrates applications of the tabulated information by examples. The data may be used by agencies and individuals engaged in water studies. (USGS)
Salinity-oriented environmental flows for keystone species in the Modaomen Estuary, China
NASA Astrophysics Data System (ADS)
Zhang, Menglu; Cui, Baoshan; Zhang, Zhiming; Jiang, Xuelian
2017-12-01
Rapid development and urbanization in recent years have contributed to a reduction in freshwater discharge and intensified saltwater intrusion in the Pearl River Delta. This comprises a significant threat to potable water supplies and overall estuary ecosystem health. In this study, the environmental flows of the Modaomen Estuary, one of the estuaries of the Pearl River Delta in China, were determined based on the salinity demand of keystone species and the linear relationship between river discharge and estuarine salinity. The estimated minimum and optimal annual environmental flows in the Modaomen Estuary were 116.8 × 109 m3 and 273.8 × 109 m3, respectively, representing 59.3% and 139.0% of the natural runoff. Water quality assessments in recent years indicate that the environmental flows have not been satisfied most of the time, particularly the optimal environmental flow, despite implementation of various water regulations since 2005. Therefore, water regulations and wetland network recoveries based on rational environmental flows should be implemented to alleviate saltwater intrusion and for the creation of an ideal estuarine habitat.
Burns, Alan W.
1980-01-01
A hydrologic analysis of the proposed Badger-Beaver Creeks artificial-recharge project in Morgan County, Colo., was made with the aid of three digital computer models: A canal-distribution model, a ground-water flow model, and a stream-aquifer model. Statistical summaries of probable diversions from the South Platte River based on a 27-year period of historical flows indicate that an average-annual diversion of 96,000 acre-feet and a median-annual diversion of 43,000 acre-feet would be available. Diversions would sustain water in ponds for waterfowl habitat for an average of about five months per year, with a miximum pond surface area of about 300 acres with the median diversions and a maximum pond surface area of about 1,250 acres at least one-half of the years with the historic diversions. If the annual diversion were 43,000 acre-feet, recharge to the two alluvial aquifers would raise water levels sufficiently to create flowing streams in the channels of Beaver and Badger Creeks while allowing an increase in current ground-water pumping. The only area of significant waterlogging would be along the proposed delivery canal on the west edge of Badger Creek valley. If the total water available were diverted, the aquifer system could not transmit the water fast enough to the irrigation areas to avoid considerable waterlogging in the recharge areas. The impact of the proposed project on the South Platte River basin would be minimal once the ground-water system attained steady-state conditions, but that may take decades with a uniform diversion of the 43,000 acre-feet annually. (USGS)
Waterborne nutrient flow through an upland-peatland watershed in Minnesota
Elon S. Verry; D.R. Timmons
1982-01-01
Water and nutrient flow were measured on a complex upland-peatland watershed in north central Minnesota. Annual water budgets for upland and peatland components and for the total watershed were developed. Nutrient input and output budgets were developed for each component on a seasonal basis, using net precipitation inputs, and an annual nutrient budget was developed...
Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.
2001-01-01
The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989, and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/ California Valley area) than those previously reported.
Booth, Amanda C.; Soderqvist, Lars E.
2016-12-12
Freshwater flow to the Ten Thousand Islands estuary has been altered by the construction of the Tamiami Trail and the Southern Golden Gate Estates. The Picayune Strand Restoration Project, which is associated with the Comprehensive Everglades Restoration Plan, has been implemented to improve freshwater delivery to the Ten Thousand Islands estuary by removing hundreds of miles of roads, emplacing hundreds of canal plugs, removing exotic vegetation, and constructing three pump stations. Quantifying the tributary flows and salinity patterns prior to, during, and after the restoration is essential to assessing the effectiveness of upstream restoration efforts.Tributary flow and salinity patterns during preliminary restoration efforts and prior to the installation of pump stations were analyzed to provide baseline data and preliminary analysis of changes due to restoration efforts. The study assessed streamflow and salinity data for water years1 2007–2014 for the Faka Union River (canal flow included), East River, Little Wood River, Pumpkin River, and Blackwater River. Salinity data from the Palm River and Faka Union Boundary water-quality stations were also assessed.Faka Union River was the dominant contributor of freshwater during water years 2007–14 to the Ten Thousand Islands estuary, followed by Little Wood and East Rivers. Pumpkin River and Blackwater River were the least substantial contributors of freshwater flow. The lowest annual flow volumes, the highest annual mean salinities, and the highest percentage of salinity values greater than 35 parts per thousand (ppt) occurred in water year 2011 at all sites with available data, corresponding with the lowest annual rainfall during the study. The highest annual flow volumes and the lowest percentage of salinities greater than 35 ppt occurred in water year 2013 for all sites with available data, corresponding with the highest rainfall during the study.In water year 2014, the percentage of monitored annual flow contributed by East River increased and the percentage of flow contributed by Faka Union River decreased, compared to the earlier years. No changes in annual flow occurred at any sites west of Faka Union River. No changes in the relative flow contributions were observed during the wet season; however, the relative amounts of streamflow increased during the dry season at East River in 2014. East River had only 1 month of negative flow in 2014 compared to 6 months in 2011 and 7 months in 2008. Higher dry season flows in East River may be in response to restoration efforts. The sites to the west of Faka Union River had higher salinities on average than Faka Union River and East River. Faka Union River had the highest range in salinities, and Faka Union Boundary had the lowest range in salinities. Pumpkin River was the tributary with the lowest range in salinities.1Water year is defined as the 12-month period from October 1, for any given year, through September 30 of the following year.
Tie, Qiang; Hu, Hongchang; Tian, Fuqiang; Holbrook, N Michele
2018-08-15
Accurately estimating forest evapotranspiration and its components is of great importance for hydrology, ecology, and meteorology. In this study, a comparison of methods for determining forest evapotranspiration and its components at annual, monthly, daily, and diurnal scales was conducted based on in situ measurements in the subhumid mountainous forest of North China. The goal of the study was to evaluate the accuracies and reliabilities of the different methods. The results indicate the following: (1) The sap flow upscaling procedure, taking into account diversities in forest types and tree species, produced component-based forest evapotranspiration estimate that agreed with eddy covariance-based estimate at the temporal scales of year, month, and day, while soil water budget-based forest evapotranspiration estimate was also qualitatively consistent with eddy covariance-based estimate at the daily scale; (2) At the annual scale, catchment water balance-based forest evapotranspiration estimate was significantly higher than eddy covariance-based estimate, which might probably result from non-negligible subsurface runoff caused by the widely distributed regolith and fractured bedrock under the ground; (3) At the sub-daily scale, the diurnal course of sap flow based-canopy transpiration estimate lagged significantly behind eddy covariance-based forest evapotranspiration estimate, which might physiologically be due to stem water storage and stem hydraulic conductivity. The results in this region may have much referential significance for forest evapotranspiration estimation and method evaluation in regions with similar environmental conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Falk, Sarah E.; Anderholm, Scott K.; Hafich, Katya A.
2013-01-01
The Albuquerque–Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with water diverted from the Rio Grande. Water diverted from the Rio Grande for municipal use is derived from the San Juan–Chama Project, which delivers water from streams in the southern San Juan Mountains in the Colorado River Basin in southern Colorado to the Rio Chama watershed and the Rio Grande Basin in northern New Mexico. The U.S. Geological Survey, in cooperation with Albuquerque–Bernalillo County Water Utility Authority, has compiled historical streamflow and water-quality data and collected new water-quality data to characterize the water quality and streamflow conditions and annual flow variability, as characterized by annual flow-duration curves, of streams of the San Juan–Chama Project. Nonparametric statistical methods were applied to calculate annual and monthly summary statistics of streamflow, trends in streamflow conditions were evaluated with the Mann–Kendall trend test, and annual variation in streamflow conditions was evaluated with annual flow-duration curves. The study area is located in northern New Mexico and southern Colorado and includes the Rio Blanco, Little Navajo River, and Navajo River, tributaries of the San Juan River in the Colorado River Basin located in the southern San Juan Mountains, and Willow Creek and Horse Lake Creek, tributaries of the Rio Chama in the Rio Grande Basin. The quality of water in the streams in the study area generally varied by watershed on the basis of the underlying geology and the volume and source of the streamflow. Water from the Rio Blanco and Little Navajo River watersheds, primarily underlain by volcanic deposits, volcaniclastic sediments and landslide deposits derived from these materials, was compositionally similar and had low specific-conductance values relative to the other streams in the study area. Water from the Navajo River, Horse Lake Creek, and Willow Creek watersheds, which are underlain mostly by Cretaceous-aged marine shale, was compositionally similar and had large concentrations of sulfate relative to the other streams in the study area, though the water from the Navajo River had lower specific-conductance values than did the water from Horse Lake Creek above Heron Reservoir and Willow Creek above Azotea Creek. Generally, surface-water quality varied with streamflow conditions throughout the year. Streamflow in spring and summer is generally a mixture of base flow (the component of streamflow derived from groundwater discharged to the stream channel) diluted with runoff from snowmelt and precipitation events, whereas streamflow in fall and winter is generally solely base flow. Major- and trace-element concentrations in the streams sampled were lower than U.S. Environmental Protection Agency primary and secondary drinking-water standards and New Mexico Environment Department surface-water standards for the streams. In general, years with increased annual discharge, compared to years with decreased annual discharge, had a smaller percentage of discharge in March, a larger percentage of discharge in June, an interval of discharge derived from snowmelt runoff that occurred later in the year, and a larger discharge in June. Additionally, years with increased annual discharge generally had a longer duration of runoff, and the streamflow indicators occurred at dates later in the year than the years with less snowmelt runoff. Additionally, the seasonal distribution of streamflow was more strongly controlled by the change in the amount of annual discharge than by changes in streamflow over time. The variation of streamflow conditions over time at one streamflow-gaging station in the study area, Navajo River at Banded Peak Ranch, was not significantly monotonic over the period of record with a Kendall’s tau of 0.0426 and with a p-value of 0.5938 for 1937 to 2009 (a trend was considered statistically significant at a p-value ≤ 0.05). There was a relation, however, such that annual discharge was generally lower than the median during a negative Pacific Decadal Oscillation interval and higher than the median during a positive Pacific Decadal Oscillation interval. Streamflow conditions at Navajo River at Banded Peak Ranch varied nonmonotonically over time and were likely a function of complex climate pattern interactions. Similarly, the monthly distribution of streamflow varied nonmonotonically over time and was likely a function of complex climate pattern interactions that cause variation over time. Study results indicated that the median of the sum of the streamflow available above the minimum monthly bypass requirement from Rio Blanco, Little Navajo River, and Navajo River was 126,240 acre-feet. The results also indicated that diversion of water for the San Juan–Chama Project has been possible for most months of most years.
Influence of various water quality sampling strategies on load estimates for small streams
Robertson, Dale M.; Roerish, Eric D.
1999-01-01
Extensive streamflow and water quality data from eight small streams were systematically subsampled to represent various water‐quality sampling strategies. The subsampled data were then used to determine the accuracy and precision of annual load estimates generated by means of a regression approach (typically used for big rivers) and to determine the most effective sampling strategy for small streams. Estimation of annual loads by regression was imprecise regardless of the sampling strategy used; for the most effective strategy, median absolute errors were ∼30% based on the load estimated with an integration method and all available data, if a regression approach is used with daily average streamflow. The most effective sampling strategy depends on the length of the study. For 1‐year studies, fixed‐period monthly sampling supplemented by storm chasing was the most effective strategy. For studies of 2 or more years, fixed‐period semimonthly sampling resulted in not only the least biased but also the most precise loads. Additional high‐flow samples, typically collected to help define the relation between high streamflow and high loads, result in imprecise, overestimated annual loads if these samples are consistently collected early in high‐flow events.
Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change
Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy
2015-01-01
Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.
Modelling maximum river flow by using Bayesian Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Cheong, R. Y.; Gabda, D.
2017-09-01
Analysis of flood trends is vital since flooding threatens human living in terms of financial, environment and security. The data of annual maximum river flows in Sabah were fitted into generalized extreme value (GEV) distribution. Maximum likelihood estimator (MLE) raised naturally when working with GEV distribution. However, previous researches showed that MLE provide unstable results especially in small sample size. In this study, we used different Bayesian Markov Chain Monte Carlo (MCMC) based on Metropolis-Hastings algorithm to estimate GEV parameters. Bayesian MCMC method is a statistical inference which studies the parameter estimation by using posterior distribution based on Bayes’ theorem. Metropolis-Hastings algorithm is used to overcome the high dimensional state space faced in Monte Carlo method. This approach also considers more uncertainty in parameter estimation which then presents a better prediction on maximum river flow in Sabah.
NASA Astrophysics Data System (ADS)
Quesada-Montano, Beatriz; Westerberg, Ida K.; Fuentes-Andino, Diana; Hidalgo-Leon, Hugo; Halldin, Sven
2017-04-01
Long-term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information - to locally observed discharge - can be used to constrain model parameter uncertainty for ungauged catchments. Climate variability exerts a strong influence on streamflow variability on long and short time scales, in particular in the Central-American region. We therefore explored the use of climate variability knowledge to constrain the simulated discharge uncertainty of a conceptual hydrological model applied to a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty we first rejected parameter relationships that disagreed with our understanding of the system. We then assessed how well climate-based constraints applied at long-term, inter-annual and intra-annual time scales could constrain model uncertainty. Finally, we compared the climate-based constraints to a constraint on low-flow statistics based on information obtained from global maps. We evaluated our method in terms of the ability of the model to reproduce the observed hydrograph and the active catchment processes in terms of two efficiency measures, a statistical consistency measure, a spread measure and 17 hydrological signatures. We found that climate variability knowledge was useful for reducing model uncertainty, in particular, unrealistic representation of deep groundwater processes. The constraints based on global maps of low-flow statistics provided more constraining information than those based on climate variability, but the latter rejected slow rainfall-runoff representations that the low flow statistics did not reject. The use of such knowledge, together with information on low-flow statistics and constraints on parameter relationships showed to be useful to constrain model uncertainty for an - assumed to be - ungauged basin. This shows that our method is promising for reconstructing long-term flow data for ungauged catchments on the Pacific side of Central America, and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.
Statistical Approaches for Spatiotemporal Prediction of Low Flows
NASA Astrophysics Data System (ADS)
Fangmann, A.; Haberlandt, U.
2017-12-01
An adequate assessment of regional climate change impacts on streamflow requires the integration of various sources of information and modeling approaches. This study proposes simple statistical tools for inclusion into model ensembles, which are fast and straightforward in their application, yet able to yield accurate streamflow predictions in time and space. Target variables for all approaches are annual low flow indices derived from a data set of 51 records of average daily discharge for northwestern Germany. The models require input of climatic data in the form of meteorological drought indices, derived from observed daily climatic variables, averaged over the streamflow gauges' catchments areas. Four different modeling approaches are analyzed. Basis for all pose multiple linear regression models that estimate low flows as a function of a set of meteorological indices and/or physiographic and climatic catchment descriptors. For the first method, individual regression models are fitted at each station, predicting annual low flow values from a set of annual meteorological indices, which are subsequently regionalized using a set of catchment characteristics. The second method combines temporal and spatial prediction within a single panel data regression model, allowing estimation of annual low flow values from input of both annual meteorological indices and catchment descriptors. The third and fourth methods represent non-stationary low flow frequency analyses and require fitting of regional distribution functions. Method three is subject to a spatiotemporal prediction of an index value, method four to estimation of L-moments that adapt the regional frequency distribution to the at-site conditions. The results show that method two outperforms successive prediction in time and space. Method three also shows a high performance in the near future period, but since it relies on a stationary distribution, its application for prediction of far future changes may be problematic. Spatiotemporal prediction of L-moments appeared highly uncertain for higher-order moments resulting in unrealistic future low flow values. All in all, the results promote an inclusion of simple statistical methods in climate change impact assessment.
Cottonwood Tree Rings and Climate in Western North America
NASA Astrophysics Data System (ADS)
Friedman, J. M.; Edmondson, J.; Griffin, E. R.; Meko, D. M.; Merigliano, M. F.; Scott, J. A.; Scott, M. L.; Touchan, R.
2012-12-01
In dry landscapes of interior western USA, cottonwood (Populus spp.) seedling establishment often occurs only close to river channels after floods. Where winter is sufficiently cold, cottonwoods also have distinct annual rings and can live up to 370 years, allowing us to reconstruct the long-term history of river flows and channel locations. We have analyzed the annual rate of cottonwood establishment along streams in Montana, Wyoming, Colorado, North Dakota and Idaho. Because the trees germinate next to the river, establishment rates are strongly correlated with the rate of channel migration driven by floods. Along large rivers dominated by snowmelt from the mountains, interannual variation in peak flows and cottonwood establishment is small, and century-scale variation driven by climate change is apparent. The upper Snake, Yellowstone and Green rivers all show a strong decrease in cottonwood establishment beginning in the late 1800s and continuing to the present, indicating a decrease in peak flows prior to flow regulation by large dams. This is consistent with published tree-ring studies of montane conifers showing decreases in snowpack at the same time scale. In contrast, beginning in the late 1800s cottonwood ring widths along the Little Missouri River, North Dakota show an increase in annual growth that continues into the present. Because annual growth is strongly correlated with April-July flows (r=0.69) the ring-width data suggest an increase in April-July flows at the same time tree establishment dates suggest a decrease in peak flows. These results may be reconciled by the hypothesis that increases in low temperatures have decreased snowpack while lengthening the growing season.
NASA Astrophysics Data System (ADS)
Guo, Xiaojun; Cui, Peng; Li, Yong; Ma, Li; Ge, Yonggang; Mahoney, William B.
2016-01-01
The Ms 8.0 Wenchuan Earthquake has greatly altered the rainfall threshold for debris flows in the affected areas. This study explores the local intensity-duration (I-D) relationship based on 252 post-earthquake debris flows. It was found that I = 5.25 D-0.76 accounts for more than 98% of the debris flow occurrences with rainfall duration between 1 and 135 h; therefore the curve defines the threshold for debris flows in the study area. This gives much lower thresholds than those proposed by the previous studies, suggesting that the earthquake has greatly decreased the thresholds in the past years. Moreover, the rainfall thresholds appear to increase annually in the period of 2008-2013, and present a logarithmic increasing tendency, indicating that the thresholds will recover in the future decades.
Forecasting overhaul or replacement intervals based on estimated system failure intensity
NASA Astrophysics Data System (ADS)
Gannon, James M.
1994-12-01
System reliability can be expressed in terms of the pattern of failure events over time. Assuming a nonhomogeneous Poisson process and Weibull intensity function for complex repairable system failures, the degree of system deterioration can be approximated. Maximum likelihood estimators (MLE's) for the system Rate of Occurrence of Failure (ROCOF) function are presented. Evaluating the integral of the ROCOF over annual usage intervals yields the expected number of annual system failures. By associating a cost of failure with the expected number of failures, budget and program policy decisions can be made based on expected future maintenance costs. Monte Carlo simulation is used to estimate the range and the distribution of the net present value and internal rate of return of alternative cash flows based on the distributions of the cost inputs and confidence intervals of the MLE's.
NASA Astrophysics Data System (ADS)
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-01-01
Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.
Funkhouser, Jaysson E.; Eng, Ken; Moix, Matthew W.
2008-01-01
Water use in Arkansas has increased dramatically in recent years. Since 1990, the use of water for all purposes except power generation has increased 53 percent (4,004 cubic feet per second in 1990 to 6,113 cubic feet per second in 2005). The biggest users are agriculture (90 percent), municipal water supply (4 percent) and industrial supply (2 percent). As the population of the State continues to grow, so does the demand for the State's water resources. The low-flow characteristics of a stream ultimately affect its utilization by humans. Specific information on the low-flow characteristics of streams is essential to State water-management agencies such as the Arkansas Department of Environmental Quality, the Arkansas Natural Resources Commission, and the Arkansas Game and Fish Commission when dealing with problems related to irrigation, municipal and industrial water supplies, fish and wildlife conservation, and dilution of waste. Low-flow frequency data are of particular value to management agencies responsible for the development and management of the State's water resources. This report contains the low-flow characteristics for 70 active continuous-streamflow record gaging stations, 59 inactive continuous-streamflow record stations, and 101 partial-record gaging stations. These characteristics are the annual 7-day, 10-year low flow and the annual 7-day, 2-year low flow, and the seasonal, bimonthly, and monthly 7-day, 10-year low flow for the 129 active and inactive continuous-streamflow record and 101 partial-record gaging stations. Low-flow characteristics were computed on the basis of streamflow data for the period of record through September 2005 for the continuous-streamflow record and partial-record streamflow gaging stations. The low-flow characteristics of these continuous- and partial-record streamflow gaging stations were utilized in a regional regression analysis to produce equations for estimating the annual, seasonal, bimonthly, and monthly (November through April) 7-day, 10-year low flows and the annual 7-day, 2-year low flow for ungaged streams in the western two-thirds of Arkansas.
The Annual Cycle of the Japan Sea Throughflow
NASA Astrophysics Data System (ADS)
Kida, S.; Qiu, B.; Yang, J.; Lin, X.
2016-02-01
The mechanism responsible for the annual cycle of the flows through the straits of Japan Sea is investigated using a two-layer model. Japan Sea is one of the marginal sea located in the western North Pacific that is separated from the Pacific by the islands of Japan. Three narrow and shallow straits, the Tsushima, Tsugaru, and Soya Straits, connect this sea towards the Pacific Ocean and Okhotsk Sea and observations show that the flow through these three straits vary annually with a maximum transport in summer-fall and a minimum transport in winter. The variability is large for Soya (north) and Tsushima (south) Straits but weak for the Tsugaru Strait (middle). We find the subpolar winds located to the north of Soya Strait to be the primary forcing agent of this annual cycle rather than the subtropical winds located to the east of Japan. The subpolar winds generate baroclinic Kelvin waves that perturb the sea surface height at the Soya Strait, cause barotropic adjustment to occur within the Japan Sea, and change the flow at the other straits. The shallow topography at the straits plays an important role. This mechanism explains why the annual cycle at the three straits occur almost synchronously. We also find the around-island integral constraint a useful tool for explaining how the magnitude of the annual cycle at the three straits are controlled. The theorem show the magnitude and direction of the flow controlled largely by the ratio of the meridional length of the two islands that is bounded by the three straits..
Impact of climate change on low flow characteristics in a small catchment of central Poland
NASA Astrophysics Data System (ADS)
Banasik, K.; Kaznowska, E.
2016-12-01
The Zagozdzonka catchment (left tributary of Vistula River) is a small lowland agricultural catchment, located in central Poland, about 100 km south of Warsaw. Hydrological investigations of the Zagozdzonka River at Plachty (N51°26'43.8''; E21°27'35.6''), have been carried out by the Department of River Engineering of Warsaw University of Life Science (WULS) since 1962. The catchment area is 82.4 km2 at the Plachty river gauging station. Annual data of temperature, annual and seasonal rainfall and runoff characteristics, as well as annual N-day (1-, 2-, 3-, 7-, 14- and 30-day) low flow from the catchment of the period of 53-year (1963-2015) were analysed. Mann-Kendall test was used for trend analysis. Analysis has revealed a long term decrease in annual discharge and in all of the analysed N-day low flows from the catchment, as well as a corresponding increase in annul temperature (1.61ºC/50 years) for this area of Poland. No trend was detected for annual precipitation nor summer/winter half year precipitation. There was little land use change in the catchment but remarkable increase of crop yields from the arable land in this region of Poland in the last 50 years, due to fertilisation. So the long term decrease of annual discharge and N-day low flows is assumed to be effect of higher evapotranspiration. The decrease of water resources in summer periods may cause problems when more intensive agriculture practice is planned (and water for irrigation is needed).
A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams
Flynn, Robert H.
2003-01-01
The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.
Space-Time Variability in River Flow Regimes of Northeast Turkey
NASA Astrophysics Data System (ADS)
Saris, F.; Hannah, D. M.; Eastwood, W. J.
2011-12-01
The northeast region of Turkey is characterised by relatively high annual precipitation totals and river flow. It is a mountainous region with high ecological status and also it is of prime interest to the energy sector. These characteristics make this region an important area for a hydroclimatology research in terms of future availability and management of water resources. However, there is not any previous research identifying hydroclimatological variability across the region. This study provides first comprehensive and detailed information on river flow regimes of northeast Turkey which is delimited by two major river basins namely East Black Sea (EBS) and Çoruh River (ÇRB) basins. A novel river flow classification is used that yields a large-scale perspective on hydroclimatology patterns of the region and allows interpretations regarding the controlling factors on river flow variability. River flow regimes are classified (with respect to timing and magnitude of flow) to examine spatial variability based on long-term average regimes, and also by grouping annual regimes for each station-year to identify temporal (between-year) variability. Results indicate that rivers in northeast Turkey are characterised by marked seasonal flow variation with an April-May-June maximum flow period. Spatial variability in flow regime seasonality is dependent largely on the topography of the study area. The EBS Basin, for which the North Anatolian Mountains cover the eastern part, is characterised by a May-June peak; whereas the ÇRB is defined by an April-May flow peak. The timing of river flows indicates that snowmelt is an important process and contributor of river flow maxima for both basins. The low flow season is January and February. Intermediate and low regime magnitude classes dominate in ÇRB and EBS basins, respectively, while high flow magnitude class is observed for one station only across the region. Result of regime stability analysis (year-to-year variation) shows that April-May and May-June peak shape classes together with low and intermediate magnitude classes are the most frequent and persistent flow regimes. This research has advanced understanding of hydroclimatological processes in northeast Turkey by identifying river flow regimes and together with explanations regarding the controlling factors on river flow variability.
Combined sewer overflows: an environmental source of hormones and wastewater micropollutants
Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.
Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536
Hydrological and hydroclimatic regimes in the Ouergha watershed
NASA Astrophysics Data System (ADS)
Msatef, Karim; Benaabidate, Lahcen; Bouignane, Aziz
2018-05-01
This work consists in studying the hydrological and hydroclimatic regime of the Ouergha watershed and frequency analysis of extreme flows and extreme rainfall for peak estimation and return periods, in order to prevention and forecasting against risks (flood...). Hydrological regime analysis showed a regime of the rain type, characterized by rainfed abundance with very high winter flows, so strong floods. The annual module and the different coefficients show hydroclimatic fluctuations in relation to a semihumid climate. The water balance has highlighted the importance of the volumes of water conveyed upstream than downstream, thus confirming the morphometric parameters of watershed and the lithological nature. Frequency study of flows and extreme rainfall showed that these flows governed by dissymmetrical laws based on methods Gumbel, GEV, Gamma and Log Pearson III.
Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico
Owen-Joyce, Sandra J.
1987-01-01
Estimates of tributary inflow by basin or area and by surface water or groundwater are presented in this report and itemized by subreaches in tabular form. Total estimated average annual tributary inflow to the Colorado River between Hoover Dam and Mexico, excluding the measured tributaries, is 96,000 acre-ft or about 1% of the 7.5 million acre-ft/yr of Colorado River water apportioned to the States in the lower Colorado River basin. About 62% of the tributary inflow originates in Arizona, 30% in California, and 8% in Nevada. Tributary inflow is a small component in the water budget for the river. Most of the quantities of unmeasured tributary inflow were estimated in previous studies and were based on mean annual precipitation for 1931-60. Because mean annual precipitation for 1951-80 did not differ significantly from that of 1931-60, these tributary inflow estimates are assumed to be valid for use in 1984. Measured average annual runoff per unit drainage area on the Bill Williams River has remained the same. Surface water inflow from unmeasured tributaries is infrequent and is not captured in surface reservoirs in any of the States; it flows to the Colorado River gaging stations. Estimates of groundwater inflow to the Colorad River valley. Average annual runoff can be used in a water budget; although in wet years, runoff may be large enough to affect the calculation of consumptive use and to be estimated from hydrographs for the Colorado River valley are based on groundwater recharge estimates in the bordering areas, which have not significantly changed through time. In most areas adjacent to the Colorado River valley, groundwater pumpage is small and pumping has not significantly affected the quantity of groundwater discharged to the Colorado River valley. In some areas where groundwater pumpage exceeds the quantity of groundwater discharge and water levels have declined, the quantity of discharge probably has decreased and groundwater inflow to the Colorado River valley will eventually be reduced if not stopped completely. Groundwater discharged at springs below Hoover Dam is unused and flows directly to the Colorado River. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Jidin, Razali; Othman, Bahari
2013-06-01
The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.
Regional stochastic generation of streamflows using an ARIMA (1,0,1) process and disaggregation
Armbruster, Jeffrey T.
1979-01-01
An ARIMA (1,0,1) model was calibrated and used to generate long annual flow sequences at three sites in the Juniata River basin, Pennsylvania. The model preserves the mean, variance, and cross correlations of the observed station data. In addition, it has a desirable blend of both high and low frequency characteristics and therefore is capable of preserving the Hurst coefficient, h. The generated annual flows are disaggregated into monthly sequences using a modification of the Valencia-Schaake model. The low-flow frequency and flow duration characteristics of the generated monthly flows, with length equal to the historical data, compare favorably with the historical data. Once the models were verified, 100-year sequences were generated and analyzed for their low flow characteristics. One-, three- and six- month low-flow frequencies at recurrence intervals greater than 10 years are generally found to be lower than flow computed from the historical flows. A method is proposed for synthesizing flows at ungaged sites. (Kosco-USGS)
NASA Astrophysics Data System (ADS)
Capell, R.; Tetzlaff, D.; Malcolm, I. A.; Hartley, A. J.; Soulsby, C.
2011-09-01
SummaryA year-long multivariate tracer study in the 749 km 2 catchment of the North-Esk in north east Scotland was carried out to infer the dominant runoff generation processes in two markedly different geologic provinces. The upper 60% of the catchment has montane headwaters dominated by impermeable metamorphic rocks, steep topography, peaty soils and a sub-arctic climate with over 1400 mm of precipitation. The lowlands of the catchment are underlain by a major sandstone aquifer, and mainly have freely draining, fertile soils that support intensive arable farming under a drier climate with around 800 mm of precipitation. Storm runoff in the uplands is dominated by near-surface processes in soils and sedimentary layers which generate around 60% of annual stream flows with water of low alkalinity and ionic strength. In contrast, tributaries in the lower parts of the catchment are dominated by groundwater-fed base flows which account for 75% of annual runoff and are characterised by alkaline waters with high concentrations of base cations and high levels of nitrate. Multivariate statistical methods were used to derive a generic typology of catchment source waters, their spatial and temporal dynamics and particularly, how they integrate together at the larger catchment scale. The uplands dominate the winter high flow response of the whole catchment. The influence of lowland groundwater from major aquifers becomes more apparent under low flows. However, groundwater from small upland aquifers plays a critical role for ecosystem service in dry periods providing baseflows which dilute pollutant inputs from lowland areas at the large catchment scale.
Modelling Inland Flood Events for Hazard Maps in Taiwan
NASA Astrophysics Data System (ADS)
Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.
2015-12-01
Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage. Major historical flood events have been successfully simulated along with spatial patterns of flows. Comparison of stochastic discharge statistics w.r.t. observed ones from Hydrological Year Books of Taiwan over all recorded years are also in good agreement.
Kalin, Latif; Hantush, Mohamed M
2009-02-01
An index based method is developed that ranks the subwatersheds of a watershed based on their relative impacts on watershed response to anticipated land developments, and then applied to an urbanizing watershed in Eastern Pennsylvania. Simulations with a semi-distributed hydrologic model show that computed low- and high-flow frequencies at the main outlet increase significantly with the projected landscape changes in the watershed. The developed index is utilized to prioritize areas in the urbanizing watershed based on their contributions to alterations in the magnitude of selected flow characteristics at two spatial resolutions. The low-flow measure, 7Q10, rankings are shown to mimic the spatial trend of groundwater recharge rates, whereas average annual maximum daily flow, QAMAX, and average monthly median of daily flows, QMMED, rankings are influenced by both recharge and proximity to watershed outlet. Results indicate that, especially with the higher resolution, areas having quicker responses are not necessarily the more critical areas for high-flow scenarios. Subwatershed rankings are shown to vary slightly with the location of water quality/quantity criteria enforcement. It is also found that rankings of subwatersheds upstream from the site of interest, which could be the main outlet or any interior point in the watershed, may be influenced by the time scale of the hydrologic processes.
Holtschlag, David J.; Hoard, C.J.
2009-01-01
St. Clair River is a connecting channel that transports water from Lake Huron to the St. Clair River Delta and Lake St. Clair. A negative trend has been detected in differences between water levels on Lake Huron and Lake St. Clair. This trend may indicate a combination of flow and conveyance changes within St. Clair River. To identify where conveyance change may be taking place, eight water-level gaging stations along St. Clair River were selected to delimit seven reaches. Positive trends in water-level fall were detected in two reaches, and negative trends were detected in two other reaches. The presence of both positive and negative trends in water-level fall indicates that changes in conveyance are likely occurring among some reaches because all reaches transmit essentially the same flow. Annual water-level fall in reaches and reach lengths was used to compute conveyance ratios for all pairs of reaches by use of water-level data from 1962 to 2007. Positive and negative trends in conveyance ratios indicate that relative conveyance is changing among some reaches. Inverse one-dimensional (1-D) hydrodynamic modeling was used to estimate a partial annual series of effective channel-roughness parameters in reaches forming the St. Clair River for 21 years when flow measurements were sufficient to support parameter estimation. Monotonic, persistent but non-monotonic, and irregular changes in estimated effective channel roughness with time were interpreted as systematic changes in conveyances in five reaches. Time-varying parameter estimates were used to simulate flow throughout the St. Clair River and compute changes in conveyance with time. Based on the partial annual series of parameters, conveyance in the St. Clair River increased about 10 percent from 1962 to 2002. Conveyance decreased, however, about 4.1 percent from 2003 to 2007, so that conveyance was about 5.9 percent higher in 2007 than in 1962.
Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts
Zarriello, Phillip J.
2017-05-11
The U.S. Geological Survey, in cooperation with the Massachusetts Department of Transportation, determined the magnitude of flood flows at selected annual exceedance probabilities (AEPs) at streamgages in Massachusetts and from these data developed equations for estimating flood flows at ungaged locations in the State. Flood magnitudes were determined for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs at 220 streamgages, 125 of which are in Massachusetts and 95 are in the adjacent States of Connecticut, New Hampshire, New York, Rhode Island, and Vermont. AEP flood flows were computed for streamgages using the expected moments algorithm weighted with a recently computed regional skewness coefficient for New England.Regional regression equations were developed to estimate the magnitude of floods for selected AEP flows at ungaged sites from 199 selected streamgages and for 60 potential explanatory basin characteristics. AEP flows for 21 of the 125 streamgages in Massachusetts were not used in the final regional regression analysis, primarily because of regulation or redundancy. The final regression equations used generalized least squares methods to account for streamgage record length and correlation. Drainage area, mean basin elevation, and basin storage explained 86 to 93 percent of the variance in flood magnitude from the 50- to 0.2-percent AEPs, respectively. The estimates of AEP flows at streamgages can be improved by using a weighted estimate that is based on the magnitude of the flood and associated uncertainty from the at-site analysis and the regional regression equations. Weighting procedures for estimating AEP flows at an ungaged site on a gaged stream also are provided that improve estimates of flood flows at the ungaged site when hydrologic characteristics do not abruptly change.Urbanization expressed as the percentage of imperviousness provided some explanatory power in the regional regression; however, it was not statistically significant at the 95-percent confidence level for any of the AEPs examined. The effect of urbanization on flood flows indicates a complex interaction with other basin characteristics. Another complicating factor is the assumption of stationarity, that is, the assumption that annual peak flows exhibit no significant trend over time. The results of the analysis show that stationarity does not prevail at all of the streamgages. About 27 percent of streamgages in Massachusetts and about 42 percent of streamgages in adjacent States with 20 or more years of systematic record used in the study show a significant positive trend at the 95-percent confidence level. The remaining streamgages had both positive and negative trends, but the trends were not statistically significant. Trends were shown to vary over time. In particular, during the past decade (2004–2013), peak flows were persistently above normal, which may give the impression of positive trends. Only continued monitoring will provide the information needed to determine whether recent increases in annual peak flows are a normal oscillation or a true trend.The analysis used 37 years of additional data obtained since the last comprehensive study of flood flows in Massachusetts. In addition, new methods for computing flood flows at streamgages and regionalization improved estimates of flood magnitudes at gaged and ungaged locations and better defined the uncertainty of the estimates of AEP floods.
Parrett, Charles
2006-01-01
To address concerns expressed by the State of Montana about the apportionment of water in the St. Mary and Milk River basins between Canada and the United States, the International Joint Commission requested information from the United States government about water that originates in the United States but does not cross the border into Canada. In response to this request, the U.S. Geological Survey synthesized monthly and annual streamflow records for Big Sandy, Clear, Peoples, and Beaver Creeks, all of which are in the Milk River basin in Montana, for water years 1950-2003. This report presents the synthesized values of monthly and annual streamflow for Big Sandy, Clear, Peoples, and Beaver Creeks in Montana. Synthesized values were derived from recorded and estimated streamflows. Statistics, including long-term medians and averages and flows for various exceedance probabilities, were computed from the synthesized data. Beaver Creek had the largest median annual discharge (19,490 acre-feet), and Clear Creek had the smallest median annual discharge (6,680 acre-feet). Big Sandy Creek, the stream with the largest drainage area, had the second smallest median annual discharge (9,640 acre-feet), whereas Peoples Creek, the stream with the second smallest drainage area, had the second largest median annual discharge (11,700 acre-feet). The combined median annual discharge for the four streams was 45,400 acre-feet. The largest combined median monthly discharge for the four creeks was 6,930 acre-feet in March, and the smallest combined median monthly discharge was 48 acre-feet in January. The combined median monthly values were substantially smaller than the average monthly values. Overall, synthesized flow records for the four creeks are considered to be reasonable given the prevailing climatic conditions in the region during the 1950-2003 base period. Individual estimates of monthly streamflow may have large errors, however. Linear regression was used to relate logarithms of combined annual streamflow to water years 1950-2003. The results of the regression analysis indicated a significant downward trend (regression line slope was -0.00977) for combined annual streamflow. A regression analysis using data from 1956-2003 indicated a slight, but not significant, downward trend for combined annual streamflow.
NASA Astrophysics Data System (ADS)
Ceola, Serena; Pugliese, Alessio; Galeati, Giorgio; Castellarin, Attilio
2017-04-01
The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.
NASA Astrophysics Data System (ADS)
Castellarin, A.; Galeati, G.; Ceola, S.; Pugliese, A.; Ventura, M.; Montanari, A.
2017-12-01
The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.
Rainfall and runoff variability in Ethiopia
NASA Astrophysics Data System (ADS)
Billi, Paolo; Fazzini, Massimiliano; Tadesse Alemu, Yonas; Ciampalini, Rossano
2014-05-01
Rainfall and river flow variability have been deeply investigated and and the impact of climate change on both is rather well known in Europe (EEA, 2012) or in other industrialized countries. Reports of international organizations (IPCC, 2012) and the scientific literature provide results and outlooks that were found contrasting and spatially incoherent (Manton et al., 2001; Peterson et al., 2002; Griffiths et al., 2003; Herath and Ratnayake, 2004) or weakened by limitation of data quality and quantity. According to IPCC (2012), in East Africa precipitation there are contrasting regional and seasonal variations and trends, though Easterling et al. (2000) and Seleshi and Camberlin (2006) report decreasing trends in heavy precipitation over parts of Ethiopia during the period 1965-2002. Literature on the impact of climate change on river flow is scarce in Africa and IPCC Technical Paper VI (IPCC, 2008) concluded that no evidence, based on instrumental records, has been found for a climate-driven globally widespread change in the magnitude/frequency of floods during the last decades (Rosenzweig et al., 2007), though increases in runoff and increased risk of flood events in East Africa are expected. Some papers have faced issues regarding rainfall and river flow variability in Ethiopia (e.g. Seleshi and Demaree, 1995; Osman and Sauerborn, 2002; Seleshi and Zanke, 2004; Meze-Hausken, 2004; Korecha and Barnston, 2006; Cheung et al., 2008) but their investigations are commonly geographically limited or used a small number of rain and flow gauges with the most recent data bound to the beginning of the last decade. In this study an attempt to depict rainfall and river flow variability, considering the longer as possible time series for the largest as possible number of meteo-stations and flow gauge evenly distributed across Ethiopia, is presented. 25 meteo-stations and 21 flow gauges with as much as possible continuous data records were selected. The length of the time series ranges between 35 to 50 and 9 to 49 years for rainfall and river flow, respectively. In order to improve the poor linear correlation model to describe rainfall gradient with altitude a simple topographic parameter is introduced capable to better depict the spatial variability of annual rainfall and its coefficient of variation. The small rains (Belg) were found to be much more unpredictable than the long, monsoon-type rains (Kiremt) and hence much more out of phase with the variation of annual precipitation amount that is significantly influenced by the Kiremt rains. In order to investigate the long term trends, rainfall anomalies were calculated as Z score for annual, Belg and Kiremt precipitation for all the stations and average values are calculated and plotted against time. The three Z trend lines obtained show no marked deviation from the mean as only an almost negligible decreasing trend is observed. Rainfall intensity in 24 hours is analyzed and the trend line of the maximum intensity averaged over the maximum value of each year recorded at each meteo-station is constructed. These data indicate a general decrease in daily rainfall intensity across Ethiopia with clear exceptions in a few selected areas. The same procedure, based on the Z scores, used to analyze rainfall variability is applied also to the river flow data and a similar result is obtained. If compared with rainfall, annual runoff shows a much wider range of variation among the study rivers. This issue is discussed and possible explanations are presented.
Peak-flow frequency estimates through 1994 for gaged streams in South Dakota
Burr, M.J.; Korkow, K.L.
1996-01-01
Annual peak-flow data are listed for 250 continuous-record and crest-stage gaging stations in South Dakota. Peak-flow frequency estimates for selected recurrence intervals ranging from 2 to 500 years are given for 234 of these 250 stations. The log-Pearson Type III procedure was used to compute the frequency relations for the 234 stations, which in 1994 included 105 active and 129 inactive stations. The log-Pearson Type III procedure is recommended by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data, 1982, "Guidelines for Determining Flood Flow Frequency."No peak-flow frequency estimates are given for 16 of the 250 stations because: (1) of extreme variability in data set; (2) more than 20 percent of years had no flow; (3) annual peak flows represent large outflow from a spring; (4) of insufficient peak-flow record subsequent to reservoir regulation; and (5) peak-flow records were combined with records from nearby stations.
Magnitude and frequency of low flows in the Suwannee River Water Management District, Florida
Giese, G.L.; Franklin, M.A.
1996-01-01
Low-flow frequency statistics for 20 gaging stations having at least 10 years of continuous record and 31 other stations having less than 10 years of continu ous record or a series of at least two low- flow measurements are presented for unregulated streams in the Suwannee River Water Management District in north-central Florida. Statistics for the 20 continuous-record stations included are the annual and monthly minimum consecutive-day average low- flow magnitudes for 1, 3, 7, 14, and 30 consecutive days for recurrence intervals of 2, 5, 10, 20, and, for some long-term stations, 50 years, based on records available through the 1994 climatic year.Only theannual statistics are given for the 31 other stations; these are for the 7- and 30-consecutive day periods only and for recurrence intervals of 2 and 10 years only. Annual low-flow frequency statistics range from zero for many small streams to 5,500 cubic feet per second for the annual 30- consecutive-day average flow with a recurrenceinterval of 2 years for the Suwannee River near Wilcox (station 02323500). Monthly low-flow frequency statistics range from zero for many small streams to 13,800 cubic feet per second for the minimum 30-consecutive-day average flow with a 2-year recurrence interval for the month of March for the same station. Generally, low-flow characteristics of streams in the Suwannee River Water Management District are controlled by climatic, topographic, and geologic fac tors. The carbonate Floridan aquifer system underlies, or is at the surface of, the entire District. The terrane's karstic nature results in manysinkholes and springs. In some places, springs may contribute greatly to low streamflow and the contributing areas of such springs may include areasoutside the presumed surface drainage area of the springs. In other places, water may enter sinkholes within a drainage basin, then reappear in springs downstream from a gage. Many of the smaller streams in the District go dry or have no flow forseveral months in many years. In addition to the low-flow statistics, four synoptic low-flow measurement surveys were conducted on 161 sites during 1990, 1995, and 1996. Themeasurements were made to provide "snapshots" of flow conditions of streams throughout the Suwannee River Water Management District. Magnitudes of low flows during the 1990 series of measurements were in the range associated withminimum 7-consecutive-day 50-year recurrence interval to the minimum 7-consecutive-day 20-year recurrence interval, except in Taylor and Dixie Counties, where the magnitudes ranged from the minimum 7-consecutive-day 5-year flow level to the7-consecutive-day 2-year flow level. The magnitudes were all greater than the minimum 7- consecutive-day 2-year flow level during 1995 and 1996. Observations of no flow were recorded at many of the sites for all four series of measurements.
Karst hydrogeology and hydrochemistry of the Cave Springs basin near Chattanooga, Tennessee
Pavlicek, D.J.
1996-01-01
The Cave Springs ground-water basin, located near Chattanooga, Tennessee, was chosen as one of the Valley and Ridge physiographic province type area studies for the Appalachian Valley-Piedmont Regional Aquifer-System Analysis study in 1990. Karstic Paleozoic carbonate rocks, residual clay-rich regolith, and coarse alluvium form the aquifer framework. Recharge from rainfall dispersed over the basin enters the karst aquifer through the thick regolith. The area supplying recharge to the Cave Springs Basin is approximately 7 square miles. Recharge from North Chickamauga Creek may contribute recharge to the Cave Springs Basin along losing reaches. The flow medium consists of mixed dolomite and limestone with cavernous and fracture porosity. Flow type as determined by the coefficient of variation of long-term continuous specific conductance (18 and 15 percent) from two wells completed in cavernous intervals about 150 feet northeast of Cave Springs, indicates an aquifer with conduit flow. Flow type, based on the ratio (6:1) of spring flood-flow discharge to spring base-flow discharge, indicates an aquifer with diffuse flow. Conduit flow probably dominates the aquifer system west of Cave Springs Ridge from the highly transmissive, unconfined, alluvium capped aquifer and along losing reaches of North Chickamauga Creek. Diffuse flow probably predominates in the areas along and east of Cave Springs Ridge covered with the thick, clay-rich regolith that forms a leaky confining layer. Based on average annual long-term precipitation and runoff records, the amount of water available for recharge to Cave Springs is 11.8 cubic feet per second. The mean annual long-term discharge of Cave Springs is 16.4 cubic feet per second which leaves 4.6 cubic feet per second of recharge unaccounted for. As determined by low-flow stream discharge measurements, recharge along losing reaches of North Chickamauga Creek may be an important source of unaccounted-for-recharge to the Cave Springs Basin. Selected ground-water samples in the study area are characterized by calcium bicarbonate type water and calcium magnesium bicarbonate type water. Calcium bicarbonate type water characterizes Lick Branch and Poe Branch. North Chickamauga Creek water is calcium magnesium sulfate type water and reflects interaction with the pyrite-containing siliciclastic rocks of the Cumberland Plateau or acid mine drainage. Seasonal high spring discharge is associated with lower specific conductance and lower temperatures, which lag in response to increasing spring discharge by approximately 2 months. Seasonal decrease in spring discharge is accompanied by an incident increase in specific conductance and temperature increase, which leads by about 4 months.
Remittances as aid following major sudden-onset natural disasters.
Bragg, Catherine; Gibson, Glenn; King, Haleigh; Lefler, Ashley A; Ntoubandi, Faustin
2018-01-01
There is a general assumption, based on macroeconomic studies, that remittances will rise following major sudden-onset natural disasters. This is confirmed by a few assessments involving country-specific research, and usually short-term data. This study, questioning conventional wisdom, reviewed and graphed annual and quarterly remittance flows using International Monetary Fund and World Bank data from 2000-14 for 12 countries that confronted 18 major natural disasters. It found that, regardless of event type, annual remittances rose steadily from 2000-14 except for after the 2008-09 financial crisis. Post disaster, there was a quarterly increase in the majority of cases (confirming previous research) but there was seldom an annual increase in the year of the disaster greater than the average annual increase in 2000-14. It appears that remittance senders rush to provide assistance after a natural disaster, but since their own financial situation has not changed, the immediate increase is compensated by a later decrease. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.
Eash, David A.; Barnes, Kimberlee K.; Veilleux, Andrea G.
2013-01-01
A statewide study was performed to develop regional regression equations for estimating selected annual exceedance-probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedance-probability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized least-squares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.
Vulnerability of streams to legacy nitrate sources
Tesoriero, Anthony J.; Duff, John H.; Saad, David A.; Spahr, Norman E.; Wolock, David M.
2013-01-01
The influence of hydrogeologic setting on the susceptibility of streams to legacy nitrate was examined at seven study sites having a wide range of base flow index (BFI) values. BFI is the ratio of base flow to total streamflow volume. The portion of annual stream nitrate loads from base flow was strongly correlated with BFI. Furthermore, dissolved oxygen concentrations in streambed pore water were significantly higher in high BFI watersheds than in low BFI watersheds suggesting that geochemical conditions favor nitrate transport through the bed when BFI is high. Results from a groundwater-surface water interaction study at a high BFI watershed indicate that decades old nitrate-laden water is discharging to this stream. These findings indicate that high nitrate levels in this stream may be sustained for decades to come regardless of current practices. It is hypothesized that a first approximation of stream vulnerability to legacy nutrients may be made by geospatial analysis of watersheds with high nitrogen inputs and a strong connection to groundwater (e.g., high BFI).
Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.
2014-01-01
Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.
Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley
2017-01-01
Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...
NASA Astrophysics Data System (ADS)
Saghafian, B.; Mohammadi, A.
2003-04-01
Most studies involving water resources allocation, water quality, hydropower generation, and allowable water withdrawal and transfer require estimation of low flows. Normally, frequency analysis on at-station D-day low flow data is performed to derive various T-yr return period values. However, this analysis is restricted to the location of hydrometric stations where the flow discharge is measured. Regional analysis is therefore conducted to relate the at-station low flow quantiles to watershed characteristics. This enables the transposition of low flow quantiles to ungauged sites. Nevertheless, a procedure to map the regional regression relations for the entire stream network, within the bounds of the relations, is particularly helpful when one studies and weighs alternative sites for certain water resources project. In this study, we used a GIS-aided procedure for low flow mapping in Gilan province, part of northern region in Iran. Gilan enjoys a humid climate with an average of 1100 mm annual precipitation. Although rich in water resources, the highly populated area is quite dependent on minimum amount of water to sustain the vast rice farming and to maintain required flow discharge for quality purposes. To carry out the low flow analysis, a total of 36 hydrometric stations with sufficient and reliable discharge data were identified in the region. The average area of the watersheds was 250 sq. km. Log Pearson type 3 was found the best distribution for flow durations over 60 days, while log normal fitted well the shorter duration series. Low flows with return periods of 2, 5, 10, 25, 50, and 100 year were then computed. Cluster analysis identified two homogeneous areas. Although various watershed parameters were examined in factor analysis, the results showed watershed area, length of the main stream, and annual precipitation were the most effective low flow parameters. The regression equations were then mapped with the aid of GIS based on flow accumulation maps and the corresponding spatially averaged values of other parameters over the upslope area of all stream pixels exceeding a certain threshold area. Such map clearly shows the spatial variation of low flow quantiles along the stream network and enables the study of low flow profiles along any stream.
Multisite Evaluation of APEX for Water Quality: I. Best Professional Judgment Parameterization.
Baffaut, Claire; Nelson, Nathan O; Lory, John A; Senaviratne, G M M M Anomaa; Bhandari, Ammar B; Udawatta, Ranjith P; Sweeney, Daniel W; Helmers, Matt J; Van Liew, Mike W; Mallarino, Antonio P; Wortmann, Charles S
2017-11-01
The Agricultural Policy Environmental eXtender (APEX) model is capable of estimating edge-of-field water, nutrient, and sediment transport and is used to assess the environmental impacts of management practices. The current practice is to fully calibrate the model for each site simulation, a task that requires resources and data not always available. The objective of this study was to compare model performance for flow, sediment, and phosphorus transport under two parameterization schemes: a best professional judgment (BPJ) parameterization based on readily available data and a fully calibrated parameterization based on site-specific soil, weather, event flow, and water quality data. The analysis was conducted using 12 datasets at four locations representing poorly drained soils and row-crop production under different tillage systems. Model performance was based on the Nash-Sutcliffe efficiency (NSE), the coefficient of determination () and the regression slope between simulated and measured annualized loads across all site years. Although the BPJ model performance for flow was acceptable (NSE = 0.7) at the annual time step, calibration improved it (NSE = 0.9). Acceptable simulation of sediment and total phosphorus transport (NSE = 0.5 and 0.9, respectively) was obtained only after full calibration at each site. Given the unacceptable performance of the BPJ approach, uncalibrated use of APEX for planning or management purposes may be misleading. Model calibration with water quality data prior to using APEX for simulating sediment and total phosphorus loss is essential. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Lombard, Pamela J.; Hodgkins, Glenn A.
2015-01-01
Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.
Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.
2015-12-31
The application uses predictions of future annual precipitation from five climate models and two future greenhouse gas emissions scenarios and provides results that are averaged over three future periods—2025 to 2049, 2050 to 2074, and 2075 to 2099. Results are presented in ensemble form as the mean, median, maximum, and minimum values among the five climate models for each greenhouse gas emissions scenario and period. These predictions of future annual precipitation are substituted into either the precipitation variable or a water balance equation for runoff to calculate potential future peak flows. This application is intended to be used only as an exploratory tool because (1) the regression equations on which the application is based have not been adequately tested outside the range of the current climate and (2) forecasting future precipitation with climate models and downscaling these results to a fine spatial resolution have a high degree of uncertainty. This report includes a discussion of the assumptions, uncertainties, and appropriate use of this exploratory application.
Kume, Jack; Lindgren, R.J.; Stullken, L.E.
1985-01-01
A two-dimensional finite difference computer model was used to project changes in the potentiometric surface, saturated thickness, and stream aquifer leakage in an alluvial aquifer resulting from four instances of projected groundwater development. The alluvial aquifer occurs in the South Fork Solomon River valley between Webster Reservoir and Waconda Lake in north-central Kansas. In the first two projections, pumpage for irrigation was held constant at 1978 rates throughout the projection period (1979-2020). In the second two projections, the 1978 pumpage was progressively increased each yr through 2020. In the second and fourth projections, surface water diversions in the Osborne Irrigation Canal were decreased by 50 %. For the third and fourth projections, each grid-block in the modeled area was classified initially as one of six types according to whether it represented irrigable or nonirrigable land, to its saturated thickness, to its location inside or outside the canal-river area, and to its pumping rate. The projected base-flow rates (leakage from the aquifer to the river) were lower during the irrigation season (June, July, and August) than during the other months of the yr because of the decline in hydraulic head produced by groundwater pumpage. Stream depletion, calculated as a decrease below the average (1970-78) estimated winter base-flow rate of 16.5 cu ft/sec, varied inversely with base flow. For the first two projections, a constant annual cycle of well pumpage and recharge was used throughout the projection period. Aquifer leakage to the river was nearly constant by the mid-to-late 1990's, implying that flow conditions had attained a stabilized annual cycle. The third and fourth projections never attained an annual stabilized cycle because the irrigation pumpage rate was increased each year. By the early 1980's, the hydraulic head had fallen below river stage, reversing the hydraulic gradient at the stream-aquifer interface and resulting in net leakage from the river to the aquifer during the summer months. By the early 1990 's, the projected potentiometric surface of the aquifer was lower than the river stage even during the winter and spring months. (Author 's abstract)
System analysis to estimate subsurface flow: from global level to the State of Minnesota
NASA Astrophysics Data System (ADS)
Shmagin, Boris A.; Kanivetsky, Roman
2002-06-01
Stream runoff data globally and in the state of Minnesota were used to estimate subsurface water flow. This system approach is based, in principal, on unity of groundwater and surface water systems, and it is in stark contrast to the traditional deterministic approach based on modeling. In coordination with methodology of system analysis, two levels of study were used to estimate subsurface flow. First, the global stream runoff data were assessed to estimate the temporal-spatial variability of surface water runoff. Factor analysis was used to study the temporal-spatial variability of global runoff for the period from 1918 to 1967. Results of these analysis demonstrate that the variability of global runoff could be represented by seven major components (factor scores) that could be grouped into seven distinct independent grouping from the total of 18 continental slopes on the Earth. Computed variance value in this analysis is 76% and supports such analysis. The global stream runoff for this period is stationary, and is more closely connected with the stream flow of Asia to the Pacific Ocean as well as with the stream runoff of North America towards the Arctic and Pacific Oceans. The second level examines the distribution of river runoff (annual and for February) for various landscapes and the hydrogeological conditions in the State of Minnesota (218,000 km2). The annual and minimal monthly rate of stream runoff for 115 gauging stations with a period of observation of 47 years (1935-1981) were used to characterize the spatio-temporal distribution of stream runoff in Minnesota. Results of this analysis demonstrate that the annual stream runoff rate changes from 6.3, towards 3.95, and then to 2.09 l s-1 km-2 (the difference is significant based on Student's criteria). These values in Minnesota correspond to ecological provinces from a mixed forest province towards the broadleaf forest and to prairie province, respectively. The distribution of minimal monthly stream runoff rate (February runoff) is controlled by hydrogeological systems in Minnesota. The difference between the two hydrogeological regions, Precambrian crystalline basement and Paleozoic artesian basin of 0.83 and 2.09 l/s/km2, is statistically significant. Within these regions, the monthly minimal runoff (0.5 and 1.68, and 0.87 and 3.11 l s-1 km-2 for February, respectively) is also distinctly different for delineated subregions, depending on whether or not the Quaternary cover is present. The spatio-temporal structure that emerges could thus be used to generate river runoff and subsurface flow maps at any scale - from the global level to local detail. Such analysis was carried out in Minnesota with the detailed mapping of the subsurface flow for the Twin Cities Metropolitan area.
System analysis to estimate subsurface flow: From global level to the State of Minnesota
Shmagin, B.A.; Kanivetsky, R.
2002-01-01
Stream runoff data globally and in the state of Minnesota were used to estimate subsurface water flow. This system approach is based, in principal, on unity of groundwater and surface water systems, and it is in stark contrast to the traditional deterministic approach based on modeling. In coordination with methodology of system analysis, two levels of study were used to estimate subsurface flow. First, the global stream runoff data were assessed to estimate the temporal-spatial variability of surface water runoff. Factor analysis was used to study the temporal-spatial variability of global runoff for the period from 1918 to 1967. Results of these analysis demonstrate that the variability of global runoff could be represented by seven major components (factor scores) that could be grouped into seven distinct independent grouping from the total of 18 continental slopes on the Earth. Computed variance value in this analysis is 76% and supports such analysis. The global stream runoff for this period is stationary, and is more closely connected with the stream flow of Asia to the Pacific Ocean as well as with the stream runoff of North America towards the Arctic and Pacific Oceans. The second level examines the distribution of river runoff (annual and for February) for various landscapes and the hydrogeological conditions in the State of Minnesota (218,000 km2). The annual and minimal monthly rate of stream runoff for 115 gauging stations with a period of observation of 47 years (1935-1981) were used to characterize the spatio-temporal distribution of stream runoff in Minnesota. Results of this analysis demonstrate that the annual stream runoff rate changes from 6.3, towards 3.95, and then to 2.09 1 s-1 km-2 (the difference is significant based on Student's criteria). These values in Minnesota correspond to ecological provinces from a mixed forest province towards the broadleaf forest and to prairie province, respectively. The distribution of minimal monthly stream runoff rate (February runoff) is controlled by hydrogeological systems in Minnesota. The difference between the two hydrogeological regions, Precambrian crystalline basement and Paleozoic artesian basin of 0.83 and 2.09 1/s/km2, is statistically significant. Within these regions, the monthly minimal runoff (0.5 and 1.68, and 0.87 and 3.11 1 s-1 km-2 for February, respectively) is also distinctly different for delineated subregions, depending on whether or not the Quaternary cover is present. The spatio-temporal structure that emerges could thus be used to generate river runoff and subsurface flow maps at any scale - from the global level to local detail. Such analysis was carried out in Minnesota with the detailed mapping of the subsurface flow for the Twin Cities Metropolitan area.
Risley, John C.; Gannett, Marshall W.
2006-01-01
The Lower Klamath and Tule Lake National Wildlife Refuges, located in the upper Klamath Basin of Oregon and California, encompass approximately 46,700 and 39,100 acres, respectively. Demand for water in the semiarid upper Klamath Basin has increased in recent years, resulting in the need to better quantify water availability and use in the refuges. This report presents an evaluation of water-use estimates for both refuges derived on the basis of two approaches. One approach used evaporation and evapotranspiration estimates and the other used measured inflow and outflow data. The quality of the inflow and outflow data also was assessed. Annual water use in the refuges, using evapotranspiration estimates, was computed with the use of different rates for each of four land-use categories. Annual water-use rates for grain fields, seasonal wetlands, permanently flooded wetlands with emergent vegetation, and open-water bodies were 2.5, 2.9, 2.63, and 4.07 feet per year, respectively. Total water use was estimated as the sum of the products of each rate and the number of acres in its associated land-use category. Mean annual (2003-2005) water use for the Lower Klamath and Tule Lake refuges was approximately 124,000 and 95,900 acre-feet, respectively. To estimate water deliveries needed for each refuge, first, annual precipitation for 2003-2005 was subtracted from the annual water use for those years. Then, an adjusted total was obtained by adding 20 percent to the difference to account for salinity flushing. Resulting estimated mean annual adjusted needed water deliveries in 2003-2005 for the Lower Klamath and Tule Lake refuges were 107,000 and 82,800 acre-feet, respectively. Mean annual net inflow to the refuges for 2003-2005 was computed by subtracting estimated and measured surface-water outflows from inflows. Mean annual net inflow during the 3-year period for the Lower Klamath refuge, calculated for a subsection of the refuge, was approximately 73,700 acre-feet. The adjusted needed water delivery for this section of the refuge, calculated from evapotranspiration estimates, was approximately 77,600 acre-feet. For the Tule Lake refuge, mean annual net inflow during the 3-year period was approximately 76,100 acre-feet, which is comparable to the estimated annual needed water delivery for the refuge of 82,800 acre-feet. For 1962-2005, mean annual net inflow to the Lower Klamath refuge was approximately 49,800 acre-feet, about 23,900 acre-feet less than for 2003-2005. Although mean April-September net inflows for 1962-2005 and 2003-2005 have remained fairly constant, annual net inflow has increased for October-March, which accounts for the difference. Consistently higher autumn and winter flow deliveries since the mid-1980s reflect a significant change in refuge management. More sections of the refuge are currently managed as seasonal wetlands than were in the 1960s and 1970s. Flow records for the Ady Canal at State Line Road, Klamath Straits Drain at State Line Road, and D Pumping Plant were evaluated for their data quality. On the basis of USGS flow-record criteria, all three flow records were rated as 'poor.' By definition, 95 percent of the daily flows in a record having this rating could be in error by more than 15 percent.
A hydroclimatological approach to predicting regional landslide probability using Landlab
NASA Astrophysics Data System (ADS)
Strauch, Ronda; Istanbulluoglu, Erkan; Nudurupati, Sai Siddhartha; Bandaragoda, Christina; Gasparini, Nicole M.; Tucker, Gregory E.
2018-02-01
We develop a hydroclimatological approach to the modeling of regional shallow landslide initiation that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual probability of landslide initiation based on Monte Carlo simulations. The physically based model couples the infinite-slope stability model with a steady-state subsurface flow representation and operates in a digital elevation model. Spatially distributed gridded data for soil properties and vegetation classification are used for parameter estimation of probability distributions that characterize model input uncertainty. Hydrologic forcing to the model is through annual maximum daily recharge to subsurface flow obtained from a macroscale hydrologic model. We demonstrate the model in a steep mountainous region in northern Washington, USA, over 2700 km2. The influence of soil depth on the probability of landslide initiation is investigated through comparisons among model output produced using three different soil depth scenarios reflecting the uncertainty of soil depth and its potential long-term variability. We found elevation-dependent patterns in probability of landslide initiation that showed the stabilizing effects of forests at low elevations, an increased landslide probability with forest decline at mid-elevations (1400 to 2400 m), and soil limitation and steep topographic controls at high alpine elevations and in post-glacial landscapes. These dominant controls manifest themselves in a bimodal distribution of spatial annual landslide probability. Model testing with limited observations revealed similarly moderate model confidence for the three hazard maps, suggesting suitable use as relative hazard products. The model is available as a component in Landlab, an open-source, Python-based landscape earth systems modeling environment, and is designed to be easily reproduced utilizing HydroShare cyberinfrastructure.
NASA Astrophysics Data System (ADS)
Tinkler, Keith J.; Parish, John
Cooksville Creek (33 km2) is based in weak Georgian Bay Formation shale and thin limestone and has been gradually urbanized by the City of Mississauga within the last thirty years. These conditions, together with a mean thalweg gradient of about 0.77%, have produced enhanced rates of channel bed erosion along much of the channel (the order of 2 centimetres per year), as revealed by installed engineering works, such as armour stone blocks and gabion baskets. Erosion rates below drop structures are up to an order of magnitude faster. A year-long monitoring program revealed that weathering of the shale bed by wetting and drying cycles was primarily responsible for fragmenting the shale to a size (a few centimetres on the long axis) which could be removed by frequent and moderate high flows with a magnitude much less than the Mean Annual Flood. Channel bed quarrying of shale and limestone slabs, and the transport of larger clasts and meter dimension armour stones toppled from channel structures, require flood flows with a recurrence interval of about the Mean Annual Flood. Such flows are characterized by critical or supercritical flow conditions along the thalweg, and with velocities typically in the range 4 to 6 meters per second, they are well able to quarry the bed, and transport clasts up to metre dimension in size.
NASA Astrophysics Data System (ADS)
de Fleurian, Basile; Morlighem, Mathieu; Seroussi, Helene; Rignot, Eric; van den Broeke, Michiel R.; Kuipers Munneke, Peter; Mouginot, Jeremie; Smeets, Paul C. J. P.; Tedstone, Andrew J.
2016-10-01
Basal sliding is a main control on glacier flow primarily driven by water pressure at the glacier base. The ongoing increase in surface melting of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here we examine the case of Russell Glacier, in West Greenland, where an extensive set of observations has been collected. These observations suggest that the recent increase in melt has had an equivocal impact on the annual velocity, with stable flow on the lower part of the drainage basin but accelerated flow above the Equilibrium Line Altitude (ELA). These distinct behaviors have been attributed to different evolutions of the subglacial draining system during and after the melt season. Here we use a high-resolution subglacial hydrological model forced by reconstructed surface runoff for the period 2008 to 2012 to investigate the cause of these distinct behaviors. We find that the increase in meltwater production at low elevation yields a more efficient drainage system compatible with the observed stagnation of the mean annual flow below the ELA. At higher elevation, the model indicates that the drainage system is mostly inefficient and is therefore strongly sensitive to an increase in meltwater availability, which is consistent with the observed increase in ice velocity.
User's Manual for Program PeakFQ, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines
Flynn, Kathleen M.; Kirby, William H.; Hummel, Paul R.
2006-01-01
Estimates of flood flows having given recurrence intervals or probabilities of exceedance are needed for design of hydraulic structures and floodplain management. Program PeakFQ provides estimates of instantaneous annual-maximum peak flows having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (annual-exceedance probabilities of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively). As implemented in program PeakFQ, the Pearson Type III frequency distribution is fit to the logarithms of instantaneous annual peak flows following Bulletin 17B guidelines of the Interagency Advisory Committee on Water Data. The parameters of the Pearson Type III frequency curve are estimated by the logarithmic sample moments (mean, standard deviation, and coefficient of skewness), with adjustments for low outliers, high outliers, historic peaks, and generalized skew. This documentation provides an overview of the computational procedures in program PeakFQ, provides a description of the program menus, and provides an example of the output from the program.
Chowdhury, Rubel Biswas; Chakraborty, Priyanka
2016-08-01
Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems.
Classification of reaches in the Missouri and lower Yellowstone Rivers based on flow characteristics
Pegg, Mark A.; Pierce, Clay L.
2002-01-01
Several aspects of flow have been shown to be important determinants of biological community structure and function in streams, yet direct application of this approach to large rivers has been limited. Using a multivariate approach, we grouped flow gauges into hydrologically similar units in the Missouri and lower Yellowstone Rivers and developed a model based on flow variability parameters that could be used to test hypotheses about the role of flow in determining aquatic community structure. This model could also be used for future comparisons as the hydrological regime changes. A suite of hydrological parameters for the recent, post-impoundment period (1 October 1966–30 September 1996) for each of 15 gauges along the Missouri and lower Yellowstone Rivers were initially used. Preliminary graphical exploration identified five variables for use in further multivariate analyses. Six hydrologically distinct units composed of gauges exhibiting similar flow characteristics were then identified using cluster analysis. Discriminant analyses identified the three most influential variables as flow per unit drainage area, coefficient of variation of mean annual flow, and flow constancy. One surprising result was the relative similarity of flow regimes between the two uppermost and three lowermost gauges, despite large differences in magnitude of flow and separation by roughly 3000 km. Our results synthesize, simplify and interpret the complex changes in flow occurring along the Missouri and lower Yellowstone Rivers, and provide an objective grouping for future tests of how these changes may affect biological communities.
A Nonparametric Approach For Representing Interannual Dependence In Monthly Streamflow Sequences
NASA Astrophysics Data System (ADS)
Sharma, A.; Oneill, R.
The estimation of risks associated with water management plans requires generation of synthetic streamflow sequences. The mathematical algorithms used to generate these sequences at monthly time scales are found lacking in two main respects: inability in preserving dependence attributes particularly at large (seasonal to interannual) time lags; and, a poor representation of observed distributional characteristics, in partic- ular, representation of strong assymetry or multimodality in the probability density function. Proposed here is an alternative that naturally incorporates both observed de- pendence and distributional attributes in the generated sequences. Use of a nonpara- metric framework provides an effective means for representing the observed proba- bility distribution, while the use of a Svariable kernelT ensures accurate modeling of & cedil;streamflow data sets that contain a substantial number of zero flow values. A careful selection of prior flows imparts the appropriate short-term memory, while use of an SaggregateT flow variable allows representation of interannual dependence. The non- & cedil;parametric simulation model is applied to monthly flows from the Beaver River near Beaver, Utah, USA, and the Burrendong dam inflows, New South Wales, Australia. Results indicate that while the use of traditional simulation approaches leads to an inaccurate representation of dependence at long (annual and interannual) time scales, the proposed model can simulate both short and long-term dependence. As a result, the proposed model ensures a significantly improved representation of reservoir storage statistics, particularly for systems influenced by long droughts. It is important to note that the proposed method offers a simpler and better alternative to conventional dis- aggregation models as: (a) a separate annual flow series is not required, (b) stringent assumptions relating annual and monthly flows are not needed, and (c) the method does not require the specification of a "water year", instead ensuring that the sum of any sequence of flows lasting twelve months will result in the type of dependence that is observed in the historical annual flow series.
NASA Astrophysics Data System (ADS)
Woodgate, Rebecca A.
2018-01-01
Year-round in situ Bering Strait mooring data (1990-2015) document a long-term increase (∼0.01 Sv/yr) in the annual mean transport of Pacific waters into the Arctic. Between 2002 and 2015, all annual mean transports (except 2005 and 2012) are greater than the previously accepted climatology (∼0.8 Sv). The record-length maximum (2014: 1.2 ± 0.1 Sv) is 70% higher than the record-length minimum (2001: 0.7 ± 0.1 Sv), corresponding to a reduction in the flushing time of the Chukchi Sea (to ∼4.5 months from ∼7.5 months). The transport increase results from stronger northward flows (not fewer southward flow events), yielding a 150% increase in kinetic energy, presumably with impacts on bottom suspension, mixing, and erosion. Curiously, we find no significant trends in annual mean flow in the Alaskan Coastal Current (ACC), although note that these data are only available 2002-2015. Record-length trends in annually integrated heat and freshwater fluxes (primarily driven by volume flux trends) are large (0.06 ± 0.05 × 1020 J/yr; 30 ± 20 km3/yr; relative to -1.9 °C and 34.8 psu), with heat flux lows in 2001 and 2012 (∼3 × 1020 J) and highs in 2007 and 2015 (∼5.5 × 1020 J), and a freshwater range of ∼2300 km3 (2001) to ∼3500 km3 (2014). High-flow year 2015 (volume transport ∼1.1 Sv) has the highest annual mean temperature recorded, ∼0.7 °C, astoundingly warmer than the record-length mean of 0.0 ± 0.2 °C, while low-flow year 2012 (∼0.8 Sv) is also remarkably cold (∼-0.6 °C), likely due to anomalously weak northward flow in January-March, partly driven by anomalously strong southward winds in March. A seasonal decomposition of properties of the main flow shows significant freshening in winter (∼0.03 psu/yr, January-March) likely due to sea-ice changes, but no trend (or perhaps salinization) in the rest of the year. A seasonal warming trend in the strait proper in May and June (∼0.04 °C/yr) is reflected in a trend to earlier arrival (0.9 ± 0.8 days/yr) of waters warmer than 0 °C. Contrastingly, no significant trend is found in the time of cooling of the strait. The strait's seasonal increasing transport trends (∼0.02 Sv/yr) are largest from May-November, likely due to the large wind-driven variability masking the signal in other months. We show that Ekman set-up of waters along the coast in the strait can explain the strong correlation of the water velocity with along-strait winds (as opposed to across-strait winds). We highlight the strong seasonality of this relationship (r ∼ 0.8 in winter, but only ∼0.4 in summer), which reflects the weak influence of the (seasonally weak) winds in summer. By separating the flow into portions driven by (a) the local wind and (b) a far-field (Pacific-Arctic "pressure-head") forcing, we find the increase in the Bering Strait throughflow is primarily due to a strong increase in the far-field forcing, not changes in the wind. We propose a higher annual mean transport for the strait for the 2000s, (1.0 ± 0.05 Sv) based on recent flow increases, and present estimated seasonal climatologies for properties and fluxes for the strait and for the ACC. Heat and freshwater seasonalities are strongly influenced by the ACC and stratification. Finally we conclude that year-round in situ mooring are still the only currently viable way of obtaining accurate quantifications of the properties of the Pacific input to the Arctic.
Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin
2018-05-01
Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization approach provide a capable method for predicting the aquatic exposure required to support pesticide regulatory decision making. Integr Environ Assess Manag 2018;14:358-368. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Galloway, Joel M.; Petersen, James C.; Shelby, Erica L.; Wise, Jim A.
2008-01-01
The Middle Fork of the Saline River has many qualities that have been recognized by State and Federal agencies. The Middle Fork provides habitat for several rare aquatic species and is part of a larger stream system (the Upper Saline River) that is known for relatively high levels of species richness and relatively high numbers of species of concern. Water-quality samples were collected and streamflow was measured by the U.S. Geological Survey at three sites in the Middle Fork Basin between October 2003 and October 2006. The Arkansas Department of Environmental Quality collected discrete synoptic water-quality samples from eight sites between January 2004 and October 2006. The Arkansas Department of Environmental Quality also sampled fish (September-October 2003) and benthic macroinvertebrate communities (September 2003-December 2005) at five sites. Streamflow varied annually among the three streamflow sites from October 2003 to October 2006. The mean annual streamflow for Brushy Creek near Jessieville (MFS06) was 0.72 cubic meters per second for water years 2004-2006. The Middle Fork below Jessieville (MFS05) had a mean annual streamflow of 1.11 cubic meters per second for water years 2004-2006. The Middle Fork near Owensville (MFS02), the most downstream site, had a mean annual streamflow of 3.01 cubic meters per second. The greatest streamflows at the three sites generally occurred in the winter and spring and the least in the summer. Nutrient dynamics in the Middle Fork are controlled by activities in the basin and processes that occur in the stream. Point sources and nonpoint sources of nutrients occur in the Middle Fork Basin that could affect the water-quality. Nitrogen and phosphorus concentrations generally were greatest in Mill Creek (MFS04E) and in the Middle Fork immediately downstream from the confluence with Mill Creek (MFS04) with decreasing concentrations at sites farther downstream in Middle Fork. The site in Mill Creek is located downstream from a wastewater-treatment plant discharge and concentrations at sites farther downstream probably had lesser concentrations because of dilution effects and from algal uptake. Nutrient concentrations generally were significantly greater during high-flow conditions compared to base-flow conditions. Flow-weighted nutrient concentrations were computed for the three streamflow sites and were compared to 82 relatively undeveloped sites identified across the Nation, to the Alum Fork of the Saline River near Reform, Arkansas, and to the Illinois River south of Siloam Springs, Arkansas, a site influenced by numerous point and nonpoint sources of nutrients. Annual flow-weighted nutrient concentrations for MFS06, MFS05, and MFS02 were greater than relatively undeveloped sites, but were substantially less than the Illinois River south of Siloam Springs. Fecal indicator bacteria concentrations were slightly greater at MFS06 and MFS05 compared to concentrations at MFS02 for October 2003 to October 2006. MFS05 had the greatest E.coli concentrations and MFS06 had the greatest fecal coliform concentrations. Overall, fecal indicator bacteria concentrations were significantly greater for samples collected during high-flow conditions compared to samples collected during low-flow conditions at all three sites. Suspended-sediment concentrations did not vary significantly among MFS06, MFS05, and MFS02 for all the samples collected from October 2003 to October 2006. Suspended-sediment concentrations were significantly greater in samples collected during high-flow conditions compared to samples collected during base-flow conditions. Synoptic samples indicated varied total suspended-solids distributions from upstream to downstream in the Middle Fork between January 2004 and October 2006. Overall, total suspended-solids values were the greatest at site MFS02 and decreased at sites upstream and downstream. Turbidity measured when water-quality samples were
Pickup, Barbara E.; Andrews, William J.; Haggard, Brian E.; Green, W. Reed
2003-01-01
The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and the Baron Fork. Loads appeared to generally increase with time during 1997-2001 at all stations, but this increase might be partly attributable to the beginning of runoff-event sampling in the basin in July 1999. Base-flow loads at stations on the Illinois River were about 10 times greater than those on the Baron Fork and 5 times greater than those on Flint Creek. Runoff components of the annual total phosphorus load ranged from 58.7 to 96.8 percent from 1997-2001. Base-flow and runoff loads were generally greatest in spring (March through May) or summer (June through August), and were least in fall (September through November). Total yields of phosphorus ranged from 107 to 797 pounds per year per square mile. Greatest yields were at Flint Creek near Kansas (365 to 797 pounds per year per square mile) and the least yields were at Baron Fork at Eldon (107 to 440 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.022 milligram per liter and 0.037 milligram per liter, respectively). In addition, flow-weighted phosphorus concentrations in 1999-2001 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment program stations in the United States (0.29 milligram per liter). The annual average phosphorus load entering Lake Tenkiller was about 577,000 pounds per year, and more than 86 percent of the load was transported to the lake by runoff.The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus
SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series
Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory
2018-03-07
This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.
Naus, Cheryl A.; McAda, Douglas P.; Myers, Nathan C.
2006-01-01
A study of the hydrology of the Red River Basin of northern New Mexico, including development of a pre- mining water balance, contributes to a greater understanding of processes affecting the flow and chemistry of water in the Red River and its alluvial aquifer. Estimates of mean annual precipitation for the Red River Basin ranged from 22.32 to 25.19 inches. Estimates of evapotranspiration for the Red River Basin ranged from 15.02 to 22.45 inches or 63.23 to 94.49 percent of mean annual precipitation. Mean annual yield from the Red River Basin estimated using regression equations ranged from 45.26 to 51.57 cubic feet per second. Mean annual yield from the Red River Basin estimated by subtracting evapotranspiration from mean annual precipitation ranged from 55.58 to 93.15 cubic feet per second. In comparison, naturalized 1930-2004 mean annual streamflow at the Red River near Questa gage was 48.9 cubic feet per second. Although estimates developed using regression equations appear to be a good representation of yield from the Red River Basin as a whole, the methods that consider evapotranspiration may more accurately represent yield from smaller basins that have a substantial amount of sparsely vegetated scar area. Hydrograph separation using the HYSEP computer program indicated that subsurface flow for 1930-2004 ranged from 76 to 94 percent of streamflow for individual years with a mean of 87 percent of streamflow. By using a chloride mass-balance method, ground-water recharge was estimated to range from 7 to 17 percent of mean annual precipitation for water samples from wells in Capulin Canyon and the Hansen, Hottentot, La Bobita, and Straight Creek Basins and was 21 percent of mean annual precipitation for water samples from the Red River. Comparisons of mean annual basin yield and measured streamflow indicate that streamflow does not consistently increase as cumulative estimated mean annual basin yield increases. Comparisons of estimated mean annual yield and measured streamflow profiles indicates that, in general, the river is gaining ground water from the alluvium in the reach from the town of Red River to between Hottentot and Straight Creeks, and from Columbine Creek to near Thunder Bridge. The river is losing water to the alluvium from upstream of the mill area to Columbine Creek. Interpretations of ground- and surface-water interactions based on comparisons of mean annual basin yield and measured streamflow are supported further with water-level data from piezometers, wells, and the Red River.
Methods and equations for estimating peak streamflow per square mile in Virginia’s urban basins
Austin, Samuel H.
2014-01-01
Models are presented that describe Virginia urban area annual peak streamflow per square mile based on basin percent urban area and basin drainage area. Equations are provided to estimate Virginia urban peak flow per square mile of basin drainage area in each of the following annual exceedance probability categories: 0.995, 0.99, 0.95, 0.9, 0.8, 0.67, 0.5, 0.43, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 1.005, 1.01, 1.05, 1.11, 1.25, 1.49, 2.0, 2.3, 5, 10, 25, 50, 100, 200, and 500 years, respectively). Equations apply to Virginia drainage basins ranging in size from no less than 1.2 mi2 to no more than 2,400 mi2 containing at least 10 percent urban area, and not more than 96 percent urban area. A total of 115 Virginia drainage basins were analyzed. Actual-by-predicted plots and leverage plots for response variables and explanatory variables in each peak-flow annual exceedance probability category indicate robust model fits and significant explanatory power. Equations for 8 of 15 urban peak-flow response surface models yield R-square values greater than 0.8. Relations identified in statistical models, describing significant increases in urban peak stream discharges as basin urban area increases, affirm empirical relations reported in past studies of change in stream discharge, lag times, and physical streamflow processes, most notably those detailed for urban areas in northern Virginia.
NASA Astrophysics Data System (ADS)
Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.
2015-01-01
While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.
An urban runoff model designed to inform stormwater management decisions.
Beck, Nicole G; Conley, Gary; Kanner, Lisa; Mathias, Margaret
2017-05-15
We present an urban runoff model designed for stormwater managers to quantify runoff reduction benefits of mitigation actions that has lower input data and user expertise requirements than most commonly used models. The stormwater tool to estimate load reductions (TELR) employs a semi-distributed approach, where landscape characteristics and process representation are spatially-lumped within urban catchments on the order of 100 acres (40 ha). Hydrologic computations use a set of metrics that describe a 30-year rainfall distribution, combined with well-tested algorithms for rainfall-runoff transformation and routing to generate average annual runoff estimates for each catchment. User inputs include the locations and specifications for a range of structural best management practice (BMP) types. The model was tested in a set of urban catchments within the Lake Tahoe Basin of California, USA, where modeled annual flows matched that of the observed flows within 18% relative error for 5 of the 6 catchments and had good regional performance for a suite of performance metrics. Comparisons with continuous simulation models showed an average of 3% difference from TELR predicted runoff for a range of hypothetical urban catchments. The model usually identified the dominant BMP outflow components within 5% relative error of event-based measured flow data and simulated the correct proportionality between outflow components. TELR has been implemented as a web-based platform for use by municipal stormwater managers to inform prioritization, report program benefits and meet regulatory reporting requirements (www.swtelr.com). Copyright © 2017. Published by Elsevier Ltd.
Medalie, Laura
2007-01-01
The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek assessment of agricultural BMPs showed that concentrations of phosphorus ranged from 0.016 to 0.141 mg/L during base-flow and from 0.019 to 0.565 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of suspended sediment ranged from 2 to 13 mg/L during base-flow and from 1 to 473 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of phosphorus ranged from 0.018 to 0.233 mg/L during base-flow and from 0.019 to 1.95 mg/L during high-flow conditions at the downstream monitoring station. Concentrations of suspended sediment ranged from 10 to 132 mg/L during base-flow and from 8 to 1,190 mg/L during high-flow conditions at the downstream monitoring station. Annual loads of phosphorus at the downstream monitoring station were significantly larger than loads at the upstream monitoring station, and annual loads of suspended sediment at the downstream monitoring station were larger than loads at the upstream monitoring station for 4 out of 6 years. On a monthly basis, loads of phosphorus and suspended sediment at the downstream monitoring station were significantly larger than loads at the upstream monitoring station. Pairs of concentrations of phosphorus and monthly loads of phosphorus and suspended sediment from the upstream and downstream monitoring stations were evaluated using the paired watershed study design. The only significant reduction between the calibration and treatment periods was for monthly loads of phosphorus; all other evaluations showed no change between periods.
Low-flow characteristics of streams in Ohio through water year 1997
Straub, David E.
2001-01-01
This report presents selected low-flow and flow-duration characteristics for 386 sites throughout Ohio. These sites include 195 long-term continuous-record stations with streamflow data through water year 1997 (October 1 to September 30) and for 191 low-flow partial-record stations with measurements into water year 1999. The characteristics presented for the long-term continuous-record stations are minimum daily streamflow; average daily streamflow; harmonic mean flow; 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 5-, 10-, 20-, and 50-year recurrence intervals; and 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 20-, and 10-percent daily duration flows. The characteristics presented for the low-flow partial-record stations are minimum observed streamflow; estimated 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 10-, and 20-year recurrence intervals; and estimated 98-, 95-, 90-, 85- and 80-percent daily duration flows. The low-flow frequency and duration analyses were done for three seasonal periods (warm weather, May 1 to November 30; winter, December 1 to February 28/29; and autumn, September 1 to November 30), plus the annual period based on the climatic year (April 1 to March 31).
Increased baseflow in Iowa over the second half of the 20th Century
Schilling, K.E.; Libra, R.D.
2003-01-01
Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight-digit hydrologic unit code (HUC-8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual baseflow, annual minimum flow, and the annual baseflow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as baseflow than as stormflow in the second half of the 20th Century. Reasons for the observed streamflow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.
The importance of warm season warming to western U.S. streamflow changes
Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.
2011-01-01
Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.
Fire, flow and dynamic equilibrium in stream macroinvertebrate communities
Arkle, R.S.; Pilliod, D.S.; Strickler, K.
2010-01-01
The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.
An appraisal of ground water for irrigation in the Appleton area, west-central Minnesota
Larson, Steven P.
1976-01-01
Mathematical models of a part of the aquifer were made to evaluate the effects of 20 successive years of ground-water withdrawal for three irrigation-development patterns. It was estimated that the present annual withdrawal rate of 1,410 acre-ft (1.74 hm3) would result in water-level declines of less than 3 feet (0.9 m). However, annual withdrawals of 8,450 acre-ft (10.4 hm3) would cause aquifer dewatering and decreased well yields in some places. After a new state of equilibrium was established in response to withdrawals, most of the withdrawal would be supplied by diverted base flow from the Pomme de Terre River.
Hydrologic Contributions of Springs to the Logan River, Utah
NASA Astrophysics Data System (ADS)
Gooseff, M. N.; Evans, J.; Kolesar, P.; Lachmar, T.; Payn, R.
2005-05-01
The Logan River flows through a fractured karst watershed of the Bear River mountain range in northern Utah, and provides significant water supply to the city of Logan, Utah. Springs flowing into the Logan River are important sources of water after annual snowmelt has been exhausted. In this work, we present results from a year of monitoring water chemistry and stable isotopes (D, 18O, and 13C) in two major springs and in the Logan River upstream and downstream of the combined spring inputs. The two springs, DeWitt and Spring Hollow, flow into the river within 1.5 km of each other. Annual patterns of Si and Mg suggest a flushing pattern, with reduced concentrations during snowmelt, and increasing concentrations throughout baseflow recession, at all for sampling locations. Cl concentrations are likewise greatly depressed after the snowmelt pulse but afterward remain consistently low at all four sites. Stable isotope data show that spring water is generally more enriched in D and 18O than river water, with an enriching pattern throughout annual stream flow recession.
Wetzel, Kim L.; Bettandorff, J.M.
1986-01-01
Techniques are presented for estimating various streamflow characteristics, such as peak flows, mean monthly and annual flows, flow durations, and flow volumes, at ungaged sites on unregulated streams in the Eastern Coal region. Streamflow data and basin characteristics for 629 gaging stations were used to develop multiple-linear-regression equations. Separate equations were developed for the Eastern and Interior Coal Provinces. Drainage area is an independent variable common to all equations. Other variables needed, depending on the streamflow characteristic, are mean annual precipitation, mean basin elevation, main channel length, basin storage, main channel slope, and forest cover. A ratio of the observed 50- to 90-percent flow durations was used in the development of relations to estimate low-flow frequencies in the Eastern Coal Province. Relations to estimate low flows in the Interior Coal Province are not presented because the standard errors were greater than 0.7500 log units and were considered to be of poor reliability.
NASA Astrophysics Data System (ADS)
Hoang, L. P.; van Vliet, M. T. H.; Lauri, H.; Kummu, M.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F.
2016-12-01
The Mekong River's flows and water resources are in many ways essential for sustaining economic growths, flood security of about 70 million people and biodiversity in one of the world's most ecologically productive wetland systems. The river's hydrological cycle, however, are increasingly perturbed by climate change, large-scale hydropower developments and rapid irrigated land expansions. This study presents an integrated impact assessment to characterize and quantify future hydrological changes induced by these driving factors, both separately and combined. We have integrated a crop simulation module and a hydropower dam module into a distributed hydrological model (VMod) and simulated the Mekong's hydrology under multiple climate change and development scenarios. Our results show that the Mekong's hydrological regime will experience substantial changes caused by the considered factors. Magnitude-wise, hydropower dam developments exhibit the largest impacts on river flows, with projected higher flows (up to +35%) during the dry season and lower flows (up to -44%) during the wet season. Annual flow changes caused by the dams, however, are relatively marginal. In contrast to this, climate change is projected to increase the Mekong's annual flows (up to +16%) while irrigated land expansions result in annual flow reductions (-1% to -3%). Combining the impacts of these three drivers, we found that river flow changes, especially those at the monthly scale, largely differ from changes under the individual driving factors. This is explained by large differences in impacts' magnitudes and contrasting impacts' directions for the individual drivers. We argue that the Mekong's future flows are likely driven by multiple factors and thus advocate for integrated assessment approaches and tools that support proper considerations of these factors and their interplays.
Low-flow characteristics of streams in Virginia
Hayes, Donald C.
1991-01-01
Streamflow data were collected and low-flow characteristics computed for 715 gaged sites in Virginia Annual minimum average 7-consecutive-day flows range from 0 to 2,195 cubic feet per second for a 2-year recurrence interval and from 0 to 1,423 cubic feet per second for a 10-year recurrence interval. Drainage areas range from 0.17 to 7,320 square miles. Existing and discontinued gaged sites are separated into three types: long-term continuous-record sites, short-term continuous-record sites, and partial-record sites. Low-flow characteristics for long-term continuous-record sites are determined from frequency curves of annual minimum average 7-consecutive-day flows . Low-flow characteristics for short-term continuous-record sites are estimated by relating daily mean base-flow discharge values at a short-term site to concurrent daily mean discharge values at nearby long-term continuous-record sites having similar basin characteristics . Low-flow characteristics for partial-record sites are estimated by relating base-flow measurements to daily mean discharge values at long-term continuous-record sites. Information from the continuous-record sites and partial-record sites in Virginia are used to develop two techniques for estimating low-flow characteristics at ungaged sites. A flow-routing method is developed to estimate low-flow values at ungaged sites on gaged streams. Regional regression equations are developed for estimating low-flow values at ungaged sites on ungaged streams. The flow-routing method consists of transferring low-flow characteristics from a gaged site, either upstream or downstream, to a desired ungaged site. A simple drainage-area proration is used to transfer values when there are no major tributaries between the gaged and ungaged sites. Standard errors of estimate for108 test sites are 19 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 52 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval . A more complex transfer method must be used when major tributaries enter the stream between the gaged and ungaged sites. Twenty-four stream networks are analyzed, and predictions are made for 84 sites. Standard errors of estimate are 15 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 22 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval. Regional regression equations were developed for estimating low-flow values at ungaged sites on ungaged streams. The State was divided into eight regions on the basis of physiography and geographic grouping of the residuals computed in regression analyses . Basin characteristics that were significant in the regression analysis were drainage area, rock type, and strip-mined area. Standard errors of prediction range from 60 to139 percent for estimates of low-flow characteristics having a 2-year recurrence interval and 90 percent to 172 percent for estimates of low-flow characteristics having a 10-year recurrence interval.
Esralew, Rachel A.
2010-01-01
Use of historical streamflow data from a least-altered period of record can be used in calibration of various modeling applications that are used to characterize least-altered flow and predict the effects of proposed streamflow alteration. This information can be used to enhance water-resources planning. A baseline period of record was determined for selected streamflow-gaging stations that can be used as a calibration dataset for modeling applications. The baseline period of record was defined as a period that is least-altered by anthropogenic activity and has sufficient streamflow record length to represent extreme climate variability. Streamflow data from 171 stations in and near Oklahoma with a minimum of 10 complete water years of daily streamflow record through water year 2007 and drainage areas that were less than 2,500 square miles were considered for use in the baseline period analysis. The first step to determine the least-altered period of record was to evaluate station information by using previous publications, historical station record notes, and information gathered from oral and written communication with hydrographers familiar with selected stations. The second step was to indentify stations that had substantial effects from upstream regulation by evaluating the location and extent of dams in the drainage basin. The third step was (a) the analysis of annual hydrographs and included visual hydrograph analysis for selected stations with 20 or more years of streamflow record, (b) analysis of covariance of double-mass curves, and (c) Kendall's tau trend analysis to detect statistically significant trends in base flow, runoff, total flow, and base-flow index related to anthropogenic activity for selected stations with 15 or more years of streamflow record. A preliminary least-altered period of record for each stream was identified by removing the period of streamflow record when streams were substantially affected by anthropogenic activity. After streamflow record was removed from designation as a least-altered period, stations that did not have at least 10 years of remaining continuous streamflow record were considered to have an insufficient baseline period for modeling applications. An optimum minimum period of record was determined for each of the least-altered periods for each station to ensure a sufficient streamflow record length to provide a representative sample of annual climate variability. An optimum minimum period of 10 years or more was evaluated by analyzing the variability of annual precipitation for selected 5-, 10-, 15-, 25-, and 35-year periods for each of 20 climate divisions that contained stations used in the baseline period analysis. The distribution of annual precipitation was compared for each consecutive overlapping 5-year period to the period 1925-2007 by using a Wilcoxon rank-sum test. The least-altered period of record for stations was also compared to the period 1925-2007 by using a Wilcoxon rank-sum test. The results of this analysis were used to determine how many years of annual precipitation data were needed for the selected period to be statistically similar to the distribution of annual precipitation data for a long-term period, 1925-2007. Minimum optimum periods ranged from 10 to 35 years and varied by climate division. A final baseline period was determined for 111 stations that had a baseline period of at least 10 years of continuous streamflow record after the record-elimination process. A suitable baseline period of record for use in modeling applications could not be identified for 58 of the initial 171 stations because of substantial anthropogenic alteration of the stream or drainage basin and for 2 stations because the least-altered period of record was not representative of annual climate variability. The baseline period for each station was rated ?excellent?, ?good?, ?fair?, ?poor?, or ?no baseline period.? This rating was based on a qualitative evaluation of t
Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds
NASA Astrophysics Data System (ADS)
Saxe, S.; Hogue, T. S.; Hay, L.
2015-12-01
This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.
Potentiometric surface in the Central Oklahoma (Garber-Wellington) aquifer, Oklahoma, 2009
Mashburn, Shana L.; Magers, Jessica
2011-01-01
A study of the hydrogeology of the Central Oklahoma aquifer was started in 2008 to provide the Oklahoma Water Resources Board (OWRB) hydrogeologic data and a groundwater flow model that can be used as a tool to help manage the aquifer. The 1973 Oklahoma water law requires the OWRB to do hydrologic investigations of Oklahoma's aquifers (termed 'groundwater basins') and to determine amounts of water that may be withdrawn by permitted water users. 'Maximum annual yield' is a term used by OWRB to describe the total amount of water that can be withdrawn from a specific aquifer in any year while allowing a minimum 20-year life of the basin (Oklahoma Water Resources Board, 2010). Currently (2010), the maximum annual yield has not been determined for the Central Oklahoma aquifer. Until the maximum annual yield determination is made, water users are issued a temporary permit by the OWRB for 2 acre-feet/acre per year. The objective of the study, in cooperation with the Oklahoma Water Resources Board, was to study the hydrogeology of the Central Oklahoma aquifer to provide information that will enable the OWRB to determine the maximum annual yield of the aquifer based on different proposed management plans. Groundwater flow models are typically used by the OWRB as a tool to help determine the maximum annual yield. This report presents the potentiometric surface of the Central Oklahoma aquifer based on water-level data collected in 2009 as part of the current (2010) hydrologic study. The U.S. Geological Survey (USGS) Hydrologic Investigations Atlas HA-724 by Christenson and others (1992) presents the 1986-87 potentiometric-surface map. This 1986-87 potentiometric-surface map was made as part of the USGS National Water-Quality Assessment pilot project for the Central Oklahoma aquifer that examined the geochemical and hydrogeological processes operating in the aquifer. An attempt was made to obtain water-level measurements for the 2009 potentiometric-surface map from the wells used for the 1986-87 potentiometric-surface map. Well symbols with circles on the 2009 potentiometric-surface map (fig. 1) indicate wells that were used for the 1986-87 potentiometric-surface map.
Analysis of stochastic characteristics of the Benue River flow process
NASA Astrophysics Data System (ADS)
Otache, Martins Y.; Bakir, Mohammad; Li, Zhijia
2008-05-01
Stochastic characteristics of the Benue River streamflow process are examined under conditions of data austerity. The streamflow process is investigated for trend, non-stationarity and seasonality for a time period of 26 years. Results of trend analyses with Mann-Kendall test show that there is no trend in the annual mean discharges. Monthly flow series examined with seasonal Kendall test indicate the presence of positive change in the trend for some months, especially the months of August, January, and February. For the stationarity test, daily and monthly flow series appear to be stationary whereas at 1%, 5%, and 10% significant levels, the stationarity alternative hypothesis is rejected for the annual flow series. Though monthly flow appears to be stationary going by this test, because of high seasonality, it could be said to exhibit periodic stationarity based on the seasonality analysis. The following conclusions are drawn: (1) There is seasonality in both the mean and variance with unimodal distribution. (2) Days with high mean also have high variance. (3) Skewness coefficients for the months within the dry season period are greater than those of the wet season period, and seasonal autocorrelations for streamflow during dry season are generally larger than those of the wet season. Precisely, they are significantly different for most of the months. (4) The autocorrelation functions estimated “over time” are greater in the absolute value for data that have not been deseasonalised but were initially normalised by logarithmic transformation only, while autocorrelation functions for i = 1, 2, ..., 365 estimated “over realisations” have their coefficients significantly different from other coefficients.
Hydro-climatic control of stream dissolved organic carbon in headwater catchment
NASA Astrophysics Data System (ADS)
Humbert, Guillaume; Jaffrezic, Anne; Fovet, Ophélie; Gruau, Gérard; Durand, Patrick
2014-05-01
Dissolved organic matter (DOM) is a key form of the organic matter linking together the water and the carbon cycles and interconnecting the biosphere (terrestrial and marine) and the soil. At the landscape scale, land use and hydrology are the main factors controlling the amount of DOM transferred from soils to the stream. In an intensively cultivated catchment, a recent work using isotopic composition of DOM as a marker has identified two different sources of DOM. The uppermost soil horizons of the riparian wetland appear as a quasi-infinite source while the topsoil of the hillslope forms a limited one mobilized by water-table rise and exported to the stream across the upland-riparian wetland-stream continuum. In addition to the exportation of DOM via water fluxes, climatic factors like temperature and precipitation regulate the DOM production by influencing microbial activity and soil organic matter degradation. The small headwater catchment (5 km²) of Kervidy-Naizin located in Brittany is part of the Environment Research Observatory (ORE) AgrHys. Weather and the hydro-chemistry of the stream, and the groundwater levels are daily recorded since 1993, 2000 and 2001 respectively. Over 13 contrasted hydrological years, the annual flow weighted mean concentration of dissolved organic carbon (DOC) is 5.6 mg.L-1 (sd = 0.7) for annual precipitation varying from 488mm to 1327mm and annual mean temperatures of 11°C (sd = 0.6). Based on this considerable dataset and this annual variability, we tried to understand how the hydro-climatic conditions determinate the stream DOC concentrations along the year. From the fluctuations of water table depth, each hydrologic year has been divided into three main period: i) progressive rewetting of the riparian wetland soils, ii) rising and holding high of the water table in the hillslope, iii) drawdown of the water-table, with less and less topsoil connected to the stream. Within each period base flow and storm flow data were first pooled then treated separately and the influence of preceding periods was tested. This hydrological division of time allowed us to identify climate effect on the topsoil DOM stores of the wetland and hillslope separately. Meteorological and hydro-pedological variables, like soil temperatures or duration of the water saturation in the organo-mineral horizons have been used to interpret the DOC concentrations and fluxes at the outlet within each period. The three hydrological periods contribute respectively to less than 17%, more than 63%, and less than 26% of the annual DOM exportation with flow weighted mean concentration of DOC of 9.5, 6.1, and 3.8 mg.L-1. Considering several DOM sources with different properties of depletion under climatic control, the main output of the work is to provide a modified conceptual model of the DOC dynamics.
The role of storage capacity in coping with intra-annual runoff variability on a global scale
NASA Astrophysics Data System (ADS)
Gaupp, Franziska; Hall, Jim; Dadson, Simon
2015-04-01
Intra-annual variability poses a risk to water security in many basins as runoff is unevenly distributed over the year. Areas such as Northern Africa, Australia and the South-Western USA are characterized by a high coefficient of variability of monthly runoff. Analyzing the global risk of water scarcity, this study examines 680 basin-country units (BCUs) (403 river basins divided by country borders). By calculating the water balance for each BCU, the interplay of runoff on the one hand and domestic, industrial and environmental water needs on the other hand is shown. In contrast to other studies on average water scarcity, this work focuses on variability of water supply as metrics based on annual average water availability and demand can underestimate the risk of scarcity. The model is based on the assumption that each country-basin with sub-basins and tributaries can be treated as one single reservoir with storage capacity aggregated over that BCU. It includes surface runoff and the possibility to withdraw groundwater as water supply. The storage capacity of each BCU represents the ability to transfer water from wet months to dry months in order to buffer and cope with intra-annual water supply variability and to meet total water demand. Average monthly surface runoff per country-basin for the period 1979 to 2012 is derived from outcomes of the hydrological model Mac-PDM. Mac-PDM is forced with monthly ERAI-Interim reanalysis climate data on a one degree resolution. Groundwater withdrawal capacity, total water demand and storage capacity are taken from the IMPACT model provided by the International Food Research Institute (IFPRI). Storage refers to any kind of surface reservoir whose water can be managed and used for human activities in the industrial, domestic and agricultural sectors. Groundwater withdrawal capacity refers to the technological capacity to pump water rather than the amount of groundwater available. Total water demand includes consumptive water use from the industrial, domestic and agricultural sectors and varies between months. Due to a lack of data, the 2010 figures for groundwater withdrawal capacity are assumed to be equally distributed over 12 months without accounting for possible variation within a year. For runoff and water demand, monthly data are used. Our study shows that storage capacity helps to cope with intra-annual water variability and thereby decreases the risk of water scarcity. Several cases emerge where water security is critically dependent on transboundary flows such as the Nile in Egypt or the Aral Drainage in Uzbekistan. Furthermore, we calculate environmental flow requirements using the Variable Monthly Flow (VMF) method and analyse the effects of abstraction and dam construction on environmental flows. For each BCU, we examine whether environmental water requirements can be met with given human abstractions. Additionally, water scarcity is examined for the case when water is reserved for the environment and cannot be abstracted for human purposes.
Consumer price sensitivity in Dutch health insurance.
van Dijk, Machiel; Pomp, Marc; Douven, Rudy; Laske-Aldershof, Trea; Schut, Erik; de Boer, Willem; de Boo, Anne
2008-12-01
To estimate the price sensitivity of consumer choice of health insurance firm. Using paneldata of the flows of insured between pairs of Dutch sickness funds during the period 1993-2002, we estimate the sensitivity of these flows to differences in insurance premium. The price elasticity of residual demand for health insurance was low during the period 1993-2002, confirming earlier findings based on annual changes in market share. We find small but significant elasticities for basic insurance but insignificant elasticities for supplementary insurance. Young enrollees are more price sensitive than older enrollees. Competition was weak in the market for health insurance during the period under study. For the market-based reforms that are currently under way, this implies that measures to promote competition in the health insurance industry may be needed.
Surface waters of Illinois River basin in Arkansas and Oklahoma
Laine, L.L.
1959-01-01
The estimated runoff from the Illinois River basin of 1,660 square miles has averaged 1,160,000 acre-feet per year during the water years 1938-56, equivalent to an average annual runoff depth of 13.1 inches. About 47 percent of the streamflow is contributed from drainage in Arkansas, where an average of 550,000 acre-ft per year runs off from 755 square miles, 45.5 percent of the total drainage area. The streamflow is highly variable. Twenty-two years of record for Illinois River near Tahlequah, Okla., shows a variation in runoff for the water year 1945 in comparison with 1954 in a ratio of almost 10 to 1. Runoff in 1927 may have exceeded that of 1945, according to records for White River at Beaver, Ark., the drainage basin just east of the Illinois River basin. Variation in daily discharge is suggested by a frequency analysis of low flows at the gaging station near Tahlequah, Okla. The mean flow at that site is 901 cfs (cubic feet per second), the median daily flow is 350 cfs, and the lowest 30-day mean flow in a year probably will be less than 130 cfs half of the time and less than 20 cfs every 10 years on the average. The higher runoff tends to occur in the spring months, March to May, a 3-month period that, on the average, accounts for almost half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is the lowest in the summer. The mean monthly flow of Illinois River near Tahlequah, Okla., for September is about 11 percent of that for May. Records show that there is flow throughout the year in Illinois River and its principal tributaries Osage Creek, Flint Creek and Barren Fork. The high variability in streamflow in this region requires the development of storage by impoundment if maximum utilization of the available water supplies is to be attained. For example, a 120-day average low flow of 22 cfs occurred in 1954 at Illinois River near Tahlequah, Okla. To have maintained the flow at 350 cfs, the median daily flow during the 19-year base period, an impoundment at that site would have required a usable storage of 185,000 acre-ft to satisfy this demand during the drought years 1954-1956. The surface waters of the Illinois River basin are excellent quality being suitable for municipal, agriculture and most industrial uses. The average concentration of the dissolved mineral content is about 105 ppm (parts per million) and the hardness about 85 ppm. The water is slightly alkaline, having a range of pH values from 7.2 to 8.0. This report gives the estimated average discharge at gaging stations and approximations of average discharge at the State line for 3 sub-basins during the 19-year period October 1937 to September 1956, used as a base period in this report. Duration-of-flow data for various percentages of the time are shown for the period of observed record at the gaging stations; similar data are estimated for the selected base period. Storage requirements to sustain flow during the recent drought years are given for 3 stations. The streamflow records in the basin are presented on a monthly and annual basis through September 1957; provisional records for 3 stations are included through July 1958 for correlation purposes. Results of discharge measurements are given for miscellaneous sites where low-flow observations have been made. (available as photostat copy only)
Streamflow characteristics at streamgages in northern Afghanistan and selected locations
Olson, Scott A.; Williams-Sether, Tara
2010-01-01
Statistical summaries of streamflow data for 79 historical streamgages in Northern Afghanistan and other selected historical streamgages are presented in this report. The summaries for each streamgage include (1) station description, (2) graph of the annual mean discharge for the period of record, (3) statistics of monthly and annual mean discharges, (4) monthly and annual flow duration, (5) probability of occurrence of annual high discharges, (6) probability of occurrence of annual low discharges, (7) probability of occurrence of seasonal low discharges, (8) annual peak discharges for the period of record, and (9) monthly and annual mean discharges for the period of record.
Streamflow statistics for selected streams in North Dakota, Minnesota, Manitoba, and Saskatchewan
Williams-Sether, Tara
2012-01-01
Statistical summaries of streamflow data for the periods of record through water year 2009 for selected active and discontinued U.S. Geological Survey streamflow-gaging stations in North Dakota, Minnesota, Manitoba, and Saskatchewan were compiled. The summaries for each streamflow-gaging station include a brief station description, a graph of the annual peak and annual mean discharge for the period of record, statistics of monthly and annual mean discharges, monthly and annual flow durations, probability of occurrence of annual high discharges, annual peak discharge and corresponding gage height for the period of record, and monthly and annual mean discharges for the period of record.
40 CFR 98.476 - Data reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive CO2: (i) The volumetric flow through a receiving flow meter at standard conditions (in standard cubic...
Li, Jing Xin; Yang, Li; Yang, Lei; Zhang, Chao; Huo, Zhao Min; Chen, Min Hao; Luan, Xiao Feng
2018-03-01
Quantitative evaluation of ecosystem service is a primary premise for rational resources exploitation and sustainable development. Examining ecosystem services flow provides a scientific method to quantity ecosystem services. We built an assessment indicator system based on land cover/land use under the framework of four types of ecosystem services. The types of ecosystem services flow were reclassified. Using entropy theory, disorder degree and developing trend of indicators and urban ecosystem were quantitatively assessed. Beijing was chosen as the study area, and twenty-four indicators were selected for evaluation. The results showed that the entropy value of Beijing urban ecosystem during 2004 to 2015 was 0.794 and the entropy flow was -0.024, suggesting a large disordered degree and near verge of non-health. The system got maximum values for three times, while the mean annual variation of the system entropy value increased gradually in three periods, indicating that human activities had negative effects on urban ecosystem. Entropy flow reached minimum value in 2007, implying the environmental quality was the best in 2007. The determination coefficient for the fitting function of total permanent population in Beijing and urban ecosystem entropy flow was 0.921, indicating that urban ecosystem health was highly correlated with total permanent population.
The critical role of uncertainty in projections of hydrological extremes
NASA Astrophysics Data System (ADS)
Meresa, Hadush K.; Romanowicz, Renata J.
2017-08-01
This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.
Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA
Griffin, Eleanor R.; Friedman, Jonathan M.
2017-01-01
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p < 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.
An analysis of effect of land use change on river flow variability
NASA Astrophysics Data System (ADS)
Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang
2018-02-01
Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.
Val, Jonatan; Pino, Rosa; Navarro, Enrique; Chinarro, David
2016-11-01
Global change, as a combination of climate change, human activities on watersheds and the river flow regulation, causes intense changes in hydrological cycles and, consequently, threatens the good ecological status of freshwater biological communities. This study addresses how and whether the combination of climatic drivers and local human impacts may alter the metabolism of freshwater communities. We identified a few factors modulating the natural water flow and quality in 25 point spread within the Ebro river Basin: waste water spills, industrial spills, reservoir discharges, water withdrawals, agricultural use, and the presence of riparian forests. We assessed their impacts on the freshwater metabolism as changes in the annual cycle of both gross primary production-GPP - and ecosystem respiration-ER -. For this purpose, daily data series were analyzed by continuous wavelet transformation, allowing for the assessment of the metabolic ecosystem Frequency Spectrum Patterns (FSPs). Changes in the behavior of ecosystem metabolism were strongly associated with local characteristics at each sampling point, however in 20 out of 25 studied points, changes in metabolic ecosystem FSP were related to climatic change events (the driest period of the last 140years). The changes in FSP indicate that severe impacts on how biological communities use carbon sources occur as a result of the human water management - too much focus on human needs - during intense climatic events. Results show that local factors, and specially the flow regulation, may modulate the impact of global change. As example those points exposed to a more intense anthropization showed a clear disruption - and even disappearance - of the annual FSP. This information may help managers to understand the action mechanisms of non-climatic factors at ecosystem level, leading to better management policies based on the promotion of ecosystem resilience. The method here presented may help on improving the calculation of ecological flows to maintain the river metabolic annual cycles as close as possible to the natural ones. Copyright © 2016 Elsevier B.V. All rights reserved.
Lenz, Bernard N.; Saad, David A.; Fitzpatrick, Faith A.
2003-01-01
The effects of land cover on flooding and base-flow characteristics of Whittlesey Creek, Bayfield County, Wis., were examined in a study that involved ground-water-flow and rainfall-runoff modeling. Field data were collected during 1999-2001 for synoptic base flow, streambed head and temperature, precipitation, continuous streamflow and stream stage, and other physical characteristics. Well logs provided data for potentiometric-surface altitudes and stratigraphic descriptions. Geologic, soil, hydrography, altitude, and historical land-cover data were compiled into a geographic information system and used in two ground-water-flow models (GFLOW and MODFLOW) and a rainfall-runoff model (SWAT). A deep ground-water system intersects Whittlesey Creek near the confluence with the North Fork, producing a steady base flow of 17?18 cubic feet per second. Upstream from the confluence, the creek has little or no base flow; flow is from surface runoff and a small amount of perched ground water. Most of the base flow to Whittlesey Creek originates as recharge through the permeable sands in the center of the Bayfield Peninsula to the northwest of the surface-water-contributing basin. Based on simulations, model-wide changes in recharge caused a proportional change in simulated base flow for Whittlesey Creek. Changing the simulated amount of recharge by 25 to 50 percent in only the ground-water-contributing area results in relatively small changes in base flow to Whittlesey Creek (about 2?11 percent). Simulated changes in land cover within the Whittlesey Creek surface-water-contributing basin would have minimal effects on base flow and average annual runoff, but flood peaks (based on daily mean flows on peak-flow days) could be affected. Based on the simulations, changing the basin land cover to a reforested condition results in a reduction in flood peaks of about 12 to 14 percent for up to a 100-yr flood. Changing the basin land cover to 25 percent urban land or returning basin land cover to the intensive row-crop agriculture of the 1920s results in flood peaks increasing by as much as 18 percent. The SWAT model is limited to a daily time step, which is adequate for describing the surface-water/ground-water interaction and percentage changes. It may not, however, be adequate in describing peak flow because the instantaneous peak flow in Whittlesey Creek during a flood can be more than twice the magnitude of the daily mean flow during that same flood. In addition, the storage and infiltration capacities of wetlands in the basin are not fully understood and need further study.
Singer, M.B.
2007-01-01
This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and/or manipulation of sediment supplies. Copyright ?? 2006 John Wiley & Sons, Ltd.
2006-12-01
IACCARINO AND Q. WANG 3 Strain and stress analysis of uncertain engineering systems . D. GHOSH, C. FARHAT AND P. AVERY 17 Separated flow in a three...research in predictive science in complex systems , CTR has strived to maintain a critical mass in numerical analysis , computer science and physics based... analysis for a linear problem: heat conduction The design and analysis of complex engineering systems is challenging not only be- cause of the physical
NASA Astrophysics Data System (ADS)
Masih, Ilyas; Ahmad, Mobin-ud-Din; Uhlenbrook, Stefan; Turral, Hugh; Karimi, Poolad
This study provides a comprehensive spatio-temporal assessment of the surface water resources of the semi-arid Karkheh basin, Iran, and consequently enables decision makers to work towards a sustainable water development in that region. The analysis is based on the examination of statistical parameters, flow duration characteristics, base flow separation and trend analysis for which data of seven key gauging stations were used for the period of 1961-2001. Additionally, basin level water accounting was carried out for the water year 1993-94. The study shows that observed daily, monthly and annual streamflows are highly variable in space and time within the basin. The streamflows have not been changed significantly at annual scale, but few months have shown significant trends, most notably a decline during May and June and an increase during December and March. The major causes were related to changes in climate, land use and reservoir operations. The study concludes that the water allocations to different sectors were lower than the totally available resources during the study period. However, looking at the high variability of streamflows, changes in climate and land use and ongoing water resources development planning, it will be extremely difficult to meet the demands of all sectors in the future, particularly during dry years.
Steuer, Jeffrey J.; Hunt, R.J.
2001-01-01
The North Fork Pheasant Branch Basin in Dane County, Wisconsin is expected to undergo development. There are concerns that development will adversely affect water resources with increased flood peaks, increased runoff volumes, and increased pollutant loads. To provide a scientific basis for evaluating the hydrologic system response to development the Precipitation Runoff Modeling System (PRMS) was used to model the upper Pheasant Branch Creek watershed with an emphasis on the North Fork Basin. The upper Pheasant Branch Creek (18.3 mi2; 11,700 acres) Basin was represented with 21 Hydrologic Response Units (daily time step) and 50 flow planes (5-minute time steps). Precipitation data from the basin outlet streamflow-gaging station located at Highway 12 and temperature data from a nearby airport were used to drive the model. Continuous discharge records at three gaging stations were used for model calibration. To qualitatively assess model representation of small subbasins, periodic reconnaissance, often including a depth measurement, was made after precipitation to determine the occurrence of flow in ditches and channels from small subbasins. As a further effort to verify the model on a small subbasin scale, continuous-stage sensors (15-minute intervals) measured depth at the outlets of three small subbasins (500 to 1,200 acres). Average annual precipitation for the simulation period from 1993 to 1998 was 35.2 inches. The model simulations showed that, on average, 23.9 inches were intercepted by vegetation, or lost to evapotranspiration, 6.0 inches were infiltrated and moved to the regional ground-water system, and 4.8 inches contributed to the upper Pheasant Branch streamflow. The largest runoff event during the calibration interval was in July 1993 (746 ft3/sec; with a recurrence interval of approximately 25 years). Resulting recharge rates from the calibrated model were subsequently used as input into a ground-water-flow model. Average annual recharge varied spatially from 2.3 inches per year in the highly impervious commercial/industrial area to 9.7 inches per year in the undeveloped North Fork Basin with an average overall recharge rate of 8.1 inches per year. Two development scenarios were examined to assess changes in water-budget fluxes. In scenario A, when development was predominantly low-density residential with 5 to 10 percent commercial development along principal roadways, mean annual streamflow increased by 53 percent, overland flow increased by 84 percent, base flow decreased by 15 percent and annual recharge to the regional ground-water system was reduced by 10 percent. In development scenario B, the entire North Fork and intervening area basins contained 50 percent commercial and 50 percent medium density residential land use. Annual storm runoff increased by over 450 percent. The ground-water model for the Pheasant Branch that used the scenario B recharge rates simulated a lowered water table with zero base flow and that flow from Frederick Springs would be reduced 26 percent from present-day (1993?98) conditions.An additional example application of the model evaluated locations of flood detention ponds and potential recharge areas that may mitigate the changes in flood peaks and ground-water recharge resulting from urbanization. From February 1998 through July 1998, water-quality samples were collected by use of stage-activated automated samplers. Median suspended- sediment concentrations were similar between the North and South Fork Basins (194 and 242 mg/L, respectively); however, for other constituents, North Fork values were considerably higher: median phosphorus concentrations by 4 times (1.5 and 0.35 mg/L), median ammonia concentrations by 13 times (1.9 and 0.14 mg/L), and the phosphorus-to-sediment ratio by more than 6 times (21 and 3.1 mg/g).
Stromberg, J.C.; Bagstad, K.J.; Leenhouts, J.M.; Lite, S.J.; Makings, E.
2005-01-01
The San Pedro River in the southwestern United States retains a natural flood regime and has several reaches with perennial stream flow and shallow ground water. However, much of the river flows intermittently. Urbanization-linked declines in regional ground-water levels have raised concerns over the future status of the riverine ecosystem in some parts of the river, while restoration-linked decreases in agricultural ground-water pumping are expected to increase stream flows in other parts. This study describes the response of the streamside herbaceous vegetation to changes in stream flow permanence. During the early summer dry season, streamside herbaceous cover and species richness declined continuously across spatial gradients of flow permanence, and composition shifted from hydric to mesic species at sites with more intermittent flow. Hydrologic threshold values were evident for one plant functional group: Schoenoplectus acutus, Juncus torreyi, and other hydric riparian plants declined sharply in cover with loss of perennial stream flow. In contrast, cover of mesic riparian perennials (including Cynodon dactylon, an introduced species) increased at sites with intermittent flow. Patterns of hydric and mesic riparian annuals varied by season: in the early summer dry season their cover declined continuously as flow became more intermittent, while in the late summer wet season their cover increased as the flow became more intermittent. Periodic drought at the intermittent sites may increase opportunities for establishment of these annuals during the monsoonal flood season. During the late summer flood season, stream flow was present at most sites, and fewer vegetation traits were correlated with flow permanence; cover and richness were correlated with other environmental factors including site elevation and substrate nitrate level and particle size. Although perennial-flow and intermittent-flow sites support different streamside plant communities, all of the plant functional groups are abundant at perennial-flow sites when viewing the ecosystem at broader spatial and temporal scales: mesic riparian perennials are common in the floodplain zone adjacent to the river channel and late-summer hydric and mesic annuals are periodically abundant after large floods. Copyright ?? 2005 John Wiley & Sons, Ltd.
[Estimation of net primary productivity in arid region based on coupling model.
Yang, Hui Jin; Li, Xiao Yu; Liu, Li Juan; Ma, Jin Long; Wang, Jin
2016-06-01
Net primary productivity (NPP), as the base for the research of matter recycling and energy flow in terrestrial ecosystem, is sensitive to the changes of environment and climate in arid region, and also is an important indicator of eco-environmental characteristics. Based on remote sensing (RS) and geographic information system (GIS), using meteorological data, eddy cova-riance data, Landsat 8 and MODIS data, this study coupled SEBAL model and light utility efficiency model to estimate the NPP of vegetation in Manas River Watershed, and the spatial pattern of NPP and the relationships between NPP and terrain factors (elevation and slope) were analyzed. Results showed that the estimated result of NPP in Manas River Watershed by coupling model was reasonable and could actually reflect the NPP of vegetation. The total annual NPP of vegetation and the mean annual NPP in Manas River Watershed in 2013 were 7066.72 Tg C·a -1 and 278.06 g C·m -2 ·a -1 respectively. With the variation of geomorphic type and land cover, the NPP changed remarkably from south to north in a trend of increase-decrease-increase-decrease pattern. The temporal variations of NPP were also obvious, with the NPP in July and August accounting for 52.2% of total annual NPP. With the increase of the elevation and slope, the mean annual NPP decreased as a whole with fluctuations induced by different land covers and environmental factors.
Granato, Gregory E.; Barlow, Paul M.
2005-01-01
Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant annual instream-flow criterion of 0.5 cubic foot per second per square mile (ft3/s/mi2) at the four streamflow-constraint locations. An average withdrawal rate of 10 Mgal/d can meet estimates of future (2020) water-supply needs of surrounding communities in Rhode Island. This withdrawal rate represents about 13 percent of the average 2002 daily withdrawal from the Scituate Reservoir (76 Mgal/d), the State?s largest water supply. Average annual withdrawal rates of 6 to 7 Mgal/d are possible for more stringent instream-flow criteria that might be used during dry-period hydrologic conditions. Two example scenarios of dry-period instream-flow constraints were evaluated: first, a minimum instream flow of 0.1 cubic foot per second at any of the four constraint locations; and second, a minimum instream flow of 10 percent of the minimum monthly streamflow estimate for each streamflow-constraint location during the period 1961?2000. The State of Rhode Island is currently (2004) considering methods for establishing instream-flow criteria for streams within the State. Twelve alternative annual, seasonal, or monthly instream-flow criteria that have been or are being considered for application in southeastern New England were used as hypothetical constraints on maximum ground-water-withdrawal rates in management-model calculations. Maximum ground-water-withdrawal rates ranged from 5 to 16 Mgal/d under five alternative annual instream-flow criteria. Maximum ground-water-withdrawal rates ranged from 0 to 13.6 Mgal/d under seven alternative seasonal or monthly instream-flow criteria. The effect of ground-water withdrawals on seasonal variations in monthly average streamflows under each criterion also were compared. Evaluation of management-model results indicates that a single annual instream-flowcriterion may be sufficient to preserve seasonal variations in monthly average streamflows and meet water-supply demands in the Big River Area, because withdrawals from wells in the Big
NASA Astrophysics Data System (ADS)
Georgek, Jennifer L.; Kip Solomon, D.; Heilweil, Victor M.; Miller, Matthew P.
2018-03-01
Previous watershed assessments have relied on annual baseflow to evaluate the groundwater contribution to streams. To quantify the volume of groundwater in storage, additional information such as groundwater mean transit time (MTT) is needed. This study determined the groundwater MTT in the West Fork Duchesne watershed in Utah (USA) with lumped-parameter modeling of environmental tracers (SF6, CFCs, and 3H/3He) from 21 springs. Approximately 30% of the springs exhibited an exponential transit time distribution (TTD); the remaining 70% were best characterized by a piston-flow TTD. The flow-weighted groundwater MTT for the West Fork watershed is about 40 years with approximately 20 years in the unsaturated zone. A cumulative distribution of these ages revealed that most of the groundwater is between 30 and 50 years old, suggesting that declining recharge associated with 5-10-year droughts is less likely to have a profound effect on this watershed compared with systems with shorter MTTs. The estimated annual baseflow of West Fork stream flow based on chemical hydrograph separation is 1.7 × 107 m3/year, a proxy for groundwater discharge. Using both MTT and groundwater discharge, the volume of mobile groundwater stored in the watershed was calculated to be 6.5 × 108 m3, or 20 m thickness of active groundwater storage and recharge of 0.09 m/year (assuming porosity = 15%). Future watershed-scale assessments should evaluate groundwater MTT, in addition to annual baseflow, to quantify groundwater storage and more accurately assess watershed susceptibility to drought, groundwater extraction, and land-use change.
Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range
Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.
2003-01-01
Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.
Long-term variation analysis of a tropical river's annual streamflow regime over a 50-year period
NASA Astrophysics Data System (ADS)
Seyam, Mohammed; Othman, Faridah
2015-07-01
Studying the long-term changes of streamflow is an important tool for enhancing water resource and river system planning, design, and management. The aim of this work is to identify the long-term variations in annual streamflow regime over a 50-year period from 1961 to 2010 in the Selangor River, which is one of the main tropical rivers in Malaysia. Initially, the data underwent preliminary independence, normality, and homogeneity testing using the Pearson correlation coefficient and Shapiro-Wilk and Pettitt's tests, respectively. The work includes a study and analysis of the changes through nine variables describing the annual streamflow and variations in the yearly duration of high and low streamflows. The analyses were conducted via two time scales: yearly and sub-periodic. The sub-periods were obtained by segmenting the 50 years into seven sub-periods by two techniques, namely the change-point test and direct method. Even though analysis revealed nearly negligible changes in mean annual flow over the study period, the maximum annual flow generally increased while the minimum annual flow significantly decreased with respect to time. It was also observed that the variables describing the dispersion in streamflow continually increased with respect to time. An obvious increase was detected in the yearly duration of danger level of streamflow, a slight increase was noted in the yearly duration of warning and alert levels, and a slight decrease in the yearly duration of low streamflow was found. The perceived changes validate the existence of long-term changes in annual streamflow regime, which increase the probability of floods and droughts occurring in future. In light of the results, attention should be drawn to developing water resource management and flood protection plans in order to avert the harmful effects potentially resulting from the expected changes in annual streamflow regime.
Declining annual streamflow distributions in the Pacific Northwest United States, 1948-2006
C. H. Luce; Z. A. Holden
2009-01-01
Much of the discussion on climate change and water in the western United States centers on decreased snowpack and earlier spring runoff. Although increasing variability in annual flows has been noted, the nature of those changes is largely unexplored. We tested for trends in the distribution of annual runoff using quantile regression at 43 gages in the Pacific...
Maupin, Molly A.; Ivahnenko, Tamara
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.
NASA Astrophysics Data System (ADS)
Li, You-Rong; Du, Mei-Tang; Wang, Jian-Ning
2012-12-01
This paper focuses on the research of an evaporator with a binary mixture of organic working fluids in the organic Rankine cycle. Exergoeconomic analysis and performance optimization were performed based on the first and second laws of thermodynamics, and the exergoeconomic theory. The annual total cost per unit heat transfer rate was introduced as the objective function. In this model, the exergy loss cost caused by the heat transfer irreversibility and the capital cost were taken into account; however, the exergy loss due to the frictional pressure drops, heat dissipation to surroundings, and the flow imbalance were neglected. The variation laws of the annual total cost with respect to the number of transfer units and the temperature ratios were presented. Optimal design parameters that minimize the objective function had been obtained, and the effects of some important dimensionless parameters on the optimal performances had also been discussed for three types of evaporator flow arrangements. In addition, optimal design parameters of evaporators were compared with those of condensers.
Surface water of Beaver Creek Basin, in South-Central Oklahoma
Laine, L.L.; Murphy, J.J.
1962-01-01
Annual discharge from Beaver Creek basin is estimated to have averaged 217,000 acre-feet during a 19-year base period, water years 1938-56, equivalent to an average annual runoff depth of 4.7 inches over the 857 square-mile drainage area. About 55,000 acre-feet per year comes from Little Beaver Creek basin, a tributary drainage of 195 square miles. Yearly streamflow is highly variable. The discharge of Little Beaver Creek near Duncan during 13-year period of record (water years 1949-61) has ranged from 86,530 acre-feet in calendar year 1957 to 4,880 acre-feet in 1956, a ratio of almost 18 to 1. Highest runoff within a year tends to occur in the spring months of May and June, a 2-month period that, on the average, accounts for more than half of the annual discharge of Little Beaver Creek near Duncan. The average monthly runoff during record was lowest in January. Variation in daily streamflow is such that while the average discharge for the 13-year period of record was 50.1 cfs (cubic feet per second), the daily discharge was more than 6 cfs only about half of the time. There was no flow at the site 19 percent of the time during the period. Some base runoff usually exists in the headwaters of Beaver and Little Beaver Creeks, and in the lower reaches of Beaver Creek. Low flow in Cow Creek tends to be sustained by waste water from Duncan, where water use in 1961 averaged 4 million gallons per day. In the remainder of the basin, periods of no flow occur in most years. The surface water of Beaver Creek basin is very hard but in general is usable for municipal, agricultural and industrial purposes. The chemical character of the water is predominantly a calcium, magnesium bicarbonate type of water in the lower three quarters of the basin, except in Cow Creek where oil-field brines induce a distinct sodium, calcium chloride characteristic at low and medium flows. A calcium sulfate type of water occurs in most of the northern part of the basin except in headwater areas underlain by the Rush Springs Sandstone, where quality is similar to that in the lower basin. The report gives an estimate of the average discharge at several sites in Beaver Creek basin for a 19-year base period, October 1937 to September 1956. Duration curves of daily discharge for Little Beaver Creek near Duncan and Beaver Creek near Waurika are shown for the period of record. Monthly and annual discharge records for these gaging stations are presented. The results of 52 discharge measurements at 17 other sites in the basin are tabulated, with 5 groups being plotted as discharge profiles. Storage requirements for regulated discharge at the two gaging stations are shown. (available as photostat copy only)
Spatial distribution of impacts to channel bed mobility due to flow regulation, Kootenai River, USA
Michael Burke; Klaus Jorde; John M. Buffington; Jeffrey H. Braatne; Rohan Benjakar
2006-01-01
The regulated hydrograph of the Kootenai River between Libby Dam and Kootenay Lake has altered the natural flow regime, resulting in a significant decrease in maximum flows (60% net reduction in median 1-day annual maximum, and 77%-84% net reductions in median monthly flows for the historic peak flow months of May and June, respectively). Other key hydrologic...
Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.
2010-01-01
Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to nutrient management practices designed to reduce nutrient transport to streams by runoff. Conversely, sites with potential for shallow or deep groundwater contribution (some combination of permeable soils or permeable bedrock) had significantly greater contributions of nitrate from base flow. Effective nutrient management strategies would consider groundwater nitrate contributions in these areas. Mean annual base-flow nitrate concentrations were compared to shallow-groundwater nitrate concentrations for 27 sites. Concentrations in groundwater tended to be greater than base-flow concentrations for this group of sites. Sites where groundwater concentrations were much greater than base-flow concentrations were found in areas of high infiltration and oxic groundwater conditions. The lack of correspondingly high concentrations in the base flow of the paired surface-water sites may have multiple causes. In some settings, there has not been sufficient time for enough high-nitrate shallow groundwater to migrate to the nearby stream. In these cases, the stream nitrate concentrations lag behind those in the shallow groundwater, and concentrations may increase in the future as more high-nitrate groundwater reaches the stream. Alternatively, some of these sites may have processes that rapidly remove nitrate as water moves from the aquifer into the stream channel. Partitioning streamflow and nitrate load between the quick-flow and base-flow portions of the hydrograph coupled with relative scales of soil permeability can infer the importance of surface water compared to groundwater nitrate sources. Study of the relation of nitrate concentrations to base-flow index and the comparison of groundwater nitrate concentrations to stream nitrate concentrations during times when base-flow index is high can provide evidence of potential nitrate transport mechanisms. Accounting for the surface-water and groundwater contributions of nitrate is crucial to effective management and remediat
Hydrological changes impacts on annual runoff distribution in seasonally dry basins
NASA Astrophysics Data System (ADS)
Viola, F.; Caracciolo, D.; Feng, X.
2017-12-01
Runoff is expected to be modified in the next future by climate change as well as by land use change. Given its importance for water supply and ecosystem functioning, it is therefore imperative to develop adaptation strategies and new policies for regional water resources management and planning. To do so, the identification and attribution of natural flow regime shifts as a result of climate and land use changes are of crucial importance. In this context, the Budyko's curve has begun to be widely adopted to separate the contributions of climate and land use changes to the variation of runoff over long-term periods by using the multi-year averages of hydrological variables. In this study, a framework based on Fu's equation is proposed and applied to separate the impacts of climate and land use changes on the future annual runoff distribution in seasonally dry basins, such as those in Mediterranean climates. In particular, this framework improves a recently developed method to obtain annual runoff probability density function (pdf) in seasonally dry basins from annual rainfall and potential evapotranspiration statistics, and from knowledge of the Fu's equation parameter ω. The effect of climate change has been taken into account through the variation of the first order statistics of annual rainfall and potential evapotranspiration, consistent with general circulation models' outputs, while the Fu's equation parameter ω has been changed to represent land use change. The effects of the two factors of change (i.e., climate and land use) on the annual runoff pdf have been first independently and then jointly analyzed, by reconstructing the annual runoff pdfs for the current period and, based on likely scenarios, within the next 100 years. The results show that, for large basins, climate change is the dominant driver of the decline in annual runoff, while land use change is a secondary but important factor.
Climate change impact on the annual water balance in the northwest Florida coastal
NASA Astrophysics Data System (ADS)
Alizad, K.; Wang, D.; Alimohammadi, N.; Hagen, S. C.
2012-12-01
As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through Florida Panhandle and ended to Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with aridity index around one. Watershed provides habitat for a number of threatened and endangered animal and plant species. However, climate change affects hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this catchment. This research is mainly focuses on assessing climate change impact on the partitioning pattern of rainfall from mean annual to inter-annual and to seasonal scales. At the mean annual scale, rainfall is partitioned into runoff and evaporation assuming negligible water storage changes. Mean annual runoff is controlled by both mean annual precipitation and potential evaporation. Changes in long term mean runoff caused by variations of long term mean precipitation and potential evaporation will be evaluated based on Budyko hypothesis. At the annual scale, rainfall is partitioned into runoff, evaporation, and storage change. Inter-annual variability of runoff and evaporation are mainly affected by the changes of mean annual climate variables as well as their inter-annual variability. In order to model and evaluate each component of water balance at the annual scale, parsimonious but reliable models, are developed. Budyko hypothesis on the existing balance between available water and energy supply is reconsidered and redefined for the sub-annual time scale and reconstructed accordingly in order to accurately model seasonal hydrologic balance of the catchment. Models are built in the seasonal time frame with a focus on the role of storage change in water cycle. Then for Chipola catchment, models are parameterized based on a sufficient time span of historical data and the their coefficients are quantified. For necessary future predictions, data obtained from climate regional models starting 2040 to 2069 will be utilized. To accommodate the inherent uncertainty of climate projections, an ensemble of regional climate models will be used to assess changes of rainfall and potential evaporation. Then, the climate change impact on seasonal and annual runoff, evaporation, and water storage changes will be projected.
Sando, Steven K.; McCarthy, Peter M.
2018-05-10
This report documents the methods for peak-flow frequency (hereinafter “frequency”) analysis and reporting for streamgages in and near Montana following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for selected streamgages operated by the U.S. Geological Survey Wyoming-Montana Water Science Center (WY–MT WSC). These annual exceedance probabilities correspond to 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Standard procedures specific to the WY–MT WSC for implementing the Bulletin 17C guidelines include (1) the use of the Expected Moments Algorithm analysis for fitting the log-Pearson Type III distribution, incorporating historical information where applicable; (2) the use of weighted skew coefficients (based on weighting at-site station skew coefficients with generalized skew coefficients from the Bulletin 17B national skew map); and (3) the use of the Multiple Grubbs-Beck Test for identifying potentially influential low flows. For some streamgages, the peak-flow records are not well represented by the standard procedures and require user-specified adjustments informed by hydrologic judgement. The specific characteristics of peak-flow records addressed by the informed-user adjustments include (1) regulated peak-flow records, (2) atypical upper-tail peak-flow records, and (3) atypical lower-tail peak-flow records. In all cases, the informed-user adjustments use the Expected Moments Algorithm fit of the log-Pearson Type III distribution using the at-site station skew coefficient, a manual potentially influential low flow threshold, or both.Appropriate methods can be applied to at-site frequency estimates to provide improved representation of long-term hydroclimatic conditions. The methods for improving at-site frequency estimates by weighting with regional regression equations and by Maintenance of Variance Extension Type III record extension are described.Frequency analyses were conducted for 99 example streamgages to indicate various aspects of the frequency-analysis methods described in this report. The frequency analyses and results for the example streamgages are presented in a separate data release associated with this report consisting of tables and graphical plots that are structured to include information concerning the interpretive decisions involved in the frequency analyses. Further, the separate data release includes the input files to the PeakFQ program, version 7.1, including the peak-flow data file and the analysis specification file that were used in the peak-flow frequency analyses. Peak-flow frequencies are also reported in separate data releases for selected streamgages in the Beaverhead River and Clark Fork Basins and also for selected streamgages in the Ruby, Jefferson, and Madison River Basins.
Sloto, R.A.; Cecil, L.D.; Senior, L.A.
1991-01-01
The Little Lehigh Creek basin is underlain mainly by a complex assemblage of highly-deformed Cambrian and Ordovician carbonate rocks. The Leithsville Formation, Allentown Dolomite, Beekmantown Group, and Jacksonburg Limestone act as a single hydrologic unit. Ground water moves through fractures and other secondary openings and generally is under water-table conditions. Median annual ground-water discharge (base flow) to Little Lehigh Creek near Allentown (station 01451500) during 1946-86 was 12.97 inches or 82 percent of streamflow. Average annual recharge for 1975-83 was 21.75 inches. Groundwater and surface-water divides do not coincide in the basin. Ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin in 1987 was 4 inches per year. A double-mass curve analysis of the relation of cumulative precipitation at Allentown to the flow of Schantz Spring for 1956-84 showed that cessation of quarry pumping and development of ground water for public supply in the Schantz Spring basin did not affect the flow of Schantz Spring. Ground-water flow in the Little Lehigh Creek basin was simulated using a finite-difference, two-dimensional computer model. The geologic units in the modeled area were simulated as a single water-table aquifer. The 134-squaremile area of carbonate rocks between the Lehigh River and Sacony Creek was modeled to include the natural hydrologic boundaries of the ground-water-flow system. The ground-water-flow model was calibrated under steady-state conditions using 1975-83 average recharge, evapotranspiration, and pumping rates. Each geologic unit was assigned a different hydraulic conductivity. Initial aquifer hydraulic conductivity was estimated from specific-capacity data. The average (1975-83) water budget for the Little Lehigh Creek basin was simulated. The simulated base flow from the carbonate rocks of the Little Lehigh Creek basin above gaging station 01451500 is 11.85 inches per year. The simulated ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin is 4.04 inches per year. For steady-state calibration, the root-mean-squared difference between observed and simulated heads was 21.19 feet. The effects of increased ground-water development on base flow and underflow out of the Little Lehigh Creek basin for average and drought conditions were simulated by locating a hypothetical well field in different parts of the basin. Steady-state simulations were used to represent equilibrium conditions, which would be the maximum expected long-term effect. Increased ground-water development was simulated as hypothetical well fields pumping at the rate of 15, 25, and 45 million gallons per day in addition to existing ground-water withdrawals. Four hypothetical well fields were located near and away from Little Lehigh Creek in upstream and downstream areas. The effects of pumping a well field in different parts of the Little Lehigh Creek basin were compared. Pumping a well field located near the headwaters of Little Lehigh Creek and away from the stream would have greatest effect on inducing underflow from the Sacony Greek basin and the least effect on reducing base flow and underflow to the Ceda^r Creek basin. Pumping a well field located near the headwaters of Little Leh|igh Creek near the stream would have less impact on inducing underflow from|the Sacony Creek basin and a greater impact on reducing the base flow of Little Lehigh Creek because more of the pumpage would come from diverted base flow. Pumping a well field located in the downstream area of the Little Lehigh Creek basin away from the stream would have the greatest effect on the underflow to the Cedar Creek basin. Pumping a well field located in the downstream area of the Little Lehigh Creek basin near the stream would have the greatest effect on reducing the base flow of Little Lehigh Cteek. Model simulations show that groundwater withdrawals do not cause a proportional reduction in base flow. Under average conditions, ground-water withdrawals are equal to 48 to 70 percent of simulated base-flow reductions; under drought conditions, ground-water withdrawals are equal to 35 to 73 percent of simulated base-flow reductions. The hydraulic effects of pumping largely depend on well location. In the Little Lehigh basin, surface-water and ground-water divides do not coincide, and ground-water development, especially near surface-water divides, can cause ground-water divides to shift and induce ground-water underflow from adjacent basins. Large-scale ground-water pumping in a basin may not produce expected reductions of base flow in that basin because of shifts in the ground-water divide; however, such shifts can reduce base flow in adjacent surface-water basins.
Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D
2017-03-01
Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.
NASA Astrophysics Data System (ADS)
Bai, Tao; Ma, Pan-pan; Kan, Yan-bin; Huang, Qiang
2017-12-01
Ecological risk assessment of river is an important content for protection and improvement of ecological environment. In this paper, taking Xiaolangdi reservoir for example, ecological risk assessments are studied based on the 1956-1997 and 2002-2008 dairy runoff data as the pre and post of construction of Xiaolangdi reservoir. Considering pre and post hydrological regime of construction of Xiaolangdi, ecological risk assessment index systems of downstream are established based on Index of Hydrologic Alteration-Range of Variability Approach method (IHA-RVA), which considering characters of flow, time, frequency, delay and change rate. Then ecological risk fuzzy comprehensive evaluation assessment model downstream is established based on risk index and RVA method. The results show that after the construction of Xiaolangdi reservoir, ecological risk occurred in the downstream of Yellow River for changed hydrological indexes, such as monthly average flow, frequency and duration of extreme annual flow and so on, which probably destroy the whole ecosystems of the river. For example, ecological risk downstream of Xiaolangdi reservoir upgrade to level two in 2008. Research results make reference values and scientific basis both in ecological risk assessment and management of reservoir after construction.
Asquith, William H.; Vrabel, Joseph; Roussel, Meghan C.
2007-01-01
Analysts and managers of surface-water resources might have interest in the zero-flow potential for U.S.Geological Survey (USGS) streamflow-gaging stations in Texas. The USGS, in cooperation with the Texas Commission on Environmental Quality, initiated a data and reporting process to generate summaries of percentages of zero daily mean streamflow for 712 USGS streamflow-gaging stations in Texas. A summary of the percentages of zero daily mean streamflow for most active and inactive, continuous-record gaging stations in Texas provides valuable information by conveying the historical perspective for zero-flow potential for the watershed. The summaries of percentages of zero daily mean streamflow for each station are graphically depicted using two thematic perspectives: annual and monthly. The annual perspective consists of graphs of annual percentages of zero streamflow by year with the addition of lines depicting the mean and median annual percentage of zero streamflow. Monotonic trends in the percentages of zero streamflow also are identified using Kendall's T. The monthly perspective consists of graphs of the percentage of zero streamflow by month with lines added to indicate the mean and median monthly percentage of zero streamflow. One or more summaries could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of zero-flow or other low-flow conditions in Texas.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Chen, Xiaohong
2015-10-01
Dam-induced hydrological alterations and related ecological problems have been arousing considerable concern from hydrologists, ecologists, and policy-makers. The East River basin in China is the major provider of water resources for mega-cities within the Pearl River Delta and meets 80% of annual water demand of Hong Kong. In this study, ecodeficit and ecosurplus were analyzed to determine the ecological impact of water impoundments. Also, Do and DHRAM were employed to evaluate the degree of alteration of hydrological regimes, and ERHIs were analyzed to evaluate the influence of hydrological alterations on ecological diversity. Results indicate that: (1) the magnitude and frequency of high flows decrease and those of low flows increase due to the regulation of reservoirs; (2) variations of annual ecosurplus are mainly the result of precipitation changes and the annual ecodeficit is significantly influenced by reservoirs. However, ecodeficit and ecosurplus in other seasons, particularly autumn and winter, are more influenced by reservoir regulation; (3) impacts of reservoirs on hydrological regimes and eco-flow regimes are different from one station to another due to different degrees of influence of reservoirs on hydrological processes at different stations. The longer the distance between a reservoir and a hydrological station is, the weaker the influence the water reservoir has on the hydrological processes; (4) ecodeficit and ecosurplus can be accepted in the evaluation of alterations of hydrological processes at annual and seasonal time scales. Results of Shannon Index indicate decreasing biological diversity after the construction of water reservoirs, implying negative impacts of water reservoirs on biological diversity of a river basin and this should arouse considerable human concerns. This study provides a theoretical background for water resources management with consideration of eco-flow variations due to reservoir regulation in other highly-regulated river basins of the globe.
Streamflow characteristics of streams in southeastern Afghanistan
Vining, Kevin C.
2010-01-01
Statistical summaries of streamflow data for all historical streamgaging stations that have available data in the southeastern Afghanistan provinces of Ghazni, Khost, Logar, Paktya, and Wardak, and a portion of Kabul Province are presented in this report. The summaries for each streamgaging station include a station desciption, table of statistics of monthly and annual mean discharges, table of monthly and annual flow duration, table of probability of occurrence of annual high discharges, table of probability of occurrence of annual low discharges, table of annual peak discharge and corresponding gage height for the period of record, and table of monthly and annual mean discharges for the period of record.
USGS Streamgages Linked to the Medium Resolution NHD
Stewart, David W.; Rea, Alan; Wolock, David M.
2006-01-01
The locations of approximately 23,000 current and historical U.S. Geological Survey (USGS) streamgages in the United States and Puerto Rico (with the exception of Alaska) have been snapped to the medium resolution National Hydrography Dataset (NHD). The NHD contains geospatial information about mapped surface-water features, such as streams, lakes, and reservoirs, etc., creating a hydrologic network that can be used to determine what is upstream or downstream from a point of interest on the NHD network. An automated snapping process made the initial determination of the NHD location of each streamgage. These initial NHD locations were comprehensively reviewed by local USGS personnel to ensure that streamgages were snapped to the correct NHD reaches. About 75 percent of the streamgages snapped to the appropriate NHD reach location initially and 25 percent required adjustment and relocation. This process resulted in approximately 23,000 gages being successfully snapped to the NHD. This dataset contains the latitude and longitude coordinates of the point on the NHD to which the streamgage is snapped and the location of the gage house for each streamgage. A process known as indexing may be used to create reference points (event tables) to the NHD reaches, expressed as a reach code and measure (distance along the reach). Indexing is dependent on the version of NHD to which the indexing is referenced. These data are well suited for use in indexing because nearly all the streamgage NHD locations have been reviewed and adjusted if necessary, to ensure they will index to the appropriate NHD reach. Flow characteristics were computed from the daily streamflow data recorded at each streamgage for the period of record. The flow characteristics associated with each streamgage include: *First date (year, month, day) of streamflow data *Last date (year, month, day) of streamflow data *Number of days of streamflow data *Number of days of non-zero streamflow data *Minimum and maximum daily flow for the period of record (cubic feet per second) *Percentiles (1, 5, 10, 20, 25, 50, 75, 80, 90, 95, 99) of daily flow for the period of record (cubic feet per second) *Average and standard deviation of daily flow for the period of record (cubic feet per second) *Mean annual base-flow index (BFI) computed for the period of record (fraction, ranging from 0 to 1) *Year-to-year standard deviation of the annual base-flow index computed for the period of record (fraction) *Number of years of data used to compute the base-flow index (years) The streamflow data used to compute flow characteristics were copied from the NWIS-Web historical daily discharge archive (nadww01.er.usgs.gov:/www/htdocs/nwisweb/data/discharge) on June 15, 2005.
Quantity and quality of streamflow in the White River basin, Colorado and Utah
Boyle, J.M.; Covay, K.J.; Bauer, D.P.
1984-01-01
The water quality and flow of existing streams in the White River basin, located in northwestern Colorado and northeastern Utah, are adequate for present uses, but future development (such as energy) may affect stream quality and quantity. Present conditions are described as a baseline to enable planners to allocate available water and to measure changes in quantity and quality of water in the future. The White River basin contains extensive energy resources consisting of oil, natural gas, coal, and oil shale. Large quantities of water will be required for energy-resource development and associated municipal and industrial uses. An average of 70% of the annual flow in the White River occurs during May, June, and July as a result of snowmelt runoff. The 7-day, 10-year low-flow discharges/sq mi and the 1-day, 25-year high-flow discharges/sq mi are larger in the eastern part of the basin than in the western part. Flow-duration curves indicate that high flows in the White River and the North and South Fork White Rivers result mainly from snowmelt runoff and that base flow is sustained throughout the year by groundwater discharge from the alluvial and bedrock aquifers. Water type varies in the basin; however, calcium and sodium are the dominantly occurring cations and sulfate and bicarbonate are the dominantly occurring anions. Computed total annual dissolved-solids loads in the White River range from 31 ,800 tons/yr in the North Fork White River to 284,000 tons/yr at the mouth. A 10% increase to a 14% decrease of the dissolved-solids load could result at the mouth of the White River near Ouray, Utah. This corresponds to a 5% increase to a 10% decrease in dissolved-solids concentration. The seasonal pattern of stream temperatures was found to fit a harmonic curve. (Lantz-PTT)
Veenhuis, Jack E.
2002-01-01
In June of 1977, the La Mesa wildfire burned 15,270 acres in and around Frijoles Canyon in Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome wildfire in April of 1996 in Bandelier National Monument burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both watersheds are characterized by abundant and extensive archeological sites that could be affected by increased runoff and accelerated rates of erosion, which typically occur after a wildfire. The U.S. Geological Survey in cooperation with the National Park Service monitored the wildfires' effects on streamflow in both canyons. The magnitude of large stormflows increased dramatically after these wildfires; peak flows at the most downstream streamflow-gaging station in Frijoles and Capulin Canyons increased to about 160 times the maximum recorded flood prior to the fire. Maximum peak flow was 3,030 cubic feet per second at the gaging station in Frijoles Canyon (drainage area equals 18.1 square miles) and 3,630 cubic feet per second at the most downstream crest-stage gage in Capulin Canyon (drainage area equals 14.1 square miles). The pre-fire maximum peak flow recorded in these two canyons was 19 and an estimated 25 cubic feet per second, respectively. As vegetation reestablished itself during the second year, the post-fire annual maximum peak flow decreased to about 10 to 15 times the pre-fire annual maximum peak flow. During the third year, maximum annual peak flows decreased to about three to five times the pre-fire maximum peak flow. In the 22 years since the La Mesa wildfire, flood magnitudes have not completely returned to pre-fire size. Post-fire flood magnitudes in Frijoles and Capulin Canyons do not exceed the maximum floods per drainage area for physiographic regions 5 and 6 in New Mexico. For a burned watershed, however, the peak flows that occur after a wildfire are several orders of magnitude larger than normal forested watershed peak flows. The frequency of larger stormflows also increased in response to the effects of the wildfires in both canyons. In Frijoles Canyon, the number of peak stormflows greater than the pre-fire maximum flow of 19 cubic feet per second was 15 in 1977, 9 in 1978, and 5 in 1979, which is about the magnitude of the maximum pre-fire peak flow in both canyons. Again the hydrologic effects of a wildfire seem to be more pronounced for the 3 years following the date of the fire. Likewise, larger peakflows occurred more frequently in Capulin Canyon for the first 3 years after the 1996 wildfire. Median suspended-sediment concentrations in samples collected in Frijoles Canyon in 1977 were 1,330 milligrams per liter; median concentrations were 16 milligrams per liter after the watershed stabilized in 1993-95. The annual load calculated from regression equations for load compared to flow for the first year after the wildfire was 220 times the annual load for the post-recovery period. To convey the increased frequency and magnitude of average flows in Capulin Canyon after the 1996 Dome wildfire, the stream channel in Capulin Canyon increased in flow capacity by widening and downcutting. As Capulin Canyon peak flows have decreased in both magnitude and frequency with vegetative recovery, the stream channel also has slowly begun to readjust. The channel at the most downstream crest-stage gage, which has the shallowest initial valley slope, is showing the first signs of aggradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sargent, S.A.
Apple pomace or presscake, was evaluated for suitability as a boiler feedstock for Michigan firms processing apple juice. Based upon the physical and chemical characteristics of pomace, handling/direct combustion systems were selected to conform with operating parameters typical of the industry. Fresh pomace flow rates of 29,030 and 88,998 kg/day (64,000 and 194,000 lb/day) were considered as representative of small and large processors, respectively, and the material was assumed to be dried to 15% moisture content (wet basis) prior to storage and combustion. Boilers utilizing pile-burning, fluidized-bed-combustion, and suspension-firing technologies were sized for each flow rate, resulting in energy productionmore » of 2930 and 8790 kW (10 and 30 million Btu/h), respectively. A life-cycle cost analysis was performed giving Average Annual Costs for the three handling/combustion system combinations (based on the Uniform Capital Recovery factor). An investment loan at 16% interest with a 5-year payback period was assumed. The break-even period for annual costs was calculated by anticipated savings incurred through reduction of fossil-fuel costs during a 5-month processing season. Large processors, producing more than 88,998 kg pomace/day, could economically convert to a suspension-fired system substituting for fuel oil, with break-even occurring after 4 months of operation of pomace per year. Small processors, producing less than 29,030 kg/day, could not currently convert to pomace combustion systems given these economic circumstances. A doubling of electrical-utility costs and changes in interest rates from 10 to 20% per year had only slight effects on the recovery of Average Annual Costs. Increases in fossil-fuel prices and the necessity to pay for pomace disposal reduced the cost-recovery period for all systems, making some systems feasible for small processors. 39 references, 13 figures, 10 tables.« less
Ortiz, Roderick F.; Edelmann, Patrick; Ferguson, Sheryl; Stogner, Robert
2002-01-01
Metal contamination in the upper Alamosa River Basin has occurred for decades from the Summitville Mine site, from other smaller mines, and from natural, metal-enriched acidic drainage in the basin. In 1995, the need to quantify contamination from various source areas in the basin and to quantify the spatial, seasonal, and annual metal loads in the basin was identified. Data collection occurred from 1995 through 1997 at numerous sites to address data gaps. Metal loads were calculated and the percentages of metal load contributions from tributaries to three risk exposure areas were determined. Additionally, a modified time-interval method was used to estimate seasonal and annual metal loads in the Alamosa River and Wightman Fork. Sources of dissolved and total-recoverable aluminum, copper, iron, and zinc loads were determined for Exposure Areas 3a, 3b, and 3c. Alum Creek is the predominant contributor of aluminum, copper, iron, and zinc loads to Exposure Area 3a. In general, Wightman Fork was the predominant source of metals to Exposure Area 3b, particularly during the snowmelt and summer-flow periods. During the base-flow period, however, aluminum and iron loads from Exposure Area 3a were the dominant source of these metals to Exposure Area 3b. Jasper and Burnt Creeks generally contributed less than 10 percent of the metal loads to Exposure Area 3b. On a few occasions, however, Jasper and Burnt Creeks contributed a substantial percentage of the loads to the Alamosa River. The metal loads calculated for Exposure Area 3c result from upstream sources; the primary upstream sources are Wightman Fork, Alum Creek, and Iron Creek. Tributaries in Exposure Area 3c did not contribute substantially to the metal load in the Alamosa River. In many instances, the percentage of dissolved and/or total-recoverable metal load contribution from a tributary or the combined percentage of metal load contribution was greater than 100 percent of the metal load at the nearest downstream site on the Alamosa River. These data indicate that metal partitioning and metal deposition from the water column to the streambed may be occurring in Exposure Areas 3a, 3b, and 3c. Metals that are deposited to the streambed probably are resuspended and transported downstream during high streamflow periods such as during snowmelt runoff and rainfall runoff. Seasonal and annual dissolved and totalrecoverable aluminum, copper, iron, and zinc loads> for 1995?97 were estimated for Exposure Areas 1, 2, 3a, 3b, and 3c. During 1995?97, many tons of metals were transported annually through each exposure area. Generally, the largest estimated annual totalrecoverable metal mass for most metals was in 1995. The smallest estimated annual total-recoverable metal mass was in 1996, which also had the smallest annual streamflow. In 1995 and 1997, more than 60 percent of the annual total-recoverable metal loads generally was transported through each exposure area during the snowmelt period. A comparison of the estimated storm load at each site to the corresponding annual load indicated that storms contribute less than 2 percent of the annual load at any site and about 5 to 20 percent of the load during the summer-flow period.
Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J. LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.
2002-01-01
Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-ft in 1996 and 6,300 acre-ft in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by ET, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased.
Weaver, J. Curtis; Feaster, Toby D.; Gotvald, Anthony J.
2009-01-01
Reliable estimates of the magnitude and frequency of floods are required for the economical and safe design of transportation and water-conveyance structures. A multistate approach was used to update methods for estimating the magnitude and frequency of floods in rural, ungaged basins in North Carolina, South Carolina, and Georgia that are not substantially affected by regulation, tidal fluctuations, or urban development. In North Carolina, annual peak-flow data available through September 2006 were available for 584 sites; 402 of these sites had a total of 10 or more years of systematic record that is required for at-site, flood-frequency analysis. Following data reviews and the computation of 20 physical and climatic basin characteristics for each station as well as at-site flood-frequency statistics, annual peak-flow data were identified for 363 sites in North Carolina suitable for use in this analysis. Among these 363 sites, 19 sites had records that could be divided into unregulated and regulated/ channelized annual peak discharges, which means peak-flow records were identified for a total of 382 cases in North Carolina. Considering the 382 cases, at-site flood-frequency statistics are provided for 333 unregulated cases (also used for the regression database) and 49 regulated/channelized cases. The flood-frequency statistics for the 333 unregulated sites were combined with data for sites from South Carolina, Georgia, and adjacent parts of Alabama, Florida, Tennessee, and Virginia to create a database of 943 sites considered for use in the regional regression analysis. Flood-frequency statistics were computed by fitting logarithms (base 10) of the annual peak flows to a log-Pearson Type III distribution. As part of the computation process, a new generalized skew coefficient was developed by using a Bayesian generalized least-squares regression model. Exploratory regression analyses using ordinary least-squares regression completed on the initial database of 943 sites resulted in defining five hydrologic regions for North Carolina, South Carolina, and Georgia. Stations with drainage areas less than 1 square mile were removed from the database, and a procedure to examine for basin redundancy (based on drainage area and periods of record) also resulted in the removal of some stations from the regression database. Flood-frequency estimates and basin characteristics for 828 gaged stations were combined to form the final database that was used in the regional regression analysis. Regional regression analysis, using generalized least-squares regression, was used to develop a set of predictive equations that can be used for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent chance exceedance flows for rural ungaged, basins in North Carolina, South Carolina, and Georgia. The final predictive equations are all functions of drainage area and the percentage of drainage basin within each of the five hydrologic regions. Average errors of prediction for these regression equations range from 34.0 to 47.7 percent. Discharge estimates determined from the systematic records for the current study are, on average, larger in magnitude than those from a previous study for the highest percent chance exceedances (50 and 20 percent) and tend to be smaller than those from the previous study for the lower percent chance exceedances when all sites are considered as a group. For example, mean differences for sites in the Piedmont hydrologic region range from positive 0.5 percent for the 50-percent chance exceedance flow to negative 4.6 percent for the 0.2-percent chance exceedance flow when stations are grouped by hydrologic region. Similarly for the same hydrologic region, median differences range from positive 0.9 percent for the 50-percent chance exceedance flow to negative 7.1 percent for the 0.2-percent chance exceedance flow. However, mean and median percentage differences between the estimates from the previous and curre
The materials processing research base of the Materials Processing Center
NASA Technical Reports Server (NTRS)
Latanision, R. M.
1986-01-01
An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.
Groundwater resources of the Birim basin in Ghana
NASA Astrophysics Data System (ADS)
Asomaning, G.
1992-11-01
An attempt to assess ground water resources of a medium size (4775 km 2) drainage basin located on the Crystalline Complex in southern Ghana is presented. Mean annual rainfall 1578 mm, total river discharge 1,886,588 064 m 3 a -1, surface runoff 1,320,611,645 m 3 a -1, base flow 565,976,419 m 3 a -1, were determined from 13 meteorological and 1 river gauging stations located within the basin. From these data, the total runoff coefficient was 36%, surface runoff coefficient was 25% and the base flow coefficient was 11%. Then, Permanent Water Reserve, Qt = 5,333.20 × 106 m 3 and Recoverable Water Reserve, 2,133.28 × 10 6 m 3 a -1 for the aquifer of the basement complex aquifer of the basin were calculated from 42 boreholes.
Summary of groundwater-recharge estimates for Pennsylvania
Stuart O. Reese,; Risser, Dennis W.
2010-01-01
Groundwater recharge is water that infiltrates through the subsurface to the zone of saturation beneath the water table. Because recharge is a difficult parameter to quantify, it is typically estimated from measurements of other parameters like streamflow and precipitation. This report provides a general overview of processes affecting recharge in Pennsylvania and presents estimates of recharge rates from studies at various scales.The most common method for estimating recharge in Pennsylvania has been to estimate base flow from measurements of streamflow and assume that base flow (expressed in inches over the basin) approximates recharge. Statewide estimates of mean annual groundwater recharge were developed by relating base flow to basin characteristics of HUC10 watersheds (a fifth-level classification that uses 10 digits to define unique hydrologic units) using a regression equation. The regression analysis indicated that mean annual precipitation, average daily maximum temperature, percent of sand in soil, percent of carbonate rock in the watershed, and average stream-channel slope were significant factors in the explaining the variability of groundwater recharge across the Commonwealth.Several maps are included in this report to illustrate the principal factors affecting recharge and provide additional information about the spatial distribution of recharge in Pennsylvania. The maps portray the patterns of precipitation, temperature, prevailing winds across Pennsylvania’s varied physiography; illustrate the error associated with recharge estimates; and show the spatial variability of recharge as a percent of precipitation. National, statewide, regional, and local values of recharge, based on numerous studies, are compiled to allow comparison of estimates from various sources. Together these plates provide a synopsis of groundwater-recharge estimations and factors in Pennsylvania.Areas that receive the most recharge are typically those that get the most rainfall, have favorable surface conditions for infiltration, and are less susceptible to the influences of high temperatures, and thus, evapotranspiration. Areas that have less recharge in Pennsylvania are typically those with less precipitation, less permeable soils, and higher temperatures that are conducive to greater rates of evapotranspiration.
Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation
NASA Astrophysics Data System (ADS)
Leisenring, Marc; Moradkhani, Hamid
2012-10-01
SummaryA first step in understanding the impacts of sediment and controlling the sources of sediment is to quantify the mass loading. Since mass loading is the product of flow and concentration, the quantification of loads first requires the quantification of runoff volume. Using the National Weather Service's SNOW-17 and the Sacramento Soil Moisture Accounting (SAC-SMA) models, this study employed particle filter based Bayesian data assimilation methods to predict seasonal snow water equivalent (SWE) and runoff within a small watershed in the Lake Tahoe Basin located in California, USA. A procedure was developed to scale the variance multipliers (a.k.a hyperparameters) for model parameters and predictions based on the accuracy of the mean predictions relative to the ensemble spread. In addition, an online bias correction algorithm based on the lagged average bias was implemented to detect and correct for systematic bias in model forecasts prior to updating with the particle filter. Both of these methods significantly improved the performance of the particle filter without requiring excessively wide prediction bounds. The flow ensemble was linked to a non-linear regression model that was used to predict suspended sediment concentrations (SSCs) based on runoff rate and time of year. Runoff volumes and SSC were then combined to produce an ensemble of suspended sediment load estimates. Annual suspended sediment loads for the 5 years of simulation were finally computed along with 95% prediction intervals that account for uncertainty in both the SSC regression model and flow rate estimates. Understanding the uncertainty associated with annual suspended sediment load predictions is critical for making sound watershed management decisions aimed at maintaining the exceptional clarity of Lake Tahoe. The computational methods developed and applied in this research could assist with similar studies where it is important to quantify the predictive uncertainty of pollutant load estimates.
Seasonal and weekly variability of Atlantic inflow into the northern North Sea
NASA Astrophysics Data System (ADS)
Sheehan, Peter; Berx, Bee; Gallego, Alejandro; Hall, Rob; Heywood, Karen
2017-04-01
Quantifying the variability of Atlantic inflow is necessary for managing the North Sea ecosystem and for producing accurate models for forecasting, for example, oil spill trajectories. The JONSIS hydrographic section (2.23°W to 0° at 59.28°N) crosses the path of the main inflow of Atlantic water into the northwestern North Sea. 122 occupations between 1989 and 2015 are examined to determine the annual cycle of thermohaline-driven volume transport into the North Sea. Thermohaline transport is at a minimum (0.1 Sv) during winter when it is driven by a horizontal salinity gradient across a zonal bottom front; it is at a maximum (0.35 Sv) in early autumn when it is driven by a horizontal temperature gradient that develops across the same front. The amplitude of the annual cycle of temperature-driven transport (0.15 Sv) is bigger than the amplitude of the annual cycle of salinity-driven transport (0.025 Sv). The annual cycles are approximately six months out of phase. Our quantitative results are the first to be based on a long-term dataset, and we advance previous understanding by identifying a salinity-driven flow in winter. Week-to-week variability of the Atlantic inflow is examined from ten Seaglider occupations of the JONSIS section in October and November 2013. Tidal ellipses produced from glider dive-average current observations are in good agreement with ellipses produced from tide model predictions. Total transport is derived by referencing geostrophic shear to dive-average-current observations once the tidal component of the flow has been removed. Total transport through the section during the deployment (0.5-1 Sv) is bigger than the thermohaline component (0.1-0.2 Sv), suggesting non-thermohaline forcings (e.g. wind forcing) are important at that time of year. Thermohaline transport during the glider deployment is in agreement with the annual cycle derived from the long-term observations. The addition of the glider-derived barotropic current permits a more accurate estimate of the transport than is possible from long-term hydrographic monitoring, and enables the separation of barotropic and depth-varying components. These results refine our understanding of the variability of Atlantic inflow into the North Sea on key timescales, and of the contribution of frontal flow to shelf sea circulation.
Global Change and Human Consumption of Freshwater Driven by Flow Regulation and Irrigation
NASA Astrophysics Data System (ADS)
Jaramillo, F.; Destouni, G.
2015-12-01
Recent studies show major uncertainties about the magnitude and key drivers of global freshwater change, historically and projected for the future. The tackling of these uncertainties should be a societal priority to understand: 1) the role of human change drivers for freshwater availability changes, 2) the global water footprint of humanity and 3) the relation of human freshwater consumption to a proposed planetary boundary. This study analyses worldwide hydroclimatic changes, as observed during 1900-2009 in 99 large hydrological basins across all continents. We test whether global freshwater change may be driven by major developments of flow regulation and irrigation (FRI) occurring over this period. Independent categorization of the variability of FRI-impact strength among the studied basins is used to identify statistical basin differences in occurrence and strength of characteristic hydroclimatic signals of FRI. Our results show dominant signals of increasing relative evapotranspiration in basins affected by flow regulation and/or irrigation, in conjunction with decreasing relative intra-annual variability of runoff in basins affected by flow regulation. The FRI-related increase in relative evapotranspiration implies an increase of 4,688 km3/yr in global annual average water flow from land to the atmosphere. This observation-based estimate extends considerably the upper quantification limits of both FRI-driven and total global human consumption of freshwater, as well as the global water footprint of humanity. Our worldwide analysis shows clear FRI-related change signals emerging directly from observations, in spite of large change variability among basins and many other coexisting change drivers in both the atmosphere and the landscape. These results highlight the importance of considering local water use as a key change driver in Earth system studies and modelling, of relevance for global change and human consumption of freshwater.
Kennen, Jonathan G.; Riskin, Melissa L.
2010-01-01
Changes in water demand associated with population growth and changes in land-use practices in the Pinelands region of southern New Jersey will have a direct effect on stream hydrology. The most pronounced and measurable hydrologic effect is likely to be flow reductions associated with increasing water extraction. Because water-supply needs will continue to grow along with population in the Pinelands area, the goal of maintaining a sustainable balance between the availability of water to protect existing aquatic assemblages while conserving the surficial aquifer for long-term support of human water use needs to be addressed. Although many aquatic fauna have shown resilience and resistance to short-term changes in flows associated with water withdrawals, sustained effects associated with ongoing water-development processes are not well understood. In this study, the U.S. Geological Survey sampled forty-three 100-meter-long stream reaches during high- and low-flow periods across a designed hydrologic gradient ranging from small- (4.1 square kilometers (1.6 square miles)) to medium- (66.3 square kilometers (25.6 square miles)) sized Pinelands stream basins. This design, which uses basin size as a surrogate for water availability, provided an opportunity to evaluate the possible effects of potential variation in stream hydrology on fish and aquatic-invertebrate assemblage response in New Jersey Pinelands streams where future water extraction is expected based on known build-out scenarios. Multiple-regression models derived from extracted non-metric multidimensional scaling axis scores of fish and aquatic invertebrates indicate that some variability in aquatic-assemblage composition across the hydrologic gradient is associated with anthropogenic disturbance, such as urbanization, changes in stream chemistry, and concomitant changes in high-flow runoff patterns. To account for such underlying effects in the study models, any flow parameter or assemblage attribute that was found to be significantly correlated (|rho| = 0.5000) to known anthropogenic drivers (for example, the amount of urbanization in the basin) was eliminated from analysis. A reduced set of low- and annual-flow hydrologic variables, found to be unrelated to anthropogenic influences, was used to develop assemblage-response models. Many linear (monotonic) and curvilinear bivariate flow-ecology response models were developed for fish and invertebrate assemblages. For example, the duration and magnitude of low-flow events were significant predictors of invertebrate-assemblage complexity (for example, invertebrate-species richness, Plecoptera richness, and Ephemeroptera abundance); however, response models between flow attributes and fish-assemblage structure were, in all cases, more poorly fit. Annual flow variability also was important, especially variability across mean minimum monthly flows and annual mean streamflow. In general, all response models followed upward or downward trends that would be expected given hydrologic changes in Pinelands streams. This study demonstrates that the structural and functional response of aquatic assemblages of the Pinelands ecosystem resulting from changes in water-use practices associated with population growth and increased water extraction may be predictable.
Thiros, Susan A.
2006-01-01
This report evaluates the performance of a numerical model of the ground-water system in northern Utah Valley, Utah, that originally simulated ground-water conditions during 1947-1980 and was updated to include conditions estimated for 1981-2002. Estimates of annual recharge to the ground-water system and discharge from wells in the area were added to the original ground-water flow model of the area.The files used in the original transient-state model of the ground-water flow system in northern Utah Valley were imported into MODFLOW-96, an updated version of MODFLOW. The main model input files modified as part of this effort were the well and recharge files. Discharge from pumping wells in northern Utah Valley was estimated on an annual basis for 1981-2002. Although the amount of average annual withdrawals from wells has not changed much since the previous study, there have been changes in the distribution of well discharge in the area. Discharge estimates for flowing wells during 1981-2002 were assumed to be the same as those used in the last stress period of the original model because of a lack of new data. Variations in annual recharge were assumed to be proportional to changes in total surface-water inflow to northern Utah Valley. Recharge specified in the model during the additional stress periods varied from 255,000 acre-feet in 1986 to 137,000 acre-feet in 1992.The ability of the updated transient-state model to match hydrologic conditions determined for 1981-2002 was evaluated by comparing water-level changes measured in wells to those computed by the model. Water-level measurements made in February, March, or April were available for 39 wells in the modeled area during all or part of 1981-2003. In most cases, the magnitude and direction of annual water-level change from 1981 to 2002 simulated by the updated model reasonably matched the measured change. The greater-than-normal precipitation that occurred during 1982-84 resulted in period-of-record high water levels measured in many of the observation wells in March 1984. The model-computed water levels at the end of 1982-84 also are among the highest for the period. Both measured and computed water levels decreased during the period representing ground-water conditions from 1999 to 2002. Precipitation was less than normal during 1999-2002.The ability of the model to adequately simulate climatic extremes such as the wetter-than-normal conditions of 1982-84 and the drier-than-normal conditions of 1999-2002 indicates that the annual variation of recharge to the ground-water system based on streamflow entering the valley, which in turn is primarily dependent upon precipitation, is appropriate but can be improved. The updated transient-state model of the ground-water system in northern Utah Valley can be improved by making revisions on the basis of currently available data and information.
Accounting for Atmospheric Rivers in the Flood Frequency Estimation in the Western United States
NASA Astrophysics Data System (ADS)
Barth, N. A.; Villarini, G.; White, K. D.
2016-12-01
The Bulletin 17B framework assumes that the observed annual peak flow data included in a flood frequency analysis are a "representative time sample of random homogeneous events." However, flood frequency analysis over the western United States is complicated by annual peak flow records that frequently contain flows generated from distinctly different flood generating mechanisms. Among the different flood generating mechanisms, atmospheric rivers (ARs) are responsible for large, regional scale floods. USGS streamgaging stations in the central Columbia River Basin in the Pacific Northwest, the Sierra Nevada, the central and southern California coast, and central Arizona show a mixture of 30-70% AR-generated flood peaks among the complete period of record. It is relatively common for the annual peaks fitted to the log-Pearson Type III distribution in these regions to show sharp breaks in the slope or a curve that reverses direction, pointing to the presence of different flood generating mechanisms. Following the recommendation by B17B to develop separate frequency curves when different flood agents can be identified, we will perform flood frequency analyses accounting for the role played by ARs. We will compare and contrast the results obtained by treating all annual maximum discharge values as generated from a single population against those from a mixed population analyses.
NASA Astrophysics Data System (ADS)
Wang, J.; Nathan, R.; Horne, A.
2017-12-01
Traditional approaches to characterize water-dependent ecosystem outcomes in response to flow have been based on time-averaged hydrological indicators, however there is increasing recognition for the need to characterize ecological processes that are highly dependent on the sequencing of flow conditions (i.e. floods and droughts). This study considers the representation of flow regimes when considering assessment of ecological outcomes, and in particular, the need to account for sequencing and variability of flow. We conducted two case studies - one in the largely unregulated Ovens River catchment and one in the highly regulated Murray River catchment (both located in south-eastern Australia) - to explore the importance of flow sequencing to the condition of a typical long-lived ecological asset in Australia, the River Red Gum forests. In the first, the Ovens River case study, the implications of representing climate change using different downscaling methods (annual scaling, monthly scaling, quantile mapping, and weather generator method) on the sequencing of flows and resulting ecological outcomes were considered. In the second, the Murray River catchment, sequencing within a historic drought period was considered by systematically making modest adjustments on an annual basis to the hydrological records. In both cases, the condition of River Red Gum forests was assessed using an ecological model that incorporates transitions between ecological conditions in response to sequences of required flow components. The results of both studies show the importance of considering how hydrological alterations are represented when assessing ecological outcomes. The Ovens case study showed that there is significant variation in the predicted ecological outcomes when different downscaling techniques are applied. Similarly, the analysis in the Murray case study showed that the drought as it historically occurred provided one of the best possible outcomes for River Red Gum forests when compared to other re-arrangements of flow within the same drought. These results have implications for the way we represent climate change impacts and drought risk assessments where ecological outcomes are a key management objective.
Magnitude of flood flows for selected annual exceedance probabilities in Rhode Island through 2010
Zarriello, Phillip J.; Ahearn, Elizabeth A.; Levin, Sara B.
2012-01-01
Heavy persistent rains from late February through March 2010 caused severe widespread flooding in Rhode Island that set or nearly set record flows and water levels at many long-term streamgages in the State. In response, the U.S. Geological Survey, in partnership with the Federal Emergency Management Agency, conducted a study to update estimates of flood magnitudes at streamgages and regional equations for estimating flood flows at ungaged locations. This report provides information needed for flood plain management, transportation infrastructure design, flood insurance studies, and other purposes that can help minimize future flood damages and risks. The magnitudes of floods were determined from the annual peak flows at 43 streamgages in Rhode Island (20 sites), Connecticut (14 sites), and Massachusetts (9 sites) using the standard Bulletin 17B log-Pearson type III method and a modification of this method called the expected moments algorithm (EMA) for 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability (AEP) floods. Annual-peak flows were analyzed for the period of record through the 2010 water year; however, records were extended at 23 streamgages using the maintenance of variance extension (MOVE) procedure to best represent the longest period possible for determining the generalized skew and flood magnitudes. Generalized least square regression equations were developed from the flood quantiles computed at 41 streamgages (2 streamgages in Rhode Island with reported flood quantiles were not used in the regional regression because of regulation or redundancy) and their respective basin characteristics to estimate magnitude of floods at ungaged sites. Of 55 basin characteristics evaluated as potential explanatory variables, 3 were statistically significant—drainage area, stream density, and basin storage. The pseudo-coefficient of determination (pseudo-R2) indicates these three explanatory variables explain 95 to 96 percent of the variance in the flood magnitudes from 20- to 0.2-percent AEPs. Estimates of uncertainty of the at-site and regression flood magnitudes are provided and were combined with their respective estimated flood quantiles to improve estimates of flood flows at streamgages. This region has a long history of urban development, which is considered to have an important effect on flood flows. This study includes basins that have an impervious area ranging from 0.5 to 37 percent. Although imperviousness provided some explanatory power in the regression, it was not statistically significant at the 95-percent confidence level for any of the AEPs examined. Influence of urbanization on flood flows indicates a complex interaction with other characteristics that confounds a statistical explanation of its effects. Standard methods for calculating magnitude of floods for given AEP are based on the assumption of stationarity, that is, the annual peak flows exhibit no significant trend over time. A subset of 16 streamgages with 70 or more years of unregulated systematic record indicates all but 4 streamgages have a statistically significant positive trend at the 95-percent confidence level; three of these are statistically significant at about the 90-percent confidence level or above. If the trend continues linearly in time, the estimated magnitude of floods for any AEP, on average, will increase by 6, 13, and 21 percent in 10, 20, and 30 years' time, respectively. In 2010, new peaks of record were set at 18 of the 21 active streamgages in Rhode Island. The updated flood frequency analysis indicates the peaks at these streamgages ranged from 2- to 0.2-percent AEP. Many streamgages in the State peaked at a 0.5- and 0.2-percent AEP, except for streamgages in the Blackstone River Basin, which peaked from a 4- to 2-percent AEP.
Estimates of ground-water recharge based on streamflow-hydrograph methods: Pennsylvania
Risser, Dennis W.; Conger, Randall W.; Ulrich, James E.; Asmussen, Michael P.
2005-01-01
This study, completed by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey (T&GS), provides estimates of ground-water recharge for watersheds throughout Pennsylvania computed by use of two automated streamflow-hydrograph-analysis methods--PART and RORA. The PART computer program uses a hydrograph-separation technique to divide the streamflow hydrograph into components of direct runoff and base flow. Base flow can be a useful approximation of recharge if losses and interbasin transfers of ground water are minimal. The RORA computer program uses a recession-curve displacement technique to estimate ground-water recharge from each storm period indicated on the streamflow hydrograph. Recharge estimates were made using streamflow records collected during 1885-2001 from 197 active and inactive streamflow-gaging stations in Pennsylvania where streamflow is relatively unaffected by regulation. Estimates of mean-annual recharge in Pennsylvania computed by the use of PART ranged from 5.8 to 26.6 inches; estimates from RORA ranged from 7.7 to 29.3 inches. Estimates from the RORA program were about 2 inches greater than those derived from the PART program. Mean-monthly recharge was computed from the RORA program and was reported as a percentage of mean-annual recharge. On the basis of this analysis, the major ground-water recharge period in Pennsylvania typically is November through May; the greatest monthly recharge typically occurs in March.
NASA Astrophysics Data System (ADS)
Smettem, Keith; Waring, Richard; Callow, Nik; Wilson, Melissa; Mu, Qiaozhen
2013-04-01
There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. Ecological optimality proposes that the long term average canopy size of undisturbed perennial vegetation is tightly coupled to climate. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study we analysed satellite-derived estimates of monthly LAI across forested coastal catchments of South-west Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, inter-annual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long term decline in areal average underground water storage storage and diminished summer flows, with a trend towards more ephemeral flow regimes.
NASA Astrophysics Data System (ADS)
Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei
2017-07-01
Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.
Regional Curves for Bankfull Channel Characteristics in the Appalachian Plateaus, West Virginia
Messinger, Terence
2009-01-01
Streams in the Appalachian Plateaus Physiographic Province in West Virginia were classified as a single region on the basis of bankfull characteristics. Regression lines for annual peak flow and drainage area measured at streamgages in the study area at recurrence intervals between 1.2 and 1.7 years fell within the 99-percent confidence interval of the regression line for bankfull flow. Channel characteristics were intermediate among those from surrounding states and regions where comparable studies have been done. The stream reaches that were surveyed were selected for apparent stability, and to represent gradients of drainage area, elevation, and mean annual precipitation. Profiles of high-water marks left by bankfull and near-bankfull peaks were surveyed, either as part of slope-area flow measurements at ungaged reaches, or to transfer known flow information to cross sections for gaged reaches. The slope-area measurements made it possible to include ungaged sites in the study, but still relate bankfull dimensions to peak flow and frequency.
NASA Astrophysics Data System (ADS)
Bassam, S.; Ren, J.
2015-12-01
Runoff generated during heavy rainfall imposes quick, but often intense, changes in the flow of streams, which increase the chance of flash floods in the vicinity of the streams. Understanding the temporal response of streams to heavy rainfall requires a hydrological model that considers meteorological, hydrological, and geological components of the streams and their watersheds. SWAT is a physically-based, semi-distributed model that is capable of simulating water flow within watersheds with both long-term, i.e. annually and monthly, and short-term (daily and sub-daily) time scales. However, the capability of SWAT in sub-daily water flow modeling within large watersheds has not been studied much, compare to long-term and daily time scales. In this study we are investigating the water flow in a large, semi-arid watershed, Nueces River Basin (NRB) with the drainage area of 16950 mi2 located in South Texas, with daily and sub-daily time scales. The objectives of this study are: (1) simulating the response of streams to heavy, and often quick, rainfall, (2) evaluating SWAT performance in sub-daily modeling of water flow within a large watershed, and (3) examining means for model performance improvement during model calibration and verification based on results of sensitivity and uncertainty analysis. The results of this study can provide important information for water resources planning during flood seasons.
A modeling approach to establish environmental flow threshold in ungauged semidiurnal tidal river
NASA Astrophysics Data System (ADS)
Akter, A.; Tanim, A. H.
2018-03-01
Due to shortage of flow monitoring data in ungauged semidiurnal river, 'environmental flow' (EF) determination based on its key component 'minimum low flow' is always difficult. For EF assessment this study selected a reach immediately after the Halda-Karnafuli confluence, a unique breeding ground for Indian Carp fishes of Bangladesh. As part of an ungauged tidal river, EF threshold establishment faces challenges in changing ecological paradigms with periodic change of tides and hydrologic alterations. This study describes a novel approach through modeling framework comprising hydrological, hydrodynamic and habitat simulation model. The EF establishment was conceptualized according to the hydrologic process of an ungauged semi-diurnal tidal regime in four steps. Initially, a hydrologic model coupled with a hydrodynamic model to simulate flow considering land use changes effect on streamflow, seepage loss of channel, friction dominated tidal decay as well as lack of long term flow characteristics. Secondly, to define hydraulic habitat feature, a statistical analysis on derived flow data was performed to identify 'habitat suitability'. Thirdly, to observe the ecological habitat behavior based on the identified hydrologic alteration, hydraulic habitat features were investigated. Finally, based on the combined habitat suitability index flow alteration and ecological response relationship was established. Then, the obtained EF provides a set of low flow indices of desired regime and thus the obtained discharge against maximum Weighted Usable Area (WUA) was defined as EF threshold for the selected reach. A suitable EF regime condition was obtained within flow range 25-30.1 m3/s i.e., around 10-12% of the mean annual runoff of 245 m3/s and these findings are within researchers' recommendation of minimum flow requirement. Additionally it was observed that tidal characteristics are dominant process in semi-diurnal regime. However, during the study period (2010-2015) the validated model with those reported observations can provide guidance for the decision support system (DSS) to maintain EF range in an ungauged tidal river.
40 CFR 98.426 - Data reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... measure CO2 concentration. (7) The location of the flow meter in your process chain in relation to the... through subsequent flow meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons...
Stream channels: The link between forests and fishes
Kathleen Sullivan; Thomas E. Lisle; C. Andrew Dolloff; Gordon E. Grant; Leslie M. Reid
1987-01-01
Abstract - The hydraulic characteristics of flow through channels are an important component of fish habitat. Salmonids have evolved in stream systems in which water velocity and flow depth vary spatially within the watershed and temporally on a daily, seasonal, and annual basis. Flow requirements vary during different phases of the freshwater life cycle of salmonids...
NASA Technical Reports Server (NTRS)
Colgan, William Terence; Rajaram, Harihar; Anderson, Robert S.; Steffen, Konrad; Zwally, H. Jay; Phillips, Thomas; Abdalati, Waleed
2012-01-01
Ice velocities observed in 2005/06 at three GPS stations along the Sermeq Avannarleq flowline, West Greenland, are used to characterize an observed annual velocity cycle. We attempt to reproduce this annual ice velocity cycle using a 1-D ice-flow model with longitudinal stresses coupled to a 1-D hydrology model that governs an empirical basal sliding rule. Seasonal basal sliding velocity is parameterized as a perturbation of prescribed winter sliding velocity that is proportional to the rate of change of glacier water storage. The coupled model reproduces the broad features of the annual basal sliding cycle observed along this flowline, namely a summer speed-up event followed by a fall slowdown event. We also evaluate the hypothesis that the observed annual velocity cycle is due to the annual calving cycle at the terminus. We demonstrate that the ice acceleration due to a catastrophic calving event takes an order of magnitude longer to reach CU/ETH ('Swiss') Camp (46km upstream of the terminus) than is observed. The seasonal acceleration observed at Swiss Camp is therefore unlikely to be the result of velocity perturbations propagated upstream via longitudinal coupling. Instead we interpret this velocity cycle to reflect the local history of glacier water balance.
Peak-flow characteristics of Wyoming streams
Miller, Kirk A.
2003-01-01
Peak-flow characteristics for unregulated streams in Wyoming are described in this report. Frequency relations for annual peak flows through water year 2000 at 364 streamflow-gaging stations in and near Wyoming were evaluated and revised or updated as needed. Analyses of historical floods, temporal trends, and generalized skew were included in the evaluation. Physical and climatic basin characteristics were determined for each gaging station using a geographic information system. Gaging stations with similar peak-flow and basin characteristics were grouped into six hydrologic regions. Regional statistical relations between peak-flow and basin characteristics were explored using multiple-regression techniques. Generalized least squares regression equations for estimating magnitudes of annual peak flows with selected recurrence intervals from 1.5 to 500 years were developed for each region. Average standard errors of estimate range from 34 to 131 percent. Average standard errors of prediction range from 35 to 135 percent. Several statistics for evaluating and comparing the errors in these estimates are described. Limitations of the equations are described. Methods for applying the regional equations for various circumstances are listed and examples are given.
Effect of Sampling Period on Flood Frequency Distributions in the Susquehanna Basin
NASA Astrophysics Data System (ADS)
Kargar, M.; Beighley, R. E.
2010-12-01
Flooding is a devastating natural hazard that claims many human lives and significantly impact regional economies each year. Given the magnitude of flooding impacts, significant resources are dedicated to the development of forecasting models for early warning and evacuation planning, construction of flood defenses (levees/dams) to limit flooding, and the design of civil infrastructure (bridges, culverts, storm sewers) to convey flood flows without failing. In all these cases, it is particularly important to understand the potential flooding risk in terms of both recurrence interval (i.e., return period) and magnitude. Flood frequency analysis (FFA) is a form of risk analysis used to extrapolate the return periods of floods beyond the gauged record. The technique involves using observed annual peak flow discharge data to calculate statistical information such as mean values, standard deviations, skewness, and recurrence intervals. Since discharge data for most catchments have been collected for periods of time less than 100 years, the estimation of the design discharge requires a degree of extrapolation. This study focuses on the assessment and modifications of flood frequency based discharges for sites with limited sampling periods. Here, limited sampling period is intended to capture two issues: (1) limited number of observations to adequately capture the flood frequency signal (i.e., minimum number of annual peaks needed) and (2) climate variability (i.e., sampling period contains primarily “wet” or “dry” periods only). Total of 34 gauges (more than 70 years of data) spread throughout the Susquehanna River basin (71,000 sq km) were used to investigate the impact of sampling period on flood frequency distributions. Data subsets ranging from 10 years to the total number of years available were created from the data for each gauging station. To estimate the flood frequency, the Log Pearson Type III distribution was fit to the logarithms of instantaneous annual peak flows following Bulletin 17B guidelines of the U.S. Interagency Advisory Committee on Water Data. The resulting flood frequencies from these subsets were compared to the results from the entire record at each gauge. Based on the analysis, the minimum number of years required to obtain a reasonable flood frequency distribution was determined for each gauge. In addition, a method to adjust flood frequency distribution at a given gauging station with limited data based on other locations with longer periods of records was developed.
NASA Astrophysics Data System (ADS)
Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P.
2014-12-01
Complex climatic interactions control hydrological processes in high mountains that in their turn regulate the erosive forces shaping the relief. To unravel the hydrological cycle of a glaciated watershed (Gunt River) considered representative of the Pamirs' hydrologic regime we developed a remote sensing-based approach. At the boundary between two distinct climatic zones dominated by Westerlies and Indian summer monsoon, the Pamir is poorly instrumented and only a few in situ meteorological and hydrological data are available. We adapted a suitable conceptual distributed hydrological model (J2000g). Interpolations of the few available in situ data are inadequate due to strong, relief induced, spatial heterogeneities. Instead we use raster data, preferably from remote sensing sources depending on availability and validation. We evaluate remote sensing-based precipitation and temperature products. MODIS MOD11 surface temperatures show good agreement with in situ data, perform better than other products and represent a good proxy for air temperatures. For precipitation we tested remote sensing products as well as the HAR10 climate model data and the interpolation-based APHRODITE dataset. All products show substantial differences both in intensity and seasonal distribution with in-situ data. Despite low resolutions, the datasets are able to sustain high model efficiencies (NSE ≥0.85). In contrast to neighbouring regions in the Himalayas or the Hindukush, discharge is dominantly the product of snow and glacier melt and thus temperature is the essential controlling factor. 80% of annual precipitation is provided as snow in winter and spring contrasting peak discharges during summer. Hence, precipitation and discharge are negatively correlated and display complex hysteresis effects that allow to infer the effect of inter-annual climatic variability on river flow. We infer the existence of two subsurface reservoirs. The groundwater reservoir (providing 40% of annual discharge) recharges in spring and summer and releases slowly during fall and winter. A not fully constrained shallow reservoir with very rapid retention times buffers melt waters during spring and summer. This study highlights the importance of a better understanding of the hydrologic cycle to constrain natural hazards such as floods and landslides as well as water availability in the downstream areas. The negative glacier mass balance (-0.6 m w.e. yr-1) indicates glacier retreat, that will effect the currently 30% contribution of glacier melt to stream flow.
LaBaugh, James W.; Winter, Thomas C.; Rosenberry, Donald O.; Schuster, Paul F.; Reddy, Michael M.; Aiken, George R.
1997-01-01
Chemical mass balances for sodium, magnesium, chloride, dissolved organic carbon, and oxygen 18 were used to estimate groundwater seepage to and from Williams Lake, Minnesota, over a 15-month period, from April 1991 through June 1992. Groundwater seepage to the lake and seepage from the lake to groundwater were determined independently using a flow net approach using data from water table wells installed as part of the study. Hydrogeological analysis indicated groundwater seepage to the lake accounted for 74% of annual water input to the lake; the remainder came from atmospheric precipitation, as determined from a gage in the watershed and from nearby National Weather Service gages. Seepage from the lake accounted for 69% of annual water losses from the lake; the remainder was removed by evaporation, as determined by the energy budget method. Calculated annual water loss exceeded calculated annual water gain, and this imbalance was double the value of the independently measured decrease in lake volume. Seepage to the lake determined from oxygen 18 was larger (79% of annual water input) than that determined from the flow net approach and made the difference between calculated annual water gain and loss consistent with the independently measured decrease in lake volume. Although the net difference between volume of seepage to the lake and volume of seepage from the lake was 1% of average lake volume, movement of water into and out of the lake by seepage represented an annual exchange of groundwater with the lake equal to 26–27% of lake volume. Estimates of seepage to the lake from sodium, magnesium, chloride, and dissolved organic carbon did not agree with the values determined from flow net approach or oxygen 18. These results indicated the importance of using a combination of hydrogeological and chemical approaches to define volume of seepage to and from Williams Lake and identify uncertainties in chemical fluxes.
Remo, Jonathan W.F.; Ickes, Brian; Ryherd, Julia K.; Guida, Ross J.; Therrell, Matthew D.
2018-01-01
The impacts of dams and levees on the long-term (>130 years) discharge record was assessed along a ~1200 km segment of the Mississippi River between St. Louis, Missouri, and Vicksburg, Mississippi. To aid in our evaluation of dam impacts, we used data from the U.S. National Inventory of Dams to calculate the rate of reservoir expansion at five long-term hydrologic monitoring stations along the study segment. We divided the hydrologic record at each station into three periods: (1) a pre-rapid reservoir expansion period; (2) a rapid reservoir expansion period; and (3) a post-rapid reservoir expansion period. We then used three approaches to assess changes in the hydrologic record at each station. Indicators of hydrologic alteration (IHA) and flow duration hydrographs were used to quantify changes in flow conditions between the pre- and post-rapid reservoir expansion periods. Auto-regressive interrupted time series analysis (ARITS) was used to assess trends in maximum annual discharge, mean annual discharge, minimum annual discharge, and standard deviation of daily discharges within a given water year. A one-dimensional HEC-RAS hydraulic model was used to assess the impact of levees on flood flows. Our results revealed that minimum annual discharges and low-flow IHA parameters showed the most significant changes. Additionally, increasing trends in minimum annual discharge during the rapid reservoir expansion period were found at three out of the five hydrologic monitoring stations. These IHA and ARITS results support previous findings consistent with the observation that reservoirs generally have the greatest impacts on low-flow conditions. River segment scale hydraulic modeling revealed levees can modestly increase peak flood discharges, while basin-scale hydrologic modeling assessments by the U.S. Army Corps of Engineers showed that tributary reservoirs reduced peak discharges by a similar magnitude (2 to 30%). This finding suggests that the effects of dams and levees on peak flood discharges are in part offsetting one another along the modeled river segments and likely other substantially leveed segments of the Mississippi River.
NASA Astrophysics Data System (ADS)
Remo, Jonathan W. F.; Ickes, Brian S.; Ryherd, Julia K.; Guida, Ross J.; Therrell, Matthew D.
2018-07-01
The impacts of dams and levees on the long-term (>130 years) discharge record was assessed along a 1200 km segment of the Mississippi River between St. Louis, Missouri, and Vicksburg, Mississippi. To aid in our evaluation of dam impacts, we used data from the U.S. National Inventory of Dams to calculate the rate of reservoir expansion at five long-term hydrologic monitoring stations along the study segment. We divided the hydrologic record at each station into three periods: (1) a pre-rapid reservoir expansion period; (2) a rapid reservoir expansion period; and (3) a post-rapid reservoir expansion period. We then used three approaches to assess changes in the hydrologic record at each station. Indicators of hydrologic alteration (IHA) and flow duration hydrographs were used to quantify changes in flow conditions between the pre- and post-rapid reservoir expansion periods. Auto-regressive interrupted time series analysis (ARITS) was used to assess trends in maximum annual discharge, mean annual discharge, minimum annual discharge, and standard deviation of daily discharges within a given water year. A one-dimensional HEC-RAS hydraulic model was used to assess the impact of levees on flood flows. Our results revealed that minimum annual discharges and low-flow IHA parameters showed the most significant changes. Additionally, increasing trends in minimum annual discharge during the rapid reservoir expansion period were found at three out of the five hydrologic monitoring stations. These IHA and ARITS results support previous findings consistent with the observation that reservoirs generally have the greatest impacts on low-flow conditions. River segment scale hydraulic modeling revealed levees can modestly increase peak flood discharges, while basin-scale hydrologic modeling assessments by the U.S. Army Corps of Engineers showed that tributary reservoirs reduced peak discharges by a similar magnitude (2 to 30%). This finding suggests that the effects of dams and levees on peak flood discharges are in part offsetting one another along the modeled river segments and likely other substantially leveed segments of the Mississippi River.
Estimates of streamflow characteristics for selected small streams, Baker River basin, Washington
Williams, John R.
1987-01-01
Regression equations were used to estimate streamflow characteristics at eight ungaged sites on small streams in the Baker River basin in the North Cascade Mountains, Washington, that could be suitable for run-of-the-river hydropower development. The regression equations were obtained by relating known streamflow characteristics at 25 gaging stations in nearby basins to several physical and climatic variables that could be easily measured in gaged or ungaged basins. The known streamflow characteristics were mean annual flows, 1-, 3-, and 7-day low flows and high flows, mean monthly flows, and flow duration. Drainage area and mean annual precipitation were not the most significant variables in all the regression equations. Variance in the low flows and the summer mean monthly flows was reduced by including an index of glacierized area within the basin as a third variable. Standard errors of estimate of the regression equations ranged from 25 to 88%, and the largest errors were associated with the low flow characteristics. Discharge measurements made at the eight sites near midmonth each month during 1981 were used to estimate monthly mean flows at the sites for that period. These measurements also were correlated with concurrent daily mean flows from eight operating gaging stations. The correlations provided estimates of mean monthly flows that compared reasonably well with those estimated by the regression analyses. (Author 's abstract)
Code of Federal Regulations, 2010 CFR
2010-07-01
... following requirements: (1) You must reduce your intake flow, at a minimum, to a level commensurate with... that the total design intake flow from all cooling water intake structures at your facility meets the... total design intake flow must be no greater than five (5) percent of the source water annual mean flow...
NASA Astrophysics Data System (ADS)
Vallam, P.; Qin, X. S.
2017-07-01
Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.
The Gravity of High-Skilled Migration Policies.
Czaika, Mathias; Parsons, Christopher R
2017-04-01
Combining unique, annual, bilateral data on labor flows of highly skilled immigrants for 10 OECD destinations between 2000 and 2012, with new databases comprising both unilateral and bilateral policy instruments, we present the first judicious cross-country assessment of policies aimed to attract and select high-skilled workers. Points-based systems are much more effective in attracting and selecting high-skilled migrants than requiring a job offer, labor market tests, and shortage lists. Offers of permanent residency, while attracting the highly skilled, overall reduce the human capital content of labor flows because they prove more attractive to non-high-skilled workers. Bilateral recognition of diploma and social security agreements foster greater flows of high-skilled workers and improve the skill selectivity of immigrant flows. Conversely, double taxation agreements deter high-skilled migrants, although they do not alter overall skill selectivity. Our results are robust to a variety of empirical specifications that account for destination-specific amenities, multilateral resistance to migration, and the endogeneity of immigration policies.
International Data Base for the U.S. Renewable Energy Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
none
1986-05-01
The International Data Base for the US Renewable Energy Industry was developed to provide the US renewable energy industry with background data for identifying and analyzing promising foreign market opportunities for their products and services. Specifically, the data base provides the following information for 161 developed and developing countries: (1) General Country Data--consisting of general energy indicators; (2) Energy Demand Data--covering commercial primary energy consumption; (3) Energy Resource Data--identifying annual average insolation, wind power, and river flow data; (4) Power System Data--indicating a wide range of electrical parameters; and (5) Business Data--including currency and credit worthiness data.
Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil
Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.
1998-01-01
Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.
Effective Discharge and Annual Sediment Yield on Brazos River
NASA Astrophysics Data System (ADS)
Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.
2012-12-01
Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.
Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.
2017-02-13
This report describes a study of the hydrogeology and simulation of groundwater flow for the Canadian River alluvial aquifer in western and central Oklahoma conducted by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board. The report (1) quantifies the groundwater resources of the Canadian River alluvial aquifer by developing a conceptual model, (2) summarizes the general water quality of the Canadian River alluvial aquifer groundwater by using data collected during August and September 2013, (3) evaluates the effects of estimated equal proportionate share (EPS) on aquifer storage and streamflow for time periods of 20, 40, and 50 years into the future by using numerical groundwater-flow models, and (4) evaluates the effects of present-day groundwater pumping over a 50-year period and sustained hypothetical drought conditions over a 10-year period on stream base flow and groundwater in storage by using numerical flow models. The Canadian River alluvial aquifer is a Quaternary-age alluvial and terrace unit consisting of beds of clay, silt, sand, and fine gravel sediments unconformably overlying Tertiary-, Permian-, and Pennsylvanian-age sedimentary rocks. For groundwater-flow modeling purposes, the Canadian River was divided into Reach I, extending from the Texas border to the Canadian River at the Bridgeport, Okla., streamgage (07228500), and Reach II, extending downstream from the Canadian River at the Bridgeport, Okla., streamgage (07228500), to the confluence of the river with Eufaula Lake. The Canadian River alluvial aquifer spans multiple climate divisions, ranging from semiarid in the west to humid subtropical in the east. The average annual precipitation in the study area from 1896 to 2014 was 34.4 inches per year (in/yr).A hydrogeologic framework of the Canadian River alluvial aquifer was developed that includes the areal and vertical extent of the aquifer and the distribution, texture variability, and hydraulic properties of aquifer materials. The aquifer areal extent ranged from less than 0.2 to 8.5 miles wide. The maximum aquifer thickness was 120 feet (ft), and the average aquifer thickness was 50 ft. Average horizontal hydraulic conductivity for the Canadian River alluvial aquifer was calculated to be 39 feet per day, and the maximum horizontal hydraulic conductivity was calculated to be 100 feet per day.Recharge rates to the Canadian River alluvial aquifer were estimated by using a soil-water-balance code to estimate the spatial distribution of groundwater recharge and a water-table fluctuation method to estimate localized recharge rates. By using daily precipitation and temperature data from 39 climate stations, recharge was estimated to average 3.4 in/yr, which corresponds to 8.7 percent of precipitation as recharge for the Canadian River alluvial aquifer from 1981 to 2013. The water-table fluctuation method was used at one site where continuous water-level observation data were available to estimate the percentage of precipitation that becomes groundwater recharge. Estimated annual recharge at that site was 9.7 in/yr during 2014.Groundwater flow in the Canadian River alluvial aquifer was identified and quantified by a conceptual flow model for the period 1981–2013. Inflows to the Canadian River alluvial aquifer include recharge to the water table from precipitation, lateral flow from the surrounding bedrock, and flow from the Canadian River, whereas outflows include flow to the Canadian River (base-flow gain), evapotranspiration, and groundwater use. Total annual recharge inflows estimated by the soil-water-balance code were multiplied by the area of each reach and then averaged over the simulated period to produce an annual average of 28,919 acre-feet per year (acre-ft/yr) for Reach I and 82,006 acre-ft/yr for Reach II. Stream base flow to the Canadian River was estimated to be the largest outflow of groundwater from the aquifer, measured at four streamgages, along with evapotranspiration and groundwater use, which were relatively minor discharge components.Objectives for the numerical groundwater-flow models included simulating groundwater flow in the Canadian River alluvial aquifer from 1981 to 2013 to address groundwater use and drought scenarios, including calculation of the EPS pumping rates. The EPS for the alluvial and terrace aquifers is defined by the Oklahoma Water Resources Board as the amount of fresh water that each landowner is allowed per year per acre of owned land to maintain a saturated thickness of at least 5 ft in at least 50 percent of the overlying land of the groundwater basin for a minimum of 20 years.The groundwater-flow models were calibrated to water-table altitude observations, streamgage base flows, and base-flow gain to the Canadian River. The Reach I water-table altitude observation root-mean-square error was 6.1 ft, and 75 percent of residuals were within ±6.7 ft of observed measurements. The average simulated stream base-flow residual at the Bridgeport streamgage (07228500) was 8.8 cubic feet per second (ft3/s), and 75 percent of residuals were within ±30 ft3/s of observed measurements. Simulated base-flow gain in Reach I was 8.8 ft3/s lower than estimated base-flow gain. The Reach II water-table altitude observation root-mean-square error was 4 ft, and 75 percent of residuals were within ±4.3 ft of the observations. The average simulated stream base-flow residual in Reach II was between 35 and 132 ft3/s. The average simulated base-flow gain residual in Reach II was between 11.3 and 61.1 ft3/s.Several future predictive scenarios were run, including estimating the EPS pumping rate for 20-, 40-, and 50-year life of basin scenarios, determining the effects of current groundwater use over a 50-year period into the future, and evaluating the effects of a sustained drought on water availability for both reaches. The EPS pumping rate was determined to be 1.35 acre-feet per acre per year ([acre-ft/acre]/yr) in Reach I and 3.08 (acre-ft/acre)/yr in Reach II for a 20-year period. For the 40- and 50-year periods, the EPS rate was determined to be 1.34 (acre-ft/acre)/yr in Reach I and 3.08 (acre-ft/acre)/yr in Reach II. Storage changes decreased in tandem with simulated groundwater pumping and were minimal after the first 15 simulated years for Reach I and the first 8 simulated years for Reach II.Groundwater pumping at year 2013 rates for a period of 50 years resulted in a 0.2-percent decrease in groundwater-storage volumes in Reach I and a 0.6-percent decrease in the groundwater-storage volumes in Reach II. The small changes in storage are due to groundwater use by pumping, which composes a small percentage of the total groundwater-flow model budgets for Reaches I and II.A sustained drought scenario was used to evaluate the effects of a hypothetical 10-year drought on water availability. A 10-year period was chosen where the effects of drought conditions would be simulated by decreasing recharge by 75 percent. In Reach I, average simulated stream base flow at the Bridgeport streamgage (07228500) decreased by 58 percent during the hypothetical 10-year drought compared to average simulated stream base flow during the nondrought period. In Reach II, average simulated stream base flows at the Purcell streamgage (07229200) and Calvin streamgage (07231500) decreased by 64 percent and 54 percent, respectively. In Reach I, the groundwater-storage drought scenario resulted in a storage decline of 30 thousand acre-feet, or an average decline in the water table of 1.2 ft. In Reach II, the groundwater-storage drought scenario resulted in a storage decline of 71 thousand acre-feet, or an average decline in the water table of 2.0 ft.
1980-07-01
The specific analytical mechanism is developed below. COMPOUND INTEREST, ONE YEAR. Suppose an amount of money P is lent today at an annual interest... compounded every year.) The amount repaid at the end of Year 2 is F2 = (P(l + 1)) (1 + i) =P(l + 1)2. ... (III-2) (In equation (111-2), P(l + i) takes the...Table A factors are based on continuous compounding , which is a consequence of the assumption that cash flows are sprepd throughout the one year period
Dynamic Model for the Stocks and Release Flows of Engineered Nanomaterials.
Song, Runsheng; Qin, Yuwei; Suh, Sangwon; Keller, Arturo A
2017-11-07
Most existing life-cycle release models for engineered nanomaterials (ENM) are static, ignoring the dynamics of stock and flows of ENMs. Our model, nanoRelease, estimates the annual releases of ENMs from manufacturing, use, and disposal of a product explicitly taking stock and flow dynamics into account. Given the variabilities in key parameters (e.g., service life of products and annual release rate during use) nanoRelease is designed as a stochastic model. We apply nanoRelease to three ENMs (TiO 2 , SiO 2 and FeO x ) used in paints and coatings through seven product applications, including construction and building, household and furniture, and automotive for the period from 2000 to 2020 using production volume and market projection information. We also consider model uncertainties using Monte Carlo simulation. Compared with 2016, the total annual releases of ENMs in 2020 will increase by 34-40%, and the stock will increase by 28-34%. The fraction of the end-of-life release among total release flows will increase from 11% in 2002 to 43% in 2020. As compared to static models, our dynamic model predicts about an order of magnitude lower values for the amount of ENM released from this sector in the near-term while stock continues to build up in the system.
Comprehensive Model of Annual Plankton Succession Based on the Whole-Plankton Time Series Approach
Romagnan, Jean-Baptiste; Legendre, Louis; Guidi, Lionel; Jamet, Jean-Louis; Jamet, Dominique; Mousseau, Laure; Pedrotti, Maria-Luiza; Picheral, Marc; Gorsky, Gabriel; Sardet, Christian; Stemmann, Lars
2015-01-01
Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes) and larger (i.e. macroplankton) organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and analyzed simultaneously. Here we studied, for the first time in the aquatic literature, the succession of marine plankton in the whole-plankton assemblage that spanned 5 orders of magnitude in size from microbes to macroplankton predators (not including fish or fish larvae, for which no consistent data were available). Samples were collected in the northwestern Mediterranean Sea (Bay of Villefranche) weekly during 10 months. Simultaneously collected samples were analyzed by flow cytometry, inverse microscopy, FlowCam, and ZooScan. The whole-plankton assemblage underwent sharp reorganizations that corresponded to bottom-up events of vertical mixing in the water-column, and its development was top-down controlled by large gelatinous filter feeders and predators. Based on the results provided by our novel whole-plankton assemblage approach, we propose a new comprehensive conceptual model of the annual plankton succession (i.e. whole plankton model) characterized by both stepwise stacking of four broad trophic communities from early spring through summer, which is a new concept, and progressive replacement of ecological plankton categories within the different trophic communities, as recognised traditionally. PMID:25780912
Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy
2015-01-01
Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on average, within ±20% of estimates based on streamflow and turbidity combined. Results demonstrate that large suspended sediment loads are delivered to Cheney Reservoir in very short time periods, indicating that sediment management plans eventually must address large, infrequent inflow events to be effective.
Topography significantly influencing low flows in snow-dominated watersheds
NASA Astrophysics Data System (ADS)
Li, Qiang; Wei, Xiaohua; Yang, Xin; Giles-Hansen, Krysta; Zhang, Mingfang; Liu, Wenfei
2018-03-01
Watershed topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Few studies have quantified the role of topography in various flow variables. In this study, 28 watersheds with snow-dominated hydrological regimes were selected with daily flow records from 1989 to 1996. These watersheds are located in the Southern Interior of British Columbia, Canada, and range in size from 2.6 to 1780 km2. For each watershed, 22 topographic indices (TIs) were derived, including those commonly used in hydrology and other environmental fields. Flow variables include annual mean flow (Qmean), Q10 %, Q25 %, Q50 %, Q75 %, Q90 %, and annual minimum flow (Qmin), where Qx % is defined as the daily flow that occurred each year at a given percentage (x). Factor analysis (FA) was first adopted to exclude some redundant or repetitive TIs. Then, multiple linear regression models were employed to quantify the relative contributions of TIs to each flow variable in each year. Our results show that topography plays a more important role in low flows (flow magnitudes ≤ Q75 %) than high flows. However, the effects of TIs on different flow magnitudes are not consistent. Our analysis also determined five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions with the watershed size less than several thousand square kilometres.
Brigode, Pierre; Brissette, Francois; Nicault, Antoine; ...
2016-09-06
Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Québec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over themore » 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. Here, the results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigode, Pierre; Brissette, Francois; Nicault, Antoine
Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Québec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over themore » 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. Here, the results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.« less
Sediment Transport in the Lower Yampa River, Northwestern Colorado
Elliott, John G.; Kircher, James E.; Von Guerard, Paul
1984-01-01
Discharge measurements and sediment samples were taken at streamflow-gaging station 09260050 Yampa River at Deerlodge Park in 1982 and 1983 to determine the annual sediment supply to the Yampa Canyon in Dinosaur National Monument. Forty-three years of discharge records at two tributary sites were combined to determine the historic discharge of the Yampa River at Deerlodge Park. A mean annual hydrograph and flow-duration curve were derived from these data. Sediment-transport equations were derived for total sediment discharge, suspended-sediment discharge, bedload dischagre, and the discharge of sediment in several particle-sizes. Annual sediment discharge were determined by the flow-duration, sediment-rating-curve method and indicated annual total sediment discharge was approximately 2.0 million tons per year of which 0.8 million tons per year was sand-sized material. Bedload was almost entirely sand, and annual bedload discharge was 0.1 million tons per year. Development of water resources in the Yampa River basin could effect the geomorphic character of the Yampa River at Deerlodge Park and the Yampa Canyon. Several scenarios of altered streamflow frequency distribution, reduced streamflow volume, and reduced sediment supply are examined to estimate the effect on the sediment budget at Deerlodge Park. (USGS)
Hydrology of the Johnson Creek Basin, Oregon
Lee, Karl K.; Snyder, Daniel T.
2009-01-01
The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn and winter precipitation totals were used to anticipate flooding of Holgate Lake. Several factors affect annual mean flow of Johnson Creek. More precipitation falls in the southeastern area of the basin because of the topographic setting. Runoff from much of the northern and western areas of the basin does not flow into Johnson Creek due to permeable deposits, interception by combined sewer systems, and by groundwater flow away from Johnson Creek. Inflow from Crystal Springs Creek accounts for one-half of the increase in streamflow of Johnson Creek between the Sycamore and Milwaukie sites. Low flows of Johnson Creek vary as a result of fluctuations in groundwater discharge to the creek, although past water uses may have decreased flows. The groundwater contributions to streamflow upstream of river mile (RM) 5.5 are small compared to contributions downstream of this point. Comparison of flows to a nearby basin indicates that diversions of surface water may have resulted in a 50 percent decrease in low flows from about 1955 to 1977. Runoff from the drainage basin area upstream of the Johnson Creek at Sycamore site contributes more to peak streamflow and peak volume than the drainage basin area between the Sycamore and Milwaukie sites. The average increase in annual peak streamflow and annual peak volume between the two sites was 11 and 24 percent, respectively. Decreased contribution in the lower area of the drainage basin is a result of infiltration, interception by drywell and combined sewer systems, and temporary overbank storage. Trends in flow typically associated with increasing urban development were absent in Johnson Creek. Annual, low, and high flows showed no trend from 1941 to 2006. Much of the infrastructure that may affect runoff from agricultural, residential, and urban development was in place prior to collection of hydrologic data in the basin. Management of stormwater in the urban areas by routing runoff from impervious surfaces to dry
NASA Astrophysics Data System (ADS)
Fabricius, Katharina E.; De'ath, Glenn; Humphrey, Craig; Zagorskis, Irena; Schaffelke, Britta
2013-01-01
Seawater turbidity is a fundamental driver of the ecology of coastal marine systems, and is widely used as indicator for environmental reporting. However, the time scales and processes leading to changes in turbidity in tropical coastal waters remain poorly understood. This study investigates the main determinants of inshore turbidity in four inshore regions along ˜1000 km of the Australian Great Barrier Reef, based on ˜3 years of almost continuous in situ turbidity logger data on 14 reefs. Generalized additive mixed models were used to predict spatial and temporal variation in weekly mean turbidity based on variation in resuspension and runoff conditions. At any given wave height, wave period and tidal range, turbidity was significantly affected by river flow and rainfall. Averaged across all reefs, turbidity was 13% lower (range: 5-37%) in weeks with low compared with high rainfall and river flows. Additionally, turbidity was on average 43% lower 250 days into the dry season than at the start of the dry season on reefs with long-term mean turbidity >1.1 NTU. The data suggest the time scale of winnowing or consolidation of newly imported materials in this zone is months to years. In contrast, turbidity returned to low levels within weeks after river flows and rainfall on reefs with long-term mean turbidity of <1.1 NTU. Turbidity was also up to 10-fold higher on reefs near compared to away from river mouths, suggesting inter-annual accumulation of fine resuspendible sediments. The study suggests that a reduction in the river loads of fine sediments and nutrients through improved land management should lead to measurably improved inshore water clarity in the most turbid parts of the GBR.
Coral proxy record of decadal-scale reduction in base flow from Moloka'i, Hawaii
Prouty, Nancy G.; Jupiter, Stacy D.; Field, Michael E.; McCulloch, Malcolm T.
2009-01-01
Groundwater is a major resource in Hawaii and is the principal source of water for municipal, agricultural, and industrial use. With a growing population, a long-term downward trend in rainfall, and the need for proper groundwater management, a better understanding of the hydroclimatological system is essential. Proxy records from corals can supplement long-term observational networks, offering an accessible source of hydrologic and climate information. To develop a qualitative proxy for historic groundwater discharge to coastal waters, a suite of rare earth elements and yttrium (REYs) were analyzed from coral cores collected along the south shore of Moloka'i, Hawaii. The coral REY to calcium (Ca) ratios were evaluated against hydrological parameters, yielding the strongest relationship to base flow. Dissolution of REYs from labradorite and olivine in the basaltic rock aquifers is likely the primary source of coastal ocean REYs. There was a statistically significant downward trend (−40%) in subannually resolved REY/Ca ratios over the last century. This is consistent with long-term records of stream discharge from Moloka'i, which imply a downward trend in base flow since 1913. A decrease in base flow is observed statewide, consistent with the long-term downward trend in annual rainfall over much of the state. With greater demands on freshwater resources, it is appropriate for withdrawal scenarios to consider long-term trends and short-term climate variability. It is possible that coral paleohydrological records can be used to conduct model-data comparisons in groundwater flow models used to simulate changes in groundwater level and coastal discharge.
Monthly paleostreamflow reconstruction from annual tree-ring chronologies
NASA Astrophysics Data System (ADS)
Stagge, J. H.; Rosenberg, D. E.; DeRose, R. J.; Rittenour, T. M.
2018-02-01
Paleoclimate reconstructions are increasingly used to characterize annual climate variability prior to the instrumental record, to improve estimates of climate extremes, and to provide a baseline for climate-change projections. To date, paleoclimate records have seen limited engineering use to estimate hydrologic risks because water systems models and managers usually require streamflow input at the monthly scale. This study explores the hypothesis that monthly streamflows can be adequately modeled by statistically decomposing annual flow reconstructions. To test this hypothesis, a multiple linear regression model for monthly streamflow reconstruction is presented that expands the set of predictors to include annual streamflow reconstructions, reconstructions of global circulation, and potential differences among regional tree-ring chronologies related to tree species and geographic location. This approach is used to reconstruct 600 years of monthly streamflows at two sites on the Bear and Logan rivers in northern Utah. Nash-Sutcliffe Efficiencies remain above zero (0.26-0.60) for all months except April and Pearson's correlation coefficients (R) are 0.94 and 0.88 for the Bear and Logan rivers, respectively, confirming that the model can adequately reproduce monthly flows during the reference period (10/1942 to 9/2015). Incorporating a flexible transition between the previous and concurrent annual reconstructed flows was the most important factor for model skill. Expanding the model to include global climate indices and regional tree-ring chronologies produced smaller, but still significant improvements in model fit. The model presented here is the only approach currently available to reconstruct monthly streamflows directly from tree-ring chronologies and climate reconstructions, rather than using resampling of the observed record. With reasonable estimates of monthly flow that extend back in time many centuries, water managers can challenge systems models with a larger range of natural variability in drought and pluvial events and better evaluate extreme events with recurrence intervals longer than the observed record. Establishing this natural baseline is critical when estimating future hydrologic risks under conditions of a non-stationary climate.
Characteristics of and Areas Contributing Recharge to Public-Supply Springs in Massachusetts
Hansen, Bruce P.; Smith, Kirk P.
2004-01-01
The geohydrologic and physical characteristics were determined for 28 public-supply springs, 27 of which are in western Massachusetts. Discharge ranged from zero at various small intermittent springs to more than 240 gallons per minute at Waubeeka Springs in Williamstown, Massachusetts. To determine the annual variability of spring discharge, discharge from 12 springs was measured during different seasonal conditions from June 2001 to November 2002, and the discharge from Red Mill Spring in Clarksburg, Massachusetts was recorded continuously from April 2002 to November 2002. The area contributing recharge to each spring was delineated on the basis of the geohydrologic conditions determined from reconnaissance investigations; these areas ranged from 0.010 to 0.682 square mile. Ground-water recharge, estimated on the basis of average discharge and the areas contributing recharge, ranged from 0.5 to 24.4 inches per year. High ground-water recharge rates for some of the high-discharge springs indicate that the areas contributing recharge for these springs may be too small. Detailed water-table mapping in the vicinity of two low-discharge springs indicates that the area contributing recharge to some of the smaller springs may be smaller than the area indicated by reconnaissance investigation. Monthly flow durations and low flow statistics were determined for the index streamflow-gaging stations for a 25-year period from 1976 to 2000. Annual hydrographs were prepared for each index station from median streamflows at the 50-percent monthly flow duration, normalized by drainage area. A median monthly flow of 1 ft3/s/mi2 was used to split hydrographs into a high-flow period (November?May), and a low-flow period (June?October). The hydrographs were used to classify index stations into groups with similar median monthly flow durations. Index stations were divided into four regional groups, roughly paralleling the coast, to characterize streamflows for November to May; and into two groups, on the basis of base-flow index and percentage of sand and gravel in the contributing area, for June to October.
Forecasting the Emergency Department Patients Flow.
Afilal, Mohamed; Yalaoui, Farouk; Dugardin, Frédéric; Amodeo, Lionel; Laplanche, David; Blua, Philippe
2016-07-01
Emergency department (ED) have become the patient's main point of entrance in modern hospitals causing it frequent overcrowding, thus hospital managers are increasingly paying attention to the ED in order to provide better quality service for patients. One of the key elements for a good management strategy is demand forecasting. In this case, forecasting patients flow, which will help decision makers to optimize human (doctors, nurses…) and material(beds, boxs…) resources allocation. The main interest of this research is forecasting daily attendance at an emergency department. The study was conducted on the Emergency Department of Troyes city hospital center, France, in which we propose a new practical ED patients classification that consolidate the CCMU and GEMSA categories into one category and innovative time-series based models to forecast long and short term daily attendance. The models we developed for this case study shows very good performances (up to 91,24 % for the annual Total flow forecast) and robustness to epidemic periods.
NASA Technical Reports Server (NTRS)
Oliver, Michael
2014-01-01
This presentation will be made at the 92nd AIAA Turbine Engine Testing Working Group (TETWoG), a semi-annual technical meeting of turbine engine testing professionals. The objective is to describe an effort by NASA to measure the water vapor content on the core airflow in a full scale turbine engine ice crystal icing test and to open a discussion with colleagues how to accurately conduct the measurement based on any previous collective experience with the procedure, instruments and nature of engine icing testing within the group. The presentation lays out the schematics of the location in the flow path from which the sample will be drawn, the plumbing to get it from the engine flow path to the sensor and several different water vapor measurement technologies that will be used: Tunable diode laser and infrared spectroscopy.
NASA Astrophysics Data System (ADS)
Kibler, K. M.; Alipour, M.
2016-12-01
Achieving the universal energy access Sustainable Development Goal will require great investment in renewable energy infrastructure in the developing world. Much growth in the renewable sector will come from new hydropower projects, including small and diversion hydropower in remote and mountainous regions. Yet, human impacts to hydrological systems from diversion hydropower are poorly described. Diversion hydropower is often implemented in ungauged rivers, thus detection of impact requires flow analysis tools suited to prediction in poorly-gauged and human-altered catchments. We conduct a comprehensive analysis of hydrologic alteration in 32 rivers developed with diversion hydropower in southwestern China. As flow data are sparse, we devise an approach for estimating streamflow during pre- and post-development periods, drawing upon a decade of research into prediction in ungauged basins. We apply a rainfall-runoff model, parameterized and forced exclusively with global-scale data, in hydrologically-similar gauged and ungauged catchments. Uncertain "soft" data are incorporated through fuzzy numbers and confidence-based weighting, and a multi-criteria objective function is applied to evaluate model performance. Testing indicates that the proposed framework returns superior performance (NSE = 0.77) as compared to models parameterized by rote calibration (NSE = 0.62). Confident that the models are providing `the right answer for the right reasons', our analysis of hydrologic alteration based on simulated flows indicates statistically significant hydrologic effects of diversion hydropower across many rivers. Mean annual flows, 7-day minimum and 7-day maximum flows decreased. Frequency and duration of flow exceeding Q25 decreased while duration of flows sustained below the Q75 increased substantially. Hydrograph rise and fall rates and flow constancy increased. The proposed methodology may be applied to improve diversion hydropower design in data-limited regions.
Lacour, C; Joannis, C; Schuetze, M; Chebbo, G
2011-01-01
This paper compares several real-time control (RTC) strategies for a generic configuration consisting of a storage tank with two overflow facilities. Two of the strategies only make use of flow rate data, while the third also introduces turbidity data in order to exercise dynamic control between two overflow locations. The efficiency of each strategy is compared over a wide range of system setups, described by two parameters. This assessment is performed by simulating the application of control strategies to actual measurements time series recorded on two sites. Adding turbidity measurements into an RTC strategy leads to a significant reduction in the annual overflow pollutant load. The pollutant spills spared by such a control strategy strongly depend on the site and on the flow rate based strategy considered as a reference. With the datasets used in this study, values ranging from 5 to 50% were obtained.
Reconnaissance investigations of the discharge and water quality of the Amazon River
Oltman, Roy Edwin
1968-01-01
Selected published estimates of the discharge of Amazon River in the vicinity of Obidos and the mouth are presented to show the great variance of available information. The most reasonable estimates prepared by those who measured some parameters of the flow were studied by Maurice Parde, who concluded that the mean annual discharge is 90,000 to 100,000 cms (cubic meters per second) or 3,200,000 to 3,500,000 cfs (cubic feet per second). A few published estimates of discharge at mouth of 110,000 cms (3,900,000 cfs) based on rainfall-runoff relationships developed for other humid regions of the world are available. Three measurements of discharge made at the Obidos narrows in 1963-64 by a joint Brazil-United States expedition at high, low, and medium river stage are referred to the datum used at the Obidos gage during the period of operation, 1928-46, and a relationship between stage and discharge prepared on the basis of the measurements and supplementary data and computations. Recovery of the original Obidos gage datum is verified by referring the 1963-64 concurrent river stages at Manaus, Obidos, and Taperinha to gage relation curves developed for Manaus-Obidos and Obidos-Taperinha for periods of concurrent operation, 1928-46 and 1931-46, respectively. The average discharge, based on the stage-discharge relation and record of river stage for the period 1928-46, is computed to be 5,500,000 cfs (157,000 cms) for the Obidos site. The greatest known flood at Obidos, that of June 1953, is computed to have been a flow of 12,500,000 cfs (350,000 cms) at stage of 7.6 meters (24.9 feet) in the main channel and an indeterminate amount of overflow which, under the best assumed overflow conditions, may have amounted to about 10 percent of the main channel flow. Overflow discharge at stage equivalent to mean annual discharge is judged to be an insignificant percentage of flow down the main channel. Miscellaneous data collected during the flow measurements show that the tidal effect reaches upstream to Obidos at extremely low flows, the distribution of velocities in stream verticals is affected by large-scale turbulence, the standard procedure of basing mean velocity in vertical on the average of point velocities measured at 20 and 80 percent of the total depth is valid, and there is a low Manning roughness coefficient of 0.019 (English units). Samples of suspended sediment taken with a point sampler at various depths in selected verticals show, for the Obidos site, a variation in concentration from 300 to 340 mg/l (milligram per liter) near the streambed to 50 to 70 mg/l in the upper part of the verticals. Median diameter of bed material at Obidos averaged about 0.20 mm (millimeter) in a range of 0.15 to 0.25 ram. Analyses of water samples collected at Obidos in July and November 1963 and August 1964 are presented. The reconnaissance measurements of 1963-64 provide a well-supported value of mean annual water discharge of Amazon River at Obidos and the mouth. Many more measurements of flow and water-quality characteristics are needed to obtain more exact values of discharge, suspended sediment, and salt load.
40 CFR 98.476 - Data reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) of this section. (c) If you use more than one receiving flow meter, report the net total mass of CO2... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive...
40 CFR 98.476 - Data reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) of this section. (c) If you use more than one receiving flow meter, report the net total mass of CO2... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive...
Fourteen Steps to More Effective Cash Flow Management
ERIC Educational Resources Information Center
Neugebauer, Roger
2004-01-01
Managing cash flow is an incredibly important skill for a center director. Even a center with an annual budget showing a healthy surplus may experience brief periods where funds in the checkbook are insufficient to pay all the bills. To discover how successful directors manage cash flow in tight times, the author surveyed members of the "Exchange…
Abstracts, 19th Annual Meeting Society of Engineering Science, Inc. October 27, 28, & 29, 1982.
1982-10-01
nickel best syperellys used as turbine disk merlals t Mr Force engines. The types of tess and date are described alang Vth the pre- cedres for...microplar boundary layers. The specific geo- mtries of the flow are the flat plate flew, cross flow on a circular eylinder and longituadinal flow alang
Schilling, Keith E.; Jha, Manoj K.; Zhang, You‐Kuan; Gassman, Philip W.; Wolter, Calvin F.
2009-01-01
Over the last century, land use and land cover (LULC) in the United States Corn Belt region shifted from mixed perennial and annual cropping systems to primarily annual crops. Historical LULC change impacted the annual water balance in many Midwestern basins by decreasing annual evapotranspiration (ET) and increasing streamflow and base flow. Recent expansion of the biofuel industry may lead to future LULC changes from increasing corn acreage and potential conversion of the industry to cellulosic bioenergy crops of warm or cool season grasses. In this paper, the Soil and Water Assessment Tool (SWAT) model was used to evaluate potential impacts from future LULC change on the annual and seasonal water balance of the Raccoon River watershed in west‐central Iowa. Three primary scenarios for LULC change and three scenario variants were evaluated, including an expansion of corn acreage in the watershed and two scenarios involving expansion of land using warm season and cool season grasses for ethanol biofuel. Modeling results were consistent with historical observations. Increased corn production will decrease annual ET and increase water yield and losses of nitrate, phosphorus, and sediment, whereas increasing perennialization will increase ET and decrease water yield and loss of nonpoint source pollutants. However, widespread tile drainage that exists today may limit the extent to which a mixed perennial‐annual land cover would ever resemble pre‐1940s hydrologic conditions. Study results indicate that future LULC change will affect the water balance of the watershed, with consequences largely dependent on the future LULC trajectory.
A nonparametric stochastic method for generating daily climate-adjusted streamflows
NASA Astrophysics Data System (ADS)
Stagge, J. H.; Moglen, G. E.
2013-10-01
A daily stochastic streamflow generation model is presented, which successfully replicates statistics of the historical streamflow record and can produce climate-adjusted daily time series. A monthly climate model relates general circulation model (GCM)-scale climate indicators to discrete climate-streamflow states, which in turn control parameters in a daily streamflow generation model. Daily flow is generated by a two-state (increasing/decreasing) Markov chain, with rising limb increments randomly sampled from a Weibull distribution and the falling limb modeled as exponential recession. When applied to the Potomac River, a 38,000 km2 basin in the Mid-Atlantic United States, the model reproduces the daily, monthly, and annual distribution and dynamics of the historical streamflow record, including extreme low flows. This method can be used as part of water resources planning, vulnerability, and adaptation studies and offers the advantage of a parsimonious model, requiring only a sufficiently long historical streamflow record and large-scale climate data. Simulation of Potomac streamflows subject to the Special Report on Emissions Scenarios (SRES) A1b, A2, and B1 emission scenarios predict a slight increase in mean annual flows over the next century, with the majority of this increase occurring during the winter and early spring. Conversely, mean summer flows are projected to decrease due to climate change, caused by a shift to shorter, more sporadic rain events. Date of the minimum annual flow is projected to shift 2-5 days earlier by the 2070-2099 period.
Sando, Steven K.; McCarthy, Peter M.; Sando, Roy; Dutton, DeAnn M.
2016-04-05
The two low-elevation gaging stations in eastern Montana (Poplar River at international boundary [gaging station 06178000] and Powder River at Moorhead, Montana [gaging station 06324500]) had considerable changes in annual-peakflow characteristics after the mid-1970s, which might provide evidence of potential nonstationarity in the peak-flow records. The two low-elevation gaging stations that have potential nonstationarity are located in drainage basins that are strongly affected by agricultural activities that potentially affect the hydrologic regimes. Primary agricultural activities that might alter natural hydrologic conditions include construction of small impoundments (primarily for stock-watering purposes) and irrigation diversions. Temporal variability in these activities might contribute to the potential nonstationarity issues. Changes in climatic characteristics after the mid-1970s also possibly contribute to the potential nonstationarity issues. Lack of considerable indication of potential nonstationarity in annual peak flow for the other long-term gaging stations in this study might indicate that climatic changes have been more pronounced with respect to effects on peak flows in low elevation areas in eastern Montana than in areas represented by the other long-term gaging stations. Another possibility is that climatic changes after the mid-1970s are exacerbated in low-elevation areas where small-impoundment development and potential effects of irrigation diversions might be more extensive.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1993-01-01
This report contains the 1992 annual progress reports of the Research Fellows and students of the Center for Turbulence Research. Considerable effort was focused on the large eddy simulation technique for computing turbulent flows. This increased activity has been inspired by the recent predictive successes of the dynamic subgrid scale modeling procedure which was introduced during the 1990 Summer Program. Several Research Fellows and students are presently engaged in both the development of subgrid scale models and their applications to complex flows. The first group of papers in this report contain the findings of these studies. They are followed by reports grouped in the general areas of modeling, turbulence physics, and turbulent reacting flows. The last contribution in this report outlines the progress made on the development of the CTR post-processing facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Abdi, Reza; Yasi, Mehdi
2015-01-01
The assessment of environmental flows in rivers is of vital importance for preserving riverine ecosystem processes. This paper addresses the evaluation of environmental flow requirements in three reaches along a typical perennial river (the Zab transboundary river, in north-west Iran), using different hydraulic, hydrological and ecological methods. The main objective of this study came from the construction of three dams and inter-basin transfer of water from the Zab River to the Urmia Lake. Eight hydrological methods (i.e. Tennant, Tessman, flow duration curve analysis, range of variability approach, Smakhtin, flow duration curve shifting, desktop reserve and 7Q2&10 (7-day low flow with a 2- and 10-year return period)); two hydraulic methods (slope value and maximum curvature); and two habitat simulation methods (hydraulic-ecologic, and Q Equation based on water quality indices) were used. Ecological needs of the riverine key species (mainly Barbus capito fish), river geometries, natural flow regime and the environmental status of river management were the main indices for determining the minimum flow requirements. The results indicate that the order of 35%, 17% and 18% of the mean annual flow are to be maintained for the upper, middle and downstream river reaches, respectively. The allocated monthly flow rates in the three Dams steering program are not sufficient to preserve the Zab River life.
NASA Astrophysics Data System (ADS)
Konrad, C. P.
2014-12-01
A changing climate poses risks to the availability and quality of water resources. Among the risks, increased frequency and severity of low flow periods in streams would be significant for many in-stream and out-of-stream uses of water. While down-scaled climate projections serve as the basis for understanding impacts of climate change on hydrologic systems, a robust framework for risk assessment incorporates multiple dimensions of risks including the vulnerability of hydrologic systems to climate change impacts. Streamflow records from the southeastern US were examined to assess the vulnerability of streams to increased frequency and severity of low flows. Long-term (>50 years) records provide evidence of more frequent and severe low flows in more streams than would be expected from random chance. Trends in low flows appear to be a result of changes in the temporal distribution rather than the annual amount of preciptation and/or in evaporation. Base flow recession provides an indicator of a stream's vulnerability to such changes. Linkages between streamflow patterns across temporal scales can be used for understanding and asessing stream responses to the various possible expressions of a changing climate.
A novel approach to flow estimation in tidal rivers
NASA Astrophysics Data System (ADS)
Moftakhari, H. R.; Jay, D. A.; Talke, S. A.; Kukulka, T.; Bromirski, P. D.
2013-08-01
Reliable estimation of river discharge to the ocean from large tidal rivers is vital for water resources management and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, flow records are often limited in length and/or quality and tidal records often predate discharge records. Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. We use this phenomenon to develop a method of estimating river discharge for time periods with tidal data but no flow record. Employing sequential 32 day harmonic analyses of tidal properties, we calibrate San Francisco (SF), CA tide data to the Sacramento River delta outflow index from 1930 to 1990, and use the resulting relationship to hindcast river flow from 1858 to 1929. The M2 admittance (a ratio of the observed M2 tidal constituent to its astronomical forcing) best reproduces high flows, while low-flow periods are better represented by amplitude ratios based on higher harmonics (e.g.,M4/M22). Results show that the annual inflow to SF Bay is now 30% less than before 1900 and confirm that the flood of January 1862 was the largest since 1858.
Groundwater balance in the Khor Arbaat basin, Red Sea State, eastern Sudan
NASA Astrophysics Data System (ADS)
Elsheikh, Abdalla E. M.; Zeielabdein, Khalid A. Elsayed; Babikir, Ibrahim A. A.
2009-12-01
The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75 × 106 m3. The annual recharge through the infiltration of flood water is about 1.93 × 106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33 × 105 m3/year. The total annual groundwater recharge is 2.06 × 106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29 × 105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38 × 106 m3/year on average. The total annual groundwater discharge is about 4.7 × 106 m3. A deficit of 2.6 × 106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.
Recent advances in lunar base simulation
NASA Astrophysics Data System (ADS)
Johenning, B.; Koelle, H. H.
This article reports about the results of the latest computer runs of a lunar base simulation model. The lunar base consists of 20 facilities for lunar mining, processing and fabrication. The infrastructure includes solar and nuclear power plants, a central workshop, habitat and farm. Lunar products can be used for construction of solar power systems (SPS) or other spacecraft at several space locations. The simulation model evaluates the mass, energy and manpower flows between the elements of the system as well as system cost and cost of products on an annual basis for a given operational period. The 1983 standard model run over a fifty-years life cycle (beginning about the year 2000) was accomplished for a mean annual production volume of 78 180 Mg of hardware products for export resulting in average specific manufacturing cost of 8.4 $/kg and total annual cost of 1.25 billion dollars during the life cycle. The reference space transportation system uses LOX/LH 2 propulsion for which at the average 210 500 Mg LOX per year is produced on the moon. The sensitivity analysis indicates the importance of bootstrapping as well as the influence of market size, space transportation cost and specific resources demand on the mean lunar manufacturing cost. The option using lunar resources turns out to be quite attractive from the economical viewpoint. Systems analysis by this lunar base model and further trade-offs will be a useful tool to confirm this.
Asquith, William H.; Heitmuller, Franklin T.
2008-01-01
Analysts and managers of surface-water resources have interest in annual mean and annual harmonic mean statistics of daily mean streamflow for U.S. Geological Survey (USGS) streamflow-gaging stations in Texas. The mean streamflow represents streamflow volume, whereas the harmonic mean streamflow represents an appropriate statistic for assessing constituent concentrations that might adversely affect human health. In 2008, the USGS, in cooperation with the Texas Commission on Environmental Quality, conducted a large-scale documentation of mean and harmonic mean streamflow for 620 active and inactive, continuous-record, streamflow-gaging stations using period of record data through water year 2007. About 99 stations within the Texas USGS streamflow-gaging network are part of the larger national Hydroclimatic Data Network and are identified. The graphical depictions of annual mean and annual harmonic mean statistics in this report provide a historical perspective of streamflow at each station. Each figure consists of three time-series plots, two flow-duration curves, and a statistical summary of the mean annual and annual harmonic mean streamflow statistics for available data for each station.The first time-series plot depicts daily mean streamflow for the period 1900-2007. Flow-duration curves follow and are a graphical depiction of streamflow variability. Next, the remaining two time-series plots depict annual mean and annual harmonic mean streamflow and are augmented with horizontal lines that depict mean and harmonic mean for the period of record. Monotonic trends for the annual mean streamflow and annual harmonic mean streamflow also are identified using Kendall's tau, and the slope of the trend is depicted using the nonparametric (linear) Theil-Sen line, which is only drawn for p-values less than .10 of tau. The history of annual mean and annual harmonic mean streamflow of one or more streamflow-gaging stations could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of streamflow conditions in Texas.
Characteristics and Classification of Least Altered Streamflows in Massachusetts
Armstrong, David S.; Parker, Gene W.; Richards, Todd A.
2008-01-01
Streamflow records from 85 streamflow-gaging stations at which streamflows were considered to be least altered were used to characterize natural streamflows within southern New England. Period-of-record streamflow data were used to determine annual hydrographs of median monthly flows. The shapes and magnitudes of annual hydrographs of median monthly flows, normalized by drainage area, differed among stations in different geographic areas of southern New England. These differences were gradational across southern New England and were attributed to differences in basin and climate characteristics. Period-of-record streamflow data were also used to analyze the statistical properties of daily streamflows at 61 stations across southern New England by using L-moment ratios. An L-moment ratio diagram of L-skewness and L-kurtosis showed a continuous gradation in these properties between stations and indicated differences between base-flow dominated and runoff-dominated rivers. Streamflow records from a concurrent period (1960-2004) for 61 stations were used in a multivariate statistical analysis to develop a hydrologic classification of rivers in southern New England. Missing records from 46 of these stations were extended by using a Maintenance of Variation Extension technique. The concurrent-period streamflows were used in the Indicators of Hydrologic Alteration and Hydrologic Index Tool programs to determine 224 hydrologic indices for the 61 stations. Principal-components analysis (PCA) was used to reduce the number of hydrologic indices to 20 that provided nonredundant information. The PCA also indicated that the major patterns of variability in the dataset are related to differences in flow variability and low-flow magnitude among the stations. Hierarchical cluster analysis was used to classify stations into groups with similar hydrologic properties. The cluster analysis classified rivers in southern New England into two broad groups: (1) base-flow dominated rivers, whose statistical properties indicated less flow variability and high magnitudes of low flow, and (2) runoff-dominated rivers, whose statistical properties indicated greater flow variability and lower magnitudes of low flow. A four-cluster classification further classified the runoff-dominated streams into three groups that varied in gradient, elevation, and differences in winter streamflow conditions: high-gradient runoff-dominated rivers, northern runoff-dominated rivers, and southern runoff-dominated rivers. A nine-cluster division indicated that basin size also becomes a distinguishing factor among basins at finer levels of classification. Smaller basins (less than 10 square miles) were classified into different groups than larger basins. A comparison of station classifications indicated that a classification based on multiple hydrologic indices that represent different aspects of the flow regime did not result in the same classification of stations as a classification based on a single type of statistic such as a monthly median. River basins identified by the cluster analysis as having similar hydrologic properties tended to have similar basin and climate characteristics and to be in close proximity to one another. Stations were not classified in the same cluster on the basis of geographic location alone; as a result, boundaries cannot be drawn between geographic regions with similar streamflow characteristics. Rivers with different basin and climate characteristics were classified in different clusters, even if they were in adjacent basins or upstream and downstream within the same basin.
Thomas, Blakemore E.; Pool, Don R.
2006-01-01
This study was done to improve the understanding of trends in streamflow of the San Pedro River in southeastern Arizona. Annual streamflow of the river at Charleston, Arizona, has decreased by more than 50 percent during the 20th century. The San Pedro River is one of the few remaining free-flowing perennial streams in the arid Southwestern United States, and the riparian forest along the river supports several endangered species and is an important habitat for migratory birds. Trends in seasonal and annual precipitation and streamflow were evaluated for surrounding areas in southeastern Arizona and southwestern New Mexico to provide a regional perspective for the trends of the San Pedro River. Seasonal and annual streamflow trends and the relation between precipitation and streamflow in the San Pedro River Basin were evaluated to improve the understanding of the causes of trends. There were few significant trends in seasonal and annual precipitation or streamflow for the regional study area. Precipitation and streamflow records were analyzed for 11 time periods ranging from 1930 to 2002; no significant trends were found in 92 percent of the trend tests for precipitation, and no significant trends were found in 79 percent of the trend tests for streamflow. For the trends in precipitation that were significant, 90 percent were positive and most of those positive trends were in records of winter, spring, or annual precipitation that started during the mid-century drought in 1945-60. For the trends in streamflow that were significant, about half were positive and half were negative. Trends in precipitation in the San Pedro River Basin were similar to regional precipitation trends for spring and fall values and were different for summer and annual values. The largest difference was in annual precipitation, for which no trend tests were significant in the San Pedro River Basin, and 23 percent of the trend tests were significantly positive in the rest of the study area. Streamflow trends for the San Pedro River were different from regional streamflow trends. All seasonal flows for the San Pedro River, except winter flows, had significant decreasing trends, and seasonal flows for most streams in the rest of the study area had either no trend or a significant increasing trend. Two streams adjacent to the San Pedro River Basin (Whitewater Draw and Santa Cruz River), however, had significant decreasing trends in summer streamflow. Factors that caused the decreasing trends in streamflow of the San Pedro River at Charleston were investigated. Possible factors were fluctuations in precipitation and air temperature, changes in watershed characteristics, human activities, or changes in seasonal distribution of bank storage. This study statistically removed or accounted for the variation in streamflow caused by fluctuations in precipitation. Thus, the remaining variation or trend in streamflow was caused by factors other than precipitation. Two methods were used to partition the variation in streamflow and to determine trends in the partitioned variation: (1) regression analysis between precipitation and streamflow using all years in the record and evaluation of time trends in regression residuals, and (2) development of regression equations between precipitation and streamflow for three time periods (early, middle, and late parts of the record) and testing to determine if the three regression equations were significantly different. The methods were applied to monthly values of total flow (average flow) and storm runoff (maximum daily mean flow) for 1913-2002, and to monthly values of low flow (3-day low flow) for 1931-2002. Statistical tests provide strong evidence that factors other than precipitation caused a decrease in streamflow of the San Pedro River. Factors other than precipitation caused significant decreasing trends in streamflows for late spring through early winter and did not cause significant trends f
Some relations between streamflow characteristics and the environment in the Delaware River region
Hely, A.G.; Olmsted, F.H.
1963-01-01
Streamflow characteristics are determined by a large number of factors of the meteorological and terrestrial environments. Because of lack of quantitative data to describe some of the factors and complex interrelations among them, complete analysis of the relations between streamflow and the various environmental factors is impossible. However, certain simplifying assumptions and generalizations made possible a partial analysis for the Delaware River region. For relations involving average runoff or low-flow parameters, average annual precipitation was assumed to be the principal meteorological factor, and geology (a complex of many factors) was assumed to be the principal terrestrial influence, except for that of basin size which was largely eliminated by expression of discharge in terms of unit area. As a first approximation, physiographic units were used as a basis for classifying the geology. Relations between flow parameters and precipitation are fairly well defined for some physiographic units, but not for those in which the geology varies markedly or the areal variation in average precipitation is very small. These relations provide a basis for adjusting the flow parameters to reduce or eliminate the effects of areal variations in precipitation and increase their significance in studies of the effects of terrestrial characteristics. An investigation of the residual effect of basin size (the effect remaining when discharge is expressed in terms of unit area) on relations between flow parameters and average precipitation indicates that such effect is negligible, except for very large differences in area. Parameters that are derived from base-flow recession curves and are related to a common discharge per unit area have inherent advantages as indicators of effects of terrestrial characteristics of basins, because the.y are independent of areal variations in average annual precipitation. Winter base-flow parameters are also practically independent of the effects of evapotranspiration from ground water. However, in many parts of the region these advantages are reduced or nullified by the difficulties of defining base-flow recession curves, particularly winter curves, with sufficient accuracy. In the absence of suitable base-flow recession data and a suitable basis for adjusting parameters, the ratio of the discharge equaled or exceeded 90 percent of the time to the average discharge (Qtt/Qa), or a similar duration parameter, probably is the best indicator of the influence of terrestrial characteristics, although the ratio may vary somewhat with average precipitation. In a part of the region where geologic differences are large and areal variations in average precipitation are small, values of Qm/Qa for each major geologic unit were determined from streamflow records. From these values and the percentage of area represented by each unit, a ratio for each gaging station was computed. Comparison of these computed results with the observed results indicates that nearly all of the variation in the ratio is associated with variation in geology. The investigation indicates that the original assumptions are correct; average precipitation is the principal meteorological influence and geology is the principal terrestrial influence. Together these two factors account for a very large proportion of the variation in average runoff and low-flow characteristics
Regionalized rainfall-runoff model to estimate low flow indices
NASA Astrophysics Data System (ADS)
Garcia, Florine; Folton, Nathalie; Oudin, Ludovic
2016-04-01
Estimating low flow indices is of paramount importance to manage water resources and risk assessments. These indices are derived from river discharges which are measured at gauged stations. However, the lack of observations at ungauged sites bring the necessity of developing methods to estimate these low flow indices from observed discharges in neighboring catchments and from catchment characteristics. Different estimation methods exist. Regression or geostatistical methods performed on the low flow indices are the most common types of methods. Another less common method consists in regionalizing rainfall-runoff model parameters, from catchment characteristics or by spatial proximity, to estimate low flow indices from simulated hydrographs. Irstea developed GR2M-LoiEau, a conceptual monthly rainfall-runoff model, combined with a regionalized model of snow storage and melt. GR2M-LoiEau relies on only two parameters, which are regionalized and mapped throughout France. This model allows to cartography monthly reference low flow indices. The inputs data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data from everywhere in the French territory. To exploit fully these data and to estimate daily low flow indices, a new version of GR-LoiEau has been developed at a daily time step. The aim of this work is to develop and regionalize a GR-LoiEau model that can provide any daily, monthly or annual estimations of low flow indices, yet keeping only a few parameters, which is a major advantage to regionalize them. This work includes two parts. On the one hand, a daily conceptual rainfall-runoff model is developed with only three parameters in order to simulate daily and monthly low flow indices, mean annual runoff and seasonality. On the other hand, different regionalization methods, based on spatial proximity and similarity, are tested to estimate the model parameters and to simulate low flow indices in ungauged sites. The analysis is carried out on 691 French catchments that are representative of various hydro-meteorological behaviors. The results are validated with a cross-validation procedure and are compared with the ones obtained with GR4J, a conceptual rainfall-runoff model, which already provides daily estimations, but involves four parameters that cannot easily be regionalized.
NASA Astrophysics Data System (ADS)
Younger, S. E.; Jackson, C. R.
2017-12-01
In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest cover type improves understanding of watershed scale ET at annual and seasonal levels which is consistent with historic paired watershed experiments and some plot scale data.
Collison, Jake
2016-04-07
Cannon Air Force Base (Cannon AFB) is located in the High Plains physiographic region of east-central New Mexico, about 5 miles west of Clovis, New Mexico. The area surrounding Cannon AFB is primarily used for agriculture, including irrigated cropland and dairies. The Southern High Plains aquifer is the principal source of water for Cannon AFB, for the nearby town of Clovis, and for local agriculture and dairies. The Southern High Plains aquifer in the vicinity of Cannon AFB consists of three subsurface geological formations: the Chinle Formation of Triassic age, the Ogallala Formation of Tertiary age, and the Blackwater Draw Formation of Quaternary age. The Ogallala Formation is the main water-yielding formation of the Southern High Plains aquifer. Groundwater-supplied, center-pivot irrigation dominates pumping from the Southern High Plains aquifer in the area surrounding Cannon AFB, where the irrigation season typically extends from early March through October. The U.S. Geological Survey has been monitoring groundwater levels in the vicinity of Cannon AFB since 1954 and has developed general potentiometric-surface maps that show groundwater flow from northwest to southeast in the study area. While previous potentiometric-surface maps show the general direction of groundwater flow, a denser well network is needed to show details of groundwater flow at a local scale. Groundwater levels were measured in 93 wells during summer 2013 and 100 wells during winter 2015.The summer and winter potentiometric-surface maps display the presence of what is interpreted to be a groundwater trough trending from the northwest to the southeast through the study area. This groundwater trough may be the hydraulic expression of a Tertiary-age paleochannel. Groundwater north of the trough flows in a southerly direction into the trough, and groundwater south of the trough flows in an easterly direction into the trough.During the 18-month period between summer 2013 and winter 2015, changes in groundwater levels ranged from a rise of 10.0 to a decline of 3.8 feet. The regions to the north and south of the groundwater trough contained the majority of the rises in groundwater levels, whereas the regions within the trough contained the majority of the declines in groundwater levels. In contrast, the long-term groundwater-level trend in wells with 20 to 60 years of record is a steady decline in average annual water levels, with declines ranging from 0.41 to 2.81 feet per year. Overall, the northwestern part of the study area exhibits the smallest average annual declines, while the southeastern part of the study area exhibits the largest average annual declines.
An annual model of SSM/I radiobrightness for dry soil
NASA Technical Reports Server (NTRS)
Liou, Yuei-An; England, A. W.
1992-01-01
An annual model is presented of the temperature structure within a homogeneous, dry soil halfspace that is subject to both diurnal and annual insolation, radiant heating from the atmosphere, sensible heat exchange with the atmosphere, and radiant cooling. The thermal constitutive properties of the soil are assumed to be constant so that the heat flow equation can be solved analytically. For computational economy, a variable time interval Laplace transform method is developed to predict the temperature.
Smettem, Keith R J; Waring, Richard H; Callow, John N; Wilson, Melissa; Mu, Qiaozhen
2013-08-01
There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study, we analyzed satellite-derived estimates of monthly LAI across forested coastal catchments of southwest Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, interannual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long-term decline in areal average underground water storage and diminished summer flows, with an emerging trend toward more ephemeral flow regimes. © 2013 John Wiley & Sons Ltd.
Role of Non-Precipitation Sources in Regulating the River Hydrology of a Himalayan Catchment
NASA Astrophysics Data System (ADS)
Grover, S.; Tayal, S.; Beldring, S.
2017-12-01
Hydrology of mountain catchments in Himalayas is strongly regulated by snow/ ice melt. Chenab basin of Himalayas is a snow and glacier fed basin, which makes it perennial and an important source of sustenance for downstream community. It is important to understand the variability in contribution from various sources to the water balance of catchment. Indirect assessment techniques are important to make such an assessment about the runoff patterns especially in data-scarce basins like Chenab. To analyze runoff patterns and contribution from different sources, we applied combination of semi-distributed HBV model and water balance approach for the period between 1971-2007. It was found that the contribution from non-precipitation sources to the total outflow in this region ranged from 30-70% with approximately 30% from glacier ice melt, and base-flow contributing around 20% to annual water-balance. Least precipitation year of 1977 shows maximum contribution from other sources, but also recorded the least outflow in catchment. Seasonal variation of the contribution from glacier ice melt was also estimated and in the months of May and June around 44% of the contribution to the outflow is from glacier melt only. Hydrological balance of the basin is positive during winters with outflow being very less than the inflow of water through precipitation or melt. Melt season starts in March but peaks during May and June with cryospheric contribution being almost twice the base flow contribution. Melting starts receding slowly after September, with its contribution to the outflow declining much below the baseflow contribution in October and November, when base-flow provides around 65% of water to the basin's outflow. Long term (1951-2010) temperature and precipitation data for the higher reaches of the basin indicates a warming trend (0.02 0C yr-1) and a decline in annual precipitation. But on a basin scale, precipitation is increasing and the non-precipitation contribution from snow/ ice melt and base flow is declining. This further emphasizes the fact that climate change is affecting the precipitation regime and liquid precipitation is taking a dominant position in an otherwise snow/ ice fed catchment. Thus, in Chenab basin, non-precipitation contribution is important to drive its water balance.
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Torabi Haghighi, Ali; Kløve, Bjørn
2017-11-01
The natural flow regime of rivers has been strongly altered world-wide, resulting in ecosystem degradation and lakes drying up, especially in arid and semi-arid regions. Determining whether this is due mainly to climate change or to water withdrawal for direct human use (e.g. irrigation) is difficult, particularly for saline lake basins where hydrology data are scarce. In this study, we developed an approach for assessing climate and land use change impacts based on river flow records for headwater and lowland reaches of rivers, using the case of Lake Urmia basin, in north-westen Iran. Flow regimes at upstream and downstream stations were studied before and after major dam construction and irrigation projects. Data from 57 stations were used to establish five different time intervals representing 10 different land use development periods (scenarios) for upstream (not impacted) and downstream (impacted) systems. An existing river impact (RI) index was used to assess changes in three main characteristics of flow (magnitude, timing and, intra-annual variability). The results showed that irrigation was by far the main driving force for river flow regime changes in the lake basin. All stations close to the lake and on adjacent plains showed significantly higher impacts of land use change than headwaters. As headwaters are relatively unaffected by agriculture, the non-significant changes observed in headwater flow regimes indicate a minor effect of climate change on river flows in the region. The benefit of the method developed is clear interpretation of results based on river flow records, which is useful in communicating land use and climate change information to decision makers and lake restoration planners.
Huntington, Justin L.; Niswonger, Richard G.
2012-01-01
Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic models in climate change studies.
NASA Astrophysics Data System (ADS)
Akinwumiju, Akinola S.; Olorunfemi, Martins O.
2018-05-01
This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.
Low-flow study for southwest Ohio streams
Webber, Earl E.; Mayo, Ronald I.
1971-01-01
Low-flow discharges at 60 sites on streams in the Little Miami River, Mill Creek, Great Miami River and Wabash River basins are presented in this report. The average annual minimum flows in cubic feet per second (cfs) for a 7-day period of 10-year frequency and a 1-day period of 30-year frequency are computed for each of the 60 sites.
NASA Astrophysics Data System (ADS)
Lukianova, Renata; Kozlovsky, Alexander; Lester, Mark
2018-06-01
The inter-annual variability, climatological mean wind and tide fields in the northern polar mesosphere/lower thermosphere region of 82-98 km height are studied using observations by the meteor radar which has operated continuously during solar cycle 24 (from December 2008 onward) at the Sodankylä Geophysical Observatory (67N, 26E). Summer mean zonal winds are characterized by westward flow, up to 25 m/s, at lower heights and eastward flow, up to 30 m/s, at upper heights. In the winter an eastward flow, up to 10 m/s, dominates at all heights. The meridional winds are characterized by a relatively weak poleward flow (few m/s) in the winter and equatorward flow in the summer, with a jet core (∼15 m/s) located slightly below 90 km. These systematically varying winds are dominated by the semidiurnal tides. The largest amplitudes, up to 30 m/s, are observed at higher altitudes in winter and a secondary maximum is seen in August-September. The diurnal tides are almost a factor of two weaker and peak in summer. The variability of individual years is dominated by the winter perturbations. During the period of observations major sudden stratospheric warmings (SSW) occurred in January 2009 and 2013. During these events the wind fields were strongly modified. The lowest altitude eastward winds maximized up to 25 m/s, that is by more twice that of the non-SSW years. The poleward flow considerably increases (up 10 m/s) and extends from the lower heights throughout the whole altitude range. The annual pattern in temperature at ∼90 km height over Sodankyla consists of warm winters (up to 200 K) and cold summers (∼120 K).
Global-scale high-resolution ( 1 km) modelling of mean, maximum and minimum annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark; Hendriks, Jan; Beusen, Arthur; Clavreul, Julie; King, Henry; Schipper, Aafke
2017-04-01
Quantifying mean, maximum and minimum annual flow (AF) of rivers at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. AF metrics can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict AF metrics based on climate and catchment characteristics. Yet, so far, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. We developed global-scale regression models that quantify mean, maximum and minimum AF as function of catchment area and catchment-averaged slope, elevation, and mean, maximum and minimum annual precipitation and air temperature. We then used these models to obtain global 30 arc-seconds (˜ 1 km) maps of mean, maximum and minimum AF for each year from 1960 through 2015, based on a newly developed hydrologically conditioned digital elevation model. We calibrated our regression models based on observations of discharge and catchment characteristics from about 4,000 catchments worldwide, ranging from 100 to 106 km2 in size, and validated them against independent measurements as well as the output of a number of process-based global hydrological models (GHMs). The variance explained by our regression models ranged up to 90% and the performance of the models compared well with the performance of existing GHMs. Yet, our AF maps provide a level of spatial detail that cannot yet be achieved by current GHMs.
Developing and testing a global-scale regression model to quantify mean annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.
2017-01-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.
Johnson-O'Malley Annual Report, Fiscal Year 1972.
ERIC Educational Resources Information Center
Bureau of Indian Affairs (Dept. of Interior), Washington, DC.
Presenting narrative and tabular data re: American Indians and the Johnson-O'Malley Program, this 1972 annual report includes the following: an introduction to the JOM Program; 1972 program participation by states and districts; an historical synopsis of the JOM Program; a map of the JOM administrative areas; a flow chart depicting JOM…
Effect of summer annuals on ruminal fermentation and methane output in continuous culture
USDA-ARS?s Scientific Manuscript database
Summer annuals (SA) provide forage during the summer “forage slump”, yet research on ruminal fermentation and CH4 output of SA is lacking. A 4-unit, dual-flow continuous culture fermentor system was used to assess nutrient digestibility, VFA production, bacterial protein synthesis, and CH4 output of...
Wright, Scott A.; Grams, Paul E.
2010-01-01
This report describes numerical modeling simulations of sand transport and sand budgets for reaches of the Colorado River below Glen Canyon Dam. Two hypothetical Water Year 2011 annual release volumes were each evaluated with six hypothetical operational scenarios. The six operational scenarios include the current operation, scenarios with modifications to the monthly distribution of releases, and scenarios with modifications to daily flow fluctuations. Uncertainties in model predictions were evaluated by conducting simulations with error estimates for tributary inputs and mainstem transport rates. The modeling results illustrate the dependence of sand transport rates and sand budgets on the annual release volumes as well as the within year operating rules. The six operational scenarios were ranked with respect to the predicted annual sand budgets for Marble Canyon and eastern Grand Canyon reaches. While the actual WY 2011 annual release volume and levels of tributary inputs are unknown, the hypothetical conditions simulated and reported herein provide reasonable comparisons between the operational scenarios, in a relative sense, that may be used by decision makers within the Glen Canyon Dam Adaptive Management Program.
Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.
2012-01-01
Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.
Regional Patterns and Spatial Clusters of Nonstationarities in Annual Peak Instantaneous Streamflow
NASA Astrophysics Data System (ADS)
White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.
2017-12-01
Information about hydrologic changes resulting from changes in climate, land use, and land cover is a necessity planning and design or water resources infrastructure. The United States Army Corps of Engineers (USACE) evaluated and selected 12 methods to detect abrupt and slowly varying nonstationarities in records of maximum peak annual flows. They deployed a publicly available tool[1]in 2016 and a guidance document in 2017 to support identification of nonstationarities in a reproducible manner using a robust statistical framework. This statistical framework has now been applied to streamflow records across the continental United States to explore the presence of regional patterns and spatial clusters of nonstationarities in peak annual flow. Incorporating this geographic dimension into the detection of nonstationarities provides valuable insight for the process of attribution of these significant changes. This poster summarizes the methods used and provides the results of the regional analysis. [1] Available here - http://www.corpsclimate.us/ptcih.cfm
NASA Astrophysics Data System (ADS)
Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.
2006-01-01
Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.
Predictions of runoff signatures in ungauged basins: Austrian case study
NASA Astrophysics Data System (ADS)
Viglione, A.; Parajka, J.; Salinas, J.; Rogger, M.; Sivapalan, M.; Bloeschl, G.
2012-12-01
Runoff variability can be broken up into several components, each of them meaningful of a certain class of applications of societal relevance: annual runoff, seasonal runoff, flow duration curve, low flows, floods and hydrographs. We call them runoff signatures and we view them as a manifestation of catchment functioning at different time scales, as emergent properties of the complex systems that catchments are. Just as a medical doctor has many different options for studying the state and functioning of a patient, we can infer the state and functioning of a catchment observing its runoff signatures. But what can we do in the absence of runoff data? This study aims to understand how well one can predict runoff signatures in ungauged catchments. The comparison across signatures is based on one consistent data set (Austria) and one regionalisation method (Top-Kriging) in order to explore the relative performance of the predictions of each of the signatures. Results indicate that the performance, assessed by cross-validation, is best for annual and seasonal runoff, it degrades as one moves to low flows and floods and goes up again to high values for runoff hydrographs. Also, dedicated regionalisation methods, i.e. focusing on particular signatures and their characteristics, provide better predictions of the signatures than regionalisation of the entire hydrograph. These results suggest that the use of signatures in the calibration or assessment of process models can be valuable, in that this can lead to models predicting runoff correctly for the right reasons.
Characterising the hydrological regime of an ungauged temporary river system: a case study.
D'Ambrosio, Ersilia; De Girolamo, Anna Maria; Barca, Emanuele; Ielpo, Pierina; Rulli, Maria Cristina
2017-06-01
Temporary streams are characterised by specific hydrological regimes, which influence ecosystem processes, groundwater and surface water interactions, sediment regime, nutrient delivery, water quality and ecological status. This paper presents a methodology to characterise and classify the regime of a temporary river in Southern Italy based on hydrological indicators (HIs) computed with long-term daily flow records. By using a principal component analysis (PCA), a set of non-redundant indices were identified describing the main characteristics of the hydrological regime in the study area. The indicators identified were the annual maximum 30- and 90-day mean (DH4 and DH5), the number of zero flow days (DL6), flow permanence (MF) and the 6-month seasonal predictability of dry periods (SD6). A methodology was also tested to estimate selected HIs in ungauged river reaches. Watershed characteristics such as catchment area, gauging station elevation, mean watershed slope, mean annual rainfall, land use, soil hydraulic conductivity and available water content were derived for each site. Selected indicators were then linked to the catchment characteristics using a regression analysis. Finally, MF and SD6 were used to classify the river reaches on the basis of their degree of intermittency. The methodology presented in this paper constitutes a useful tool for ecologists and water resource managers in the Water Framework Directive implementation process, which requires a characterisation of the hydrological regime and a 'river type' classification for all water bodies.
URBAN WET-WEATHER FLOWS LITERATURE REVIEW 2000
This paper is an urban wet weather flow (WWF) literature reviews for the year of 1999. The reviews were originally published in the annual literature review issues of Water Environment Research. Over the past year, many people were involved in preparing these urban wet weather f...
NASA Astrophysics Data System (ADS)
Eshleman, K. N.
2011-12-01
Water quality monitoring data from streams and rivers provide the "gold standard" by which progress toward achieving real reductions in nutrient loadings to Chesapeake Bay must ultimately be assessed. The most recent trend results posted at the Chesapeake Bay Program (CBP) website reveal that a substantial percentage of tributaries are now showing long-term declines in flow-adjusted concentrations of nutrients and sediments: 22 sites showed statistically significant (p < 0.05) downward trends (1985-2010) in flow-adjusted concentrations, two sites showed upward trends, and eight sites showed no trend. Based on the data, the CBP has drawn the following conclusion: "At many monitored locations, long-term trends indicate that management actions, such as pollution controls for improved wastewater treatment plants and practices to reduce nutrients on farms and suburban lands, have reduced concentrations of nitrogen." But could this conclusion be pre-mature? I recently undertook a comparable analysis of long-term nitrate-N trends for a different group of watersheds (all located in the Chesapeake Bay watershed with long data records); this group includes nine watersheds that are predominantly (i.e., >75%) forested, plus five other Potomac River subwatersheds added for comparison. Based on comparable data and analytical methods to those used by CBP partners and USGS, 13 of the 14 sites-including both Potomac River stations (Chain Bridge at Washington DC and Hancock, Maryland)-showed statistically significant decreasing linear trends in annual flow-weighted nitrate-N concentration. Only one station-the heavily agricultural Upper Monocacy River-did not show a statistically significant (p < 0.05) trend. Five of the predominantly-forested watersheds also showed statistically significant decreasing trends in annual nitrate-N loads, and none of the stations showed a trend in annual runoff presumably due to high inter-annual hydroclimatological variability. While the largest absolute changes in nitrate-N concentration corresponded to the least forested watersheds, the largest percentage changes in nitrate-N concentration were actually observed for those watersheds with the greatest percentages of forestland. This result suggests that the natural dynamics of forests may be playing a very important (and under-appreciated) role in improving water quality throughout the Bay watershed. A second interesting finding was that the statistically significant reductions in annual nitrate-N concentration at the Potomac River RIM station could be entirely explained by commensurate improvements at the upstream (Hancock) station; in fact, no trend in nitrate-N concentration associated with the eastern portion of the basin was found (after subtracting out the influence of the upstream portion). Additional research is needed to understand why nitrogen retention by forested lands may be increasing and thus helping restore water quality throughout the Chesapeake Bay watershed. The results also have obvious implications for meeting local water quality goals as well as the basin-wide goal of the Chesapeake Bay TMDL for nitrogen.
Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.
Jiongxin, Xu
2004-05-01
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.
A comparison of recharge rates in aquifers of the United States based on groundwater-age data
McMahon, P.B.; Plummer, Niel; Böhlke, J.K.; Shapiro, S.D.; Hinkle, S.R.
2011-01-01
An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from < 10 to 1,200 mm/yr in selected aquifers on the basis of measured vertical age distributions and assuming exponential age gradients. On a regional basis, recharge rates based on tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.
Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000
NASA Technical Reports Server (NTRS)
Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick
2012-01-01
Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.
Rainfall-Runoff Dynamics Following Wildfire in Mountainous Headwater Catchments, Alberta, Canada.
NASA Astrophysics Data System (ADS)
Williams, C.; Silins, U.; Bladon, K. D.; Martens, A. M.; Wagner, M. J.; Anderson, A.
2015-12-01
Severe wildfire has been shown to increase the magnitude and advance the timing of rainfall-generated stormflows across a range of hydro-climate regions. Loss of canopy and forest floor interception results in increased net precipitation which, along with the removal of forest organic layers and increased shorter-term water repellency, can result in strongly increased surface flow pathways and efficient routing of precipitation to streams. These abrupt changes have the potential to exacerbate flood impacts and alter the timing of runoff delivery to streams. However, while these effects are well documented in drier temperate mountain regions, changes in post-fire rainfall-runoff processes are less well understood in colder, more northern, snowfall dominated regimes. The objectives of this study are to explore longer term precipitation and runoff dynamics of burned and unburned (reference) watersheds from the Southern Rockies Watershed Project (SRWP) after the 2003 Lost Creek wildfire in the front-range Rocky Mountains of southwestern Alberta, Canada. Streamflow and precipitation were measured in 5 watersheds (3.7 - 10.4 km2) for 10 years following the wildfire (2005-2014). Measurements were collected from a dense network of meteorological and hydrometric stations. Stormflow volume, peak flow, time to peak flow, and total annual streamflow were compared between burned and reference streams. Event-based data were separated into 3 post-fire periods to detect changes in rainfall-runoff dynamics as vegetation regenerated. Despite large increases in post-fire snowpacks and net summer rainfall, rainfall-generated runoff from fire-affected watersheds was not large in comparison to that reported from more temperate snowfall-dominated Rocky Mountain hydrologic settings. High proportions of groundwater contribution to annual runoff regimes (as opposed to surface flow pathways) and groundwater storage were likely contributors to greater watershed resistance to wildfire effects in these northern Rocky Mountain catchments.
NASA Astrophysics Data System (ADS)
Koppan, A.; Fenyvesi, A.; Szarka, L.; Wesztergom, V.
2002-05-01
Electrical potential differences (EPD) in the trunk of a Turkey oak tree (measured by using non-polarising electrodes deepened in the sap wood) have been continuously recorded in the Geophysical Observatory "Istv n Széchenyi" of the Hungarian Academy of Sciences since 1997. Besides of various geophysical observations, meteorological and direct sap-flow measurements have also been carried out in the observatory. As it was found (Kopp n A., Szarka L., Wesztergom V., 2000: Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree. C.R. Acad. Sci. Paris, Life Sciences 323, 559-563), the measured electric potential difference data have a characteristic sinusoidal daily fluctuation, and the intensity of the diurnal variations has a double-peak annual characteristics, which coincides with the life activity maximums of the tree. We have found a remarkable inter-correlation between trunk EPD, water potential of air (derived from meteorological data), and direct sap flow velocity data from a neighboring tree. All these results clearly demonstrate that the sap streaming due to the transpiration and root pressure generates the largest part of measured potential differences. The ratio of the flow velocity of a diluted solution forced through stems and the potential differences was found to be constant (Gindl, W., L”ppert, H.-G., Wimmer, R., 1999: Relationship between streaming potential and sap velocity in Salix alba L. Phyton, 39, 217-224.). On the contrary in our in-vivo experiments the relationship between the measured sap flow velocity and EPD is non-linear, which means that the conductivity (i.e. ion concentration) of the xylem sap itself also has a daily fluctuation.
Along-the-net reconstruction of hydropower potential with consideration of anthropic alterations
NASA Astrophysics Data System (ADS)
Masoero, A.; Claps, P.; Gallo, E.; Ganora, D.; Laio, F.
2014-09-01
Even in regions with mature hydropower development, requirements for stable renewable power sources suggest revision of plans of exploitation of water resources, while taking care of the environmental regulations. Mean Annual Flow (MAF) is a key parameter when trying to represent water availability for hydropower purposes. MAF is usually determined in ungauged basins by means of regional statistical analysis. For this study a regional estimation method consistent along-the-river network has been developed for MAF estimation; the method uses a multi-regressive approach based on geomorphoclimatic descriptors, and it is applied on 100 gauged basins located in NW Italy. The method has been designed to keep the estimates of mean annual flow congruent at the confluences, by considering only raster-summable explanatory variables. Also, the influence of human alterations in the regional analysis of MAF has been studied: impact due to the presence of existing hydropower plants has been taken into account, restoring the "natural" value of runoff through analytical corrections. To exemplify the representation of the assessment of residual hydropower potential, the model has been applied extensively to two specific mountain watersheds by mapping the estimated mean flow for the basins draining into each pixel of a the DEM-derived river network. Spatial algorithms were developed using the OpenSource Software GRASS GIS and PostgreSQL/PostGIS. Spatial representation of the hydropower potential was obtained using different mean flow vs hydraulic-head relations for each pixel. Final potential indices have been represented and mapped through the Google Earth platform, providing a complete and interactive picture of the available potential, useful for planning and regulation purposes.
Armstrong, David S.; Parker, Gene W.; Richards, Todd A.
2003-01-01
Streamflow characteristics and methods for determining streamflow requirements for habitat protection were investigated at 23 active index streamflow-gaging stations in southern New England. Fish communities sampled near index streamflow-gaging stations in Massachusetts have a high percentage of fish that require flowing-water habitats for some or all of their life cycle. The relatively unaltered flow condition at these sites was assumed to be one factor that has contributed to this condition. Monthly flow durations and low flow statistics were determined for the index streamflow-gaging stations for a 25- year period from 1976 to 2000. Annual hydrographs were prepared for each index station from median streamflows at the 50-percent monthly flow duration, normalized by drainage area. A median monthly flow of 1 ft3/s/mi2 was used to split hydrographs into a high-flow period (November–May), and a low-flow period (June–October). The hydrographs were used to classify index stations into groups with similar median monthly flow durations. Index stations were divided into four regional groups, roughly paralleling the coast, to characterize streamflows for November to May; and into two groups, on the basis of base-flow index and percentage of sand and gravel in the contributing area, for June to October. For the June to October period, for index stations with a high base-flow index and contributing areas greater than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.57, 0.49, and 0.46 ft3/s/mi2 for July, August, and September, respectively. For index stations with a low base-flow index and contributing areas less than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.34, 0.28, and 0.27 ft3/s/mi2 for July, August, and September, respectively. Streamflow variability between wet and dry years can be characterized by use of the interquartile range of median streamflows at selected monthly flow durations. For example, the median Q50 discharge for August had an interquartile range of 0.30 to 0.87 ft3/s/mi2 for the high-flow group and 0.16 to 0.47 ft3/s/mi2 for the low-flow group. Streamflow requirements for habitat protection were determined for 23 index stations by use of three methods based on hydrologic records, the Range of Variability Approach, the Tennant method, and the New England Aquatic-Base-Flow method. Normalized flow management targets determined by the Range of Variability Approach for July, August, and September ranged between 0.21 and 0.84 ft3/s/mi2 for the low monthly flow duration group, and 0.37 and 1.27 ft3/s/mi2 for the high monthly flow duration group. Median streamflow requirements for habitat protection during summer for the 23 index streamflow-gaging stations determined by the Tennant method, normalized by drainage area, were 0.81, 0.61, and 0.21 ft3/s/mi2 for the Tennant 40-, 30-, and 10-percent of the mean annual flow methods, representing good, fair, and poor stream habitat conditions in summer, according to Tennant. New England Aquatic-Base-Flow streamflow requirements for habitat protection during summer were determined from median of monthly mean flows for August for index streamflow-gaging stations having drainage areas greater than 50 mi2 . For five index streamflow-gaging stations in the low median monthly flow group, the average median monthly mean streamflow for August, normalized by drainage area, was 0.48 ft3/s/mi2. Streamflow requirements for habitat protection were determined for riffle habitats near 10 index stations by use of two methods based on hydraulic ratings, the Wetted-Perimeter and R2Cross methods. Hydraulic parameters required by these methods were simulated by calibrated HEC-RAS models. Wetted-Perimeter streamflow requirements for habitat protection, normalized by drainage area, ranged between 0.13 and 0.58 ft3/s/mi2, and had a median value of 0.37 ft3/s/mi2. Streamflow requirements determined by the R2Cross 3-of-3 criteria method ranged between 0.39 and 2.1 ft3/s/mi2 , and had a median of 0.84 ft3/s/mi2. Streamflow requirements determined by the R2Cross 2-of-3 criteria method, normalized by drainage area, ranged between 0.16 and 0.85 ft3/s/mi2 and had a median of 0.36 ft3/s/mi2 , respectively. Streamflow requirements determined by the different methods were evaluated by comparison to streamflow statistics from the index streamflow-gaging stations.
Long-term hydrological simulation based on the Soil Conservation Service curve number
NASA Astrophysics Data System (ADS)
Mishra, Surendra Kumar; Singh, Vijay P.
2004-05-01
Presenting a critical review of daily flow simulation models based on the Soil Conservation Service curve number (SCS-CN), this paper introduces a more versatile model based on the modified SCS-CN method, which specializes into seven cases. The proposed model was applied to the Hemavati watershed (area = 600 km2) in India and was found to yield satisfactory results in both calibration and validation. The model conserved monthly and annual runoff volumes satisfactorily. A sensitivity analysis of the model parameters was performed, including the effect of variation in storm duration. Finally, to investigate the model components, all seven variants of the modified version were tested for their suitability.
Modeled future peak streamflows in four coastal Maine rivers
Hodgkins, Glenn A.; Dudley, Robert W.
2013-01-01
To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). These peak flows are also needed for effective floodplain management. Annual precipitation and air temperature in the northeastern United States are in general projected to increase during the 21st century (Hayhoe and other, 2007). It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This Fact Sheet, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Scientific Investigations Report (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/sir/2013/5080/.
Streamflow trends in the United States
Lins, H.F.; Slack, J.R.
1999-01-01
Secular trends in streamflow are evaluated for 395 climate-sensitive streamgaging stations in the conterminous United States using the non-parametric Mann-Kendall test. Trends are calculated for selected quantiles of discharge, from the 0th to the 100th percentile, to evaluate differences between low-, medium-, and high-flow regimes during the twentieth century. Two general patterns emerge; trends are most prevalent in the annual minimum (Q0) to median (Q50) flow categories and least prevalent in the annual maximum (Q100) category; and, at all but the highest quantiles, streamflow has increased across broad sections of the United States. Decreases appear only in parts of the Pacific Northwest and the Southeast. Systematic patterns are less apparent in the Q100 flow. Hydrologically, these results indicate that the conterminous U.S. is getting wetter, but less extreme.
Kiernan, Joseph D; Moyle, Peter B
2012-06-01
The fishes of Martis Creek, in the Sierra Nevada of California (USA), were sampled at four sites annually over 30 years, 1979-2008. This long-term data set was used to examine (1) the persistence and stability of the Martis Creek fish assemblage in the face of environmental stochasticity; (2) whether native and alien fishes responded differently to a natural hydrologic regime (e.g., timing and magnitude of high and low flows); and (3) the importance of various hydrologic and physical habitat variables in explaining the abundances of native and alien fish species through time. Our results showed that fish assemblages were persistent at all sample sites, but individual species exhibited marked interannual variability in density, biomass, and relative abundance. The density and biomass of native fishes generally declined over the period of study, whereas most alien species showed no significant long-term trends. Only alien rainbow trout increased in both density and biomass at all sites over time. Redundancy analysis identified three hydrologic variables (annual 7-day minimum discharge, maximum winter discharge, and number of distinct winter floods) and two habitat variables (percentage of pool habitat and percentage of gravel substrate) that each explained a significant portion of the annual variation in fish assemblage structure. For alien taxa, their proportional contribution to the total fish assemblage was inversely related to mean annual streamflow, one-day maximum discharge in both winter and spring, and the frequency of springtime floods. Results of this study highlight the need for continuous annual monitoring of streams with highly variable flow regimes to evaluate shifts in fish community structure. Apparent successes or failures in stream management may appear differently depending on the time series of available data.
Optimization of wind plant layouts using an adjoint approach
King, Ryan N.; Dykes, Katherine; Graf, Peter; ...
2017-03-10
Using adjoint optimization and three-dimensional steady-state Reynolds-averaged Navier–Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utility-scale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independent of the number of control variables, thereby permitting optimization of large wind plants with many turbine locations. Moreover, compared to the common approach of superimposing prescribed wake deficits onto linearized flow models, the computational efficiency of the adjoint approach allows the use of higher-fidelity RANS flow models which can capture nonlinear turbulent flowmore » physics within a wind plant. The steady-state RANS flow model is implemented in the Python finite-element package FEniCS and the derivation and solution of the discrete adjoint equations are automated within the dolfin-adjoint framework. Gradient-based optimization of wind turbine locations is demonstrated for idealized test cases that reveal new optimization heuristics such as rotational symmetry, local speedups, and nonlinear wake curvature effects. Layout optimization is also demonstrated on more complex wind rose shapes, including a full annual energy production (AEP) layout optimization over 36 inflow directions and 5 wind speed bins.« less
Optimization of wind plant layouts using an adjoint approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Ryan N.; Dykes, Katherine; Graf, Peter
Using adjoint optimization and three-dimensional steady-state Reynolds-averaged Navier–Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utility-scale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independent of the number of control variables, thereby permitting optimization of large wind plants with many turbine locations. Moreover, compared to the common approach of superimposing prescribed wake deficits onto linearized flow models, the computational efficiency of the adjoint approach allows the use of higher-fidelity RANS flow models which can capture nonlinear turbulent flowmore » physics within a wind plant. The steady-state RANS flow model is implemented in the Python finite-element package FEniCS and the derivation and solution of the discrete adjoint equations are automated within the dolfin-adjoint framework. Gradient-based optimization of wind turbine locations is demonstrated for idealized test cases that reveal new optimization heuristics such as rotational symmetry, local speedups, and nonlinear wake curvature effects. Layout optimization is also demonstrated on more complex wind rose shapes, including a full annual energy production (AEP) layout optimization over 36 inflow directions and 5 wind speed bins.« less
Telis, Pamela A.
1992-01-01
Mississippi State water laws require that the 7-day, 10-year low-flow characteristic (7Q10) of streams be used as a criterion for issuing wastedischarge permits to dischargers to streams and for limiting withdrawals of water from streams. This report presents techniques for estimating the 7Q10 for ungaged sites on streams in Mississippi based on the availability of baseflow discharge measurements at the site, location of nearby gaged sites on the same stream, and drainage area of the ungaged site. These techniques may be used to estimate the 7Q10 at sites on natural, unregulated or partially regulated, and non-tidal streams. Low-flow characteristics for streams in the Mississippi River alluvial plain were not estimated because the annual lowflow data exhibit decreasing trends with time. Also presented are estimates of the 7Q10 for 493 gaged sites on Mississippi streams.Techniques for estimating the 7Q10 have been developed for ungaged sites with base-flow discharge measurements, for ungaged sites on gaged streams, and for ungaged sites on ungaged streams. For an ungaged site with one or more base-flow discharge measurements, base-flow discharge data at the ungaged site are related to concurrent discharge data at a nearby gaged site. For ungaged sites on gaged streams, several methods of transferring the 7Q10 from a gaged site to an ungaged site were developed; the resulting 7Q10 values are based on drainage area prorations for the sites. For ungaged sites on ungaged streams, the 7Q10 is estimated from a map developed for. this study that shows the unit 7Q10 (7Q10 per square mile of drainage area) for ungaged basins in the State. The mapped values were estimated from the unit 7Q10 determined for nearby gaged basins, adjusted on the basis of the geology and topography of the ungaged basins.
NASA Astrophysics Data System (ADS)
Kiefer, Walter S.
2012-01-01
Reliable measurements of the Moon's global heat flow would serve as an important diagnostic test for models of lunar thermal evolution and would also help to constrain the Moon's bulk abundance of radioactive elements and its differentiation history. The two existing measurements of lunar heat flow are unlikely to be representative of the global heat flow. For these reasons, obtaining additional heat flow measurements has been recognized as a high priority lunar science objective. In making such measurements, it is essential that the design and deployment of the heat flow probe and of the parent spacecraft do not inadvertently modify the near-surface thermal structure of the lunar regolith and thus perturb the measured heat flow. One type of spacecraft-related perturbation is the shadow cast by the spacecraft and by thermal blankets on some instruments. The thermal effects of these shadows propagate by conduction both downward and outward from the spacecraft into the lunar regolith. Shadows cast by the spacecraft superstructure move over the surface with time and only perturb the regolith temperature in the upper 0.8 m. Permanent shadows, such as from thermal blankets covering a seismometer or other instruments, can modify the temperature to greater depth. Finite element simulations using measured values of the thermal diffusivity of lunar regolith show that the limiting factor for temperature perturbations is the need to measure the annual thermal wave for 2 or more years to measure the thermal diffusivity. The error induced by permanent spacecraft thermal shadows can be kept below 8% of the annual wave amplitude at 1 m depth if the heat flow probe is deployed at least 2.5 m away from any permanent spacecraft shadow. Deploying the heat flow probe 2 m from permanent shadows permits measuring the annual thermal wave for only one year and should be considered the science floor for a heat flow experiment on the Moon. One way to meet this separation requirement would be to deploy the heat flow and seismology experiments on opposite sides of the spacecraft. This result should be incorporated in the design of future lunar geophysics spacecraft experiments. Differences in the thermal environments of the Moon and Mars result in less restrictive separation requirements for heat flow experiments on Mars.
The twenty-first century Colorado River hot drought and implications for the future
NASA Astrophysics Data System (ADS)
Udall, Bradley; Overpeck, Jonathan
2017-03-01
Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this loss is due to unprecedented temperatures (0.9°C above the 1906-1999 average), confirming model-based analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming will continue with additional emissions of greenhouse gases to the atmosphere, there has been no observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in the coming century, indicating that any increase in mean precipitation will likely be offset during periods of prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature combined with a large number of recent climate model-based temperature projections indicate that continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively -20% by midcentury and -35% by end-century, with support for losses exceeding -30% at midcentury and -55% at end-century. Precipitation increases may moderate these declines somewhat, but to date no such increases are evident and there is no model agreement on future precipitation changes. These results, combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate change impacts on the Colorado River flows will be much more serious than currently assumed, especially if substantial reductions in greenhouse gas emissions do not occur.
A stable isotope-based approach to tropical dendroclimatology
NASA Astrophysics Data System (ADS)
Evans, Michael N.; Schrag, Daniel P.
2004-08-01
We describe a strategy for development of chronological control in tropical trees lacking demonstrably annual ring formation, using high resolution δ 18O measurements in tropical wood. The approach applies existing models of the oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brenna et al., 1998) to develop proxy chronological, rainfall and growth rate estimates from tropical trees lacking visible annual ring structure. Consistent with model predictions, pilot datasets from the temperate US and Costa Rica having independent chronological control suggest that observed cyclic isotopic signatures of several permil (SMOW) represent the annual cycle of local rainfall and relative humidity. Additional data from a plantation tree of known age from ENSO-sensitive northwestern coastal Peru suggests that the 1997-8 ENSO warm phase event was recorded as an 8‰ anomaly in the δ 18O of α-cellulose. The results demonstrate reproducibility of the stable isotopic chronometer over decades, two different climatic zones, and three tropical tree genera, and point to future applications in paleoclimatology.
Parrett, Charles; Omang, R.J.; Hull, J.A.
1983-01-01
Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1990-01-01
This report contains the 1989 annual progress reports of the Research Fellows of the Center for Turbulence Research. It is intended as a year end report to NASA, Ames Research Center which supports this group through core funding and by making available physical and intellectual resources. The Center for Turbulence Research is devoted to the fundamental study of turbulent flows; its objectives are to simulate advances in the physical understanding of turbulence, in turbulence modeling and simulation, and in turbulence control. The reports appearing in the following pages are grouped in the general areas of modeling, experimental research, theory, simulation and numerical methods, and compressible and reacting flows.
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.
2018-03-01
Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.
Wang, Chongyang; Li, Weijiao; Chen, Shuisen; Li, Dan; Wang, Danni; Liu, Jia
2018-03-15
The movement and migration of total suspended solid (TSS) are the essential component of global material cycling and change. Based on the TSS concentrations retrieved from 112 scenes of Landsat remote sensing imageries during 1987-2015, the spatial and temporal variations of TSS concentration in high flow season and low flow seasons of six sub-regions (west shoal, west channel, middle shoal, east channel, east shoal and Pearl River Estuary Chinese White Dolphin National Nature Reserve and its adjacent waters (NNR)) of Pearl River Estuary (PRE) were analyzed and compared by statistical simulation. It was found that TSS concentrations in east and west shoals were about 23mg/L and 64mg/L higher than that of the middle shoal, respectively. There was a significant decreasing trend of TSS concentration from the northwest (223.7mg/L) to southeast (51.4mg/L) of study area, with an average reduction of 5.86mg/Lperkm, which mainly attributes to unique interaction of runoff and tide in PRE. In high flow season, there existed a significant and definite annual cycle period (5-8years) of TSS concentration change primarily responding to the periodic variation of precipitation. There were five full-fledged period changes of TSS detected in west shoal and west channel (the years of changes in 1988, 1994, 1998, 2003, 2010, 2015), while there were the last four cycle periods found in middle shoal, east channel, east shoal and NNR only. TSS concentrations in shoals and channels of PRE showed a significant decreased trend mainly due to the dam construction at the same time, with an average annual TSS concentration decrease of 5.7-10.1mg/L in high flow season from 1988 to 2015. There was no significant change trend of TSS concentration in NNR before 2003, but the TSS concentration decreased significantly after the establishment of the NNR since June 2003, with an average annual decrease of 9.7mg/L from 2004 to 2015. It was deduced that man-made protection measures had a great influence on the variation trend and intensity of TSS concentration in PRE, but had little effect on the cycle of TSS changes, indicating that the cyclical change is a very strong natural law. In low flow season, there was no significant change trend of TSS concentrations in PRE except that TSS concentrations in west channel and middle shoal showed a weak increasing trend (2.1mg/L and 2.9mg/L, respectively), which is probably because of controlled discharge for avoiding the intrusion of saltwater in PRE. Evidently, the change trend and cycle periods of TSS concentration in high- and low-flow seasons in six sub-regions of PRE had significant difference. The decreasing trend and cycle periods of TSS concentration mainly occurred in high flow season. The change trend and cycle periods of TSS concentration in low flow season was relatively small in PRE. The study shows that long series mapping of Landsat remote sensing images is an effective way to help understanding the spatial and temporal variation of TSS concentrations of estuaries and coasts, and to increase awareness of environmental change and human activity effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.
2013-01-01
Cheney Reservoir, located in south-central Kansas, is the primary water supply for the city of Wichita. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River, the main source of inflow to Cheney Reservoir. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on data collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for four new constituents, including additional nutrient species and indicator bacteria. In addition, a conversion factor of 0.68 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI model 6136 sensor at the North Ninnescah River upstream from Cheney Reservoir site. Newly developed models and 14 years of hourly continuously measured data were used to calculate selected constituent concentrations and loads during January 1999 through December 2012. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest to Cheney Reservoir, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that would not be possible otherwise. In general, model forms and the amount of variance explained by the models was similar between the original and updated models. The amount of variance explained by the updated models changed by 10 percent or less relative to the original models. Total nitrogen, nitrate, organic nitrogen, E. coli bacteria, and total organic carbon models were newly developed for this report. Additional data collection over a wider range of hydrological conditions facilitated the development of these models. The nitrate model is particularly important because it allows for comparison to Cheney Reservoir Task Force goals. Mean hourly computed total suspended solids concentration during 1999 through 2012 was 54 milligrams per liter (mg/L). The total suspended solids load during 1999 through 2012 was 174,031 tons. On an average annual basis, the Cheney Reservoir Task Force runoff (550 mg/L) and long-term (100 mg/L) total suspended solids goals were never exceeded, but the base flow goal was exceeded every year during 1999 through 2012. Mean hourly computed nitrate concentration was 1.08 mg/L during 1999 through 2012. The total nitrate load during 1999 through 2012 was 1,361 tons. On an annual average basis, the Cheney Reservoir Task Force runoff (6.60 mg/L) nitrate goal was never exceeded, the long-term goal (1.20 mg/L) was exceeded only in 2012, and the base flow goal of 0.25 mg/L was exceeded every year. Mean nitrate concentrations that were higher during base flow, rather than during runoff conditions, suggest that groundwater sources are the main contributors of nitrate to the North Fork Ninnescah River above Cheney Reservoir. Mean hourly computed phosphorus concentration was 0.14 mg/L during 1999 through 2012. The total phosphorus load during 1999 through 2012 was 328 tons. On an average annual basis, the Cheney Reservoir Task Force runoff goal of 0.40 mg/L for total phosphorus was exceeded in 2002, the year with the largest yearly mean turbidity, and the long-term goal (0.10 mg/L) was exceeded in every year except 2011 and 2012, the years with the smallest mean streamflows. The total phosphorus base flow goal of 0.05 mg/L was exceeded every year. Given that base flow goals for total suspended solids, nitrate, and total phosphorus were exceeded every year despite hydrologic conditions, the established base flow goals are either unattainable or substantially more best management practices will need to be implemented to attain them. On an annual average basis, no discernible patterns were evident in total suspended sediment, nitrate, and total phosphorus concentrations or loads over time, in large part because of hydrologic variability. However, more rigorous statistical analyses are required to evaluate temporal trends. A more rigorous analysis of temporal trends will allow evaluation of watershed investments in best management practices.
Feaster, Toby D.; Guimaraes, Wladmir B.
2014-01-01
Part of the mission of both the South Carolina Department of Health and Environmental Control and the South Carolina Department of Natural Resources is to protect and preserve South Carolina’s water resources. Doing so requires an ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina. A particular need is information concerning the low-flow characteristics of streams, which is especially important for effectively managing the State’s water resources during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades. In 2008, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. This report presents the low-flow statistics for 11 selected streamgaging stations in the Catawba-Wateree and Santee River Basins in South Carolina and 2 in North Carolina. For five of the streamgaging stations, low-flow statistics include daily mean flow durations or the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance and the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamgaging station. For the other eight streamgaging stations, only daily mean flow durations and (or) exceedance percentiles of annual minimum 7-day average flows are provided due to regulation. In either case, the low-flow statistics were computed from records available through March 31, 2012. Of the five streamgaging stations for which recurrence interval computations were made, three streamgaging stations in South Carolina were compared to low-flow statistics that were published in previous U.S. Geological Survey reports. A comparison of the low-flow statistics for the annual minimum 7-day average streamflow with a 10-year recurrence interval (7Q10) from this study with the most recently published values indicated that two of the streamgaging stations had values lower than the previous values and the 7Q10 for the third station remained unchanged at zero. Low-flow statistics are influenced by length of record, hydrologic regime under which the data were collected, analytical techniques used, and other factors, such as urbanization, diversions, and droughts that may have occurred in the basin.
Singer, Michael B.; Dunne, Thomas
2006-01-01
A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.
Environmental flows in the context of unconventional natural gas development in the Marcellus Shale
Buchanan, Brian P.; Auerbach, Daniel A.; McManamay, Ryan A.; ...
2017-01-04
Quantitative flow-ecology relationships are needed to evaluate how water withdrawals for unconventional natural gas development may impact aquatic ecosystems. Addressing this need, we studied current patterns of hydrologic alteration in the Marcellus Shale region and related the estimated flow alteration to fish community measures. We then used these empirical flow-ecology relationships to evaluate alternative surface water withdrawals and environmental flow rules. Reduced high-flow magnitude, dampened rates of change, and increased low-flow magnitudes were apparent regionally, but changes in many of the flow metrics likely to be sensitive to withdrawals also showed substantial regional variation. Fish community measures were significantly relatedmore » to flow alteration, including declines in species richness with diminished annual runoff, winter low-flow, and summer median-flow. In addition, the relative abundance of intolerant taxa decreased with reduced winter high-flow and increased flow constancy, while fluvial specialist species decreased with reduced winter and annual flows. Stream size strongly mediated both the impact of withdrawal scenarios and the protection afforded by environmental flow standards. Under the most intense withdrawal scenario, 75% of reference headwaters and creeks (drainage areas <99 km 2) experienced at least 78% reduction in summer flow, whereas little change was predicted for larger rivers. Moreover, the least intense withdrawal scenario still reduced summer flows by at least 21% for 50% of headwaters and creeks. The observed 90th quantile flow-ecology relationships indicate that such alteration could reduce species richness by 23% or more. Seasonally varying environmental flow standards and high fixed minimum flows protected the most streams from hydrologic alteration, but common minimum flow standards left numerous locations vulnerable to substantial flow alteration. This study clarifies how additional water demands in the region may adversely affect freshwater biological integrity. Furthermore, the results make clear that policies to limit or prevent water withdrawals from smaller streams can reduce the risk of ecosystem impairment.« less
Environmental flows in the context of unconventional natural gas development in the Marcellus Shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Brian P.; Auerbach, Daniel A.; McManamay, Ryan A.
Quantitative flow-ecology relationships are needed to evaluate how water withdrawals for unconventional natural gas development may impact aquatic ecosystems. Addressing this need, we studied current patterns of hydrologic alteration in the Marcellus Shale region and related the estimated flow alteration to fish community measures. We then used these empirical flow-ecology relationships to evaluate alternative surface water withdrawals and environmental flow rules. Reduced high-flow magnitude, dampened rates of change, and increased low-flow magnitudes were apparent regionally, but changes in many of the flow metrics likely to be sensitive to withdrawals also showed substantial regional variation. Fish community measures were significantly relatedmore » to flow alteration, including declines in species richness with diminished annual runoff, winter low-flow, and summer median-flow. In addition, the relative abundance of intolerant taxa decreased with reduced winter high-flow and increased flow constancy, while fluvial specialist species decreased with reduced winter and annual flows. Stream size strongly mediated both the impact of withdrawal scenarios and the protection afforded by environmental flow standards. Under the most intense withdrawal scenario, 75% of reference headwaters and creeks (drainage areas <99 km 2) experienced at least 78% reduction in summer flow, whereas little change was predicted for larger rivers. Moreover, the least intense withdrawal scenario still reduced summer flows by at least 21% for 50% of headwaters and creeks. The observed 90th quantile flow-ecology relationships indicate that such alteration could reduce species richness by 23% or more. Seasonally varying environmental flow standards and high fixed minimum flows protected the most streams from hydrologic alteration, but common minimum flow standards left numerous locations vulnerable to substantial flow alteration. This study clarifies how additional water demands in the region may adversely affect freshwater biological integrity. Furthermore, the results make clear that policies to limit or prevent water withdrawals from smaller streams can reduce the risk of ecosystem impairment.« less
Overland flow dynamics through visual observation using time-lapse photographs
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Blöschl, Günter
2016-04-01
Overland flow process on agricultural land is important to be investigated as it affects the stream discharge and water quality assessment. During rainfall events the formation of overland flow may happen through different processes (i.e. Hortonian or saturation excess overland flow) based on the governing soil hydraulic parameters (i.e. soil infiltration rate, soil water capacity). The dynamics of the soil water state and the processes will affect the surface runoff response which can be analyzed visually by observing the saturation patterns with a camera. Although visual observation was proven useful in laboratory experiments, the technique is not yet assessed for natural rainfall events. The aim of this work is to explore the use of time-lapse photographs of naturally occurring-saturation patterns in understanding the threshold processes of overland flow generation. The image processing produces orthographic projection of the saturation patterns which will be used to assess the dynamics of overland flow formation in relation with soil moisture state and rainfall magnitude. The camera observation was performed at Hydrological Open Air Laboratory (HOAL) catchment at Petzenkirchen, Lower Austria. The catchment covers an area of 66 ha dominated with agricultural land (87%). The mean annual precipitation and mean annual flow at catchment outlet are 750 mm and 4 l/s, respectively. The camera was set to observe the overland flow along a thalweg on an arable field which was drained in 1950s and has advantages of: (1) representing agricultural land as the dominant part of the catchment, (2) adjacent to the stream with clear visibility (no obstructing objects, such as trees), (3) drained area provides extra cases in understanding the response of tile drain outflow to overland flow formation and vice versa, and (4) in the vicinity of TDT soil moisture stations. The camera takes a picture with 1280 x 720 pixels resolution every minute and sends it directly in a PC via fiber-optic network. Exterior orientation is required to project the observed saturation patterns in the photographs onto orthographic map. This was done by georeferencing the on-field GPS points taken throughout the camera field of view to the orthographic map obtained from an airborne laser scanning (ALS) campaign. Based on the projected saturation patterns, the patterns dynamics were analyzed in relation to soil moisture state and rainfall magnitude for events in autumn and winter 2014. From the observed events during saturated soil condition, tile drain flow reacted within one hour after the rain started, while no sign of saturation pattern evolving into overland flow was observed. Within two hours after the rain started, overland flow was fully formed along the thalweg which flowed to the erosion gully and created signal at the discharge station almost immediately. From the surface roughness aspect, field management is an important factor of overland flow development as surface runoff was formed faster along the tractor tracks. In overall, time-lapse photographs have potentials to qualitatively assess the saturation patterns dynamics during rainfall events with high time resolution and wide area coverage.
Annual Progress Report FY-92. Volume 1
1993-01-21
Billups, L Flow Cytom Resh Psychologist 12 0180 CS Hamm, C DCI 7 DESCRIPTION GRADE MOS BRANCH NAME ACTIVITY Kyle Metabolic Unit Nursing Service Supv...3349 Salata, Kalman PhD. Mitogen-Inducible T Suppressor Cell 13 Assay by Flow Cytometry (12/89) 3350 Salata, Kalman PhD. Flow Cytometric Analysis of...17 Immunotherapy (3/90) 3354 Salata, Kalman PhD. Two Way Mixed Lymphocyte Culture: 18 Analysis by Two Color Flow Cytometry (4/90) 3355 Salata, Kalman
Bi-Annual Report 2010-2011: Shaping pulse flows to meet environmental and energy objectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jager, Yetta
2010-10-01
This report describes a bioenergetic model developed to allocate seasonal pulse flows to benefit salmon growth. The model links flow with floodplain inundation and production of invertebrate prey eaten by juvenile Chinook salmon. A unique quantile modeling approach is used to describe temporal variation among juvenile salmon spawned at different times. Preliminary model outputs are presented and future plans to optimize flows both to maximize salmon growth and hydropower production are outlined.
Trend analysis of hydro-climatic variables in the north of Iran
NASA Astrophysics Data System (ADS)
Nikzad Tehrani, E.; Sahour, H.; Booij, M. J.
2018-04-01
Trend analysis of climate variables such as streamflow, precipitation, and temperature provides useful information for understanding the hydrological changes associated with climate change. In this study, a nonparametric Mann-Kendall test was employed to evaluate annual, seasonal, and monthly trends of precipitation and streamflow for the Neka basin in the north of Iran over a 44-year period (1972 to 2015). In addition, the Inverse Distance Weight (IDW) method was used for annual seasonal, monthly, and daily precipitation trends in order to investigate the spatial correlation between precipitation and streamflow trends in the study area. Results showed a downward trend in annual and winter precipitation (Z < -1.96) and an upward trend in annual maximum daily precipitation. Annual and monthly mean flows for most of the months in the Neka basin decreased by 14% significantly, but the annual maximum daily flow increased by 118%. Results for the trend analysis of streamflow and climatic variables showed that there are statistically significant relationships between precipitation and streamflow (p value < 0.05). Correlation coefficients for Kendall, Spearman's rank and linear regression are 0.43, 0.61, and 0.67, respectively. The spatial presentation of the detected precipitation and streamflow trends showed a downward trend for the mean annual precipitation observed in the upstream part of the study area which is consistent with the streamflow trend. Also, there is a good correlation between monthly and seasonal precipitation and streamflow for all sub-basins (Sefidchah, Gelvard, Abelu). In general, from a hydro-climatic point of view, the results showed that the study area is moving towards a situation with more severe drought events.
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
Elizabeth T. Keppeler; Robert R. Ziemer
1990-01-01
Streamflow data for a 21-year period were analyzed to determine the effects of selective tractor harvesting of second-growth Douglas fir and redwood forest on the volume, timing, and duration of low flows and annual water yield in northwestern California. The flow response to logging was highly variable. Some of this variability was correlated with antecedent...
Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000
Doran, P.T.; McKay, C.P.; Clow, G.D.; Dana, G.L.; Fountain, A.G.; Nylen, T.; Lyons, W.B.
2002-01-01
Climate observations from the McMurdo dry valleys, East Antarctica are presented from a network of seven valley floor automatic meteorological stations during the period 1986 to 2000. Mean annual temperatures ranged from -14.8??C to -30.0??C, depending on the site and period of measurement. Mean annual relative humidity is generally highest near the coast. Mean annual wind speed increases with proximity to the polar plateau. Site-to-site variation in mean annual solar flux and PAR is due to exposure of each station and changes over time are likely related to changes in cloudiness. During the nonsummer months, strong katabatic winds are frequent at some sites and infrequent at others, creating large variation in mean annual temperature owing to the warming effect of the winds. Katabatic wind exposure appears to be controlled to a large degree by the presence of colder air in the region that collects at low points and keeps the warm less dense katabatic flow from the ground. The strong influence of katabatic winds makes prediction of relative mean annual temperature based on geographical position (elevation and distance from the coast) alone, not possible. During the summer months, onshore winds dominate and warm as they progress through the valleys creating a strong linear relationship (r2 = 0.992) of increasing potential temperature with distance from the coast (0.09??C km-1). In contrast to mean annual temperature, summer temperature lends itself quite well to model predictions, and is used to construct a statistical model for predicting summer dry valley temperatures at unmonitored sites. Copyright 2002 by the American Geophysical Union.
Ivahnenko, Tamara I.
2017-12-07
Changes in municipal and industrial point-source discharges over time have been an important factor affecting nutrient trends in many of the Nation’s streams and rivers. This report documents how three U.S. Environmental Protection Agency (EPA) national datasets—the Permit Compliance System, the Integrated Compliance Information System, and the Clean Watersheds Needs Survey—were evaluated for use in the U.S. Geological Survey National Water-Quality Assessment project to assess the causes of nutrient trends. This report also describes how a database of total nitrogen load and total phosphorous load was generated for select wastewater treatment facilities in the United States based on information reported in the EPA Clean Watersheds Needs Survey. Nutrient loads were calculated for the years 1978, 1980, 1982, 1984, 1986, 1988, 1990, 1992, 1996, 2000, 2004, 2008, and 2012 based on average nitrogen and phosphorous concentrations for reported treatment levels and on annual reported flow values.The EPA Permit Compliance System (PCS) and Integrated Compliance Information System (ICIS), which monitor point-source facility discharges, together are the Nation’s most spatially comprehensive dataset for nutrients released to surface waters. However, datasets for many individual facilities are incomplete, the PCS/ICIS historical data date back only to 1989, and historical data are available for only a limited number of facilities. Additionally, inconsistencies in facility reporting make it difficult to track or identify changes in nutrient discharges over time. Previous efforts made by the U.S. Geological Survey to “fill in” gaps in the PCS/ICIS data were based on statistical methods—missing data were filled in through the use of a statistical model based on the Standard Industrial Classification code, size, and flow class of the facility and on seasonal nutrient discharges of similar facilities. This approach was used to estimate point-source loads for a single point in time; it was not evaluated for use in generating a consistent data series over time.Another national EPA dataset that is available is the Clean Watersheds Needs Survey (CWNS), conducted every 4 years beginning 1973. The CWNS is an assessment of the capital needs of wastewater facilities to meet the water-quality goals set in the Clean Water Act. Data collected about these facilities include location and contact information for the facilities; population served; flow and treatment level of the facility; estimated capital needs to upgrade, repair, or improve facilities for water quality; and nonpoint-source best management practices.Total nitrogen and total phosphorous load calculations for each of the CWNS years were based on treatment level information and average annual outflow (in million gallons per day) from each of the facilities that had reported it. Treatment levels categories (such as Primary, Secondary, or Advanced) were substituted with average total nitrogen and total phosphorous concentrations for each treatment level based on those reported in literature. The CWNS dataset, like the PCS/ICIS dataset, has years where facilities did not report either a treatment level or an annual average outflow, or both. To fill in the data gaps, simple linear assumptions were made based on each facility’s responses to the survey in years bracketing the data gap or immediately before or after the data gap if open ended. Treatment level and flow data unique to each facility were used to complete the CWNS dataset for that facility.
Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent
Maupin, M.A.; Ivahnenko, T.
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Model of Wave Driven Flow Oscillation for Solar Cycle
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Wolff, Charles L.; Einaudi, Franco (Technical Monitor)
2001-01-01
At low latitudes in the Earth's atmosphere, the observed zonal flow velocities are dominated by the semi-annual and quasi-biennial oscillations with periods of 6 months and 20 to 32 months respectively. These terrestrial oscillations, the SAO and QBO respectively, are driven by wave-mean flow interactions due to upward propagating planetary-scale waves (periods of days) and small-scale gravity waves (periods of hours). We are proposing (see also Mayr et al., GRL, 2001) that such a mechanism may drive long period oscillations (reversing flows) in stellar and planetary interiors, and we apply it to the Sun. The reversing flows would occur below the convective envelope where waves can propagate. We apply a simplified, one dimensional, analytical flow model that incorporates a gravity wave parameterization due to Hines (1997). Based on this analysis, our estimates show that relatively small wave amplitudes less than 10 m/s can produce zonal flow amplitudes of 20 m/s, which should be sufficient to generate the observed variations in the magnetic field. To produce the 22-year period of oscillation, a low buoyancy frequency must be chosen, and this places the proposed flow in a region that is close to (and below) the base of the convective envelope. Enhanced turbulence associated with this low stability should help to generate the dynamo currents. With larger stability at deeper levels in the solar interior, the model can readily produce also oscillations with much longer periods. To provide an understanding of the fluid dynamics involved, we present numerical results from a 2D model for the terrestrial atmosphere that exemplify the non-linear nature of the wave interaction for which a mechanical analog is the escapement mechanism of the clock.
Ahearn, Elizabeth A.
2004-01-01
Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.
Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-05-28
Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assessment of statewide annual streamflow in New Mexico, 1985-2013
Affinati, Joseph Anthony; Myers, Nathan C.
2015-01-01
The San Francisco River annual flows were relatively high compared to other years in the study in 1985, 1991–93, 1995, and 2005 but were near or below average for the rest of the years of the study. Both reaches on the San Francisco River were gaining reaches for all 29 years of the study.
USDA-ARS?s Scientific Manuscript database
A 4-unit, dual-flow continuous culture fermentor system was used to assess nutrient digestibility, volatile fatty acids (VFA) production, bacterial protein synthesis and CH4 output of warm-season summer annual grasses. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design us...
Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow
NASA Astrophysics Data System (ADS)
Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.
2017-12-01
Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.
A method for characterizing late-season low-flow regime in the upper Grand Ronde River Basin, Oregon
Kelly, Valerie J.; White, Seth
2016-04-19
This report describes a method for estimating ecologically relevant low-flow metrics that quantify late‑season streamflow regime for ungaged sites in the upper Grande Ronde River Basin, Oregon. The analysis presented here focuses on sites sampled by the Columbia River Inter‑Tribal Fish Commission as part of their efforts to monitor habitat restoration to benefit spring Chinook salmon recovery in the basin. Streamflow data were provided by the U.S. Geological Survey and the Oregon Water Resources Department. Specific guidance was provided for selection of streamgages, development of probabilistic frequency distributions for annual 7-day low-flow events, and regionalization of the frequency curves based on multivariate analysis of watershed characteristics. Evaluation of the uncertainty associated with the various components of this protocol indicates that the results are reliable for the intended purpose of hydrologic classification to support ecological analysis of factors contributing to juvenile salmon success. They should not be considered suitable for more standard water-resource evaluations that require greater precision, especially those focused on management and forecasting of extreme low-flow conditions.
Valuing instream flows using the hedonic price method
NASA Astrophysics Data System (ADS)
Netusil, Noelwah R.; Summers, Matthew T.
2009-11-01
The Oregon Water Trust (OWT) uses a market-based approach to protect and enhance instream flows in Oregon. We use the hedonic price method to estimate the effect of numerous variables on the annualized price OWT pays for water rights: the amount of water protected by the transaction, transaction type (state approved or contractual agreement), presence of anadromous and/or resident fish, and if a fish is listed under the Endangered Species Act (ESA). We find evidence of a premium for state-approved transactions and for transactions that protect water in streams with listed species. Adjusting the amount of water protected by each transaction to include only rights that will be delivered with a high degree of certainty produces coefficient estimates that are similar, but more accurate, than using unadjusted water rights amounts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Benjamin; Bunn, Andrew G.; Thomson, Allison M.
High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these ecosystems is soil respiration (RS, the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to atmosphere), and any change in the high-latitude carbon cycle might thus be reflected in RS observed in the field. This study used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy greenness (NDVI), climate, and other variables are coupled tomore » annual RS based on 105 observations from 64 circumpolar sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models explaining ~62% of observed RS variability« less
Vogel, Karen L.; Reif, Andrew G.
1993-01-01
The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per year were simulated by the model. Different combinations of ground-water supply and wastewater-disposal plans were simulated to assess their effects on the stream-aquifer system. Six of the simulations represent an increase in population of 14,283 and water use of 1.07 million gallons per day. One simulation represents an increase in population of 28,566 and water use of 2.14 million gallons per day. Reduction of average base flow is greatest for development plans with wastewater removed from the basin through sewers and is proportional to the amount of water removed from the basin. The development plan that had the least effect on water levels and base flow included on-lot wells and on-lot septic systems. Five organochlorine insecticides--lindane, DDT, dieldrin, heptachlor, and methoxychlor--were detected in ground water. Four organophosphorus insecticides--malathion, parathion, diazinon, and phorate--were detected in ground water. Four volatile organic compounds--benzene, toluene, tetrachloroethylene, and trichloroethylene--were detected in ground water. Phenol was detected at concentrations up to 8 micrograms per liter in water from 50 percent of 14 wells sampled. The concentration of dissolved nitrate in water from 18 percent of wells sampled exceeded 10 milligrams per liter as nitrogen; concentration of nitrate were as high as 19 milligrams per liter. PCB was detected in the bottom material of West Branch Red Clay Creek at Kennet Square at concentrations up to 5,600 micrograms per kilogram.
NASA Technical Reports Server (NTRS)
1989-01-01
The primary objective of the Center for Turbulence Research (CTR) is to stimulate and produce advances in physical understanding of turbulence, in turbulence modeling and simulation, and in turbulence control. Topics addressed include: fundamental modeling of turbulence; turbulence structure and control; transition and turbulence in high-speed compressible flows; and turbulent reacting flows.
Lock and Dam Number 8 Hydropower Study; Mississippi River Near LaCrosse, Wisconsin. Supplement.
1985-01-01
unit used in scheme 3 is a standardized module consisting of an axial flow turbine , a speed increasing gear set, and a generator combined in a short...the flow and generating head ranges associated with specific turbine generator sizes, the program produces annual and monthly flow -duration curves and...open flume turbine passing a rated flow of 14O0 eta at a rated head of 9.75 feat. Cost estimates were made for two and four unit plants having
Annual Progress Report FY-91. Volume 1 and 2.
1992-03-12
Pulmonary Med Tech 11 0644 GS Berger, TA Allergy Microbiologist 12 0403 GS Billups, L Flow Cytom Chemist 12 1320 GS Vacant Pulmonary Kyle Metabolic Unit...Reactions 11 (11/89) 3349 Salata, Kalman PhD. Mitogen-Inducible T Suppressor Cell 12 Assay by Flow Cytometry (12/89) 3350 Salata, Kalman PhD. Flow ...3/90) 3354 Salata, Kalman PhD. Two Way Mixed Lymphocyte Culture: 17 Analysis by Two Color Flow Cytometry (4/90) 3355 Salata, Kalman PhD. Effect of
Hydroclimatology of Dual-Peak Annual Cholera Incidence: Insights from a Spatially Explicit Model
NASA Astrophysics Data System (ADS)
Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.
2012-12-01
Cholera incidence in some regions of the Indian subcontinent may exhibit two annual peaks although the main environmental drivers that have been linked to the disease (e.g. sea surface temperature, zooplankton abundance, river discharge) peak once per year during the summer. An empirical hydroclimatological explanation relating cholera transmission to river flows and to the disease spatial spreading has been recently proposed. We specifically support and substantiate mechanistically such hypothesis by means of a spatially explicit model of cholera transmission. Our framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for spatial and temporal annual fluctuations of precipitation and river flows. To single out the single out the hydroclimatologic controls on the prevalence patterns in a non-specific geographical context, we first apply the model to Optimal Channel Networks as a general model of hydrological networks. Moreover, we impose a uniform distribution of population. The model is forced by seasonal environmental drivers, namely precipitation, temperature and chlorophyll concentration in the coastal environment, a proxy for Vibrio cholerae concentration. Our results show that these drivers may suffice to generate dual-peak cholera prevalence patterns for proper combinations of timescales involved in pathogen transport, hydrologic variability and disease unfolding. The model explains the possible occurrence of spatial patterns of cholera incidence characterized by a spring peak confined to coastal areas and a fall peak involving inland regions. We then proceed applying the model to the specific settings of Bay of Bengal accounting for the actual river networks (derived from digital terrain map manipulations), the proper distribution of population (estimated from downscaling of census data based on remotely sensed features) and precipitation patterns. Overall our modeling framework suggests insights on how environmental drivers concert the generation of complex spatiotemporal infections and proposes an explanation for the different cholera patterns (dual or single annual peaks) exhibited by regions that share similar hydroclimatological forcings.
Shortall, J; Shalloo, L; Foley, C; Sleator, R D; O'Brien, B
2016-09-01
The successful integration of automatic milking (AM) systems and grazing has resulted in AM becoming a feasible alternative to conventional milking (CM) in pasture-based systems. The objective of this study was to identify the profitability of AM in a pasture-based system, relative to CM herringbone parlors with 2 different levels of automation, across 2 farm sizes, over a 10-yr period following initial investment. The scenarios which were evaluated were (1) a medium farm milking 70 cows twice daily, with 1 AM unit, a 12-unit CM medium-specification (MS) parlor and a 12-unit CM high-specification (HS) parlor, and (2) a large farm milking 140 cows twice daily with 2 AM units, a 20-unit CM MS parlor and a 20-unit CM HS parlor. A stochastic whole-farm budgetary simulation model combined capital investment costs and annual labor and maintenance costs for each investment scenario, with each scenario evaluated using multiple financial metrics, such as annual net profit, annual net cash flow, total discounted net profitability, total discounted net cash flow, and return on investment. The capital required for each investment was financed from borrowings at an interest rate of 5% and repaid over 10-yr, whereas milking equipment and building infrastructure were depreciated over 10 and 20 yr, respectively. A supporting labor audit (conducted on both AM and CM farms) showed a 36% reduction in labor demand associated with AM. However, despite this reduction in labor, MS CM technologies consistently achieved greater profitability, irrespective of farm size. The AM system achieved intermediate profitability at medium farm size; it was 0.5% less profitable than HS technology at the large farm size. The difference in profitability was greatest in the years after the initial investment. This study indicated that although milking with AM was less profitable than MS technologies, it was competitive when compared with a CM parlor of similar technology. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Deems, Jeffrey S.; Painter, Thomas H.; Barsugli, Joseph J.; Belnap, Jayne; Udall, Bradley
2013-01-01
The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases with increased climate forcing. These results have implications for water management and suggest that dust abatement efforts could be an important component of any climate adaptation strategies in the UCRB.
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Hydrology of the middle San Pedro area, southeastern Arizona
Cordova, Jeffrey T.; Dickinson, Jesse; Beisner, Kimberly R.; Hopkins, Candice B.; Kennedy, Jeffrey R.; Pool, Donald R.; Glenn, Edward P.; Nagler, Pamela L.; Thomas, Blakemore E.
2015-05-05
In the middle San Pedro Watershed in southeastern Arizona, groundwater is the primary source of water supply for municipal, domestic, industrial, and agricultural use. The watershed comprises two smaller subareas, the Benson subarea and the Narrows-Redington subarea. Early 21st century projections for heavy population growth in the watershed have not yet become a reality, but increased groundwater withdrawals could have undesired consequences - such as decreased base flow to the San Pedro River, and groundwater-level declines - that would lead to the need to deepen existing wells. This report describes the hydrology, hydrochemistry, water quality, and development of a groundwater budget for the middle San Pedro Watershed, focusing primarily on the elements of groundwater movement that could be most useful for the development of a groundwater modelPrecipitation data from Tombstone, Arizona, and base flow at the stream-gaging station on the San Pedro River at Charleston both show relatively dry periods during the 1960s through the mid-1980s and in the mid-1990s to 2009, and wetter periods from the mid-1980s through the mid-1990s. Water levels in four out of five wells near the mountain fronts show cyclical patterns of recharge, with rates of recharge greatest in the early 1980s through the mid-1990s. Three wells near the San Pedro River recorded their lowest levels during the 1950s to the mid-1960s. The water-level record from one well, completed in the confined part of the coarse-grained lower basin fill, showed a decline of approximately 21 meters.Annual flow of the San Pedro River, measured at the Charleston and Redington gages, has decreased since the 1940s. The median annual streamflow and base flow at the gaging station on the river near Tombstone has decreased by 50 percent between the periods 1968–1986 and 1997–2009. Estimates of streamflow infiltration along the San Pedro River during 1914–2009 have decreased 44 percent, with the largest decreases in the months June–October in the Benson subarea. In the Narrows-Redington subarea, streamflow infiltration has decreased about 65 percent during 1914–2009.The average annual outflow (27.6 hm3/year [cubic hectometers per year]) from the Benson subarea aquifer for water years 2001 through 2009 exceeded the inflows (20.0 hm3/ yr) by 7.60 hm3/yr. In the Narrows-Redington subarea for the same period, the average annual outflow (15.7 hm3/yr) from the aquifer system exceeded the inflows (13.8 hm3/yr) by nearly 2 hm3/yr. The largest withdrawals of groundwater in both subareas are for irrigation; these withdrawals peaked in 1973 and have been steadily decreasing since then. Recharge from streamflow infiltration exceeded recharge from the mountain-front and from ephemeral channels in the Benson subarea. In the Narrows-Redington subarea, however, recharge from mountain-front and ephemeral channel recharge exceeded recharge from streamflow infiltration. Evapotranspiration by phreatophytes accounts for the largest outflow of groundwater for both subareas—78 percent of the outflow in the Narrows-Redington subarea and 62 percent of the outflow in the Benson subarea.Precipitation, surface-water, and groundwater chemistry and isotope data indicated the relative age and residence time of groundwater, the amount of interaction between geologic sources and groundwater, and how recharge elevation and season were related to the presence of modern water. The bedrock aquifer receives modern recharge (
The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures
NASA Astrophysics Data System (ADS)
Huesmann, Amihan S.; Hitchman, Matthew H.
2001-06-01
Global quasi-biennial variation in the lower stratosphere and tropopause region is studied using 41 years (1958-1998) of reanalyses from the National Centers for Environmental Prediction (NCEP). Horizontal wind, temperature, geopotential height, tropopause temperature and pressure fields are used. A new quasi-biennial oscillation (QBO) indexing method is presented, which is based on the zonal mean zonal wind shear anomaly at the equator and is compared to the Singapore index. A phase difference composting technique provides ``snapshots'' of the QBO meridional-vertical structure as it descends, and ``composite phases'' provide a look at its time progression. Via binning large amounts of data, the first observation-based estimate of the QBO meridional circulation is obtained. High-latitude QBO variability supports previous studies that invoke planetary wave-mean flow interaction as an explanation. The meridional distribution of the range in QBO zonal wind is compared with the stratospheric annual cycle, with the annual cycle dominating poleward of ~12° latitude but still being significant in the deep tropics. The issues of temporal shear zone asymmetries and phase locking with the annual cycle are critically examined. Subtracting the time mean and annual cycle removes ~2/3 of the asymmetry in wind (and wind shear) zone descent rate. The NCEP data validate previous findings that both the easterly and westerly QBO anomalous wind regimes in the lower stratosphere change sign preferentially during northern summer. It is noteworthy that the NCEP QBO amplitude and the relationships among the reanalysed zonal wind, temperature, and meridional circulation undergo a substantial change around 1978.
Climate Change Impact on Water Balance at the Chipola River Watershed in Florida
NASA Astrophysics Data System (ADS)
Griffen, J. M.; Chen, X.; Wang, D.; Hagen, S. C.
2013-12-01
As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through the Florida Panhandle and drains into the Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with an aridity index of approximately 1.0. However, climate change affects the hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this watershed. This research is mainly focused on assessing climate change impact on the partitioning of rainfall and the following runoff generation in Chipola watershed, from long-term mean annual to inter-annual and to seasonal and monthly scales. A comprehensive water balance model at inter-annual scale is built in this study based on Budyko's framework, two-stage runoff theory and proportionality hypothesis. The inter-annual scale model considers the impact of storage change, seasonality and landscape controls, which are normally assumed to be negligible on a long-term scale. The model is applied to the Chipola River Watershed in Florida to project future water balance pattern with the input from a Regional Climate Model projection. Based on the projection results: evaporation will increase in the future in all 12 months; runoff will increase only in dry months of July to October, while significantly decrease in wet months of December to April; storage change will increase in wet months of January to April, while decrease in the dry months of August to November.
Baker, Ronald J.; Hunchak-Kariouk, Kathryn
2006-01-01
The effects of nonpoint-source contamination on the water quality of four tributaries to the Toms River in Ocean County, New Jersey, have been investigated in a 5-year study by the U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The purpose of the study was to relate the extent of land development to loads of nutrients and other contaminants to these streams, and ultimately to Barnegat Bay. Volumetric streamflow (discharge) was measured at 6 monitoring sites during 37 stormflow and base-flow sampling events over a 5-year period (May 1994-September 1999). Concentrations and yields (area-normalized instantaneous load values) of nitrogen and phosphorus species, total suspended solids, and fecal coliform bacteria were quantified, and pH, dissolved oxygen, and stream stage were monitored during base-flow conditions and storms. Sufficient data were collected to allow for a statistical evaluation of differences in water quality among streams in subbasins with high, medium, and low levels of land development. Long Swamp Creek, in a highly developed subbasin (64.2 percent developed); Wrangle Brook, in a moderately developed subbasin (34.5 percent); Davenport Branch, in a slightly developed subbasin (22.8 percent); and Jakes Branch, in an undeveloped subbasin (0 percent) are the subbasins selected for this study. No point-source discharges are known to be present on these streams. Water samples were collected and analyzed by the NJDEP, and discharge measurements and data analysis were conducted by the USGS. Total nitrogen concentrations were lower in Davenport Branch than in Long Swamp Creek and Wrangle Brook during base flow and stormflow. Concentrations of total nitrogen and nitrate were highest in Wrangle Brook (as high as 3.0 mg/L and 1.6 mg/L, respectively) as a result of high concentrations of nitrate in samples collected during base flow; nitrate loading from ground-water discharge is much higher in Wrangle Brook than in any of the other streams, possibly as a result of an experimental wastewater-(secondary effluent) disposal site that was in operation during the 1980's. Ammonia concentrations were higher in samples from Long Swamp Creek than in those from the other two monitoring sites under all flow conditions, and ammonia yields were higher during stormflow than base flow at all monitoring sites. Concentrations and yields of fecal coliform bacteria and total suspended solids were higher during stormflow than during base flow at all monitoring sites. Concentrations and yields were significantly higher in Long Swamp Creek, a highly developed subbasin and Wrangle Brook, a moderately developed subbasin than in Davenport Branch, a slightly developed subbasin. Concentrations and yields of phosphate species, which also are strongly related to stormflow, were higher during stormflow in Long Swamp Creek than in the other subbasins. Base-flow separation techniques were used on hydrographs generated for storms to distinguish the fraction of discharge and constituent loading attributable to storm runoff (overland flow) from the fraction contributed by ground-water discharge. Precipitation records were used to determine the total annual volumes of ground-water discharge and runoff at each monitoring site. These volumes were used in conjunction with water-quality data to calculate total annual loads of each constituent at each monitoring site, separated into ground-water discharge and runoff fractions. It was determined that loads of ammonia, nitrate, organic nitrogen, total nitrogen, and orthophosphate in ground-water discharge were significantly higher in the moderately developed Wrangle Brook subbasin than in the highly developed Long Swamp Creek subbasin, and that no relation was apparent between the percent of land development and constituent loads from ground-water discharge. The loading of each constituent contributed by ground-water discharge is specific
Suspended sediment in the St. Francis River at St. Francis, Arkansas, 1986-95
Green, W. Reed; Barks, C. Shane; Hall, Alan P.
2000-01-01
Daily suspended-sediment concentrations were analyzed from the St. Francis River at St. Francis, Arkansas during 1986 through 1995. Suspended-sediment particle size distribution was measured in selected samples from 1978 through 1998. These data are used to assess changes in suspended-sediment concentrations and loads through time. Suspended-sediment concentrations were positively related to discharge. At higher flows, percent silt-clay was negatively related to discharge. Nonparametric trend analysis (Mann-Kendall test) of suspended-sediment concentration over the period of record indicated a slight decrease in concentration. Flow-adjusted residuals of suspended-sediment concentration also decreased slightly through the same period. No change was identified in annual suspended-sediment load or annual flow-weighted concentration. Continued monitorig of daily-suspended-sediment concentrations at this site and others, and similar data analysis at other sites where data are available will provide a better understanding of sediment transport withint the St. Francis River.
Kahle, S.C.; Morgan, D.S.; Welch, W.B.; Ely, D.M.; Hinkle, S.R.; Vaccaro, J.J.; Orzol, L.L.
2011-01-01
The Columbia Plateau Regional Aquifer System (CPRAS) covers an area of about 44,000 square miles in a structural and topographic basin within the drainage of the Columbia River in Washington, Oregon, and Idaho. The primary aquifers are basalts of the Columbia River Basalt Group (CRBG) and overlying sediment. Eighty percent of the groundwater use in the study area is for irrigation, in support of a $6 billion per year agricultural economy. Water-resources issues in the Columbia Plateau include competing agricultural, domestic, and environmental demands. Groundwater levels were measured in 470 wells in 1984 and 2009; water levels declined in 83 percent of the wells, and declines greater than 25 feet were measured in 29 percent of the wells. Conceptually, the system is a series of productive basalt aquifers consisting of permeable interflow zones separated by less permeable flow interiors; in places, sedimentary aquifers overly the basalts. The aquifer system of the CPRAS includes seven hydrogeologic units-the overburden aquifer, three aquifer units in the permeable basalt rock, two confining units, and a basement confining unit. The overburden aquifer includes alluvial and colluvial valley-fill deposits; the three basalt units are the Saddle Mountains, Wanapum, and Grande Ronde Basalts and their intercalated sediments. The confining units are equivalent to the Saddle Mountains-Wanapum and Wanapum-Grande Ronde interbeds, referred to in this study as the Mabton and Vantage Interbeds, respectively. The basement confining unit, referred to as Older Bedrock, consists of pre-CRBG rocks that generally have much lower permeabilities than the basalts and are considered the base of the regional flow system. Based on specific-capacity data, median horizontal hydraulic conductivity (Kh) values for the overburden, basalt units, and bedrock are 161, 70, and 6 feet per day, respectively. Analysis of oxygen isotopes in water and carbon isotopes in dissolved inorganic carbon from groundwater samples indicates that groundwater in the CPRAS ranges in age from modern (10,000 years). The oldest groundwater resides in deep, downgradient locations indicating that groundwater movement and replenishment in parts of this regional aquifer system have operated on long timescales under past natural conditions, which is consistent with the length and depth of long flow paths in the system. The mean annual recharge from infiltration of precipitation for the 23-year period 1985-2007 was estimated to be 4.6 inches per year (14,980 cubic feet per second) using a polynomial regression equation based on annual precipitation and the results of recharge modeling done in the 1980s. A regional-scale hydrologic budget was developed using a monthly SOil WATer (SOWAT) Balance model to estimate irrigation-water demand, groundwater flux (recharge or discharge), direct runoff, and soil moisture within irrigated areas. Mean monthly irrigation throughout the study area peaks in July at 1.6 million acre-feet (MAF), of which 0.45 and 1.15 MAF are from groundwater and surface-water sources, respectively. Annual irrigation water use in the study area averaged 5.3 MAF during the period 1985-2007, with 1.4 MAF (or 26 percent) supplied from groundwater and 3.9 MAF supplied from surface water. Mean annual recharge from irrigation return flow in the study area was 4.2 MAF (1985-2007) with 2.1 MAF (50 percent) occurring within the predominately surface-water irrigated regions of the study area. Annual groundwater-use estimates were made for public supply, self-supplied domestic, industrial, and other uses for the period 1984 through 2009. Public supply groundwater use within the study area increased from 200,600 acre-feet per year (acre-ft/yr) in 1984 to 269,100 acre-ft/yr in 2009. Domestic self-supplied groundwater use increased from 54,580 acre-ft/yr in 1984 to 71,160 acre-ft/yr in 2009. Industrial groundwater use decreased from 53,390 acre-ft/yr in 1984 t
Haj, Adel E.; Christiansen, Daniel E.; Viger, Roland J.
2014-01-01
In 2011 the Missouri River Mainstem Reservoir System (Reservoir System) experienced the largest volume of flood waters since the initiation of record-keeping in the nineteenth century. The high levels of runoff from both snowpack and rainfall stressed the Reservoir System’s capacity to control flood waters and caused massive damage and disruption along the river. The flooding and resulting damage along the Missouri River brought increased public attention to the U.S. Army Corps of Engineers (USACE) operation of the Reservoir System. To help understand the effects of Reservoir System operation on the 2011 Missouri River flood flows, the U.S. Geological Survey Precipitation-Runoff Modeling System was used to construct a model of the Missouri River Basin to simulate flows at streamgages and dam locations with the effects of Reservoir System operation (regulation) on flow removed. Statistical tests indicate that the Missouri River Precipitation-Runoff Modeling System model is a good fit for high-flow monthly and annual stream flow estimation. A comparison of simulated unregulated flows and measured regulated flows show that regulation greatly reduced spring peak flow events, consolidated two summer peak flow events to one with a markedly decreased magnitude, and maintained higher than normal base flow beyond the end of water year 2011. Further comparison of results indicate that without regulation, flows greater than those measured would have occurred and been sustained for much longer, frequently in excess of 30 days, and flooding associated with high-flow events would have been more severe.
Elizabeth T. Keppeler
1986-01-01
Abstract - Using a low flow season defined as a function of antecedent precipitation, streamflow data for a 21 year period was analyzed to determine the effects of selective tractor harvesting of second-growth Douglas-fir and redwood forest on the volume, timing, and duration of low flows and annual water yield. Significant increases in streamflow were detected for...
Lopez, M.A.; Giovannelli, R.F.
1984-01-01
Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Soulsby, Chris; Dunn, Sarah M.
2003-02-01
Hydrochemical tracers (alkalinity and silica) were used in an end-member mixing analysis (EMMA) of runoff sources in the 10 km2 Allt a' Mharcaidh catchment. A three-component mixing model was used to separate the hydrograph and estimate, to a first approximation, the range of likely contributions of overland flow, shallow subsurface storm flow, and groundwater to the annual hydrograph. A conceptual, catchment-scale rainfall-runoff model (DIY) was also used to separate the annual hydrograph in an equivalent set of flow paths. The two approaches produced independent representations of catchment hydrology that exhibited reasonable agreement. This showed the dominance of overland flow in generating storm runoff and the important role of groundwater inputs throughout the hydrological year. Moreover, DIY was successfully adapted to simulate stream chemistry (alkalinity) at daily time steps. Sensitivity analysis showed that whilst a distinct groundwater source at the catchment scale could be identified, there was considerable uncertainty in differentiating between overland flow and subsurface storm flow in both the EMMA and DIY applications. Nevertheless, the study indicated that the complementary use of tracer analysis in EMMA can increase the confidence in conceptual model structure. However, conclusions are restricted to the specific spatial and temporal scales examined.
Rea, A.H.; Tortorelli, R.L.
1997-01-01
This digital report contains two digital-map grids of data that were used to develop peak-flow regression equations in Tortorelli, 1997, 'Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 97-4202. One data set is a grid of mean annual precipitation, in inches, based on the period 1961-90, for Oklahoma. The data set was derived from the PRISM (Parameter-elevation Regressions on Independent Slopes Model) mean annual precipitation grid for the United States, developed by Daly, Neilson, and Phillips (1994, 'A statistical-topographic model for mapping climatological precipitation over mountainous terrain:' Journal of Applied Meteorology, v. 33, no. 2, p. 140-158). The second data set is a grid of generalized skew coefficients of logarithms of annual maximum streamflow for Oklahoma streams less than or equal to 2,510 square miles in drainage area. This grid of skew coefficients is taken from figure 11 of Tortorelli and Bergman, 1985, 'Techniques for estimating flood peak discharges for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 84-4358. To save disk space, the skew coefficient values have been multiplied by 100 and rounded to integers with two significant digits. The data sets are provided in an ASCII grid format.
Connecticut Highlands Technical Report - Documentation of the Regional Rainfall-Runoff Model
Ahearn, Elizabeth A.; Bjerklie, David M.
2010-01-01
This report provides the supporting data and describes the data sources, methodologies, and assumptions used in the assessment of existing and potential water resources of the Highlands of Connecticut and Pennsylvania (referred to herein as the “Highlands”). Included in this report are Highlands groundwater and surface-water use data and the methods of data compilation. Annual mean streamflow and annual mean base-flow estimates from selected U.S. Geological Survey (USGS) gaging stations were computed using data for the period of record through water year 2005. The methods of watershed modeling are discussed and regional and sub-regional water budgets are provided. Information on Highlands surface-water-quality trends is presented. USGS web sites are provided as sources for additional information on groundwater levels, streamflow records, and ground- and surface-water-quality data. Interpretation of these data and the findings are summarized in the Highlands study report.
Impacts of climate change on the hydrological cycle over France and associated uncertainties
NASA Astrophysics Data System (ADS)
Dayon, Gildas; Boé, Julien; Martin, Éric; Gailhard, Joël
2018-05-01
This study deals with the evolution of the hydrological cycle over France during the 21st century. A large multi-member, multi-scenario, and multi-model ensemble of climate projections is downscaled with a new statistical method to drive a physically-based hydrological model with recent improvements. For a business-as-usual scenario, annual precipitation changes generally remain small, except over southern France, where decreases close to 20% are projected. Annual streamflows roughly decrease by 10% (±20%) on the Seine, by 20% (±20%) on the Loire, by 20% (±15%) on the Rhone and by 40% (±15%) on the Garonne. Attenuation measures, as implied by the other scenarios analyzed, lead to less severe changes. However, even with a scenario generally compatible with a limitation of global warming to two degrees, some notable impacts may still occur, with for example a decrease in summer river flows close to 25% for the Garonne.
NASA Astrophysics Data System (ADS)
Hahn, S.; Machefaux, E.; Hristov, Y. V.; Albano, M.; Threadgill, R.
2016-09-01
In the present study, combination of the standalone dynamic wake meandering (DWM) model with Reynolds-averaged Navier-Stokes (RANS) CFD solutions for ambient ABL flows is introduced, and its predictive performance for annual energy production (AEP) is evaluated against Vestas’ SCADA data for six operating wind farms over semi-complex terrains under neutral conditions. The performances of conventional linear and quadratic wake superposition techniques are also compared, together with the in-house implemention of successive hierarchical merging approaches. As compared to our standard procedure based on the Jensen model in WindPRO, the overall results are promising, leading to a significant improvement in AEP accuracy for four of the six sites. While the conventional linear superposition shows the best performance for the improved four sites, the hierarchical square superposition shows the least deteriorated result for the other two sites.
Population genetics and the evolution of geographic range limits in an annual plant.
Moeller, David A; Geber, Monica A; Tiffin, Peter
2011-10-01
Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.
NASA Astrophysics Data System (ADS)
Khadka Mishra, S.; Hayse, J.; Veselka, T.; Yan, E.; Kayastha, R. B.; McDonald, K.; Steiner, N.; Lagory, K.
2017-12-01
Climate-mediated changes in melting of snow and glaciers and in precipitation patterns are expected to significantly alter the water flow of rivers at various spatial and temporal scales. Hydropower generation and fisheries are likely to be impacted annually and over the century by the seasonal as well as long-term changes in hydrological conditions. In order to quantify the interactions between the drivers of climate change, the hydropower sector and the ecosystem we developed an integrated assessment framework that links climate models with process-based bio-physical and economic models. This framework was applied to estimate the impacts of changes in snow and glacier melt on the stream flow of the Trishuli River of the High Mountain Asia Region. Remotely-sensed data and derived products, as well as in-situ data, were used to quantify the changes in snow and glacier melt. The hydrological model was calibrated and validated for stream flows at various points in the Trishuli river in order to forecast conditions at the location of a stream gauge station upstream of the Trishuli hydropower plant. The flow of Trishuli River was projected to increase in spring and decrease in summer over the period of 2020-2100 under RCP 8.5 and RCP 4.5 scenarios as compared to respective mean seasonal discharge observed over 1981-2014. The simulated future annual mean stream flow would increase by 0.6 m3/s under RCP 8.5 scenario but slightly decrease under RCP 4.5. The Argonne Hydropower Energy and Economic toolkit was used to estimate and forecast electricity generation at the Trishuli power plant under various flow conditions and upgraded infrastructure. The increased spring flow is expected to increase dry-season electricity generation by 18% under RCP 8.5 in comparison to RCP 4.5. A fishery suitability model developed for the basin indicated that fishery suitability in the Trishuli River would be greater than 70% of optimal, even during dry months under both RCP 4.5 and RCP 8.5. The estimated economic value (preliminary result) of electricity generated from the Trishuli hydropower plant under RCP 4.5 and RCP 8.5 were projected to be 3.7% to 7.5% higher for the month of March while for the months of April and May the values were1.5% to 9.4% lower.
Runoff from small peatland watersheds
Roger R. Bay
1969-01-01
Runoff was measured on four forested bog watersheds in northern Minnesota for 5 years. The experimental basins ranged in size from 24 to 130 acres and included both organic and mineral soils. Annual runoff was not evenly distributed. Spring runoff, from the beginning of flow in late March to the 1 st of June, accounted for 66 % of total annual water yield. Summer and...
Effects of post-fire grass seeding on native vegetation in southern California chaparral
Jan L. Beyers; Carla D. Wakeman; Peter M. Wohlgemuth; Susan G. Conard
1998-01-01
For decades, managers have seeded burned slopes with annual grass in an attempt to increase postfire plant cover and reduce the accelerated hillslope erosion, runoff, and debris flows that typically occur during the first winter after fire. In California, annual ryegrass (Lolium multiflorum) was commonly used for this purpose. Critics argue that ryegrass and other...
ERIC Educational Resources Information Center
North East Association for Institutional Research.
The theme of the 2001 annual conference of the Northeast Association for Institutional Research was Institutional Research: Leadership through Excellence. These proceedings represent the intellectual content and insights shared during the conference. The papers are: (1) The Rocky Road to Graduation: An Academic Career Flow Model for Tracking…
NASA Astrophysics Data System (ADS)
Yang, Chunxia; Tang, Minxuan; Cao, Yongjian; Chen, Yanhua; Deng, Qiangqiang
2015-10-01
Based on the annual GDP (Gross Domestic Product) in 27 Chinese provinces and autonomous regions, the asymmetric economic information flows between different regions are calculated by the symbolic transfer entropy method and corresponding economic information flow networks are built over two periods, one is before the reform and opening up policy, the other is after that. By analyzing such networks, the obtained results are as follows. First, before the policy, balanced development strategy weakens or cuts off the ties between adjacent areas, resulting in a slow regional economic development, does not conform to the law of scientific development. Second, with introducing market mechanisms and promoting the reform and opening up policy, increasing economic activities have gradually shifted from coast to inland of China over Period II. Last but not least, there has a dramatic alternation of the influential centers that Jilin, Beijing and Jiangsu become new influential centers. Especially, at Beijing-Tianjin-Hebei metropolis circle Beijing becomes an influential center after the policy.
Magnitude and frequency of floods in Washington
Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George
1975-01-01
Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.
A fully distributed implementation of mean annual streamflow regional regression equations
Verdin, K.L.; Worstell, B.
2008-01-01
Estimates of mean annual streamflow are needed for a variety of hydrologic assessments. Away from gage locations, regional regression equations that are a function of upstream area, precipitation, and temperature are commonly used. Geographic information systems technology has facilitated their use for projects, but traditional approaches using the polygon overlay operator have been too inefficient for national scale applications. As an alternative, the Elevation Derivatives for National Applications (EDNA) database was used as a framework for a fully distributed implementation of mean annual streamflow regional regression equations. The raster “flow accumulation” operator was used to efficiently achieve spatially continuous parameterization of the equations for every 30 m grid cell of the conterminous United States (U.S.). Results were confirmed by comparing with measured flows at stations of the Hydro-Climatic Data Network, and their applications value demonstrated in the development of a national geospatial hydropower assessment. Interactive tools at the EDNA website make possible the fast and efficient query of mean annual streamflow for any location in the conterminous U.S., providing a valuable complement to other national initiatives (StreamStats and the National Hydrography Dataset Plus).
Case study of a full-scale evapotranspiration cover
McGuire, Patrick E.; Andraski, Brian J.; Archibald, Ryan E.
2009-01-01
The design, construction, and performance analyses of a 6.1ha evapotranspiration (ET) landfill cover at the semiarid U.S. Army Fort Carson site, near Colorado Springs, Colo. are presented. Initial water-balance model simulations, using literature reported soil hydraulic data, aided selection of borrow-source soil type(s) that resulted in predictions of negligible annual drainage (⩽1mm∕year). Final construction design was based on refined water-balance simulations using laboratory determined soil hydraulic values from borrow area natural soil horizons that were described with USDA soil classification methods. Cover design components included a 122cmthick clay loam (USDA), compaction ⩽80% of the standard Proctor maximum dry density (dry bulk density ∼1.3Mg∕m3), erosion control measures, top soil amended with biosolids, and seeding with native grasses. Favorable hydrologic performance for a 5year period was documented by lysimeter-measured and Richards’-based calculations of annual drainage that were all <0.4mm∕year. Water potential data suggest that ET removed water that infiltrated the cover and contributed to a persistent driving force for upward flow and removal of water from below the base of the cover.
Moyer, Douglas; Hirsch, Robert M.; Hyer, Kenneth
2012-01-01
Nutrient and sediment fluxes and changes in fluxes over time are key indicators that water resource managers can use to assess the progress being made in improving the structure and function of the Chesapeake Bay ecosystem. The U.S. Geological Survey collects annual nutrient (nitrogen and phosphorus) and sediment flux data and computes trends that describe the extent to which water-quality conditions are changing within the major Chesapeake Bay tributaries. Two regression-based approaches were compared for estimating annual nutrient and sediment fluxes and for characterizing how these annual fluxes are changing over time. The two regression models compared are the traditionally used ESTIMATOR and the newly developed Weighted Regression on Time, Discharge, and Season (WRTDS). The model comparison focused on answering three questions: (1) What are the differences between the functional form and construction of each model? (2) Which model produces estimates of flux with the greatest accuracy and least amount of bias? (3) How different would the historical estimates of annual flux be if WRTDS had been used instead of ESTIMATOR? One additional point of comparison between the two models is how each model determines trends in annual flux once the year-to-year variations in discharge have been determined. All comparisons were made using total nitrogen, nitrate, total phosphorus, orthophosphorus, and suspended-sediment concentration data collected at the nine U.S. Geological Survey River Input Monitoring stations located on the Susquehanna, Potomac, James, Rappahannock, Appomattox, Pamunkey, Mattaponi, Patuxent, and Choptank Rivers in the Chesapeake Bay watershed. Two model characteristics that uniquely distinguish ESTIMATOR and WRTDS are the fundamental model form and the determination of model coefficients. ESTIMATOR and WRTDS both predict water-quality constituent concentration by developing a linear relation between the natural logarithm of observed constituent concentration and three explanatory variables—the natural log of discharge, time, and season. ESTIMATOR uses two additional explanatory variables—the square of the log of discharge and time-squared. Both models determine coefficients for variables for a series of estimation windows. ESTIMATOR establishes variable coefficients for a series of 9-year moving windows; all observed constituent concentration data within the 9-year window are used to establish each coefficient. Conversely, WRTDS establishes variable coefficients for each combination of discharge and time using only observed concentration data that are similar in time, season, and discharge to the day being estimated. As a result of these distinguishing characteristics, ESTIMATOR reproduces concentration-discharge relations that are closely approximated by a quadratic or linear function with respect to both the log of discharge and time. Conversely, the linear model form of WRTDS coupled with extensive model windowing for each combination of discharge and time allows WRTDS to reproduce observed concentration-discharge relations that are more sinuous in form. Another distinction between ESTIMATOR and WRTDS is the reporting of uncertainty associated with the model estimates of flux and trend. ESTIMATOR quantifies the standard error of prediction associated with the determination of flux and trends. The standard error of prediction enables the determination of the 95-percent confidence intervals for flux and trend as well as the ability to test whether the reported trend is significantly different from zero (where zero equals no trend). Conversely, WRTDS is unable to propagate error through the many (over 5,000) models for unique combinations of flow and time to determine a total standard error. As a result, WRTDS flux estimates are not reported with confidence intervals and a level of significance is not determined for flow-normalized fluxes. The differences between ESTIMATOR and WRTDS, with regard to model form and determination of model coefficients, have an influence on the determination of nutrient and sediment fluxes and associated changes in flux over time as a result of management activities. The comparison between the model estimates of flux and trend was made for combinations of five water-quality constituents at nine River Input Monitoring stations. The major findings with regard to nutrient and sediment fluxes are as follows: (1)WRTDS produced estimates of flux for all combinations that were more accurate, based on reduction in root mean squared error, than flux estimates from ESTIMATOR; (2) for 67 percent of the combinations, WRTDS and ESTIMATOR both produced estimates of flux that were minimally biased compared to observed fluxes(flux bias = tendency to over or underpredict flux observations); however, for 33 percent of the combinations, WRTDS produced estimates of flux that were considerably less biased (by at least 10 percent) than flux estimates from ESTIMATOR; (3) the average percent difference in annual fluxes generated by ESTIMATOR and WRTDS was less than 10 percent at 80 percent of the combinations; and (4) the greatest differences related to flux bias and annual fluxes all occurred for combinations where the pattern in observed concentration-discharge relation was sinuous (two points of inflection) rather than linear or quadratic (zero or one point of inflection). The major findings with regard to trends are as follows: (1) both models produce water-quality trends that have factored in the year-to-year variations in flow; (2) trends in water-quality condition are represented by ESTIMATOR as a trend in flow-adjusted concentration and by WRTDS as a flow normalized flux; (3) for 67 percent of the combinations with trend estimates, the WRTDS trends in flow-normalized flux are in the same direction and magnitude to the ESTIMATOR trends in flow-adjusted concentration, and at the remaining 33 percent the differences in trend magnitude and direction are related to fundamental differences between concentration and flux; and (4) the majority (85 percent) of the total nitrogen, nitrate, and orthophosphorus combinations exhibited long-term (1985 to 2010) trends in WRTDS flow-normalized flux that indicate improvement or reduction in associated flux and the majority (83 percent) of the total phosphorus (from 1985 to 2010) and suspended sediment (from 2001 to 2010) combinations exhibited trends in WRTDS flow-normalized flux that indicate degradation or increases in the flux delivered.
Benjankar, Rohan; Burke, Michael; Yager, Elowyn; Tonina, Daniele; Egger, Gregory; Rood, Stewart B; Merz, Norm
2014-12-01
Dam operations have altered flood and flow patterns and prevented successful cottonwood seedling recruitment along many rivers. To guide reservoir flow releases to meet cottonwood recruitment needs, we developed a spatially-distributed, GIS-based model that analyzes the hydrophysical requirements for cottonwood recruitment. These requirements are indicated by five physical parameters: (1) annual peak flow timing relative to the interval of seed dispersal, (2) shear stress, which characterizes disturbance, (3) local stage recession after seedling recruitment, (4) recruitment elevation above base flow stage, and (5) duration of winter flooding, which may contribute to seedling mortality. The model categorizes the potential for cottonwood recruitment in four classes and attributes a suitability value at each individual spatial location. The model accuracy was estimated with an error matrix analysis by comparing simulated and field-observed recruitment success. The overall accuracies of this Spatially-Distributed Cottonwood Recruitment model were 47% for a braided reach and 68% for a meander reach along the Kootenai River in Idaho, USA. Model accuracies increased to 64% and 72%, respectively, when fewer favorability classes were considered. The model predicted areas of similarly favorable recruitment potential for 1997 and 2006, two recent years with successful cottonwood recruitment. This model should provide a useful tool to quantify impacts of human activities and climatic variability on cottonwood recruitment, and to prescribe instream flow regimes for the conservation and restoration of riparian woodlands. Copyright © 2014 Elsevier Ltd. All rights reserved.
Validation of a national hydrological model
NASA Astrophysics Data System (ADS)
McMillan, H. K.; Booker, D. J.; Cattoën, C.
2016-10-01
Nationwide predictions of flow time-series are valuable for development of policies relating to environmental flows, calculating reliability of supply to water users, or assessing risk of floods or droughts. This breadth of model utility is possible because various hydrological signatures can be derived from simulated flow time-series. However, producing national hydrological simulations can be challenging due to strong environmental diversity across catchments and a lack of data available to aid model parameterisation. A comprehensive and consistent suite of test procedures to quantify spatial and temporal patterns in performance across various parts of the hydrograph is described and applied to quantify the performance of an uncalibrated national rainfall-runoff model of New Zealand. Flow time-series observed at 485 gauging stations were used to calculate Nash-Sutcliffe efficiency and percent bias when simulating between-site differences in daily series, between-year differences in annual series, and between-site differences in hydrological signatures. The procedures were used to assess the benefit of applying a correction to the modelled flow duration curve based on an independent statistical analysis. They were used to aid understanding of climatological, hydrological and model-based causes of differences in predictive performance by assessing multiple hypotheses that describe where and when the model was expected to perform best. As the procedures produce quantitative measures of performance, they provide an objective basis for model assessment that could be applied when comparing observed daily flow series with competing simulated flow series from any region-wide or nationwide hydrological model. Model performance varied in space and time with better scores in larger and medium-wet catchments, and in catchments with smaller seasonal variations. Surprisingly, model performance was not sensitive to aquifer fraction or rain gauge density.
Bastiaanssen, Wim G.M.; Karimi, Poolad; Rebelo, Lisa-Maria; Duan, Zheng; Senay, Gabriel; Muthuwatte, Lal; Smakhtin, Vladimir
2014-01-01
The increasing competition for water resources requires a better understanding of flows, fluxes, stocks, and the services and benefits related to water consumption. This paper explains how public domain Earth Observation data based on Moderate Resolution Imaging Spectroradiometer (MODIS), Second Generation Meteosat (MSG), Tropical Rainfall Measurement Mission (TRMM) and various altimeter measurements can be used to estimate net water production (rainfall (P) > evapotranspiration (ET)) and net water consumption (ET > P) of Nile Basin agro-ecosystems. Rainfall data from TRMM and the Famine Early Warning System Network (FEWS-NET) RainFall Estimates (RFE) products were used in conjunction with actual evapotranspiration from the Operational Simplified Surface Energy Balance (SSEBop) and ETLook models. Water flows laterally between net water production and net water consumption areas as a result of runoff and withdrawals. This lateral flow between the 15 sub-basins of the Nile was estimated, and partitioned into stream flow and non-stream flow using the discharge data. A series of essential water metrics necessary for successful integrated water management are explained and computed. Net water withdrawal estimates (natural and humanly instigated) were assumed to be the difference between net rainfall (Pnet) and actual evapotranspiration (ET) and some first estimates of withdrawals—without flow meters—are provided. Groundwater-dependent ecosystems withdraw large volumes of groundwater, which exceed water withdrawals for the irrigation sector. There is a strong need for the development of more open-access Earth Observation databases, especially for information related to actual ET. The fluxes, flows and storage changes presented form the basis for a global framework to describe monthly and annual water accounts in ungauged river basins.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1998-01-01
The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.
Andersen, D.C.
2005-01-01
I analyzed annual height growth and survivorship of Fremont cottonwood (Populus fremontii S. Watson) saplings on three floodplains in Colorado and Utah to assess responses to interannual variation in flow regime and summer precipitation. Mammal exclosures, supplemented with an insecticide treatment at one site, were used to assess flow regime herbivore interactions. Multiple regression analyses on data collected over 711 years indicated that growth of continuously injury-free saplings was positively related to either peak discharge or the maximum 30-day discharge but was not related to interannual decline in the late-summer river stage (ΔWMIN) or precipitation. Growth was fastest where ΔWMIN was smallest and depth to the late-summer water table moderate (≤1.5 m). Survivorship increased with ΔWMIN where the water table was at shallow depths. Herbivory reduced long-term height growth and survivorship by up to 60% and 50%, respectively. The results support the concept that flow history and environmental context determine whether a particular flow will have a net positive or negative influence on growth and survivorship and suggest that the flow regime that best promotes sapling growth and survival along managed rivers features a short spring flood pulse and constant base flow, with no interannual variation in the hydrograph. Because environmental contexts vary, interannual variation may be necessary for best overall stand performance.
Lamontagne, Jonathan R.; Stedinger, Jery R.; Berenbrock, Charles; Veilleux, Andrea G.; Ferris, Justin C.; Knifong, Donna L.
2012-01-01
Flood-frequency information is important in the Central Valley region of California because of the high risk of catastrophic flooding. Most traditional flood-frequency studies focus on peak flows, but for the assessment of the adequacy of reservoirs, levees, other flood control structures, sustained flood flow (flood duration) frequency data are needed. This study focuses on rainfall or rain-on-snow floods, rather than the annual maximum, because rain events produce the largest floods in the region. A key to estimating flood-duration frequency is determining the regional skew for such data. Of the 50 sites used in this study to determine regional skew, 28 sites were considered to have little to no significant regulated flows, and for the 22 sites considered significantly regulated, unregulated daily flow data were synthesized by using reservoir storage changes and diversion records. The unregulated, annual maximum rainfall flood flows for selected durations (1-day, 3-day, 7-day, 15-day, and 30-day) for all 50 sites were furnished by the U.S. Army Corps of Engineers. Station skew was determined by using the expected moments algorithm program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual flood-duration data. Bayesian generalized least squares regression procedures used in earlier studies were modified to address problems caused by large cross correlations among concurrent rainfall floods in California and to address the extensive censoring of low outliers at some sites, by using the new expected moments algorithm for fitting the LP3 distribution to rainfall flood-duration data. To properly account for these problems and to develop suitable regional-skew regression models and regression diagnostics, a combination of ordinary least squares, weighted least squares, and Bayesian generalized least squares regressions were adopted. This new methodology determined that a nonlinear model relating regional skew to mean basin elevation was the best model for each flood duration. The regional-skew values ranged from -0.74 for a flood duration of 1-day and a mean basin elevation less than 2,500 feet to values near 0 for a flood duration of 7-days and a mean basin elevation greater than 4,500 feet. This relation between skew and elevation reflects the interaction of snow and rain, which increases with increased elevation. The regional skews are more accurate, and the mean squared errors are less than in the Interagency Advisory Committee on Water Data's National skew map of Bulletin 17B.
Suspended-sediment loads in the lower Stillaguamish River, Snohomish County, Washington, 2014–15
Anderson, Scott A.; Curran, Christopher A.; Grossman, Eric E.
2017-08-03
Continuous records of discharge and turbidity at a U.S. Geological Survey (USGS) streamgage in the lower Stillaguamish River were paired with discrete measurements of suspended-sediment concentration (SSC) in order to estimate suspended-sediment loads over the water years 2014 and 2015. First, relations between turbidity and SSC were developed and used to translate the continuous turbidity record into a continuous estimate of SSC. Those concentrations were then used to predict suspended-sediment loads based on the current discharge record, reported at daily intervals. Alternative methods were used to in-fill a small number of days with either missing periods of turbidity or discharge records. Uncertainties in our predictions at daily and annual time scales were estimated based on the parameter uncertainties in our turbidity-SSC regressions. Daily loads ranged from as high as 121,000 tons during a large autumn storm to as low as –56 tons, when tidal return flow moved more sediment upstream than river discharge did downstream. Annual suspended-sediment loads for both water years were close to 1.4 ± 0.2 million tons.
Thermal effects of dams in the Willamette River basin, Oregon
Rounds, Stewart A.
2010-01-01
Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm
Tracy-Smith, Emily; Galat, David L.; Jacobson, Robert B.
2012-01-01
Sandbars are an important aquatic terrestrial transition zone (ATTZ) in the active channel of rivers that provide a variety of habitat conditions for riverine biota. Channelization and flow regulation in many large rivers have diminished sandbar habitats and their rehabilitation is a priority. We developed sandbar-specific models of discharge-area relationships to determine how changes in flow regime affect the area of different habitat types within the submerged sandbar ATTZ (depth) and exposed sandbar ATTZ (elevation) for a representative sample of Lower Missouri River sandbars. We defined six different structural habitat types within the sandbar ATTZ based on depth or exposed elevation ranges that are important to different biota during at least part of their annual cycle for either survival or reproduction. Scenarios included the modelled natural flow regime, current managed flow regime and two environmental flow options, all modelled within the contemporary river active channel. Thirteen point and wing-dike sandbars were evaluated under four different flow scenarios to explore the effects of flow regime on seasonal habitat availability for foraging of migratory shorebirds and wading birds, nesting of softshell turtles and nursery of riverine fishes. Managed flows provided more foraging habitat for shorebirds and wading birds and more nursery habitat for riverine fishes within the channelized reach sandbar ATTZ than the natural flow regime or modelled environmental flows. Reduced summer flows occurring under natural and environmental flow alternatives increased exposed sandbar nesting habitat for softshell turtle hatchling emergence. Results reveal how management of channelized and flow regulated large rivers could benefit from a modelling framework that couples hydrologic and geomorphic characteristics to predict habitat conditions for a variety of biota.
NASA Astrophysics Data System (ADS)
Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida
2013-04-01
In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.
NASA Astrophysics Data System (ADS)
Woodward, Simon James Roy; Wöhling, Thomas; Rode, Michael; Stenger, Roland
2017-09-01
The common practice of infrequent (e.g., monthly) stream water quality sampling for state of the environment monitoring may, when combined with high resolution stream flow data, provide sufficient information to accurately characterise the dominant nutrient transfer pathways and predict annual catchment yields. In the proposed approach, we use the spatially lumped catchment model StreamGEM to predict daily stream flow and nitrate concentration (mg L-1 NO3-N) in four contrasting mesoscale headwater catchments based on four years of daily rainfall, potential evapotranspiration, and stream flow measurements, and monthly or daily nitrate concentrations. Posterior model parameter distributions were estimated using the Markov Chain Monte Carlo sampling code DREAMZS and a log-likelihood function assuming heteroscedastic, t-distributed residuals. Despite high uncertainty in some model parameters, the flow and nitrate calibration data was well reproduced across all catchments (Nash-Sutcliffe efficiency against Log transformed data, NSL, in the range 0.62-0.83 for daily flow and 0.17-0.88 for nitrate concentration). The slight increase in the size of the residuals for a separate validation period was considered acceptable (NSL in the range 0.60-0.89 for daily flow and 0.10-0.74 for nitrate concentration, excluding one data set with limited validation data). Proportions of flow and nitrate discharge attributed to near-surface, fast seasonal groundwater and slow deeper groundwater were consistent with expectations based on catchment geology. The results for the Weida Stream in Thuringia, Germany, using monthly as opposed to daily nitrate data were, for all intents and purposes, identical, suggesting that four years of monthly nitrate sampling provides sufficient information for calibration of the StreamGEM model and prediction of catchment dynamics. This study highlights the remarkable effectiveness of process based, spatially lumped modelling with commonly available monthly stream sample data, to elucidate high resolution catchment function, when appropriate calibration methods are used that correctly handle the inherent uncertainties.
Forest practices and stream flow in western Oregon.
R. Dennis. Harr
1976-01-01
Forest management activities, including roadbuilding, clearcut logging, and broadcast burning, can change certain portions of the forest hydrologic cycle. Watershed studies and other hydrologic research in the Coast and western Cascade Ranges of Oregon have shown that these changes may increase annual water yield up to 62 centimeters, double minimum flows in summer,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudley, Colton; Dorsey, Alison; Louie, John
Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.
Flood frequency analysis for nonstationary annual peak records in an urban drainage basin
Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.
2009-01-01
Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.
Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing
Sapir, Nir; Elimelech, Yossef
2017-01-01
The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle—especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna’s hummingbird (Calypte anna). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing’s leading-edge differs from the attached vorticity structure that was typically found over insects’ wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies. PMID:28878971
Greenland Ice Sheet flow response to runoff variability
NASA Astrophysics Data System (ADS)
Stevens, Laura A.; Behn, Mark D.; Das, Sarah B.; Joughin, Ian; Noël, Brice P. Y.; Broeke, Michiel R.; Herring, Thomas
2016-11-01
We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no statistically significant relationship between runoff season characteristics and ice flow velocities within a given year or season. Over the 7 year time series, annual velocities at North Lake decrease at an average rate of -0.9 ± 1.1 m yr-2, consistent with the negative trend in annual velocities observed in neighboring regions over recent decades. We find that net runoff integrated over several preceding years has a negative correlation with annual velocities, similar to findings from the two other available decadal records of ice velocity in western Greenland. However, we argue that this correlation is not necessarily evidence for a direct hydrologic mechanism acting on the timescale of multiple years but could be a statistical construct. Finally, we stress that neither the decadal slowdown trend nor the negative correlation between velocity and integrated runoff is predicted by current ice-sheet models, underscoring that these models do not yet capture all the relevant feedbacks between runoff and ice dynamics needed to predict long-term trends in ice sheet flow.
Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.
Achache, Yonathan; Sapir, Nir; Elimelech, Yossef
2017-08-01
The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.
Estimation of the annual flow and stock of marine debris in South Korea for management purposes.
Jang, Yong Chang; Lee, Jongmyoung; Hong, Sunwook; Mok, Jin Yong; Kim, Kyoung Shin; Lee, Yun Jeong; Choi, Hyun-Woo; Kang, Hongmook; Lee, Sukhui
2014-09-15
The annual flow and stock of marine debris in the Sea of Korea was estimated by summarizing previous survey results and integrating them with other relevant information to underpin the national marine debris management plan. The annual inflow of marine debris was estimated to be 91,195 tons [32,825 tons (36% of the total) from sources on land and 58,370 tons (64%) from ocean sources]. As of the end of 2012, the total stock of marine debris on all South Korean coasts (12,029 tons), the seabed (137,761 tons), and in the water column (2451 tons) was estimated to be 152,241 tons. In 2012, 42,595 tons of marine debris was collected from coasts, seabeds, and the water column. This is a very rare case study that estimated the amount of marine debris at a national level, the results of which provide essential information for the development of efficient marine debris management policies. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N. B.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.
2014-07-01
The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75°37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP (North Greenland Ice Core Project) ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.
2014-01-01
The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75° 37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that a deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.
Brabets, T.P.; Walvoord, Michelle Ann
2009-01-01
Streamflow characteristics in the Yukon River Basin of Alaska and Canada have changed from 1944 to 2005, and some of the change can be attributed to the two most recent modes of the Pacific Decadal Oscillation (PDO). Seasonal, monthly, and annual stream discharge data from 21 stations in the Yukon River Basin were analyzed for trends over the entire period of record, generally spanning 4-6 decades, and examined for differences between the two most recent modes of the PDO: cold-PDO (1944-1975) and warm-PDO (1976-2005) subsets. Between 1944 and 2005, average winter and April flow increased at 15 sites. Observed winter flow increases during the cold-PDO phase were generally limited to sites in the Upper Yukon River Basin. Positive trends in winter flow during the warm-PDO phase broadened to include stations in the Middle and Lower Yukon River drainage basins. Increases in winter streamflow most likely result from groundwater input enhanced by permafrost thawing that promotes infiltration and deeper subsurface flow paths. Increased April flow may be attributed to a combination of greater baseflow (from groundwater increases), earlier spring snowmelt and runoff, and increased winter precipitation, depending on location. Calculated deviations from long-term mean monthly discharges indicate below-average flow in the winter months during the cold PDO and above-average flow in the winter months during the warm PDO. Although not as strong a signal, results also support the reverse response during the summer months: above-average flow during the cold PDO and below-average flow during the warm PDO. Changes in the summer flows are likely an indirect consequence of the PDO, resulting from earlier spring snowmelt runoff and also perhaps increased summer infiltration and storage in a deeper active layer. Annual discharge has remained relatively unchanged in the Yukon River Basin, but a few glacier-fed rivers demonstrate positive trends, which can be attributed to enhanced glacier melting. A positive trend in annual flow during the warm PDO near the mouth of the Yukon River suggests that small increases in flow throughout the Yukon River Basin have resulted in an additive effect manifested in the downstream-most streamflow station. Many of the identified changes in streamflow patterns in the Yukon River Basin show a correlation to the PDO regime shift. This work highlights the importance of considering proximate climate forcings as well as global climate change when assessing hydrologic changes in the Arctic.
Inter-annual and spatial variability in hillslope runoff and mercury flux during spring snowmelt.
Haynes, Kristine M; Mitchell, Carl P J
2012-08-01
Spring snowmelt is an important period of mercury (Hg) export from watersheds. Limited research has investigated the potential effects of climate variability on hydrologic and Hg fluxes during spring snowmelt. The purpose of this research was to assess the potential impacts of inter-annual climate variability on Hg mobility in forested uplands, as well as spatial variability in hillslope hydrology and Hg fluxes. We compared hydrological flows, Hg and solute mobility from three adjacent hillslopes in the S7 watershed of the Marcell Experimental Forest, Minnesota during two very different spring snowmelt periods: one following a winter (2009-2010) with severely diminished snow accumulation (snow water equivalent (SWE) = 48 mm) with an early melt, and a second (2010-2011) with significantly greater winter snow accumulation (SWE = 98 mm) with average to late melt timing. Observed inter-annual differences in total Hg (THg) and dissolved organic carbon (DOC) yields were predominantly flow-driven, as the proportion by which solute yields increased was the same as the increase in runoff. Accounting for inter-annual differences in flow, there was no significant difference in THg and DOC export between the two snowmelt periods. The spring 2010 snowmelt highlighted the important contribution of melting soil frost in the timing of a considerable portion of THg exported from the hillslope, accounting for nearly 30% of the THg mobilized. Differences in slope morphology and soil depths to the confining till layer were important in controlling the large observed spatial variability in hydrological flowpaths, transmissivity feedback responses, and Hg flux trends across the adjacent hillslopes.
Clinical Investigation Program. Annual Progress Report. Volume 1
1994-01-20
Suport Labs Resch Chemist 13 0644 GS Salata, KF Allergy Microbiologist 12 0403 CS Billups, L Flow Cytom Microbiologist 12 0403 GS Dobek, AS Inf Disease 5...continued to increase laboratory research support to principal investigators throughout the medical center. The DCI Flow Cytometry Laboratory provided...Kalman PhD. Mitogen-Inducible T Suppressor Cell 12 Assay by Flow Cytometry (12/89) * Reference is to page number(s) in Volume II. 30 PROTOCOL NUMBER