Sample records for annual control engineering

  1. 40 CFR 89.125 - Production engines, annual report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Production engines, annual report. 89... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.125 Production engines, annual report. (a) Upon the Administrator's...

  2. 40 CFR 89.125 - Production engines, annual report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Production engines, annual report. 89... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.125 Production engines, annual report. (a) Upon the Administrator's...

  3. 40 CFR 89.125 - Production engines, annual report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Production engines, annual report. 89... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.125 Production engines, annual report. (a) Upon the Administrator's...

  4. 40 CFR 89.125 - Production engines, annual report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Production engines, annual report. 89... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.125 Production engines, annual report. (a) Upon the Administrator's...

  5. Contamination Control for Thermal Engineers

    NASA Technical Reports Server (NTRS)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  6. Proceedings of the Seventeenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Proceedings of the Seventeenth Annual Software Engineering Workshop are presented. The software Engineering Laboratory (SEL) is an organization sponsored by NASA/Goddard Space Flight Center and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. Topics covered include: the Software Engineering Laboratory; process measurement; software reuse; software quality; lessons learned; and is Ada dying.

  7. Annual Certification Data for Vehicles and Engines

    EPA Pesticide Factsheets

    The Annual Certification Test Results Report (often referred to as Federal Register Test Results Report) includes light-duty vehicle and heavy-duty engine reports of projected emission levels at the end of the useful life of a vehicle.

  8. Third annual symposium on Frontiers of Engineering: Reports on leading edge engineering from the 1997 NAE symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunziker, Janet

    1998-06-01

    This book is the third publication highlighting the presentations of the National Academy of Engineering's (NAE) symposium series, Frontiers of Engineering. The Third Annual NAE Symposium on Frontiers of Engineering was held September 18-20, 1997, at the Beckman Center in Irvine, California. The 101 emerging engineering leaders from industry, academia, and federal laboratories who attended the meeting heard presentations and discussed pioneering research and technical work in a variety of engineering fields. Symposium speakers were asked to prepare extended abstracts of their presentations, and those papers are contained herein. Fifteen papers are organized under the following five headings: biomechanics, sensorsmore » and control for manufacturing processes, safety and security issues, decision-making tools for design and manufacturing, and intelligent transportation systems. Talks focused on such topics as implant design and technology, design and application of optical fiber sensors, quadrupole resonance explosive detection systems, multicriteria evaluation of manufacturing performance, and automated highway systems. The after-dinner speech, which focused on today's rapid pace of change, is also included.« less

  9. Proceedings of the Twenty-Third Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Twenty-third Annual Software Engineering Workshop (SEW) provided 20 presentations designed to further the goals of the Software Engineering Laboratory (SEL) of the NASA-GSFC. The presentations were selected on their creativity. The sessions which were held on 2-3 of December 1998, centered on the SEL, Experimentation, Inspections, Fault Prediction, Verification and Validation, and Embedded Systems and Safety-Critical Systems.

  10. [Comparison Analysis of Economic and Engineering Control of Industrial VOCs].

    PubMed

    Wang, Yu-fei; Liu, Chang-xin; Cheng, Jie; Hao, Zheng-ping; Wang, Zheng

    2015-04-01

    Volatile organic compounds (VOCs) pollutant has become China's major air pollutant in key urban areas like sulfur dioxide, nitrogen oxides and particulate matter. It is mainly produced from industry sectors, and engineering control is one of the most important reduction measures. During the 12th Five-Year Plan, China decides to invest 40 billion RMB to build pollution control projects in key industry sectors with annual emission reduction of 605 000 t x a(-1). It shows that China attaches a great importance to emission reduction by engineering projects and highlights the awareness of engineering reduction technologies. In this paper, a macroeconomic model, namely computable general equilibrium model, (CGE model) was employed to simulate engineering control and economic control (imposing environmental tax). We aim to compare the pros and cons of the two reduction policies. Considering the economic loss of the whole country, the environmental tax has more impacts on the economy system than engineering reduction measures. We suggest that the central government provides 7 500 RMB x t(-1) as subsidy for enterprises in industry sectors to encourage engineering reduction.

  11. TRACE Authored Papers from the First through Ninth Annual Conferences on Rehabilitation Engineering Technology (1977-1986).

    ERIC Educational Resources Information Center

    Brady, Mary; And Others

    Brief papers authored by staff of the Trace Research and Development Center on Communication, Control, and Computer Access for Handicapped Individuals and presented at the first through ninth annual conferences on rehabilitation engineering technology are presented. Papers have the following titles and authors: "The Data Routing Module:…

  12. Proceedings of the Fifteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by GSFC and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. Fifteen papers were presented at the Fifteenth Annual Software Engineering Workshop in five sessions: (1) SEL at age fifteen; (2) process improvement; (3) measurement; (4) reuse; and (5) process assessment. The sessions were followed by two panel discussions: (1) experiences in implementing an effective measurement program; and (2) software engineering in the 1980's. A summary of the presentations and panel discussions is given.

  13. FY2004 SYSTEM ENGINEER PROGRAM MANAGER ANNUAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON, G.J.

    2004-10-29

    During FY 2004, reviews of the FH System Engineer (SE) Program were conducted by the Independent Assessment (IA) Group. The results of these reviews are summarized as a part of this document. Additional reviews were performed by FH Engineering personnel. SE Engineering reviews performed include Periodic Walkdowns (typically, quarterly) by the SEs, a review of System Notebooks by the System Engineer Program Manager (SEPM), annual status report by each SE, and an annual status report by each of the Project Chief Engineers (PCEs). FY 2004 marked the completion of the first round of Vital Safety System assessments. Each of themore » VSSs on the FH VSS list has been evaluated at least once by either the FH Independent Assessment organization or was included as a part of DOE Phase II assessment. Following the completion of the K-Basins Assessment in May 2004, a review of the VSS assessment process was completed. Criteria were developed by FH, and concurred with by RL, to determine the frequency and priority of future VSS assessments. Additional actions have been taken to increase the visibility and emphasis assigned to VSSs. Completion of several Documented Safety Analyses (DSA), in combination with efforts to remove source term materials from several facilities, enabled the number of systems on the FH VSS list to be reduced from 60 at the beginning of FY 2004 to 48 by the end of FY 2004. It is expected that there will be further changes to the FH VSS list based on additional DSA revisions and continued progress towards reduction of source terms across the Hanford Site. Other new VSSs may be added to the list to reflect the relocation of materials away from the River Corridor to interim storage locations on the Central Plateau.« less

  14. SERC 2011 Annual Report

    DTIC Science & Technology

    2011-01-01

    control number. 1. REPORT DATE 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE SERC 2011 Annual Report...2 SERC Operational Accomplishments .................................................................4 An Evolving Role for the... SERC Research Council ................................5 Systems Engineering for an Agile and Lean World ....................................6 Annual

  15. IBC’s 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics International Conferences and the 2012 Annual Meeting of The Antibody Society

    PubMed Central

    Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A.; Proetzel, Gabriele; Yong, May; Begent, Richard H.J.; Reichert, Janice M

    2013-01-01

    The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3–6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3–5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4–5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society’s special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5–6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy. PMID:23575266

  16. 33 CFR 273.17 - Annual budget request.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Annual budget request. 273.17 Section 273.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL § 273.17 Annual budget request. The Aquatic Plant Control Program is a...

  17. Mechanical Engineering Department engineering research: Annual report, FY 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denney, R.M.; Essary, K.L.; Genin, M.S.

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstractsmore » were prepared for each of the 13 reports in this publication. (JDH)« less

  18. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering aremore » now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."« less

  19. High Reliability Engine Control Demonstrated for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    1999-01-01

    For a dual redundant-control system, which is typical for short-haul aircraft, if a failure is detected in a control sensor, the engine control is transferred to a safety mode and an advisory is issued for immediate maintenance action to replace the failed sensor. The safety mode typically results in severely degraded engine performance. The goal of the High Reliability Engine Control (HREC) program was to demonstrate that the neural-network-based sensor validation technology can safely operate an engine by using the nominal closed-loop control during and after sensor failures. With this technology, engine performance could be maintained, and the sensor could be replaced as a conveniently scheduled maintenance action.

  20. Perturbing engine performance measurements to determine optimal engine control settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initialmore » value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.« less

  1. Space shuttle main engine controller

    NASA Technical Reports Server (NTRS)

    Mattox, R. M.; White, J. B.

    1981-01-01

    A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.

  2. Overview of rocket engine control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Musgrave, Jeffrey L.

    1991-01-01

    The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented.

  3. Environmental assessment of combustion modification controls for stationary internal combustion engines. Final report Sep 78-Jul 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lips, H.I.; Gotterba, J.A.; Lim, K.J.

    1981-07-01

    The report gives results of an environmental assessment of combustion modification techniques for stationary internal combustion engines, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effects on emissions of pollutants other than NOx.

  4. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 23.1143 Section 23.1143... Accessories § 23.1143 Engine controls. (a) There must be a separate power or thrust control for each engine... supercharger controls must be arranged to allow— (1) Separate control of each engine and each supercharger; and...

  5. Engine speed control apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, M.; Miyazaki, M.; Nakamura, N.

    1986-11-04

    This patent describes an engine speed control apparatus. The system comprises an actuator for adjusting an engine speed, a first unit for computing a desired engine speed, a second unit for detecting the actual engine speed, and a third unit for detecting the difference between the outputs of the first and second units. The system also includes a fourth unit for computing a control pulse width for the actuator in accordance with the output of the third unit, a fifth unit for generating a control signal, a sixth unit for driving the actuator in response to the output of themore » fifth unit, and a seventh unit for computing an optimal halt time to interrupt the driving of the actuator. The actuator is driven intermittently in conformity in the control pulse width and the halt time.« less

  6. IBC's 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences and the 2012 Annual Meeting of The Antibody Society: December 3-6, 2012, San Diego, CA.

    PubMed

    Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A; Proetzel, Gabriele; Yong, May; Begent, Richard H J; Reichert, Janice M

    2013-01-01

    The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3-6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3-5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4-5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society's special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5-6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy.

  7. 14 CFR 27.1143 - Engine controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...

  8. 14 CFR 29.1143 - Engine controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 29.1143 Section 29.1143... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be arranged...

  9. 14 CFR 27.1143 - Engine controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...

  10. 14 CFR 27.1143 - Engine controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...

  11. 14 CFR 27.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...

  12. 14 CFR 27.1143 - Engine controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...

  13. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  14. Engine control system having speed-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  15. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...

  16. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...

  17. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine controls. 23.1143 Section 23.1143... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1143 Engine controls. (a) There must be a separate power or thrust control for each engine...

  18. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...

  19. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine controls. 23.1143 Section 23.1143... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1143 Engine controls. (a) There must be a separate power or thrust control for each engine...

  20. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  1. Fuel control for gas turbine engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stearns, C.F.; Tutherly, H.W.

    1983-12-27

    The basic gas turbine engine hydromechanical fuel control is adaptable to different engine configurations such as turbofan, turboprop and turboshaft engines by incorporating in the main housing those elements having a commonality to all engine configurations and providing a removable block for each configuration having the necessary control elements and flow passages required for that particular configuration. That is to say, a block with the elements peculiar to a turbofan engine could be replaced by a mating block that includes those elements peculiar to a turboshaft engine in adapting the control for a turboshaft configuration. Similarly another block with thosemore » elements peculiar to a turboprop engine could replace any of the other blocks in adapting the control to a turboprop configuration. Obviously the basic control has the necessary flow passages terminating at the interface with the block and these flow passages mate with corresponding passages in the block.« less

  2. Integrated flight/propulsion control - Adaptive engine control system mode

    NASA Technical Reports Server (NTRS)

    Yonke, W. A.; Terrell, L. A.; Meyers, L. P.

    1985-01-01

    The adaptive engine control system mode (ADECS) which is developed and tested on an F-15 aircraft with PW1128 engines, using the NASA sponsored highly integrated digital electronic control program, is examined. The operation of the ADECS mode, as well as the basic control logic, the avionic architecture, and the airframe/engine interface are described. By increasing engine pressure ratio (EPR) additional thrust is obtained at intermediate power and above. To modulate the amount of EPR uptrim and to prevent engine stall, information from the flight control system is used. The performance benefits, anticipated from control integration are shown for a range of flight conditions and power settings. It is found that at higher altitudes, the ADECS mode can increase thrust as much as 12 percent, which is used for improved acceleration, improved turn rate, or sustained turn angle.

  3. A fault tolerant 80960 engine controller

    NASA Technical Reports Server (NTRS)

    Reichmuth, D. M.; Gage, M. L.; Paterson, E. S.; Kramer, D. D.

    1993-01-01

    The paper describes the design of the 80960 Fault Tolerant Engine Controller for the supervision of engine operations, which was designed for the NASA Marshall Space Center. Consideration is given to the major electronic components of the controller, including the engine controller, effectors, and the sensors, as well as to the controller hardware, the controller module and the communications module, and the controller software. The architecture of the controller hardware allows modifications to be made to fit the requirements of any new propulsion systems. Multiple flow diagrams are presented illustrating the controller's operations.

  4. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  5. Proceedings of the Annual Tri-Service Meeting for Aircraft Engine Monitoring and Diagnostics (7th) Held on 5-7 December 1978, at Arnold Engineering Development Center, Arnold AFS, Tennessee

    DTIC Science & Technology

    1979-07-01

    Annual Tri-Service meeting on Aircraft Engine Monitoring and Diagnostics held last fall. 2. For all turbojet and turbofan engines , low cycle fatigue...7 December 1978. Each presentation contains an over-, view of the results and conclusions of the aircraft turbine engine diagnostic efforts that have... AIRCRAFT ENGINE 2-41 MONITORING AND DIAGNOSTIC MEETING T-38 EHMS UPDATE 2-43 A-10 TURBINE ENGINE EVALUATION (TEMS) 2-47 USAF TERMINOLOGY FOR SCORING

  6. An environmental decision framework applied to marine engine control technologies.

    PubMed

    Corbett, James J; Chapman, David

    2006-06-01

    This paper develops a decision framework for considering emission control technologies on marine engines, informed by standard decision theory, with an open structure that may be adapted by operators with specific vessel and technology attributes different from those provided here. Attributes relate objectives important to choosing control technologies with specific alternatives that may meet several of the objectives differently. The transparent framework enables multiple stakeholders to understand how different subjective judgments and varying attribute properties may result in different technology choices. Standard scoring techniques ensure that attributes are not biased by subjective scoring and that weights are the primary quantitative input where subjective preferences are exercised. An expected value decision structure is adopted that considers probabilities (likelihood) that a given alternative can meet its claims; alternative decision criteria are discussed. Capital and annual costs are combined using a net present value approach. An iterative approach is advocated that allows for screening and disqualifying alternatives that do not meet minimum conditions for acceptance, such as engine warranty or U.S. Coast Guard requirements. This decision framework assists vessel operators in considering explicitly important attributes and in representing choices clearly to other stakeholders concerned about reducing air pollution from vessels. This general decision structure may also be applied similarly to other environmental controls in marine applications.

  7. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique

  8. Critical Interfaces for Engineers and Scientists, 4 Appraisals. Proceedings of the Annual Joint Meeting of the Engineering Manpower Commission of Engineers Joint Council and the Scientific Manpower Commission, New York, May 18, 1967.

    ERIC Educational Resources Information Center

    Alden, John D.

    Contained in this booklet are the speeches given at the annual joint meeting of the Engineering Manpower Commission and the Scientific Manpower Commission. Each dealt with some problem aspect of the engineer-scientist interface. The presentation by Rear Admiral W. C. Hushing of the U. S. Navy was entitled "The Impact of High Performance Science…

  9. Intelligent Life-Extending Controls for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Chen, Philip; Jaw, Link

    2005-01-01

    Aircraft engine controllers are designed and operated to provide desired performance and stability margins. The purpose of life-extending-control (LEC) is to study the relationship between control action and engine component life usage, and to design an intelligent control algorithm to provide proper trade-offs between performance and engine life usage. The benefit of this approach is that it is expected to maintain safety while minimizing the overall operating costs. With the advances of computer technology, engine operation models, and damage physics, it is necessary to reevaluate the control strategy fro overall operating cost consideration. This paper uses the thermo-mechanical fatigue (TMF) of a critical component to demonstrate how an intelligent engine control algorithm can drastically reduce the engine life usage with minimum sacrifice in performance. A Monte Carlo simulation is also performed to evaluate the likely engine damage accumulation under various operating conditions. The simulation results show that an optimized acceleration schedule can provide a significant life saving in selected engine components.

  10. Engine control techniques to account for fuel effects

    DOEpatents

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  11. Automobile Engine Control Parameters Study : Volume 1. Summary and Status of Domestic Engine Control Practice

    DOT National Transportation Integrated Search

    1977-02-01

    This report contains the results of a study to evaluate automobile engine control parameters and their effects on vehicle fuel economy and emissions. Volume I presents detailed technical information on the engine control practices used by selected do...

  12. The Case for Distributed Engine Control in Turbo-Shaft Engine Systems

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.

    2009-01-01

    The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.

  13. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  14. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  15. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  16. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  17. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  18. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Yurkovich, S.; Hill, J. P.; Kingler, T. A.

    1983-01-01

    The development of models of tensor type for a digital simulation of the quiet, clean safe engine (QCSE) gas turbine engine; the extension, to nonlinear multivariate control system design, of the concepts of total synthesis which trace their roots back to certain early investigations under this grant; the role of series descriptions as they relate to questions of scheduling in the control of gas turbine engines; the development of computer-aided design software for tensor modeling calculations; further enhancement of the softwares for linear total synthesis, mentioned above; and calculation of the first known examples using tensors for nonlinear feedback control are discussed.

  19. A Roadmap for Aircraft Engine Life Extending Control

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2001-01-01

    The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.

  20. Intelligent Life-Extending Controls for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  1. Diesel engine torsional vibration control coupling with speed control system

    NASA Astrophysics Data System (ADS)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen

    2017-09-01

    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  2. Engine control system having pressure-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  3. Stirling Engine Controller

    NASA Technical Reports Server (NTRS)

    Blaze, Gina M.

    2004-01-01

    and also safely shutdown the engines. The test will last for a period of 8000 to 9000 hours. Other types of tests that have been performed are: performance mapping, controller development, launch environment, and vibration emissions testing. Currently, the thermo-mechanical system branch is housing a RG-350, a stirling convertor. The convertor was used in previous tests such as a Hall Thruster test, world s first integrated test of a dynamic power system with electric propulsion. Another test performed was to conclude if free piston stirling convertors can be synchronized for vibration balancing, with no thermodynamic or electrical connections and not cause both to shutdown if one failed. The ability to reduce vibration by synchronizing convertor operation but still be able to operate when one partner fails is pertinent in space and terrestrial applications. The convertor is now being brought back into operation and a controller is in the process of being developed. This convertor will be used as a testbed for new controllers. I worked with Mary Ellen Roth on the electric engineering aspects of the RG-350. My main goal was to enhance the data collection process. I worked on different aspects of the RG-350, with a main focus on the engine controller. I drew a schematic of the wire connections in the engine controller, using PCB Express, so that a plan could be devised to connect the power meter properly between the output of the engine and the engine controller. I measured the power using two different instruments: Valhalla Scientific power meter and Ohio Semitronics power measurement device. The convertor is connected to an Agilent 34970A Data Acquisition/Switch Unit, which allows the user to measure, record, and monitor voltage, current, frequency, and temperature. I assisted in preparing the Data Acquisition for general operation. I also helped test a panel of transducers, which will be placed in the rack that powers and monitors the convertor.

  4. Concepts for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Thomas, Randy; Saus, Joseph

    2007-01-01

    Gas turbine engines for aero-propulsion systems are found to be highly optimized machines after over 70 years of development. Still, additional performance improvements are sought while reduction in the overall cost is increasingly a driving factor. Control systems play a vitally important part in these metrics but are severely constrained by the operating environment and the consequences of system failure. The considerable challenges facing future engine control system design have been investigated. A preliminary analysis has been conducted of the potential benefits of distributed control architecture when applied to aero-engines. In particular, reductions in size, weight, and cost of the control system are possible. NASA is conducting research to further explore these benefits, with emphasis on the particular benefits enabled by high temperature electronics and an open-systems approach to standardized communications interfaces.

  5. 46 CFR 184.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  6. 46 CFR 184.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  7. 46 CFR 184.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  8. 46 CFR 184.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  9. 46 CFR 184.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  10. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  11. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1979-01-01

    The research is classified in two categories: (1) the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a set-point, and (2) the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. Progress in the first category included the extension of CARDIAD (Complex Acceptability Region for Diagonal Dominance) methods developed with the help of the grant to the case of engine models with four inputs and four outputs. A suitable bounding procedure for the dominance function was determined. Progress in the second category had its principal focus on automatic nonlinear model generation. Simulations of models produced satisfactory results where compared with the NASA DYNGEN digital engine deck.

  12. Life-Extending Control for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Te-Huei

    2002-01-01

    Current aircraft engine controllers are designed and operated to provide both performance and stability margins. However, the standard method of operation results in significant wear and tear on the engine and negatively affects the on-wing life--the time between cycles when the engine must be physically removed from the aircraft for maintenance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward a new control concept that will include engine life usage as part of the control function. The resulting controller will be able to significantly extend the engine's on-wing life with little or no impact on engine performance and operability. The new controller design will utilize damage models to estimate and mitigate the rate and overall accumulation of damage to critical engine parts. The control methods will also provide a means to assess tradeoffs between performance and structural durability on the basis of mission requirements and remaining engine life. Two life-extending control methodologies were studied to reduce the overall life-cycle cost of aircraft engines. The first methodology is to modify the baseline control logic to reduce the thermomechanical fatigue (TMF) damage of cooled stators during acceleration. To accomplish this, an innovative algorithm limits the low-speed rotor acceleration command when the engine has reached a threshold close to the requested thrust. This algorithm allows a significant reduction in TMF damage with only a very small increase in the rise time to reach the commanded rotor speed. The second methodology is to reduce stress rupture/creep damage to turbine blades and uncooled stators by incorporating an engine damage model into the flight mission. Overall operation cost is reduced by an optimization among the flight time, fuel consumption, and component damages. Recent efforts have focused on applying life-extending control technology to an existing commercial turbine engine

  13. Engine control system having fuel-based adjustment

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  14. Internal combustion engine and method for control

    DOEpatents

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  15. Advanced Control Considerations for Turbofan Engine Design

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  16. Propulsion Controls Modeling for a Small Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  17. Nonlinear engine model for idle speed control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livshiz, M.; Sanvido, D.J.; Stiles, S.D.

    1994-12-31

    This paper describes a nonlinear model of an engine used for the design of idle speed control and prediction in a broad range of idle speeds and operational conditions. Idle speed control systems make use of both spark advance and the idle air actuator to control engine speed for improved response relative to variations in the target idle speed due to load disturbances. The control system at idle can be presented by a multiple input multiple output (MIMO) nonlinear model. Information of nonlinearities helps to improve performance of the system over the whole range of engine speeds. A proposed simplemore » nonlinear model of the engine at idle was applied for design of optimal controllers and predictors for improved steady state, load rejection and transition from and to idle. This paper describes vehicle results of engine speed prediction based on the described model.« less

  18. Automotive Control Systems: For Engine, Driveline, and Vehicle

    NASA Astrophysics Data System (ADS)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  19. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Leake, R. J.; Sain, M. K.

    1978-01-01

    General goals of the research were classified into two categories. The first category involves the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a quiescent point. The second category involves the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. In the frequency domain category, works were published in the areas of low-interaction design, polynomial design, and multiple setpoint studies. A number of these ideas progressed to the point at which they are starting to attract practical interest. In the nonlinear category, advances were made both in engine modelling and in the details associated with software for determination of time optimal controls. Nonlinear models for a two spool turbofan engine were expanded and refined; and a promising new approach to automatic model generation was placed under study. A two time scale scheme was developed to do two-dimensional dynamic programming, and an outward spiral sweep technique has greatly speeded convergence times in time optimal calculations.

  20. Highlights From the Third Annual Mayo Clinic Conference on Systems Engineering and Operations Research in Health Care

    PubMed Central

    Kamath, Janine R. A.; Osborn, John B.; Roger, Véronique L.; Rohleder, Thomas R.

    2011-01-01

    In August 2010, the Third Annual Mayo Clinic Conference on Systems Engineering and Operations Research in Health Care was held. The continuing mission of the conference is to gather a multidisciplinary group of systems engineers, clinicians, administrators, and academic professors to discuss the translation of systems engineering methods to more effective health care delivery. Education, research, and practice were enhanced via a mix of formal presentations, tutorials, and informal gatherings of participants with diverse backgrounds. Although the conference promotes a diversity of perspectives and methods, participants are united in their desire to find ways in which systems engineering can transform health care, especially in the context of health care reform and other significant changes affecting the delivery of health care. PMID:21803959

  1. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  2. Engine control system having fuel-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  3. Women in Engineering Program Advocates Network (WEPAN): Evaluation of the seventh annual conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, S.G.

    1996-08-01

    The primary goals of the 1996 WEPAN Conference were to: (1) Conduct technical and programmatic seminars for institutions desiring to initiate, replicate, or expand women in engineering programs; (2) Provide assistance in fundraising and grant writing; (3) Profile women in engineering programs of excellence; (4) Sponsor inspiring, knowledgeable and motivational keynote speakers; and, (5) Offer a series of workshops focused on topics such as: establishing partnerships with industry, current research findings, retention strategies, issues affecting special populations, and early intervention techniques. In an effort to provide greater access for women to engineering careers, women in engineering program directors at Purduemore » University, Stevens Institute of Technology and the University of Washington joined together in 1990 to establish WEPAN, a national network of individuals interested in the recruitment, admission, retention, and graduation of women engineering students. This is the seventh year of operation. Success of this effort has been reflected in numerous ways: increased membership in the organization; increased number of women in engineering programs; increased number of women graduating in engineering; and grants from the U.S. Department of Energy, the National Science Foundation, the Alfred P. Sloan Foundation, the AT&T Foundation, and many other corporations to carry out the goals of WEPAN. The Seventh Annual Women in Engineering Conference entitled, Capitalizing on Today`s Challenges, was held in Denver, Colorado on June 1-4, 1996 at the Hyatt Regency. The conference brought together representatives from academia, government, and industry and examined current issues and initiatives for women in technology, science, and education. Building on the successes of the previous conferences, the seventh conference offered a new variety of speakers and topics.« less

  4. Recent Technology Advances in Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis

    2017-01-01

    This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.

  5. Distributed Control of Turbofan Engines

    DTIC Science & Technology

    2009-08-01

    performance of the engine. Thus the Full Authority Digital Engine Controller ( FADEC ) still remains the central arbiter of the engine’s dynamic behavior...instance, if the control laws are not distributed the dependence on the FADEC remains high, and system reliability can only be insured through many...if distributed computing is used at the local level and only coordinated by the FADEC . Such an architecture must be studied in the context of noisy

  6. Intelligent Engine Systems: Adaptive Control

    NASA Technical Reports Server (NTRS)

    Gibson, Nathan

    2008-01-01

    We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.

  7. Integrated Tools for Future Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  8. Performance Benefits for a Turboshaft Engine Using Nonlinear Engine Control Technology Investigated

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2004-01-01

    The potential benefits of nonlinear engine control technology applied to a General Electric T700 helicopter engine were investigated. This technology is being developed by the U.S. Navy SPAWAR Systems Center for a variety of applications. When used as a means of active stability control, nonlinear engine control technology uses sensors and small amounts of injected air to allow compressors to operate with reduced stall margin, which can improve engine pressure ratio. The focus of this study was to determine the best achievable reduction in fuel consumption for the T700 turboshaft engine. A customer deck (computer code) was provided by General Electric to calculate the T700 engine performance, and the NASA Glenn Research Center used this code to perform the analysis. The results showed a 2- to 5-percent reduction in brake specific fuel consumption (BSFC) at the three Sikorsky H-60 helicopter operating points of cruise, loiter, and hover.

  9. JPL Contamination Control Engineering

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  10. A reusable rocket engine intelligen control

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Lorenzo, Carl F.

    1988-01-01

    An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts to future reusable rocket engine systems.

  11. A reusable rocket engine intelligent control

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Lorenzo, Carl F.

    1988-01-01

    An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts ot future reusable rocket engine systems.

  12. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  13. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  14. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  15. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2015-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  16. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  17. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  18. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  19. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  20. Stirling engine power control

    DOEpatents

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  1. Control Design for an Advanced Geared Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 pound-force thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 feet and from 0 to 0.8 Mach. The purpose of this paper is to review the engine control design process for an advanced turbofan engine configuration. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding operational limits.

  2. Hydrogen-methane fuel control systems for turbojet engines

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. S.; Bennett, G. W.

    1973-01-01

    Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.

  3. Engineering Technical Support Center Annual Report Fiscal ...

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency (EPA or Agency) Office of Research and Development (ORD) created the Engineering Technical Support Center (ETSC) in 1987, one of several technical support centers created as part of the Technical Support Project (TSP). ETSC provides engineering expertise to Agency program and regional offices and remediation teams working at contaminated sites across the country. The ETSC is operated within ORD’s Land Remediation and Pollution Control Division (LRPCD) of the National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio. The ETSC’s mission is to provide site-specific scientific and engineering technical support to Remedial Project Managers, On-Scene Coordinators, and other remediation personnel at contaminated sites. This allows local, regional, or national authorities to work more quickly, efficiently, and cost effectively, while also increasing the technical experience of the remediation team. Since its inception, the ETSC has supported countless projects across all EPA Regions in almost all states and territories. This report highlights significant projects the ETSC supported in fiscal year 2015 (FY15). These projects addressed an array of environmental scenarios, such as remote mining contamination, expansive landfill waste, cumulative impacts from multiple contamination sources, and persistent threats from abandoned industrial sites. Constructing and testing new and innovative treatment technol

  4. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  5. On spacecraft maneuvers control subject to propellant engine modes.

    PubMed

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Reaction Control Engine for Space Launch Initiative

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  7. Fifth Annual Workshop on the Application of Probabilistic Methods for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Briscoe, Victoria (Compiler)

    2002-01-01

    These are the proceedings of the 5th Annual FAA/Air Force/NASA/Navy Workshop on the Probabilistic Methods for Gas Turbine Engines hosted by NASA Glenn Research Center and held at the Holiday Inn Cleveland West. The history of this series of workshops stems from the recognition that both military and commercial aircraft engines are inevitably subjected to similar design and manufacturing principles. As such, it was eminently logical to combine knowledge bases on how some of these overlapping principles and methodologies are being applied. We have started the process by creating synergy and cooperation between the FAA, Air Force, Navy, and NASA in these workshops. The recent 3-day workshop was specifically designed to benefit the development of probabilistic methods for gas turbine engines by addressing recent technical accomplishments and forging new ideas. We accomplished our goals of minimizing duplication, maximizing the dissemination of information, and improving program planning to all concerned. This proceeding includes the final agenda, abstracts, presentations, and panel notes, plus the valuable contact information from our presenters and attendees. We hope that this proceeding will be a tool to enhance understanding of the developers and users of probabilistic methods. The fifth workshop doubled its attendance and had the success of collaboration with the many diverse groups represented including government, industry, academia, and our international partners. So, "Start your engines!" and utilize these proceedings towards creating safer and more reliable gas turbine engines for our commercial and military partners.

  8. F-15 digital electronic engine control system description

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.

  9. Digital controls for gas turbine engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.

    1987-01-01

    This paper begins by first describing the simplistic requirements of a gas turbine engine; how these requirements are best satisfied, frequently with the aid of electronic control systems; what the trade-off between integrity and reliability means; and finally, but forming a major section, this paper describes in qualitative detail a few of the current programmes for Full Authority Digital Engine Controls (FADEC).

  10. Development of HIDEC adaptive engine control systems

    NASA Technical Reports Server (NTRS)

    Landy, R. J.; Yonke, W. A.; Stewart, J. F.

    1986-01-01

    The purpose of NASA's Highly Integrated Digital Electronic Control (HIDEC) flight research program is the development of integrated flight propulsion control modes, and the evaluation of their benefits aboard an F-15 test aircraft. HIDEC program phases are discussed, with attention to the Adaptive Engine Control System (ADECS I); this involves the upgrading of PW1128 engines for operation at higher engine pressure ratios and the production of greater thrust. ADECS II will involve the development of a constant thrust mode which will significantly reduce turbine operating temperatures.

  11. Idling speed control system of an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, M.; Ishii, M.; Kako, H.

    1986-09-16

    This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less

  12. Control apparatus for hot gas engine

    DOEpatents

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  13. Use of Soft Computing Technologies For Rocket Engine Control

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  14. The Need and Challenges for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2013-01-01

    The presentation describes the challenges facing the turbine engine control system. These challenges are primarily driven by a dependence on commercial electronics and an increasingly severe environment on board the turbine engine. The need for distributed control is driven by the need to overcome these system constraints and develop a new growth path for control technology and, as a result, improved turbine engine performance.

  15. Real-time Simulation of Turboprop Engine Control System

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  16. Gas turbine engine control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idelchik, M.S.

    1991-02-19

    This paper describes a method for controlling a gas turbine engine. It includes receiving an error signal and processing the error signal to form a primary control signal; receiving at least one anticipatory demand signal and processing the signal to form an anticipatory fuel control signal.

  17. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...

  18. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...

  19. Mixed mode control method and engine using same

    DOEpatents

    Kesse, Mary L [Peoria, IL; Duffy, Kevin P [Metamora, IL

    2007-04-10

    A method of mixed mode operation of an internal combustion engine includes the steps of controlling a homogeneous charge combustion event timing in a given engine cycle, and controlling a conventional charge injection event to be at least a predetermined time after the homogeneous charge combustion event. An internal combustion engine is provided, including an electronic controller having a computer readable medium with a combustion timing control algorithm recorded thereon, the control algorithm including means for controlling a homogeneous charge combustion event timing and means for controlling a conventional injection event timing to be at least a predetermined time from the homogeneous charge combustion event.

  20. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness ofmore » combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.« less

  1. Dedicated EGR engine with dynamic load control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayman, Alan W.; McAlpine, Robert S.; Keating, Edward J.

    An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.

  2. Dynamic control of a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  3. Energy Efficient Engine: Control system component performance report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Bennett, G. W.

    1984-01-01

    An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.

  4. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  5. Alternatives for Jet Engine Control. Volume 1: Modelling and Control Design with Jet Engine Data

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1985-01-01

    This document compiles a comprehensive list of publications supported by, or related to, National Aeronautics and Space Administration Grant NSG-3048, entitled "Alternatives for Jet Engine Control". Dr. Kurt Seldner was the original Technical Officer for the grant, at Lewis Research Center. Dr. Bruce Lehtinen was the final Technical Officer. At the University of Notre Dame, Drs. Michael K. Sain and R. Jeffrey Leake were the original Project Directors, with Dr. Sain becoming the final Project Director. Publications cover work over a ten-year period. The Final Report is divided into two parts. Volume i, "Modelling and Control Design with Jet Engine Data", follows in this report. Volume 2, "Modelling and Control Design with Tensors", has been bound separately.

  6. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOEpatents

    Flowers, Daniel L.

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  7. 40 CFR 60.2151 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air pollution control device inspection? 60.2151 Section 60.2151 Protection of Environment... annual air pollution control device inspection? On an annual basis (no more than 12 months following the previous annual air pollution control device inspection), you must complete the air pollution control...

  8. 40 CFR 60.2151 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspection? 60.2151 Section 60.2151 Protection of Environment... annual air pollution control device inspection? On an annual basis (no more than 12 months following the previous annual air pollution control device inspection), you must complete the air pollution control...

  9. Role of measurement in feedback-controlled quantum engines

    NASA Astrophysics Data System (ADS)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  10. Environmental Release Prevention and Control Plan (ERP and CP) annual review and update for 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, G.T.; Mamatey, A.; Arnett, M.

    1993-10-05

    In the Environmental Release Prevention and Control Plan (ERP and CP), WSRC made a commitment to conduct the following follow-up activities and actions: (1) Complete the action items developed in response to the findings and recommendation of the Environmental Release Prevention Taskteam (WSRC-RP-92-356). (2) Complete all batch and continuous release procedure revisions to incorporate the attributes that WSRC senior management required of each procedure. (3) DOE-SR Assistance Managers and WSRC counterparts to reach consensus and closure on the identified engineered solutions documented in the ERP and CP, develop and drive implementation of facility changes per the agreements. (4) Continue tomore » analyze releases and monitor performance in accordance with the ERP and CP, and utilize the ALARA Release Guides Committee to drive improvements. (5) Conduct annual re-evaluations of the cost benefit analyses of the identified engineered solutions, and identify new options and alternatives for each outfall in response to site mission and facility changes. This report documents the efforts that have been completed over the past year in response to these commitments.« less

  11. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.

  12. Enhanced Engine Control for Emergency Operation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2012-01-01

    C-MAPSS40k engine simulation has been developed and is available to the public. The authenticity of the engine performance and controller enabled the development of realistic enhanced control modes through controller modification alone. Use of enhanced control modes improved stability and control of an impaired aircraft. - Fast Response is useful for manual manipulation of the throttles - Use of Fast Response improved stability as part of a yaw rate feedback system. - Use of Overthrust shortened takeoff distance, but was generally useful in flight, too. Initial lack of pilot familiarity resulted in discomfort, especially with yaw rate feedback, but that was the only drawback, overall the pilot found the enhanced modes very helpful.

  13. Wind Turbine Modeling Overview for Control Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, P. J.; Butterfield, S. B.

    2009-01-01

    Accurate modeling of wind turbine systems is of paramount importance for controls engineers seeking to reduce loads and optimize energy capture of operating turbines in the field. When designing control systems, engineers often employ a series of models developed in the different disciplines of wind energy. The limitations and coupling of each of these models is explained to highlight how these models might influence control system design.

  14. Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing engine and control simulation results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.

  15. Control Design for a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  16. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section... flight. (b) In the case of turbine engine installations, a means of stopping rotation need be provided...

  17. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...

  18. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...

  19. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...

  20. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...

  1. Closed Loop Control of Automotive Engines

    DOT National Transportation Integrated Search

    1981-12-01

    Internal combustion engine economy and emissions are known to be sensitive to changes in engine control variables. Two of the most important variables are fuel/air ratio (f/a) and spark advance. These variables are affected by environmental changes, ...

  2. Tracing And Control Of Engineering Requirements

    NASA Technical Reports Server (NTRS)

    Turner, Philip R.; Stoller, Richard L.; Neville, Ted; Boyle, Karen A.

    1991-01-01

    TRACER (Tracing and Control of Engineering Requirements) is data-base/word-processing software system created to document and maintain order of both requirements and descriptions associated with engineering project. Implemented on IBM PC under PC-DOS. Written with CLIPPER.

  3. The Control System for the X-33 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey

    1998-01-01

    The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.

  4. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  5. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1984-01-01

    The technical progress of researches Alternatives for Jet Engine Control is reported. A numerical study employing feedback tensors for optimal control of nonlinear systems was completed. It is believed that these studies are the first of their kind. State regulation, with a decrease in control power is demonstrated. A detailed treatment follows.

  6. An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Novik, David; Otto, Edward W.

    1947-01-01

    Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.

  7. 14 CFR 29.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... means of controlling its engine. (d) Each fluid injection control other than fuel system control must be in the corresponding power control. However, the injection system pump may have a separate control. (e) If a power control incorporates a fuel shutoff feature, the control must have a means to prevent...

  8. 14 CFR 29.1143 - Engine controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... means of controlling its engine. (d) Each fluid injection control other than fuel system control must be in the corresponding power control. However, the injection system pump may have a separate control. (e) If a power control incorporates a fuel shutoff feature, the control must have a means to prevent...

  9. 14 CFR 29.1143 - Engine controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... means of controlling its engine. (d) Each fluid injection control other than fuel system control must be in the corresponding power control. However, the injection system pump may have a separate control. (e) If a power control incorporates a fuel shutoff feature, the control must have a means to prevent...

  10. 14 CFR 29.1143 - Engine controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... means of controlling its engine. (d) Each fluid injection control other than fuel system control must be in the corresponding power control. However, the injection system pump may have a separate control. (e) If a power control incorporates a fuel shutoff feature, the control must have a means to prevent...

  11. Propulsion Controls, 1979. [air breathing engine control

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The state of the art of multivariable engine control is examined in order to determine future needs and problem areas and to establish the appropriate roles of government, industries, and universities in addressing these problems.

  12. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  13. Diagnostics for Hypersonic Engine Control

    DTIC Science & Technology

    2015-02-01

    modeling efforts and/or lead to the development of sensors that can be used as part of scramjet engine control strategies. Activities included work on...of a model scramjet engine cannot rely on the presence of water. Instead, light sources operating at wavelengths resonant with molecular oxygen are...transmitted beam amplitude fluctuations (scintillation). Frequency axis is normalized. Figure 3. Oxygen absorption feature recorded using direct

  14. Control Room at the NACA’s Rocket Engine Test Facility

    NASA Image and Video Library

    1957-05-21

    Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.

  15. Control Design for an Advanced Geared Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.

  16. Communication Needs Assessment for Distributed Turbine Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Behbahani, Alireza R.

    2008-01-01

    Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.

  17. 40 CFR 60.2716 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air pollution control device inspection? 60.2716 Section 60.2716 Protection of Environment... Requirements § 60.2716 By what date must I conduct the annual air pollution control device inspection? On an annual basis (no more than 12 months following the previous annual air pollution control device...

  18. 40 CFR 60.2151 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air pollution control device inspection? 60.2151 Section 60.2151 Protection of Environment... Compliance Requirements § 60.2151 By what date must I conduct the annual air pollution control device inspection? On an annual basis (no more than 12 months following the previous annual air pollution control...

  19. 40 CFR 60.2151 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air pollution control device inspection? 60.2151 Section 60.2151 Protection of Environment... Compliance Requirements § 60.2151 By what date must I conduct the annual air pollution control device inspection? On an annual basis (no more than 12 months following the previous annual air pollution control...

  20. Distributed Control Architecture for Gas Turbine Engine. Chapter 4

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Garg, Sanjay

    2009-01-01

    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  1. HIDEC adaptive engine control system flight evaluation results

    NASA Technical Reports Server (NTRS)

    Yonke, W. A.; Landy, R. J.; Stewart, J. F.

    1987-01-01

    An integrated flight propulsion control mode, the Adaptive Engine Control System (ADECS), has been developed and flight tested on an F-15 aircraft as part of the NASA Highly Integrated Digital Electronic Control program. The ADECS system realizes additional engine thrust by increasing the engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated using a predictor scheme for angle-of-attack and sideslip angle. Substantial improvement in aircraft and engine performance was demonstrated, with a 16 percent rate of climb increase, a 14 percent reduction in time to climb, and a 15 percent reduction in time to accelerate. Significant EPR uptrim capability was found with angles-of-attack up to 20 degrees.

  2. Automobile Engine Control Parameters Study : Volume 2. Status of Foreign Engine Control Practices.

    DOT National Transportation Integrated Search

    1977-02-01

    The report contains the results of a study to evaluate automobile engine control parameters and their effects on vehicle fuel economy and emissions. Volume II treats selected foreign manufacturers. The principal topics reviewed for the twenty-eight e...

  3. Tracking and Control of Gas Turbine Engine Component Damage/Life

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  4. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab presents on Metabolic engineering of Clostridium thermocellum for biofuel production at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, CA.

  5. Gas turbine engine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. S. (Inventor)

    1973-01-01

    A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.

  6. Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A digital electronic control was combined with conventional hydromechanical components to operate the four controlled variables on the under-the-wing engine: fuel flow, fan blade pitch, fan exhaust area, and core compressor stator angles. The engine and control combination offers improvements in noise, pollution, thrust response, operational monitoring, and pilot workload relative to current engines.

  7. Pacific Northwest Laboratory annual report for 1979 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health, and safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baalman, R.W.; Dotson, C.W.

    1980-02-01

    Part 5 of the 1979 Annual Report to the Department of Energy Assistant Secretary for the Environment presents Pacific Northwest Laboratory's progress on work performed for the Office of Technology Impacts, the Office of Environmental Compliance and Overview, and the Office of Health and Environmental Research. The report is in four sections, corresponding to the program elements: technology impacts, environmental control engineering, operational and environmental compliance, and human health studies. In each section, articles describe progress made during FY 1979 on individual projects.

  8. Epidemiologic surveillance. Annual report for Idaho National Engineering Laboratory 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Idaho National Engineering Laboratory are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 17-85 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and paymore » status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.« less

  9. Jet Engine Control Using Ethernet with a BRAIN (Postprint)

    DTIC Science & Technology

    2008-07-01

    current communications may be mitigated. 15. SUBJECT TERMS BRAIN, Braided Ring Availability Integrity Network, Gas turbine, FADEC , disturbed...urrent state of the art engine controls have converged on the notion of the Full Authority Digital Engine Control ( FADEC ), which consists of a centralized...is completely dependent on the proper operation of the controller. In current systems, the FADEC is often located on the relatively cool engine fan

  10. Emergency flight control system using one engine and fuel transfer

    NASA Technical Reports Server (NTRS)

    Burcham, Jr., Frank W. (Inventor); Burken, John J. (Inventor); Le, Jeanette (Inventor)

    2000-01-01

    A system for emergency aircraft control uses at least one engine and lateral fuel transfer that allows a pilot to regain control over an aircraft under emergency conditions. Where aircraft propulsion is available only through engines on one side of the aircraft, lateral fuel transfer provides means by which the center of gravity of the aircraft can be moved over to the wing associated with the operating engine, thus inducing a moment that balances the moment from the remaining engine, allowing the pilot to regain control over the aircraft. By implementing the present invention in flight control programming associated with a flight control computer (FCC), control of the aircraft under emergency conditions can be linked to the yoke or autopilot knob of the aircraft. Additionally, the center of gravity of the aircraft can be shifted in order to effect maneuvers and turns by spacing such center of gravity either closer to or farther away from the propelling engine or engines. In an alternative embodiment, aircraft having a third engine associated with the tail section or otherwise are accommodated and implemented by the present invention by appropriately shifting the center of gravity of the aircraft. Alternatively, where a four-engine aircraft has suffered loss of engine control on one side of the plane, the lateral fuel transfer may deliver the center of gravity closer to the two remaining engines. Differential thrust between the two can then control the pitch and roll of the aircraft in conjunction with lateral fuel transfer.

  11. Engineering Documentation and Data Control

    NASA Technical Reports Server (NTRS)

    Matteson, Michael J.; Bramley, Craig; Ciaruffoli, Veronica

    2001-01-01

    Mississippi Space Services (MSS) the facility services contractor for NASA's John C. Stennis Space Center (SSC), is utilizing technology to improve engineering documentation and data control. Two identified improvement areas, labor intensive documentation research and outdated drafting standards, were targeted as top priority. MSS selected AutoManager(R) WorkFlow from Cyco software to manage engineering documentation. The software is currently installed on over 150 desctops. The outdated SSC drafting standard was written for pre-CADD drafting methods, in other words, board drafting. Implementation of COTS software solutions to manage engineering documentation and update the drafting standard resulted in significant increases in productivity by reducing the time spent searching for documents.

  12. Potential of Diesel Engine, Diesel Engine Design Concepts, Control Strategy and Implementation

    DOT National Transportation Integrated Search

    1980-03-01

    Diesel engine design concepts and control system strategies are surveyed with application to passenger cars and light trucks. The objective of the study is to indicate the fuel economy potential of the technologies investigated. The engine design par...

  13. Gas turbine engine control system

    NASA Technical Reports Server (NTRS)

    Idelchik, Michael S. (Inventor)

    1991-01-01

    A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal.

  14. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, C.; Crook, J.

    1998-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.

  15. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  16. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...

  17. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...

  18. Standard Reference Specimens in Quality Control of Engineering Surfaces

    PubMed Central

    Song, J. F.; Vorburger, T. V.

    1991-01-01

    In the quality control of engineering surfaces, we aim to understand and maintain a good relationship between the manufacturing process and surface function. This is achieved by controlling the surface texture. The control process involves: 1) learning the functional parameters and their control values through controlled experiments or through a long history of production and use; 2) maintaining high accuracy and reproducibility with measurements not only of roughness calibration specimens but also of real engineering parts. In this paper, the characteristics, utilizations, and limitations of different classes of precision roughness calibration specimens are described. A measuring procedure of engineering surfaces, based on the calibration procedure of roughness specimens at NIST, is proposed. This procedure involves utilization of check specimens with waveform, wavelength, and other roughness parameters similar to functioning engineering surfaces. These check specimens would be certified under standardized reference measuring conditions, or by a reference instrument, and could be used for overall checking of the measuring procedure and for maintaining accuracy and agreement in engineering surface measurement. The concept of “surface texture design” is also suggested, which involves designing the engineering surface texture, the manufacturing process, and the quality control procedure to meet the optimal functional needs. PMID:28184115

  19. Digital electronic engine control history

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.

    1984-01-01

    Full authority digital electronic engine controls (DEECs) were studied, developed, and ground tested because of projected benefits in operability, improved performance, reduced maintenance, improved reliability, and lower life cycle costs. The issues of operability and improved performance, however, are assessed in a flight test program. The DEEC on a F100 engine in an F-15 aircraft was demonstrated and evaluated. The events leading to the flight test program are chronicled and important management and technical results are identified.

  20. Sea-level evaluation of digitally implemented turbojet engine control functions

    NASA Technical Reports Server (NTRS)

    Arpasi, D. J.; Cwynar, D. S.; Wallhagen, R. E.

    1972-01-01

    The standard hydromechanical control system of a turbojet engine was replaced with a digital control system that implemented the same control laws. A detailed discussion of the digital control system in use with the engine is presented. The engine was operated in a sea-level test stand. The effects of control update interval are defined, and a method for extending this interval by using digital compensation is discussed.

  1. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  2. Heat engine generator control system

    DOEpatents

    Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

    1998-05-12

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

  3. Heat engine generator control system

    DOEpatents

    Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph

    1998-01-01

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

  4. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Control of engine rotation. 121.279 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.279 Control... case of turbine engine installations, a means of stopping the rotation need be provided only if the...

  5. High Stability Engine Control (HISTEC): Flight Demonstration Results

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  6. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  7. Engine Research Building’s Central Control Room

    NASA Image and Video Library

    1948-07-21

    Operators in the Engine Research Building’s Central Control Room at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful collection of compressors and exhausters located in the central portion of the basement provided process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. This photograph was taken just after a major upgrade to the control room in 1948. The panels on the wall contain rudimentary floor plans of the different Engine Research Building sections with indicator lights and instrumentation for each test cell. The process air equipment included 12 exhausters, four compressors, a refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.

  8. A Mathematical Model of Marine Diesel Engine Speed Control System

    NASA Astrophysics Data System (ADS)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  9. Illuminating Engineering Research Institute Annual Report 1967. A Review of Project Activities and a Roundup of IERI Research Interests.

    ERIC Educational Resources Information Center

    Illuminating Engineering Research Inst., New York, NY.

    Presented in this report are the Illuminating Engineering Research Institute's fundamental scientific concepts in a new frame of realism while relating them to an up-to-date accounting of the search for new basic knowledge. In addition to being an annual accounting, it is also intended to provide orientation. Its presented in dramatic and…

  10. Design of Distributed Engine Control Systems with Uncertain Delay.

    PubMed

    Liu, Xiaofeng; Li, Yanxi; Sun, Xu

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  11. Design of Distributed Engine Control Systems with Uncertain Delay

    PubMed Central

    Li, Yanxi; Sun, Xu

    2016-01-01

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005

  12. Multivariable control altitude demonstration on the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Dehoff, R. L.; Hackney, R. D.

    1979-01-01

    The F100 Multivariable control synthesis (MVCS) program, was aimed at demonstrating the benefits of LGR synthesis theory in the design of a multivariable engine control system for operation throughout the flight envelope. The advantages of such procedures include: (1) enhanced performance from cross-coupled controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be applied efficiently to new engine systems. The control system designed, under the MVCS program, for the Pratt & Whitney F100 turbofan engine is described. Basic components of the control include: (1) a reference value generator for deriving a desired equilibrium state and an approximate control vector, (2) a transition model to produce compatible reference point trajectories during gross transients, (3) gain schedules for producing feedback terms appropriate to the flight condition, and (4) integral switching logic to produce acceptable steady-state performance without engine operating limit exceedance.

  13. Fuel governor for controlled autoignition engines

    DOEpatents

    Jade, Shyam; Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li

    2016-06-28

    Methods and systems for controlling combustion performance of an engine are provided. A desired fuel quantity for a first combustion cycle is determined. One or more engine actuator settings are identified that would be required during a subsequent combustion cycle to cause the engine to approach a target combustion phasing. If the identified actuator settings are within a defined acceptable operating range, the desired fuel quantity is injected during the first combustion cycle. If not, an attenuated fuel quantity is determined and the attenuated fuel quantity is injected during the first combustion cycle.

  14. Cost estimating Brayton and Stirling engines

    NASA Technical Reports Server (NTRS)

    Fortgang, H. R.

    1980-01-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  15. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  16. 10 CFR 20.1701 - Use of process or other engineering controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...

  17. 10 CFR 20.1701 - Use of process or other engineering controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...

  18. 10 CFR 20.1701 - Use of process or other engineering controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...

  19. 10 CFR 20.1701 - Use of process or other engineering controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...

  20. 10 CFR 20.1701 - Use of process or other engineering controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...

  1. Advanced controls for airbreathing engines, volume 3: Allison gas turbine

    NASA Technical Reports Server (NTRS)

    Bough, R. M.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.

  2. Advanced control for airbreathing engines, volume 1: Pratt and Whitney

    NASA Technical Reports Server (NTRS)

    Ralph, J. A.

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.

  3. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  4. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    NASA Astrophysics Data System (ADS)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  5. A Retro-Fit Control Architecture to Maintain Engine Performance With Usage

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T. Shane; Garg, Sanjay

    2007-01-01

    An outer loop retrofit engine control architecture is presented which modifies fan speed command to obtain a desired thrust based on throttle position. This maintains the throttle-to-thrust relationship in the presence of engine degradation, which has the effect of changing the engine s thrust output for a given fan speed. Such an approach can minimize thrust asymmetry in multi-engine aircraft, and reduce pilot workload. The outer loop control is demonstrated under various levels of engine deterioration using a standard deterioration profile as well as an atypical profile. It is evaluated across various transients covering a wide operating range. The modified fan speed command still utilizes the standard engine control logic so all original life and operability limits remain in place. In all cases it is shown that with the outer loop thrust control in place, the deteriorated engine is able to match the thrust performance of a new engine up to the limits the controller will allow.

  6. TF34 convertible engine control system design

    NASA Technical Reports Server (NTRS)

    Gilmore, D. R., Jr.

    1984-01-01

    The characteristics of the TF34 convertible engine, capable of producing shaft power, thrust, or a combination of both, is investigated with respect to the control system design, development, bench testing, and the anticipated transient response during engine testing at NASA. The modifications to the prototype standard TF34-GE-400 turbofan, made primarily in the fan section, consist of the variable inlet guide vanes and variable exit guide vanes. The control system was designed using classical frequency domain techniques and was based on the anticipated convertible/VTOL airframe requirements. The engine has been run in the fan mode and in the shaft mode, exhibiting a response of 0.14 second to a 5-percent thrust change.

  7. Power control for heat engines

    DOEpatents

    Dineen, John J.

    1984-01-01

    A power control arrangement for a Stirling engine includes a sleeve mounted in each cylinder for axial movement and a port in the sleeve leading to a dead space. The port is covered by the piston at a position that is determined by the piston position and the axial adjustment of the sleeve. The compression phase of the Stirling cycle for that piston begins when the port is covered, so the position of the sleeve is used to set the Stirling engine power level.

  8. Sensor Needs for Control and Health Management of Intelligent Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.

    2004-01-01

    NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.

  9. Potential of spark ignition engine, electronic engine and transmission control : final report

    DOT National Transportation Integrated Search

    1980-03-01

    This report identifies, evaluates, and documents the characteristics and functions of significant electronic engine and powertrain control systems. Important considerations in the assessment are the powertrain variables controlled, the technology uti...

  10. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, Charlie; Crook, Jerry

    1997-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.

  11. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  12. Multiplexed Predictive Control of a Large Commercial Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Richter, hanz; Singaraju, Anil; Litt, Jonathan S.

    2008-01-01

    Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.

  13. Backup control airstart performance on a digital electronic engine control-equipped F100-engine

    NASA Technical Reports Server (NTRS)

    Johnson, J. B.

    1984-01-01

    The air start capability of a backup control (BUC) was tested for a digital electronic engine control (DEEC) equipped F100 engine, which was installed in an F-15 aircraft. Two air start schedules were tested. Using the group 1 start schedule, based on a 40 sec timer, an air speed of 300 knots was required to ensure successful 40 and 25% BUC mode spooldown airstarts. If core rotor speed (N2) was less than 40% a stall would occur when the start bleed closed, 40 sec after initiation of the air start. All jet fuel starter (JFS) assisted air starts were successful with the group 1 start schedule. For the group 2 schedule, the time between pressurization and start bleed closure ranged between 50 sec and 72 sec. Idle rps was lower than the desired 65% for air starts at higher altitudes and lower air speeds.

  14. A demonstration of an intelligent control system for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.; Paxson, Daniel E.; Litt, Jonathan S.; Merrill, Walter C.

    1992-01-01

    An Intelligent Control System for reusable rocket engines is under development at NASA Lewis Research Center. The primary objective is to extend the useful life of a reusable rocket propulsion system while minimizing between flight maintenance and maximizing engine life and performance through improved control and monitoring algorithms and additional sensing and actuation. This paper describes current progress towards proof-of-concept of an Intelligent Control System for the Space Shuttle Main Engine. A subset of identifiable and accommodatable engine failure modes is selected for preliminary demonstration. Failure models are developed retaining only first order effects and included in a simplified nonlinear simulation of the rocket engine for analysis under closed loop control. The engine level coordinator acts as an interface between the diagnostic and control systems, and translates thrust and mixture ratio commands dictated by mission requirements, and engine status (health) into engine operational strategies carried out by a multivariable control. Control reconfiguration achieves fault tolerance if the nominal (healthy engine) control cannot. Each of the aforementioned functionalities is discussed in the context of an example to illustrate the operation of the system in the context of a representative failure. A graphical user interface allows the researcher to monitor the Intelligent Control System and engine performance under various failure modes selected for demonstration.

  15. Design and evaluation of a sensor fail-operational control system for a digitally controlled turbofan engine

    NASA Technical Reports Server (NTRS)

    Hrach, F. J.; Arpasi, D. J.; Bruton, W. M.

    1975-01-01

    A self-learning, sensor fail-operational, control system for the TF30-P-3 afterburning turbofan engine was designed and evaluated. The sensor fail-operational control system includes a digital computer program designed to operate in conjunction with the standard TF30-P-3 bill-of-materials control. Four engine measurements and two compressor face measurements are tested. If any engine measurements are found to have failed, they are replaced by values synthesized from computer-stored information. The control system was evaluated by using a realtime, nonlinear, hybrid computer engine simulation at sea level static condition, at a typical cruise condition, and at several extreme flight conditions. Results indicate that the addition of such a system can improve the reliability of an engine digital control system.

  16. Engineering Therapies that Evolve to Autonomously Control Epidemics

    DTIC Science & Technology

    2017-06-01

    FINAL TECHNICAL REPORT Grant No. D15AP00024 “ Engineering Therapies that Evolve to Autonomously Control Epidemics” PI: Leor Weinberger...viruses could be engineered into therapeutics, known as Therapeutic Interfering Particles (’TIPs’), using the virus HIV as a model system. By engineering ... engineered TIPs could have indefinite, population-scale impact. To achieve this aim, we developed novel multi-scale models that connected the measured

  17. Advanced online control mode selection for gas turbine aircraft engines

    NASA Astrophysics Data System (ADS)

    Wiseman, Matthew William

    The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.

  18. The Institute of Biological Engineering 2013 Annual Conference

    DTIC Science & Technology

    2014-10-30

    of Bioengineering University of Washington Presentation: Peptide-Based materials for Drug Delivery Dr. Ya-Ping Sun (Supported by the Grant) Frank...Professor of Biomedical Engineering and Mechanical Engineering and Materials Science Duke University Presentation: Acoustic Microfluidics and New...Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Department of Mechanical Engineering

  19. Self-Control and Academic Performance in Engineering

    ERIC Educational Resources Information Center

    Honken, Nora; Ralston, Patricia A.; Tretter, Thomas R.

    2016-01-01

    Self-control has been related to positive student outcomes including academic performance of college students. Because of the critical nature of the first semester academic performance for engineering students in terms of retention and persistence in pursuing an engineering degree, this study investigated the relationship between freshmen…

  20. Annual Data Summary for 1986 CERC (Coastal Engineering Research Center) Field Research Facility. Volume 1. Main Text and Appendix A

    DTIC Science & Technology

    1988-08-01

    Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631 DTI ~;~c~v ~ jAUG 291988 : H Ke August 1988 Final Report...PART I: INTRODUCTION ................................................ 3 Background ........................................................ 3...Information Service, 5285 Port Royal Road, Springfield, VA. 22161. 2 ANNUAL DATA SUMMARY FOR 1986 CERC FIELD RESEARCH FACILITY PART I: INTRODUCTION

  1. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1994-01-01

    A three-channel active control system is applied to an operational turbofan engine to reduce tonal noise produced by both the fan and the high-pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provide blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. To minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three-channel controller by up to 16 dB over a +/- 30-deg angle about the engine axis. A single-channel controller could produce reduction over a +/- 15-deg angle. The experimental results show the control to be robust. Outside of the areas contolled, the levels of the tone actually increased due to the generation of radial modes by the control sources. Simultaneous control of two tones is achieved with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high-pressure compressor fundamental tones.

  2. Experiment-Based Teaching in Advanced Control Engineering

    ERIC Educational Resources Information Center

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  3. Integrated health monitoring and controls for rocket engines

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Musgrave, J. L.; Guo, T. H.

    1992-01-01

    Current research in intelligent control systems at the Lewis Research Center is described in the context of a functional framework. The framework is applicable to a variety of reusable space propulsion systems for existing and future launch vehicles. It provides a 'road map' technology development to enable enhanced engine performance with increased reliability, durability, and maintainability. The framework hierarchy consists of a mission coordination level, a propulsion system coordination level, and an engine control level. Each level is described in the context of the Space Shuttle Main Engine. The concept of integrating diagnostics with control is discussed within the context of the functional framework. A distributed real time simulation testbed is used to realize and evaluate the functionalities in closed loop.

  4. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...

  5. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...

  6. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...

  7. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...

  8. Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.

  9. Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Xiangyang, Xu; Siqi, Zhao; Peng, Dong

    2017-12-01

    A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.

  10. F100 multivariable control synthesis program: Evaluation of a multivariable control using a real-time engine simulation

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Soeder, J. F.; Seldner, K.; Cwynar, D. S.

    1977-01-01

    The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned.

  11. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  12. INL Control System Situational Awareness Technology Annual Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Rueff; Bryce Wheeler; Todd Vollmer

    The overall goal of this project is to develop an interoperable set of tools to provide a comprehensive, consistent implementation of cyber security and overall situational awareness of control and sensor network implementations. The operation and interoperability of these tools will fill voids in current technological offerings and address issues that remain an impediment to the security of control systems. This report provides an FY 2012 update on the Sophia, Mesh Mapper, Intelligent Cyber Sensor, and Data Fusion projects with respect to the year-two tasks and annual reporting requirements of the INL Control System Situational Awareness Technology report (July 2010).

  13. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  14. Summary of semi-initiative and initiative control automobile engine vibration

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Qu, Zhou

    2009-07-01

    Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.

  15. Design of Distributed Engine Control Systems for Stability Under Communication Packet Dropouts

    DTIC Science & Technology

    2009-08-01

    remarks. II. Distributed Engine Control Systems A. FADEC based on Distributed Engine Control Architecture (DEC) In Distributed Engine...Control, the functions of Full Authority Digital Engine Control ( FADEC ) are distributed at the component level. Each sensor/actuator is to be replaced...diagnostics and health management functionality. Dual channel digital serial communication network is used to connect these smart modules with FADEC . Fig

  16. Stability of Fiber Optic Networked Decentralized Distributed Engine Control Under Time Delays

    DTIC Science & Technology

    2009-08-01

    Nomenclature FADEC = Full Authority Digital Engine Control D2FADEC = Decentralized Distributed Full Authority Digital Engine Control DEC...Corporation (IFOS), bm@ifos.com. I American Institute of Aeronautics and Astronautics 2 II. Distributed Engine Control Systems FADEC Based on...of Full Authority Digital Engine Control ( FADEC ) are distributed at the component level. Each sensor/actuator is to be replaced by a smart sensor

  17. Analysis of turbojet-engine controls for afterburning starting

    NASA Technical Reports Server (NTRS)

    Phillips, W E , Jr

    1956-01-01

    A simulation procedure is developed for studying the effects of an afterburner start on a controlled turbojet engine. The afterburner start is represented by introducing a step decrease in the effective exhaust-nozzle area, after which the control returns the controlled engine variables to their initial values. The degree and speed with which the control acts are a measure of the effectiveness of the particular control system. Data are presented from five systems investigated using an electronic analog computer and the developed simulation procedure. These systems are compared with respect to steady-state errors, speed of response, and transient deviations of the system variables.

  18. Altitude Wind Tunnel Control Room at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-07-21

    Operators in the control room for the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory remotely operate a Wright R–3350 engine in the tunnel’s test section. Four of the engines were used to power the B–29 Superfortress, a critical weapon in the Pacific theater during World War II. The wind tunnel, which had been in operation for approximately six months, was the nation’s only wind tunnel capable of testing full-scale engines in simulated altitude conditions. The soundproof control room was used to operate the wind tunnel and control the engine being run in the test section. The operators worked with assistants in the adjacent Exhauster Building and Refrigeration Building to manage the large altitude simulation systems. The operator at the center console controlled the tunnel’s drive fan and operated the engine in the test section. Two sets of pneumatic levers near his right forearm controlled engine fuel flow, speed, and cooling. Panels on the opposite wall, out of view to the left, were used to manage the combustion air, refrigeration, and exhauster systems. The control panel also displayed the master air speed, altitude, and temperature gauges, as well as a plethora of pressure, temperature, and airflow readings from different locations on the engine. The operator to the right monitored the manometer tubes to determine the pressure levels. Despite just being a few feet away from the roaring engine, the control room remained quiet during the tests.

  19. The Waukesha Turbocharger Control Module: A tool for improved engine efficiency and response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurlo, J.R.; Reinbold, E.O.; Mueller, J.

    1996-12-31

    The Waukesha Turbocharger Control Module allows optimum control of turbochargers on lean burn gaseous fueled engines. The Turbocharger Control Module is user programmed to provide either maximum engine efficiency or best engine response to load changes. In addition, the Turbocharger Control Module prevents undesirable turbocharger surge. The Turbocharger Control Module consists of an electronic control box, engine speed, intake manifold pressure, ambient temperature sensors, and electric actuators driving compressor bypass and wastegate valves. The Turbocharger Control Module expands the steady state operational environment of the Waukesha AT27GL natural gas engine from sea level to 1,525 m altitude with one turbochargermore » match and improves the engine speed turn down by 80 RPM. Finally, the Turbocharger Control Module improves engine response to load changes.« less

  20. Fuel-injection control of S.I. engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, S.B.; Won, M.; Hedrick, J.K.

    1994-12-31

    It is known that about 50% of air pollutants comes from automotive engine exhaust, and mostly in a transient state operation. However, the wide operating range, the inherent nonlinearities of the induction process and the large modeling uncertainties make the design of the fuel-injection controller very difficult. Also, the unavoidable large time-delay between control action and measurement causes the problem of chattering. In this paper, an observer-based control algorithm based on sliding mode control technique is suggested for fast response and small amplitude chattering of the air-to-fuel ratio. A direct adaptive control using Gaussian networks is applied to the compensationmore » of transient fueling dynamics. The proposed controller is simple enough for on-line computation and is implemented on an automotive engine using a PC-386. The simulation and the experimental results show that this algorithm reduces the chattering magnitude considerably and is robust to modeling errors.« less

  1. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  2. Nonlinear Control of a Reusable Rocket Engine for Life Extension

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.

  3. Value-Engineering Review for Numerical Control

    NASA Technical Reports Server (NTRS)

    Warner, J. L.

    1984-01-01

    Selecting parts for conversion from conventional machining to numerical control, value-engineering review performed for every part to identify potential changes to part design that result in increased production efficiency.

  4. Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Parker, Khary I.; Chatterjee, Santanu

    2003-01-01

    This paper presents an ad hoc adaptive, multivariable controller tuning rule that compensates for a thrust response variation in an engine whose performance has been degraded though use and wear. The upset appears when a large throttle transient is performed such that the engine controller switches from low-speed to high-speed mode. A relationship was observed between the level of engine degradation and the overshoot in engine temperature ratio, which was determined to cause the thrust response variation. This relationship was used to adapt the controller. The method is shown to work very well up to the operability limits of the engine. Additionally, since the level of degradation can be estimated from sensor data, it would be feasible to implement the adaptive control algorithm on-line.

  5. Digital electronic engine control F-15 overview

    NASA Technical Reports Server (NTRS)

    Kock, B.

    1984-01-01

    A flight test evaluation of the digital elctronic engine control (DEEC) system was conducted. An overview of the flight program is presented. The roles of the participating parties, the system, and the flight program objectives are described. The test program approach is discussed, and the engine performance benefits are summarized. A description of the follow-on programs is included.

  6. The Use of Executive Control Processes in Engineering Design by Engineering Students and Professional Engineers

    ERIC Educational Resources Information Center

    Dixon, Raymond A.; Johnson, Scott D.

    2012-01-01

    A cognitive construct that is important when solving engineering design problems is executive control process, or metacognition. It is a central feature of human consciousness that enables one "to be aware of, monitor, and control mental processes." The framework for this study was conceptualized by integrating the model for creative design, which…

  7. HPT Clearance Control: Intelligent Engine Systems-Phase 1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The following work has been completed to satisfy the Phase I Deliverables for the "HPT Clearance Control" project under NASA GRC's "Intelligent Engine Systems" program: (1) Need for the development of an advanced HPT ACC system has been very clearly laid out, (2) Several existing and potential clearance control systems have been reviewed, (3) A scorecard has been developed to document the system, performance (fuel burn, range, payload, etc.), thermal, and mechanical characteristics of the existing clearance control systems, (4) Engine size and flight cycle selection for the advanced HPT ACC system has been reviewed with "large engine"/"long range mission" combination showing the most benefit, (5) A scoring criteria has been developed to tie together performance parameters for an objective, data driven comparison of competing systems, and (6) The existing HPT ACC systems have been scored based on this scoring system.

  8. Clinical translation of controlled protein delivery systems for tissue engineering.

    PubMed

    Spiller, Kara L; Vunjak-Novakovic, Gordana

    2015-04-01

    Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed.

  9. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  10. Road map to adaptive optimal control. [jet engine control

    NASA Technical Reports Server (NTRS)

    Boyer, R.

    1980-01-01

    A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.

  11. Software Engineering Laboratory Series: Proceedings of the Twentieth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  12. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  13. Method and apparatus for selectively controlling the speed of an engine

    DOEpatents

    Davis, Roy Inge

    2001-02-27

    A control assembly 12 for use within a vehicle 10 having an engine 14 and which selectively controls the speed of the engine 14 in order to increase fuel efficiency and to effect relatively smooth starting and stopping of the engine. Particularly, in one embodiment, control assembly 12 cooperatively operates with a starter/alternator assembly 20 and is adapted for use with hybrid vehicles employing a start/stop powertrain assembly, wherein fuel efficiency is increased by selectively stopping engine operation when the vehicle has stopped.

  14. Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure

  15. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1984-01-01

    The technical progress of researches on alternatives for jet engine control is reported. Extensive numerical testing is included. It is indicated that optimal inputs contribute significantly to the process of calculating tensor approximations for nonlinear systems, and that the resulting approximations may be order-reduced in a systematic way.

  16. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering

    PubMed Central

    Annabi, Nasim; Nichol, Jason W.; Zhong, Xia; Ji, Chengdong; Koshy, Sandeep; Khademhosseini, Ali

    2010-01-01

    Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques. PMID:20121414

  17. Single-temperature quantum engine without feedback control.

    PubMed

    Yi, Juyeon; Talkner, Peter; Kim, Yong Woon

    2017-08-01

    A cyclically working quantum-mechanical engine that operates at a single temperature is proposed. Its energy input is delivered by a quantum measurement. The functioning of the engine does not require any feedback control. We analyze work, heat, and the efficiency of the engine for the case of a working substance that is governed by the laws of quantum mechanics and that can be adiabatically compressed and expanded. The obtained general expressions are exemplified for a spin in an adiabatically changing magnetic field and a particle moving in a potential with slowly changing shape.

  18. 40 CFR 60.4895 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Compliance Requirements § 60.4895 By what date must I conduct annual air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution... following the previous annual air pollution control device inspection. (b) Within 10 operating days...

  19. 40 CFR 60.4895 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Compliance Requirements § 60.4895 By what date must I conduct annual air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution... following the previous annual air pollution control device inspection. (b) Within 10 operating days...

  20. 40 CFR 60.4895 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Compliance Requirements § 60.4895 By what date must I conduct annual air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution... following the previous annual air pollution control device inspection. (b) Within 10 operating days...

  1. Double acting stirling engine phase control

    DOEpatents

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  2. Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Behbahani, Alireza; Culley, Dennis; Garg, Sanjay; Millar, Richard; Smith, Bert; Wood, Jim; Mahoney, Tim; Quinn, Ronald; Carpenter, Sheldon; Mailander, Bill; hide

    2007-01-01

    A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.

  3. The Case for Intelligent Propulsion Control for Fast Engine Response

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Frederick, Dean K.; Guo, Ten-Huei

    2009-01-01

    Damaged aircraft have occasionally had to rely solely on thrust to maneuver as a consequence of losing hydraulic power needed to operate flight control surfaces. The lack of successful landings in these cases inspired research into more effective methods of utilizing propulsion-only control. That research demonstrated that one of the major contributors to the difficulty in landing is the slow response of the engines as compared to using traditional flight control. To address this, research is being conducted into ways of making the engine more responsive under emergency conditions. This can be achieved by relaxing controller limits, adjusting schedules, and/or redesigning the regulators to increase bandwidth. Any of these methods can enable faster response at the potential expense of engine life and increased likelihood of stall. However, an example sensitivity analysis revealed a complex interaction of the limits and the difficulty in predicting the way to achieve the fastest response. The sensitivity analysis was performed on a realistic engine model, and demonstrated that significantly faster engine response can be achieved compared to standard Bill of Material control. However, the example indicates the need for an intelligent approach to controller limit adjustment in order for the potential to be fulfilled.

  4. Control Engineering as a Part of Undergraduate Curriculum for Mechanical Engineering in India

    ERIC Educational Resources Information Center

    Akhtar, Shagil; Iqbal, Syed Muneeb; Bajpai, Shrish

    2016-01-01

    In this present study we have traced the genesis of control engineering in the scope of mechanical engineering and then some analysis on its recent developments, their increasing need and how this particular subject has evolved machines functioning nowadays specifically its standard of education in India. We have probed this field right from its…

  5. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less

  6. Providing security for automated process control systems at hydropower engineering facilities

    NASA Astrophysics Data System (ADS)

    Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.

    2016-12-01

    This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.

  7. Palm Power Free-Piston Stirling Engine Control Electronics

    NASA Astrophysics Data System (ADS)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  8. Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Cikanek, H. A., III

    1986-01-01

    Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.

  9. HIDEC F-15 adaptive engine control system flight test results

    NASA Technical Reports Server (NTRS)

    Smolka, James W.

    1987-01-01

    NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.

  10. Clinical translation of controlled protein delivery systems for tissue engineering

    PubMed Central

    Spiller, Kara L.; Vunjak-Novakovic, Gordana

    2013-01-01

    Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed. PMID:25787736

  11. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    NASA Technical Reports Server (NTRS)

    Culp, Robert D. (Editor); Bickley, George (Editor)

    1993-01-01

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study.

  12. Methanator Fueled Engines for Pollution Control

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  13. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    NASA Astrophysics Data System (ADS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  14. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  15. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  16. Sliding Mode Control of the X-33 with an Engine Failure

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.

    2000-01-01

    Ascent flight control of the X-3 is performed using two XRS-2200 linear aerospike engines. in addition to aerosurfaces. The baseline control algorithms are PID with gain scheduling. Flight control using an innovative method. Sliding Mode Control. is presented for nominal and engine failed modes of flight. An easy to implement, robust controller. requiring no reconfiguration or gain scheduling is demonstrated through high fidelity flight simulations. The proposed sliding mode controller utilizes a two-loop structure and provides robust. de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of engine failure, bounded external disturbances (wind gusts) and uncertain matrix of inertia. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues. Conditions that restrict engine failures to robustness domain of the sliding mode controller are derived. Overall stability of a two-loop flight control system is assessed. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in the presence of external disturbances and vehicle inertia uncertainties, as well as the single engine failed case. The designed robust controller will significantly reduce the time and cost associated with flying new trajectory profiles or orbits, with new payloads, and with modified vehicles

  17. Proceedings of Tenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.

  18. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  19. On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending

    NASA Astrophysics Data System (ADS)

    Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong

    2017-11-01

    A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.

  20. 37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING TOWARDS STERN, PORT ENGINE AT RIGHT, STARBOARD ENGINE AT LEFT, BOTH ARE DIESEL ENGINES, IN BACKGROUND IS STAIRS UP TO CREWS' BERTHING, BEYONE THE STAIRS IS THE DOOR TO AFT ENGINE ROOM & MACHINE SHOP. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  1. 12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE FOR ENGINE TEST CELL 4. LOOKING NORTH. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  2. Reusable rocket engine intelligent control system framework design, phase 2

    NASA Technical Reports Server (NTRS)

    Nemeth, ED; Anderson, Ron; Ols, Joe; Olsasky, Mark

    1991-01-01

    Elements of an advanced functional framework for reusable rocket engine propulsion system control are presented for the Space Shuttle Main Engine (SSME) demonstration case. Functional elements of the baseline functional framework are defined in detail. The SSME failure modes are evaluated and specific failure modes identified for inclusion in the advanced functional framework diagnostic system. Active control of the SSME start transient is investigated, leading to the identification of a promising approach to mitigating start transient excursions. Key elements of the functional framework are simulated and demonstration cases are provided. Finally, the advanced function framework for control of reusable rocket engines is presented.

  3. Power control system for a hot gas engine

    DOEpatents

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  4. Engine Cylinder Temperature Control

    DOEpatents

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  5. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  6. 30. Engine controls and valve gear, looking aft on main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Engine controls and valve gear, looking aft on main (promenade) deck level. Threaded admission valve lift rods (two at immediate left of chronometer) permit adjustment of valve timing in lower and upper admission valves of cylinder (left rod controls lower valve, right rod upper valve). Valve rods are lifted by jaw-like "wipers" during operation. Exhaust valve lift rods and wipers are located to right of chronometer. Crank at extreme right drives valve wiper shaft when engaged to end of eccentric rod, shown under "Crank Indicator" dial. Pair of handles to immediate left of admission valve rods control condenser water valves; handles to right of exhaust valve rods control feedwater flow to boilers from pumps. Gauges indicate boiler pressure (left) and condenser vacuum (right); "Crank Indicator" on wall aids engineer in keeping engine crank off "dead-center" at stop so that engine may be easily restarted. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  7. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1983-01-01

    The technical progress of researches on alternatives for jet engine control, is reported. The principal new activities involved the initial testing of an input design method for choosing the inputs to a non-linear system to aid the approximation of its tensor parameters, and the beginning of order reduction studies designed to remove unnecessary monomials from tensor models.

  8. Evaluation of an F100 multivariable control using a real-time engine simulation

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Soeder, J. F.; Skira, C.

    1977-01-01

    The control evaluated has been designed for the F100-PW-100 turbofan engine. The F100 engine represents the current state-of-the-art in aircraft gas turbine technology. The control makes use of a multivariable, linear quadratic regulator. The evaluation procedure employed utilized a real-time hybrid computer simulation of the F100 engine and an implementation of the control logic on the NASA LeRC digital computer/controller. The results of the evaluation indicated that the control logic and its implementation will be capable of controlling the engine throughout its operating range.

  9. Methods of Si based ceramic components volatilization control in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  10. A Reactive Blended Learning Proposal for an Introductory Control Engineering Course

    ERIC Educational Resources Information Center

    Mendez, Juan A.; Gonzalez, Evelio J.

    2010-01-01

    As it happens in other fields of engineering, blended learning is widely used to teach process control topics. In this paper, the inclusion of a reactive element--a Fuzzy Logic based controller--is proposed for a blended learning approach in an introductory control engineering course. This controller has been designed in order to regulate the…

  11. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  12. Partial budget of the discounted annual benefit of mastitis control strategies.

    PubMed

    Allore, H G; Erb, H N

    1998-08-01

    The objective of this study was to rank the benefits associated with various mastitis control strategies in simulated herds with intramammary infections caused by Streptococcus agalactiae, Streptococcus spp. other than Strep. agalactiae, Staphylococcus aureus, coagulase-negative staphylococci, and Escherichia coli. The control strategies tested were prevention, vaccination for E. coli, lactation therapy, and dry cow antibiotic therapy. Partial budgets were based on changes caused by mastitis control strategies from the mean values for milk, fat, and protein yields of the control herd and the number of cows that were culled under a fixed mastitis culling criterion. Each annual benefit (dollars per cow per year) of a mastitis control strategy was compared with the revenue for the control herd and was calculated under two different milk pricing plans (3.5% milk fat and multiple-component pricing), three net replacement costs, and three prevalences of pathogen-specific intramammary infection. Twenty replicates of each control strategy were run with SIMMAST (a dynamic discrete event stochastic simulation model) for 5 simulated yr. Rankings of discounted annual benefits differed only slightly according to milk pricing plans within a pathogen group but differed among the pathogen groups. Differences in net replacement costs for cows culled because of mastitis did not change the ranking of control strategies within a pathogen group. Both prevention and dry cow therapy were important mastitis control strategies. For herds primarily infected with environmental pathogens, strategies that included vaccination for mastitis caused by E. coli dominated strategies that did not include vaccination against this microorganism.

  13. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; Bickley, George

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study. For individual titles, see A95-80390 through A95-80436.

  14. A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Csank, Jeffrey; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2010-01-01

    A new high-fidelity simulation of a generic 40,000 lb thrust class commercial turbofan engine with a representative controller, known as CMAPSS40k, has been developed. Based on dynamic flight test data of a highly instrumented engine and previous engine simulations developed at NASA Glenn Research Center, this non-proprietary simulation was created especially for use in the development of new engine control strategies. C-MAPSS40k is a highly detailed, component-level engine model written in MATLAB/Simulink (The MathWorks, Inc.). Because the model is built in Simulink, users have the ability to use any of the MATLAB tools for analysis and control system design. The engine components are modeled in C-code, which is then compiled to allow faster-than-real-time execution. The engine controller is based on common industry architecture and techniques to produce realistic closed-loop transient responses while ensuring that no safety or operability limits are violated. A significant feature not found in other non-proprietary models is the inclusion of transient stall margin debits. These debits provide an accurate accounting of the compressor surge margin, which is critical in the design of an engine controller. This paper discusses the development, characteristics, and capabilities of the C-MAPSS40k simulation

  15. Airstart performance of a digital electronic engine control system on an F100 engine

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.

    1984-01-01

    The digital electronic engine control (DEEC) system installed on an F100 engine in an F-15 aircraft was tested. The DEEC system incorporates a closed-loop air start feature in which the fuel flow is modulated to achieve the desired rate of compressor acceleration. With this logic the DEEC equipped F100 engine can achieve air starts over a larger envelope. The DEEC air start logic, the test program conducted on the F-15, and its results are described.

  16. Apparatus for sensor failure detection and correction in a gas turbine engine control system

    NASA Technical Reports Server (NTRS)

    Spang, H. A., III; Wanger, R. P. (Inventor)

    1981-01-01

    A gas turbine engine control system maintains a selected level of engine performance despite the failure or abnormal operation of one or more engine parameter sensors. The control system employs a continuously updated engine model which simulates engine performance and generates signals representing real time estimates of the engine parameter sensor signals. The estimate signals are transmitted to a control computational unit which utilizes them in lieu of the actual engine parameter sensor signals to control the operation of the engine. The estimate signals are also compared with the corresponding actual engine parameter sensor signals and the resulting difference signals are utilized to update the engine model. If a particular difference signal exceeds specific tolerance limits, the difference signal is inhibited from updating the model and a sensor failure indication is provided to the engine operator.

  17. Software Engineering Laboratory Series: Proceedings of the Twenty-First Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  18. Software Engineering Laboratory Series: Proceedings of the Twenty-Second Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  19. Central Control Room in the Engine Research Building

    NASA Image and Video Library

    1968-11-21

    Operators in the Engine Research Building’s Central Control Room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. The panels on the wall contain schematics with indicator lights and instrumentation for the atmospheric exhaust, altitude exhaust, refrigerated air, and process air systems. The process air equipment included twelve exhausters, four compressors, refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.

  20. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according to § 60.5220(c), no later than 12 months following the previous annual air pollution control device...

  1. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according to § 60.5220(c), no later than 12 months following the previous annual air pollution control device...

  2. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according to § 60.5220(c), no later than 12 months following the previous annual air pollution control device...

  3. Chemical Engineering Division Activities

    ERIC Educational Resources Information Center

    Chemical Engineering Education, 1978

    1978-01-01

    The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)

  4. Annual report 1993 - Science and Engineering Alliance, Inc.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    By combining their resources and with support from the US Department of Energy (DOE), Science and Engineering Alliance (SEA) has worked for the past three years to increase the participation of African-Americans in science, engineering, and related fields. At the core of the SEA is a combined population of over 33,000 African-American students, and a combined Historically Black Colleges and Universities research faculty and staff of nearly 400 individuals that specialize in several major areas of science and engineering. SEA views its approach as a constructive, long-term solution to increasing the nation`s technical manpower talent pool. For the faculty andmore » students, SEA develops new collaborative research opportunities, creates new summer research internships and coop programs, strengthens existing programs, provides students participation in technical conferences, workshops, and seminars, and grants scholarships and incentive awards to future scientists and engineers. SEA relies on the collective talents of its members to build partnerships with the Federal government and private industry that help create opportunities for African-American science and engineering students, and promote activities that advance this mission. As the number of science and engineering students graduating from SEA institutions continues to rise, SEA is pleased to report that the program is making a difference.« less

  5. Nuclear engine flow reactivity shim control

    DOEpatents

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  6. [An object-oriented intelligent engineering design approach for lake pollution control].

    PubMed

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  7. Fundamentals of the Control of Gas-Turbine Power Plants for Aircraft. Part III Control of Jet Engines. Part 3; Control of Jet Engines

    NASA Technical Reports Server (NTRS)

    Kuehl, H.

    1947-01-01

    The basic principles of the control of TL ongincs are developed on .the basis of a quantitative investigation of the behavior of these behavior under various operating conditions with particular consideration of the simplifications pormissible in each case. Various possible means of control of jet engines are suggested and are illustrated by schematic designs.

  8. Augmentor transient capability of an F100 engine equipped with a digital electronic engine control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Pai, G. D.

    1984-01-01

    An F100 augmented turbofan engine equipped with digital electronic engine control (DEEC) system was evaluated. The engine was equipped with a specially modified augmentor to provide improved steady state and transient augmentor capability. The combination of the DEEC and the modified augmentor was evaluated in sea level and altitude facility tests and then in four different flight phases in an F-15 aircraft. The augmentor configuration, logic, and test results are presented.

  9. Fuel supply control method for internal combustion engines, with adaptability to various engines and controls therefor having different operating characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otobe, Y.; Chikamatsu, M.

    1988-03-08

    A method of controlling the fuel supply to an internal combustion engine is described, wherein a quantity of fuel for supply to the engine is determined by correcting a basic value of the quantity of fuel determined as a function of at least one operating parameter of the engine by correction values dependent upon operating conditions of the engine and the determined quantity of fuel is supplied to the engine. The method comprises the steps of: (1) detecting a value of at least one predetermined operating parameter of the engine; (2) manually adjusting a single voltage creating means to setmore » an output voltage therefrom to such a desired value as to compensate for deviation of the air/fuel ratio of a mixture supplied to the engine due to variations in operating characteristics of engines between different production lots or aging changes; (3) determining a value of the predetermined one correction value corresponding to the set desired value of output voltage of the single voltage creating means, and then modifying the thus determined value in response to the detected value of the predetermined at least one operating parameter of the engine during engine operation; and (4) correcting the basic value of the quantity of fuel by the value of the predetermined one correction value having the thus modified value, and the other correction values.« less

  10. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  11. Application of real-time engine simulations to the development of propulsion system controls

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.

    1975-01-01

    The development of digital controls for turbojet and turbofan engines is presented by the use of real-time computer simulations of the engines. The engine simulation provides a test-bed for evaluating new control laws and for checking and debugging control software and hardware prior to engine testing. The development and use of real-time, hybrid computer simulations of the Pratt and Whitney TF30-P-3 and F100-PW-100 augmented turbofans are described in support of a number of controls research programs at the Lewis Research Center. The role of engine simulations in solving the propulsion systems integration problem is also discussed.

  12. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1981-01-01

    Research centered on basic topics in the modeling and feedback control of nonlinear dynamical systems is reported. Of special interest were the following topics: (1) the role of series descriptions, especially insofar as they relate to questions of scheduling, in the control of gas turbine engines; (2) the use of algebraic tensor theory as a technique for parameterizing such descriptions; (3) the relationship between tensor methodology and other parts of the nonlinear literature; (4) the improvement of interactive methods for parameter selection within a tensor viewpoint; and (5) study of feedback gain representation as a counterpart to these modeling and parameterization ideas.

  13. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  14. Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T. Shane

    2006-01-01

    The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.

  15. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  16. Fiber optic controls for aircraft engines - Issues and implications

    NASA Technical Reports Server (NTRS)

    Dasgupta, Samhita; Poppel, Gary L.; Anderson, William P.

    1991-01-01

    Some of the issues involved with the application of fiber-optic controls for aircraft engines in the harsh operating environment are addressed, with emphasis on fiber-optic temperature, pressure, position, and speed sensors. Criteria are established to evaluate the optical modulation technique, the sensor/control unit interconnection, and the electrooptic architecture. Single mode and polarization dependent sensor types, sensors which depend on the reflection and/or transmission of light through the engine environment, and intensity-based analog sensors are eliminated as a possible candidate for engine implementation. Fiber-optic harnesses tested for their optical integrity, temperature stability, and mechanical strength, exhibit a capacity to meet mechanical strength requirements and still gain a significant reduction in cable weight.

  17. Evaluation of an F100 multivariable control using a real-time engine simulation

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Skira, C.; Soeder, J. F.

    1977-01-01

    A multivariable control design for the F100 turbofan engine was evaluated, as part of the F100 multivariable control synthesis (MVCS) program. The evaluation utilized a real-time, hybrid computer simulation of the engine and a digital computer implementation of the control. Significant results of the evaluation are presented and recommendations concerning future engine testing of the control are made.

  18. Fault detection and accommodation testing on an F100 engine in an F-15 airplane. [digital engine control system

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methods that can be used for digital engine control systems are presently subjected to a flight test program in the case of the F-15 fighter's F100 engine electronic controls, inducing selected faults and then evaluating the resulting digital engine control responses. In general, flight test results were found to compare well with both ground tests and predictions. It is noted that the inducement of dual-pressure failures was not feasible, since FDA logic was not designed to accommodate them.

  19. General algebraic method applied to control analysis of complex engine types

    NASA Technical Reports Server (NTRS)

    Boksenbom, Aaron S; Hood, Richard

    1950-01-01

    A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.

  20. Control methods for aiding a pilot during STOL engine failure transients

    NASA Technical Reports Server (NTRS)

    Nelson, E. R.; Debra, D. B.

    1976-01-01

    Candidate autopilot control laws that control the engine failure transient sink rates by demonstrating the engineering application of modern state variable control theory were defined. The results of approximate modal analysis were compared to those derived from full state analyses provided from computer design solutions. The aircraft was described, and a state variable model of its longitudinal dynamic motion due to engine and control variations was defined. The classical fast and slow modes were assumed to be sufficiently different to define reduced order approximations of the aircraft motion amendable to hand analysis control definition methods. The original state equations of motion were also applied to a large scale state variable control design program, in particular OPTSYS. The resulting control laws were compared with respect to their relative responses, ease of application, and meeting the desired performance objectives.

  1. Speed And Power Control Of An Engine By Modulation Of The Load Torque

    DOEpatents

    Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K

    1999-01-26

    A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

  2. Nanoscale tissue engineering: spatial control over cell-materials interactions

    PubMed Central

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  3. Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl (Compiler); Guo, Ten-Huei

    2014-01-01

    The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.

  4. Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.

  5. Emission control apparatus for internal combustion engines with a controllably disabled clamping circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, M.

    1979-08-28

    The invention discloses an emission control apparatus for internal combustion engine includes an exhaust composition sensor to sense the mixture ratio, a circuit for clamping the mixture ratio to a predetermined constant value to prevent the mixture from becoming too rich or too lean when a failure should occur in the control loop, for example, in the exhaust composition sensor failure and a circuit for interrupting the clamping circuit when the engine operating condition is such that the sensor is caused to produce low voltage signals although the sensor is functioning properly.

  6. Introducing a new semi-active engine mount using force controlled variable stiffness

    NASA Astrophysics Data System (ADS)

    Azadi, Mojtaba; Behzadipour, Saeed; Faulkner, Gary

    2013-05-01

    This work introduces a new concept in designing semi-active engine mounts. Engine mounts are under continuous development to provide better and more cost-effective engine vibration control. Passive engine mounts do not provide satisfactory solution. Available semi-active and active mounts provide better solutions but they are more complex and expensive. The variable stiffness engine mount (VSEM) is a semi-active engine mount with a simple ON-OFF control strategy. However, unlike available semi-active engine mounts that work based on damping change, the VSEM works based on the static stiffness change by using a new fast response force controlled variable spring. The VSEM is an improved version of the vibration mount introduced by the authors in their previous work. The results showed significant performance improvements over a passive rubber mount. The VSEM also provides better vibration control than a hydromount at idle speed. Low hysteresis and the ability to be modelled by a linear model in low-frequency are the advantages of the VSEM over the vibration isolator introduced earlier and available hydromounts. These specifications facilitate the use of VSEM in the automotive industry, however, further evaluation and developments are needed for this purpose.

  7. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  8. ETV TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES: LUBRIZOL ENGINE CONTROL SYSTEMS PURIFILTER SC17L

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Lubrizol Engine Control Systems Purifilter SC17L manufactured by Lubrizol Engine Control Systems. The technology is a precious and base metal, passively regenerated particulate filter...

  9. Reliability-Growth Assessment, Prediction, and Control for Electronic Engine Control (GAPCEEC)

    DTIC Science & Technology

    1984-04-01

    COMPEtTIN FOR Control (GAPCEEC) 4. PERFORMING ORG. REPORT NUMUR ______________________________ P&W/GPD/FR-17847 7. AUTI4OR(e) Michael E. McGlone...Control for Electronic Engine Control (GAPCEEC) program was performed under contract F33615-81 -C-2015. This 22-month program I. was formulated to study and...and (3) that data should be tracked c-ontinuously on an indiidual and fleet basis. UNCLASSIFIED 86CURITY CLASSIICATION OF THIS PAGErWmm Doe Rateio

  10. X-33 Attitude Control Using the XRS-2200 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Hall, Charles E.; Panossian, Hagop V.

    1999-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Structures and Dynamics Laboratory, Guidance and Control Systems Division is designing, under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control systems for the X-33 experimental vehicle. Test flights, while suborbital, will achieve sufficient altitudes and Mach numbers to test Single Stage To Orbit, Reusable Launch Vehicle technologies. Ascent flight control phase, the focus of this paper, begins at liftoff and ends at linear aerospike main engine cutoff (MECO). The X-33 attitude control system design is confronted by a myriad of design challenges: a short design cycle, the X-33 incremental test philosophy, the concurrent design philosophy chosen for the X-33 program, and the fact that the attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems. Additionally, however, and of special interest, the use of the linear aerospike engine is a departure from the gimbaled engines traditionally used for thrust vector control (TVC) in launch vehicles and poses certain design challenges. This paper discusses the unique problem of designing the X-33 attitude control system with the linear aerospike engine, requirements development, modeling and analyses that verify the design.

  11. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  12. Development and Testing of a High Stability Engine Control (HISTEC) System

    NASA Technical Reports Server (NTRS)

    Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.

    1998-01-01

    Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.

  13. Engineered containment and control systems: nurturing nature.

    PubMed

    Clarke, James H; MacDonell, Margaret M; Smith, Ellen D; Dunn, R Jeffrey; Waugh, W Jody

    2004-06-01

    The development of engineered containment and control systems for contaminated sites must consider the environmental setting of each site. The behaviors of both contaminated materials and engineered systems are affected by environmental conditions that will continue to evolve over time as a result of such natural processes as climate change, ecological succession, pedogenesis, and landform changes. Understanding these processes is crucial to designing, implementing, and maintaining effective systems for sustained health and environmental protection. Traditional engineered systems such as landfill liners and caps are designed to resist natural processes rather than working with them. These systems cannot be expected to provide long-term isolation without continued maintenance. In some cases, full-scale replacement and remediation may be required within 50 years, at an effort and cost much higher than for the original cleanup. Approaches are being developed to define smarter containment and control systems for stewardship sites, considering lessons learned from implementing prescriptive waste disposal regulations enacted since the 1970s. These approaches more effectively involve integrating natural and engineered systems; enhancing sensors and predictive tools for evaluating performance; and incorporating information on failure events, including precursors and consequences, into system design and maintenance. An important feature is using natural analogs to predict environmental conditions and system responses over the long term, to accommodate environmental change in the design process, and, as possible, to engineer containment systems that mimic favorable natural systems. The key emphasis is harmony with the environment, so systems will work with and rely on natural processes rather than resisting them. Implementing these new integrated systems will reduce current requirements for active management, which are resource-intensive and expensive.

  14. Flatness-based embedded adaptive fuzzy control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    In this paper nonlinear embedded control for turbocharged Diesel engines is developed with the use of Differential flatness theory and adaptive fuzzy control. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances an adaptive fuzzy control scheme is implemanted making use of the transformed dynamical system of the diesel engine that is obtained through the application of differential flatness theory. Since only the system's output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which are part of the controller, so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed observer-based adaptive fuzzy control scheme results in H∞ tracking performance.

  15. Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Rauch, Jeffrey S.

    1994-01-01

    This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.

  16. Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture (Postprint)

    DTIC Science & Technology

    2007-09-18

    TERMS turbine engine control, engine health management, FADEC , Universal FADEC , Distributed Controls, UF, UF Platform, common FADEC , Generic FADEC ...Modular FADEC , Adaptive Control 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor) a. REPORT Unclassified b. ABSTRACT...Eventually the Full Authority Digital Electronic Control ( FADEC ) became the norm. Presently, this control system architecture accounts for 15 to 20% of

  17. Analysis of airframe/engine interactions - An integrated control perspective

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.; Garg, Sanjay

    1990-01-01

    Techniques for the analysis of the dynamic interactions between airframe/engine dynamical systems are presented. Critical coupling terms are developed that determine the significance of these interactions with regard to the closed loop stability and performance of the feedback systems. A conceptual model is first used to indicate the potential sources of the coupling, how the coupling manifests itself, and how the magnitudes of these critical coupling terms are used to quantify the effects of the airframe/engine interactions. A case study is also presented involving an unstable airframe with thrust vectoring for attitude control. It is shown for this system with classical, decentralized control laws that there is little airframe/engine interaction, and the stability and performance with those control laws is not affected. Implications of parameter uncertainty in the coupling dynamics is also discussed, and effects of these parameter variations are also demonstrated to be small for this vehicle configuration.

  18. The High Stability Engine Control (HISTEC) Program: Flight Demonstration Phase

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  19. Analysis of airframe/engine interactions in integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schierman, John D.; Schmidt, David K.

    1991-01-01

    An analysis framework for the assessment of dynamic cross-coupling between airframe and engine systems from the perspective of integrated flight/propulsion control is presented. This analysis involves to determining the significance of the interactions with respect to deterioration in stability robustness and performance, as well as critical frequency ranges where problems may occur due to these interactions. The analysis illustrated here investigates both the airframe's effects on the engine control loops and the engine's effects on the airframe control loops in two case studies. The second case study involves a multi-input/multi-output analysis of the airframe. Sensitivity studies are performed on critical interactions to examine the degradations in the system's stability robustness and performance. Magnitudes of the interactions required to cause instabilities, as well as the frequencies at which the instabilities occur are recorded. Finally, the analysis framework is expanded to include control laws which contain cross-feeds between the airframe and engine systems.

  20. Intelligent, Robust Control of Deteriorated Turbofan Engines via Linear Parameter Varying Quadratic Lyapunov Function Design

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.

  1. Receding horizon online optimization for torque control of gasoline engines.

    PubMed

    Kang, Mingxin; Shen, Tielong

    2016-11-01

    This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Re-engineering Engineering Education

    ERIC Educational Resources Information Center

    Gordon, Bernard M.; Silevitch, Michael B.

    2009-01-01

    In 2005, leaders gathered by the National Association of Manufacturers declared yet another "STEM" emergency. In the face of global competition, they argued, the number of bachelor's degrees awarded annually to U.S. students in science, math and engineering must double by 2015. In fact, the need for STEM talent is even more critical…

  3. Engineered control of enzyme structural dynamics and function.

    PubMed

    Boehr, David D; D'Amico, Rebecca N; O'Rourke, Kathleen F

    2018-04-01

    Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine. © 2018 The Protein Society.

  4. Towards a controlled vocabulary on software engineering education

    NASA Astrophysics Data System (ADS)

    Pizard, Sebastián; Vallespir, Diego

    2017-11-01

    Software engineering is the discipline that develops all the aspects of the production of software. Although there are guidelines about what topics to include in a software engineering curricula, it is usually unclear which are the best methods to teach them. In any science discipline the construction of a classification schema is a common approach to understand a thematic area. This study examines previous publications in software engineering education to obtain a first controlled vocabulary (a more formal definition of a classification schema) in the field. Publications from 1988 to 2014 were collected and processed using automatic clustering techniques and the outcomes were analysed manually. The result is an initial controlled vocabulary with a taxonomy form with 43 concepts that were identified as the most used in the research publications. We present the classification of the concepts in three facets: 'what to teach', 'how to teach' and 'where to teach' and the evolution of concepts over time.

  5. 11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS 2 AND 4. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  6. Control system development for an organic Ranking cycle engine

    NASA Technical Reports Server (NTRS)

    Bergthold, F. M., Jr.; Fulton, D. G.; Haskins, H. J.

    1981-01-01

    An organic Rankine cycle engine is used as part of a solar thermal power conversion assembly (PCA). The PCA, including a direct-heated cavity receiver and a shaft-mounted alternator, is mounted at the focal point of a parabolic dish concentrator. The engine controls are required to maintain approximately constant values of turbine inlet temperature and shaft speed, despite variation in the concentrated solar power input to the receiver. The controls design approach, system models, and initial stability and performance analysis results are presented herein.

  7. ADAPTIVE CLEARANCE CONTROL SYSTEMS FOR TURBINE ENGINES

    NASA Technical Reports Server (NTRS)

    Blackwell, Keith M.

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center primarily deals in developing controls, dynamic models, and health management technologies for air and space propulsion systems. During the summer of 2004 I was granted the privilege of working alongside professionals who were developing an active clearance control system for commercial jet engines. Clearance, the gap between the turbine blade tip and the encompassing shroud, increases as a result of wear mechanisms and rubbing of the turbine blades on shroud. Increases in clearance cause larger specific fuel consumption (SFC) and loss of efficient air flow. This occurs because, as clearances increase, the engine must run hotter and bum more fuel to achieve the same thrust. In order to maintain efficiency, reduce fuel bum, and reduce exhaust gas temperature (EGT), the clearance must be accurately controlled to gap sizes no greater than a few hundredths of an inch. To address this problem, NASA Glenn researchers have developed a basic control system with actuators and sensors on each section of the shroud. Instead of having a large uniform metal casing, there would be sections of the shroud with individual sensors attached internally that would move slightly to reform and maintain clearance. The proposed method would ultimately save the airline industry millions of dollars.

  8. National Science Foundation - Annual Report 1985. Thirty-Fifth Annual Report for Fiscal Year 1985.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    The 35th Annual Report of the National Science Foundation (NSF) describes recent achievements of NSF sponsored research in viral structure, semiconductors, genetic engineering, Mayan culture, astronomy, physiology, paleontology, robotics, physics, material science and pollution. Major 1985 initiatives included: (1) establishing six university…

  9. Antibody Engineering & Therapeutics 2016: The Antibody Society's annual meeting, December 11-15, 2016, San Diego, CA.

    PubMed

    Larrick, James W; Alfenito, Mark R; Scott, Jamie K; Parren, Paul W H I; Burton, Dennis R; Bradbury, Andrew R M; Lemere, Cynthia A; Messer, Anne; Huston, James S; Carter, Paul J; Veldman, Trudi; Chester, Kerry A; Schuurman, Janine; Adams, Gregory P; Reichert, Janice M

    Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. "Antibodies to watch in 2017" and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.

  10. Proceedings of the Eighth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The four major topics of discussion included: the NASA Software Engineering Laboratory, software testing, human factors in software engineering and software quality assessment. As in the past years, there were 12 position papers presented (3 for each topic) followed by questions and very heavy participation by the general audience.

  11. 40 CFR 60.4895 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollution control device inspections and make any necessary repairs? 60.4895 Section 60.4895 Protection of... Compliance Requirements § 60.4895 By what date must I conduct annual air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution...

  12. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  13. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  14. System controls challenges of hypersonic combined-cycle engine powered vehicles

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Ianculescu, George D.

    1992-01-01

    Hypersonic aircraft with air-breathing engines have been described as the most complex and challenging air/space vehicle designs ever attempted. This is particularly true for aircraft designed to accelerate to orbital velocities. The propulsion system for the National Aerospace Plane will be an active factor in maintaining the aircraft on course. Typically addressed are the difficulties with the aerodynamic vehicle design and development, materials limitations and propulsion performance. The propulsion control system requires equal materials limitations and propulsion performance. The propulsion control system requires equal concern. Far more important than merely a subset of propulsion performance, the propulsion control system resides at the crossroads of trajectory optimization, engine static performance, and vehicle-engine configuration optimization. To date, solutions at these crossroads are multidisciplinary and generally lag behind the broader performance issues. Just how daunting these demands will be is suggested. A somewhat simplified treatment of the behavioral characteristics of hypersonic aircraft and the issues associated with their air-breathing propulsion control system design are presented.

  15. Stability Analysis of Distributed Engine Control Systems Under Communication Packet Drop (Postprint)

    DTIC Science & Technology

    2008-07-01

    use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT Currently, Full Authority Digital Engine Control ( FADEC ...based on a centralized architecture framework is being widely used for gas turbine engine control. However, current FADEC is not able to meet the...system (DEC). FADEC based on Distributed Control Systems (DCS) offers modularity, improved control systems prognostics and fault tolerance along with

  16. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  17. Life extending control for rocket engines

    NASA Technical Reports Server (NTRS)

    Lorenzo, C. F.; Saus, J. R.; Ray, A.; Carpino, M.; Wu, M.-K.

    1992-01-01

    The concept of life extending control is defined. A brief discussion of current fatigue life prediction methods is given and the need for an alternative life prediction model based on a continuous functional relationship is established. Two approaches to life extending control are considered: (1) the implicit approach which uses cyclic fatigue life prediction as a basis for control design; and (2) the continuous life prediction approach which requires a continuous damage law. Progress on an initial formulation of a continuous (in time) fatigue model is presented. Finally, nonlinear programming is used to develop initial results for life extension for a simplified rocket engine (model).

  18. FY2016 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  19. FY2014 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  20. FY2015 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  1. Design description of a microprocessor based Engine Monitoring and Control unit (EMAC) for small turboshaft

    NASA Technical Reports Server (NTRS)

    Baez, A. N.

    1985-01-01

    Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program.

  2. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  3. Computer program for a four-cylinder-Stirling-engine controls simulation

    NASA Technical Reports Server (NTRS)

    Daniels, C. J.; Lorenzo, C. F.

    1982-01-01

    A four cylinder Stirling engine, transient engine simulation computer program is presented. The program is intended for controls analysis. The associated engine model was simplified to shorten computer calculation time. The model includes engine mechanical drive dynamics and vehicle load effects. The computer program also includes subroutines that allow: (1) acceleration of the engine by addition of hydrogen to the system, and (2) braking of the engine by short circuiting of the working spaces. Subroutines to calculate degraded engine performance (e.g., due to piston ring and piston rod leakage) are provided. Input data required to run the program are described and flow charts are provided. The program is modular to allow easy modification of individual routines. Examples of steady state and transient results are presented.

  4. System and method for controlling engine knock using electro-hydraulic valve actuation

    DOEpatents

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  5. Neural network controller development and implementation for spark ignition engines with high EGR levels.

    PubMed

    Vance, Jonathan Blake; Singh, Atmika; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2007-07-01

    Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10%-25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine.

  6. Epidemiology of severe and fatal rattlesnake bites published in the American Association of Poison Control Centers' Annual Reports.

    PubMed

    Walter, Frank G; Stolz, Uwe; Shirazi, Farshad; McNally, Jude

    2009-08-01

    No study has focused on the nationwide epidemiology of severe and fatal rattlesnake bites during the last 25 years. We examined rates and temporal trends of severe and fatal rattlesnake bites across the United States. Our hypothesis was that nationwide annual rates of both severe and fatal outcomes from rattlesnake bites have remained unchanged over time. This study retrospectively analyzed all human rattlesnake bites published in the Annual Reports of the American Association of Poison Control Centers from 1983 through 2007. Annual rates of severe (major) and fatal rattlesnake bites were calculated using the annual number of major outcomes and fatalities as respective numerators and the total annual number of single rattlesnake bites (exposures) as denominators. Negative binomial and Poisson regressions were used to examine trends of severe and fatal rattlesnake bites over time. Annually, from 1985 to 2007, the incidence rate of major outcomes decreased by 2% per year (incidence rate ratio = 0.980; CI = 0.967-0.993), corresponding to an absolute annual rate decrease of two major outcomes per 1,000 bites per year. Annual rates of fatalities showed no statistically significant change from 1983 through 2007. This is the first study to examine rates and trends of published severe and fatal rattlesnake bites across the United States over the past 25 years. Annual rates of severe rattlesnake bites, derived from the published Annual Reports of the American Association of Poison Control Centers, have significantly decreased over time, whereas rates of fatal rattlesnake bites have remained unchanged.

  7. Integrated control and health management. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Holzmann, Wilfried A.; Hayden, Warren R.

    1988-01-01

    To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.

  8. 2007 Research and Engineering Annual Report

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick; Bowers, Albion; Cruciani, Everlyn

    2008-01-01

    Selected research and technology activities at NASA Dryden Flight Research Center are summarized. These following activities exemplify the Center's varied and productive research efforts: Developing a Requirements Development Guide for an Automatic Ground Collision Avoidance System; Digital Terrain Data Compression and Rendering for Automatic Ground Collision Avoidance Systems; Nonlinear Flutter/Limit Cycle Oscillations Prediction Tool; Nonlinear System Identification Using Orthonormal Bases: Application to Aeroelastic/Aeroservoelastic Systems; Critical Aerodynamic Flow Feature Indicators: Towards Application with the Aerostructures Test Wing; Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm; Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool; Extension of Ko Straight-Beam Displacement Theory to the Deformed Shape Predictions of Curved Structures; F-15B with Phoenix Missile and Pylon Assembly--Drag Force Estimation; Mass Property Testing of Phoenix Missile Hypersonic Testbed Hardware; ARMD Hypersonics Project Materials and Structures: Testing of Scramjet Thermal Protection System Concepts; High-Temperature Modal Survey of the Ruddervator Subcomponent Test Article; ARMD Hypersonics Project Materials and Structures: C/SiC Ruddervator Subcomponent Test and Analysis Task; Ground Vibration Testing and Model Correlation of the Phoenix Missile Hypersonic Testbed; Phoenix Missile Hypersonic Testbed: Performance Design and Analysis; Crew Exploration Vehicle Launch Abort System-Pad Abort-1 (PA-1) Flight Test; Testing the Orion (Crew Exploration Vehicle) Launch Abort System-Ascent Abort-1 (AA-1) Flight Test; SOFIA Flight-Test Flutter Prediction Methodology; SOFIA Closed-Door Aerodynamic Analyses; SOFIA Handling Qualities Evaluation for Closed-Door Operations; C-17 Support of IRAC Engine Model Development; Current Capabilities and Future Upgrade Plans of the C-17 Data

  9. A top-down approach in control engineering third-level teaching: The case of hydrogen-generation

    NASA Astrophysics Data System (ADS)

    Setiawan, Eko; Habibi, M. Afnan; Fall, Cheikh; Hodaka, Ichijo

    2017-09-01

    This paper presents a top-down approach in control engineering third-level teaching. The paper shows the control engineering solution for the issue of practical implementation in order to motivate students. The proposed strategy only focuses on one technique of control engineering to lead student correctly. The proposed teaching steps are 1) defining the problem, 2) listing of acquired knowledge or required skill, 3) selecting of one control engineering technique, 4) arrangement the order of teaching: problem introduction, implementation of control engineering technique, explanation of system block diagram, model derivation, controller design, and 5) enrichment knowledge by the other control techniques. The approach presented highlights hardware implementation and the use of software simulation as a self-learning tool for students.

  10. Receptor control in mesenchymal stem cell engineering

    NASA Astrophysics Data System (ADS)

    Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel

    2018-03-01

    Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.

  11. Research on LQR optimal control method of active engine mount

    NASA Astrophysics Data System (ADS)

    Huan, Xie; Yu, Duan

    2018-04-01

    In this paper, the LQR control method is applied to the active mount of the engine, and a six-cylinder engine excitation model is established. Through the joint simulation of AMESim and MATLAB, the vibration isolation performance of the active mount system and the passive mount system is analyzed. Excited by the multi-engine operation, the simulation results of the vertical displacement, acceleration and dynamic deflection of the vehicle body show that the vibration isolation capability of the active mount system is superior to that of the passive mount system. It shows that compared with the passive mount, LQR active mount can greatly improve the vibration isolation performance, which proves the feasibility and effectiveness of the LQR control method.

  12. Engineering controllable bidirectional molecular motors based on myosin

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  13. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  14. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    NASA Technical Reports Server (NTRS)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  15. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... engine design certification, and the certification requirements for engine control systems are driven by... following novel or unusual design features: Electronic engine control system. Discussion As discussed above...; Electronic Engine Control (EEC) System AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...

  16. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  17. Design of lightning protection for a full-authority digital engine control

    NASA Technical Reports Server (NTRS)

    Dargi, M.; Rupke, E.; Wiles, K.

    1991-01-01

    The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented.

  18. Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation

    PubMed Central

    So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet

    2012-01-01

    Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341

  19. Systems and methods for controlling diesel engine emissions

    DOEpatents

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  20. Mechanical control of tissue-engineered bone.

    PubMed

    Hung, Ben P; Hutton, Daphne L; Grayson, Warren L

    2013-01-31

    Bone is a load-bearing tissue and physical forces play key roles in the development and maintenance of its structure. Mechanical cues can stimulate the expression of an osteogenic phenotype, enhance matrix and mineral deposition, and influence tissue organization to improve the functional outcome of engineered bone grafts. In recent years, a number of studies have investigated the effects of biophysical forces on the bone formation properties of osteoprogenitor cells. The application of physiologically relevant stimuli to tissue-engineered bone may be determined through observation and understanding of forces to which osteoblasts, osteoclasts, and osteocytes are exposed in native bone. Subsequently, these cues may be parameterized and their effects studied in well-defined in vitro systems. The osteo-inductive effects of three specific mechanical cues - shear stress, substrate rigidity, and nanotopography - on cells cultured in monolayer or in three-dimensional biomaterial scaffolds in vitro are reviewed. Additionally, we address the time-dependent effects of mechanical cues on vascular infiltration and de novo bone formation in acellular scaffolds implanted into load-bearing sites in vivo. Recent studies employing cutting-edge advances in biomaterial fabrication and bioreactor design have provided key insights into the role of mechanical cues on cellular fate and tissue properties of engineered bone grafts. By providing mechanistic understanding, future studies may go beyond empirical approaches to rational design of engineering systems to control tissue development.

  1. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.

  2. 14. Historic view of engineer in Building 100 control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Historic view of engineer in Building 100 control room examining data printout. 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-46210. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  3. Technology Requirements and Development for Affordable High-Temperature Distributed Engine Controls

    DTIC Science & Technology

    2012-06-04

    long lasting, high temperature modules is to use high temperature electronics on ceramic modules. The electronic components are “ brazed ” onto the...Copyright © 2012 by ISA Technology Requirements and Development for Affordable High - Temperature Distributed Engine Controls Alireza Behbahani 1...with regards to high temperature capability. The Government and Industry Distributed Engine Controls Working Group (DECWG) [5] has been established

  4. Simulation of how a geo-engineering intervention to restore arctic sea ice might work in practice

    NASA Astrophysics Data System (ADS)

    Jackson, L. S.; Crook, J. A.; Forster, P.; Jarvis, A.; Leedal, D.; Ridgwell, A. J.; Vaughan, N.

    2013-12-01

    The declining trend in annual minimum Arctic sea ice coverage and years of more pronounced drops like 2007 and 2012 raise the prospect of an Arctic Ocean largely free of sea ice in late summer and the potential for a climate crisis or emergency. In a novel computer simulation, we treated one realisation of a climate model (HadGEM2) as the real world and tried to restore its Arctic sea ice by the rapid deployment of geo-engineering with emission of SO2 into the Arctic stratosphere. The objective was to restore the annual minimum Arctic sea ice coverage to levels seen in the late twentieth century using as little geo-engineering as possible. We took intervention decisions as one might do in the real world: by committee, using a limited set of uncertain 'observations' from our simulated world and using models and control theory to plan the best intervention strategy for the coming year - so learning as we went and being thrown off course by future volcanoes and technological breakdowns. Uncertainties in real world observations were simulated by applying noise to emerging results from the climate model. Volcanic forcing of twenty-first century climate was included with the timing and magnitude of the simulated eruptions unknown by the 'geo-engineers' until after the year of the eruption. Monitoring of Arctic sea ice with the option to intervene with SO2 emissions started from 2018 and continued to 2075. Simulated SO2 emissions were made in January-May each year at a latitude of 79o N and an altitude within the range of contemporary tanker aircraft. The magnitude of emissions was chosen annually using a model predictive control process calibrated using results from CMIP5 models (excluding HadGEM2), using the simplified climate model MAGICC and assimilation of emerging annual results from the HadGEM2 'real world'. We found that doubts in the minds of the 'geo-engineers' of the effectiveness and the side effects of their past intervention, and the veracity of the models

  5. Engineering microbial consortia for controllable outputs

    PubMed Central

    Lindemann, Stephen R; Bernstein, Hans C; Song, Hyun-Seob; Fredrickson, Jim K; Fields, Matthew W; Shou, Wenying; Johnson, David R; Beliaev, Alexander S

    2016-01-01

    Much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution global measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties. PMID:26967105

  6. Engineering microbial consortia for controllable outputs

    DOE PAGES

    Lindemann, Stephen R.; Bernstein, Hans C.; Song, Hyun -Seob; ...

    2016-03-11

    In this study, much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution globalmore » measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties.« less

  7. 75 FR 64216 - Interpretation of OSHA's Provisions for Feasible Administrative or Engineering Controls of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... CFR Parts 1910 and 1926 Interpretation of OSHA's Provisions for Feasible Administrative or Engineering... feasible administrative or engineering controls as used in the applicable sections of OSHA's General... administrative or engineering controls rather than personal protective equipment (PPE) to reduce noise exposures...

  8. 75 FR 77798 - Interpretation of OSHA's Provisions for Feasible Administrative or Engineering Controls of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... CFR Parts 1910 and 1926 Interpretation of OSHA's Provisions for Feasible Administrative or Engineering... Administrative or Engineering Controls of Occupational Noise, giving interested parties 60 days to comment. The... Provisions for Feasible Administrative or Engineering Controls of Occupational Noise. The notice proposed to...

  9. 8. SHEET 2, CONTROL HOUSE FOR DRY DOCK. United Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SHEET 2, CONTROL HOUSE FOR DRY DOCK. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities, Office Building. John Hudspeth, Architect, at foot of Main Street, Alameda, Calif. Sheet no. 2 of 2 sheets, Plan no. 10,507. Various scales. January 4, 1943, last revised 1/19/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Control House for Dry Dock, 2900 Main Street, Alameda, Alameda County, CA

  10. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  11. 15. Historic view of engineer in Building 100 control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Historic view of engineer in Building 100 control room examining data printout. August 28, 1962. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-61500. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  12. Apollo experience report: Guidance and control systems. Engineering simulation program

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  13. A controls engineering approach for analyzing airplane input-output characteristics

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas

    1991-01-01

    An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.

  14. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  15. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  16. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  17. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  18. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  19. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  20. Signal-chip microcomputer control system for a diffraction grating ruling engine

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Zhang, Yuhua; Yang, Houmin; Guo, Du

    1998-08-01

    A control system with a chip of 8031 single-chip microcomputer as its nucleus for a diffraction grating ruling engine has been developed, its hardware and software are presented in this paper. A series of techniques such as program-controlled amplifier and interference fringes subdivision as well as motor velocity step governing are adopted to improve the control accuracy. With this control system, 8 kinds of gratings of different spacings can be ruled, the positioning precision of the diffraction grating ruling engine (sigma) equals 3.6 nm, and the maximum positioning error is less than 14.6 nm.

  1. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  2. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the

  3. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    DOEpatents

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  4. Investigation of a nozzle instability on an F100 engine equipped with a digital electronic engine control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Zeller, J. R.

    1984-01-01

    An instability in the nozzle of the F100 engine, equipped with a digital electronic engine control (DEEC), was observed during a flight evaluation on an F-15 aircraft. The instability occurred in the upper left hand corner (ULMC) of the flight envelope during augmentation. The instability was not predicted by stability analysis, closed-loop simulations of the the engine, or altitude testing of the engine. The instability caused stalls and augmentor blowouts. The nozzle instability and the altitude testing are described. Linear analysis and nonlinear digital simulation test results are presented. Software modifications on further flight test are discussed.

  5. United States Arms Control and Disarmament Agency. Ninth Annual Report to Congress.

    ERIC Educational Resources Information Center

    Arms Control and Disarmament Agency, Washington, DC.

    This annual report surveys activities of the Arms Control and Disarmament Agency (ACDA) and summarizes disarmament developments for the calendar year 1968. An act of Congress states that ACDA must have such a position within the Government that it can provide the President, the Secretary of State, other officials of the executive branch, and the…

  6. Energy Efficient Engine (E3) controls and accessories detail design report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Lavash, J. P.

    1982-01-01

    An Energy Efficient Engine program has been established by NASA to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, a new turbofan engine was designed. This report describes the fuel and control system for this engine. The system design is based on many of the proven concepts and component designs used on the General Electric CF6 family of engines. One significant difference is the incorporation of digital electronic computation in place of the hydromechanical computation currently used.

  7. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOEpatents

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  8. Low-dose glyphosate does not control annual bromes in the northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Annual bromes (downy brome and Japanese brome) have been shown to decrease perennial grass forage production and alter ecosystem functions in northern Great Plains rangelands. Large-scale chemical control might be a method for increasing rangeland forage production if low application rates confer co...

  9. 7. SHEET 1, CONTROL HOUSE FOR DRY DOCK. United Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SHEET 1, CONTROL HOUSE FOR DRY DOCK. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities, Office Building. Plans, elevations, sections, details. John Hudspeth, Architect, at foot of Main Street, Alameda, Calif. Sheet no. 1 of 2 sheets, Plan no. 10,507. Various scales. January 4, 1943, last revised 1/28/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Control House for Dry Dock, 2900 Main Street, Alameda, Alameda County, CA

  10. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...

  11. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...

  12. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...

  13. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...

  14. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...

  15. Cost and price estimate of Brayton and Stirling engines in selected production volumes

    NASA Technical Reports Server (NTRS)

    Fortgang, H. R.; Mayers, H. F.

    1980-01-01

    The methods used to determine the production costs and required selling price of Brayton and Stirling engines modified for use in solar power conversion units are presented. Each engine part, component and assembly was examined and evaluated to determine the costs of its material and the method of manufacture based on specific annual production volumes. Cost estimates are presented for both the Stirling and Brayton engines in annual production volumes of 1,000, 25,000, 100,000 and 400,000. At annual production volumes above 50,000 units, the costs of both engines are similar, although the Stirling engine costs are somewhat lower. It is concluded that modifications to both the Brayton and Stirling engine designs could reduce the estimated costs.

  16. Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine

    DOEpatents

    Roth, Gregory T; Husted, Harry L; Sellnau, Mark C

    2015-04-07

    A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.

  17. Vapor cycle energy system for implantable circulatory assist devices. Annual progress report Jul 1974--Jun 1975. [Tidal regenerator engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, K.G.

    1975-06-01

    The report describes the development status of a heart assist system driven by a nuclear fueled, electronically controlled vapor cycle engine termed the tidal regenerator engine (TRE). The TRE pressurization (typically from 5-160 psia) is controlled by a torque motor coupled to a displacer. The electrical power for the sensor, electronic logic and actuator is provided by a thermoelectric module interposed between the engine superheater and boiler. The TRE is direct coupled to an assist blood pump which also acts as a blood-cooled heat exchanger, pressure-volume transformer and sensor for the electronic logic. Engine efficiencies in excess of 14% havemore » been demonstrated. Efficiency values as high as 13% have been achieved to date.« less

  18. A Study on Application of Fuzzy Adaptive Unscented Kalman Filter to Nonlinear Turbojet Engine Control

    NASA Astrophysics Data System (ADS)

    Han, Dongju

    2018-05-01

    Safe and efficient flight powered by an aircraft turbojet engine relies on the performance of the engine controller preventing compressor surge with robustness from noises or disturbances. This paper proposes the effective nonlinear controller associated with the nonlinear filter for the real turbojet engine with highly nonlinear dynamics. For the feasible controller study the nonlinearity of the engine dynamics was investigated by comparing the step responses from the linearized model with the original nonlinear dynamics. The fuzzy-based PID control logic is introduced to control the engine efficiently and FAUKF is applied for robustness from noises. The simulation results prove the effectiveness of FAUKF applied to the proposed controller such that the control performances are superior over the conventional controller and the filer performance using FAUKF indicates the satisfactory results such as clearing the defects by reducing the distortions without compressor surge, whereas the conventional UKF is not fully effective as occurring some distortions with compressor surge due to a process noise.

  19. Engineering controllable bidirectional molecular motors based on myosin

    PubMed Central

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-01-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382

  20. Army Corps of Engineers, Southwestern Division, Reservoir Control Center Annual Report 1988

    DTIC Science & Technology

    1989-01-01

    water control data system. This system includes the equipment and software used for the acquisition, transmission and processing of real-time hydrologic... transmission . The SWD system was installed at the Federal Center in Fort Worth, Texas, in September 1983. This is a Synergetics Model 10C direct Readout Ground...reservoir projects under control of the Department of the Army in the area comprising all of Arkansas and Louisiana and portions of Missouri, Kansas

  1. Extending the Capabilities of Closed-loop Distributed Engine Control Simulations Using LAN Communication

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia Mae; Culley, Dennis E.

    2014-01-01

    Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.

  2. Sliding Mode Fault Tolerant Control with Adaptive Diagnosis for Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Xiao, Lingfei; Du, Yanbin; Hu, Jixiang; Jiang, Bin

    2018-03-01

    In this paper, a novel sliding mode fault tolerant control method is presented for aircraft engine systems with uncertainties and disturbances on the basis of adaptive diagnostic observer. By taking both sensors faults and actuators faults into account, the general model of aircraft engine control systems which is subjected to uncertainties and disturbances, is considered. Then, the corresponding augmented dynamic model is established in order to facilitate the fault diagnosis and fault tolerant controller design. Next, a suitable detection observer is designed to detect the faults effectively. Through creating an adaptive diagnostic observer and based on sliding mode strategy, the sliding mode fault tolerant controller is constructed. Robust stabilization is discussed and the closed-loop system can be stabilized robustly. It is also proven that the adaptive diagnostic observer output errors and the estimations of faults converge to a set exponentially, and the converge rate greater than some value which can be adjusted by choosing designable parameters properly. The simulation on a twin-shaft aircraft engine verifies the applicability of the proposed fault tolerant control method.

  3. International Conference of Applied Science and Technology for Infrastructure Engineering

    NASA Astrophysics Data System (ADS)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  4. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    PubMed Central

    He, Fei; Murabito, Ettore; Westerhoff, Hans V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000

  5. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    PubMed

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  6. Design and vibration control of vehicle engine mount activated by MR fluid and piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Park, Y. K.; Choi, S. B.; Lee, H. G.

    2009-07-01

    An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range).

  7. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    NASA Technical Reports Server (NTRS)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  8. Afterburning control of internal combustion engine exhaust gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Y.; Hayashi, Y.; Nagumo, S.I.

    1976-08-17

    Flow of secondary air into the exhaust system is regulated by diaphragm assembly controlled valves between an air supply and the exhaust system. The diaphragm assemblies respond to vacuum in the intake air system of the engine.

  9. 40 CFR 60.2716 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air pollution control device inspection? 60.2716 Section 60.2716 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... annual air pollution control device inspection), you must complete the air pollution control device...

  10. 40 CFR 60.2716 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspection? 60.2716 Section 60.2716 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... annual air pollution control device inspection), you must complete the air pollution control device...

  11. 40 CFR 60.2716 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air pollution control device inspection? 60.2716 Section 60.2716 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... annual air pollution control device inspection), you must complete the air pollution control device...

  12. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Dudley, Stephanie R. B.

    2014-01-01

    With an increase in the utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS realtime operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art media wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management

  13. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.

  14. Energy Efficient Engine: Control system preliminary definition report

    NASA Technical Reports Server (NTRS)

    Howe, David C.

    1986-01-01

    The object of the Control Preliminary Definition Program was to define a preliminary control system concept as a part of the Energy Efficient Engine program. The program was limited to a conceptual definition of a full authority digital electronic control system. System requirements were determined and a control system was conceptually defined to these requirements. Areas requiring technological development were identified and a plan was established for implementing the identified technological features, including a control technology demonstration. A significant element of this program was a study of the potential benefits of closed-loop active clearance control, along with laboratory tests of candidate clearance sensor elements for a closed loop system.

  15. Flexible structure control experiments using a real-time workstation for computer-aided control engineering

    NASA Technical Reports Server (NTRS)

    Stieber, Michael E.

    1989-01-01

    A Real-Time Workstation for Computer-Aided Control Engineering has been developed jointly by the Communications Research Centre (CRC) and Ruhr-Universitaet Bochum (RUB), West Germany. The system is presently used for the development and experimental verification of control techniques for large space systems with significant structural flexibility. The Real-Time Workstation essentially is an implementation of RUB's extensive Computer-Aided Control Engineering package KEDDC on an INTEL micro-computer running under the RMS real-time operating system. The portable system supports system identification, analysis, control design and simulation, as well as the immediate implementation and test of control systems. The Real-Time Workstation is currently being used by CRC to study control/structure interaction on a ground-based structure called DAISY, whose design was inspired by a reflector antenna. DAISY emulates the dynamics of a large flexible spacecraft with the following characteristics: rigid body modes, many clustered vibration modes with low frequencies and extremely low damping. The Real-Time Workstation was found to be a very powerful tool for experimental studies, supporting control design and simulation, and conducting and evaluating tests withn one integrated environment.

  16. Surface Sites for Engineering Allosteric Control in Proteins

    PubMed Central

    Lee, Jeeyeon; Natarajan, Madhusudan; Nashine, Vishal C.; Socolich, Michael; Vo, Tina; Russ, William P.; Benkovic, Stephen J.; Ranganathan, Rama

    2010-01-01

    Statistical analyses of protein families reveal networks of coevolving amino acids that functionally link distantly positioned functional surfaces. Such linkages suggest a concept for engineering allosteric control into proteins: The intramolecular networks of two proteins could be joined across their surface sites such that the activity of one protein might control the activity of the other. We tested this idea by creating PAS-DHFR, a designed chimeric protein that connects a light-sensing signaling domain from a plant member of the Per/Arnt/Sim (PAS) family of proteins with Escherichia coli dihydrofolate reductase (DHFR). With no optimization, PAS-DHFR exhibited light-dependent catalytic activity that depended on the site of connection and on known signaling mechanisms in both proteins. PAS-DHFR serves as a proof of concept for engineering regulatory activities into proteins through interface design at conserved allosteric sites. PMID:18927392

  17. Filter-based control of particulate matter from a lean gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load

  18. ODECS -- A computer code for the optimal design of S.I. engine control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsie, I.; Pianese, C.; Rizzo, G.

    1996-09-01

    The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author`s activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (1) definition of the engine mathematical model from steady-state experimental data; (2) engine cycle test trajectory corresponding to amore » vehicle transient simulation test such as ECE15 or FTP drive test schedule; (3) evaluation of the optimal engine control maps with a steady-state approach; (4) engine dynamic cycle simulation and optimization of static control maps and/or dynamic compensation strategies, taking into account dynamical effects due to the unsteady fluxes of air and fuel and the influences of combustion chamber wall thermal inertia on fuel consumption and emissions. Moreover, in the last two modules it is possible to account for errors generated by a non-deterministic behavior of sensors and actuators and the related influences on global engine performances, and compute robust strategies, less sensitive to stochastic effects. In the paper the four models are described together with significant results corresponding to the simulation and the calculation of optimal control strategies for dynamic transient tests.« less

  19. Proceedings of the 19th Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include this document.

  20. Standardized Fault-Tolerant Sensing Nodes for an Intelligent Turbine Engine Control System (Preprint)

    DTIC Science & Technology

    2013-05-01

    representation of a centralized control system on a turbine engine. All actuators and sensors are point-to-point cabled to the controller ( FADEC ) which...electronics themselves. Figure 1: Centralized Control System Each function resides within the FADEC and uses Unique Point-to-Point Analog...distributed control system on the same turbine engine. The actuators and sensors interface to Smart Nodes which, in turn communicate to the FADEC via

  1. Hybrid Engine Powered City Car: Fuzzy Controlled Approach

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany

    2017-03-01

    This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.

  2. Full-Authority Fault-Tolerant Electronic Engine Control System for Variable Cycle Engines.

    DTIC Science & Technology

    1982-04-01

    single internally self-checked VLSI micro - processor . The selected configuration is an externally checked pair of com- mercially available...Electronic Engine Control FPMH Failures per Million Hours FTMP Fault Tolerant Multi- Processor FTSC Fault Tolerant Spaceborn Computer GRAMP Generalized...Removal * MTBR Mean Time Between Repair MTTF Mean Time to Failure xiii List of Abbreviations (continued) - NH High Pressure Rotor Speed O&S Operating

  3. A simulation evaluation of the engine monitoring and control system display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1990-01-01

    The Engine Monitoring and Control System (E-MACS) display is a new concept for an engine instrument display, the purpose of which is to provide an enhanced means for a pilot to control and monitor aircraft engine performance. It provides graphically-presented information about performance capabilities, current performance, and engine component or subsystem operational conditions relative to nominal conditions. The concept was evaluated by sixteen pilot-subjects against a traditional, state-of-the-art electronic engine display format. The results of this evaluation showed a substantial pilot preference for the E-MACS display relative to the traditional display. The results of the failure detection portion of the evaluation showed a 100 percent detection rate for the E-MACS display relative to a 57 percent rate for the traditional display. From these results, it is concluded that by providing this type of information in the cockpit, a reduction in pilot workload and an enhanced ability for detecting degraded or off-nominal conditions is probable, thus leading to an increase in operational safety.

  4. 36. ENGINE ROOM FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ENGINE ROOM FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING AT TWO DIESEL ENGINES, STAIRS LEAD UP TO CREW'S BERTHING. THIS IMAGE IS CLOSER TO THE STERN AND MORE ANGLED TOWARDS THE PORT THAN IMAGE 34. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME

  5. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  6. Mapping the moral boundaries of biological engineering.

    PubMed

    Russ, Zachary N

    2009-05-08

    The following essay was written by a sophomore undergraduate student majoring in Bioengineering at the University of Maryland, Mr. Zachary Russ. Mr. Russ was one of 174 students who submitted a 1000-1200 word essay to the 4th Annual Bioethics Contest sponsored by the Institute of Biological Engineering (IBE). A group of professionals in Biological Engineering assessed and ranked the essays in a blinded process. Five semi-finalists were invited to present their essays at a session at the annual meeting of IBE in Santa Clara, CA on March 21, 2009. Five judges scored all the presentation at the annual meeting and selected Mr. Russ's contribution as the overall winner (1st Place).

  7. Mapping the moral boundaries of biological engineering

    PubMed Central

    Russ, Zachary N

    2009-01-01

    The following essay was written by a sophomore undergraduate student majoring in Bioengineering at the University of Maryland, Mr. Zachary Russ. Mr. Russ was one of 174 students who submitted a 1000–1200 word essay to the 4th Annual Bioethics Contest sponsored by the Institute of Biological Engineering (IBE). A group of professionals in Biological Engineering assessed and ranked the essays in a blinded process. Five semi-finalists were invited to present their essays at a session at the annual meeting of IBE in Santa Clara, CA on March 21, 2009. Five judges scored all the presentation at the annual meeting and selected Mr. Russ's contribution as the overall winner (1st Place). PMID:19422721

  8. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by

  9. Active Control of Inlet Noise on the JT15D Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Smith, Jerome P.; Hutcheson, Florence V.; Burdisso, Ricardo A.; Fuller, Chris R.

    1999-01-01

    This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage

  10. [Eutrophication control in local area by physic-ecological engineering].

    PubMed

    Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan

    2012-07-01

    An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.

  11. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b) [Reserved] ...

  12. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b) [Reserved] ...

  13. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b) [Reserved] ...

  14. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b) [Reserved] ...

  15. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b) [Reserved] ...

  16. Production of amino acids - Genetic and metabolic engineering approaches.

    PubMed

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Application of Hardware in the Loop Testing for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  19. Engineering Development Tests Airdrop Controlled Exit System (ACES)

    DTIC Science & Technology

    1980-09-01

    AIRDROP CONTROLLED EXIT SYSTEM ( ACES ) RECOVERY PARACHUTES TELEMETERING DATA 20. D5TFAC c• Cat •u•u am revers e• ift n•ceesafy ad Ide•lityf by block...rTECHNICAL REPORT , NATICK /TR-82 /017 f C’n Engineering Development Tests Airdropý Controlled Exit System ( ACES ) COPY CLV40ble to DTIC doe’ io C...and,50.,,,10) s. TYPE OF REPORT A PERIOn COVEnEo Test Report ENCINEERTNG DEVELOPMENT TESTS Oct 79 - Apr 80 AIRDROP CONTROLLED EXIT SYSTEM ( ACES ) 6

  20. Method and system for controlled combustion engines

    DOEpatents

    Oppenheim, A. K.

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  1. The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed.

  2. Women in Engineering: Insight into Why Some Engineering Departments Have More Success in Recruiting and Graduating Women

    ERIC Educational Resources Information Center

    Bossart, Jean; Bharti, Neelam

    2017-01-01

    Universities across the United States (U.S.) are perplexed as to why fewer women than men study engineering and why even fewer complete the curriculum and earn an undergraduate degree in engineering. The percentage of undergraduate engineering degrees awarded annually to women in the U.S. since 2000 has remained relatively constant at around 20%.…

  3. Start-up and control method and apparatus for resonant free piston Stirling engine

    DOEpatents

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  4. Buried waste integrated demonstration human engineered control station. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  5. Variable cooling circuit for thermoelectric generator and engine and method of control

    DOEpatents

    Prior, Gregory P

    2012-10-30

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  6. Neural control of fast nonlinear systems--application to a turbocharged SI engine with VCT.

    PubMed

    Colin, Guillaume; Chamaillard, Yann; Bloch, Gérard; Corde, Gilles

    2007-07-01

    Today, (engine) downsizing using turbocharging appears as a major way in reducing fuel consumption and pollutant emissions of spark ignition (SI) engines. In this context, an efficient control of the air actuators [throttle, turbo wastegate, and variable camshaft timing (VCT)] is needed for engine torque control. This paper proposes a nonlinear model-based control scheme which combines separate, but coordinated, control modules. Theses modules are based on different control strategies: internal model control (IMC), model predictive control (MPC), and optimal control. It is shown how neural models can be used at different levels and included in the control modules to replace physical models, which are too complex to be online embedded, or to estimate nonmeasured variables. The results obtained from two different test benches show the real-time applicability and good control performance of the proposed methods.

  7. Control method for turbocharged diesel engines having exhaust gas recirculation

    DOEpatents

    Kolmanovsky, Ilya V.; Jankovic, Mrdjan J; Jankovic, Miroslava

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  8. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  9. Internal combustion engine fuel controls. (Latest citations from the US Patent database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The bibliography contains citations of selected patents concerning fuel control devices and methods for use in internal combustion engines. Patents describe air-fuel ratio control, fuel injection systems, evaporative fuel control, and surge-corrected fuel control. Citations also discuss electronic and feedback control, methods for engine protection, and fuel conservation. (Contains a minimum of 232 citations and includes a subject term index and title list.)

  10. Executive control systems in the engineering design environment

    NASA Technical Reports Server (NTRS)

    Hurst, P. W.; Pratt, T. W.

    1985-01-01

    Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.

  11. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOEpatents

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  12. Software Engineering Institute, Annual Report 2001

    DTIC Science & Technology

    2002-03-01

    PSP and TSP written by Watts S . Humphrey for the Addison- Wesley SEI Series in...become SCAMPI Lead Assessors. SEI A n n u a l R epo r t fy20 0 1 • 25 CMM Pioneer: Watts S . Humphrey The effort to create the original concepts of the SW...CMM was led by SEI Fellow Watts S . Humphrey , who has had a profound impact on the field of software engineering. In February 2000, a new

  13. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    NASA Astrophysics Data System (ADS)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-09-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed 1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  14. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-01-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed $1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  15. 78 FR 37958 - Special Conditions: Cessna Aircraft Company, Model J182T; Electronic Engine Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ...; Electronic Engine Control System Installation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... feature(s) associated with the installation of an electronic engine control. The applicable airworthiness...) Engines, Inc. SR305-230E-C1 which is a four-stroke, air cooled, diesel cycle engine that uses turbine (jet...

  16. Comparison of flight results with digital simulation for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1983-01-01

    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.

  17. Proceedings of the Eighteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The workshop provided a forum for software practitioners from around the world to exchange information on the measurement, use, and evaluation of software methods, models, and tools. This year, approximately 450 people attended the workshop, which consisted of six sessions on the following topics: the Software Engineering Laboratory, measurement, technology assessment, advanced concepts, process, and software engineering issues in NASA. Three presentations were given in each of the topic areas. The content of those presentations and the research papers detailing the work reported are included in these proceedings. The workshop concluded with a tutorial session on how to start an Experience Factory.

  18. Stationary Engineering, Environmental Control, Refrigeration. Science Manual I.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; And Others

    The student materials present lessons about occupations related to environmental control, stationary engineering, and refrigeration. Included are 18 units organized by objective, information, reference, procedure, and assignment. Each lesson involves concrete trade experience where science is applied. Unit titles are: safety and housekeeping,…

  19. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  20. Integrated Model-Based Controls and PHM for Improving Turbine Engine Performance, Reliability, and Cost

    DTIC Science & Technology

    2009-09-01

    capable of surviving the high-temperature, high- vibration environment of a jet engine. Active control spans active surge/stall control and three...other closely related areas, viz., active combustion control (references 21-22), active noise control, and active vibration control. All of these are...self-powered sensors that harvest energy from engine heat or vibrations replace sensors that require power. The long-term vision is one of a

  1. Neural net controller for inlet pressure control of rocket engine testing

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.

    1994-01-01

    Many dynamic systems operate in select operating regions, each exhibiting characteristic modes of behavior. It is traditional to employ standard adjustable gain proportional-integral-derivative (PID) loops in such systems where no apriori model information is available. However, for controlling inlet pressure for rocket engine testing, problems in fine tuning, disturbance accommodation, and control gains for new profile operating regions (for research and development) are typically encountered. Because of the capability of capturing I/O peculiarities, using NETS, a back propagation trained neural network is specified. For select operating regions, the neural network controller is simulated to be as robust as the PID controller. For a comparative analysis, the higher order moment neural array (HOMNA) method is used to specify a second neural controller by extracting critical exemplars from the I/O data set. Furthermore, using the critical exemplars from the HOMNA method, a third neural controller is developed using NETS back propagation algorithm. All controllers are benchmarked against each other.

  2. Antibody engineering & therapeutics, the annual meeting of the antibody society December 7–10, 2015, San Diego, CA, USA

    PubMed Central

    Pauthner, Matthias; Yeung, Jenny; Ullman, Chris; Bakker, Joost; Wurch, Thierry; Reichert, Janice M.; Lund-Johansen, Fridtjof; Bradbury, Andrew R.M.; Carter, Paul J.; Melis, Joost P.M.

    2016-01-01

    ABSTRACT The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6–10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on “Antibodies to watch” in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries. PMID:26909869

  3. The growth of tissue engineering.

    PubMed

    Lysaght, M J; Reyes, J

    2001-10-01

    This report draws upon data from a variety of sources to estimate the size, scope, and growth rate of the contemporary tissue engineering enterprise. At the beginning of 2001, tissue engineering research and development was being pursued by 3,300 scientists and support staff in more than 70 startup companies or business units with a combined annual expenditure of over $600 million. Spending by tissue engineering firms has been growing at a compound annual rate of 16%, and the aggregate investment since 1990 now exceeds $3.5 billion. At the beginning of 2001, the net capital value of the 16 publicly traded tissue engineering startups had reached $2.6 billion. Firms focusing on structural applications (skin, cartilage, bone, cardiac prosthesis, and the like) comprise the fastest growing segment. In contrast, efforts in biohybrid organs and other metabolic applications have contracted over the past few years. The number of companies involved in stem cells and regenerative medicine is rapidly increasing, and this area represents the most likely nidus of future growth for tissue engineering. A notable recent trend has been the emergence of a strong commercial activity in tissue engineering outside the United States, with at least 16 European or Australian companies (22% of total) now active.

  4. Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  5. Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft

    NASA Technical Reports Server (NTRS)

    Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.

    1972-01-01

    The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.

  6. Using engineering control principles to inform the design of adaptive interventions: a conceptual introduction.

    PubMed

    Rivera, Daniel E; Pew, Michael D; Collins, Linda M

    2007-05-01

    The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice.

  7. Using Engineering Control Principles to Inform the Design of Adaptive Interventions: A Conceptual Introduction

    PubMed Central

    Rivera, Daniel E.; Pew, Michael D.; Collins, Linda M.

    2007-01-01

    The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice. PMID:17169503

  8. Demonstration of a Non-Toxic Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Turpin, Alicia A.; Veith, Eric M.

    2007-01-01

    T:hree non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE's were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing.

  9. Precision engineering center. 1988 Annual report, Volume VI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dow, T.; Fornaro, R.; Keltie, R.

    To reverse the downward trend in the balance of trade, American companies must concentrate on increasing research into new products, boosting productivity, and improving manufacturing processes. The Precision Engineering Center at North Carolina State University is a multidisciplinary research and graduate education program dedicated to providing the new technology necessary to respond to this challenge. One extremely demanding manufacturing area is the fabrication and assembly of optical systems. These systems are at the heart of such consumer products as cameras, lenses, copy machines, laser bar-code scanners, VCRs, and compact audio discs - products that the Japanese and other East Asianmore » countries are building dominance. A second critical area is the fabrication of VLSI and ULSI circuits. The tolerances required to produce the next generation of components for such systems have created the need for new approaches - approaches that could either make or break America`s competitive position. This report contains individual reports on research projects grouped into three broad areas: measurement and actuation; real-time control; precision fabrication. Separate abstracts for these articles have been indexed into the energy database.« less

  10. Controlling soot formation with filtered EGR for diesel and biodiesel fuelled engines.

    PubMed

    Gill, S S; Turner, D; Tsolakis, A; York, A P E

    2012-04-03

    Although exhaust gas recirculation (EGR) is an effective strategy for controlling the levels of nitrogen oxides (NO(X)) emitted from a diesel engine, the full potential of EGR in NO(X)/PM trade-off and engine performance (i.e., fuel economy) has not fully been exploited. Significant work into the cause and control of particulate matter (PM) has been made over the past decade with new cleaner fuels and after-treatment devices emerging to comply with the current and forthcoming emission regulations. In earlier work, we demonstrated that engine operation with oxygenated fuels (e.g., biodiesel) reduces the PM emissions and extends the engine tolerance to EGR before it reaches smoke-limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. To further our understanding of the relationship between EGR and PM formation, a diesel particulate filter (DPF) was integrated into the EGR loop to filter the recirculated soot particulates. The control of the soot recirculation penalty through filtered EGR (FEGR) resulted in a 50% engine-out soot reduction, thus showing the possibility of extending the maximum EGR limit or being able to run at the same level of EGR with an improved NO(X)/soot trade-off.

  11. A comparison of two adaptive algorithms for the control of active engine mounts

    NASA Astrophysics Data System (ADS)

    Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.

    2005-08-01

    This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.

  12. A new robust adaptive controller for vibration control of active engine mount subjected to large uncertainties

    NASA Astrophysics Data System (ADS)

    Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun

    2015-04-01

    This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.

  13. Human Factors Engineering Aspects of Modifications in Control Room Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques; Clefton, Gordon; Joe, Jeffrey

    This report describes the basic aspects of control room modernization projects in the U.S. nuclear industry and the need for supplementary guidance on the integration of human factors considerations into the licensing and regulatory aspects of digital upgrades. The report pays specific attention to the integration of principles described in NUREG-0711 (Human Factors Engineering Program Review Model) and how supplementary guidance can help to raise general awareness in the industry regarding the complexities of control room modernization projects created by many interdependent regulations, standards and guidelines. The report also describes how human factors engineering principles and methods provided by variousmore » resources and international standards can help in navigating through the process of licensing digital upgrades. In particular, the integration of human factors engineering guidance and requirements into the process of licensing digital upgrades can help reduce uncertainty related to development of technical bases for digital upgrades that will avoid the introduction of new failure modes.« less

  14. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    The paper deals with the development of a design method for a servo component in the frequency domain using singular values and its application to a reusable rocket engine. A general methodology used to design a class of linear multivariable controllers for intelligent control systems is presented. Focus is placed on performance and robustness characteristics, and an estimator design performed in the framework of the Kalman-filter formalism with emphasis on using a sensor set different from the commanded values is discussed. It is noted that loop transfer recovery modifies the nominal plant noise intensities in order to obtain the desired degree of robustness to uncertainty reflected at the plant input. Simulation results demonstrating the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation are discussed.

  15. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  16. Evaluation of advanced displays for engine monitoring and control

    NASA Technical Reports Server (NTRS)

    Summers, L. G.

    1993-01-01

    The relative effectiveness of two advanced display concepts for monitoring engine performance for commercial transport aircraft was studied. The concepts were the Engine Monitoring and Control System (EMACS) display developed by NASA Langley and a display by exception design. Both of these concepts were based on the philosophy of providing information that is directly related to the pilot's task. Both concepts used a normalized thrust display. In addition, EMACS used column deviation indicators; i.e., the difference between the actual parameter value and the value predicted by an engine model, for engine health monitoring; while the Display by Exception displayed the engine parameters if the automated system detected a difference between the actual and the predicted values. The results showed that the advanced display concepts had shorter detection and response times. There were no differences in any of the results between manual and auto throttles. There were no effects upon perceived workload or performance on the primary flight task. The majority of pilots preferred the advanced displays and thought they were operationally acceptable. Certification of these concepts depends on the validation of the engine model. Recommendations are made to improve both the EMACS and the display by exception display formats.

  17. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  18. FY2011 Annual Progress Report for Propulsion Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  19. Controllable molecular motors engineered from myosin and RNA

    NASA Astrophysics Data System (ADS)

    Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev

    2018-01-01

    Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.

  20. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).