Science.gov

Sample records for annual growth rings

  1. Occurrence of annual growth rings in Rhizophora mangle in a region with low climate seasonality.

    PubMed

    Souza, Brunna T; Estrada, Gustavo C D; Soares, Mário L G; Callado, Cátia H

    2016-01-01

    The formation of annual growth rings has been confirmed for several mangrove species in the last decade, among which is the Rhizophora mangle. However, the record of annual rings for this species was made in a region with high hydric seasonality, a widely recognized induction factor of annual rings in tropical species. In this sense, the present study aimed to verify the occurrence of annual growth rings in R. mangle in the mangroves of Guaratiba (Rio de Janeiro, Southeastern Brazil), a region with low hydric seasonality. For this purpose, the crossdating technique was applied in ten trees collected with known age (seven years). The growth rings are characterized by alternating layers of low vessel density (earlywood) and high vessel density (latewood). Multiple regression analysis indicated that growth rings width variation is driven by precipitation, water surplus, water deficit and water storage. Crossdating analysis confirmed the existence of annual growth rings in the R. mangle in Guaratiba. This discovery in a region with low hydric seasonality increases the dendrocronological potential of this species and suggests the importance of biological factors (eg. phenological behavior) as complementary inductors for the formation of growth rings in this species. PMID:27142552

  2. Radiocarbon evidence for annual growth rings in a deep sea octocoral (Primnoa resedaeformis)

    SciTech Connect

    Sherwood, O A; Scott, D B; Risk, M J; Guilderson, T P

    2005-04-05

    The deep-sea gorgonian octocoral Primnoa resedaeformis is distributed throughout the Atlantic and Pacific Oceans at depths of 65-3200 m. It has a two-part skeleton of calcite and gorgonin. Towards the inside of the axial skeleton gorgonin and calcite are deposited in concentric growth rings, similar to tree rings. Colonies were collected from the Northeast Channel (northwest Atlantic Ocean, southwest of Nova Scotia, Canada) from depths of 250-475 m. Radiocarbon was measured in individual rings isolated from sections of each colony, after dissolution of calcite. Each {Delta}{sup 14}C measurement was paired with a ring age determined by three amateur ring counters. The precision of ring counts averaged better than {+-} 2 years. Accurate reconstruction of 20th century bomb-radiocarbon shows that (1) the growth rings are formed annually, (2) the gorgonin is derived from surface particulate organic matter (POM) and (3) useful environmental data are recorded in the organic endoskeletons of deep-sea octocorals. These results support the use of Primnoa resedaeformis as a long-term, high resolution monitor of surface ocean conditions, particularly in temperate and boreal environments where proxy data are lacking.

  3. The suitability of annual tree growth rings as environmental archives: Evidence from Sr, Nd, Pb and Ca isotopes in spruce growth rings from the Strengbach watershed

    NASA Astrophysics Data System (ADS)

    Stille, Peter; Schmitt, Anne-Désirée; Labolle, François; Pierret, Marie-Claire; Gangloff, Sophie; Cobert, Florian; Lucot, Eric; Guéguen, Florence; Brioschi, Laure; Steinmann, Marc; Chabaux, François

    2012-05-01

    The combination of the Sr, Nd and Pb isotope systems, recognized as tracers of sources, with the Ca isotope system, known to reveal biology-related fractionations, allowed us to test the reliability of spruce (Picea abies) growth rings as environmental archives through time (from 1916 to 1983) in a forest ecosystem affected by acid atmospheric deposition. Sr and Pb isotopes have already been applied in former tree-ring studies, whereas the suitability of Nd and Ca isotope systems is checked in the present article. Our Sr and Nd isotope data indicate an evolution in the cation origin with a geogenic origin for the oldest rings and an atmospheric origin for the youngest rings. Ca isotopes show, for their part, an isotopic homogeneity which could be linked to the very low weathering flux of Ca. Since this flux is weak the spruces' root systems have pumped the Ca mainly from the organic matter-rich top-soil over the past century. In contrast, the annual growth rings studied are not reliable and suitable archives of past Pb pollution.

  4. Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast

    PubMed Central

    Dié, Agathe; Kitin, Peter; Kouamé, François N'Guessan; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans

    2012-01-01

    Background and Aims Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. Methods The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. Key Results A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R2 = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. Conclusions The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution. PMID:22805529

  5. Annual Growth Bands in Hymenaea courbaril

    SciTech Connect

    Westbrook, J A; Guilderson, T P; Colinvaux, P A

    2004-02-09

    One significant source of annual temperature and precipitation data arises from the regular annual secondary growth rings of trees. Several tropical tree species are observed to form regular growth bands that may or may not form annually. Such growth was observed in one stem disk of the tropical legume Hymenaea courbaril near the area of David, Panama. In comparison to annual reference {Delta}{sup 14}C values from wood and air, the {Delta}{sup 14}C values from the secondary growth rings formed by H. courbaril were determined to be annual in nature in this one stem disk specimen. During this study, H. courbaril was also observed to translocate recently produced photosynthate into older growth rings as sapwood is converted to heartwood. This process alters the overall {Delta}{sup 14}C values of these transitional growth rings as cellulose with a higher {Delta}{sup 14}C content is translocated into growth rings with a relatively lower {Delta}{sup 14}C content. Once the annual nature of these growth rings is established, further stable isotope analyses on H. courbaril material in other studies may help to complete gaps in the understanding of short and of long term global climate patterns.

  6. Distribution and speciation of metals in annual rings of black willow.

    PubMed

    Punshon, Tracy; Lanzirotti, Antonio; Harper, Steve; Bertsch, Paul M; Burger, Joanna

    2005-01-01

    Information on the spatial distribution and speciation of metals in nonhyperaccumulator plants is lacking. This study used synchrotron X-ray fluorescence (SXRF) compositional imaging to investigate the spatial distribution of Ni, Mn, Cu, Zn, and Fe in annual rings of black willow (Salix nigra L.) collected from a metal-contaminated area, and used X-ray absorption spectroscopy (XAS) to investigate Ni and Mn speciation in regions of the annual rings with elevated Ni concentrations. Annual rings were recollected in early 2003 from an individual known to be enriched with Ni from previous studies. Compositional imaging showed Ni and associated co-contaminants conservatively located in an annual ring. When compared with a corresponding photomicrograph, SXRF compositional images showed that metals were sharply constrained by the boundaries of the annual ring, indicating a sudden onset and cessation of uptake, and a lack of post-growth mobility of the metals. There was a particularly strong correlation between Ni and Mn in the metal-enriched annual ring (r = 0.8822), which suggested similar transport and binding behavior of these elements. X-ray absorption spectroscopy showed Ni and Mn to be present in the 2+ oxidation state. X-ray absorption near edge structure spectroscopy (XANES) fingerprinting of localized, highly Ni-enriched regions within the lumen of willow xylem vessels found similarities with Ni-pectic acid complexes, Ni-histidine, and NiSO4.

  7. Tree Growth Rings: What They Tell Us.

    ERIC Educational Resources Information Center

    Sunal, Dennis W.; Sunal, Cynthia Szymanski

    1991-01-01

    Activities in which students can learn to determine the history of a tree from the growth pattern recorded in the rings of a cross-section of a tree are described. Activities include background information, objectives, a list of needed materials per group, and procedures. Cross-sections of four different tree types are included if real tree…

  8. A test of "Annual resolution" in stalagmites using tree rings

    USGS Publications Warehouse

    Betancourt, J.L.; Grissino-Mayer, H. D.; Salzer, M.W.; Swetnam, T.W.

    2002-01-01

    So-called annual banding has been identified in a number of speleothems in which the number of bands approximates the time interval between successive U-series dates. The apparent annual resolution of speleothem records, however, remains largely untested. Here we statistically compare variations in band thickness from a late Holocene stalagmite in Carlsbad Cavern, Southern New Mexico, USA, with three independent tree-ring chronologies form the same region. We found no correspondence. Although there may be various explanations for the discordance, this limited exercise suggests that banded stalagmites should be held to the same rigorous standards in chronology building and climatic inference as annually resolved tree rings, corals, and ice cores. ?? 2002 University of Washington.

  9. Trees annual rings and "Sun-Climate" connection

    NASA Astrophysics Data System (ADS)

    Komitov, Boris; Duchlev, Peter; Bjandov, Georgy; Kirilova, Daniela

    The subject of the present work is an investigation of the relationship "Sun-Climate" for the territory of Central Bulgaria for the period from the end of 18th to the beginning of 21st century, based on dendro-chronoligical data. For this purpose the smoothed time series of the widths of annual rings of two beech samples from the region of Central Balkan Range are used. Special attention is paid to the 22 yr oscillations in the growth of tree mass and the relationship between the oscillation amplitude and the phase of solar cycles with sub-century and two-century duration. It is shown that the attenuation of 20-22 yr magnetic solar cycle during the hyper-centurial Dalton minimum (1795-1825/1830) is accompanied by strong drying and warming of the summers in Central Southern Bulgaria during this time. The onset of new Dalton-type hyper-centurial minimum in the beginning of the 21st century corresponds to an analogous climatic situation.

  10. The Annual North American Dendroecological Fieldweek: A workweek in applied tree-ring research

    SciTech Connect

    Brown, P.M.; Krusic, P.J.

    1995-12-31

    Trees record many events or processes that influence annual growth patterns. Dendrochronology is concerned with how environment and physiology affect tree growth as recorded within tree rings. The most basic principle of dendrochronology is that of crossdating, in which calendrical years are assigned to individual rings within a tree. Once crossdated, each ring is then a reflection of the climate or other environmental conditions that influenced that tree for that year. The Annual North American Dendroecological Fieldweek is a workweek in applied tree-ring research, designed to give both beginners to the discipline an introduction to its basic methodology and applications and more experienced users a change to work with and learn from others in the field in an informal group setting. The Fieldweek has had an outstanding history to date, with almost 250 participants in the five Fieldweeks from 1990 to 1994. The 6th Fieldweek is scheduled for 30 June to 8 July, 1995, at the Kananaskis Field Station in the Canadian Rockies near Calgary, Alberta.

  11. A study of emittance growth in the recycler ring

    SciTech Connect

    Krishnaswamy Gounder et al.

    2001-07-20

    We investigate processes contributing to emittance growth in the Fermilab Recycler Ring. In addition to beam-gas multiple scattering, we also examine other external factors such as Main Injector ramping affecting the emittance growth.

  12. Annual growth bands in Hymenaea courbaril: implications for utilization in tropical paleoclimate reconstructions.

    NASA Astrophysics Data System (ADS)

    Westbrook, J. A.; Guilderson, T.; Colinvaux, P. A.; D'Arrigo, R.

    2004-12-01

    Instrumental records of environmental variables such as temperature and precipitation are necessary to understand climate patterns and variability. In general, such observations from the tropics do not exist prior to the late 19th century, and existing records contain large spatial and temporal gaps and are sparsely distributed. An important source of annual temperature and precipitation proxy-data comes from the regular annual growth rings of wood formed by trees. Tree growth rings occur in response to periodic seasonal changes in the environment. Although expansive and diverse in number and ecology, a vast majority of tropical trees do not produce distinct annual growth rings. Because of this, tropical dendrochronology and paleoclimate reconstructions have lagged behind their temperate and higher latitude cousins. Distinct secondary growth rings were investigated in a single individual of the tropical hardwood legume Hymenaea courbaril felled within the City of David, Republic of Panama. Rings that maintained circuitry were considered annual and were sampled for 14C. Radiocarbon values from the secondary growth rings from this specimen were compared with annual reference radiocarbon values from wood and air in North America, New Zealand and Germany. This comparison demonstrated that the secondary growth rings formed by H. courbaril were determined to be annual in nature in this one stem disk specimen. To confirm the consistency of the annual nature of the secondary growth rings in H. courbaril, nine (9) additional specimens were recovered from the small hamlet of San Carlos y Algarobbo in western Panama between the town of David and the cordillera approximately ~30km from the site of the first tree sample. Of the nine specimens, four were chosen for ring counts and isotope analyses. "Annual" rings were counted and samples corresponding to the equivalent time of the bomb-14C peak were sampled. In addition a small subset of years within one tree specimen were sub-annually

  13. Growth cessation uncouples isotopic signals in leaves and tree rings of drought-exposed oak trees.

    PubMed

    Pflug, Ellen E; Siegwolf, R; Buchmann, N; Dobbertin, M; Kuster, T M; Günthardt-Goerg, M S; Arend, M

    2015-10-01

    An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic (δ(13)C and δ(18)O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased δ(18)O and δ(13)C. Under severe drought, an unexpected isotopic pattern, with a decrease in δ(18)O, was observed in tree rings but not in leaves. This decrease in δ(18)O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses. PMID:26377873

  14. Growth cessation uncouples isotopic signals in leaves and tree rings of drought-exposed oak trees.

    PubMed

    Pflug, Ellen E; Siegwolf, R; Buchmann, N; Dobbertin, M; Kuster, T M; Günthardt-Goerg, M S; Arend, M

    2015-10-01

    An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic (δ(13)C and δ(18)O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased δ(18)O and δ(13)C. Under severe drought, an unexpected isotopic pattern, with a decrease in δ(18)O, was observed in tree rings but not in leaves. This decrease in δ(18)O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses.

  15. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis.

    PubMed

    Brienen, Roel J W; Zuidema, Pieter A

    2005-11-01

    Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate-growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines.

  16. Parameterization of tree-ring growth in Siberia

    NASA Astrophysics Data System (ADS)

    Tychkov, Ivan; Popkova, Margarita; Shishov, Vladimir; Vaganov, Eugene

    2016-04-01

    No doubt, climate-tree growth relationship is an one of the useful and interesting subject of studying in dendrochronology. It provides an information of tree growth dependency on climatic environment, but also, gives information about growth conditions and whole tree-ring growth process for long-term periods. New parameterization approach of the Vaganov-Shashkin process-based model (VS-model) is developed to described critical process linking climate variables with tree-ring formation. The approach (co-called VS-Oscilloscope) is presented as a computer software with graphical interface. As most process-based tree-ring models, VS-model's initial purpose is to describe variability of tree-ring radial growth due to variability of climatic factors, but also to determinate principal factors limiting tree-ring growth. The principal factors affecting on the growth rate of cambial cells in the VS-model are temperature, day light and soil moisture. Detailed testing of VS-Oscilloscope was done for semi-arid area of southern Siberia (Khakassian region). Significant correlations between initial tree-ring chronologies and simulated tree-ring growth curves were obtained. Direct natural observations confirm obtained simulation results including unique growth characteristic for semi-arid habitats. New results concerning formation of wide and narrow rings under different climate conditions are considered. By itself the new parameterization approach (VS-oscilloscope) is an useful instrument for better understanding of various processes in tree-ring formation. The work was supported by the Russian Science Foundation (RSF # 14-14-00219).

  17. Graphene Layer Growth Chemistry: Five-Six-Ring Flip Reaction

    SciTech Connect

    Whitesides, R.; Domin, D.; Salomon-Ferrer, R.; Lester Jr., W.A.; Frenklach, M.

    2007-12-01

    Reaction pathways are presented for hydrogen-mediated isomerization of a five and six member carbon ring complex on the zigzag edge of a graphene layer. A new reaction sequence that reverses orientation of the ring complex, or 'flips' it, was identified. Competition between the flip reaction and 'ring separation' was examined. Ring separation is the reverse of the five and six member ring complex formation reaction, previously reported as 'ring collision'. The elementary steps of the pathways were analyzed using density-functional theory (DFT). Rate coefficients were obtained by solution of the energy master equation and classical transition state theory utilizing the DFT energies, frequencies, and geometries. The results indicate that the flip reaction pathway dominates the separation reaction and should be competitive with other pathways important to the graphene zigzag edge growth in high temperature environments.

  18. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    NASA Astrophysics Data System (ADS)

    Nijland, W.; Jansma, E.; Addink, E. A.; Domínguez Delmás, M.; de Jong, S. M.

    2011-01-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex and Arbutus unedo. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in Southern France. The resulting chronologies were analysed in combination with 38 years of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q. ilex and A. unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  19. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    NASA Astrophysics Data System (ADS)

    Nijland, W.; Jansma, E.; Addink, E. A.; Domínguez Delmás, M.; de Jong, S. M.

    2011-05-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex L. and Arbutus unedo L. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in southern France. The resulting chronologies were analysed in combination with 38 yr of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q.ilex and A.unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  20. Missing Rings, Synchronous Growth, and Ecological Disturbance in a 36-Year Pitch Pine (Pinus rigida) Provenance Study.

    PubMed

    Leland, Caroline; Hom, John; Skowronski, Nicholas; Ledig, F Thomas; Krusic, Paul J; Cook, Edward R; Martin-Benito, Dario; Martin-Fernandez, Javier; Pederson, Neil

    2016-01-01

    Provenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of 567 36-year-old pitch pine (Pinus rigida Mill.) trees from 27 seed sources to evaluate their performance in a New Jersey Pine Barrens provenance experiment. Unexpectedly, missing rings were prevalent in most trees, and some years-1992, 1999, and 2006-had a particularly high frequency of missing rings across the plantation. Trees from local seed sources (<55 km away from the plantation) had a significantly smaller percentage of missing rings from 1980-2009 (mean: 5.0%), relative to northernmost and southernmost sources (mean: 9.3% and 7.9%, respectively). Some years with a high frequency of missing rings coincide with outbreaks of defoliating insects or dry growing season conditions. The propensity for missing rings synchronized annual variations in growth across all trees and might have complicated the detection of potential differences in interannual variability among seed sources. Average ring width was significantly larger in seed sources from both the southernmost and warmest origins compared to the northernmost and coldest seed sources in most years. Local seed sources had the highest average radial growth. Adaptation to local environmental conditions and disturbances might have influenced the higher growth rate found in local seed sources. These findings underscore the need to understand the integrative impact of multiple environmental drivers, such as disturbance agents and climate change, on tree growth, forest dynamics, and the carbon cycle.

  1. Missing Rings, Synchronous Growth, and Ecological Disturbance in a 36-Year Pitch Pine (Pinus rigida) Provenance Study.

    PubMed

    Leland, Caroline; Hom, John; Skowronski, Nicholas; Ledig, F Thomas; Krusic, Paul J; Cook, Edward R; Martin-Benito, Dario; Martin-Fernandez, Javier; Pederson, Neil

    2016-01-01

    Provenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of 567 36-year-old pitch pine (Pinus rigida Mill.) trees from 27 seed sources to evaluate their performance in a New Jersey Pine Barrens provenance experiment. Unexpectedly, missing rings were prevalent in most trees, and some years-1992, 1999, and 2006-had a particularly high frequency of missing rings across the plantation. Trees from local seed sources (<55 km away from the plantation) had a significantly smaller percentage of missing rings from 1980-2009 (mean: 5.0%), relative to northernmost and southernmost sources (mean: 9.3% and 7.9%, respectively). Some years with a high frequency of missing rings coincide with outbreaks of defoliating insects or dry growing season conditions. The propensity for missing rings synchronized annual variations in growth across all trees and might have complicated the detection of potential differences in interannual variability among seed sources. Average ring width was significantly larger in seed sources from both the southernmost and warmest origins compared to the northernmost and coldest seed sources in most years. Local seed sources had the highest average radial growth. Adaptation to local environmental conditions and disturbances might have influenced the higher growth rate found in local seed sources. These findings underscore the need to understand the integrative impact of multiple environmental drivers, such as disturbance agents and climate change, on tree growth, forest dynamics, and the carbon cycle. PMID:27182599

  2. Missing Rings, Synchronous Growth, and Ecological Disturbance in a 36-Year Pitch Pine (Pinus rigida) Provenance Study

    PubMed Central

    Leland, Caroline; Hom, John; Skowronski, Nicholas; Krusic, Paul J.; Cook, Edward R.; Martin-Benito, Dario; Martin-Fernandez, Javier; Pederson, Neil

    2016-01-01

    Provenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of 567 36-year-old pitch pine (Pinus rigida Mill.) trees from 27 seed sources to evaluate their performance in a New Jersey Pine Barrens provenance experiment. Unexpectedly, missing rings were prevalent in most trees, and some years—1992, 1999, and 2006—had a particularly high frequency of missing rings across the plantation. Trees from local seed sources (<55 km away from the plantation) had a significantly smaller percentage of missing rings from 1980–2009 (mean: 5.0%), relative to northernmost and southernmost sources (mean: 9.3% and 7.9%, respectively). Some years with a high frequency of missing rings coincide with outbreaks of defoliating insects or dry growing season conditions. The propensity for missing rings synchronized annual variations in growth across all trees and might have complicated the detection of potential differences in interannual variability among seed sources. Average ring width was significantly larger in seed sources from both the southernmost and warmest origins compared to the northernmost and coldest seed sources in most years. Local seed sources had the highest average radial growth. Adaptation to local environmental conditions and disturbances might have influenced the higher growth rate found in local seed sources. These findings underscore the need to understand the integrative impact of multiple environmental drivers, such as disturbance agents and climate change, on tree growth, forest dynamics, and the carbon cycle. PMID:27182599

  3. [Rapid prediction of annual ring density of Paulownia elongate standing tress using near infrared spectroscopy].

    PubMed

    Jiang, Ze-Hui; Wang, Yu-Rong; Fei, Ben-Hua; Fu, Feng; Hse, Chung-Yun

    2007-06-01

    Rapid prediction of annual ring density of Paulownia elongate standing trees using near infrared spectroscopy was studied. It was non-destructive to collect the samples for trees, that is, the wood cores 5 mm in diameter were unthreaded at the breast height of standing trees instead of fallen trees. Then the spectra data were collected by autoscan method of NIR. The annual ring density was determined by mercury immersion. And the models were made and analyzed by the partial least square (PLS) and full cross validation in the 350-2 500 nm wavelength range. The results showed that high coefficients were obtained between the annual ring and the NIR fitted data. The correlation coefficient of prediction model was 0.88 and 0.91 in the middle diameter and bigger diameter, respectively. Moreover, high coefficients of correlation were also obtained between annual ring density laboratory-determined and the NIR fitted data in the middle diameter of Paulownia elongate standing trees, the correlation coefficient of calibration model and prediction model were 0.90 and 0.83, and the standard errors of calibration (SEC) and standard errors of prediction(SEP) were 0.012 and 0.016, respectively. The method can simply, rapidly and non-destructively estimate the annual ring density of the Paulownia elongate standing trees close to the cutting age.

  4. Tree growth inference and prediction from diameter censuses and ring widths.

    PubMed

    Clark, James S; Wolosin, Michael; Dietze, Michael; Ibáñez, Inés; LaDeau, Shannon; Welsh, Miranda; Kloeppel, Brian

    2007-10-01

    Estimation of tree growth is based on sparse observations of tree diameter, ring widths, or increments read from a dendrometer. From annual measurements on a few trees (e.g., increment cores) or sporadic measurements from many trees (e.g., diameter censuses on mapped plots), relationships with resources, tree size, and climate are extrapolated to whole stands. There has been no way to formally integrate different types of data and problems of estimation that result from (1) multiple sources of observation error, which frequently result in impossible estimates of negative growth, (2) the fact that data are typically sparse (a few trees or a few years), whereas inference is needed broadly (many trees over many years), (3) the fact that some unknown fraction of the variance is shared across the population, and (4) the fact that growth rates of trees within competing stands are not independent. We develop a hierarchical Bayes state space model for tree growth that addresses all of these challenges, allowing for formal inference that is consistent with the available data and the assumption that growth is nonnegative. Prediction follows directly, incorporating the full uncertainty from inference with scenarios for "filling the gaps" for past growth rates and for future conditions affecting growth. An example involving multiple species and multiple stands with tree-ring data and up to 14 years of tree census data illustrates how different levels of information at the tree and stand level contribute to inference and prediction. PMID:17974333

  5. Tree growth inference and prediction from diameter censuses and ring widths.

    PubMed

    Clark, James S; Wolosin, Michael; Dietze, Michael; Ibáñez, Inés; LaDeau, Shannon; Welsh, Miranda; Kloeppel, Brian

    2007-10-01

    Estimation of tree growth is based on sparse observations of tree diameter, ring widths, or increments read from a dendrometer. From annual measurements on a few trees (e.g., increment cores) or sporadic measurements from many trees (e.g., diameter censuses on mapped plots), relationships with resources, tree size, and climate are extrapolated to whole stands. There has been no way to formally integrate different types of data and problems of estimation that result from (1) multiple sources of observation error, which frequently result in impossible estimates of negative growth, (2) the fact that data are typically sparse (a few trees or a few years), whereas inference is needed broadly (many trees over many years), (3) the fact that some unknown fraction of the variance is shared across the population, and (4) the fact that growth rates of trees within competing stands are not independent. We develop a hierarchical Bayes state space model for tree growth that addresses all of these challenges, allowing for formal inference that is consistent with the available data and the assumption that growth is nonnegative. Prediction follows directly, incorporating the full uncertainty from inference with scenarios for "filling the gaps" for past growth rates and for future conditions affecting growth. An example involving multiple species and multiple stands with tree-ring data and up to 14 years of tree census data illustrates how different levels of information at the tree and stand level contribute to inference and prediction.

  6. Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce

    NASA Astrophysics Data System (ADS)

    Bouriaud, O.; Teodosiu, M.; Kirdyanov, A. V.; Wirth, C.

    2015-10-01

    Estimations of tree annual biomass increments are used by a variety of studies related to forest productivity or carbon fluxes. Biomass increment estimations can be easily obtained from diameter surveys or historical diameter reconstructions based on tree rings' records. However, the biomass models rely on the assumption that wood density is constant. Converting volume increment into biomass also requires assumptions about the wood density. Wood density has been largely reported to vary both in time and between trees. In Norway spruce, wood density is known to increase with decreasing ring width. This could lead to underestimating the biomass or carbon deposition in bad years. The variations between trees of wood density have never been discussed but could also contribute to deviations. A modelling approach could attenuate these effects but will also generate errors. Here a model of wood density variations in Norway spruce, and an allometric model of volume growth were developed. We accounted for variations in wood density both between years and between trees, based on specific measurements. We compared the effects of neglecting each variation source on the estimations of annual biomass increment. We also assessed the errors of the biomass increment predictions at tree level, and of the annual productivity at plot level. Our results showed a partial compensation of the decrease in ring width in bad years by the increase in wood density. The underestimation of the biomass increment in those years reached 15 %. The errors related to the use of an allometric model of volume growth were modest, around ±15 %. The errors related to variations in wood density were much larger, the biggest component being the inter-tree variability. The errors in plot-level annual biomass productivity reached up to 40 %, with a full account of all the error sources.

  7. Influence of wood density in tree-ring based annual productivity assessments and its errors in Norway spruce

    NASA Astrophysics Data System (ADS)

    Bouriaud, O.; Teodosiu, M.; Kirdyanov, A. V.; Wirth, C.

    2015-04-01

    Estimations of tree annual biomass increments are used by a variety of studies related to forest productivity or carbon fluxes. Biomass increment estimations can be easily obtained from diameter surveys or historical diameter reconstructions based on tree rings records. However, the biomass models rely on the assumption of a constant wood density. Converting volume increment into biomass also requires assumptions on the wood density. Wood density has been largely reported to vary both in time and between trees. In Norway spruce, wood density is known to increase with decreasing ring width. This could lead to underestimating the biomass or carbon deposition in bad years. The variations between trees of wood density has never been discussed but could also contribute to deviations. A modelling approach could attenuate these effects but will also generate errors. Here were developed a model of wood density variations in Norway spruce, and an allometric model of volume growth. We accounted for variations in wood density both between years and between trees, based on specific measurements. We compared the effects of neglecting each variation source on the estimations of annual biomass increment. We also assessed the errors of the biomass increment predictions at tree level, and of the annual productivity at plot level. Our results showed a partial compensation of the decrease in ring width in bad years by the increase in wood density. The underestimation of the biomass increment in those years reached 15%. The errors related to the use of an allometric model of volume growth were modest, around ±15%. The errors related to variations in wood density were much larger, the biggest component being the inter-tree variability. The errors in plot-level annual biomass productivity reached up to 40%, with a full account of all the error sources.

  8. Radial growth of an extended spoke in Saturn's B ring

    SciTech Connect

    Eplee, R.E.,JR.; Smith, B.A.

    1985-08-01

    An analysis is reported of the pattern of radial growth of an extended spoke observed in the Voyager 2 low-resolution Saturn ring movie. The feature is atypical in that it orbits Saturn at the corotational rate for 1-1/2 hours after the onset of its formation and then undergoes a 40-min acceleration to sustained Keplerian velocities. A correlation between the dynamical phases and the radial growth modes of the spoke is observed, one that seems consistent with the plasma cloud model of spoke formation and evolution proposed by Goertz and Morfill (1983), taken in the limit of high charge density. 13 references.

  9. Radial growth of an extended spoke in Saturn's B ring

    NASA Technical Reports Server (NTRS)

    Eplee, R. E., Jr.; Smith, B. A.

    1985-01-01

    An analysis is reported of the pattern of radial growth of an extended spoke observed in the Voyager 2 low-resolution Saturn ring 'movie'. The feature is atypical in that it orbits Saturn at the corotational rate for 1-1/2 hours after the onset of its formation and then undergoes a 40-min acceleration to sustained Keplerian velocities. A correlation between the dynamical phases and the radial growth modes of the spoke is observed, one that seems consistent with the plasma cloud model of spoke formation and evolution proposed by Goertz and Morfill (1983), taken in the limit of high charge density.

  10. Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-12-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

  11. Long Tree-Ring Chronologies Provide Evidence of Recent Tree Growth Decrease in a Central African Tropical Forest

    PubMed Central

    Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla- Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo

    2015-01-01

    It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2. PMID:25806946

  12. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    USGS Publications Warehouse

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  13. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality.

    PubMed

    Foster, Jane R; D'Amato, Anthony W; Bradford, John B

    2014-05-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20-30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25-30% higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics. PMID:24442595

  14. Regional climate pattern during two millennia estimated from annual tree rings of Yaku cedar trees: a hint for solar variability?

    NASA Astrophysics Data System (ADS)

    Muraki, Yasushi; Mitsutani, Takumi; Shibata, Shoichi; Kuramata, Syuichi; Masuda, Kimiaki; Nagaya, Kentaro

    2015-02-01

    We analyzed trees that have survived on Yaku island (Yakushima) for 2,000 years. Quite surprisingly, the Fourier and wavelet analyses of the annual growth rate identified 2 cycles of periodicities of 11 and (24 ± 4) years during the Oort, Wolf, Spörer, Maunder, and Dalton minima. The 11-year periodicity originated from solar activity, while the (24 ± 4)-year periodicity may be related to the Pacific Decadal Oscillation (PDO). In particular, we have discovered an 11-year periodicity in the meteorological daylight-hour data from Yakushima in the month of June during 1938 to 2013 and a 24-year periodicity in July. The growth rate of the tree rings may be affected by the variation of the daylight hour.

  15. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length.

    PubMed

    Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Morin, Hubert; Saracino, Antonio; Motta, Renzo; Borghetti, Marco

    2006-01-01

    Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.

  16. Graphene Layer Growth: Collision of Migrating Five-MemberRings

    SciTech Connect

    Whitesides, Russell; Kollias, Alexander C.; Domin, Dominik; Lester Jr., William A.; Frenklach, Michael

    2005-12-02

    A reaction pathway is explored in which two cyclopenta groups combine on the zigzag edge of a graphene layer. The process is initiated by H addition to a five-membered ring, followed by opening of that ring and the formation of a six-membered ring adjacent to another five-membered ring. The elementary steps of the migration pathway are analyzed using density functional theory to examine the region of the potential energy surface associated with the pathway. The calculations are performed on a substrate modeled by the zigzag edge of tetracene. Based on the obtained energetics, the dynamics of the system are analyzed by solving the energy transfer master equations. The results indicate energetic and reaction-rate similarity between the cyclopenta combination and migration reactions. Also examined in the present study are desorption rates of migrating cyclopenta rings which are found to be comparable to cyclopenta ring migration.

  17. Ring chromosome 5 associated with severe growth retardation as the sole major physical abnormality

    SciTech Connect

    Migliori, M.V.; Pettinari, A.; Cherubini, V.; Bartolotta, E.; Pecora, R.

    1994-01-01

    The authors report on a case of ring chromosome 5 in a 36-month-old girl with severe growth retardation, clinodactyly, mild psychological abnormalities, and normal facial appearance. Endocrine tests showed partial growth hormone deficiency. Cytogenetic investigation failed to demonstrate any apparent microscopic deletion of either the short or long arm of chromosome 5 as a consequence of ring formation. In 12% of cells examined, the ring was either absent or present in multiple copies. Only 3 previous cases of ring chromosome 5 have been reported in association with short stature of prenatal onset and minor anomalies, without mental retardation. 12 refs., 3 figs.

  18. Tree-ring growth and wood chemistry response to manipulated precipitation variation for two temperate Quercus species

    SciTech Connect

    Wagner, Rebekah J.; Kaye, Margot W.; Abrams, Marc D.; Hanson, Paul J; Martin, Madhavi Z

    2012-01-01

    We examined the relationship among ambient and manipulated precipitation, wood chemistry, and their relationship with radial growth for two oak species in eastern Tennessee. The study took place on the Walker Branch Throughfall Displacement Experiment (TDE) site, located at the Oak Ridge National Laboratory in Oak Ridge, TN. Two dominant species, white oak (Quercus alba) and chestnut oak (Quercus prinus), were selected for study from a 13-year experiment of whole-stand precipitation manipulation (wet, ambient and dry). The relationships between tree-ring width and climate were compared for both species to determine the impact of precipitation manipulations on ring width index. This study used experimental spectroscopy techniques to measure the sensitivity of tree-ring responses to directional changes in precipitation over 13 years, and the results suggest that oaks at this study site are resilient to imposed changes, but sensitive to inter-annual variations in climate. Laser-induced breakdown spectroscopy (LIBS) allowed us to measure nutrient intensities (similar to element concentrations) at 0.5-1.0 mm spacing along the radial growth axis of trees growing in the wet, ambient, and dry treatment sites. A difference in stemwood nutrient levels was observed between the two oak species and among the three treatments. Significant variation in element intensity was observed across treatments for some elements (Ca, K, Mg, Na, N and P) suggesting the potential for long-term impacts on growth under a changing climate regimes for southeastern oaks.

  19. How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope.

    PubMed

    Schreiber, K U; Klügel, T; Wells, J-P R; Hurst, R B; Gebauer, A

    2011-10-21

    We demonstrate a 16 m(2) helium-neon ring laser gyroscope with sufficient sensitivity and stability to directly detect the Chandler wobble of the rotating Earth. The successful detection of both the Chandler and the annual wobble is verified by comparing the time series of the ring laser measurements against the "C04 series" of Earth rotation data from the International Earth Rotation and Reference System Service.

  20. Mountain hemlock growth responds to climatic variability at annual and decadal time scales

    USGS Publications Warehouse

    Peterson, D.W.; Peterson, D.L.

    2001-01-01

    Improved understanding of tree growth responses to climate is needed to model and predict forest ecosystem responses to current and future climatic variability. We used dendroecological methods to study the effects of climatic variability on radial growth of a subalpine conifer, mountain hemlock (Tsuga mertensiana). Tree-ring chronologies were developed for 31 sites, spanning the latitudinal and elevational ranges of mountain hemlock in the Pacific Northwest. Factor analysis was used to identify common patterns of inter-annual growth variability among the chronologies, and correlation and regression analyses were used to identify climatic factors associated with that variability. Factor analysis identified three common growth patterns, representing groups of sites with different climate-growth relationships. At high-elevation and midrange sites in Washington and northern Oregon, growth was negatively correlated with spring snowpack depth, and positively correlated with growth-year summer temperature and the winter Pacific Decadal Oscillation index (PDO). In southern Oregon, growth was negatively correlated with spring snowpack depth and previous summer temperature, and positively correlated with previous summer precipitation. At the low-elevation sites, growth was mostly insensitive to annual climatic variability but displayed sensitivity to decadal variability in the PDO opposite to that found at high-elevation sites. Mountain hemlock growth appears to be limited by late snowmelt, short growing seasons, and cool summer temperatures throughout much of its range in the Pacific Northwest. Earlier snowmelt, higher summer temperatures, and lower summer precipitation in southern Oregon produce conditions under which growth is limited by summer temperature and/or soil water availability. Increasing atmospheric CO2 concentrations could produce warmer temperatures and reduced snowpack depths in the next century. Such changes would likely increase mountain hemlock growth

  1. 137Cs distribution among annual rings of different tree species contaminated after the Chernobyl accident.

    PubMed

    Soukhova, N V; Fesenko, S V; Klein, D; Spiridonov, S I; Sanzharova, N I; Badot, P M

    2003-01-01

    The distributions of 137Cs among annual rings of Pinus sylvestris and Betula pendula at four experimental sites located in the most contaminated areas in the Russian territory after the Chernobyl accident in 1986 were studied. Trees of different ages were sampled from four forest sites with different tree compositions and soil properties. The data analysis shows that 137Cs is very mobile in wood and the 1986 rings do not show the highest contamination. The difference between pine and birch in the pattern of radial 137Cs distribution can be satisfactorily explained by the difference in radial ray composition. 137Cs radial distribution in the wood can be described as the sum of two exponential functions for both species. The function parameters are height, age and species dependent. The distribution of 137Cs in birch wood reveals much more pronounced dependence on site characteristics and/or the age of trees than pines. The data obtained can be used to assess 137Cs content in wood. PMID:12683726

  2. Element concentrations in growth rings of trees near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Yanosky, T.M.; Carmichael, J.K.

    1993-01-01

    Multielement analysis was performed on individual annual rings of trees growing at and near an abandoned wood-preserving plant site in Jackson, Tennessee, that operated from the early 1930's until 1981. Numerous organic compounds associated with the wood-preserving process have been detected in soils, ground water, and surface water within much of the site. Tree-ring investigations were conducted prior to investigations of ground water downgradient from the site to determine if trees preserved an areal and temporal record of contaminant movement into offsite areas. Increment cores were collected from trees on the abandoned plant site, in downgradient areas west and south of the site, and at two locations presumably unaffected by contamination from the site. Multielement analysis by proton-induced X-ray emission was performed on 5 to 15 individual growth rings from each of 34 trees that ranged in age from about 5 to 50 years. Concentrations of 16 elements were evaluated by analyzing average concentrations within the 1987, 1989, and 1990 rings of all trees; analyzing element-concentration trends along entire core radii; and analyzing element correlations between and among trees. Concentrations of some nutrients and trace metals were elevated in the outermost sapwood rings of some trees that grow south and southwest of the most contaminated part of the site; small trees on the main part of the site and larger trees to the west generally contained fewer rings with elevated concentrations, particularly of trace metals. Concentrations of several elements elevated in tree rings also were elevated in water samples collected from the reach of a stream that flows near the southwestern part of the site. Multielement analysis of each ring of a willow growing along the southern boundary of the site detected extremely large concentrations of chromium, nickel, and iron in rings that formed in 1986 and thereafter. Relative increases in the concentrations of these elements also

  3. Using Novel Approaches in Process-Based Modeling for Interpreting Inter-Annual Variability in Tree Ring Widths, Wood Density Profiles, and Cellulose Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Friend, A. D.; Babst, F.; Belmecheri, S.; Frank, D. C.; Hacket Pain, A. J.; Hayat, A.; Poulter, B.; Rademacher, T. T.; Trouet, V.

    2015-12-01

    Time series annual of tree ring width, density variation, and oxygen and carbon isotopic compositions have the potential to substantially increase our knowledge of forest responses to environmental variation. However, their interpretation is not straightforward due to the simultaneous influences of a number of confounding factors, including carry-over effects from previous years, variable resource allocation with size, age, and canopy position, species-specific physiologies, and complex interactions between forcings such as temperature, soil moisture, and atmospheric CO2. Here we attempt to tease these factors apart and so substantially improve the interpretability of tree ring archives through the construction and application of novel approaches within a process-based model of individual tree growth. The model incorporates descriptions of xylem cell division, expansion, and secondary wall thickening, apical and lateral meristem activities with internal controls from internal signals, internal carbon storage, and the dynamics of canopy photosynthesis, stomatal movements, evapotranspiration, canopy temperatures, and soil moisture. Alternative treatments of isotopic fractionation and growth controls are evaluated using measured datasets. We demonstrate how this new model approach can be used to assess the information contained in tree rings concerning the influence of increasing atmospheric CO2 over the past century on growth and water use efficiency at a range of sites.

  4. Double hexagonal graphene ring synthesized using a growth-etching method

    NASA Astrophysics Data System (ADS)

    Liu, Jinyang; Xu, Yangyang; Cai, Hongbing; Zuo, Chuandong; Huang, Zhigao; Lin, Limei; Guo, Xiaomin; Chen, Zhendong; Lai, Fachun

    2016-07-01

    Precisely controlling the layer number, stacking order, edge configuration, shape and structure of graphene is extremely challenging but highly desirable in scientific research. In this report, a new concept named the growth-etching method has been explored to synthesize a graphene ring using the chemical vapor deposition process. The graphene ring is a hexagonal structure, which contains a hexagonal exterior edge and a hexagonal hole in the centre region. The most important concept introduced here is that the oxide nanoparticle derived from annealing is found to play a dual role. Firstly, it acts as a nucleation site to grow the hexagonal graphene domain and then it works as a defect for etching to form a hole. The evolution process of the graphene ring with the etching time was carefully studied. In addition, a double hexagonal graphene ring was successfully synthesized for the first time by repeating the growth-etching process, which not only confirms the validity and repeatability of the method developed here but may also be further extended to grow unique graphene nanostructures with three, four, or even tens of graphene rings. Finally, a schematic model was drawn to illustrate how the double hexagonal graphene ring is generated and propagated. The results shown here may provide valuable guidance for the design and growth of unique nanostructures of graphene and other two-dimensional materials.

  5. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO(2) assimilation and growth in Douglas-fir.

    PubMed

    Saffell, Brandy J; Meinzer, Frederick C; Voelker, Steven L; Shaw, David C; Brooks, J Renée; Lachenbruch, Barbara; McKay, Jennifer

    2014-07-01

    Swiss needle cast (SNC) is a fungal disease of Douglas-fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree-rings of Douglas-fir and a non-susceptible reference species (western hemlock, Tsuga heterophylla) to evaluate their use as proxies for variation in past SNC infection, particularly in relation to potential explanatory climate factors. We sampled trees from an Oregon site where a fungicide trial took place from 1996 to 2000, which enabled the comparison of stable isotope values between trees with and without disease. Carbon stable isotope discrimination (Δ(13)C) of treated Douglas-fir tree-rings was greater than that of untreated Douglas-fir tree-rings during the fungicide treatment period. Both annual growth and tree-ring Δ(13)C increased with treatment such that treated Douglas-fir had values similar to co-occurring western hemlock during the treatment period. There was no difference in the tree-ring oxygen stable isotope ratio between treated and untreated Douglas-fir. Tree-ring Δ(13)C of diseased Douglas-fir was negatively correlated with relative humidity during the two previous summers, consistent with increased leaf colonization by SNC under high humidity conditions that leads to greater disease severity in following years.

  6. Graphene Layer Growth Chemistry: Five-Six-Ring Flip Reaction

    SciTech Connect

    Whitesides, Russell; Domin, Dominik; Lester Jr., William A.; Frenklach, Michael

    2007-03-24

    A theoretical study revealed a new reaction pathway, in which a fused five and six-membered ring complex on the zigzag edge of a graphene layer isomerizes to reverse its orientation, or 'flips,' after activation by a gaseous hydrogen atom. The process is initiated by hydrogen addition to or abstraction from the surface complex. The elementary steps of the migration pathway were analyzed using density-functional theory (DFT) calculations to examine the region of the potential energy surface associated with the pathway. The DFT calculations were performed on substrates modeled by the zigzag edges of tetracene and pentacene. Rate constants for the flip reaction were obtained by the solution of energy master equation utilizing the DFT energies, frequencies, and geometries. The results indicate that this reaction pathway is competitive with other pathways important to the edge evolution of aromatic species in high temperature environments.

  7. Soil Warming and Fertilization Effects on Growth Ring Widths of Arctic Shrubs - Application of a Novel Dendroecological Approach.

    NASA Astrophysics Data System (ADS)

    Iturrate Garcia, M.; Heijmans, M.; Schweingruber, F. H.; Niklaus, P. A.; Schaepman-Strub, G.

    2015-12-01

    Climate warming is suggested as the main driver of shrub expansion in arctic tundra regions. Shrub expansion may have consequences on biodiversity and climate, especially through its feedbacks with the energy budget. A better understanding of shrub expansion mechanisms, including growth rate patterns and stem anatomy changes, and their sensitivity to climate is needed in order to quantify related feedbacks. We present a novel dendroecological approach to determine the response of three arctic shrub species to increased soil temperature and nutrients. A full factorial block-design experiment was run for four years with a total of thirty plots. Six individuals of each species were sampled from each plot to test for treatment effects on growth rate and stem anatomy. We compared the ring width of the four years of experiment with the one of the four previous years. The preliminary results for Betula nana and Salix pulchra suggest a significant effect of the treatments on the growth ring width. The response is stronger in Salix pulchra than in Betula nana individuals. And, while Salix pulchra is more sensitive to the combined soil warming and fertilization treatment, Betula nana is to the fertilization treatment. We could not observe an effect of treatment on the stem anatomy, likely because bark thickness co-varies with age. We found significant positive correlations of cork, cortex and phloem thickness with xylem thickness (used as a proxy of age), and a significant difference in stem anatomy between species. The results suggest species-specific growth sensitivity to soil warming and nutrient enhancement. The use of experimental dendroecology by manipulating environmental conditions according to future climate scenarios and testing effects on shrub anatomy and annual growth will increase our understanding on shrub expansion mechanisms. Ongoing plant trait analysis and consecutive application in a 3D radiative transfer model will allow to quantify the feedback of

  8. Detecting long-term growth trends using tree rings: a critical evaluation of methods.

    PubMed

    Peters, Richard L; Groenendijk, Peter; Vlam, Mart; Zuidema, Pieter A

    2015-05-01

    Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability

  9. Detecting long-term growth trends using tree rings: a critical evaluation of methods.

    PubMed

    Peters, Richard L; Groenendijk, Peter; Vlam, Mart; Zuidema, Pieter A

    2015-05-01

    Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability

  10. Integrating inter- and intra-annual tree-ring width, carbon isotopes and anatomy: responses to climate variability in a temperate oak forest

    NASA Astrophysics Data System (ADS)

    Granda, Elena; Bazot, Stéphane; Fresneau, Chantal; Boura, Anaïs; Faccioni, Georgia; Damesin, Claire

    2015-04-01

    While many forests are experiencing strong tree declines due to climate change in temperate ecosystems, others nearby to those declining show no apparent signs of decline. This could be due to particular microsite conditions or, for instance, to a higher plasticity of given traits that allow a better performance under stressful conditions. We studied oak functional mechanisms (Quercus petraea) leading to the apparently healthy status of the forest and their relation to the observed climatic variability. This study was conducted in the Barbeau Forest (northern France), where cores from mature trees were collected. Three types of functional traits (secondary growth, physiological variables - δ13C and derived Δ13C and iWUE- and several anatomical ones -e.g. vessel area, density-) were recorded for each ring for the 1991-2011 period, distinguishing EW from LW in all measured traits. Among the three types of functional traits, those related to growth experienced the highest variability both between years and between individuals, followed by anatomical and physiological ones. Secondary growth maintained a constant trend during the study period. Instead, ring, EW and LW δ13C slightly declined from 1991 to 2011. Additional intra-ring δ13C analyses allowed for a more detailed understanding of the seasonal dynamics within each year. In particular, the year 2007 (an especially favorable climatic year during the growing season) showed the lowest δ13C values during the EW-LW transition for the whole study period. Inter-annual anatomical traits varied in their responses, but in general, no temporal trends were found. The results from structural equation modeling (SEM) showed direct relationships of seasonal climate and growth, as well as indirect relationships mediated by anatomical and physiological traits. We further discuss the implications of these results on future forest responses to ongoing climate changes.

  11. High-precision analysis on annual variations of heavy metals, lead isotopes and rare earth elements in mangrove tree rings by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, Ke-Fu; Kamber, Balz S.; Lawrence, Michael G.; Greig, Alan; Zhao, Jian-Xin

    2007-02-01

    Annual variations from 1982 to 1999 of a wide range of trace elements and reconnaissance Pb isotopes ( 207Pb/ 206Pb and 208Pb/ 206Pb) were analyzed by solution ICP-MS on digested ash from mangrove Rhizophora apiculata, obtained from Leizhou Peninsula, along northern coast of South China Sea. The concentrations of the majority of elements show a weak declining trend with growth from 1982 to 1999, punctuated by several high concentration spikes. The declining trends are positively correlated with ring width and negatively correlated with inferred water-use efficiency, suggesting a physiological control over metal-uptake in this species. The episodic metal concentration-peaks cannot be interpreted with lateral movement or growth activities and appear to be related to environmental pollution events. Pb isotope ratios for most samples plot along the 'Chinese Pb line' and clearly document the importance of gasoline Pb as a source of contaminant. Shale-normalised REE + Y patterns are relatively flat and consistent across the growth period, with all patterns showing a positive Ce anomaly and elevated Y/Ho ratio. The positive Ce anomaly is observed regardless of the choice of normaliser, in contrast to previously reported REE patterns for terrestrial and marine plants. This pilot study of trace element, REE + Y and Pb isotope distribution in mangrove tree rings indicates the potential use of mangroves as monitors of historical environmental change.

  12. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape.

    PubMed

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D; Tardif, Jacques C; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems. PMID:26528316

  13. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape

    PubMed Central

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D.; Tardif, Jacques C.; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems. PMID:26528316

  14. The influence of sampling design on tree-ring-based quantification of forest growth.

    PubMed

    Nehrbass-Ahles, Christoph; Babst, Flurin; Klesse, Stefan; Nötzli, Magdalena; Bouriaud, Olivier; Neukom, Raphael; Dobbertin, Matthias; Frank, David

    2014-09-01

    Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in

  15. Fine-scale spatiotemporal influences of salmon on growth and nitrogen signatures of Sitka spruce tree rings

    PubMed Central

    2013-01-01

    Background The marine-terrestrial transfer of salmon (Oncorhynchus spp.) provides a substantial pulse of nutrients to receiving ecosystems along the Pacific coast of North America and has been shown to enhance productivity and isotopic signatures of conifers and other riparian vegetation. An explicitly spatial, within-watershed investigation of the influence of salmon on conifers has never been previously investigated. In a small salmon-bearing watershed in Haida Gwaii, Canada, the transfer and distributional pattern of salmon carcasses into the riparian zone by black bears provided a spatial basis for investigating the influence of salmon on Sitka spruce tree ring growth and nitrogen isotopic signatures (δ15N) across a gradient of salmon carcass densities in relation to salmon escapement. Results Annual growth was found to be highest in the high salmon carcass zone and δ15N signatures closely tracked the known distribution of salmon carcasses at distances into the forest and upstream. Tree diameter demonstrated a positive relationship with δ15N signatures for trees with and without salmon carcass influence. Using an information theoretics approach with general linear mixed models (GLMMs), we show that salmon abundance, mean annual temperature and the interaction terms salmon abundance*temperature and salmon abundance*distance into the forest best predict tree growth. In addition, spatial variables (distance into forest and upstream) and their interaction are the strongest predictors of δ15N signatures. However patterns observed in individual trees, particularly those at increased distance into the forest, suggest positive relationships with historical salmon abundance. Conclusions Using a replicated spatial sampling design across a sharp gradient in salmon nutrient loading, our study provides clear evidence that the temporal pattern in an allochthonous nutrient source and an interaction with temperature and spatial location influences conifer growth. Although

  16. Growth Rings.

    ERIC Educational Resources Information Center

    Garmston, Robert J.

    1999-01-01

    In adaptive schools, working groups grow, develop, and learn from experience, becoming more effective as they go. Three premises about group development include the following: each group is unique, some groups mature, and attrition need not block development. Four guidelines for successful group meetings include decide who decides, define the…

  17. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers' climate on ring width.

    PubMed

    Hacket-Pain, Andrew J; Friend, Andrew D; Lageard, Jonathan G A; Thomas, Peter A

    2015-03-01

    Tree growth is frequently linked to weather conditions prior to the growing season but our understanding of these lagged climate signatures is still poorly developed. We investigated the influence of masting behaviour on the relationship between growth and climate in European Beech (Fagus sylvatica L.) using a rare long-term dataset of seed production and a new regional tree ring chronology. Fagus sylvatica is a masting species with synchronous variations in seed production which are strongly linked to the temperature in the previous two summers. We noted that the weather conditions associated with years of heavy seed production (mast years) were the same as commonly reported correlations between growth and climate for this species. We tested the hypothesis that a trade-off between growth and reproduction in mast years could be responsible for the observed lagged correlations between growth and previous summers' temperatures. We developed statistical models of growth based on monthly climate variables, and show that summer drought (negative correlation), temperature of the previous summer (negative) and temperature of the summer 2 years previous (positive) are significant predictors of growth. Replacing previous summers' temperature in the model with annual seed production resulted in a model with the same predictive power, explaining the same variance in growth. Masting is a common behaviour in many tree species and these findings therefore have important implications for the interpretation of general climate-growth relationships. Lagged correlations can be the result of processes occurring in the year of growth (that are determined by conditions in previous years), obviating or reducing the need for 'carry-over' processes such as carbohydrate depletion to be invoked to explain this climate signature in tree rings. Masting occurs in many tree species and these findings therefore have important implications for the interpretation of general climate-growth

  18. Geochemical signature of contaminated sediment remobilization revealed by spatially resolved X-ray microanalysis of annual rings of Salix nigra.

    PubMed

    Punshon, Tracy; Bertsch, Paul M; Lanzirotti, Antonio; McLeod, Ken; Burger, Joanna

    2003-05-01

    An X-ray microprobe was used to determine the concentration and distribution of Ni, U, and other metals within annual rings of willows (Salix nigra L.) from a former de facto radiological settling basin (Steed Pond; SP) and a depositional environment downstream (Tims Branch; TB) on the Savannah River Site (SRS). Geochemical and historical information about both areas are well documented. Following spillway breaches at SP in 1984 and the early 1990s, TB is inundated with contaminated sediments during storms. Bulk elemental composition of tree cores was determined using ICP-OES. Synchrotron X-rayfluorescence (SXRF) analysis showed that the metal contents of SP and TB cores were an order of magnitude higher than those from a reference site. TB cores were enriched with Ni in 1984 and 1991, corresponding with SP spillway breaches (containing 790 mg kg(-1) Ni in 1991). Cores from SP exhibited an extremely high Ni peak in 1996, approximately 5000 mg kg(-1), even though contaminant levels at SP did not change. The geochemical signature of contaminants recorded in TB annual rings reflected the significant sediment remobilization events consistent with the detailed history of the site, and at concentrations relative to their proximity to the source term. However, physiological processes occurring within impacted trees strongly influence the chronological accuracy of dendroanalysis and must be investigated further.

  19. Pinus halepensis tree-ring widths at the periphery of the eastern Mediterranean forest growth as a possible proxy for recontruction of vegetation greeness.

    NASA Astrophysics Data System (ADS)

    Ababneh, L. N.

    2015-12-01

    The IPCC report (2014) signifies the importance of understanding the dynamic and elastic relationship between global climate change and forest growth as ramifications are still uncertain despite increased experimental efforts (IPCC 2014, Frank et al.,2015). Further, understanding and modeling this relationship is over emphasized in arid to semi-arid areas such as the Middle East where limited natural resources have proven record of correlation with conflict (e.g.Kelley et al., 2015). This work reports on the response of a forest stand of Pinus halepensis (Aleppo pine) from north Jordan to variability in precipitation using instrumental and satellite derived data. The site is located in north Jordan on the transitional zones from forest to steppe of the eastern Mediterranean as classified by the European Forest Genetic Resources Programme (EUFORGEN, 2015). The aim is to model the relationship between annual earlywood, latewood and tree-ring width indices with instrumental data, reanalysis data and Normalized Difference Vegetation Index (NDVI) in the period from 1976-2012 for a possible use of tree-ring widths as vegetation greenness proxy. The highest significant correlation (p< 0.005, α =0.05) is between current year's growth and prior spring precipitation (instrumental and reanalysis) and NDVI. Reanalysis data correlates significantly (p<0.005, α =0.05, r: 0.85) with instrumental data (1976-2012) but is limited by the records' length. There is definitely a proven correlation between seasonal tree-ring widths and vegetation index that offers the potential for reconstruction of vegetation index if applied at the regional level and could be extrapolated to desert areas that lacks proxy data with annually resolved resolution such as tree-rings.

  20. National health expenditure projections: modest annual growth until coverage expands and economic growth accelerates.

    PubMed

    Keehan, Sean P; Cuckler, Gigi A; Sisko, Andrea M; Madison, Andrew J; Smith, Sheila D; Lizonitz, Joseph M; Poisal, John A; Wolfe, Christian J

    2012-07-01

    For 2011-13, US health spending is projected to grow at 4.0 percent, on average--slightly above the historically low growth rate of 3.8 percent in 2009. Preliminary data suggest that growth in consumers' use of health services remained slow in 2011, and this pattern is expected to continue this year and next. In 2014, health spending growth is expected to accelerate to 7.4 percent as the major coverage expansions from the Affordable Care Act begin. For 2011 through 2021, national health spending is projected to grow at an average rate of 5.7 percent annually, which would be 0.9 percentage point faster than the expected annual increase in the gross domestic product during this period. By 2021, federal, state, and local government health care spending is projected to be nearly 50 percent of national health expenditures, up from 46 percent in 2011, with federal spending accounting for about two-thirds of the total government share. Rising government spending on health care is expected to be driven by faster growth in Medicare enrollment, expanded Medicaid coverage, and the introduction of premium and cost-sharing subsidies for health insurance exchange plans. PMID:22692089

  1. National health expenditure projections: modest annual growth until coverage expands and economic growth accelerates.

    PubMed

    Keehan, Sean P; Cuckler, Gigi A; Sisko, Andrea M; Madison, Andrew J; Smith, Sheila D; Lizonitz, Joseph M; Poisal, John A; Wolfe, Christian J

    2012-07-01

    For 2011-13, US health spending is projected to grow at 4.0 percent, on average--slightly above the historically low growth rate of 3.8 percent in 2009. Preliminary data suggest that growth in consumers' use of health services remained slow in 2011, and this pattern is expected to continue this year and next. In 2014, health spending growth is expected to accelerate to 7.4 percent as the major coverage expansions from the Affordable Care Act begin. For 2011 through 2021, national health spending is projected to grow at an average rate of 5.7 percent annually, which would be 0.9 percentage point faster than the expected annual increase in the gross domestic product during this period. By 2021, federal, state, and local government health care spending is projected to be nearly 50 percent of national health expenditures, up from 46 percent in 2011, with federal spending accounting for about two-thirds of the total government share. Rising government spending on health care is expected to be driven by faster growth in Medicare enrollment, expanded Medicaid coverage, and the introduction of premium and cost-sharing subsidies for health insurance exchange plans.

  2. Validating Annual Growth Bands of Deep Sea Corals from the Gulf of Mexico and Southeastern United States

    NASA Astrophysics Data System (ADS)

    Mohon, L. M.; Roark, E.; Guillemette, R. N.; Prouty, N.; Ross, S.

    2012-12-01

    The deep-water black corals, Leiopathes sp., have the potential to be used as an archive of historical oceanographic and biochemical changes. Deep-sea corals can extend our observations of ocean dynamics and climate well beyond the onset of instrumental records. In this study we investigate different methods of determining the growth rates and age distributions of deep-water black corals (Leiopathes sp.) in the Gulf of Mexico and the southeastern Unites States. Leiopathes sp. grow in a tree-like fashion by depositing growth rings resulting in decadally resolved and perhaps annually resolved paleoceanographic records. We use radiocarbon measurements to validate annual growth bands and annual variations in iodine concentrations. Radiocarbon results from five specimens show that these animals have been growing continuously for at least the last two millennia, with growth rates ranging from 8 to 22 μm yr-1. Results from scanning electron microscope (SEM) work to image growth rings (90x and 900x) in back-scattered electrons (BSE) mode and measure iodine by wavelength dispersive spectrometer (WDS). Ages were determined by the counting of growth bands by independent observes and counting of peaks of iodine and BSE measured with 1 μm spots shoulder to shoulder across the radius of the specimen. Peaks in iodine concentration associated with the glueing regions of the growth bands are also in excellent agreement with the radiocarbon results suggesting annual ring formation. For example in one specimen from the Gulf of Mexico (GOM-JSL04-4734-BC1), the 14C derived age (670 ± 40 yrs.) was in excellent agreement with the iodine derived age of (666 ± 65 yrs.), while the BSE counts (626 ± 60 yrs.) and the visual ring counts (783 ±78 yrs.) were only in good agreement. These results indicate that at a minimum, the iodine derived ages can be used as an independent chronology. Iodine derived ages were used to determine the atmospheric 14C age which was subtracted from the

  3. Alpha-cellulose δ13C variation in mangrove tree rings correlates well with annual sea level trend between 1982 and 1999

    NASA Astrophysics Data System (ADS)

    Yu, Ke-Fu; Zhao, Jian-Xin; Liu, Tung-Sheng; Wang, Pin-Xian; Qian, Jun-Long; Chen, Te-Gu

    2004-06-01

    A pilot study of tree rings in a modern mangrove tree (Rhizophora apiculata) from Leizhou Peninsula, northern South China Sea shows that (1) the tree-rings are annual; (2) the ring widths decrease; and (3) their alpha-cellulose δ13C values increase from 1982 to 1999 AD, consistent with the trends of annual sea level, salinity and sea surface temperatures in the same period. We propose that such changes were caused by increasingly longer duration of waterlogging in response to sea-level rise. If this is the case, alpha-cellulose δ13C in mangrove tree rings can be used as a potential indicator of past sea level fluctuations.

  4. Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest.

    PubMed

    Ohashi, Shinta; Durgante, Flávia M; Kagawa, Akira; Kajimoto, Takuya; Trumbore, Susan E; Xu, Xiaomei; Ishizuka, Moriyoshi; Higuchi, Niro

    2016-03-01

    In Amazonian non-flooded forests with a moderate dry season, many trees do not form anatomically definite annual rings. Alternative indicators of annual rings, such as the oxygen (δ(18)Owc) and carbon stable isotope ratios of wood cellulose (δ(13)Cwc), have been proposed; however, their applicability in Amazonian forests remains unclear. We examined seasonal variations in the δ(18)Owc and δ(13)Cwc of three common species (Eschweilera coriacea, Iryanthera coriacea, and Protium hebetatum) in Manaus, Brazil (Central Amazon). E. coriacea was also sampled in two other regions to determine the synchronicity of the isotopic signals among different regions. The annual cyclicity of δ(18)Owc variation was cross-checked by (14)C dating. The δ(18)Owc showed distinct seasonal variations that matched the amplitude observed in the δ(18)O of precipitation, whereas seasonal δ(13)Cwc variations were less distinct in most cases. The δ(18)Owc variation patterns were similar within and between some individual trees in Manaus. However, the δ(18)Owc patterns of E. coriacea differed by region. The ages of some samples estimated from the δ(18)Owc cycles were offset from the ages estimated by (14)C dating. In the case of E. coriacea, this phenomenon suggested that missing or wedging rings may occur frequently even in well-grown individuals. Successful cross-dating may be facilitated by establishing δ(18)Owc master chronologies at both seasonal and inter-annual scales for tree species with distinct annual rings in each region.

  5. Planetary rings

    NASA Technical Reports Server (NTRS)

    Cook, A. F.

    1980-01-01

    Observations of the Rings of Saturn from the Pioneer spacecraft, discovery of the Ring of Jupiter, ground based polarimetry of the Rings of Saturn and some theoretical studies may be combined to markedly advance our understanding of the Rings of Jupiter, Saturn and Uranus. In particular, narrow rings can be self-gravitatingly stable inside Roche's limit and outside another closer limit. They can be created from a satellite which evolves across its Roche limit either by inward tidal drift or by growth of the planet by accretion. These considerations suggest that Neptune may well be surrounded by one or more narrow rings like those of Uranus.

  6. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau.

    PubMed

    Yang, Bao; Qin, Chun; Wang, Jianglin; He, Minhui; Melvin, Thomas M; Osborn, Timothy J; Briffa, Keith R

    2014-02-25

    An annually resolved and absolutely dated ring-width chronology spanning 4,500 y has been constructed using subfossil, archaeological, and living-tree juniper samples from the northeastern Tibetan Plateau. The chronology represents changing mean annual precipitation and is most reliable after 1500 B.C. Reconstructed precipitation for this period displays a trend toward more moist conditions: the last 10-, 25-, and 50-y periods all appear to be the wettest in at least three and a half millennia. Notable historical dry periods occurred in the 4th century BCE and in the second half of the 15th century CE. The driest individual year reconstructed (since 1500 B.C.) is 1048 B.C., whereas the wettest is 2010. Precipitation variability in this region appears not to be associated with inferred changes in Asian monsoon intensity during recent millennia. The chronology displays a statistical association with the multidecadal and longer-term variability of reconstructed mean Northern Hemisphere temperatures over the last two millennia. This suggests that any further large-scale warming might be associated with even greater moisture supply in this region.

  7. Tropical tree rings reveal preferential survival of fast-growing juveniles and increased juvenile growth rates over time.

    PubMed

    Rozendaal, Danaë M A; Brienen, Roel J W; Soliz-Gamboa, Claudia C; Zuidema, Pieter A

    2010-02-01

    Long-term juvenile growth patterns of tropical trees were studied to test two hypotheses: fast-growing juvenile trees have a higher chance of reaching the canopy ('juvenile selection effect'); and tree growth has increased over time ('historical growth increase'). Tree-ring analysis was applied to test these hypotheses for five tree species from three moist forest sites in Bolivia, using samples from 459 individuals. Basal area increment was calculated from ring widths, for trees < 30 cm in diameter. For three out of five species, a juvenile selection effect was found in rings formed by small juveniles. Thus, extant adult trees in these species have had higher juvenile growth rates than extant juvenile trees. By contrast, rings formed by somewhat larger juveniles in four species showed the opposite pattern: a historical growth increase. For most size classes of > 10 cm diameter none of the patterns was found. Fast juvenile growth may be essential to enable tropical trees to reach the forest canopy, especially for small juvenile trees in the dark forest understorey. The historical growth increase requires cautious interpretation, but may be partially attributable to CO(2) fertilization.

  8. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    PubMed

    Hamada-Kawaguchi, Noriko; Nishida, Yasuyoshi; Yamamoto, Daisuke

    2015-01-01

    Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.

  9. Responses of tree-ring growth and crop yield to drought indices in the Shanxi province, North China.

    PubMed

    Sun, Junyan; Liu, Yu

    2014-09-01

    In this paper, we analyze the relationships among the tree-ring chronology, meteorological drought (precipitation), agricultural drought (Palmer Drought Severity Index PDSI), hydrological drought (runoff), and agricultural data in the Shanxi province of North China. Correlation analyses indicate that the tree-ring chronology is significantly correlated with all of the drought indices during the main growing season from March to July. Sign test analyses further indicate that the tree-ring chronology shows variation similar to that of the drought indices in both high and low frequencies. Comparisons of the years with narrow tree rings to the severe droughts reflected in all three indices from 1957 to 2008 reveal that the radial growth of the trees in the study region can accurately record the severe drought for which all three indices were in agreement (1972, 1999, 2000, and 2001). Comparisons with the dryness/wetness index indicate that tree-ring growth can properly record the severe droughts in the history. Correlation analyses among agricultural data, tree-ring chronology, and drought indices indicate that the per-unit yield of summer crops is relatively well correlated with the agricultural drought, as indicated by the PDSI. The PDSI is the climatic factor that significantly influences both tree growth and per-unit yield of summer crops in the study region. These results indicate that the PDSI and tree-ring chronology have the potential to be used to monitor and predict the yield of summer crops. Tree-ring chronology is an important tool for drought research and for wider applications in agricultural and hydrological research.

  10. Understanding tree growth in response to moisture variability: Linking 32 years of satellite based soil moisture observations with tree rings

    NASA Astrophysics Data System (ADS)

    Albrecht, Franziska; Dorigo, Wouter; Gruber, Alexander; Wagner, Wolfgang; Kainz, Wolfgang

    2014-05-01

    Climate change induced drought variability impacts global forest ecosystems and forest carbon cycle dynamics. Physiological drought stress might even become an issue in regions generally not considered water-limited. The water balance at the soil surface is essential for forest growth. Soil moisture is a key driver linking precipitation and tree development. Tree ring based analyses are a potential approach to study the driving role of hydrological parameters for tree growth. However, at present two major research gaps are apparent: i) soil moisture records are hardly considered and ii) only a few studies are linking tree ring chronologies and satellite observations. Here we used tree ring chronologies obtained from the International Tree ring Data Bank (ITRDB) and remotely sensed soil moisture observations (ECV_SM) to analyze the moisture-tree growth relationship. The ECV_SM dataset, which is being distributed through ESA's Climate Change Initiative for soil moisture covers the period 1979 to 2010 at a spatial resolution of 0.25°. First analyses were performed for Mongolia, a country characterized by a continental arid climate. We extracted 13 tree ring chronologies suitable for our analysis from the ITRDB. Using monthly satellite based soil moisture observations we confirmed previous studies on the seasonality of soil moisture in Mongolia. Further, we investigated the relationship between tree growth (as reflected by tree ring width index) and remotely sensed soil moisture records by applying correlation analysis. In terms of correlation coefficient a strong response of tree growth to soil moisture conditions of current April to August was observed, confirming a strong linkage between tree growth and soil water storage. The highest correlation was found for current April (R=0.44), indicating that sufficient water supply is vital for trees at the beginning of the growing season. To verify these results, we related the chronologies to reanalysis precipitation and

  11. Radiocarbon in annual coral rings from the eastern tropical Pacific ocean

    SciTech Connect

    Druffel, E.M.

    1981-01-01

    Sixty radiocarbon measurements were performed on aragonite from annually banded corals collected from three sites in the Galapagos Islands. Preanthropogenic ..delta../sup 14/C values of coral that grew around A.D. 1930 averaged -70%/sub 0/. This is substantially lower than average values previously reported (-51%/sub 0/) for corals from Florida and Belize in the western North Atlantic Ocean. A decrease of 6% was noticed in coral that grew from 1930 to 1954. This decrease could be interpreted as a Suess effect in surface ocean water. The 100%/sub 0/ increase in ..delta../sup 14/C for coral that grew from 1954 to 1973 is the result of bomb-produced /sup 14/C that was introduced to the surface ocean waters. The /sup 14/C levels in corals that grew during El Nino years were considerably higher than those for normal years. These higher values are attributed to the absence of upwelling at the equator during El Nino events.

  12. Yukon Tree Rings and Climate Change: Effect of increased freeze-thaw events on white spruce and lodgepole pine growth

    NASA Astrophysics Data System (ADS)

    Nelson, E. A.; Thomas, S. C.

    2009-05-01

    Northern environments are experiencing dramatic changes in local climate, including prolonged spring and fall freeze-thaw cycles. Our research examines whether increased frequency of freeze-thaw events is linked to growth reductions in lodgepole pine (Pinus contorta) and white spruce (Picea glauca) in the Yukon Territory, Canada. Tree core samples were collected from 11 sites across the Yukon, covering a range of ecoregions, climate zones, and fire history, sampling all major forest communities accessible by road and located near the network of long-term weather stations. Over 50 tree cores from each site were sampled, analysed for ring- width, cross-dated and averaged to generate yearly ring growth at each site for each species. Ring growth was then compared against yearly freeze-thaw events at each site, defined as total days with daily temperature ranges which crossed the freezing threshold. Preliminary results indicate a negative relationship between ring growth and number of freeze-thaw events (p<0.05), suggesting that northern forests will experience growth declines in response to prolonged spring and fall freeze-thaw conditions.

  13. Inter-annual growth of Arctic charr (Salvelinus alpinus, L.) in relation to climate variation

    PubMed Central

    Kristensen, David M; Jørgensen, Thomas R; Larsen, Rasmus K; Forchhammer, Mads C; Christoffersen, Kirsten S

    2006-01-01

    Background Major changes in climate have been observed in the Arctic and climate models predict further amplification of the enhanced greenhouse effect at high-latitudes leading to increased warming. We propose that warming in the Arctic may affect the annual growth conditions of the cold adapted Arctic charr and that such effects can already be detected retrospectrally using otolith data. Results Inter-annual growth of the circumpolar Arctic charr (Salvelinus alpinus, L.) was analysed in relation to climatic changes observed in the Arctic during the last two decades. Arctic charr were sampled from six locations at Qeqertarsuaq in West Greenland, where climate data have been recorded since 1990. Two fish populations met the criteria of homogeny and, consequently, only these were used in further analyses. The results demonstrate a complex coupling between annual growth rates and fluctuations in annual mean temperatures and precipitation. Significant changes in temporal patterns of growth were observed between cohorts of 1990 and 2004. Conclusion Differences in pattern of growth appear to be a consequence of climatic changes over the last two decades and we thereby conclude that climatic affects short term and inter-annual growth as well as influencing long term shifts in age-specific growth patterns in population of Arctic charr. PMID:16934162

  14. Growth form evolution and shifting habitat specialization in annual plants.

    PubMed

    Bonser, S P; Geber, M A

    2005-07-01

    Optimal plant growth form should vary across environments. We examined the potential for mutations causing large changes in growth form to produce new optimal phenotypes across light environments. We predicted that the upright growth form would be favoured in a light limiting environment as leaves were in a position to maximize light interception, while a rosette (leaves in a basal position) growth form would be favoured in a high light environment. Growth form genotypes of Brassica rapa (upright wild-type and rosette mutants) and Arabidopsis thaliana (large rosette wild-type and increasingly upright growth form mutants) were grown in a greenhouse in control (ambient) and filtered (low) light treatments. Compared to upright genotypes, rosette genotypes had relatively high fitness in control light but had a relatively large fitness reduction in filtered light. Our results demonstrate the potential importance of rapid growth form evolution in plant adaptation to new or changing environments.

  15. Reconstruction of Pacific salmon abundance from riparian tree-ring growth.

    PubMed

    Drake, D C; Naiman, Robert J

    2007-07-01

    We use relationships between modern Pacific salmon (Oncorhynchus spp.) escapement (migrating adults counted at weirs or dams) and riparian tree-ring growth to reconstruct the abundance of stream-spawning salmon over 150-350 years. After examining nine sites, we produced reconstructions for five mid-order rivers and four salmon species over a large geographic range in the Pacific Northwest: chinook (O. tschwatcha) in the Umpqua River, Oregon, USA; sockeye (O. nerka) in Drinkwater Creek, British Columbia, Canada; pink (O. gorbuscha) in Sashin Creek, southeastern Alaska, USA; chum (O. keta) in Disappearance Creek, southeastern Alaska, USA; and pink and chum in the Kadashan River, southeastern Alaska, USA. We first derived stand-level, non-climatic growth chronologies from riparian trees using standard dendroecology methods and differencing. When the chronologies were compared to 18-55 years of adult salmon escapement we detected positive, significant correlations at five of the nine sites. Regression models relating escapement to tree-ring growth at the five sites were applied to the differenced chronologies to reconstruct salmon abundance. Each reconstruction contains unique patterns characteristic of the site and salmon species. Reconstructions were validated by comparison to local histories (e.g., construction of dams and salmon canneries) and regional fisheries data such as salmon landings and aerial surveys and the Pacific Decadal Oscillation climate index. The reconstructions capture lower-frequency cycles better than extremes and are most useful for determination and comparison of relative abundance, cycles, and the effects of interventions. Reconstructions show lower population cycle maxima in both Umpqua River chinook and Sashin Creek pink salmon in recent decades. The Drinkwater Creek reconstruction suggests that sockeye abundance since the mid-1990s has been 15-25% higher than at any time since 1850, while no long-term deviations from natural cycles are

  16. Contrasts in growth and water sources in co-occurring Mediterranean riparian tree species: Evidence from tree ring isotopes and dendrochronology

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Dufour, S.; Stella, J. C.; Piégay, H.; Johnstone, L.; Wilson, R.

    2011-12-01

    Riparian trees have growth responses to varying water sources that are more subtle than those of their upland counterparts, but differences in water use between co-occurring riparian species are not easily discerned by conventional dendrochronology. While tree ring isotopes have been developed as a useful tool for understanding past climate (temperature and precipitation) at the growth limits for particular species, relatively little research has investigated responses in tree growth in water-rich environments, where co-occurring tree species may express differential adaptation to water availability and shifting water sources. Better understanding of such subtle adaptations will improve predictions of the response of lowland riparian forests to climate changes that manifest as shifts in: regional ground water tables; the spatial/temporal distribution of precipitation; or volumes and timing of streamflow. We use an approach that combines dendrochronology and tree ring isotopes (δ18O) to discern the relationships between tree growth and water sources for two contrasting, co-occurring Mediterranean riparian species-- Fraxinus excelsior and Populus nigra. We developed growth time series via two methods (one de-trended for climate) and extracted alpha-cellulose from tree rings to assess relative responses to water stress via δ18O, and we analyzed these data alongside streamflow and precipitation data for the Ain River basin in France. We find that both species exhibit decreased growth during drought years, but F. excelsior demonstrates more consistent annual growth than P. nigra. In contrast, oxygen isotopic values in P. nigra have low interannual variability compared with δ18O in F. excelsior. These differences suggest contrasting patterns of water use by these co-occurring species, wherein F. excelsior functions as an opportunist, scavenging water from the vadose zone where and when it cannot access groundwater. In contrast, the P. nigra demonstrates consistent

  17. Sun-earth relationship inferred by tree growth rings in conifers from Severiano De Almeida, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Prestes, A.; Rigozo, N. R.; Nordemann, D. J. R.; Wrasse, C. M.; Souza Echer, M. P.; Echer, E.; da Rosa, M. B.; Rampelotto, P. H.

    2011-07-01

    This study of Sun-Earth relationships is based on tree growth rings analysis of araucarias (Araucaria angustifolia) collected at Severiano de Almeida (RS) Brazil. A chronology of 359 years was obtained, and the classical method of spectral analysis by iterative regression and wavelet method was applied to find periodicities and trends contained in the tree growth. The analysis of the dendrochronological series indicates representative periods of solar activity of 11 (Schwabe cycle), 22 (Hale cycle), and 80 (Gleissberg cycle) years. The result shows the possible influence of the solar activity on tree growth in the last 350 years. Periods of 2-7 years were also found and could represent a response of the trees to local climatic conditions. Good agreement between the time series of tree growth rings and the 11 year solar cycle was found during the maximum solar activity periods.

  18. An Annual Plant Growth Proxy in the Mojave Desert Using MODIS-EVI Data

    PubMed Central

    Wallace, Cynthia S.A.; Thomas, Kathryn A.

    2008-01-01

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R2 = 0.61 for 2005 and R2 = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  19. An annual plant growth proxy in the Mojave Desert using MODIS-EVI data

    USGS Publications Warehouse

    Wallace, C.S.A.; Thomas, K.A.

    2008-01-01

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R2 = 0.61 for 2005 and R 2 = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  20. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica

    PubMed Central

    Kitin, Peter; Fujii, Tomoyuki; Abe, Hisashi; Takata, Katsuhiko

    2009-01-01

    Background and Aims Although the lateral movement of water and gas in tree stems is an important issue for understanding tree physiology, as well as for the development of wood preservation technologies, little is known about the vascular pathways for radial flow. The aim of the current study was to understand the occurrence and the structure of anatomical features of sugi (Cryptomeria japonica) wood including the tracheid networks, and area fractions of intertracheary pits, tangential walls of ray cells and radial intercellular spaces that may be related to the radial permeability (conductivity) of the xylem. Methods Wood structure was investigated by light microscopy and scanning electron microscopy of traditional wood anatomical preparations and by a new method of exposed tangential faces of growth-ring boundaries. Key Results Radial wall pitting and radial grain in earlywood and tangential wall pitting in latewood provide a direct connection between subsequent tangential layers of tracheids. Bordered pit pairs occur frequently between earlywood and latewood tracheids on both sides of a growth-ring boundary. In the tangential face of the xylem at the interface with the cambium, the area fraction of intertracheary pit membranes is similar to that of rays (2·8 % and 2·9 %, respectively). The intercellular spaces of rays are continuous across growth-ring boundaries. In the samples, the mean cross-sectional area of individual radial intercellular spaces was 1·2 µm2 and their total volume was 0·06 % of that of the xylem and 2·07 % of the volume of rays. Conclusions A tracheid network can provide lateral apoplastic transport of substances in the secondary xylem of sugi. The intertracheid pits in growth-ring boundaries can be considered an important pathway, distinct from that of the rays, for transport of water across growth rings and from xylem to cambium. PMID:19258338

  1. Growth Regulator Herbicides Prevent Invasive Annual Grass Seed Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Auxinic herbicides, such as 2,4-D and dicamba, that act as plant growth regulators are commonly used for broadleaf weed control in cereal crops (e.g. wheat, barley), grasslands, and non-croplands. If applied at later growth stages, while cereals are developing reproductive parts, the herbicides can...

  2. A general model of intra-annual tree growth using dendrometer bands.

    PubMed

    McMahon, Sean M; Parker, Geoffrey G

    2015-01-01

    Tree growth is an important indicator of forest health, productivity, and demography. Knowing precisely how trees' grow within a year, instead of across years, can lead to a finer understanding of the mechanisms that drive these larger patterns. The growing use of dendrometer bands in research forests has only rarely been used to measure growth at resolutions finer than yearly, but intra-annual growth patterns can be observed from dendrometer bands using precision digital calipers and weekly measurements. Here we present a workflow to help forest ecologists fit growth models to intra-annual measurements using standard optimization functions provided by the R platform. We explain our protocol, test uncertainty in parameter estimates with respect to sample sizes, extend the optimization protocol to estimate robust lower and upper annual diameter bounds, and discuss potential challenges to optimal fits. We offer R code to implement this workflow. We found that starting values and initial optimization routines are critical to fitting the best functional forms. After using a bounded, broad search method, a more focused search algorithm obtained consistent results. To estimate starting and ending annual diameters, we combined the growth function with early and late estimates of beginning and ending growth. Once we fit the functions, we present extension algorithms that estimate periodic reductions in growth, total growth, and present a method of controlling for the shifting allocation to girth during the growth season. We demonstrate that with these extensions, an analysis of growth response to weather (e.g., the water available to a tree) can be derived in a way that is comparable across trees, years, and sites. Thus, this approach, when applied across broader data sets, offers a pathway to build inference about the effects of seasonal weather on growth, size- and light-dependent patterns of growth, species-specific patterns, and phenology. PMID:25691954

  3. A general model of intra-annual tree growth using dendrometer bands

    PubMed Central

    McMahon, Sean M; Parker, Geoffrey G

    2015-01-01

    Tree growth is an important indicator of forest health, productivity, and demography. Knowing precisely how trees' grow within a year, instead of across years, can lead to a finer understanding of the mechanisms that drive these larger patterns. The growing use of dendrometer bands in research forests has only rarely been used to measure growth at resolutions finer than yearly, but intra-annual growth patterns can be observed from dendrometer bands using precision digital calipers and weekly measurements. Here we present a workflow to help forest ecologists fit growth models to intra-annual measurements using standard optimization functions provided by the R platform. We explain our protocol, test uncertainty in parameter estimates with respect to sample sizes, extend the optimization protocol to estimate robust lower and upper annual diameter bounds, and discuss potential challenges to optimal fits. We offer R code to implement this workflow. We found that starting values and initial optimization routines are critical to fitting the best functional forms. After using a bounded, broad search method, a more focused search algorithm obtained consistent results. To estimate starting and ending annual diameters, we combined the growth function with early and late estimates of beginning and ending growth. Once we fit the functions, we present extension algorithms that estimate periodic reductions in growth, total growth, and present a method of controlling for the shifting allocation to girth during the growth season. We demonstrate that with these extensions, an analysis of growth response to weather (e.g., the water available to a tree) can be derived in a way that is comparable across trees, years, and sites. Thus, this approach, when applied across broader data sets, offers a pathway to build inference about the effects of seasonal weather on growth, size- and light-dependent patterns of growth, species-specific patterns, and phenology. PMID:25691954

  4. CdSe Ring- and Tribulus-Shaped Nanocrystals: Controlled Synthesis, Growth Mechanism, and Photoluminescence Properties

    PubMed Central

    2009-01-01

    With air-stable and generic reagents, CdSe nanocrystals with tunable morphologies were prepared by controlling the temperature in the solution reaction route. Thereinto, the lower reaction temperature facilitates the anisotropic growth of crystals to obtain high-yield CdSe ring- and tribulus-shaped nanocrystals with many branches on their surfaces. The photoluminescence properties are sensitive to the nature of particle and its surface. The products synthesized at room temperature, whose surfaces have many branches, show higher blue shift and narrower emission linewidths (FWHM) of photoluminescence than that of samples prepared at higher temperature, whose surfaces have no branches. Microstructural studies revealed that the products formed through self-assembly of primary crystallites. Nanorings formed through the nonlinear attachment of primary crystallites, and the branches on the surfaces grew by linear attachment at room temperature. And the structure of tribulus-shaped nanoparticle was realized via two steps of aggregation, i.e., random and linear oriented aggregation. Along with the elevation of temperature, the branches on nanocrystal surfaces shortened gradually because of the weakened linear attachment. PMID:20596352

  5. Variations in Environmental Signals in Tree-Ring Indices in Trees with Different Growth Potential

    PubMed Central

    Hafner, Polona; Gričar, Jožica; Skudnik, Mitja; Levanič, Tom

    2015-01-01

    We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970–2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon

  6. Variations in Environmental Signals in Tree-Ring Indices in Trees with Different Growth Potential.

    PubMed

    Hafner, Polona; Gričar, Jožica; Skudnik, Mitja; Levanič, Tom

    2015-01-01

    We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970-2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon isotope

  7. Increase in platinum group elements in Mexico City as revealed from growth rings of Taxodium mucronatum ten.

    PubMed

    Morton-Bermea, Ofelia; Beramendi-Orosco, Laura; Martínez-Reyes, Ángeles; Hernández-Álvarez, Elizabeth; González-Hernández, Galia

    2016-02-01

    Tree rings may be used as indicators of contamination events providing information on the chronology and the elemental composition of the contamination. In this framework, we report PGEs enrichment in growth rings of Taxodium mucronatum ten for trees growing in the central area of Mexico City as compared to trees growing in a non-urban environment. Concentrations of PGE were determined by ICP-MS analysis on microwave-digested tree rings. The element found in higher concentrations was Pd (1.13-87.98 μg kg(-1)), followed by Rh (0.28-36.81 μg kg(-1)) and Pt (0.106-7.21 μg kg(-1)). The concentration trends of PGEs in the tree-ring sequences from the urban area presented significant correlation values when comparing between trees (r between 0.618 and 0.98, P < 0.025) and between elements within individual trees (r between 0.76 and 0.994, P < 0.01). Furthermore, a clear increase was observed for rings after 1997, with enrichment of up to 60 times the mean concentration found for the sequence from the non-urban area and up to 40 times the mean concentration for the pre-1991 period in the urban trees. These results also demonstrate the feasibility of applying T. mucronatum ten to be used as a bioindicator of the increase in PGE in urban environments.

  8. Increase in platinum group elements in Mexico City as revealed from growth rings of Taxodium mucronatum ten.

    PubMed

    Morton-Bermea, Ofelia; Beramendi-Orosco, Laura; Martínez-Reyes, Ángeles; Hernández-Álvarez, Elizabeth; González-Hernández, Galia

    2016-02-01

    Tree rings may be used as indicators of contamination events providing information on the chronology and the elemental composition of the contamination. In this framework, we report PGEs enrichment in growth rings of Taxodium mucronatum ten for trees growing in the central area of Mexico City as compared to trees growing in a non-urban environment. Concentrations of PGE were determined by ICP-MS analysis on microwave-digested tree rings. The element found in higher concentrations was Pd (1.13-87.98 μg kg(-1)), followed by Rh (0.28-36.81 μg kg(-1)) and Pt (0.106-7.21 μg kg(-1)). The concentration trends of PGEs in the tree-ring sequences from the urban area presented significant correlation values when comparing between trees (r between 0.618 and 0.98, P < 0.025) and between elements within individual trees (r between 0.76 and 0.994, P < 0.01). Furthermore, a clear increase was observed for rings after 1997, with enrichment of up to 60 times the mean concentration found for the sequence from the non-urban area and up to 40 times the mean concentration for the pre-1991 period in the urban trees. These results also demonstrate the feasibility of applying T. mucronatum ten to be used as a bioindicator of the increase in PGE in urban environments. PMID:25903068

  9. Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients

    USGS Publications Warehouse

    Thomas, Brenda L.; Doyle, Thomas W.; Krauss, Ken W.

    2015-01-01

    The effects of salinity on Taxodium distichum seedlings have been well documented, but few studies have examined mature trees in situ. We investigated the environmental drivers of T. distichum growth along a salinity gradient on the Waccamaw (South Carolina) and Savannah (Georgia) Rivers. On each river, T. distichum increment cores were collected from a healthy upstream site (Upper), a moderately degraded mid-reach site (Middle), and a highly degraded downstream site (Lower). Chronologies were successfully developed for Waccamaw Upper and Middle, and Savannah Middle. Correlations between standardized chronologies and environmental variables showed significant relationships between T. distichum growth and early growing season precipitation, temperature, and Palmer Drought Severity Index (PDSI). Savannah Middle chronology correlated most strongly with August river salinity levels. Both lower sites experienced suppression/release events likely in response to local anthropogenic impacts rather than regional environmental variables. The factors that affect T. distichum growth, including salinity, are strongly synergistic. As sea-level rise pushes the freshwater/saltwater interface inland, salinity becomes more limiting to T. distichum growth in tidal freshwater swamps; however, salinity impacts are exacerbated by locally imposed environmental modifications.

  10. Mongolian tree rings and 20th-century warming

    SciTech Connect

    Jacoby, G.C.; D`Arrigo, R.D.; Davaajamts, T.

    1996-08-09

    A 450-year tree-ring width chronology of Siberian pine (Pinus sibirica Du Tour) growing at timberline (2450 meters) in the Tarvagatay Mountains in west central Mongolia shows wide annual growth rings for the recent century. Ecological site observations and comparisons with instrumental temperature records indicate that the ring widths of these trees are sensitive to annual temperature variations. Low-frequency variations in the Tarvagatay tree-ring record are similar to those in a reconstruction of Arctic annual temperatures, which is based on 20 tree-ring width series from northern North America, Scandinavia, and western Russia. The results indicate that recent warming is unusual relative to temperatures of the past 450 years. 29 refs., 2 figs.

  11. Guide To The 2004 IMAGE Assessment: Illinois Measure Of Annual Growth In English And IMAGE Mathematics.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, 2004

    2004-01-01

    The Illinois State Board of Education (ISBE) administered Illinois Measure of Annual Growth in English (IMAGE) tests in Spring 2004. IMAGE tests are administered to Limited English Proficient (LEP) students who have been in either a Transitional Bilingual Education (TBE) or Transitional Program of Instruction (TPI) program since September 30 of…

  12. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    PubMed

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  13. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    PubMed

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  14. Population differentiation in tree-ring growth response of white fir (Abies concolor) to climate: Implications for predicting forest responses to climate change

    SciTech Connect

    Jensen, D.B.

    1993-10-01

    Forest succession models and correlative models have predicted 200--650 kilometer shifts in the geographic range of temperate forests and forest species as one response to global climate change. Few studies have investigated whether population differences may effect the response of forest species to climate change. This study examines differences in tree-ring growth, and in the phenotypic plasticity of tree-ring growth in 16-year old white fir, Abies concolor, from ten populations grown in four common gardens in the Sierra Nevada of California. For each population, tree-ring growth was modelled as a function of precipitation and degree-day sums. Tree-ring growth under three scenarios of doubled C0{sub 2} climates was estimated.

  15. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  16. Growth performance of stocker calves backgrounded on sod-seeded winter annuals or hay and grain.

    PubMed

    Coffey, K P; Coblentz, W K; Montgomery, T G; Shockey, J D; Bryant, K J; Francis, P B; Rosenkrans, C F; Gunter, S A

    2002-04-01

    , undesirable environmental conditions limited growth of the winter annual forages; total gain did not differ (P = 0.66) among the four treatments. Winter annual forages offer potential to provide high-quality forage for calves retained until spring, but consistent forage production and quality are a concern when sod-seeding techniques are used.

  17. Constrained growth flips the direction of optimal phenological responses among annual plants.

    PubMed

    Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas

    2016-03-01

    Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory.

  18. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    PubMed Central

    Wingler, Astrid

    2015-01-01

    Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants. PMID:25628637

  19. Constrained growth flips the direction of optimal phenological responses among annual plants.

    PubMed

    Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas

    2016-03-01

    Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory. PMID:26548947

  20. Understanding the growth rate patterns of ion Bernstein instabilities driven by ring-like proton velocity distributions

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2016-04-01

    Fast magnetosonic waves in Earth's inner magnetosphere, which have as their source ion Bernstein instabilities, are driven by hot proton velocity distributions (fp) with ∂fp(v⊥)/∂v⊥>0. Two typical types of distributions with such features are ring and shell velocity distributions. Both have been used in studies of ion Bernstein instabilities and fast magnetosonic waves, but the differences between instabilities driven by the two types of distributions have not been thoroughly addressed. The present study uses linear kinetic theory to examine and understand these differences. It is found that the growth rate pattern is primarily determined by the cyclotron resonance condition and the structure of the velocity distribution in gyroaveraged velocity space. For ring-driven Bernstein instabilities, as the parallel wave number (k∥) increases, the discrete unstable modes approximately follow the corresponding proton cyclotron harmonic frequencies while they become broader in frequency space. At sufficiently large k∥, the neighboring discrete modes merge into a continuum. In contrast, for shell-driven Bernstein instabilities, the curved geometry of the shell velocity distribution in gyroaveraged velocity space results in a complex alternating pattern of growth and damping rates in frequency and wave number space and confines the unstable Bernstein modes to relatively small k∥. In addition, when k∥ increases, the unstable modes are no longer limited to the proton cyclotron harmonic frequencies. The local growth rate peak near an exact harmonic at small k∥ bifurcates into two local peaks on both sides of the harmonic when k∥ becomes large.

  1. Sub-annual Fluctuations in Water Sources Utilised by Mediterranean RiparianTrees Determined Through Highly Resolved Oxygen Isotope Analysis of Tree-ring Cellulose

    NASA Astrophysics Data System (ADS)

    Sargeant, C. I.; Singer, M. B.

    2014-12-01

    The sensitivity of trees to water availability within their rooting zones is a major determinant of tree and forest health. Yet, we have a poor understanding of subterranean water availability and its fluctuations due to climate. Such shortcomings limit our ability to predict how climatic variability will impact water availability to trees, and corresponding forest health. Understanding of water partitioning within the 'critical zone' of riparian areas are particularly lacking, especially in the vulnerable Mediterranean climate regimes. A substantial body of research uses isotope dendrochronology to assess riparian forest-water relations at annual (tree-ring) timescales, which integrate variability in seasonal hydrology. However, the sub-annual variations in water availability have been largely overlooked, which may have important ramifications for riparian ecohydrology. We present a new method for determining the sub-annual hydrologic variability within a floodplain forest using two co-occurring Mediterranean tree species along the Rhône River, southern France. We conducted oxygen isotope (δ18O) analysis of cellulose for 11 microslices within each tree ring to detect sub-annual patterns in δ18O that reflect the variability in hydrological partitioning. We back-calculated the seasonal time series of source waters used by the trees via a mechanistic model. Differences in rooting between the species allow us to constrain fluctuations in water availability and use between the vadose and phreatic zones. The two different species of streamside trees use distinct water sources and their seasonal patterns of water use are also fundamentally different. We develop strong links between these sub-annual patterns of δ18O signatures and the climatic characteristics of the hydrological year. We also present isotopic analyses of source waters from the vadose and phreatic zones, precipitation, and the Rhône to bolster our interpretations of water partitioning. This research

  2. Confined growth of carbon nanoforms in one-dimension by fusion of anthracene rings inside the pores of MCM-41.

    PubMed

    Bosch-Navarro, Concha; Coronado, Eugenio; Martí-Gastaldo, Carlos; Amorós, Pedro

    2014-07-21

    We report a simple two-step procedure that uses anthracene, a cheap polyaromatic hydrocarbon with low melting point, as a molecular precursor to produce carbon nanoforms (CNFs). First, we describe the chemical synthesis of graphite from the fusion of anthracene rings at relatively low temperature (520 °C) followed by cyclodehydrogenation. Next, we extend this protocol to the synthesis of CNFs by confining the molecular precursor in a mesoporous host like MCM-41. The confined environment favors one-dimensional growth of CNFs with sizes controlled by the pores of the mesoporous host.

  3. Radiocarbon content in the annual tree rings during last 150 years and time variation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Metskvarishvili, R. Y.; Tsereteli, S. L.

    1985-01-01

    The results of the high accuracy measurements of radiocarbon abundance in precisely dated tree rings in the interval 1800 to 1950 yrs are discussed. Radiocarbon content caused by solar activity is established. The temporal dependence of cosmic rays is constructed, by use of radio abundance data.

  4. Gas exchange parameters inferred from {delta}{sup 13}C of conifer annual rings throughout the 20th century

    SciTech Connect

    Marshall, J.D.; Monserud, R.A.

    1995-12-31

    In this study the stable isotopes of carbon in plant tissue provided a means of inferring the proportional decrease in carbon dioxide concentration across the stomata, which is closely related to photosynthetic water-use efficiency. The authors analyzed the stable carbon isotope composition of tree rings laid down over the past 80 years to determine whether the proportional decrease in CO{sub 2} concentration across the stomata had increased. Dominant and codominant trees of western white pine (Pinus monticola), ponderosa pine (P. ponderosa), and Douglas-fir (Pseudotsuga menziesii var. glauca) growing at the Priest River Experimental Forest, in northern Idaho, were analyzed. To avoid confounding age and year, the authors compared the innermost rings of mature trees to trees of intermediate age and to saplings. The isotopic data were corrected for changes in isotopic composition and carbon dioxide concentration using published data from ice cores.

  5. Validating Annual Growth Bands of Deep-Sea Black Corals and Calculating Ocean Reservoir Ages in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roark, E. B.; Mohon, M. L.; Prouty, N.; Guillemette, R. N.; Fallon, S.; Ross, S. W.

    2015-12-01

    Deep-sea black corals (Leiopathes sp.) are long-lived (up to 4,000 yrs old), and grow in a tree-like fashion depositing growth rings in their skeleton. Scanning electron microscopy at 900x magnification was used to image thin sections and identify peaks in iodine intensity using energy dispersive x-ray spectroscopy in three specimens from the Gulf of Mexico. Age determination by counting visual growth bands and iodine peaks were compared to both radiocarbon and U/Th-derived ages. The first specimen (GOM-JSL04-4734-BC1) has an iodine peak count age of 695 ±70, and growth band age of 785 ± 80 which compare quite well to the radiocarbon age of 670 ±40 years and a U/Th age of 780 ±16 years. There was similar agreement between the radiocarbon ages (1399 ±30 and 670 ±35 years) and the iodine peak count ages (1240 ±125 and 715±70 years) for the remaining two specimens with growth rates ranging from 11 ±3 to 16 ±2 µm yr-1 for all 3 specimens. Using the independent (iodine derived) age models in conjunction with the radiocarbon data, a high resolution ocean reservoir age record was developed for the last 600 years. Reservoir ages varied from 120 to 550 14C years on decadal to centennial time scales. The modern reservoir age in the GOM is 235 ±11 14C years. The preferred explanation for the variability found in these reservoir ages is related to changes in the strength of the Yucatan Current. This novel approach combines the identification of growth bands captured in high-resolution SEM in combination with synchronous peaks in skeleton iodine composition and is the first to validate that both can be used as annual chronometers. Using the independent iodine age models in conjunction with the radiocarbon records, ocean reservoir age records can be developed for the last ~500 to 1000 years.

  6. Traffic pollution affects P. pinea growth according to tree ring width and C and N isotopic composition

    NASA Astrophysics Data System (ADS)

    Battipaglia, Giovanna; Marzaioli, Fabio; Lubritto, Carmine; Altieri, Simona; Strumia, Sandro; Cherubini, Paolo; Cotrufo, M. Francesca

    2010-05-01

    Urbanization and industrialization are rapidly growing, as a consequence roads and their associated vehicular traffic exerts major and increasing impacts on adjacent ecosystems. Various studies have shown the impact of vehicle exhausts on road side vegetation through their visible and non-visible effects (Farmer and Lyon 1977, Sarkar et al., 1986, Angold 1997, Nuhoglu 2005) but, presently there is little known about the long term effect of air pollution on vegetation and on trees, in particular. Developing proxies for atmospheric pollution that would be used to identify the physiological responses of trees under roadside car exhaust pollution stress is needed. In this context we propose a novel method to determine the effect of car exhaust pollution on tree growth, coupling classical dendrochronological analyses and analyses of 15N and 13C in tree rings, soils and leaves with tree ring radiocarbon (14C) data. Pinus pinea individuals, adjacent to main roads in the urban area of Caserta (South Italy) and exposed to large amounts of traffic exhausts since 1980, were sampled and the time-related trend in the growth residuals was estimated. We found a consistent decrease in the ring width starting from 1980, with a slight increase in δ13C value, which was considered to be a consequence of environmental stress. No clear pattern was identified in δ15N, while an increasing effect of the fossil fuel dilution on the atmospheric bomb-enriched 14C background was detected in tree rings, as a consequence of the increase in traffic exhausts. Our findings suggest that radiocarbon is a very sensitive tool to investigate small-scale (i.e. traffic exhaust at the level crossing) and large-scale (urban area pollution) induced disturbances. References Angold PG. Impact of a road upon adjacent heathland vegetations: effect on plant species compositions. J Appl Ecol 1997; 34 (2): 409-417. Farmer JC, Lyon TDB. Lead in Glasgow street dirt and soil. Sci Tot Environ 1977; 8: 89-93. Nuhoglu

  7. [Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern northeast: a case study in Qianshan Mountains].

    PubMed

    Teng, Li; Xing-Yuan, He; Zhen-Ju, Chen

    2014-07-01

    Mongolian oak is one of the most important broad-leaved tree species in forests, Northeast China. Based on the methodology of dendrochronology, the variations of tree ring radial growth of Mongolian oak in Qianshan Mountains, south of Northeast China, were analyzed. Combined with the temperature and precipitation data from meteorological stations since 1951, the relationships between standardized tree ring width chronology and main climatic factors were analyzed. In this region, the precipitation between April and July of the current year had an significant relationship with the tree ring width of Mongolian oak, and was the main factor limiting the radial growth. The extreme maximum temperature of May was also a key factor influencing the tree ring width, which had a significant on the tree ring width of Mongolian oak. The precipitation in April had a significant and stable relationship with the growth of Mongolian oak since the 1950s. The 'divergence problem' was found in the study area, which the sensitivity of tree growth to summer temperature reduced since the 1980s. The tree growth response to temperature showed a seasonal change from summer to spring.

  8. [Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern northeast: a case study in Qianshan Mountains].

    PubMed

    Teng, Li; Xing-Yuan, He; Zhen-Ju, Chen

    2014-07-01

    Mongolian oak is one of the most important broad-leaved tree species in forests, Northeast China. Based on the methodology of dendrochronology, the variations of tree ring radial growth of Mongolian oak in Qianshan Mountains, south of Northeast China, were analyzed. Combined with the temperature and precipitation data from meteorological stations since 1951, the relationships between standardized tree ring width chronology and main climatic factors were analyzed. In this region, the precipitation between April and July of the current year had an significant relationship with the tree ring width of Mongolian oak, and was the main factor limiting the radial growth. The extreme maximum temperature of May was also a key factor influencing the tree ring width, which had a significant on the tree ring width of Mongolian oak. The precipitation in April had a significant and stable relationship with the growth of Mongolian oak since the 1950s. The 'divergence problem' was found in the study area, which the sensitivity of tree growth to summer temperature reduced since the 1980s. The tree growth response to temperature showed a seasonal change from summer to spring. PMID:25345030

  9. Relationship between the growth of the ring current and the interplanetary quantity. [solar wind energy-magnetospheric coupling parameter correlation with substorm AE index

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.

  10. Microbial growth on pall rings: a problem when upgrading biogas with the water-wash absorption technique.

    PubMed

    Tynell, Asa; Börjesson, Gunnar; Persson, Margareta

    2007-01-01

    Biogas is upgraded using an absorption with water-wash technique by 11 of a total of 14 upgrading plants in Sweden. However, problems with microbial growth on the pall rings in the absorption column, and in one case in the desorption column, have a negative impact on the upgrading of raw gas to vehicle gas. Five of the nine biogas plants studied here have experienced problems with microbial growth. The objectives of this study were to identify such microbial growth and to determine possible factors for its control, in order to provide recommendations for process management. A questionnaire was sent out and visits were made to the upgrading plants to collect information about the upgrading process. Phospholipid fatty acid (PLFA) analysis was performed to determine microbial biomass and community structure in samples from four upgrading plants. In samples from two of the plants, methane-oxidizing bacteria (type I methanotrophs) were indicated, while samples from one of the other plants showed biomarkers indicating actinomycetes. Factors affecting development of microbial growth were found to be water quality and the pH and temperature of the process water. Plants that used wastewater in the upgrading process experienced far more problems than those using clean water of drinking quality.

  11. Emittance growth in heavy ion rings due to effects of space charge and dispersion

    SciTech Connect

    Barnard, J.J., LLNL

    1998-06-03

    We review the derivation of moment equations which include the effects of space charge and dispersion in bends first presented in ref [1]. These equations generalize the familiar envelope equations to include the dispersive effects of bends. We review the application of these equations to the calculation of the change in emittance resulting from a sharp transition from a straight section to a bend section, using an energy conservation constraint. Comparisons of detailed 2D and 3D simulations of intense beams in rings using the WARP code (refs [2,3]) are made with results obtained from the moment equations. We also compare the analysis carried out in ref [1], to more recent analyses, refs [4,5]. We further examine self-consistent distributions of beams in bends and discuss the relevance of these distributions to the moment equation formulation.

  12. Crystal growth mechanisms in miarolitic cavities in the Lake George ring complex and vicinity, Colorado

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    1999-01-01

    The Crystal Peak area of the Pikes Peak batholith, near Lake George in central Colorado, is world-renowned for its crystals of amazonite (the blue-green variety of microcline) and smoky quartz. Such crystals, collected from individual miarolitic pegmatites, have a remakably small variation in crystal size within each pegmatite, and the shapes of plots of their crystal size distributions (CSDs) are invariably lognormal or close to lognormal in all cases. These observations are explained by a crystal growth mechanism that was governed initially by surface-controlled kinetics, during which crystals tended to grow larger in proportion to their size, thereby establishing lognormal CSDs. Surface-controlled growth was followed by longer periods of supply controlled growth, during which growth rate was predominantly size-independent, consequently preserving the lognormal shapes of the CSDs and the small size variation. The change from surface- to supply controlled growth kinetics may have resulted from an increasing demand for nutrients that exceeded diffusion limitations of the system. The proposed model for crystal growth in this locality appears to be common in the geologic record, and can be used with other information, such as isotopic data, to deduce physico-chemical conditions during crystal formation.

  13. Annual Glyphosate Treatments Alter Growth of Unaffected Bentgrass (Agrostis) Weeds and Plant Community Composition

    PubMed Central

    Ahrens, Collin W.; Auer, Carol A.

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities. PMID:23226530

  14. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis) weeds and plant community composition.

    PubMed

    Ahrens, Collin W; Auer, Carol A

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.

  15. Engelmann spruce tree-ring chronologies from Fraser Experimental Forest, Colorado: Potential for a long-term temperature reconstruction in the central Rocky Mountains

    SciTech Connect

    Brown, P.M.; Shepperd, W.D.

    1995-12-31

    Tree-ring width chronologies from Engelmann spruce at two treeline sites in the central Rocky Mountains contain similar high and low frequency patterns in ring width, indicative of regional climate control on tree growth. Comparisons of annual ring widths with instrumental climate data show relationships with late spring temperature fluctuations on annual to century time scales. Ring width patterns in the earliest dated trees at one of the sites also infers upward migration in treeline at the site around A.D. 1250. No unusual growth increases were seen in recent years, suggesting that these trees have not recorded warmer conditions possibly associated with global climate change.

  16. Twisted mannitol crystals establish homologous growth mechanisms for high-polymer and small-molecule ring-banded spherulites.

    PubMed

    Shtukenberg, Alexander G; Cui, Xiaoyan; Freudenthal, John; Gunn, Erica; Camp, Eric; Kahr, Bart

    2012-04-11

    D-Mannitol belongs to a large and growing family of crystals with helical morphologies (Yu, L. J. Am. Chem. Soc.2003, 125, 6380). Two polymorphs of D-mannitol, α and δ, when grown in the presence of additives such as poly(vinylpyrrolidone) (PVP) or D-sorbitol, form ring-banded spherulites composed of handed helical fibrils, where the helix axes correspond to the radial growth directions. The two polymorphs form helices with opposite senses in the presence of PVP but the same sense in the presence of D-sorbitol. The characteristic dimensions of the fibrils, including thickness, aspect ratio, and pitch, were determined by scanning probe and electron microscopies. These values must form the basis of any theory that presupposes what forces give rise to crystal twisting, a problem that has been broached but unsettled in the literature of polymer crystallization. The interdependence of the rhythmic variations of both linear and circular birefringence, as determined by Mueller matrix microscopy, informs the cooperative organization of mannitol fibers. The microstructure of mannitol ring-banded spherulites compares favorably to that of high polymers and is evaluated within the context of current theories of crystal twisting.

  17. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene.

    PubMed

    Ma, Changping; Song, Huibin; Yu, Lei; Guan, Kaifeng; Hu, Pandi; Li, Yang; Xia, Xuanyan; Li, Jialian; Jiang, Siwen; Li, Fenge

    2016-01-01

    A growing number of reports have revealed that microRNAs (miRNAs) play critical roles in spermatogenesis. Our previous study showed that miR-762 is differentially expressed in immature and mature testes of Large White boars. Our present data shows that miR-762 directly binds the 3' untranslated region (3'UTR) of ring finger protein 4 (RNF4) and down-regulates RNF4 expression. A single nucleotide polymorphism (SNP) in the RNF4 3'UTR that is significantly associated with porcine sperm quality traits leads to a change in the miR-762 binding ability. Moreover, miR-762 promotes the proliferation of and inhibits apoptosis in porcine immature Sertoli cells, partly by accelerating DNA damage repair and by reducing androgen receptor (AR) expression. Taken together, these findings suggest that miR-762 may play a role in pig spermatogenesis by regulating immature Sertoli cell growth. PMID:27596571

  18. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene

    PubMed Central

    Ma, Changping; Song, Huibin; Yu, Lei; Guan, Kaifeng; Hu, Pandi; Li, Yang; Xia, Xuanyan; Li, Jialian; Jiang, Siwen; Li, Fenge

    2016-01-01

    A growing number of reports have revealed that microRNAs (miRNAs) play critical roles in spermatogenesis. Our previous study showed that miR-762 is differentially expressed in immature and mature testes of Large White boars. Our present data shows that miR-762 directly binds the 3′ untranslated region (3′UTR) of ring finger protein 4 (RNF4) and down-regulates RNF4 expression. A single nucleotide polymorphism (SNP) in the RNF4 3′UTR that is significantly associated with porcine sperm quality traits leads to a change in the miR-762 binding ability. Moreover, miR-762 promotes the proliferation of and inhibits apoptosis in porcine immature Sertoli cells, partly by accelerating DNA damage repair and by reducing androgen receptor (AR) expression. Taken together, these findings suggest that miR-762 may play a role in pig spermatogenesis by regulating immature Sertoli cell growth. PMID:27596571

  19. Degree-day accumulation influences annual variability in growth of age-0 walleye

    USGS Publications Warehouse

    Uphoff, Christopher S.; Schoenebeck, Casey W.; Hoback, W. Wyatt; Koupal, Keith D.; Pope, Kevin L.

    2013-01-01

    The growth of age-0 fishes influences survival, especially in temperate regions where size-dependent over-winter mortality can be substantial. Additional benefits of earlier maturation and greater fecundity may exist for faster growing individuals. This study correlated prey densities, growing-degree days, water-surface elevation, turbidity, and chlorophyll a with age-0 walleye Sander vitreus growth in a south-central Nebraska irrigation reservoir. Growth of age-0 walleye was variable between 2003 and 2011, with mean lengths ranging from 128 to 231 mm by fall (September 30th–October 15th). A set of a priori candidate models were used to assess the relative support of explanatory variables using Akaike's information criterion (AIC). A temperature model using the growing degree-days metric was the best supported model, describing 65% of the variability in annual mean lengths of age-0 walleye. The second and third best supported models included the variables chlorophyll a (r2 = 0.49) and larval freshwater drum density (r2 = 0.45), respectively. There have been mixed results concerning the importance of temperature effects on growth of age-0 walleye. This study supports the hypothesis that temperature is the most important predictor of age-0 walleye growth near the southwestern limits of its natural range.

  20. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress.

  1. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO2 assimilation and growth in Douglas-fir

    EPA Science Inventory

    Swiss needle cast (SNC) is a fungal disease of Douglas-fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree-rings of Douglas-fir and a non-susceptible...

  2. Studies and calculations of transverse emittance growth in high-energy proton storage rings

    SciTech Connect

    Mane, S.R.; Jackson, G.

    1989-03-01

    In the operation of proton-antiproton colliders, an important goal is to maximize the integrated luminosity. During such operations in the Fermilab Tevatron, the transverse beam emittances were observed to grow unexpectedly quickly, thus causing a serious reduction of the luminosity. We have studied this phenomenon experimentally and theoretically. A formula for the emittance growth rate, due to random dipole kicks, is derived. In the experiment, RF phase noise of known amplitude was deliberately injected into the Tevatron to kick the beam randomly, via dispersion at the RF cavities. Theory and experiment are found to agree reasonably well. We also briefly discuss the problem of quadrupole kicks. 14 refs., 2 figs., 3 tabs.

  3. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth

    PubMed Central

    Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland

    2015-01-01

    Intercellular bridges called “ring canals” (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs’ anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin–containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs’ anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin–dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth. PMID:26424451

  4. Effect of contaminated groundwater on tree growth: A tree-ring analysis.

    PubMed

    Leblanc, D C; Loehle, C

    1993-02-01

    A study was conducted of the effect of contaminated groundwater seepage on tree growth downslope from the F- and H-Area seepage basins of the Department of Energy's Savannah River Site in South Carolina. Trees in wetlands along Four Mile Creek began to show localized stress and mortality in the late 1970s. Extreme winter temperatures and high rainfall were ruled out as potential causal factors of tree stress. Drought was shown to affect trees in both contaminated and uncontaminated zones, but trees in uncontaminated areas exhibited better recovery after drought than trees in contaminated areas. Pollution-mediated alteration of soil acidity and aluminum, sodium, and heavy metal concentrations likely acted to predispose trees to decline, with severe drought acting as the trigger for decline initiation and tree death. Thus, a moderate pollution loading, not sufficient to cause visible damage of itself, may create conditions in which sudden, severe decline could result from natural stresses. This mechanism of forest decline may be common, and should be considered in evaluations of the impact of pollution on wetland forest systems.

  5. Recent developments in annual growth lignocellulosics as reinforcing fillers in thermoplastics

    SciTech Connect

    Jacobson, R.E.; Caulfield, D.F.; Rowell, R.M.

    1995-11-01

    Recent interest in reducing the environmental impact of materials is leading to the development of newer agricultural based materials that can reduce the stress to the environment. Several billion pounds of fillers and reinforcements are used annually in the plastics industry and their use is likely to increase, to reduce the amount of plastics used in a product, with improved compounding technology and new coupling agents. The use of lignocellulosic fibers (eg. kenaf, jute, etc.) as reinforcing fillers in plastics has generated significant interest in recent years. The use of lignocellosic fibers permit the use of high volume fillings due to their lower densities and non-abrasive properties, and therefore reduces the use of plastics in a product. The specific tensile and flexural moduli of a 50% weight of glass fiber-PP injection molded composite and are superior to typical calcium carbonate or talc based PP composites. Results indicate that annual growth lignocellulosic wastes and fibers are viable reinforcing fillers as long as the right processing conditions and aids are used, and for applications where the higher water absorption of the agro-base fiber composite is not critical.

  6. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration

    NASA Astrophysics Data System (ADS)

    Choler, P.

    2015-06-01

    A remote sensing approach is used to examine the direct and indirect effects of snow cover duration and weather conditions on the growth response of mountain grasslands located above the tree line in the French Alps. Time-integrated Normalized Difference Vegetation Index (NDVIint), used as a surrogate for aboveground primary productivity, and snow cover duration were derived from a 13-year long time series of the Moderate-resolution Imaging Spectroradiometer (MODIS). A regional-scale meteorological forcing that accounted for topographical effects was provided by the SAFRAN-CROCUS-MEPRA model chain. A hierarchical path analysis was developed to analyze the multivariate causal relationships between forcing variables and proxies of primary productivity. Inter-annual variations in primary productivity were primarily governed by year-to-year variations in the length of the snow-free period and to a much lesser extent by temperature and precipitation during the growing season. A prolonged snow cover reduces the number and magnitude of frost events during the initial growth period but this has a negligible impact on NDVIint as compared to the strong negative effect of a delayed snow melting. The maximum NDVI slightly responded to increased summer precipitation and temperature but the impact on productivity was weak. The period spanning from peak standing biomass to the first snowfall accounted for two-thirds of NDVIint and this explained the high sensitivity of NDVIint to autumn temperature and autumn rainfall that control the timing of the first snowfall. The ability of mountain plants to maintain green tissues during the whole snow-free period along with the relatively low responsiveness of peak standing biomass to summer meteorological conditions led to the conclusion that the length of the snow-free period is the primary driver of the inter-annual variations in primary productivity of mountain grasslands.

  7. Technetium-99 ((99)Tc) in annual growth segments of knotted wrack (Ascophyllum nodosum).

    PubMed

    Heldal, Hilde Elise; Sjøtun, Kjersti

    2010-10-15

    The distribution of technetium-99 ((99)Tc) in annual growth segments of the brown seaweed Ascophyllum nodosum (Fucales, Phaeophyceae) from the southwestern coast of Norway is examined in samples collected from January to November 2006. A twenty-fold increase in the (99)Tc-concentration from the youngest to the oldest growth segments was found. The concentrations ranged from 42 to 98Bq/kg dry weight (d.w.) and from 964 to 1000Bq/kg d.w. in growth segments formed in 2006 and 1996, respectively. In addition, a seasonal variation in the (99)Tc concentration was observed in the actively growing 2006-segments: concentrations decreased from 98Bq/kg d.w. in April to 54Bq/kg d.w. in June; there was a further reduction from June to August (42Bq/kg d.w.); and, finally there was an increase from August to November (93Bq/kg d.w.). In most of the segments formed between 2000 and 2005, there was a tendency of slightly decreasing (99)Tc-concentrations between June and November but this pattern was not observed for the older growth segments. In order to find an explanation for the non-homogenous distribution of (99)Tc within thalli of A. nodosum, different hypotheses are discussed. Uptake and elimination of (99)Tc appears to be most pronounced in the actively growing segments. To date, such non-homogenous distribution of (99)Tc within thalli of A. nodosum has not been taken into consideration, neither in connection with sample collection nor analysis. This paper shows that special protocols must be followed if A. nodosum is going to be used as a bioindicator for (99)Tc in the marine environment. A sampling strategy is proposed.

  8. Technetium-99 ((99)Tc) in annual growth segments of knotted wrack (Ascophyllum nodosum).

    PubMed

    Heldal, Hilde Elise; Sjøtun, Kjersti

    2010-10-15

    The distribution of technetium-99 ((99)Tc) in annual growth segments of the brown seaweed Ascophyllum nodosum (Fucales, Phaeophyceae) from the southwestern coast of Norway is examined in samples collected from January to November 2006. A twenty-fold increase in the (99)Tc-concentration from the youngest to the oldest growth segments was found. The concentrations ranged from 42 to 98Bq/kg dry weight (d.w.) and from 964 to 1000Bq/kg d.w. in growth segments formed in 2006 and 1996, respectively. In addition, a seasonal variation in the (99)Tc concentration was observed in the actively growing 2006-segments: concentrations decreased from 98Bq/kg d.w. in April to 54Bq/kg d.w. in June; there was a further reduction from June to August (42Bq/kg d.w.); and, finally there was an increase from August to November (93Bq/kg d.w.). In most of the segments formed between 2000 and 2005, there was a tendency of slightly decreasing (99)Tc-concentrations between June and November but this pattern was not observed for the older growth segments. In order to find an explanation for the non-homogenous distribution of (99)Tc within thalli of A. nodosum, different hypotheses are discussed. Uptake and elimination of (99)Tc appears to be most pronounced in the actively growing segments. To date, such non-homogenous distribution of (99)Tc within thalli of A. nodosum has not been taken into consideration, neither in connection with sample collection nor analysis. This paper shows that special protocols must be followed if A. nodosum is going to be used as a bioindicator for (99)Tc in the marine environment. A sampling strategy is proposed. PMID:20801489

  9. The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest.

    PubMed

    Mund, M; Kutsch, W L; Wirth, C; Kahl, T; Knohl, A; Skomarkova, M V; Schulze, E-D

    2010-06-01

    The periodic production of large seed crops by trees (masting) and its interaction with stem growth has long been the objective of tree physiology research. However, very little is known about the effects of masting on stem growth and total net primary productivity (NPP) at the stand scale. This study was conducted in an old-growth, mixed deciduous forest dominated by Fagus sylvatica (L.) and covers the period from 2003 to 2007, which comprised wet, dry and regular years as well as two masts of Fagus and one mast of the co-dominant tree species Fraxinus excelsior (L.) and Acer pseudoplatanus (L.). We combined analyses of weather conditions and stem growth at the tree level (inter- and intra-annual) with fruit, stem and leaf production, and estimates of total NPP at the stand level. Finally, we compared the annual demand of carbon for biomass production with net canopy assimilation (NCA), derived from eddy covariance flux measurements, chamber measurements and modelling. Annual stem growth of Fagus was most favoured by warm periods in spring and that of Fraxinus by high precipitation in June. For stem growth of Acer and for fruit production, no significant relationships with mean weather conditions were found. Intra-annual stem growth of all species was strongly reduced when the relative plant-available water in soil dropped below a threshold of about 60% between May and July. The inter-annual variations of NCA, total NPP and leaf NPP at the stand level were low (mean values 1313, 662 and 168 g C m(-2) year(-1), respectively), while wood and fruit production varied more and contrarily (wood: 169-241 g C m(-2) year(-1); fruits: 21-142 g C m(-2) year(-1)). In all years, an annual surplus of newly assimilated carbon was calculated (on average 100 g C m(-2) year(-1)). The results suggest that stem growth is generally not limited by insufficient carbon resources; only in mast years a short-term carbon shortage may occur in spring. In contrast to common assumption, stem

  10. Tree ring record chronicles major Mesoamerican droughts

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-05-01

    A new tree ring record chronicles major Mesoamerican droughts in the past millennium that may have contributed to the decline of some pre-Hispanic civilizations. Although there is other evidence of droughts during the past millennium, the paleoclimate record had gaps. Stahle et al. used core samples from Montezuma bald cypress trees found in Barranca de Amealco, Querétaro, Mexico, to develop a 1238-year tree ring chronology. They reconstructed the soil moisture record from the tree ring growth patterns. The new record provides the first dated, annually resolved climate record for Mexico and Central America spanning this time period.(Geophysical Research Letters, doi:10.1029/2010GL046472, 2011)

  11. Model-based analysis on the relationship between production and tree-ring growth in Japanese conifer-hardwood mixed forests

    NASA Astrophysics Data System (ADS)

    Koide, D.; Ito, A.

    2015-12-01

    Forest productivity is a basic and important component of terrestrial material flow and its importance increases according to recent climate warming and the increase in atmospheric-CO2 concentrations. Forest productivity study progresses through measurement by eddy-covariance data from flux tower and prediction by terrestrial ecosystem models. However, flux tower observation has spatiotemporal bias and limitation. On the other hand, tree-ring data have a close connection with forest ecosystem productivity. Compared to flux tower observation, we can collect tree-ring data from a larger number of sites and longer time scales. Comparisons between tree-ring observation and model-estimated productivity is important to reveal underlying mechanisms of forest ecosystem productivity and growth in wide spatiotemporal scale. This study aimed at revealing the relationship between temporal changes in tree-ring data and estimated forest ecosystem productivity in Japanese conifer-hardwood mixed forest. We also addressed climatic bias in the relationship by comparing between sites at different climatic conditions. Tree-ring data of Sakhalin spruce (Picea glehnii) were obtained from the International Tree Ring Data Bank. Six sites on the Hokkaido island (northern island of Japan) were selected for the present analysis. The Vegetation Integrated SImulator for Trace gasses (VISIT) model was validated by comparing with carbon flux data from Asia flux network sites. Past climatic parameters were obtained from ERA-20C reanalysis data from the European Center for Medium-range Weather Forecasts. Correlation between basal area increment and net ecosystem productivity was highest in the coldest site but this correlation weakened in warmer sites. This result implies that long-term growth trend was mainly restricted by cold stress associated with productivity reduction in colder sites but this factor is less important and other factors exert influence in warmer sites.

  12. The Influence of Precipitation-Driven Annual Plant Growth on Dust Emission in the Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Reynolds, R. L.; Fulton, R. E.

    2009-12-01

    Sparsely vegetated drylands are an important source for dust emission. However, little detail is known about dust generation in response to timing of precipitation and the consequent effects on soil and vegetation dynamics in these settings. This deficiency is especially acute at intermediate landscape scales, tens of meters to several hundred meters. It is essential to consider dust emission at this scale, because it links dust generation at scales of grains and wind tunnels with regional-scale dust examined using remotely sensed data from satellites. Three sites of slightly different geomorphic settings in the vicinity of Soda (dry) Lake were instrumented (in 1999) with meteorological and sediment transport sensors to measure wind erosion through saltating particle detection during high winds. Changes in vegetation in close proximity to the instrumented sites were bi-annually documented through measurements of plant type, cover, and repeat photographic imagery. Whereas high wind events are the dominant driver of saltation and dust emission, emissive conditions prevail only when annual plants are sparse or absent. Results show that wind erosion and dust emission at two study sites are highly variable and that such variability is dominantly related to vegetation type and cover as influenced by the amount and timing of antecedent precipitation. Secondary controls on dust emission are availability of new sediment related to flood deposits at the sites and seasonally differential wind strength. At sites where annual plants respond quickly and advantageously to precipitation, emissive conditions typically shut down because of vegetation growth within two to three months. This cover of annual plants, even when dead, persists in the desert landscape as a stabilizing agent for varying amounts of time, ten months to three years depending on the amount and vegetation type and subsequent input of precipitation and further annual plant growth. The lasting stabilization effect

  13. Statistical methodologies for tree-ring research to understand the climate-growth relationships over time and space

    EPA Science Inventory

    The International Tree-Ring Database is a valuable resource for studying climate change and its effects on terrestrial ecosystems over time and space. We examine the statistical methods in current use in dendroclimatology and dendroecology to process the tree-ring data and make ...

  14. Nutrition and Child Growth and Development in Tunisia. Annual Progress Report, September 1, 1971--August 31, 1972.

    ERIC Educational Resources Information Center

    Young, Harben Boutourline

    This annual report of the Yale Project describes the progress made on the nutrition and growth study of Tunisian children from September 1, 1971 through August 31, 1972. The report details: (1) the progress in analysis of the cross-sectional study data, which was completed as of June 30, 1972, and (2) the development of the present longitudinal…

  15. Changes in Sahelian annual vegetation growth and phenology since 1960: A modeling approach

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Grippa, M.; Mougin, E.; Guichard, F.; Kergoat, L.

    2016-08-01

    In semi-arid areas like the Sahel, vegetation is particularly sensitive to climate variability and can play an important role in surface-atmosphere coupling. After a wet period extending from 1950 to 1970, the Sahel experienced a severe drought in the 1970s and 1980s, followed by a partial recovery of rainfall and a "re-greening" of vegetation beginning in the 1990s. This study explores how the multidecadal variability of Sahelian rainfall and particularly the drought period have affected vegetation phenology and growth since 1960. The STEP model, which is specifically designed to simulate the Sahelian annual vegetation, including the dry season processes, is run over an area extending from 13°N to 18°N and from 20°W to 20°E. Mean values, interannual variability and phenological characteristics of the Sahelian annual grasslands simulated by STEP are in good agreement with MODIS derived production and phenology over the 2001-2014 period, which demonstrates the skill of the model and allows the analysis of vegetation changes and variability over the last 50 years. It was found that droughts in the 1970s and 1980s shortened the mean vegetation cycle and reduced its amplitude and that, despite the rainfall recovery since the 1990s, the current conditions for green and dry vegetation are still below pre-drought conditions. While the decrease in vegetation production has been largely homogeneous during droughts, vegetation recovery has been heterogeneous over the Sahel since 1990, with specific changes near the western coast and at the eastern edge of the West African monsoon area. Since 1970, the Sahel also experienced an increased interannual variability in vegetation mass and phenology. In terms of phenology, region-averaged End and Length of Season are the most variable, while maximum date and Start of Season are the least variable, although the latter displays a high variability locally.

  16. Intra-annual response of tree growth to climate in temperate forests: larger implications of fine-scale responses

    NASA Astrophysics Data System (ADS)

    McMahon, S.; Parker, G. G.

    2013-12-01

    Tree growth is a key component in the movement of carbon through terrestrial ecosystems. Although correlating annual growth rates to temperature an precipitation averages is the most common approach to extrapolating climate sensitivities, individual trees respond to weather at a much finer temporal scale. This response, further, is sensitive to many environmental factors and that sensitivity can depend on species, individual location in the species range, or size of the individual among other factors. Using weekly and bi-weekly measurements of dendrometer bands on 100 trees in three sites in the eastern US (Massachusetts, Virginia, and Maryland) over four years, we fit functional forms to intra-annual growth and compared patterns in productivity response to daily temperature and water balance information. We also determined phenological patterns in growth initiation, cessation, and maximum rate. We found that across size classes and species, trees respond to high temperatures and minor droughts by pausing in diameter increase. Although water retention may contribute some to this pattern, large differences in end-of-year biomass gain demonstrate a clear relationship between these pauses and overall annual carbon gain. Species did show some distinct patterns in this sensitivity and the overall phenology of growth. Further, the growing season as defined by when the majority of biomass increase actually occurred was much smaller than the leaf-out season indicating that droughts and heat-waves in a key subset of the green season can have a disproportionate effect on tree carbon uptake and forest carbon balance.

  17. Planetary rings

    SciTech Connect

    Greenberg, R.; Brahic, A.

    1984-01-01

    Among the topics discussed are the development history of planetary ring research, the view of planetary rings in astronomy and cosmology over the period 1600-1900, the characteristics of the ring systems of Saturn and Uranus, the ethereal rings of Jupiter and Saturn, dust-magnetosphere interactions, the effects of radiation forces on dust particles, the collisional interactions and physical nature of ring particles, transport effects due to particle erosion mechanisms, and collision-induced transport processes in planetary rings. Also discussed are planetary ring waves, ring particle dynamics in resonances, the dynamics of narrow rings, the origin and evolution of planetary rings, the solar nebula and planetary disk, future studies of the planetary rings by space probes, ground-based observatories and earth-orbiting satellites, and unsolved problems in planetary ring dynamics.

  18. Regional metropolitan and nonmetropolitan trends in annual growth rates of total personal income and population: 1959-1987.

    PubMed

    Nissan, E

    1992-01-01

    "The annual growth rates of total personal income and population in regional metropolitan and nonmetropolitan areas [of the United States] are examined for the period 1959-87, partitioned into sub periods. Statistical testing for equality of rates shows no perceptible differences in growth rates between the major categories, metro and nonmetro. Further, this study uses a model similar in scope to shift-share analysis to test for convergence of the growth rates within these categories. It was found that for both regional nonmetro and metro areas, there was a general trend toward convergence with the exception of the 1970s decade. In that decade total population growth rates in the nonmetro areas and total income and total population growth rates in the metro areas showed significant divergences."

  19. iTREE: Long-term variability of tree growth in a changing environment - identifying physiological mechanisms using stable C and O isotopes in tree rings.

    NASA Astrophysics Data System (ADS)

    Siegwolf, R. T. W.; Buchmann, N.; Frank, D.; Joos, F.; Kahmen, A.; Treydte, K.; Leuenberger, M.; Saurer, M.

    2012-04-01

    Trees play are a critical role in the carbon cycle - their photosynthetic assimilation is one of the largest terrestrial carbon fluxes and their standing biomass represents the largest carbon pool of the terrestrial biosphere. Understanding how tree physiology and growth respond to long-term environmental change is pivotal to predict the magnitude and direction of the terrestrial carbon sink. iTREE is an interdisciplinary research framework to capitalize on synergies among leading dendroclimatologists, plant physiologists, isotope specialists, and global carbon cycle modelers with the objectives of reducing uncertainties related to tree/forest growth in the context of changing natural environments. Cross-cutting themes in our project are tree rings, stable isotopes, and mechanistic modelling. We will (i) establish a European network of tree-ring based isotope time-series to retrodict interannual to long-term tree physiological changes, (ii) conduct laboratory and field experiments to adapt a mechanistic isotope model to derive plant physiological variables from tree-ring isotopes, (iii) implement this model into a dynamic global vegetation model, and perform subsequent model-data validation exercises to refine model representation of plant physiological processes and (iv) attribute long-term variation in tree growth to plant physiological and environmental drivers, and identify how our refined knowledge revises predictions of the coupled carbon-cycle climate system. We will contribute to i) advanced quantifications of long-term variation in tree growth across Central Europe, ii) novel long-term information on key physiological processes that underlie variations in tree growth, and iii) improved carbon cycle models that can be employed to revise predictions of the coupled carbon-cycle climate system. Hence iTREE will significantly contribute towards a seamless understanding of the responses of terrestrial ecosystems to long-term environmental change, and ultimately

  20. High Variability of the Metal Content of Tree Growth Rings as Measured by Synchrotron Micro X-ray Fluorescence Spectrometry

    SciTech Connect

    Martin,R.; Naftel, S.; Macfie, S.; Jones, K.; Feng, H.; Trembley, C.

    2006-01-01

    Synchrotron radiation analysis was used to investigate the metal content of tree rings collected from paper birch, Betula papyrifera Marsh, on transects downwind from two metal smelters (nickel and copper). Individual trees reflected changes in ring metal content with time, which may be presumed to represent changes in local metal bioavailability. However, between-tree variations were large and no statistically significant differences in metal content as a function of time were found within or between sites. Although concentrations of both total and exchangeable copper and nickel in the soil increased with proximity to the respective smelter, this pattern was reflected only in the nickel content of rings near the nickel smelter; copper content did not vary with distance from either smelter. The sites did differ with respect to lead, manganese and zinc content of the rings, which may be related to pH. In conclusion, the variability between trees at each site suggests that dendroanalysis is a poor method for evaluating metal exposure at a large (site) scale. Tree ring metal content may be used to evaluate the metal uptake by individual trees but metal mobility in the stem makes it difficult to establish a reliable chronology.

  1. Biomonitoring of environmental pollution using growth tree rings of Tipuana tipu: Quantification by synchrotron radiation total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Geraldo, S. M.; Canteras, F. B.; Moreira, S.

    2014-02-01

    Currently, many studies use the bioindicators to qualitatively and/or quantitatively measure pollution. The analyses of tree growth rings represent one such bioindicator as changes in the environment are often recorded as impressions in the wood. The main objective of the present study is to examine the growth rings of Tipuana tipu - a member of the Leguminosae family that is native to Argentina and Bolivia and was introduced in Brazil as an ornamental plant - for potentially toxic elements. T. tipu is one of the most common trees in the urban landscape of Sao Paulo city and would provide an accurate reflection of environment changes. Tree ring samples previously dated using Synchrotron Radiation Total Reflection X-ray Fluorescence were collected from strategic locations in Sao Paulo. These locations include Piracicaba (SP) that has little access and small flow traffic and the campus of the University of São Paulo. Some trace elements present concentrations higher than considered as normal in some periods. In São Paulo city, samples collected from the campus of University of São Paulo (Butantã), showed the highest toxicity, with concentrations above the tolerable limit for the elements: Cr, Cu, and Pb. For the samples collected in Piracicaba city, one sample presented highest concentrations for the majority of the elements when compared to the other four samples collected at the same place, exceeding the toxicity limits for: Cr, Ni, Cu, and Pb.

  2. Estimates of annual survival, growth, and recruitment of a white-tailed ptarmigan population in Colorado over 43 years

    USGS Publications Warehouse

    Wann, Greg; Aldridge, Cameron L.; Braun, Clait E.

    2014-01-01

    Long-term datasets for high-elevation species are rare, and considerable uncertainty exists in understanding how high-elevation populations have responded to recent climate warming. We present estimates of demographic vital rates from a 43-year population study of white-tailed ptarmigan (Lagopus leucura), a species endemic to alpine habitats in western North America. We used capture-recapture models to estimate annual rates of apparent survival, population growth, and recruitment for breeding-age ptarmigan, and we fit winter weather covariates to models in an attempt to explain annual variation. There were no trends in survival over the study period but there was strong support for age and sex effects. The average rate of annual growth suggests a relatively stable breeding-age population ( λ ¯ = 1.036), but there was considerable variation between years for both population growth and recruitment rates. Winter weather covariates only explained a small amount of variation in female survival and were not an important predictor of male survival. Cumulative winter precipitation was found to have a quadratic effect on female survival, with survival being highest during years of average precipitation. Cumulative winter precipitation was positively correlated with population growth and recruitment rates, although this covariate only explained a small amount of annual variation in these rates and there was considerable uncertainty among the models tested. Our results provide evidence for an alpine-endemic population that has not experienced extirpation or drastic declines. However, more information is needed to understand risks and vulnerabilities of warming effects on juveniles as our analysis was confined to determination of vital rates for breeding-age birds.

  3. The negative effect of biocrusts upon annual-plant growth on sand dunes during extreme droughts

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.

    2014-01-01

    The moisture content of crusted and non-crusted habitats on sand was measured.Higher available water characterized the non-crusted habitats during drought years.Non-crusted habitats had higher species diversity, density and biomass.Crusts exert a negative effect on annual plants during droughts.Mobile sand serve as fertility belts for annual plants during drought years.

  4. Discounting Report, 2012: Growth in Discounting Slows as Economy Improves. Ninth Annual Comparative Research Study

    ERIC Educational Resources Information Center

    Noel-Levitz, Inc, 2012

    2012-01-01

    This annual report summarizes the previous fall's outcomes and long-term trends for a sizable sample of private colleges and universities across the United States. The report is based on the annually aggregated freshman data of institutions that are currently partnering with Noel-Levitz to strategically manage more than $2 billion in institutional…

  5. Effects of Agaricus lilaceps fairy rings on soil aggregation and microbial community structure in relation to growth stimulation of western wheatgrass (Pascopyrum smithii) in Eastern Montana rangeland.

    PubMed

    Caesar-Tonthat, The Can; Espeland, Erin; Caesar, Anthony J; Sainju, Upendra M; Lartey, Robert T; Gaskin, John F

    2013-07-01

    Stimulation of plant productivity caused by Agaricus fairy rings has been reported, but little is known about the effects of these fungi on soil aggregation and the microbial community structure, particularly the communities that can bind soil particles. We studied three concentric zones of Agaricus lilaceps fairy rings in Eastern Montana that stimulate western wheatgrass (Pascopyrum smithii): outside the ring (OUT), inside the ring (IN), and stimulated zone adjacent to the fungal fruiting bodies (SZ) to determine (1) soil aggregate proportion and stability, (2) the microbial community composition and the N-acetyl-β-D-glucosaminidase activity associated with bulk soil at 0-15 cm depth, (3) the predominant culturable bacterial communities that can bind to soil adhering to wheatgrass roots, and (4) the stimulation of wheatgrass production. In bulk soil, macroaggregates (4.75-2.00 and 2.00-0.25 mm) and aggregate stability increased in SZ compared to IN and OUT. The high ratio of fungal to bacteria (fatty acid methyl ester) and N-acetyl-β-D-glucosaminidase activity in SZ compared to IN and OUT suggest high fungal biomass. A soil sedimentation assay performed on the predominant isolates from root-adhering soil indicated more soil-binding bacteria in SZ than IN and OUT; Pseudomonas fluorescens and Stenotrophomonas maltophilia isolates predominated in SZ, whereas Bacillus spp. isolates predominated in IN and OUT. This study suggests that growth stimulation of wheatgrass in A. lilaceps fairy rings may be attributed to the activity of the fungus by enhancing soil aggregation of bulk soil at 0-15 cm depth and influencing the amount and functionality of specific predominant microbial communities in the wheatgrass root-adhering soil.

  6. Effects of Agaricus lilaceps fairy rings on soil aggregation and microbial community structure in relation to growth stimulation of western wheatgrass (Pascopyrum smithii) in Eastern Montana rangeland.

    PubMed

    Caesar-Tonthat, The Can; Espeland, Erin; Caesar, Anthony J; Sainju, Upendra M; Lartey, Robert T; Gaskin, John F

    2013-07-01

    Stimulation of plant productivity caused by Agaricus fairy rings has been reported, but little is known about the effects of these fungi on soil aggregation and the microbial community structure, particularly the communities that can bind soil particles. We studied three concentric zones of Agaricus lilaceps fairy rings in Eastern Montana that stimulate western wheatgrass (Pascopyrum smithii): outside the ring (OUT), inside the ring (IN), and stimulated zone adjacent to the fungal fruiting bodies (SZ) to determine (1) soil aggregate proportion and stability, (2) the microbial community composition and the N-acetyl-β-D-glucosaminidase activity associated with bulk soil at 0-15 cm depth, (3) the predominant culturable bacterial communities that can bind to soil adhering to wheatgrass roots, and (4) the stimulation of wheatgrass production. In bulk soil, macroaggregates (4.75-2.00 and 2.00-0.25 mm) and aggregate stability increased in SZ compared to IN and OUT. The high ratio of fungal to bacteria (fatty acid methyl ester) and N-acetyl-β-D-glucosaminidase activity in SZ compared to IN and OUT suggest high fungal biomass. A soil sedimentation assay performed on the predominant isolates from root-adhering soil indicated more soil-binding bacteria in SZ than IN and OUT; Pseudomonas fluorescens and Stenotrophomonas maltophilia isolates predominated in SZ, whereas Bacillus spp. isolates predominated in IN and OUT. This study suggests that growth stimulation of wheatgrass in A. lilaceps fairy rings may be attributed to the activity of the fungus by enhancing soil aggregation of bulk soil at 0-15 cm depth and influencing the amount and functionality of specific predominant microbial communities in the wheatgrass root-adhering soil. PMID:23455430

  7. The influence of summertime fog and overcast clouds on the growth of a coastal Californian pine: a tree-ring study.

    PubMed

    Williams, A Park; Still, Christopher J; Fischer, Douglas T; Leavitt, Steven W

    2008-06-01

    The coast of California is home to numerous rare, endemic conifers and other plants that are limited in distribution by drought sensitivity and the summer-dry climate that prevails across most of the state. Ecologists have long assumed that some coastal plant populations survived the early Pleistocene transition to a warmer and drier environment because they benefit from frequent fog and stratus clouds that provide water and shade during the rainless summer. One such population is that of Torrey pine (Pinus torreyana ssp. Insularis) on Santa Rosa Island in Channel Islands National Park. Here we report that the tree-ring width record from this population indicates strong growth sensitivities to summer fog drip and cloud shading. We quantified the effects of summer cloud cover by comparing ring-width indices to coastal airport cloud-frequency records (1944-2004). For the first time observed, summertime cloud frequency correlated positively with ring-width indices, regardless of whether the effect of rainfall was first removed from the ring-width record. The effect of ground-level fog was strongest in July early mornings (03:00 PST, R(2) = 0.262, P < 0.0002). The effect of clouds high enough to provide shade but not fog water was also strongest in July, but climbed steadily throughout the day before becoming strongest in late afternoon (16:00-18:00 PST, R(2) = 0.148, P < 0.004). Correlations were substantially stronger in years with higher soil moisture, suggesting that growth response to summer clouds is strongly affected by pre-summer rainfall. A change in the height and/or timing of coastal cloud formation with climate change would likely affect this and other populations of California's coastal vegetation.

  8. Tree-ring based history of climate and disease in western Oregon forests

    EPA Science Inventory

    Annual tree-ring width data are often used to make inferences of past climate and the spatiotemporal climate-growth relationships. However, the climatic signal may be confounded with non-climatic signals such as disease or pest disturbances at unknown times in the past. Signal e...

  9. Time scaling of tree rings cell production in Siberia

    NASA Astrophysics Data System (ADS)

    Popkova, Margarita; Babushkina, Elena; Tychkov, Ivan; Shishov, Vladimir; Vaganov, Eugene

    2016-04-01

    It is assumed that an annual tree-ring growth is adequately determined by a linear function of local or regional precipitation and temperature with a set of coefficients that are temporally invariant. But often that relations are non-linear. The process-based tree-ring VS-model can be used to resolve the critical processes linking climate variables to tree-ring formation. This work describes a new block of VS-model which allows to estimate a cell production in tree rings and transfer it into time scale based on the simulated integral growth rates of the model. In the algorithm of time identification for cell production we used a integral growth rates simulated by the VS-model for each growing season. The obtained detailed approach with a calculation of the time of each cell formation improves significantly the date accuracy of new cell formation in growing season. As a result for each cell in the tree-ring we estimate the temporal moment of the cell production corresponded to the seasonal growth rate in the same time scale. The approach was applied and tested for the cell measurements obtained for Scots pine (Pinus sylvestris) for the period 1964-2013 in Malaya Minusa river (Khakassia, South Siberia). The work was supported by the Russian Science Foundation (RSF # 14-14-00219)

  10. Annual Enrollment Report: Growth in Number of Students Studying Journalism and Mass Communication Slows.

    ERIC Educational Resources Information Center

    Becker, Lee B.; Vlad, Tudor; Huh, Jisu; Daniels, George L.

    2002-01-01

    Provides the key findings of the 2001 Annual Survey of Journalism and Mass Communication Enrollments. Shows that undergraduate enrollments continued to grow while graduate enrollments declined. Discusses degrees granted and race, ethnicity, and gender factors. (PM)

  11. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  12. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.

    PubMed

    Hines, Jes; Eisenhauer, Nico; Drake, Bert G

    2015-12-01

    Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2. PMID:25953075

  13. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.

    PubMed

    Hines, Jes; Eisenhauer, Nico; Drake, Bert G

    2015-12-01

    Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2.

  14. [Annual variation of different phosphorus forms and response of algae growth in Meiliang bay of Taihu Lake].

    PubMed

    Wang, Ming; Wu, Xiao-fei; Li, Da-peng; Li, Xiang; Huang, Yong

    2015-01-01

    Based on the monthly investigations of different forms of phosphorus(P) and algae growth from January to December 2013 in Meiliang bay of Taihu Lake, the transformation of different P forms and the relationship between different P forms and algae growth was investigated under the dual conditions of disturbance due to wind and wave and algae growth. Results of the total P(TP), particulate P (PP), dissolved total P(DTP), dissolved inorganic P(DIP) and bioavailable P(BAP) showed that the monthly concentrations reached the maximum in summer and autumn while the minimum in winter and spring. In addition, the algae growth showed the same trends as above. However, no variation was found in the dissolved organic P(DOP) and bioavailable particulate P(BAPP). The bioavailability of PP was only 12.75% from June to October, which was obviously lower than the annual mean (37.14%). It was attributed to the acceleration on the transformation of PP to DTP due to the immobilization of sedimentary P under sediment disturbance and algae adsorption. The percentage of DTP in BAP was up to 69.33% (average), which was obviously higher than the percentage of bioavailable PP (30.66%, average) and the annual mean (56.63%) of DTP during the interval. In addition, the algae bloom appeared in the interval.

  15. Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe

    PubMed Central

    Vaganov, Eugene A.; Skomarkova, Marina V.; Knohl, Alexander; Brand, Willi A.; Roscher, Christiane

    2009-01-01

    Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage

  16. Ecotypic variation in growth responses to simulated herbivory: trade-off between maximum relative growth rate and tolerance to defoliation in an annual plant

    PubMed Central

    Camargo, Iván D.; Tapia-López, Rosalinda; Núñez-Farfán, Juan

    2015-01-01

    It has been hypothesized that slow-growing plants are more likely to maximize above-ground biomass and fitness when defoliated by herbivores than those with an already high relative growth rate (RGR). Some populations of the annual herb Datura stramonium L. can tolerate foliar damage better than others. The physiological basis of this difference is examined here in a comparative study of two ecotypes that differ in tolerance and maximum growth rate, using a growth analytical approach. One hundred and fifty-four plants of each ecotype grown under controlled conditions were suddenly defoliated (35 % of total leaf area removed) and a similar sample size of plants remained undefoliated (control). Ontogenetic plastic changes in RGR and its growth components [net assimilation rate (NAR), specific leaf area and leaf weight ratio (LWR)] after defoliation were measured to determine whether these plastic changes maximize plant growth and fitness. Different ontogenetic phases of the response were discerned and increased RGR of defoliated plants was detected at the end of the experimental period, but brought about by a different growth component (NAR or LWR) in each ecotype. These changes in RGR are putatively related to increases in fitness in defoliated environments. At the intra-specific scale, data showed a trade-off between the ability to grow under benign environmental conditions and the ability to tolerate resource limitation due to defoliation. PMID:25725085

  17. Ecotypic variation in growth responses to simulated herbivory: trade-off between maximum relative growth rate and tolerance to defoliation in an annual plant.

    PubMed

    Camargo, Iván D; Tapia-López, Rosalinda; Núñez-Farfán, Juan

    2015-01-01

    It has been hypothesized that slow-growing plants are more likely to maximize above-ground biomass and fitness when defoliated by herbivores than those with an already high relative growth rate (RGR). Some populations of the annual herb Datura stramonium L. can tolerate foliar damage better than others. The physiological basis of this difference is examined here in a comparative study of two ecotypes that differ in tolerance and maximum growth rate, using a growth analytical approach. One hundred and fifty-four plants of each ecotype grown under controlled conditions were suddenly defoliated (35 % of total leaf area removed) and a similar sample size of plants remained undefoliated (control). Ontogenetic plastic changes in RGR and its growth components [net assimilation rate (NAR), specific leaf area and leaf weight ratio (LWR)] after defoliation were measured to determine whether these plastic changes maximize plant growth and fitness. Different ontogenetic phases of the response were discerned and increased RGR of defoliated plants was detected at the end of the experimental period, but brought about by a different growth component (NAR or LWR) in each ecotype. These changes in RGR are putatively related to increases in fitness in defoliated environments. At the intra-specific scale, data showed a trade-off between the ability to grow under benign environmental conditions and the ability to tolerate resource limitation due to defoliation. PMID:25725085

  18. Arctic tree rings as recorders of variations in light availability

    PubMed Central

    Stine, A. R.; Huybers, P.

    2014-01-01

    Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity. PMID:24805143

  19. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  20. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  1. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands.

    PubMed

    Simard, Sonia; Giovannelli, Alessio; Treydte, Kerstin; Traversi, Maria Laura; King, Gregory M; Frank, David; Fonti, Patrick

    2013-09-01

    The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.

  2. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum).

    PubMed

    Evans, Barbara R; Bali, Garima; Reeves, David T; O'Neill, Hugh M; Sun, Qining; Shah, Riddhi; Ragauskas, Arthur J

    2014-03-26

    The development of deuterated biomass is essential for effective neutron scattering studies on biomass, which can provide key insights into the complex biomass conversion processes. A method for optimized production of deuterated annual ryegrass (Lolium multiflorum) was developed by growing the plants in 50% D2O in perfused hydroponic chambers. Deuterium incorporation of 36.9% was found in the annual rye grown in 50% D2O. Further, deuterium incorporation of 60% was achieved by germinating the rye seedlings in H2O and growing in 50% D2O inside the perfusion chambers. The characteristics related to enzymatic hydrolysis such as biomass composition, degree of polymerization, and cellulose crystallinity were compared with its control protiated counterpart. The cellulose molecular weight indicated slight variation while hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration.

  3. Growth Regulator Herbicides Prevent Invasive Annual grass Seed Production Under Field Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth regulator herbicides, such as 2,4-D, dicamba, picloram, and aminopyralid, are commonly used to control broadleaf weeds in grasslands, non-croplands and cereal crops (e.g. wheat, barley). If applied to cereals at late growth stages, while the grasses are developing reproductive parts, the her...

  4. Climate, Tree Rings, and CO2 fluxes in a Canadian Boreal Forest

    NASA Astrophysics Data System (ADS)

    Rocha, A. V.; Goulden, M. L.; McMillan, A.; Winston, G.; Read, E.; Dunn, A. L.; Wofsy, S. C.

    2005-12-01

    The linkages between forest physiology and growth are poorly understood. While recent work has shown that increased photosynthesis does not always translate into increased growth, studies have yet to clearly demonstrate the uncoupling between the photosynthesis and growth in forests. We used a 10 year record of eddy covariance data (1995-2004), an empirical model of Gross Ecosystem Productivity (GEP), and a 36 year ring width chronology from an Old Black Spruce ( Picea mariana [Mill.]) (NOBS) stand in Northern Manitoba to determine the relationship between canopy physiology and ring width. Over the time period of eddy covariance measurement ring width and NEP increased, while annual and average growing season nighttime respiration decreased. The empirical model of GEP, parameterized by 10 years of eddy covariance data, captured the interannual variability in measured GEP and was used to extend the record of GEP back 36 years using historical data from a nearby weather station. Our results demonstrate that GEP and ring width are uncoupled and that growth and GEP appear to respond to climatic forcing at different temporal scales. Fluctuations in GEP were attributed to yearly variations in temperature and incoming solar radiation, whereas, ring width fluctuations varied little from year to year with an apparent periodicity of ~7 years. Fluctuations in ring width at NOBS were similar to those observed at a nearby 70 year old black spruce stand, implying that fluctuations in ring width are controlled by an external factor such as climate. However, we were unable to link ring width with annually integrated climatic variables. We suspect that the storage of carbohydrates in trees integrates carbon uptake over multiple years and buffers wood production from year to year variation in GEP.

  5. A relationship between galactic cosmic radiation and tree rings.

    PubMed

    Dengel, Sigrid; Aeby, Dominik; Grace, John

    2009-11-01

    Here, we investigated the interannual variation in the growth rings formed by Sitka spruce (Picea sitchensis) trees in northern Britain (55 degrees N, 3 degrees W) over the period 1961-2005 in an attempt to disentangle the influence of atmospheric variables acting at different times of year. Annual growth rings, measured along the north radius of freshly cut (frozen) tree discs and climatological data recorded at an adjacent site were used in the study. Correlations were based on Pearson product-moment correlation coefficients between the annual growth anomaly and these climatic and atmospheric factors. Rather weak correlations between these variables and growth were found. However, there was a consistent and statistically significant relationship between growth of the trees and the flux density of galactic cosmic radiation. Moreover, there was an underlying periodicity in growth, with four minima since 1961, resembling the period cycle of galactic cosmic radiation. * We discuss the hypotheses that might explain this correlation: the tendency of galactic cosmic radiation to produce cloud condensation nuclei, which in turn increases the diffuse component of solar radiation, and thus increases the photosynthesis of the forest canopy.

  6. Cottonwood Tree Rings and Climate in Western North America

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.; Edmondson, J.; Griffin, E. R.; Meko, D. M.; Merigliano, M. F.; Scott, J. A.; Scott, M. L.; Touchan, R.

    2012-12-01

    In dry landscapes of interior western USA, cottonwood (Populus spp.) seedling establishment often occurs only close to river channels after floods. Where winter is sufficiently cold, cottonwoods also have distinct annual rings and can live up to 370 years, allowing us to reconstruct the long-term history of river flows and channel locations. We have analyzed the annual rate of cottonwood establishment along streams in Montana, Wyoming, Colorado, North Dakota and Idaho. Because the trees germinate next to the river, establishment rates are strongly correlated with the rate of channel migration driven by floods. Along large rivers dominated by snowmelt from the mountains, interannual variation in peak flows and cottonwood establishment is small, and century-scale variation driven by climate change is apparent. The upper Snake, Yellowstone and Green rivers all show a strong decrease in cottonwood establishment beginning in the late 1800s and continuing to the present, indicating a decrease in peak flows prior to flow regulation by large dams. This is consistent with published tree-ring studies of montane conifers showing decreases in snowpack at the same time scale. In contrast, beginning in the late 1800s cottonwood ring widths along the Little Missouri River, North Dakota show an increase in annual growth that continues into the present. Because annual growth is strongly correlated with April-July flows (r=0.69) the ring-width data suggest an increase in April-July flows at the same time tree establishment dates suggest a decrease in peak flows. These results may be reconciled by the hypothesis that increases in low temperatures have decreased snowpack while lengthening the growing season.

  7. [Plant growth with limited water]. [Annual report, December 15, 1992--December 14, 1993

    SciTech Connect

    Not Available

    1993-12-01

    We used a soybean seedling system to explore the mechanism of growth limitation by water deficiency (low {Psi}{sub W}). Our prior work had show that (low {Psi}{sub W} inhibited plant growth initially because of a physical limitation to water uptake that appeared to result from a decrease in the {Psi}{sub W} gradient feeding water to the enlarging cells. The gradient was shown to originate from cell wall yielding and was altered primarily at the vascular tissue. In the present grant, we reported the detailed shape of the gradient. We also found that growth could mobilize water from mature tissues in the complete absence of external water using the gradient in {Psi}{sub W}. Growth was maintained by this mobilization. After growth has been inhibited a few hours, metabolic changes occur and a 28kD protein accumulates in the wall fraction of the growth-affected cells. In the present grant, we showed that the mRNA for the protein accumulated in a tissue-specific manner similar to that of the protein, and the accumulation was correlated with the growth response. Other investigators working independently with an acid phosphatase found a deduced amino acid sequence similar to that for the 28kD protein we had published. Biochemical tests showed that the 28kD protein and a related 3lkD protein expressed acid phosphatase activity. We found that the acid phosphatase Of the 28kD protein was in the cell walls of intact plants (in addition to being in the cytoplasm). Current work focuses on the role of this protein. Efforts were made to reverse the growth inhibition at low {Phi}{sub W} by treating growing tissues with low pH buffer, but the protons apparently failed to penetrate the cuticle.

  8. The dynamic of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrêne, E.; François, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-02-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will condition the response of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study is to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). Combining field measurements and process-based simulations at 49 sites (931 site-years), we assessed the stand biomass growth dependences at both inter-site and inter-annual scales. Specifically, the relative influence of forest C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in stand C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual stand woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. We provide an evaluation of the spatio-temporal dynamics of annual carbon allocation to wood in European forests. Our study supports the premise that European forest growth is under a complex control including both source and sink limitations. The relative influences of the different growth drivers strongly vary across years and spatial ecological gradients. We suggest a

  9. Selections from the ABC 2014 Annual Conference, Philadelphia, Pennsylvania: Let Favorite Assignments Ring: Sharpening Communication Tools and Self and Career Development

    ERIC Educational Resources Information Center

    Whalen, D. Joel; Crenshaw, Cheri; Ortiz, Lorelei A.; Vik, Gretchen N.; Meredith, Michael J.; Deambrosi, Alfredo; Luck, Susan L.; Rausch, Georgi; Canas, Kathryn; Hicks, Nancy; Newman, Amy; Hofacker, Cynthia M.; Webb, Susan Hall; Zizik, Catherine H.

    2015-01-01

    This article, the first of a two-part series, catalogs teaching innovations from the 2014 Association for Business Communication Annual Conference. These 12 assignments debuted during two "My Favorite Assignment" sessions. Learning experiences included job-seeking skills--résumé writing, writing job applications, sharpening interview…

  10. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  11. Directed Growth of Polymer Nanorods Using Surface-Initiated Ring-Opening Polymerization of N-Allyl N-Carboxyanhydride.

    PubMed

    Lu, Lu; Lahasky, Samuel H; Zhang, Donghui; Garno, Jayne C

    2016-02-17

    A stepwise chemistry route was used to prepare arrays of polymer nanostructures of poly(N-allyl glycine) on Si(111) using particle lithography. The nanostructures were used for studying surface reactions with advanced measurements of atomic force microscopy (AFM). In the first step to fabricate the surface platform, isolated nanopores were prepared within a thin film of octadecyltrichlorosilane (OTS). The OTS served as a surface resist, and the areas of nanopores provided multiple, regularly shaped sites for further reaction. An initiator, (3-aminopropyl)triethoxysilane (APTES), was grown selectively inside the nanopores to define sites for polymerization. The initiator attached selectively to the sites of nanopores indicating OTS prevented nonspecific adsorption. Surface-initiated ring-opening polymerization of N-allyl N-carboxyanhydride with APTES produced polymer nanorods on the nanodots of APTES presenting amine functional groups. The surface changes for each step were monitored using high resolution atomic force microscopy (AFM). Slight variations in the height of the poly(N-allyl glycine) nanorods were observed which scale correspondingly to the initial dimensions of nanopores. The distance between adjacent polymer nanorods was controlled by the size of mesoparticle masks used in the experiment. This surface platform has potential application in biotechnology for smart coatings or biosensors. PMID:26789943

  12. Spark ignited turbulent flame kernel growth. Annual report, January--December, 1992

    SciTech Connect

    Santavicca, D.A.

    1994-06-01

    Cyclic combustion variations in spark-ignition engines limit the use of dilute charge strategies for achieving low NO{sub x} emissions and improved fuel economy. Results from an experimental study of the effect of incomplete fuel-air mixing (ifam) on spark-ignited flame kernel growth in turbulent propane-air mixtures are presented. The experiments were conducted in a turbulent flow system that allows for independent variation of flow parameters, ignition system parameters, and the degree of fuel-air mixing. Measurements were made at 1 atm and 300 K conditions. Five cases were studied; a premixed and four incompletely mixed cases with 6%, 13%, 24% and 33% RMS (root-mean-square) fluctuations in the fuel/air equivalence ratio. High speed laser shadowgraphy at 4,000 frames-per-second was used to record flame kernel growth following spark ignition, from which the equivalent flame kernel radius as a function of time was determined. The effect of ifam was evaluated in terms of the flame kernel growth rate, cyclic variations in the flame kernel growth, and the rate of misfire. The results show that fluctuations in local mixture strength due to ifam cause the flame kernel surface to become wrinkled and distorted; and that the amount of wrinkling increases as the degree of ifam. Ifam was also found to result in a significant increase in cyclic variations in the flame kernel growth. The average flame kernel growth rates for the premixed and the incompletely mixed cases were found to be within the experimental uncertainty except for the 33%-RMS-fluctuation case where the growth rate is significantly lower. The premixed and 6%-RMS-fluctuation cases had a 0% misfire rate. The misfire rates were 1% and 2% for the 13%-RMS-fluctuation and 24%-RMS-fluctuation cases, respectively; however, it drastically increased to 23% in the 33%-RMS-fluctuation case.

  13. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum)

    SciTech Connect

    Evans, Barbara R; Bali, Garima; Reeves, David T; O'Neill, Hugh Michael; Sun, Qining; Shah, Riddhi S; Ragauskas, Arthur

    2014-01-01

    In present paper, we report the production and detailed structural analysis of deuterium-enriched rye grass (Lolium multiflorum) for neutron scattering experiments. An efficient method to produce deuterated biomass was developed by designing hydroponic perfusion chambers. In preliminary studies, the partial deuterated rye samples were grown in increasing levels of D2O to study the seed germination and the level of deuterium incorporation as a function of D2O concentration. Solution NMR method indicated 36.9 % deuterium incorporation in 50 % D2O grown annual rye samples and further significant increase in the deuterium incorporation level was observed by germinating the rye seedlings in H2O and growing in 50 % D2O inside the perfusion chambers. Moreover, in an effort to compare the substrate characteristics related to enzymatic hydrolysis on deuterated and protiated version of biomass, annual rye grown in 50 % D2O was selected for detailed biomass characterization studies. The compositional analyses, degree of polymerization and cellulose crystallinity were compared with its protiated control. The cellulose molecular weight indicated slight variation with deuteration; however, hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration. Besides the minor differences in biomass components, the development of deuterated biomass for neutron scattering application is essential to understand the complex biomass conversion processes.

  14. Millennium-Scale Crossdating and Inter-Annual Climate Sensitivities of Standing California Redwoods

    PubMed Central

    Carroll, Allyson L.; Sillett, Stephen C.; Kramer, Russell D.

    2014-01-01

    Extremely decay-resistant wood and fire-resistant bark allow California’s redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have

  15. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    PubMed

    Carroll, Allyson L; Sillett, Stephen C; Kramer, Russell D

    2014-01-01

    Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have

  16. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    PubMed

    Carroll, Allyson L; Sillett, Stephen C; Kramer, Russell D

    2014-01-01

    Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have

  17. Positive Effects of Non-Native Grasses on the Growth of a Native Annual in a Southern California Ecosystem

    PubMed Central

    Pec, Gregory J.; Carlton, Gary C.

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem. PMID:25379790

  18. Constraints to obtaining consistent annual yields in perennial tree crops. I: Heavy fruit load dominates over vegetative growth.

    PubMed

    Smith, Harley M; Samach, Alon

    2013-06-01

    Farmers lack effective methods to achieve and maintain stable production from year to year in many commercial fruit crops. Annual fruit yield within a region often alternates between high and low fruit load and is termed alternate bearing. The underlying cause of alternate bearing is the negative impact of high fruit load on vegetative growth and next year's flowering. In this review, we emphasize common responses of diverse perennials to heavy crop load. We present botanical, ecological and horticultural perspectives on irregular bearing. The later part of this review focuses on understanding how high fruit load dominates over vegetative growth. We discuss sink strengths and putative mobile signals (hormones), perhaps seed-derived. We highlight gaps in current understanding of alternate bearing, and discuss new approaches to better understand fruit load dominance. Assuming the effect of high fruit load may be related to other mechanisms of sink partitioning, other forms of dominance are presented such as apical, first fruit and king fruit dominance. Dominance seems to be enforced, in independent cases through the establishment of a polar auxin transport system from the stronger sink. Once established this somehow perturbs the transport of auxin out of weaker sinks. Possibly, fruit derived auxin may alter the polar auxin transport system of the shoot to inhibit shoot growth.

  19. Positive effects of non-native grasses on the growth of a native annual in a southern california ecosystem.

    PubMed

    Pec, Gregory J; Carlton, Gary C

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem.

  20. Drought responses of conifers in ecotone forests of northern Arizona: tree ring growth and leaf delta13C.

    PubMed

    Adams, Henry D; Kolb, Thomas E

    2004-07-01

    We sought to understand differences in tree response to meteorological drought among species and soil types at two ecotone forests in northern Arizona, the pinyon-juniper woodland/ponderosa pine ecotone, and the higher elevation, wetter, ponderosa pine/mixed conifer ecotone. We used two approaches that provide different information about drought response: the ratio of standardized radial growth in wet years to dry years (W:D) for the period between years 1950 and 2000 as a measure of growth response to drought, and delta13C in leaves formed in non-drought (2001) and drought (2002) years as a measure of change in water use efficiency (WUE) in response to drought. W:D and leaf delta13C response to drought for Pinus edulis and P. ponderosa did not differ for trees growing on coarse-texture soils derived from cinders compared with finer textured soils derived from flow basalts or sedimentary rocks. P. ponderosa growing near its low elevation range limit at the pinyon-juniper woodland/ponderosa pine ecotone had a greater growth response to drought (higher W:D) and a larger increase in WUE in response to drought than co-occurring P. edulis growing near its high elevation range limit. P. flexilis and Pseudotsuga menziesii growing near their low elevation range limit at the ponderosa pine/mixed conifer ecotone had a larger growth response to drought than co-occurring P. ponderosa growing near its high elevation range limit. Increases in WUE in response to drought were similar for all species at the ponderosa pine/mixed conifer ecotone. Low elevation populations of P. ponderosa had greater growth response to drought than high-elevation populations, whereas populations had a similar increase in WUE in response to drought. Our findings of different responses to drought among co-occurring tree species and between low- and high-elevation populations are interpreted in the context of drought impacts on montane coniferous forests of the southwestern USA.

  1. Employer Child Care Continues Slow, but Steady Growth: Fifteenth Annual Status Report on Employer Child Care

    ERIC Educational Resources Information Center

    Neugebauer, Roger

    2006-01-01

    In the 1990s, employer child care operated by management organizations was consistently increasing at a rate of over 10% per year. However, since 2001, the growth rate has remained in the 4-6% range. In this article, the author presents differing views on the current trends and future prospects on employer child care. Ty Durekas, from Children's…

  2. Small Variance in Growth Rate in Annual Plants has Large Effects on Genetic Drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When plant size is strongly correlated with plant reproduction, variance in growth rates results in a lognormal distribution of seed production within a population. Fecundity variance affects effective population size (Ne), which reflects the ability of a population to maintain beneficial mutations ...

  3. Benchmarks for Expected Annual Academic Growth for Students in the Bottom Quartile of the Normative Distribution

    ERIC Educational Resources Information Center

    Scammacca, Nancy K.; Fall, Anna-Mária; Roberts, Greg

    2015-01-01

    Effect sizes are commonly reported for the results of educational interventions. However, researchers struggle with interpreting their magnitude in a way that transcends generic guidelines. Effect sizes can be interpreted in a meaningful context by benchmarking them against typical growth for students in the normative distribution. Such benchmarks…

  4. Contribution of relative growth rate to root foraging by annual and perennial grasses from California oak woodlands.

    PubMed

    Aanderud, Zachary T; Bledsoe, Caroline S; Richards, James H

    2003-08-01

    Plants forage for nutrients by increasing their root length density (RLD) in nutrient-rich soil microsites through root morphological changes resulting in increased root biomass density (RBD), specific root length (SRL), or branching frequency (BF). It is commonly accepted that fast-growing species will forage more than slow-growing species. However, foraging responses may be due solely to differences in relative growth rates (RGR). There is little evidence, after the effects of RGR are removed, that the fast versus slow foraging theory is correct. In a pot study, we evaluated foraging of four grass species that differed in RGR: one fast-growing annual species, Bromus diandrus, two intermediate-growing species, annual Bromus hordeaceus and perennial Elymus glaucus, and one slow-growing perennial species, Nassella pulchra. We harvested plants either at a common time (plants varied in size) or at a common leaf number (plants similar size, surrogate for common biomass). By evaluating species at a common time, RGR influenced foraging. Conversely, by evaluating species at a common leaf number, foraging could be evaluated independent of RGR. When RGR was allowed to contribute to foraging (common time harvest), foraging and RGR were positively correlated. B. diandrus (fast RGR) foraged to a greater extent than did E. glaucus (intermediate RGR) and N. pulchra (slow RGR). E. glaucus (intermediate RGR) foraged to a greater extent than N. pulchra (slow RGR). Root growth within nutrient-rich microsites was due to significant increases in RBD, not to modifications of SRL or BF. However, when RGR was not allowed to influence foraging (common leaf number harvest), none of the four species significantly enhanced RLD in nutrient-rich compared to control microsites. This suggests that RGR strongly influenced the ability of these grass species to forage and also supports the need to evaluate plastic root traits independent of RGR.

  5. A season in Saturn's rings: Cycling, recycling and ring history

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Meinke, B. K.; Albers, N.; Sremcevic, M.

    2012-04-01

    : Self gravity causes wakes, viscosity, overstability and local aggregate growth. Nearby moons and resonant forcing drive the ring system away from equilibrium through streamline crowding, which allows enhanced accretional growth. Structures form and disappear at length scales from meters to kilometers, on time scales of hours to months. This cyclic behavior resembles an ecological predator-prey system or a boom-and-bust economic cycle. In such an agitated stochastic system, solid bodies may represent the absorbing states of a Markov chain: rare events can produce a distibution with many transient but a few long-lasting bodies. These bodies would preferentially form at shepherded ring edges near the Roche limit, as hypothesized by Charnoz. These large bodies can sequester material in their interiors, reducing the amount of meteoritic ring pollution and recycling the ring material into new rings. Such processes would allow the rings to be as ancient as the solar system.

  6. Relating annual increments of the endangered Blanding's turtle plastron growth to climate.

    PubMed

    Richard, Monik G; Laroque, Colin P; Herman, Thomas B

    2014-05-01

    This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.

  7. Relating annual increments of the endangered Blanding's turtle plastron growth to climate

    PubMed Central

    Richard, Monik G; Laroque, Colin P; Herman, Thomas B

    2014-01-01

    This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration. PMID:24963390

  8. Relating annual increments of the endangered Blanding's turtle plastron growth to climate.

    PubMed

    Richard, Monik G; Laroque, Colin P; Herman, Thomas B

    2014-05-01

    This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration. PMID:24963390

  9. Jupiter's ring

    NASA Technical Reports Server (NTRS)

    1979-01-01

    First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science.

  10. Effects of salinity on the growth, physiology and relevant gene expression of an annual halophyte grown from heteromorphic seeds.

    PubMed

    Cao, Jing; Lv, Xiu Yun; Chen, Ling; Xing, Jia Jia; Lan, Hai Yan

    2015-01-01

    Seed heteromorphism provides plants with alternative strategies for survival in unfavourable environments. However, the response of descendants from heteromorphic seeds to stress has not been well documented. Suaeda aralocaspica is a typical annual halophyte, which produces heteromorphic seeds with disparate forms and different germination characteristics. To gain an understanding of the salt tolerance of descendants and the impact of seed heteromorphism on progeny of this species, we performed a series of experiments to investigate the plant growth and physiological parameters (e.g. osmolytes, oxidative/antioxidative agents and enzymes), as well as expression patterns of corresponding genes. Results showed that osmolytes (proline and glycinebetaine) were significantly increased and that excess reactive oxygen species ([Formula: see text] H2O2) produced under high salinity were scavenged by increased levels of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase and glutathione reductase) and corresponding antioxidants (ascorbic acid and glutathione). Moreover, enhancement of phosphoenolpyruvate carboxylase activity at high salt intensity had a positive effect on photosynthesis. The descendants from heteromorphic seeds presented no significant difference in performance with or without salinity. In conclusion, we found that high salinity induced the same active physiological responses in plants from heteromorphic seeds of S. aralocaspica, there was no carry-over of seed heteromorphism to plants: all the descendants required salinity for optimal growth and adaptation to their natural habitat. PMID:26386128

  11. Effects of salinity on the growth, physiology and relevant gene expression of an annual halophyte grown from heteromorphic seeds

    PubMed Central

    Cao, Jing; Lv, Xiu Yun; Chen, Ling; Xing, Jia Jia; Lan, Hai Yan

    2015-01-01

    Seed heteromorphism provides plants with alternative strategies for survival in unfavourable environments. However, the response of descendants from heteromorphic seeds to stress has not been well documented. Suaeda aralocaspica is a typical annual halophyte, which produces heteromorphic seeds with disparate forms and different germination characteristics. To gain an understanding of the salt tolerance of descendants and the impact of seed heteromorphism on progeny of this species, we performed a series of experiments to investigate the plant growth and physiological parameters (e.g. osmolytes, oxidative/antioxidative agents and enzymes), as well as expression patterns of corresponding genes. Results showed that osmolytes (proline and glycinebetaine) were significantly increased and that excess reactive oxygen species (O2−, H2O2) produced under high salinity were scavenged by increased levels of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase and glutathione reductase) and corresponding antioxidants (ascorbic acid and glutathione). Moreover, enhancement of phosphoenolpyruvate carboxylase activity at high salt intensity had a positive effect on photosynthesis. The descendants from heteromorphic seeds presented no significant difference in performance with or without salinity. In conclusion, we found that high salinity induced the same active physiological responses in plants from heteromorphic seeds of S. aralocaspica, there was no carry-over of seed heteromorphism to plants: all the descendants required salinity for optimal growth and adaptation to their natural habitat. PMID:26386128

  12. DOE/BES/NSET annual report on growth of metal and semiconductor nanostructures using localized photocatalysts.

    SciTech Connect

    Haddad, Raid Edward; Brinker, C. Jeffrey; Shelnutt, John Allen; Yang, Yi; Nuttall, H. Eric; Watt, Richard K.; Singl, Anup K.; Challa, Sivakumar R.; Wang, Zhongchun; van Swol, Frank B.; Pereira, Eulalia; Qiu, Yan; Jiang, Ying-Bing; Xu, Huifang; Medforth, Craig J.; Song, Yujiang

    2003-10-01

    Our overall goal is to understand and develop a novel light-driven approach to the controlled growth of unique metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures to provide metal nucleation and growth centers. Photocatalyst molecules are pre-positioned at the nanoscale to control the location and morphology of the metal nanostructures grown. Self-assembly, chemical confinement, and molecular templating are some of the methods used for nanoscale positioning of the photocatalyst molecules. When exposed to light, the photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition and the synthesis of the new nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies, the University of New Mexico, and Sandia National Laboratories. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled synthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. The proposed nanoscience concentrates on three thematic research areas: (1) the creation of nanoscale structures for realizing novel phenomena and quantum control, (2) understanding nanoscale processes in the environment, and (3) the development and use of multi-scale, multi-phenomena theory and simulation. Our goals for FY03 have been to understand the role of photocatalysis in the synthesis of dendritic platinum nanostructures grown from aqueous surfactant solutions under ambient

  13. X-linked inhibitor of apoptosis protein (XIAP) lacking RING domain localizes to the nuclear and promotes cancer cell anchorage-independent growth by targeting the E2F1/Cyclin E axis.

    PubMed

    Cao, Zipeng; Li, Xueyong; Li, Jingxia; Luo, Wenjing; Huang, Chuanshu; Chen, Jingyuan

    2014-08-30

    The inhibitor of apoptosis protein XIAP (X-linked inhibitor of apoptosis protein) is a well-documented protein that is located in cytoplasm acting as a potent regulator of cell apoptosis. Here, we showed that expressing XIAP with RING (Really Interesting New Gene) domain deletion (XIAP△RING) in cancer cells promoted cancer cell anchorage-independent growth and G1/S phase transition companied with increasing cyclin e transcription activity and protein expression. Further studies revealed that XIAP△RING was mainly localized in nuclear with increased binding with E2F1, whereas XIAP with BIR (Baculoviral IAP Repeat) domains deletion (XIAP△BIRs) was entirely presented in cytoplasma with losing its binding with E2F1, suggesting that RING domain was able to inhibit BIR domains nuclear localization, by which impaired BIRs binding with E2F1 in cellular nucleus in intact cells. These studies identified a new function of XIAP protein in cellular nucleus is to regulate E2F1 transcriptional activity by binding with E2F1 in cancer cells. Our current finding of an effect of XIAP△RING expression on cancer cell anchorage-independent growth suggests that overexpression of this protein may contribute to genetic instability associated with cell cycle and checkpoint perturbations, in addition to its impact on cellular apoptosis. PMID:25216527

  14. X-linked inhibitor of apoptosis protein (XIAP) lacking RING domain localizes to the nuclear and promotes cancer cell anchorage-independent growth by targeting the E2F1/Cyclin E axis

    PubMed Central

    Cao, Zipeng; Li, Xueyong; Li, Jingxia; Luo, Wenjing; Huang, Chuanshu; Chen, Jingyuan

    2014-01-01

    The inhibitor of apoptosis protein XIAP (X-linked inhibitor of apoptosis protein) is a well-documented protein that is located in cytoplasm acting as a potent regulator of cell apoptosis. Here, we showed that expressing XIAP with RING (Really Interesting New Gene) domain deletion (XIAPΔRING) in cancer cells promoted cancer cell anchorage-independent growth and G1/S phase transition companied with increasing cyclin e transcription activity and protein expression. Further studies revealed that XIAPΔRING was mainly localized in nuclear with increased binding with E2F1, whereas XIAP with BIR (Baculoviral IAP Repeat) domains deletion (XIAPΔBIRs) was entirely presented in cytoplasma with losing its binding with E2F1, suggesting that RING domain was able to inhibit BIR domains nuclear localization, by which impaired BIRs binding with E2F1 in cellular nucleus in intact cells. These studies identified a new function of XIAP protein in cellular nucleus is to regulate E2F1 transcriptional activity by binding with E2F1 in cancer cells. Our current finding of an effect of XIAPΔRING expression on cancer cell anchorage-independent growth suggests that overexpression of this protein may contribute to genetic instability associated with cell cycle and checkpoint perturbations, in addition to its impact on cellular apoptosis. PMID:25216527

  15. [Growth modeling of Albizia niopoides (Mimosaceae) using dendrochronological methods].

    PubMed

    Giraldo, Víctor David; del Valle, Jorge Ignacio

    2012-09-01

    The annual growth rings in tropical trees are fairly common, but their study is relatively recent. Growth rings were found in trees of Albizia niopoides from the Porce River Canyon, Central Cordillera of the Colombian Andes. A total of 33 cross-sections were collected from trees distributed throughout the study area from 664-870masl. Cross-dating, spaguetti plot and 14C analyses were used to demonstrate ring annuality, assuming as hypothesis that these are real annual growth rings. A combination of descriptive analysis of time series (smoothing and pre-whitening) to filter climate noise and nonlinear regression with weighted residuals was used to fit the diameter to Korfs growth model, in which the coefficient of determination reaches values close to 100%. The positive residual autocorrelation of order 1, although not significant, is explained by the existence of energy reserves in the stem and by the accumulation of diameter increments required for the construction of the diameter growth model. The current and mean annual maximum increment rates are 1.03 and 0.94cm/year at ages 18 and 46 years old, respectively. These trees are classified within the group of fast growing species which can reach a cut diameter of over 50cm in approximately 52 years.

  16. [Growth modeling of Albizia niopoides (Mimosaceae) using dendrochronological methods].

    PubMed

    Giraldo, Víctor David; del Valle, Jorge Ignacio

    2012-09-01

    The annual growth rings in tropical trees are fairly common, but their study is relatively recent. Growth rings were found in trees of Albizia niopoides from the Porce River Canyon, Central Cordillera of the Colombian Andes. A total of 33 cross-sections were collected from trees distributed throughout the study area from 664-870masl. Cross-dating, spaguetti plot and 14C analyses were used to demonstrate ring annuality, assuming as hypothesis that these are real annual growth rings. A combination of descriptive analysis of time series (smoothing and pre-whitening) to filter climate noise and nonlinear regression with weighted residuals was used to fit the diameter to Korfs growth model, in which the coefficient of determination reaches values close to 100%. The positive residual autocorrelation of order 1, although not significant, is explained by the existence of energy reserves in the stem and by the accumulation of diameter increments required for the construction of the diameter growth model. The current and mean annual maximum increment rates are 1.03 and 0.94cm/year at ages 18 and 46 years old, respectively. These trees are classified within the group of fast growing species which can reach a cut diameter of over 50cm in approximately 52 years. PMID:23025084

  17. Wall proficient E. coli capable of sustained growth in the absence of the Z-ring division machine.

    PubMed

    Mercier, Romain; Kawai, Yoshikazu; Errington, Jeff

    2016-01-01

    The peptidoglycan cell wall is a major protective external sheath in bacteria and a key target for antibiotics(1). Peptidoglycan is present in virtually all bacteria, suggesting that it was probably present in the last bacterial common ancestor(2). Cell wall expansion is orchestrated by cytoskeletal proteins related to actin (MreB) and tubulin (FtsZ)(3). FtsZ is a key essential player in a highly organized division machine that directs an invaginating annulus of cell wall peptidoglycan. The recent discovery that cell-wall-less bacteria (L-forms) can grow and divide independently of FtsZ(4,5), provided a means of generating an ftsZ null mutant of Escherichia coli. Remarkably, we have been able to isolate variants of E. coli that lack FtsZ but are capable of efficient growth in a walled state. Genetic analysis reveals that a combination of mutations is needed for this phenotype. Importantly, the suppressive mutations lead to a major cell shape change, from the normal cylindrical shape to a branched and bulging, ramified shape, which we call 'coli-flower'. The results highlight the versatility of bacterial cells and illustrate possible evolutionary routes leading to the emergence of specialized bacteria, such as pathogenic Chlamydia or aquatic Planctomycetes, that lack FtsZ but retain the cell wall(6-8). PMID:27573111

  18. The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrene, E.; Francois, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-05-01

    The extent to which wood growth is limited by carbon (C) supply (i.e. source control) or by cambial activity (i.e. sink control) will strongly determine the responses of trees to global changes. Nevertheless, the physiological processes that are responsible for limiting forest growth are still a matter of debate. The aim of this study was to evaluate the key determinants of the annual C allocation to wood along large soil and climate regional gradients over France. The study was conducted for five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). The drivers of stand biomass growth were assessed on both inter-site and inter-annual scales. Our data set comprised field measurements performed at 49 sites (931 site-years) that included biometric measurements and a variety of stand characteristics (e.g. soil water holding capacity, leaf area index). It was complemented with process-based simulations when possible explanatory variables could not be directly measured (e.g. annual and seasonal tree C balance, bioclimatic water stress indices). Specifically, the relative influences of tree C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in the stand C allocation to wood was predominantly driven by age-related decline. The direct effects of temperature and water stress on sink activity (i.e. effects independent from their effects on the C supply) exerted a strong influence on the annual stand wood growth in all of the species considered, including deciduous temperate species. The lagged effect of the past environmental conditions (e.g. the previous year's water stress and low C uptake) significantly affected the annual C allocation to wood. The C supply

  19. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    NASA Astrophysics Data System (ADS)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  20. Reconfiguration of tree architecture under the effect of wind, competition for light, and annual growth

    NASA Astrophysics Data System (ADS)

    Eloy, Christophe

    2015-11-01

    In general, trees have self-similar architectures with longer and thicker branches near the roots. Yet, branch segments grown each year always have approximately the same length. This hierarchy of branch lengths and the whole self-similar characteristics results in fact from a continuous process of growth of new branches and shedding of old ones. To assess how such a process affects tree architecture, a functional-structural mechanically-based model of virtual trees is developed. In this model, trees grow into fractal structures to promote efficient photosynthesis in a competing environment. In addition, branch diameters increase in response to wind-induced loads. The results of this model suggest that most self-similar characteristics of trees can be explained by considering that tree are growing structure able to resist mechanical loads due to wind efficiently.

  1. Variation of Maximum Tree Height and Annual Shoot Growth of Smith Fir at Various Elevations in the Sygera Mountains, Southeastern Tibetan Plateau

    PubMed Central

    Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan

    2012-01-01

    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range. PMID:22396738

  2. A Experimental Study of Viscous Vortex Rings.

    NASA Astrophysics Data System (ADS)

    Dziedzic, Mauricio

    Motivated by the role played by vortex rings in the process of turbulent mixing, the work is focused on the problem of stability and viscous decay of a single vortex ring. A new classification is proposed for vortex rings which is based on extensive hot-wire measurements of velocity in the ring core and wake and flow visualization. Vortex rings can be classified as laminar, wavy, turbulence-producing, and turbulent. Prediction of vortex ring type is shown to be possible based on the vortex ring Reynolds number. Linear growth rates of ring diameter with time are observed for all types of vortex rings, with different growth rates occurring for laminar and turbulent vortex rings. Data on the viscous decay of vortex rings are used to provide experimental confirmation of the accuracy of Saffman's equation for the velocity of propagation of a vortex ring. Experimental data indicate that instability of the vortex ring strongly depends on the mode of generation and can be delayed by properly adjusting the generation parameters. A systematic review of the literature on vortex-ring interactions is presented in the form of an appendix, which helps identify areas in which further research may be fruitful.

  3. Ghostly Ring

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for poster version

    This image shows a ghostly ring extending seven light-years across around the corpse of a massive star. The collapsed star, called a magnetar, is located at the exact center of this image. NASA's Spitzer Space Telescope imaged the mysterious ring around magnetar SGR 1900+14 in infrared light. The magnetar itself is not visible in this image, as it has not been detected at infrared wavelengths (it has been seen in X-ray light).

    Magnetars are formed when a massive giant star ends its life in a supernova explosion, leaving behind a super dense neutron star with an incredibly strong magnetic field. The ring seen by Spitzer could not have formed during the original explosion, as any material as close to the star as the ring would have been disrupted by the supernova shock wave. Scientists suspect that the ring my actually be the edges of a bubble that was hollowed out by an explosive burst from the magnetar in 1998. The very bright region near the center of the image is a cluster of young stars, which may be illuminating the inner edge of the bubble, making it look like a ring in projection.

    This composite image was taken using all three of Spitzer's science instruments. The blue color represents 8-micron infrared light taken by the infrared array camera, green is 16-micron light from the infrared spectograph, and red is 24-micron radiation from the multiband imaging photometer.

  4. Using intra annual density fluctuations and d13C to assess the impact of summer drought on Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Battipaglia, G.; Brand, W. A.; Linke, P.; Schaefer, I.; Noetzli, M.; Cherubini, P.

    2009-04-01

    Tree- ring growth and wood density have been used extensively as indicators of climate change, and tree-ring has been commonly applied as a proxy estimate for seasonal integration of temperatures and precipitation with annual resolution (Hughes 2002). While these relationships have been well established in temperate ecosystems (Fritts, 1976; Schweingruber, 1988, Briffa et al., 1998, 2004), in Mediterranean region dendrochronological studies are still scarce (Cherubini et al, 2003). In Mediterranean environment, trees may form intra-annual density fluctuations, also called "false rings" or "double rings" (Tingley 1937; Schulman 1938). They are usually induced by sudden drought events, occurring during the vegetative period, and, allowing intra-annual resolution, they may provide detailed information at a seasonal level, as well as species-specific sensitivity to drought. We investigated the variability of tree- ring width and carbon stable isotopes of a Mediterranean species, Arbutus unedo L., sampled on Elba island, (Tuscany, Italy). The samples were taken at two different sites, one characterized by wet and one by dry conditions. d13C was measured using Laser- Ablation- Combustion -GC-IRMS. Here, we present first results showing the impact of drought on tree growth and on false ring formation at the different sites and we underline the importance of using Laser Ablation to infer drought impact at the intra -annual level. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Harris IC, Shiyatov SG, Vaganov EA, Grudd H (1998) Trees tell of past climates: but are they speaking less clearly today? Phil Transact Royal Soc London 353:65-73 Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Panet Change 40:11-26 Cherubini, P., B.L. Gartner, R. Tognetti, O.U. Bräker, W. Schoch & J.L. Innes. 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev

  5. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    PubMed

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI).

  6. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    PubMed

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI). PMID:24483064

  7. Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in the Drosophila melanogaster Neurofibromatosis-1 Growth Deficiency

    PubMed Central

    Walker, James A.; Gouzi, Jean Y.; Long, Jennifer B.; Huang, Sidong; Maher, Robert C.; Xia, Hongjing; Khalil, Kheyal; Ray, Arjun; Van Vactor, David; Bernards, René; Bernards, André

    2013-01-01

    Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise

  8. Fog and Vegetation on the California Channel Islands: A Tree Ring and Satellite Analysis

    NASA Astrophysics Data System (ADS)

    Williams, P.; Still, C.; Fischer, D.; Leavitt, S.

    2005-12-01

    Tree-ring width and stable isotope composition of rare pines in Channel Islands National Park reflect annual variations in water availability. α-cellulose was isolated from Bishop Pine ( Pinus muricata) cores from Santa Cruz Island (SCI). Individual annual rings from 1979-2003 were analyzed for carbon-13 (n = 4 trees). An average δ13C chronology was created and annual atmospheric 13CO2 at La Jolla Pier, CA was subtracted to detrend the chronology for the steadily decreasing δ13C of atmospheric CO2 that has resulted from anthropogenic emissions and biomass burning. Early and latewood δ13C were negatively correlated with annual rainfall in the SCI central valley (r = -0.5057, r = -0.6447, respectively). An annual ring width chronology (1908-2004) was also created from Torrey Pine ( Pinus torreyana) tree cores (n=17) collected on Santa Rosa Island. Ring width was positively correlated with SCI rainfall (r = 0.6993). On average, 87% of this precipitation falls between November and March. However, tree growth as measured by dendrometer bands continues throughout the summer months suggesting an additional source of water. Summer is also the peak fog season for the Islands. The last rain of the 2004 growing season was on March 1 and monthly NDVI data derived from MODIS show that the vast majority of the vegetation on SCI was dormant by mid-May. When summer NDVI is overlaid on an image of average summer-time 10:30AM cloud cover, created using a derivative of the MODIS cloud-mask product, it appears that the greenest parts of SCI during summer months are those regions that experience the most summertime cloud cover. The distribution of Bishop Pine also seems to be limited to elevations that intercept cloud banks, as opposed to regions that simply experience cloud cover. It is therefore possible that these tree ring width and stable isotope records document the intensity of summer fog inundation in addition to rainfall. Because we have observed consistently significant

  9. Radiocarbon concentration in modern tree rings from Valladolid, Spain

    NASA Astrophysics Data System (ADS)

    Rakowski, Andrzej Z.; Nakamura, Toshio; Pazdur, Anna; Charro, Elena; Villanueva, Jose Luis Gutierrez; Piotrowska, Natalia

    2010-04-01

    New results of radiocarbon concentration in tree rings from the City of Valladolid (Spain) covering a growth period of 22 year have been measured using an AMS. Samples were taken using a hollow drill from a living tree, and α-cellulose was extracted from each of annual rings (early and late wood separately). The set of data shows lower radiocarbon concentration than that reported for "clean air" at the reference station, indicating a remarkable input of "dead" CO 2 of fossil fuel origin. Using data of carbon dioxide and 14C concentrations from Schauinsland, the corresponding summer and winter values of the fossil component ( cf) in carbon dioxide were calculated for the City of Valladolid. By fitting exponential and linear functions to the experimental data, the exchange time was calculated, and the expected future 14C concentration in the atmosphere was estimated.

  10. Silicified wood from the Permian and Triassic of Antarctica: Tree rings from polar paleolatitudes

    USGS Publications Warehouse

    Ryberg, P.E.; Taylor, E.L.

    2007-01-01

    The mass extinction at the Permian-Triassic boundary produced a floral turnover in Gondwana in which Paleozoic seed ferns belonging to the Glossopteridales were replaced by corystosperm seed ferns and other seed plant groups in the Mesozoic. Secondary growth (wood production) in both plant groups provides information on plant growth in relation to environment in the form of permineralized tree rings. Techniques utilized to analyze extant wood can be used on fossil specimens to better understand the climate from both of these periods. Late Permian and early Middle Triassic tree rings from the Beardmore Glacier area indicate an environment where extensive plant growth occurred at polar latitudes (~80–85°S, Permian; ~75°S, Triassic). A rapid transition to dormancy in both the Permian and Triassic woods suggests a strong influence of the annual light/dark cycle within the Antarctic Circle on ring production. Latewood production in each ring was most likely triggered by the movement of the already low-angled sun below the horizon. The plants which produced the wood have been reconstructed as seasonally deciduous, based on structural and sedimentologic evidence. Although the Late Permian climate has been reconstructed as cold temperate and the Middle Triassic as a greenhouse, these differences are not reflected in tree ring anatomy or wood production in these plant fossils from the central Transantarctic Mountains.

  11. NSLS annual report 1984

    SciTech Connect

    Klaffky, R.; Thomlinson, W.

    1984-01-01

    The first comprehensive Annual Report of the National Synchrotron Light Source comes at a time of great activity and forward motion for the facility. In the following pages we outline the management changes that have taken place in the past year, the progress that has been made in the commissioning of the x-ray ring and in the enhanced utilization of the uv ring, together with an extensive discussion of the interesting scientific experiments that have been carried out.

  12. Ringing wormholes

    SciTech Connect

    Konoplya, R.A.; Molina, C.

    2005-06-15

    We investigate the response of traversable wormholes to external perturbations through finding their characteristic frequencies and time-domain profiles. The considered solution describes traversable wormholes between the branes in the two brane Randall-Sundrum model and was previously found within Einstein gravity with a conformally coupled scalar field. The evolution of perturbations of a wormhole is similar to that of a black hole and represents damped oscillations (ringing) at intermediately late times, which are suppressed by power-law tails (proportional to t{sup -2} for monopole perturbations) at asymptotically late times.

  13. Physics of planetary rings

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2007-08-01

    It is difficult to enumerate all the surprises presented by the planetary rings. The Saturnian rings are stratified into thousands of ringlets and the Uranian rings are compressed into narrow streams, which for some reason or other differ from circular orbits like the wheel of an old bicycle. The edge of the rings is jagged and the rings themselves are pegged down under the gravitational pressure of the satellites, bending like a ship's wake. There are spiral waves, elliptical rings, strange interlacing of narrow ringlets, and to cap it all one has observed in the Neptunian ring system three dense, bright arcs - like bunches of sausages on a transparent string. For celestial mechanics this is a spectacle as unnatural as a bear's tooth in the necklace of the English queen. In the dynamics of planetary rings the physics of collective interaction was supplemented by taking collisions between particles into account. One was led to study a kinetic equation with a rather complex collision integral - because the collisions are inelastic - which later on made it possible, both by using the Chapman-Enskog method and by using the solution of the kinetic equation for a plasma in a magnetic field, to reduce it to a closed set of (hydrodynamical) moment equations [1]. The hydrodynamical instabilities lead to the growth of short-wavelength waves and large-scale structures of the Saturnian rings [1]. We have shown that the formation of the existing dense Uranian rings is connected with the capture of positively drifting ring particles in inner Lindblad resonances which arrest this drift [1]. After the formation of dense rings at the positions of satellite resonances the collective interaction between resonant particles is amplified and the rings can leave the resonance and drift away from the planet and the parent resonance. We can expect in the C ring an appreciable positive ballistic particle drift caused by the erosion of the B ring by micrometeorites. It is therefore natural

  14. Tree-ring δ13C and δ18O, leaf δ13C and wood and leaf N status demonstrate tree growth strategies and predict susceptibility to disturbance.

    PubMed

    Billings, S A; Boone, A S; Stephen, F M

    2016-05-01

    Understanding how tree growth strategies may influence tree susceptibility to disturbance is an important goal, especially given projected increases in diverse ecological disturbances this century. We use growth responses of tree rings to climate, relationships between tree-ring stable isotopic signatures of carbon (δ(13)C) and oxygen (δ(18)O), wood nitrogen concentration [N], and contemporary leaf [N] and δ(13)C values to assess potential historic drivers of tree photosynthesis in dying and apparently healthy co-occurring northern red oak (Quercus rubra L. (Fagaceae)) during a region-wide oak decline event in Arkansas, USA. Bole growth of both healthy and dying trees responded negatively to drought severity (Palmer Drought Severity Index) and temperature; healthy trees exhibited a positive, but small, response to growing season precipitation. Contrary to expectations, tree-ring δ(13)C did not increase with drought severity. A significantly positive relationship between tree-ring δ(13)C and δ(18)O was evident in dying trees (P < 0.05) but not in healthy trees. Healthy trees' wood exhibited lower [N] than that of dying trees throughout most of their lives (P < 0.05), and we observed a significant, positive relationship (P < 0.05) in healthy trees between contemporary leaf δ(13)C and leaf N (by mass), but not in dying trees. Our work provides evidence that for plants in which strong relationships between δ(13)C and δ(18)O are not evident, δ(13)C may be governed by plant N status. The data further imply that historic photosynthesis in healthy trees was linked to N status and, perhaps, C sink strength to a greater extent than in dying trees, in which tree-ring stable isotopes suggest that historic photosynthesis was governed primarily by stomatal regulation. This, in turn, suggests that assessing the relative dominance of photosynthetic capacity vs stomatal regulation as drivers of trees' C accrual may be a feasible means of predicting tree

  15. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China

    PubMed Central

    Zhou, Xiaobing; Zhang, Yuanming; Niklas, Karl J.

    2014-01-01

    Background and Aims Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions. Methods Nitrogen was added to the soil at rates of 0, 0·5, 1·0, 3·0, 6·0 and 24·0 g N m−2 year−1. Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass. Key Results Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship. Conclusions These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric. PMID:24287812

  16. Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling.

    PubMed

    Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel

    2016-09-15

    Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years.

  17. Biophysical modelling of intra-ring variations in tracheid features and wood density of Pinus pinaster trees exposed to seasonal droughts.

    PubMed

    Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa

    2015-03-01

    Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient.

  18. Biophysical modelling of intra-ring variations in tracheid features and wood density of Pinus pinaster trees exposed to seasonal droughts.

    PubMed

    Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa

    2015-03-01

    Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient. PMID:25769337

  19. Large-area sheet task: advanced denritic-web-growth development. Annual report, October 23, 1980-October 22, 1981

    SciTech Connect

    Duncan, C S; Seidensticker, R G; McHugh, J P; Hopkins, R H; Meier, D; Schruben, J

    1982-03-02

    Significant progress has been made in our understanding of the web growth process. Thermal models have been developed that accurately predict the thermally generated stresses in the web crystal which, if too high, cause the crystal to degenerate. The application of the modeling results to the design of low-stress experimental growth configurations will allow growth of wider web crystals at higher growth velocities. A new experimental web growth machine was constructed. This facility includes all the features necessary for carrying out growth experiments under steady state thermal conditions. Programmed growth initiation has been developed to give reproducible crystal starts. Width control permits the growth of long ribbons at constant width. Melt level is controlled to 0.1 mm or better. Thus, the capability exists to grow long web crystals of constant width and thickness with little operator intervention, and web growth experiments can now be performed with growth variables controlled to a degree not previously possible.

  20. The dynamics of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth.

    NASA Astrophysics Data System (ADS)

    Guillemot, Joannès; Martin-StPaul, Nicolas K.; Dufrêne, Eric; François, Christophe; Soudani, Kamel; Ourcival, Jean-Marc; Leadley, Paul; Delpierre, Nicolas

    2015-04-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will strongly determines the responses of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study was i) to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in four tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex and Picea abies) ii) to implement the identified key drivers in a new C allocation scheme within the CASTANEA terrestrial biosphere model (TBM). Combining field measurements and process-based simulations at 49 sites (931 site-years), our analyses revealed that the inter-site variability in C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. Our study supports the premise that European forest growth is under a complex panel of source- and sink- limitations, contradicting the simple source control implemented in most TBMs. The implementation of these combined forest growth limitations in the CASTANEA model significantly improved its performance when evaluated against independent stand growth data at the regional scale (mainland France, >10000 plots). We finally discuss how the sink imitation affects the CASTANEA simulated projections of forest productivity along the 21th century, especially with respect to the expected fertilizing effect of increasing atmospheric

  1. Effects of agaricus lilaceps fairy rings on soil aggregation and microbial community structure in relation to growth stimulation of western wheatgrass (pascopyrum smithii) in Eastern Montana rangeland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stimulation of plant productivity caused by Agaricus fairy rings has been reported, but nothing is known about soil aggregation and the microbial community structure of the stimulated zone, particularly the communities that can bind to soil particles. We studied three concentric zones of Agaricus li...

  2. Structural disorder and transformation in crystal growth: direct observation of ring-opening isomerization in a metal-organic solid solution.

    PubMed

    Jiang, Ji-Jun; He, Jian-Rong; Lü, Xing-Qiang; Wang, Da-Wei; Li, Guo-Bi; Su, Cheng-Yong

    2014-09-01

    A rare example is reported in which discrete Ag2 L 2 ring and (AgL)∞ chain motifs [L = N,N'-bis(3-imidazol-1-yl-propyl)-pyromellitic diimide] co-crystallize in the same crystal lattice with varying ratios and degrees of disorder. Crystal structures obtained from representative crystals reveal compatible packing arrangements of the cyclic and polymeric isomers within the crystal lattice, which enables them to co-exist within a crystalline solid solution. A feasible pathway for transformation between the isomers is suggested via facile rotation of the coordinating imidazolyl groups. This chemical system could provide a chance for direct observation of ring-opening isomerization at the crystal surface. Mass spectrometry and (1)H NMR titration show a dynamic equilibrium between cyclic and oligomeric species in solution, and a potential crystallization process is suggested involving alignment of precursors directed by aromatic stacking interactions between pyromellitic diimide units, followed by ring-opening isomerization at the interface between the solid and the solution. Both cyclic and oligomeric species can act as precursors, with interconversion between them being facile due to a low energy barrier for rotation of the imidazole rings. Thermogravimetric analysis and variable-temperature powder X-ray diffraction indicate a transition to a different crystalline phase around 120°C, which is associated with loss of solvent from the crystal lattice.

  3. Using Tree-Ring Width Data From 1000 Sites to Predict how American Forests Will Respond to Climate Change

    NASA Astrophysics Data System (ADS)

    Williams, P.; Still, C. J.; Leavitt, S. W.; Fischer, D. T.

    2007-12-01

    Beginning in the early 1900s, tree-ring scientists began analyzing the relative widths of annual growth rings preserved in the cross-sections of trees. Over the years, many ring-width index chronologies, each representing a specific site and species, have been developed and analyzed to infer details regarding past climate, growth response to environmental fluctuation, fire activity, logging practices by past societies, and more. Of the many ring-width chronologies constructed, 1035 represent sites within the continental United States and have been published online within The International Tree-Ring Data Bank as of September 2007 (ITRDB, http://www.ncdc.noaa.gov/paleo/treering.html). Approximately 85% of these sites are located west of the Mississippi River. Here we present results from a three-step study, using this large reserve of tree-growth data to determine how various tree species in various regions have responded to climate fluctuations in the past and how they can be expected to respond to future change. In the first step, we used linear regression to compare each time series of ring-width index values to a suite of local monthly climate variables that may influence tree growth, such as rainfall, temperature, and drought severity (PDSI). We identified the range of months (of a 24- month period) during which each climate parameter most strongly affects growth by comparing Pearson correlation coefficients. In the second step, we identified all sites where at least one climate parameter, during some rage of months, correlates significantly (95% confidence) with ring-width index values. For each of these sites, we constructed a growth model that uses each significantly correlating climate parameter as a growth predictor. In the third step, we applied the growth model to predict the next 100 years of growth response to a monthly climate forecast created by the Hadley Centre for Climate Prediction and Research. This forecast (HadCM3 IS92a) assumes a business as

  4. The Dynamic of Annual Carbon Allocation to Wood in European Forests Is Consistent with a Combined Source-Sink Limitation of Growth: Implications on Growth Simulations in a Terrestrial Biosphere Model

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrêne, E.; François, C.; Soudani, K.; Ourcival, J. M.; Leadley, P.; Delpierre, N.

    2014-12-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will strongly determines the responses of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study was i) to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in four tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex and Picea abies) ii) to implement the identified key drivers in a new C allocation scheme within the CASTANEA terrestrial biosphere model (TBM). Combining field measurements and process-based simulations at 49 sites (931 site-years), our analyses revealed that the inter-site variability in C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. Our study supports the premise that European forest growth is under a complex panel of source- and sink- limitations, contradicting the simple source control implemented in most TBMs. The implementation of these combined forest growth limitations in the CASTANEA model significantly improved its performance when evaluated against independent stand growth data at the regional scale (mainland France, >103 plots). We finally discuss how the sink imitation affects the CASTANEA simulated projections of forest productivity along the 21th century, especially with respect to the expected fertilizing effect of increasing atmospheric

  5. Technical Note: An improved guideline for rapid and precise sample preparation of tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Schollaen, K.; Baschek, H.; Heinrich, I.; Helle, G.

    2015-07-01

    The procedure of wood sample preparation, including tree-ring dissection, cellulose extraction, homogenization and finally weighing and packing for stable isotope analysis is labour intensive and time consuming. We present an elaborated methodical guideline from pre-analyses considerations, wood sample preparation through semi-automated chemical extraction of cellulose directly from tree-ring cross-sections to tree-ring dissection for high-precision isotope ratio mass spectrometry. This guideline reduces time and maximizes the tree-ring stable isotope data throughput significantly. The method was applied to ten different tree species (coniferous and angiosperm wood) with different wood growth rates and differently shaped tree-ring boundaries. The tree-ring structures of the cellulose cross-sections largely remained well identifiable. FTIR (Fourier transform infrared) spectrometry and the comparison of stable isotope values with classical method confirm chemical purity of the resultant cellulose. Sample homogenization is no longer necessary. Cellulose extraction is now faster, cheaper and more user friendly allowing (i) the simultaneous treatment of wood cross-sections of a total length of 180 cm (equivalent to 6 increment cores of 30 cm length) and thickness of 0.5 to 2 mm, and (ii) precise tree-ring separation at annual to high-resolution scale utilizing manual devices or UV-laser microdissection microscopes.

  6. Seed size effects on early seedling growth and response to applied nitrogen in annual ryegrass (Lolium multiflorum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of individual plants as experimental units may be necessary when resources are limited, but inter-plant variation risks obscuring differences among treatments. Experiments were undertaken to measure the effects of seed size on seedling size and response to applied nitrogen of annual ryegrass (Lo...

  7. Regional Chains Driving Growth of for Profit Child Care Sector: Twentieth Annual Status Report on for Profit Child Care

    ERIC Educational Resources Information Center

    Neugebauer, Roger

    2007-01-01

    In this article, the author highlights two main efforts in line with the historic twentieth annual status report on for profit child care. These includes: (1) adding new players in the "Exchanged Top 40" list; and (2) focusing on regional chains, organizations providing early childhood services in more than 20 locations in two or more states. The…

  8. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  9. Accretion in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    opaque in occultation. We suggest that Icicles may evolve into Moonlets, which are an order of magnitude less abundant in UVIS observations. Motivated by the observations and previous models, I develop a more rigorous model of the evolution of aggregates in Saturn's F ring via tidally-modified accretion. I apply the model to the F ring for bodies of constant density undergoing binary collisions. Because the locations of the UVIS-observed clump-associated features are weakly correlated to the location of Prometheus (Esposito et al. 2012) and images show material stirred up after Prometheus passage (Murray et al. 2008), we develop an additional production term describing "enhanced growth" beyond sticking of hard spheres in binary collisions. In the scenario we devise, Prometheus creates high-density regions in which larger bodies efficiently sweep up smaller bodies. Including a term for this growth mechanism in the numerical model results in the modeled size distribution evolving to a state consistent with observations. Together, the observations and model tell a story of how moonlets are made. Prometheus may be the agent responsible for moonlet growth, a complicated and rare process in the F ring. This can explain how accretion gets the upper hand in forming F ring aggregates. Growth and destruction may be cyclical on a longer time scale. This research was supported by the Cassini project.

  10. Reconstructing Tritium Exposure Using Tree Rings at Lawrence Berkeley National Laboratory, California

    PubMed Central

    LOVE, ADAM H.; HUNT, JAMES R.; KNEZOVICH, JOHN P.

    2010-01-01

    Annual tritium exposures were reconstructed using tree cores from Pinus jeffreyi and Eucalyptus globulus near a tritiated water vapor release stack. Both tritium (3H) and carbon-14 (14C) from the wood were measured from milligram samples using accelerator mass spectrometry. Because the annual nature of the eucalyptus tree rings was in doubt, 14C measurements provided growth rates used to estimate the age for 3H determinations. A 30-yr comparison of organically bound tritium (OBT) levels to reported 3H release data is achieved using OBT measurements from three trees near the stack. The annual average 3H, determined from atmospheric water vapor monitoring stations, is comparable to the OBT in proximal trees. For situations without adequate historical monitoring data, this measurement-based historical assessment provides the only independent means of assessing exposure as compared to fate and transport models that require prior knowledge of environmental conditions and 3H discharge patterns. PMID:14572081

  11. Differential response of two Pinus spp. to avian nitrogen input as revealed by nitrogen isotope analysis for tree rings.

    PubMed

    Mizota, Chitoshi; Lopez Caceres, Maximo Larry; Yamanaka, Toshiro; Nobori, Yoshihiro

    2011-03-01

    Temporal variations in N concentration and δ(15)N value of annual tree rings (1 year of time resolution) of two Japanese Black Pine (Pinus thunbergii) and three Japanese Red Pine (Pinus densiflora) trees under current breeding activity of the Great Cormorant (Pharacrocorax carbo) and the Black-tailed Gull (Larus crassirostris), respectively, in central and northeastern Japan were studied. Both species from control sites where no avian input occurs show negative values (δ(15)N = around -4 ‰ to -2 ‰) which are common among higher plants growing under high rainfall regimes. The δ(15)N values of P. densiflora show uniformly positive values several years before and after the breeding event, indicating N translocation that moved the absorbed N of a given growth year to tree rings of the previous year while a clear historical value of soil N dynamics was kept intact in the annual rings of P. thunbergii. Long-term N trends inferred from tree rings must take into account tree species with limited translocation rates that can retain actual N annual acquisition. PMID:21271423

  12. Biological Basis of Tree-Ring Formation: A Crash Course

    PubMed Central

    Rathgeber, Cyrille B. K.; Cuny, Henri E.; Fonti, Patrick

    2016-01-01

    Wood is of crucial importance for man and biosphere. In this mini review, we present the fundamental processes involved in tree-ring formation and intra-annual dynamics of cambial activity, along with the influences of the environmental factors. During wood formation, new xylem cells produced by the cambium are undergoing profound transformations, passing through successive differentiation stages, which enable them to perform their functions in trees. Xylem cell formation can be divided in five major phases: (1) the division of a cambial mother cell that creates a new cell; (2) the enlargement of this newly formed cell; (3) the deposition of its secondary wall; (4) the lignification of its cell wall; and finally, (5) its programmed cell death. In most regions of the world cambial activity follows a seasonal cycle. At the beginning of the growing season, when temperature increases, the cambium resumes activity, producing new xylem cells. These cells are disposed along radial files, and start their differentiation program according to their birth date, creating typical developmental strips in the forming xylem. The width of these strips smoothly changes along the growing season. Finally, when climatic conditions deteriorate (temperature or water availability in particular), cambial activity stops, soon followed by cell enlargement, and later on by secondary wall deposition. Without a clear understanding of the xylem formation process, it is not possible to comprehend how annual growth rings and typical wood structures are formed, recording normal seasonal variations of the environment as well as extreme climatic events. PMID:27303426

  13. Biological Basis of Tree-Ring Formation: A Crash Course.

    PubMed

    Rathgeber, Cyrille B K; Cuny, Henri E; Fonti, Patrick

    2016-01-01

    Wood is of crucial importance for man and biosphere. In this mini review, we present the fundamental processes involved in tree-ring formation and intra-annual dynamics of cambial activity, along with the influences of the environmental factors. During wood formation, new xylem cells produced by the cambium are undergoing profound transformations, passing through successive differentiation stages, which enable them to perform their functions in trees. Xylem cell formation can be divided in five major phases: (1) the division of a cambial mother cell that creates a new cell; (2) the enlargement of this newly formed cell; (3) the deposition of its secondary wall; (4) the lignification of its cell wall; and finally, (5) its programmed cell death. In most regions of the world cambial activity follows a seasonal cycle. At the beginning of the growing season, when temperature increases, the cambium resumes activity, producing new xylem cells. These cells are disposed along radial files, and start their differentiation program according to their birth date, creating typical developmental strips in the forming xylem. The width of these strips smoothly changes along the growing season. Finally, when climatic conditions deteriorate (temperature or water availability in particular), cambial activity stops, soon followed by cell enlargement, and later on by secondary wall deposition. Without a clear understanding of the xylem formation process, it is not possible to comprehend how annual growth rings and typical wood structures are formed, recording normal seasonal variations of the environment as well as extreme climatic events. PMID:27303426

  14. Using Tree-Ring Data to Develop Critical Scientific and Mathematical Thinking Skills in Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Fiondella, F.; Davi, N. K.; Wattenberg, F.; Pringle, P. T.; Greidanus, I.; Oelkers, R.

    2015-12-01

    Tree-ring science provides an engaging, intuitive, and relevant entryway into understanding both climate change and environmental research. It also sheds light on the process of science--from inspiration, to fieldwork, to analysis, to publishing and communication. The basic premise of dendrochronology is that annual rings reflect year-to-year environmental conditions and that by studying long-lived trees we can learn about environmental and climatic conditions going back hundreds to thousands of years. Conceptually, this makes tree-ring studies accessible to students and faculty for a number of reasons. First, in order to collect their data, dendrochronologists often launch expeditions to stunningly picturesque and remote places in search of long-lived, climate sensitive trees. The exciting stories and images that scientists bring back from the field can help connect students to the studies, their motivation, and the data collected. Second, tree rings can be more easily explained as a proxy for climate than ice cores, speleothems and others. Most people have prior knowledge about trees and annual growth rings. It is even possible, for example, for non-expert audiences to see climate variability through time with the naked eye by looking at climate-sensitive tree cores. Third, tree rings are interdisciplinary and illustrate the interplay between the mathematical sciences, the biological sciences, and the geosciences—that is, they show that the biosphere is a fundamental component of the Earth system. Here, we present online, multi-media learning modules for undergraduates that introduce students to several foundational studies in tree-ring science. These include evaluating tree-ring cores from ancient hemlock trees growing on a talus slope in New Paltz, NY to learn about drought in the Northeastern US, evaluating long-term streamflow and drought of the Colorado River based on tree-ring records, and using tree-ring dating techniques to develop construction

  15. Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China

    NASA Astrophysics Data System (ADS)

    Sheppard, P. R.; Tarasov, P. E.; Graumlich, L. J.; Heussner, K.-U.; Wagner, M.; Österle, H.; Thompson, L. G.

    2004-12-01

    Annual precipitation for the last 2,500 years was reconstructed for northeastern Qinghai from living and archaeological juniper trees. A dominant feature of the precipitation of this area is a high degree of variability in mean rainfall at annual, decadal, and centennial scales, with many wet and dry periods that are corroborated by other paleoclimatic indicators. Reconstructed values of annual precipitation vary mostly from 100 to 300 mm and thus are no different from the modern instrumental record in Dulan. However, relatively dry years with below-average precipitation occurred more frequently in the past than in the present. Periods of relatively dry years occurred during 74 25 BC, AD 51 375, 426 500, 526 575, 626 700, 1100 1225, 1251 1325, 1451 1525, 1651 1750 and 1801 1825. Periods with a relatively wet climate occurred during AD 376 425, 576 625, 951 1050, 1351 1375, 1551 1600 and the present. This variability is probably related to latitudinal positions of winter frontal storms. Another key feature of precipitation in this area is an apparently direct relationship between interannual variability in rainfall with temperature, whereby increased warming in the future might lead to increased flooding and droughts. Such increased climatic variability might then impact human societies of the area, much as the climate has done for the past 2,500 years.

  16. The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia.

    PubMed

    Rinne, K T; Saurer, M; Kirdyanov, A V; Loader, N J; Bryukhanova, M V; Werner, R A; Siegwolf, R T W

    2015-11-01

    Significant gaps still exist in our knowledge about post-photosynthetic leaf level and downstream metabolic processes and isotopic fractionations. This includes their impact on the isotopic climate signal stored in the carbon isotope composition (δ(13)C) of leaf assimilates and tree rings. For the first time, we compared the seasonal δ(13)C variability of leaf sucrose with intra-annual, high-resolution δ(13)C signature of tree rings from larch (Larix gmelinii Rupr.). The trees were growing at two sites in the continuous permafrost zone of Siberia with different growth conditions. Our results indicate very similar low-frequency intra-seasonal trends of the sucrose and tree ring δ(13)C records with little or no indication for the use of 'old' photosynthates formed during the previous year(s). The comparison of leaf sucrose δ(13)C values with that in other leaf sugars and in tree rings elucidates the cause for the reported (13)C-enrichment of sink organs compared with leaves. We observed that while the average δ(13)C of all needle sugars was 1.2‰ more negative than δ(13)C value of wood, the δ(13)C value of the transport sugar sucrose was on an average 1.0‰ more positive than that of wood. Our study shows a high potential of the combined use of compound-specific isotope analysis of sugars (leaf and phloem) with intra-annual tree ring δ(13)C measurements for deepening our understanding about the mechanisms controlling the isotope variability in tree rings under different environmental conditions.

  17. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  18. Actin Rings of Power.

    PubMed

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles. PMID:27326928

  19. The rings of Saturn

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1978-01-01

    Consideration is given to the development of theories concerning the rings of Saturn. Particular attention is given to ring structure, noting its thinness, the separations between rings, and observed variations in brightness. Data gathered via infrared, radio and radar techniques are described in terms of ring particle composition and size. Hypotheses about ring origin and evolution are outlined, including the tidal disruption model, calculations of Saturn's gravitational contraction history, grazing, and meteoroid bombardment. Prospects for future observations of Saturn's rings are reviewed, such as the variation in their radar reflectivity as a function of the tilt of the ring plane.

  20. New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring

    SciTech Connect

    de Pater, I; Hammel, H B; Gibbard, S G; Showalter, M R

    2006-02-02

    We compare near-infrared observations of the recently discovered outer rings of Uranus with HST results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced via impacts into the embedded moon Mab, which apparently orbits at a location where non-gravitational perturbations favor the survival and spreading of sub-micron sized dust. R/2003 U 2 more closely resembles Saturn's G ring.

  1. Evidence of solar activity and El Niño signals in tree rings of Araucaria araucana and A. angustifolia in South America

    NASA Astrophysics Data System (ADS)

    Perone, A.; Lombardi, F.; Marchetti, M.; Tognetti, R.; Lasserre, B.

    2016-10-01

    Tree rings reveal climatic variations through years, but also the effect of solar activity in influencing the climate on a large scale. In order to investigate the role of solar cycles on climatic variability and to analyse their influences on tree growth, we focused on tree-ring chronologies of Araucaria angustifolia and Araucaria araucana in four study areas: Irati and Curitiba in Brazil, Caviahue in Chile, and Tolhuaca in Argentina. We obtained an average tree-ring chronology of 218, 117, 439, and 849 years for these areas, respectively. Particularly, the older chronologies also included the period of the Maunder and Dalton minima. To identify periodicities and trends observable in tree growth, the time series were analysed using spectral, wavelet and cross-wavelet techniques. Analysis based on the Multitaper method of annual growth rates identified 2 cycles with periodicities of 11 (Schwebe cycle) and 5.5 years (second harmonic of Schwebe cycle). In the Chilean and Argentinian sites, significant agreement between the time series of tree rings and the 11-year solar cycle was found during the periods of maximum solar activity. Results also showed oscillation with periods of 2-7 years, probably induced by local environmental variations, and possibly also related to the El-Niño events. Moreover, the Morlet complex wavelet analysis was applied to study the most relevant variability factors affecting tree-ring time series. Finally, we applied the cross-wavelet spectral analysis to evaluate the time lags between tree-ring and sunspot-number time series, as well as for the interaction between tree rings, the Southern Oscillation Index (SOI) and temperature and precipitation. Trees sampled in Chile and Argentina showed more evident responses of fluctuations in tree-ring time series to the variations of short and long periodicities in comparison with the Brazilian ones. These results provided new evidence on the solar activity-climate pattern-tree ring connections over

  2. Dendrochronology and lakes: using tree-rings of alder to reconstruct lake levels

    NASA Astrophysics Data System (ADS)

    van der Maaten, Ernst; Buras, Allan; Scharnweber, Tobias; Simard, Sonia; Kaiser, Knut; Lorenz, Sebastian; van der Maaten-Theunissen, Marieke; Wilmking, Martin

    2014-05-01

    Climate change is considered a major threat for ecosystems around the world. Assessing its effects is challenging, amongst others, as we are unsure how ecosystems may respond to climate conditions they were not exposed to before. However, increased insight may be obtained by analyzing responses of ecosystems to past climate variability. In this respect, lake ecosystems appear as valuable sentinels, because they provide direct and indirect indicators of change through effects of climate. Lake-level fluctuations of closed catchments, for example, reflect a dynamic water balance, provide detailed insight in past moisture variations, and thereby allow for assessments of effects of anticipated climate change. Up to now, lake-level data are mostly obtained from gauging records and reconstructions from sediments and landforms. However, these records are in many cases only available over relatively short time periods, and, since geoscientific work is highly demanding, lake-level reconstructions are lacking for many regions. Here, we present and discuss an alternative method to reconstruct lake levels, which is based on tree-ring data of black alder (Alnus glutinosa L.). This tree species tolerates permanently waterlogged and temporally flooded conditions (i.e. riparian vegetation), and is often found along lakeshores. As the yearly growth of trees varies depending upon the experienced environmental conditions, annual rings of black alder from lakeshore vegetation likely capture information on variations in water table, and may therefore be used to reconstruct lake levels. Although alder is a relatively short-lived tree species, the frequent use of its' decay-resistant wood in foundations of historical buildings offers the possibility of extending living tree-chronologies back in time for several centuries. In this study, the potential to reconstruct lake-level fluctuations from tree-ring chronologies of black alder is explored for three lake ecosystems in the Mecklenburg

  3. Optimizing Thomson's jumping ring

    NASA Astrophysics Data System (ADS)

    Tjossem, Paul J. H.; Brost, Elizabeth C.

    2011-04-01

    The height to which rings will jump in a Thomson jumping ring apparatus is the central question posed by this popular lecture demonstration. We develop a simple time-averaged inductive-phase-lag model for the dependence of the jump height on the ring material, its mass, and temperature and apply it to measurements of the jump height for a set of rings made by slicing copper and aluminum alloy pipe into varying lengths. The data confirm a peak jump height that grows, narrows, and shifts to smaller optimal mass when the rings are cooled to 77 K. The model explains the ratio of the cooled/warm jump heights for a given ring, the reduction in optimal mass as the ring is cooled, and the shape of the mass resonance. The ring that jumps the highest is found to have a characteristic resistance equal to the inductive reactance of the set of rings.

  4. EFFECT OF SOIL NITROGEN STRESS ON THE RELATIVE GROWTH RATE OF ANNUAL AND PERENNIAL GRASSES IN THE INTERMOUNTAIN WEST

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A trade-off between inherent relative growth rate (RGR) and tolerance to low nutrient availability is a central theory in plant ecology and is predicted to be a key factor influencing invasion resistance in nutrient-poor systems. Specifically, low nutrient conditions are predicted to favor native s...

  5. Annual growth and environmental relationships of the invasive species Sargassum muticum and Undaria pinnatifida in the lagoon of Venice

    NASA Astrophysics Data System (ADS)

    Sfriso, A.; Facca, C.

    2013-09-01

    The growth and autoecology of two alien invasive species: Sargassum muticum and Undaria pinnatifida spreading in the Venice Lagoon were studied monthly, during one year, in two sites of different depth. S. muticum was present year-round and reached its largest size (485 cm) and maximum growth (8.33 cm d-1) at the deepest station. U. pinnatifida was present only from November to May, reaching the highest size (130 cm) in March-April in the shallow station with growth peaks of 2.32 cm d-1. The growth of both species was mainly regulated by water temperature, nutrient concentration, especially nitrogen, and water turbidity. The study highlights the different ecological role already observed for the two species: U. pinnatifida prefers eutrophic areas and is not present along the sea-coastline. Its total standing crop does not exceed 0.2 ktonnes fwt for all the Venice Lagoon. Conversely, S. muticum colonizes areas with a lower eutrophication level, such as the lagoon inlets, reaching a total lagoon standing crop of 4-6 ktonnes fwt.

  6. Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-08-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  7. Reconstruction of historic fossil CO2 emissions using radiocarbonmeasurements from tree rings

    NASA Astrophysics Data System (ADS)

    Norris, M. W.; Turnbull, J. C.; Trimble, M.; Keller, E. D.; Baisden, W. T.; Renwick, J. A.

    2014-12-01

    This project aims to reconstruct historic fossil CO2 emissions from a point source. As a test case we use the Vector gas processing plant in Taranaki New Zealand which has emitted 0.1Tg C yr-1 (as CO2) since 1970. Previous work using air samples found 2-5 ppm mole fraction CO2ff 600m downwind of the plant; this study extends the data set back 30 years using radiocarbon measurements in tree rings. Trees incorporate CO2 from the local atmosphere into their cellulose which is laid down in annual growth rings during photosynthesis. To relate this to the fossil CO2 content of the air we measure 14C in annual tree rings at a local clean air site and compare this to measurements of 14C in the annual ring for the same year at our test site. Fossil CO2 is devoid of 14C so addition of CO2ff will cause an observed decrease in14C in samples directly related to the amount of CO2ff present. Trees growing immediately downwind of the Vector plant and from clean air locations in Taranaki and Wellington were cored. Annual rings were counted and cut into one year growth increments. Testing was performed on two cellulose extraction methods to confirm removal of contaminating material before the cellulose component was chemically isolated, combusted, graphitised and 14C measured by Accelerator Mass Spectrometry. We will present initial results of the data; showing that Wellington tree and Taranaki clean air trees compare well with the Wellington atmospheric record whereas trees growing downwind of the Vector plant demonstrate lower 14C content consistent with fossil CO2 addition. We compare historic CO2ff emissions as sampled by the trees with reported emissions from the Vector plant to quantify and evaluate the ability of the technique to monitor changes in fossil CO2 emissions. We demonstrate how this technique could be applied alongside complimentary methods to evaluate fossil CO2 emissions at point sources worldwide to determine compliance of CO2 emitters with emission reduction

  8. Dual fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish.

    PubMed

    Hayden, Brian; Harrod, Chris; Kahilainen, Kimmo K

    2014-11-01

    Ecological systems are often characterized as stable entities. However, basal productivity in most ecosystems varies between seasons, particularly in subarctic and polar areas. How this variability affects higher trophic levels or entire food webs remains largely unknown, especially in these high-latitude regions. We undertook a year-long study of benthic (macroinvertebrate) and pelagic (zooplankton) resource availability, along with short (day/days: stomach content)-, medium (month: liver δ(13)C and δ(15)N isotopes)- and long-term (season: muscle δ(13)C and δ(15)N isotopes) assessments of resource use by a generalist fish, the European whitefish, in a deep, oligotrophic, subarctic lake in northern Europe. Due to the long ice-covered winter period, we expected to find general benthic reliance throughout the year, but also a seasonal importance of zooplankton to the diet, somatic growth and gonadal development of whitefish. Benthic and pelagic resource availability varied between seasons: peak littoral benthic macroinvertebrate density occurred in mid-winter, whereas maximum zooplankton density was observed in summer. Whitefish stomach content revealed a reliance on benthic prey items during winter and pelagic prey in summer. A seasonal shift from benthic to pelagic prey was evident in liver isotope ratios, but muscle isotope ratios indicated a year-round reliance on benthic macroinvertebrates. Whitefish activity levels as well as somatic and gonadal growth all peaked during the summer, coinciding with the zooplankton peak and the warmest water temperature. Stable isotopes of muscle consistently depicted the most important resource, benthic macroinvertebrates, whereas short-term indicators, that is, diet and stable isotopes of liver, revealed the seasonal significance of pelagic zooplankton for somatic growth and gonad development. Seasonal variability in resource availability strongly influences consumer growth and reproduction and may also be important in

  9. Effects of CO[sub 2] and temperature on growth and resource use of co-occurring C[sub 3] and C[sub 4] annuals

    SciTech Connect

    Coleman, J.S.; Bazzaz, F.A. )

    1992-08-01

    The authors examined how CO[sub 2] concentrations and temperature interacted to affect growth, resource acquisition, and resource allocation of two annual plants that were supplied with a single pulse of nutrients. Physiological and growth measurements were made on individuals of Abutilon throphrasti (C[sub 3]) and Amaranthus retroflexus (C[sub 4]) grown in environments with atmospheric CO[sub 2] levels of 400 or 700 [mu]L/L and with light/dark temperatures of 28[degree]/22[degree] or 38[degree]/31[degree] C. Elevated CO[sub 2] and temperature treatments had significant independent and interactive effects on plant growth, resource allocation, and resource acquisition, and the strength and direction of these effects were often dependent on plant species. For example, final biomass of Amaranthus was enhanced by elevated CO[sub 2] at 28[degree] but was depressed at 38[degree]. For Abutilon, elevated CO[sub 2] increased initial plant relative growth rates at 28[degree] but not at 38[degree], and had no significant effects on final biomass at either temperature. These results are interpreted in light of the interactive effects of CO[sub 2] and temperature on the rates of net leaf area production and loss, and on net whole-plant nitrogen retention. At 28[degree]C, elevated CO[sub 2] stimulated the initial production of leaf area in both species, which led to an initial stimulation of biomass accumulation at the higher CO[sub 2] level. However, in elevated CO[sub 2] at 28[degree], the rate of net leaf area loss for Abutilon increased while that of Amaranthus decreased. Furthermore, high CO[sub 2] apparently enhanced the ability of Amaranthus to retain nitrogen at this temperature, which may have helped to enhance photosynthesis, whereas nitrogen retention was unaffected in Abutilon.

  10. Lake Roosevelt Fisheries Evaluation Program; Movements and Growth of Marked Walleye Recaptured in Lake Roosevelt, 2000-2001 Annual Report.

    SciTech Connect

    McLellan, Holly; Scholz, Allan

    2002-03-01

    Walleye (Stizostedion vitreum) have been marked with floy tags in Lake Roosevelt since 1997 to estimate abundance, distribution and movement trends. In 2000, walleye were collected and marked during the spawning run in the Spokane River through electrofishing and angling to supplement movement and growth data collected in previous years. Walleye were also collected and marked during the 2000 and 2001 Kettle Falls Governor's Cup Walleye Tournaments. Seventy-six tag returns were recovered in 2000 and twenty-three in 2001. Walleye migrated into the Spokane River to spawn in mid April and early May. The majority of marked walleye were recovered within 25 km of their original marking location, with a few traveling long distances between recovery locations. Data also verified earlier results that walleye establish summer home ranges. Some walleye remained in the Spokane River, while others moved downstream, or upstream after entering the mainstem of Lake Roosevelt. Those moving upstream moved as far north as Keenlyside Dam in British Columbia (245 km). Growth data indicated similar trends exhibited in the past. Walleye growth and mortality rates were consistent with other walleye producing waters. Walleye condition was slightly below average when compared to other systems.

  11. Imprint of the Atlantic Multidecadal Oscillation on Tree-Ring Widths in Northeastern Asia since 1568

    PubMed Central

    Wang, Xiaochun; Brown, Peter M.; Zhang, Yanni; Song, Laiping

    2011-01-01

    We present a new tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO) spanning 1568–2007 CE from northeast Asia. Comparison of the instrumental AMO index, an existing tree-ring based AMO reconstruction, and this new record show strongly similar annual to multidecadal patterns of variation over the last 440 years. Warm phases of the AMO are related to increases in growth of Scots pine trees and moisture availability in northeast China and central eastern Siberia. Multi-tape method (MTM) and cross-wavelet analyses indicate that robust multidecadal (∼64–128 years) variability is present throughout the new proxy record. Our results have important implications concerning the influence of North Atlantic sea surface temperatures on East Asian climate, and provide support for the possibility of an AMO signature on global multidecadal climate variability. PMID:21818380

  12. Vascular ring (image)

    MedlinePlus

    Vascular ring is a term used to describe a number of abnormal formations of the aorta, the large artery ... the pulmonary artery. The abnormal vessel(s) forms a ring, which encircles and may press down on the ...

  13. New dust belts of Uranus: one ring, two ring, red ring, blue ring.

    PubMed

    de Pater, Imke; Hammel, Heidi B; Gibbard, Seran G; Showalter, Mark R

    2006-04-01

    We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings. PMID:16601188

  14. New dust belts of Uranus: one ring, two ring, red ring, blue ring.

    PubMed

    de Pater, Imke; Hammel, Heidi B; Gibbard, Seran G; Showalter, Mark R

    2006-04-01

    We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings.

  15. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  16. Secular instability of Saturn's rings.

    NASA Astrophysics Data System (ADS)

    Griv, E.; Chiueh, T.

    1996-07-01

    Kinetic theory with the Boltzmann and Poisson's equations is used to determine the stability and oscillations of the two-dimensional collisional system of identical particles of Saturn's rings. The effects of physical collisions between particles are taken into account by using in the Bolztmann kinetic equation a phenomenological Bhatnagar-Gross-Krook collisional integral (Bhatnagar et al. 1954). This model collisional integral was modified following Shu & Stewart (1985) to allow collisions to be inelastic. The dynamics of a system with rare collisions is considered, that is, {OMEGA}^2^>>ν_c_^2^, with {OMEGA} being the orbital angular frequency and ν_c_ the collision frequency. It is shown that in a Jeans-stable system the simultaneous action of self-gravity and collisions leads to a secular dissipative type instability. It is also shown that generally the growth rate of this aperiodic instability is small, Im ω_*_~ν_c_. However, in the marginally Jeans-stable gravitationally parts of the disk, the growth rate is a maximum, and may become a large, Im ω_*_=~(ν_cOMEGA^2^)^1/3^>>ν_c_. In such parts of the Saturn's system the instability will develop on the time scale only of several revolutions even at moderately low values of the local optical depth, τ=~ν_c_/{OMEGA}~0.1. The radial wavelength of the most unstable oscillations is of the order λ=~2πρ, where ρ=~c/{OMEGA} is the epicyclic radius and c is the mean dispersion of random velocities of particles. The secular instability may be suggested as the cause of much of the irregular, narrow ~2πρ~100m structure in low optical depth regions of Saturn's rings. Cassini spacecraft high-resolution images may resolve such hyperfine structure in the C ring, the inner B ring and the A ring.

  17. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  18. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  19. Climate variability of Late Pleistocene deglaciation in the North American midcontinent derived from tree rings

    NASA Astrophysics Data System (ADS)

    Panyushkina, Irina P.; Livina, Valerie N.; Leavitt, Steve W.; Mode, William N.

    2016-04-01

    High-resolution climatic proxies, such as tree rings spanning millennia, have excellent potential to describe high- and low-frequency variability of climate. In practice, however, although the number of Holocene millennium-length tree-ring records is still rather limited, they are especially rare for the Late Pleistocene warming period following the Last Glacial Maximum. Furthermore, detection of climatic variability in tree-ring data is hindered due to intricate methodology of chronology development that transforms changes in tree geometry and a variety of environmental responses of tree growth to a climatic signal. Following meticulous derivation of a new tree-ring chronology, we propose a novel approach to analyze annual, decadal, multi-decadal and centennial climate-related variability of floating tree rings dated back near the end of the Pleistocene. We have developed a 1400-year tree-ring width chronology of spruce from the Green Bay area (Wisconsin) dated from 14.5 ka to 13.1ka cal BP. This new North American midcontinent record is composed of 10 overlapped site chronologies and has two short gaps filled with linear interpolation. The Green Bay chronology covers most of the warm and moist Bølling-Allerød interstadial (14.7 ka -12.7 ka BP). Within the Bølling-Allerød interstadial, there were several abrupt and brief cooling excursions such as the Older Dryas with full-glacial-like temperature conditions. We have applied tipping point analysis to detect the changes of climate-system states during these turbulent times and obtained early warning signals in the tree-ring variance. The analysis detected four short-term bifurcations dated ca. 14,450 cal BP, 14,000 cal BP, 13,750-13,600 cal BP and 13,180-13,100 cal BP. The bifurcation events of the tree-ring record correspond well to the abrupt and short cooling temperature excursions of the Bølling-Allerød interstadial documented in δ18O and Ca of GRIP ice-core records, and the Laurentide ice sheet dynamics

  20. Ultra-high Resolution Carbon Isotope Records in Tree Rings: Indicators of Carbon Allocation and Growing Season Precipitation/Temperature (Invited)

    NASA Astrophysics Data System (ADS)

    Jahren, A.; Schubert, B.

    2010-12-01

    The rapidity and ease of carbon stable isotope measurements on organic substrates has opened the possibility of ultra-high resolution δ13C analyses within tree rings at < 30 to 100 micron increments. We present such measurements for 80 individual tree rings, from 10 trees spanning the last 55 million years in age from arctic, temperate, and tropical environments. Morphological features such as growth rings and resin canals were not preserved in some ancient specimens making identification of annual rings via standard techniques impossible. However, the annual patterns observed in ultra-high resolution δ13C records allowed for characterization of these unknown specimens as evergreen or deciduous. A combination of our data with that published in the literature showed a strong correlation between the amplitude of the δ13C pattern and growing season precipitation/temperature in > 90% of modern evergreen trees examined to date. Ultra-high resolution δ13C analyses of ancient, non-permineralized, evergreen trees could therefore provide quantitative estimates of past climate at annual or seasonal resolution.

  1. Tree ring anatomical variability as an indicator for large-magnitude spring flooding in the Lower Mississippi Basin

    NASA Astrophysics Data System (ADS)

    Therrell, M. D.; Meko, M. D.; Bialecki, M.; Harley, G. L.

    2015-12-01

    Predicting the magnitude and frequency of floods relies on instrumental measurements of flood stage and discharge, however instrumental observations prior to the late-nineteenth century are rare. Using paleoproxies such as tree rings to study floods that occurred before the instrumental record, can help provide context for the modern flood record especially the variability of flood recurrence patterns. Riparian trees growing on flooded sites often record flood events as inter- and intra-annual variability in size, shape and arrangement of vessels in the annual xylem growth increment. In this study, we used anomalous anatomical features as well as a modified measure of earlywood (EW) vessel width of oak (Quercus sp.) annual tree rings to identify large-magnitude spring-season flood events at three locations in the Lower Mississippi River (LMR) basin for the past ~300 years. We compared the flood-ring anomaly and EW chronologies with daily river stage height data at several locations and these comparisons indicate that our new flood ring records can individually and jointly explain significant amounts of the variance in both stage height and number of days in flood during spring flood events. Our analyses indicate that our chronologies are recording nearly all large observed LMR floods in the 20th century, and provide a new record of similar events in the 18th and 19th centuries. These results suggest that tree-rings can be effectively used to develop and improve pre-instrumental flood records throughout the LMW region and potentially other similar systems.

  2. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual.

    PubMed

    Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro

    2015-01-01

    Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ(13)C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706

  3. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual

    PubMed Central

    Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro

    2015-01-01

    Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ13C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706

  4. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual.

    PubMed

    Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro

    2015-10-03

    Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ(13)C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves.

  5. Magnetic Bloch oscillations in nanowire superlattice rings.

    PubMed

    Citrin, D S

    2004-05-14

    The recent growth of semiconductor nanowire superlattices encourages hope that Bloch-like oscillations in such structures formed into rings may soon be observed in the presence of a time-dependent magnetic flux threading the ring. These magnetic Bloch oscillations are a consequence of Faraday's law; the time-dependent flux produces an electromotive force around the ring, thus leading to the Bloch-like oscillations. In the spectroscopic domain, generalized Wannier-Stark states are found that are manifestations of the emf-induced localization of the states.

  6. Fagus sylvatica trunk epicormics in relation to primary and secondary growth

    PubMed Central

    Colin, F.; Sanjines, A.; Fortin, M.; Bontemps, J.-D.; Nicolini, E.

    2012-01-01

    Background and Aims European beech epicormics have received far less attention than epicormics of other species, especially sessile oak. However, previous work on beech has demonstrated that there is a negative effect of radial growth on trunk sprouting, while more recent investigations on sessile oak proved a strong positive influence of the presence of epicormics. The aims of this study were, first, to make a general quantification of the epicormics present along beech stems and, secondly, to test the effects of both radial growth and epicormic frequency on sprouting. Methods In order to test the effect of radial growth, ten forked individuals were sampled, with a dominant and a dominated fork of almost equal length for every individual. To test the effects of primary growth and epicormic frequency, on the last 17 annual shoots of each fork arm, the number of axillary buds, shoot length, ring width profiles, epicormic shoots and other epicormics were carefully recorded. Key Results The distribution of annual shoot length, radial growth profiles and parallel frequencies of all epicormics are presented. The latter frequencies were parallel to the annual shoot lengths, nearly equivalent for both arms of each tree, and radial growth profiles included very narrow rings in the lowest annual shoots and even missing rings in the dominated arms alone. The location of the latent buds and the epicormics was mainly at branch base, while epicormic shoots, bud clusters and spheroblasts were present mainly in the lowest annual shoots investigated. Using a zero-inflated mixed model, sprouting was shown to depend positively on epicormic frequency and negatively on radial growth. Conclusions Support for a trade-off between cambial activity and sprouting is put forward. Sprouting mainly depends on the frequency of epicormics. Between- and within-tree variability of the epicormic composition in a given species may thus have fundamental and applied implications. PMID:22887022

  7. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  8. Gonadotropins and Growth Hormone Family Characterization in an Endangered Siluriform Species, Steindachneridion parahybae (Pimelodidae): Relationship With Annual Reproductive Cycle and Induced Spawning in Captivity.

    PubMed

    Honji, Renato Massaaki; Caneppele, Danilo; Pandolfi, Matias; Nostro, Fabiana Laura Lo; Moreira, Renata Guimarães

    2015-09-01

    The aim of this study was to identify and characterize pituitary cells of Steindachneridion parahybae females in captivity, highlighting the possible relationship with reproductive disorders at this level, since this species shows oocyte final maturation, ovulation and spawning dysfunction in captivity. The localization and distribution of growth hormone (GH), prolactin (PRL), somatolactin (SL), β-luteinizing hormone (β-LH), and β-follicle stimulating hormone (β-FSH) immunoreactive (-ir) cells in the adenohypophysis was studied by immunohistochemical and Western blot methods. In addition, cellular morphometric analyses and semi-quantification of ir-cells optical density (OD) during the annual reproductive cycle and after artificial induced spawning (AIS) were performed. Results showed that the distribution and general localization of pituitary cell types were similar to that of other teleost species. However, the morphometrical study of adenohypophysial cells showed differences along the reproductive cycle and following AIS. In general, females at the vitellogenic stage presented greater OD values for GH, PRL and SL than at other maturation stages (previtellogenic and regression stages), probably indicating an increased cellular activity during this stage. Conversely, β-LH OD did not vary during the annual reproductive cycle. After AIS, β-LH, SL and GH ir-cells showed an increase in OD values suggesting a possible involvement on oocyte final maturation, ovulation and spawning or a feedback control on the brain-pituitary-gonads axis. Reproductive dysfunction in S. parahybae females in captivity may be due to alteration of the synthesis pathways of β-LH. In addition, GH family of hormones could modulate associated mechanisms that influence the reproductive status in this species.

  9. Hydrologic inferences from tree-ring studies on the Hawkesbury River, Sydney, Australia

    NASA Astrophysics Data System (ADS)

    Martens, Daniel M.

    1993-11-01

    Introduced Salix trees in Australian alluvial environments can be used to make a number of hydrologic inferences. Dendrochronological studies along the Hawkesbury River near Windsor suggest that the Salix growth form and annual growth-ring variability are closely associated with the local hydrologic regime. Detailed analyses of 33 trees showed that tree growth is suppressed close to water and increases with height above mean low stage levels because of the decreasing influence of flooding. Alluvial levels contain discrete vegetation patterns and growth characteristics that are not explained by variations in soil and climate. Growth of Salix in thickets on low in-channel benches is flood limited with fitted exponential growth curves having positive or zero slopes. The high in-channel bench contains vegetation influenced by flooding but growing according to classical exponential decay functions. Trees on floodplain levees show full canopy development and the most rapid growth because of fertile soils, the high availability of water, and limited influence of floods overtopping levee tops. Elevation and tree-growth relations are used to develop a relation between growth and flood frequency. This is applicable to catchments of similar size, soil type, and climate. Analyses of tree form and root distribution indicated that dendrochronological techniques may be used to determine the minimum land surface age and rates of accretion around the tree bole in alluvial areas of southeastern Australia.

  10. A tree-ring reconstruction of East Anglian (UK) hydroclimate variability over the last millennium

    NASA Astrophysics Data System (ADS)

    Cooper, Richard J.; Melvin, Thomas M.; Tyers, Ian; Wilson, Rob J. S.; Briffa, Keith R.

    2013-02-01

    We present an annually resolved reconstruction of spring-summer precipitation variability in East Anglia, UK (52-53°N, 0-2°E) for the period AD 900-2009. A continuous regional network of 723 living (AD 1590-2009) and historical (AD 781-1790) oak ( Quercus sp.) ring-width series has been constructed and shown to display significant sensitivity to precipitation variability during the March-July season. The existence of a coherent common growth signal is demonstrated in oaks growing across East Anglia, containing evidence of near-decadal aperiodic variability in precipitation throughout the last millennium. Positive correlations are established between oak growth and precipitation variability across a large region of northwest Europe, although climate-growth relationships appear time transgressive with correlations significantly weakening during the early twentieth century. Examination of the relationship between oak growth, precipitation, and the North Atlantic Oscillation (NAO), reveals no evidence that the NAO plays any significant role in the control of precipitation or tree growth in this region. Using Regional Curve Standardisation to preserve evidence of low-frequency growth variability in the East Anglian oak chronology, we produce a millennial length reconstruction that is capable of explaining 32-35% of annual-to-decadal regional-scale precipitation variance during 1901-2009. The full length reconstruction indicates statistically significant anomalous dry conditions during AD 900-1100 and circa-1800. An apparent prolonged wetter phase is estimated for the twelfth and thirteen centuries, whilst precipitation fluctuates between wetter and drier phases at near centennial timescales throughout the fourteenth to seventeenth centuries. Above average precipitation reconstructed for the twenty-first century is comparable with that reproduced for the 1600s. The main estimated wet and dry phases reconstructed here appear largely coherent with an independent tree-ring

  11. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    PubMed

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability. PMID:25979478

  12. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    PubMed

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability.

  13. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  14. The evolution of swirling axisymmetric vortex rings

    NASA Astrophysics Data System (ADS)

    Gargan-Shingles, C.; Rudman, M.; Ryan, K.

    2015-08-01

    Swirling vortex rings form in any turbulent flow where a swirling component is present, such as in combustion chambers or the downwash of helicopter blades. Instabilities on initially non-swirling vortex rings result in a localized swirl velocity being generated within the core. The presence of a swirl component of velocity in a vortex ring modifies the relaxation and evolution of numerical Gaussian cores in a manner that is currently unknown. The evolution of Gaussian axisymmetric vortex rings of size 0.2 < Λ < 0.5, with Gaussian swirls of magnitude 0.0 < W < 0.5, is analyzed with reference to the governing equations. A relaxation time, at which the initial Gaussian approximation has minimal influence on the subsequent evolution, has been estimated for each case. An axial vortex forms along the axis of the ring and is responsible for the growth of a shear layer that is found to form at the leading edge. The circulation based Reynolds number is set at 10 000 to encourage the growth of shear layer instabilities from within this region. Secondary vortex rings are subsequently shown to evolve from the Kelvin-Helmholtz instability for shear layers of sufficient strength and are convected around the original ring and shed from the system. It is shown that complete settling of the strain rate within the core does not occur until all sheddings have ceased. Increasing the swirl magnitude past that considered in this paper is expected to result in the original ring losing its structure before the instability can occur. The evolution is found to be qualitatively similar to that of a piston generated axisymmetric vortex ring with swirl, with both cases eventually reaching a similar quasi-steady state.

  15. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    PubMed

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  16. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    PubMed

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming. PMID:24352845

  17. Soil amendment effects on the exotic annual grass Bromus tectorum L. and facilitation of its growth by the native perennial grass Hilaria jamesii (Torr.) Benth

    USGS Publications Warehouse

    Belnap, J.; Sherrod, S.K.

    2009-01-01

    Greenhouse experiments were undertaken to identify soil factors that curtail growth of the exotic annual grass Bromus tectorum L. (cheatgrass) without significantly inhibiting growth of native perennial grasses (here represented by Hilaria jamesii [Torr.] Benth). We grew B. tectorum and H. jamesii alone (monoculture pots) and together (combination pots) in soil treatments that manipulated levels of soil phosphorus, potassium, and sodium. Hilaria jamesii showed no decline when its aboveground biomass in any of the applied treatments was compared to the control in either the monoculture or combination pots. Monoculture pots of B. tectorum showed a decline in aboveground biomass with the addition of Na2HPO4 and K2HPO4. Interestingly, in pots where H. jamesii was present, the negative effect of these treatments was ameliorated. Whereas the presence of B. tectorum generally decreased the aboveground biomass of H. jamesii (comparing aboveground biomass in monoculture versus combination pots), the presence of H. jamesii resulted in an enhancement of B. tectorum aboveground biomass by up to 900%. We hypothesize that B. tectorum was able to obtain resources from H. jamesii, an action that benefited B. tectorum while generally harming H. jamesii. Possible ways resources may be gained by B. tectorum from native perennial grasses include (1) B. tectorum is protected from salt stress by native plants or associated soil biota; (2) when B. tectorum is grown with H. jamesii, the native soil biota is altered in a way that favors B. tectorum growth, including B. tectorum tapping into the mycorrhizal network of native plants and obtaining resources from them; (3) B. tectorum can take advantage of root exudates from native plants, including water and nutrients released by natives via hydraulic redistribution; and (4) B. tectorum is able to utilize some combination of the above mechanisms. In summary, land managers may find adding soil treatments can temporarily suppress B. tectorum

  18. Frost-ring chronologies as dendroclimatic proxies of boreal environments

    NASA Astrophysics Data System (ADS)

    Payette, Serge; Delwaide, Ann; Simard, Martin

    2010-01-01

    Frost rings are formed in tree stems when growing-season frosts affect immature wood cells, producing collapsed cells within annual tree rings. Open boreal forests are most susceptible to record growing-season frost because they lack the greenhouse effect commonly observed in closed forests. Here we present a novel method to construct regional frost-ring chronologies in lichen-black spruce woodlands of the boreal forest zone. Because the ability of trees to form frost rings depends on several factors (including bark thickness and ring width), we used two models to produce a Frost Composite Index based on a frost susceptibility window of cambial age <30 years. The frost-ring chronology showed alternating periods of high and low frost activity that were highly consistent within and among sites. Reconstruction of growing-season frost activity may be used as dendroclimatic proxies of climate variability and may give insights into future risks of frost damage in a warming climate.

  19. Elevation Pattern in Growth Coherency on the Southeastern Tibetan Plateau

    PubMed Central

    Lyu, Lixin; Deng, Xu; Zhang, Qi-Bin

    2016-01-01

    It is generally expected that inter-annual changes in radial growth among trees would be similar to the increase in altitude due to the limitation of increasingly harsher climatic factors. Here, we examine whether this pattern exists in alpine forests on the southeastern Tibetan Plateau. Increment cores were collected from mature trees at the lower, middle and upper limits of balfour spruce (Picea likiangensis var. balfouriana (Rehd. et Wils.) Hillier ex Slsvin) forests at the Buze and Yela Mountains in Basu County, Changdu Prefecture of Tibet, China. The treeline elevations are 4320 m and 4510 m a.s.l. for Buze and Yela, respectively. Tree-ring widths were measured, crossdated, and detrended to obtain a sequence of ring-width indices for each individual sample. Annual growth rate, climate sensitivity, growth-climate relationships, and growth synchrony among trees were calculated and compared across altitudes. In Buze Mountain, the annual growth rate of trees has no significant difference across altitudes. The mean sensitivity of trees is lower at the treelines than at lower elevations. Tree growth has stronger correlation with winter temperature at upper elevations than at lower elevations, has significant correlation with moisture, not temperature, in the growing season, and the growth response to moisture is lower at the treeline than at lower elevations. The correlation among individual tree-ring sequences is lower at the treeline than at sites at lower elevation. In Yela Mountain, the characterisitics of annual growth rate, mean sensitivity, tree growth-climate relationships, and inter-serial correlation are similar to those in Buze, but their differences along altitudinal gradients are less significant as those in Buze. Our data do not support the general expectation of growth convergence among individuals with increasing altitude. We conclude that individual heterogeneity and microhabitat diversity are important features for treeline trees that may dampen

  20. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    NASA Astrophysics Data System (ADS)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  1. On multiple Einstein rings

    NASA Astrophysics Data System (ADS)

    Werner, M. C.; An, J.; Evans, N. W.

    2008-12-01

    A number of recent surveys for gravitational lenses have found examples of double Einstein rings. Here, we analytically investigate the occurrence of multiple Einstein rings. We prove, under very general assumptions, that at the most one Einstein ring can arise from a mass distribution in a single plane lensing a single background source. Two or more Einstein rings can therefore only occur in multiplane lensing. Surprisingly, we show that it is possible for a single source to produce more than one Einstein ring. If two point masses, or two isothermal spheres, in different planes are aligned with observer and source on the optical axis, we show that there are up to three Einstein rings. We also discuss the image morphologies for these two models if axisymmetry is broken, and give the first instances of magnification invariants in the case of two-lens planes.

  2. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  3. Annual Report to the Bonneville Power Administration, Reporting Period: April 2008 - February 2009 [re: "Survival and Growth in the Columbia River Plume and north California Current"].

    SciTech Connect

    Northwest Fisheries Science Center, NOAA Fisheries; Cooperative Institute for Marine Resources Studies, Oregon State University; OGI School of Science & Engineering, Oregon Health Sciences University.

    2009-07-17

    We have made substantial progress toward our objectives outlined in our BPA supported proposal entitled 'Columbia River Basin Juvenile Salmonids: Survival and Growth in the Columbia River Plume and northern California Current' which we report on herein. During 2008, we were able to successfully conduct 3 mesoscale cruises. We also were able to conduct 7 biweekly predator cruises, along with substantial shore-based visual observations of seabirds. Detailed results of the mesoscale cruises are available in the Cruise Reports and summarized in the next section. We have taken a proactive approach to getting the results of our research to fisheries managers and the general public. We have begun to make annual predictions based on ocean conditions of the relative survival of juvenile coho and Chinook salmon well before they return as adults. This is based on both biological and physical indicators that we measure during our surveys or collect from outside data sources. Examples of our predictions for 2009 and 2010 are available on the following web site: http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/a-ecinhome.cfm.

  4. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  5. Temperatures of Saturn's rings.

    NASA Technical Reports Server (NTRS)

    Murphy, R. E.

    1973-01-01

    The 20-micron brightness temperatures of the rings were determined using the 224-cm telescope of the Mauna Kea Observatory, and the standard University of Hawaii radiometer with a 17- to 25-micron filter. The observations were made on the nights of Aug. 20 and 21, and Sept. 26 and 27, 1972. The brightness temperatures of the A, B, and C rings are, respectively, 89 plus or minus 3 K, 94 plus or minus 2 K, and 89 plus or minus 4 K. A possible explanation of the relatively high temperature of the C ring is that Saturn has radiation belts and the inner ring is heated by particle bombardment.

  6. Growth-climate relationships across topographic gradients in the northern Great Lakes

    USGS Publications Warehouse

    Dymond, S.F.; D'Amato, A.W.; Kolka, R.K.; Bolstad, P.V.; Sebestyen, S.D.; Bradford, John B.

    2015-01-01

    Climatic conditions exert important control over the growth, productivity, and distribution of forests, and characterizing these relationships is essential for understanding how forest ecosystems will respond to climate change. We used dendrochronological methods to develop climate–growth relationships for two dominant species, Populus tremuloides (quaking aspen) and Pinus resinosa (red pine), in the upper Great Lakes region to understand how climate and water availability influence annual forest productivity. Trees were sampled along a topographic gradient at the Marcell Experimental Forest (Minnesota, USA) to assess growth response to variations in temperature and different water availability metrics (precipitation, potential evapotranspiration (PET), cumulative moisture index (CMI), and soil water storage). Climatic variables were able to explain 33–58% of the variation in annual growth (as measured by ring-width increment) for quaking aspen and 37–74% of the variation for red pine. Climate–growth relationships were influenced by topography for quaking aspen but not for red pine. Annual ring growth for quaking aspen decreased with June CMI on ridges, decreased with temperature in the November prior to the growing season on sideslopes, and decreased with June PET on toeslopes. Red pine growth increased with increasing July PET across all topographic positions. These results indicate the sensitivity of both quaking aspen and red pine to local climate and show several vulnerabilities of these species to shifts in water supply and temperature because of climate change.

  7. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  8. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There

  9. Ring Around a Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Telescope Science Institute astronomers are giving the public chances to decide where to aim NASA's Hubble Space Telescope. Guided by 8,000 Internet voters, Hubble has already been used to take a close-up, multi-color picture of the most popular object from a list of candidates, the extraordinary 'polar-ring' galaxy NGC 4650A. Located about 130 million light-years away, NGC 4650A is one of only 100 known polar-ring galaxies. Their unusual disk-ring structure is not yet understood fully. One possibility is that polar rings are the remnants of colossal collisions between two galaxies sometime in the distant past, probably at least 1 billion years ago. What is left of one galaxy has become the rotating inner disk of old red stars in the center. Meanwhile, another smaller galaxy which ventured too close was probably severely damaged or destroyed. The bright bluish clumps, which are especially prominent in the outer parts of the ring, are regions containing luminous young stars, examples of stellar rebirth from the remnants of an ancient galactic disaster. The polar ring appears to be highly distorted. No regular spiral pattern stands out in the main part of the ring, and the presence of young stars below the main ring on one side and above on the other shows that the ring is warped and does not lie in one plane. Determining the typical ages of the stars in the polar ring is an initial goal of our Polar Ring Science Team that can provide a clue to the evolution of this unusual galaxy. The HST exposures were acquired by the Hubble Heritage Team, consisting of Keith Noll, Howard Bond, Carol Christian, Jayanne English, Lisa Frattare, Forrest Hamilton, Anne Kinney and Zolt Levay, and guest collaborators Jay Gallagher (University of Wisconsin-Madison), Lynn Matthews (National Radio Astronomy Observatory-Charlottesville), and Linda Sparke (University of Wisconsin-Madison).

  10. Prometheus Induced Vorticity in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Sutton, Phil J.; Kusmartsev, Feo V.

    2016-09-01

    Saturn's rings are known to show remarkable real time variability in their structure. Many of which can be associated to interactions with nearby moons and moonlets. Possibly the most interesting and dynamic place in the rings, probably in the whole Solar System, is the F ring. A highly disrupted ring with large asymmetries both radially and azimuthally. Numerically non-zero components to the curl of the velocity vector field (vorticity) in the perturbed area of the F ring post encounter are witnessed, significantly above the background vorticity. Within the perturbed area rich distributions of local rotations is seen located in and around the channel edges. The gravitational scattering of ring particles during the encounter causes a significant elevated curl of the vector field above the background F ring vorticity for the first 1-3 orbital periods post encounter. After 3 orbital periods vorticity reverts quite quickly to near background levels. This new found dynamical vortex life of the ring will be of great interest to planet and planetesimals in proto-planetary disks where vortices and turbulence are suspected of having a significant role in their formation and migrations. Additionally, it is found that the immediate channel edges created by the close passage of Prometheus actually show high radial dispersions in the order ~20-50 cm/s, up to a maximum of 1 m/s. This is much greater than the value required by Toomre for a disk to be unstable to the growth of axisymmetric oscillations. However, an area a few hundred km away from the edge shows a more promising location for the growth of coherent objects.

  11. Linear dispersion properties of ring velocity distribution functions

    SciTech Connect

    Vandas, Marek

    2015-06-15

    Linear properties of ring velocity distribution functions are investigated. The dispersion tensor in a form similar to the case of a Maxwellian distribution function, but for a general distribution function separable in velocities, is presented. Analytical forms of the dispersion tensor are derived for two cases of ring velocity distribution functions: one obtained from physical arguments and one for the usual, ad hoc ring distribution. The analytical expressions involve generalized hypergeometric, Kampé de Fériet functions of two arguments. For a set of plasma parameters, the two ring distribution functions are compared. At the parallel propagation with respect to the ambient magnetic field, the two ring distributions give the same results identical to the corresponding bi-Maxwellian distribution. At oblique propagation, the two ring distributions give similar results only for strong instabilities, whereas for weak growth rates their predictions are significantly different; the two ring distributions have different marginal stability conditions.

  12. Smoke Ring Physics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2011-01-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  13. Lower esophageal ring (Schatzki)

    MedlinePlus

    ... narrowed area to stretch the ring. Sometimes, a balloon is placed in the area and inflated, to help widen the ring. Outlook (Prognosis) Swallowing problems may return. You may need repeat treatment. When to Contact a Medical Professional Call your health care provider if you ...

  14. EBT ring physics

    SciTech Connect

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)

  15. Contactless Magnetic Slip Ring

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki (Inventor); Deardon, Joe D. (Inventor)

    1997-01-01

    A contactless magnetic slip ring is disclosed having a primary coil and a secondary coil. The primary and secondary coils are preferably magnetically coupled together, in a highly reliable efficient manner, by a magnetic layered core. One of the secondary and primary coils is rotatable and the contactless magnetic slip ring provides a substantially constant output.

  16. Smoke Ring Physics

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2011-11-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampère's law in an introductory physics course. We discuss these common features.

  17. Jupiter's Gossamer Rings Explained.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2003-05-01

    Over the past several years, Galileo measurements and groundbased imaging have drastically improved our knowledge of Jupiter's faint ring system. We now recognize that the ring consists of four components: a main ring 7000km wide, whose inner edge blossoms into a vertically-extended halo, and a pair of more tenuous Gossamer rings, one associated with each of the small moons Thebe and Amalthea. When viewed edge on, the Gossamer rings appear as diaphanous disks whose thicknesses agree with the vertical excursions of the inclined satellites from the equatorial plane. In addition, the brightness of each Gossamer ring drops off sharply outside the satellite orbits. These correlations allowed Burns etal (1999, Science, 284, 1146) to argue convincingly that the satellites act as sources of the dusty ring material. In addition, since most material is seen inside the orbits of the source satellites, an inwardly-acting dissipative force such as Poynting-Robertson drag is implicated. The most serious problem with this simple and elegant picture is that it is unable to explain the existence of a faint swath of material that extends half a jovian radius outward from Thebe. A key constraint is that this material has the same thickness as the rest of the Thebe ring. In this work, we identify the mechanism responsible for the outward extension: it is a shadow resonance, first investigated by Horanyi and Burns (1991, JGR, 96, 19283). When a dust grain enters Jupiter's shadow, photoelectric processes shut down and the grain's electric charge becomes more negative. The electromagnetic forces associated with the varying charge cause periodic oscillations in the orbital eccentricity and semimajor axis as the orbital pericenter precesses. This results in a ring which spreads both inward and outward of its source satellite while preserving its vertical thickness - just as is observed for the Thebe ring. Predictions of the model are: i) gaps of micron-sized material interior to Thebe and

  18. Jupiter's Rings: Sharpest View

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the rings. New Horizons snapped the lower image after it had passed Jupiter on February 28, 2007, and looked back in a direction toward the sun. The image is sharply focused, though it appears fuzzy due to the cloud of dust-sized particles enveloping the rings. The dust is brightly illuminated in the same way the dust on a dirty windshield lights up when you drive toward a 'low' sun. The narrow rings are confined in their orbits by small 'shepherding' moons.

  19. STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED BY ARCHITECTURAL FINISH. TENSION RING ROLLER SUPPORT AT COLUMN OBSCURED BY COLUMN COVERINGS. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  20. Climate response among growth increments of fish and trees

    USGS Publications Warehouse

    Guyette, R.P.; Rabeni, C.F.

    1995-01-01

    Significant correlations were found among the annual growth increments of stream fish, trees, and climate variables in the Ozark region of the United States. The variation in annual growth increments of rock bass (Ambloplites rupestris) from the Jacks Fork River was significantly correlated over 22 years with the ring width of four tree species: white oak (Quercus alba), post oak (Quercus stellata), shortleaf pine (Pinus echinata) and eastern red cedar (Juniperus virginiana). Rock bass growth and tree growth were both significantly correlated with July rainfall and stream discharge. Variations in annual growth of smallmouth bass (Micropterus dolomieu) from four streams were significantly correlated over 29 years (1939-1968) with mean May maximum air temperature but not with tree growth. The magnitude and significance of correlations among growth increments from fish and trees imply that conditions such as topography, stream gradient, organism age, and the distribution of a population relative to its geographic range can influence the climatic response of an organism. The timing and intensity of climatic variables may produce different responses among closely related species.

  1. The Enceladus Ring

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] The Enceladus Ring (labeled)

    This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background.

    The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view.

    Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring.

    Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione.

    An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus.

    One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane.

    Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally

  2. The effects of forming parameters on conical ring rolling process.

    PubMed

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the "obtuse angle zone" of ring's cross-section are higher than those at "acute angle zone"; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained.

  3. The Effects of Forming Parameters on Conical Ring Rolling Process

    PubMed Central

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716

  4. Temperature histories from tree rings and corals

    SciTech Connect

    Cook, E.R.

    1995-05-01

    Recent temperature trends in long tree-ring and coral proxy temperature histories are evaluated and compared in an effort to objectively determine how anomalous twentieth century temperature changes have been. These histories mostly reflect regional variations in summer warmth from the tree rings and annual warmth from the corals. In the Northern Hemisphere. the North American tree-ring temperature histories and those from the north Polar Urals, covering the past 1000 or more years, indicate that the twentieth century has been anomalously warm relative to the past. In contrast, the tree-ring history from northern Fennoscandia indicates that summer temperatures during the {open_quote}Medieval Warm Period{close_quote} were probably warmer on average than those than during this century. In the Southern Hemisphere, the tree-ring temperature histories from South America show no indication of recent warming, which is in accordance with local instrumental records. In contrast, the tree-ring, records from Tasmania and New Zealand indicate that the twentieth century has been unusually warm particularly since 1960. The coral temperature histories from the Galapagos Islands and the Great Barrier Reef are in broad agreement with the tree-ring temperature histories in those sectors, with the former showing recent cooling and the latter showing recent warming that may be unprecedented. Overall, the regional temperature histories evaluated here broadly support the larger-scale evidence for anomalous twentieth century warming based on instrumental records. However, this warming cannot be confirmed as an unprecedented event in all regions. 38 refs., 3 figs., 2 tabs.

  5. Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps

    PubMed Central

    Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V.; Zafirov, Nikolay; de Luis, Martin

    2016-01-01

    Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events. PMID:27200063

  6. Structure and Function of Intra-Annual Density Fluctuations: Mind the Gaps.

    PubMed

    Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V; Zafirov, Nikolay; de Luis, Martin

    2016-01-01

    Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events. PMID:27200063

  7. Transverse instability at the recycler ring

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2004-10-01

    Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring leading to increase in transverse emittances and beam loss. The driving source of these instabilities has been attributed to the resistive-wall impedance with space-charge playing an important role in suppressing Landau damping. Growth rates of the instabilities are computed. Remaining problems are discussed.

  8. Climate and flow variation revealed in tree rings of riparian cottonwood, western North Dakota, USA

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.; Edmondson, J. R.; Meko, D. M.; Touchan, R.; Griffin, E. R.; Zhou, H.

    2014-12-01

    In the western Great Plains, where old upland trees are scarce, rings of riparian trees provide an important opportunity for reconstructing past river flow and climate. We present data from 489 plains cottonwood (Populus deltoides ssp. monilifera) trees along the Little Missouri River in western North Dakota. The trees are in randomly selected flood-plain locations within the North and South units of Theodore Roosevelt National Park. The two sites are separated by 160 river km. The Little Missouri watershed contains foothills but no mountains, and most annual high flows result from snowmelt in March or April. Cores were collected and processed using standard dendrochronological methods. The effect of tree age was removed from the chronology using a single relation for the site as a whole (age-curve standardization), which preserves century-scale variation. Trees were as old as 371 years. Given that cottonwood establishment depends upon channel migration, abundant establishment from 1864-1891 at both sites suggests that one or more large floods occurred prior to this period. At the North Unit, establishment continued at a lower rate during the next century, but upstream at the South Unit, tree establishment was greatly curtailed after the 1800s. Comparison of General Land Office Maps from 1907 to recent satellite imagery confirms that channel migration in the last century was much greater within the North Unit, a difference caused in part by a downstream increase in flood amplification by ice jamming. Ring widths show that even on the flood plain riparian trees were chronically drought stressed. At both sites growth was strongly positively correlated with flow and precipitation and weakly negatively correlated with temperature. Growth was most strongly correlated with flow and precipitation in April-July, which is consistent with dendrometer-band measurements showing growth cessation in August. Whereas cottonwood establishment decreased in the 1900s, ring widths

  9. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  10. Hot piston ring tests

    NASA Astrophysics Data System (ADS)

    Allen, David J.; Tomazic, William A.

    1987-12-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  11. Dynamics of narrow rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    The ring models described here were developed to account for the dynamical problems posed by the narrow rings of Uranus. Some of these rings are now known to be eccentric, inclined, nonuniform in width, optically thick, and narrow, with very sharp edges. The eccentric rings have common pericenters and large, positive eccentricity gradients. The theory of shepherding satellites successfully accounts for most of these features and can also account for some features of the narrow Saturnian rings, in particular, waves, kinks, and periodic variations in brightness. Outstanding problems include the putative relation between eccentricity and inclination displayed by eight of the nine Uranian rings, and the magnitudes of the tidal torques acting on the shepherding satellites. The horseshoe-orbit model, although viable, probably has more application to the narrow rings from which the Saturnian coorbital satellites formed. The angular momentum flow rate due to particle collisions is a minimum at the Lagrangian equilibrium points L(4) and L(5), and one can expect accretion to be rapid at these points.

  12. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  13. Do variations in leaf phenology affect radial growth variations in Fagus sylvatica?

    NASA Astrophysics Data System (ADS)

    Čufar, Katarina; De Luis, Martin; Prislan, Peter; Gričar, Jožica; Črepinšek, Zalika; Merela, Maks; Kajfež-Bogataj, Lučka

    2015-08-01

    We used a dendrochronological and leaf phenology network of European beech ( Fagus sylvatica) in Slovenia, a transitional area between Mediterranean, Alpine and continental climatic regimes, for the period 1955-2007 to test whether year to year variations in leaf unfolding and canopy duration (i.e. time between leaf unfolding and colouring) influence radial growth (annual xylem production and tree ring widths) and if such influences are more pronounced at higher altitudes. We showed that variability in leaf phenology has no significant effect on variations in radial growth. The results are consistent in the entire region, irrespective of the climatic regime or altitude, although previous studies have shown that leaf phenology and tree ring variation depend on altitude. The lack of relationship between year to year variability in leaf phenology and radial growth may suggest that earlier leaf unfolding—as observed in a previous study—probably does not cause increased tree growth rates in beech in Slovenia.

  14. Climatic Signals in Tree Rings of Heritiera fomes Buch.-Ham. in the Sundarbans, Bangladesh

    PubMed Central

    Chowdhury, Md. Qumruzzaman; De Ridder, Maaike; Beeckman, Hans

    2016-01-01

    Mangroves occur along the coastlines throughout the tropics and sub-tropics, supporting a wide variety of resources and services. In order to understand the responses of future climate change on this ecosystem, we need to know how mangrove species have responded to climate changes in the recent past. This study aims at exploring the climatic influences on the radial growth of Heritiera fomes from a local to global scale. A total of 40 stem discs were collected at breast height position from two different zones with contrasting salinity in the Sundarbans, Bangladesh. All specimens showed distinct tree rings and most of the trees (70%) could be visually and statistically crossdated. Successful crossdating enabled the development of two zone-specific chronologies. The mean radial increment was significantly higher at low salinity (eastern) zone compared to higher salinity (western) zone. The two zone-specific chronologies synchronized significantly, allowing for the construction of a regional chronology. The annual and monsoon precipitation mainly influence the tree growth of H. fomes. The growth response to local precipitation is similar in both zones except June and November in the western zone, while the significant influence is lacking. The large-scale climatic drivers such as sea surface temperature (SST) of equatorial Pacific and Indian Ocean as well as the El Niño-Southern Oscillation (ENSO) revealed no teleconnection with tree growth. The tree rings of this species are thus an indicator for monsoon precipitation variations in Bangladesh. The wider distribution of this species from the South to South East Asian coast presents an outstanding opportunity for developing a large-scale tree-ring network of mangroves. PMID:26927229

  15. Climatic Signals in Tree Rings of Heritiera fomes Buch.-Ham. in the Sundarbans, Bangladesh.

    PubMed

    Chowdhury, Md Qumruzzaman; De Ridder, Maaike; Beeckman, Hans

    2016-01-01

    Mangroves occur along the coastlines throughout the tropics and sub-tropics, supporting a wide variety of resources and services. In order to understand the responses of future climate change on this ecosystem, we need to know how mangrove species have responded to climate changes in the recent past. This study aims at exploring the climatic influences on the radial growth of Heritiera fomes from a local to global scale. A total of 40 stem discs were collected at breast height position from two different zones with contrasting salinity in the Sundarbans, Bangladesh. All specimens showed distinct tree rings and most of the trees (70%) could be visually and statistically crossdated. Successful crossdating enabled the development of two zone-specific chronologies. The mean radial increment was significantly higher at low salinity (eastern) zone compared to higher salinity (western) zone. The two zone-specific chronologies synchronized significantly, allowing for the construction of a regional chronology. The annual and monsoon precipitation mainly influence the tree growth of H. fomes. The growth response to local precipitation is similar in both zones except June and November in the western zone, while the significant influence is lacking. The large-scale climatic drivers such as sea surface temperature (SST) of equatorial Pacific and Indian Ocean as well as the El Niño-Southern Oscillation (ENSO) revealed no teleconnection with tree growth. The tree rings of this species are thus an indicator for monsoon precipitation variations in Bangladesh. The wider distribution of this species from the South to South East Asian coast presents an outstanding opportunity for developing a large-scale tree-ring network of mangroves.

  16. Climatic Signals in Tree Rings of Heritiera fomes Buch.-Ham. in the Sundarbans, Bangladesh.

    PubMed

    Chowdhury, Md Qumruzzaman; De Ridder, Maaike; Beeckman, Hans

    2016-01-01

    Mangroves occur along the coastlines throughout the tropics and sub-tropics, supporting a wide variety of resources and services. In order to understand the responses of future climate change on this ecosystem, we need to know how mangrove species have responded to climate changes in the recent past. This study aims at exploring the climatic influences on the radial growth of Heritiera fomes from a local to global scale. A total of 40 stem discs were collected at breast height position from two different zones with contrasting salinity in the Sundarbans, Bangladesh. All specimens showed distinct tree rings and most of the trees (70%) could be visually and statistically crossdated. Successful crossdating enabled the development of two zone-specific chronologies. The mean radial increment was significantly higher at low salinity (eastern) zone compared to higher salinity (western) zone. The two zone-specific chronologies synchronized significantly, allowing for the construction of a regional chronology. The annual and monsoon precipitation mainly influence the tree growth of H. fomes. The growth response to local precipitation is similar in both zones except June and November in the western zone, while the significant influence is lacking. The large-scale climatic drivers such as sea surface temperature (SST) of equatorial Pacific and Indian Ocean as well as the El Niño-Southern Oscillation (ENSO) revealed no teleconnection with tree growth. The tree rings of this species are thus an indicator for monsoon precipitation variations in Bangladesh. The wider distribution of this species from the South to South East Asian coast presents an outstanding opportunity for developing a large-scale tree-ring network of mangroves. PMID:26927229

  17. Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions.

    PubMed

    Battipaglia, Giovanna; De Micco, Veronica; Brand, Willi A; Linke, Petra; Aronne, Giovanna; Saurer, Matthias; Cherubini, Paolo

    2010-12-01

    Woody species in Mediterranean ecosystems form intra-annual density fluctuations (IADFs) in tree rings in response to changes in environmental conditions, especially water availability. Dendrochronology, quantitative wood anatomy and high-resolution isotopic analysis (using a laser ablation technique) were used to characterize IADFs in Arbutus unedo shrubs grown on two sites with different water availability on the island of Elba (Italy). Our findings show that IADF characterization can provide information about the relationship between environmental factors and tree growth at the seasonal level. At the more xeric site, IADFs mainly located in the early and middle parts of the annual ring, showed a decrease in vessel size and an increase in δ(13) C as a result of drought deficit. Opposite trends were found at the more mesic site, with IADFs located at the end of the ring and associated with a lower δ(13) C. Moreover, at the first site, IADFs are induced by drought deficit, while at the second site IADFs are linked with the regrowth in the last part of the growing season triggered by favourable wet conditions. This combined approach is a promising way for dating problematic wood samples and interpreting the phenomena that trigger the formation of IADFs in the Mediterranean environment.

  18. Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions.

    PubMed

    Battipaglia, Giovanna; De Micco, Veronica; Brand, Willi A; Linke, Petra; Aronne, Giovanna; Saurer, Matthias; Cherubini, Paolo

    2010-12-01

    Woody species in Mediterranean ecosystems form intra-annual density fluctuations (IADFs) in tree rings in response to changes in environmental conditions, especially water availability. Dendrochronology, quantitative wood anatomy and high-resolution isotopic analysis (using a laser ablation technique) were used to characterize IADFs in Arbutus unedo shrubs grown on two sites with different water availability on the island of Elba (Italy). Our findings show that IADF characterization can provide information about the relationship between environmental factors and tree growth at the seasonal level. At the more xeric site, IADFs mainly located in the early and middle parts of the annual ring, showed a decrease in vessel size and an increase in δ(13) C as a result of drought deficit. Opposite trends were found at the more mesic site, with IADFs located at the end of the ring and associated with a lower δ(13) C. Moreover, at the first site, IADFs are induced by drought deficit, while at the second site IADFs are linked with the regrowth in the last part of the growing season triggered by favourable wet conditions. This combined approach is a promising way for dating problematic wood samples and interpreting the phenomena that trigger the formation of IADFs in the Mediterranean environment. PMID:20840507

  19. Dynamics of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.

  20. Theodolite Ring Lights

    NASA Technical Reports Server (NTRS)

    Clark, David

    2006-01-01

    Theodolite ring lights have been invented to ease a difficulty encountered in the well-established optical-metrology practice of using highly reflective spherical tooling balls as position references. A theodolite ring light produces a more easily visible reflection and eliminates the need for an autocollimating device. A theodolite ring light is a very bright light source that is well centered on the optical axis of the instrument. It can be fabricated, easily and inexpensively, for use on a theodolite or telescope of any diameter.

  1. Alternative parallel ring protocols

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Foudriat, E. C.; Maly, Kurt J.; Kale, V.

    1990-01-01

    Communication protocols are know to influence the utilization and performance of communication network. The effect of two token ring protocols on a gigabit network with multiple ring structure is investigated. In the first protocol, a mode sends at most one message on receiving a token. In the second protocol, a mode sends all the waiting messages when a token is received. The behavior of these protocols is shown to be highly dependent on the number of rings as well as the load in the network.

  2. Proxy-based annual and seasonal precipitation estimates for the Craters of the Moon lava-complex

    NASA Astrophysics Data System (ADS)

    Crawford, C. J.; Kipfmueller, K. F.; St George, S.

    2012-12-01

    Four millennial to multi-centennial length tree-ring chronologies were constructed from ancient lower-forest border limber pine (Pinus flexilis) and Douglas-fir (Pseudotsuga menziesii Mirb Franco) trees growing on basaltic lava at Craters of the Moon (COM) on the eastern Snake River Plain (SRP), south-central Idaho, USA. Standardized radial growth increments for limber pine ring-width (RW) and Douglas-fir ring-width (RW), earlywood-width (EW), and adjusted latewood-width (LWa) are weakly correlated, but share frequency-dependent coherency at interdecadal (2-5 yrs.) and decadal (13-21 yrs.) timescales. Monte-Carlo simulations between instrumental climate data and each tree-ring width chronology indicate that monthly-seasonal precipitation during late summer-winter is the primary positive, and dominant climate signal in limber pine RW and Douglas-fir LWa. Annual (previous summer-spring) and monthly precipitation during spring is positive, and dominant signals in Douglas-fir RW and EW, respectively. Based upon COM tree-ring width climate signals, and summer-winter precipitation autocorrelation structure on the central and eastern SRP, two independent proxy-based precipitation reconstructions (1532-2008) were developed using 'leave-n-out' stepwise multiple regression with cross-validation. Multiple calibrations for annual and seasonal time periods during 1930-2009 used Douglas-fir EW as a predictor for annual precipitation (pJuly-June), and limber pine RW and Douglas-fir LWa as predictors for summer-winter precipitation (July-March). Models explained between 32-37% (annual) and 26-36% (summer-winter) of the observed precipitation variance. Each model exhibited skillful prediction and validation while also passing verification tests across time periods with independently withheld precipitation data. Annual and summer-winter reconstructions only show moderate agreement (r=0.38, p<0.01, 1532-2008). The clear difference between annual and summer-winter estimates is the

  3. Multi-decadal carbon and water relations of African tropical humid forests: a tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Hufkens, K.; Beeckman, H.; de Haulleville, T.; Kearsley, E.; Toirambe, B.; Stoffelen, P.; Boeckx, P. F.

    2012-12-01

    Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C and 18O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of 13C are influenced by fractionation through carboxylation and changes in stomatal conductance. Similarly, fractionation of 18O from soil water occurs at the leaf level through evapo-transipiration. As a consequence, δ18O values in tree cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, using both 13C and 18O stable isotopes might not only be valuable proxies of past climatic conditions but also serve as an important tool in understanding carbon and water relations within a forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope (13C / 18O) composition at two functionally similar, but geographically dissimilar, tropical humid forests in DR Congo. A first site, the Luki man and the biosphere (MAB) reserve, is located in the western part of DR Congo influenced by a tropical wet and dry climate. A second site, the Yangambi MAB reserve is located in the north

  4. Multi-decadal carbon and water relations of African tropical humid forests: a tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Hufkens, Koen; Helle, Gerd; Beeckman, Hans; de Haulleville, Thales; Kearsley, Elizabeth; Boeckx, Pascal

    2013-04-01

    Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the seasonally varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C/12C and 18O/16O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of carbon are influenced by fractionation through carboxylation during photosynthesis and changes in leaf stomatal conductance. Similarly, fractionation of oxygen isotopes of soil water occurs at the leaf level through evapo-transipiration. As a consequence, 18O/16O (δ18O) values in wood cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, both C and O stable isotopes might not only be valuable as proxy data for past climatic conditions but they also serve as an important tool in understanding carbon and water relations within a tropical forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope composition(δ13C , δ18O) at a tropical humid forests in the DR Congo. The Yangambi Man And Biosphere (MAB) reserve is located in the north-eastern part of DR Congo, with a distinct tropical rainforest climate. In addition to the tree-core data records and

  5. Tree growth and forest ecosystem functioning in Eurasia under extreme climate conditions

    NASA Astrophysics Data System (ADS)

    Saurer, Matthias; Kirdyanov, Alexander; Prokushkin, Anatoly; Bryukhanova, Marina; Knorre, Anastasia; Nasyrov, Muhtor; Frank, David; Treydte, Kerstin; Sidorova, Olga; Siegwolf, Rolf

    2013-04-01

    The main goal of this study is to improve our understanding of the influence of a changing climate on trees in extreme conditions by a detailed analysis of the factors controlling tree-ring growth. We investigated forest ecosystems in regions that are very sensitive to climatic changes and where rapid and dramatic environmental and climatic changes are on-going, namely, the high latitude permafrost region in Central Siberia (Russia), the semi-arid dry areas in Central Asia (Uzbekistan) and high-altitude sites in the Alps (Switzerland). Tree-ring parameters studied were ring-width, density, cell number and structure and the ratio of carbon and oxygen isotopes. An important aspect of the work was the characterization of seasonal growth and water supply of trees. Intra-seasonal dynamics of tree-ring formation was correlated with monitored environmental factors, such as air and soil temperature and moisture, permafrost depth and the isotope composition of soil water, of precipitation, and of stream water. Intra-annual and long-term variability of the main tree-ring parameters were compared for the different regions. The results obtained help us to understand better tree-physiological processes valid under contrasting environmental conditions. For instance, the relationship between the onset of cell division in the cambium and the thermo-hydrological soil regime was used to determine the period of the year with the highest influence on the start of tree-ring formation. Seasonally resolved oxygen isotope depth profiles of soil water and concurrent xylem and leaf water measurements show the importance of time-lags between precipitation, leaf processes and growth. The data obtained are important for improving tree-ring growth models and estimating future tree growth under climate change. Funding: SNF SCOPES IZ73Z0_128035

  6. A Post-Equinox View of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2011-12-01

    Cassini observed the Saturn Equinox of 2009, providing a unique geometry and unexpected findings: 1. The oblique lighting exposed vertical ring structure and embedded objects; 2. Saturn's Rings were the coldest ever; 3. Cassini images inspired new occultation and spectral analysis of ring structures like those in the images. Steady progress and new discoveries continue after the equinox. We can now recognize some aspects of a 'Post-Equinox View': 1. Cassini equinox observations show Saturn's rings as a complex geophysical system, incompletely modeled as a single-phase fluid; 2. Self-gravity causes wakes, viscosity, overstabilty and local aggregate growth; 3. Larger fragments provide the seeds for growth of new aggregates; 4. The F ring may be the easiest place to observe aggregation/disaggregation. These findings have significant implications for our understanding of ring dynamics, origin and history: 1. Self-gravity plays a large role; 2. Accretion continues today in rings A, B, C and F, that can renew the ring material; 3. Resonance forcing and Kepler shear provide the energy for a multitude of dynamics; 4. Structure forms throughout the rings, at scales from meters to kilometers Questions that we now can address following the equinox: 1. Is the red color of the rings caused by Carbon or nano-hematite? 2. Are the rings young or old? 3. Can we estimate the B ring mass from haloes, or from precession of CD ringlets? 4. Or must we wait until the ring gravity is evident during Cassini's final orbits? 5. What is the relative contribution of deterministic and stochastic forcing in creating the observed structure? 6. Do moons continue to form today? I will review these new findings, questions and possible paths to answers. Those who attend my poster will be asked for their own views.

  7. STAR FORMATION IN NUCLEAR RINGS OF BARRED GALAXIES

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2013-06-01

    Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study the temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that the star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about half of the bar growth time, suggesting that the bar potential alone is unlikely to be responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.

  8. Storage Ring EDM Experiments

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis K.

    2016-04-01

    Dedicated storage ring electric dipole moment (EDM) methods show great promise advancing the sensitivity level by a couple orders of magnitude over currently planned hadronic EDM experiments. We describe the present status and recent updates of the field.

  9. Highlights in planetary rings

    NASA Astrophysics Data System (ADS)

    Porco, Carolyn C.

    1995-07-01

    There is a rich phenomenology within the planetary rings surrounding the giant planets, most of it discovered by the Voyagers during their historic tours of t he outer solar system in the 1980s. In the last decade, there have been two detailed IUGG reviews of planetary rings. Cuzzi [1983] covered the time period from 1979-1983 which included the Pioneer 11 encounter with Saturn (1979), the Voyager 1 and 2 encounters with Jupiter (1979) and with Saturn (1980 and 1981). Nicholson and Dones [1991] reviewed the developments in the field between 1984 and 1991, a period of time which included the Voyager 2 Uranus (1986) and Neptune (1989) encounters. (References t o additional reviews of planetary rings and related fields can be found in Nicholson and Dones [1991].) Rather than being comprehensive in nature, this review will concentrate on only those areas of ring research in which particularly promising developments have occurred in the last half decade.

  10. Heating Saturn's Clumpy Rings

    NASA Astrophysics Data System (ADS)

    Turner, Neal J.; Morishima, Ryuji; Spilker, Linda J.

    2015-11-01

    We model Cassini CIRS data using a Monte Carlo radiative transfer -- thermal balance technique first developed for protostellar disks, with the goals of:1. Exploring whether the A- and B-ring temperatures' variation with viewing angle is consistent with the wake structures suggested by the observed azimuthal asymmetry in optical depth, by analytic arguments, and by numerical N-body modeling.2. Better constraining the shape, size, spacing and optical depths of substructure in the A-ring, using the unexpectedly high temperatures observed at equinox. If the wake features have high enough contrast, Saturn-shine may penetrate the gaps between the wakes and heat thering particles both top and bottom.3. Determining how much of the heating of the A- and B-rings' unlit sides is due to radiative transport and how much is due to particle motions, especially vertical motions. This will help in constraining the rings' surface densities and masses.

  11. Potential utility of tree ring δ18O series for reconstructing precipitation records from the lower reaches of the Yangtze River, southeast China

    NASA Astrophysics Data System (ADS)

    Xu, Chenxi; Ge, Junyi; Nakatsuka, Takeshi; Yi, Liang; Zheng, Huaizhou; Sano, Masaki

    2016-04-01

    In this study, we investigated the interannual and intraannual variabilities in the oxygen isotope composition (δ18O) preserved in the tree ring cellulose of Pinus taiwanensis in the lower reaches of the Yangtze River, southeast China, to explore its potential utility for precipitation reconstruction over the period of 1855-2013. Intraannual variations of tree ring cellulose δ18O show distinct annual cycles that are characterized by δ18O maxima in the early growth near the ring boundary and δ18O minima in the middle and late portions of the ring. Seasonal patterns of tree ring δ18O were influenced by August-October typhoons. The tree ring cellulose δ18O was measured in both young and old trees to test for the juvenile effect. The results revealed no significant differences in the mean values and long-term trends in δ18O in the old and young trees. A response analysis indicated that tree ring δ18O correlated significantly with precipitation and relative humidity between May and October, and the δ18O chronology accounted for 37.4% of the actual variation in the May-October precipitation between 1951 and 2013. The extremely dry and wet years revealed by the tree ring δ18O-based reconstructed precipitation also corresponded to actual local drought and flood events from the documentary records. Reconstructed precipitation showed significant relationship with central tropical Pacific sea surface temperature, which indicated that El Niño-Southern Oscillation (ENSO) exerted influences on May-October precipitation in the lower reaches of the Yangtze River. In addition, the relationship between ENSO and precipitation weakened between 1920 and 1940, and low variance of ENSO from 1920 to 1940 may result in the damped ENSO's influences on precipitation in southeast China.

  12. Saturn's dynamic D ring

    USGS Publications Warehouse

    Hedman, M.M.; Burns, J.A.; Showalter, M.R.; Porco, C.C.; Nicholson, P.D.; Bosh, A.S.; Tiscareno, M.S.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Clark, R.

    2007-01-01

    The Cassini spacecraft has provided the first clear images of the D ring since the Voyager missions. These observations show that the structure of the D ring has undergone significant changes over the last 25 years. The brightest of the three ringlets seen in the Voyager images (named D72), has transformed from a narrow, <40-km wide ringlet to a much broader and more diffuse 250-km wide feature. In addition, its center of light has shifted inwards by over 200 km relative to other features in the D ring. Cassini also finds that the locations of other narrow features in the D ring and the structure of the diffuse material in the D ring differ from those measured by Voyager. Furthermore, Cassini has detected additional ringlets and structures in the D ring that were not observed by Voyager. These include a sheet of material just interior to the inner edge of the C ring that is only observable at phase angles below about 60??. New photometric and spectroscopic data from the ISS (Imaging Science Subsystem) and VIMS (Visual and Infrared Mapping Spectrometer) instruments onboard Cassini show the D ring contains a variety of different particle populations with typical particle sizes ranging from 1 to 100 microns. High-resolution images reveal fine-scale structures in the D ring that appear to be variable in time and/or longitude. Particularly interesting is a remarkably regular, periodic structure with a wavelength of ??? 30 ?? km extending between orbital radii of 73,200 and 74,000 km. A similar structure was previously observed in 1995 during the occultation of the star GSC5249-01240, at which time it had a wavelength of ??? 60 ?? km. We interpret this structure as a periodic vertical corrugation in the D ring produced by differential nodal regression of an initially inclined ring. We speculate that this structure may have formed in response to an impact with a comet or meteoroid in early 1984. ?? 2006 Elsevier Inc. All rights reserved.

  13. Ultrasonic Newton's rings

    SciTech Connect

    Hsu, D.K. ); Dayal, V. )

    1992-03-09

    Interference fringes due to bondline thickness variation were observed in ultrasonic scans of the reflected echo amplitude from the bondline of adhesively joined aluminum skins. To demonstrate that full-field interference patterns are observable in point-by-point ultrasonic scans, an optical setup for Newton's rings was scanned ultrasonically in a water immersion tank. The ultrasonic scan showed distinct Newton's rings whose radii were in excellent agreement with the prediction.

  14. Timing of False Ring Formation in Pinus halepensis and Arbutus unedo in Southern Italy: Outlook from an Analysis of Xylogenesis and Tree-Ring Chronologies

    PubMed Central

    De Micco, Veronica; Balzano, Angela; Čufar, Katarina; Aronne, Giovanna; Gričar, Jožica; Merela, Maks; Battipaglia, Giovanna

    2016-01-01

    Mediterranean tree rings are characterized by intra-annual density fluctuations (IADFs) due to partly climate-driven cambial activity. IADFs are used as structural signals to gain information on relations between environmental conditions and eco-physiological processes during xylogenesis, with intra-annual resolution. To reach an unbiased synchronization of the IADF position within tree rings and seasonal fluctuations in environmental conditions, it is necessary to know the timing of cambial activity and wood formation, which are species- and site-specific processes. We applied the microcoring technique to analyze xylogenesis in Pinus halepensis and Arbutus unedo. To the best of our knowledge, this is the first attempt to study xylogenesis in a hardwood species forming frequent IADFs. Both species co-occur at a site in southern Italy characterized by a Mediterranean climate. To facilitate tree-ring dating and identification of IADFs, we performed traditional dendroecological analysis. We analyzed xylogenesis during summer, which is considered a constraint for xylogenesis and a trigger for IADF formation. We followed the different phases of cell development in the current wood increment with the aim of evaluating whether and which type of IADFs were formed. We additionally analyzed the same phases again in September and in winter to verify the possible formation of IADFs in fall and whether cell production and differentiation was completed by the end of the calendar year. Both species formed the same type of IADFs (earlywood-like cells within latewood), due to temporary growth restoration triggered by rain events during the period of summer drought. At the end of the calendar year, no cells in the phases of enlargement and secondary cell wall deposition occurred. A. unedo was more sensitive than P. halepensis because IADFs were formed earlier in the season and were more frequent in the tree-ring series. The dendro-anatomical approach, combining analysis of tree-ring

  15. Timing of False Ring Formation in Pinus halepensis and Arbutus unedo in Southern Italy: Outlook from an Analysis of Xylogenesis and Tree-Ring Chronologies.

    PubMed

    De Micco, Veronica; Balzano, Angela; Čufar, Katarina; Aronne, Giovanna; Gričar, Jožica; Merela, Maks; Battipaglia, Giovanna

    2016-01-01

    Mediterranean tree rings are characterized by intra-annual density fluctuations (IADFs) due to partly climate-driven cambial activity. IADFs are used as structural signals to gain information on relations between environmental conditions and eco-physiological processes during xylogenesis, with intra-annual resolution. To reach an unbiased synchronization of the IADF position within tree rings and seasonal fluctuations in environmental conditions, it is necessary to know the timing of cambial activity and wood formation, which are species- and site-specific processes. We applied the microcoring technique to analyze xylogenesis in Pinus halepensis and Arbutus unedo. To the best of our knowledge, this is the first attempt to study xylogenesis in a hardwood species forming frequent IADFs. Both species co-occur at a site in southern Italy characterized by a Mediterranean climate. To facilitate tree-ring dating and identification of IADFs, we performed traditional dendroecological analysis. We analyzed xylogenesis during summer, which is considered a constraint for xylogenesis and a trigger for IADF formation. We followed the different phases of cell development in the current wood increment with the aim of evaluating whether and which type of IADFs were formed. We additionally analyzed the same phases again in September and in winter to verify the possible formation of IADFs in fall and whether cell production and differentiation was completed by the end of the calendar year. Both species formed the same type of IADFs (earlywood-like cells within latewood), due to temporary growth restoration triggered by rain events during the period of summer drought. At the end of the calendar year, no cells in the phases of enlargement and secondary cell wall deposition occurred. A. unedo was more sensitive than P. halepensis because IADFs were formed earlier in the season and were more frequent in the tree-ring series. The dendro-anatomical approach, combining analysis of tree-ring

  16. Nardo Ring, Italy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Nardo Ring is a striking visual feature from space, and astronauts have photographed it several times. The Ring is a race car test track; it is 12.5 kilometers long and steeply banked to reduce the amount of active steering needed by drivers. The Nardo Ring lies in a remote area on the heel of Italy's 'boot,' 50 kilometers east of the naval port of Taranto. The Ring encompasses a number of active (green) and fallow (brown to dark brown) agricultural fields. In this zone of intensive agriculture, farmers gain access to their fields through the Ring via a series of underpasses. Winding features within the southern section of the Ring appear to be smaller, unused race tracks.

    The image covers an area of 18.8 x 16.4 km, was acquired on August 17. 2007, and is located at 49.3 degrees north latitude, 17.8 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  17. Beam Measurements in Storage Rings

    NASA Astrophysics Data System (ADS)

    Hofmann, Albert

    1996-05-01

    Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high

  18. Tree-ring analysis by pixe for a historical record of soil chemistry response to acidic air pollution

    NASA Astrophysics Data System (ADS)

    Legge, Allan H.; Kaufmann, Henry C.; Winchester, John W.

    1984-04-01

    Tree cores have been analyzed intact in 1 mm steps, corresponding to time intervals in the rings as short as half a growing season, providing a chronological record of 16 elemental concentrations extending over thirty years back to 1950. Samples were collected in a forested region of western Canada in sandy soil which was impacted by acid-forming gases released by a sulfur recovery sour natural gas plant. Tree core samples of the hybrid lodgepole-Jack pine ( Pinns contorta Loud. × Pinus banksiana Lamb.) were taken in five ecologically similar locations between 1.2 and 9.6 km from the gas plant stacks. Concentrations of some elements showed patterns suggesting that the annual rings preserved a record of changing soil chemistry in response both to natural environmental conditions and to deposition from sulfur gas emissions, commencing after plant start-up in 1959 and modified by subsequent modifications in plant operating procedures. These patterns were most pronounced nearest the gas plant. Certain other elements did not exhibit these patterns, probably reflecting greater importance of biological than of soil chemical properties. The high time resolution of tree-ring analysis, which can be achieved by PIXE, demonstrates that the rings preserve a historical record of elemental composition which may reflect changes in soil chemistry during plant growth as it may be affected by both natural ecological processes and acidic deposition from the atmosphere.

  19. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2014-04-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings [5, 8]. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~ 100m in size) have been identified in Saturn's A ring through their propeller signature in the images [10, 7, 9, 11]. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring [6, 2]. In this paper we present our new results about by now classical A ring propellers and more enigmatic B ring population. Due to the presence of self-gravity wakes the analysis of propeller brightness in ISS images always bears some ambiguity [7, 9] and consequently the exact morphology of propellers is not a settled issue. In 2008 we obtained a fortunate Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation of the largest A ring propeller Bleriot. Utilizing Cassini ISS images we obtain Bleriot orbit and demonstrate that UVIS Persei Rev42 occultation did cut across Bleriot about 100km downstream from the center. The occultation itself shows a prominent partial gap and higher density outer flanking wakes, while their orientation is consistent with a downstream cut. While in the UVIS occultation the partial gap is more prominent than the flanking wakes, the features mostly seen in Bleriot images are actually flanking wakes. One of the most interesting aspects of the A ring propellers are their wanderings, or longitudinal deviations from a pure circular orbit [11]. We numerically investigated the possibility of simple moon

  20. Photometric Analysis of the Jovian Ring System and Modeling of Ring Origin and Evolution

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    2003-01-01

    We have successfully completed the work described in our proposal. The work supported by this grant resulted in the publication of the following paper: Brooks, S. M., L. W. Esposito, M. R. Showalter, and H. B. Throop. 2002. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy. Icarus, in press. This was also the major part of Dr. Shawn Brooks PhD dissertation. Dr. Brooks gave oral presentations on this work at the Lunar and Planetary Conference, the annual meetings of the Division for Planetary Sciences of the American Astronomical Society, the annual meetings of the European Geophysical Society, the international Jupiter Conference in Boulder, the Jupiter after Galileo and Cassini Conference in Lisbon and to the Working Group in Non-Linear Dynamics in Potsdam, Germany. This work was reviewed in: Esposito, L. W. 2002. Planetary rings. Rep. hog. Phys. 65, 1741-1783. Planetary rings. LASP reprint 874. Online at http://stacks.iop.org/RoPP/65/1741. Dr. Esposito gave presentations at schools and over the internet on the results of this work. Dr. Brooks lectured in undergraduate and graduate classes on Jupiter's rings, and on the meaning of his research. In August 2003, Dr. Shawn Brooks received the Phd degree from the University of Colorado in Astrophysical and Planetary Sciences.

  1. Climate Control on Tree Growth at the Upper and Lower Treelines: A Case Study in the Qilian Mountains, Tibetan Plateau

    PubMed Central

    Yang, Bao; He, Minhui; Melvin, Thomas M.; Zhao, Yan; Briffa, Keith R.

    2013-01-01

    It is generally hypothesized that tree growth at the upper treeline is normally controlled by temperature while that at the lower treeline is precipitation limited. However, uniform patterns of inter-annual ring-width variations along altitudinal gradients are also observed in some situations. How changing elevation influences tree growth in the cold and arid Qilian Mountains, on the northeastern Tibetan Plateau, is of considerable interest because of the sensitivity of the region’s local climate to different atmospheric circulation patterns. Here, a network of four Qilian juniper (Sabina przewalskii Kom.) ring-width chronologies was developed from trees distributed on a typical mountain slope at elevations ranging from 3000 to 3520 m above sea level (a.s.l.). The statistical characteristics of the four tree-ring chronologies show no significant correlation with increasing elevation. All the sampled tree growth was controlled by a common climatic signal (local precipitation) across the investigated altitudinal gradient (520 m). During the common reliable period, covering the past 450 years, the four chronologies have exhibited coherent growth patterns in both the high- and low-frequency domains. These results contradict the notion of contrasting climate growth controls at higher and lower elevations, and specifically the assumption that inter-annual tree-growth variability is controlled by temperature at the upper treeline. It should be stressed that these results relate to the relatively arid conditions at the sampling sites in the Qilian Mountains. PMID:23874871

  2. Retaining-Ring Installation Tool

    NASA Technical Reports Server (NTRS)

    Christian, S.

    1983-01-01

    New tool eliminates damage to ring through improper tool use. Tool installs spiral-wound retaining rings quickly, reliably, and safely. Tool inserts rings in splined or irregularly shaped bores, bores at bottom of deep ring and slides it along bore until it nests in groove. Pistons are moved by variety of linkages.

  3. Thermodynamic black di-rings

    SciTech Connect

    Iguchi, Hideo; Mishima, Takashi

    2010-10-15

    Previously the five dimensional S{sup 1}-rotating black rings have been superposed in a concentric way by some solitonic methods, and regular systems of two S{sup 1}-rotating black rings were constructed by the authors and then Evslin and Krishnan (we called these solutions 'black di-rings'). In this place we show some characteristics of the solutions of five dimensional black di-rings, especially in thermodynamic equilibrium. After the summary of the di-ring expressions and their physical quantities, first we comment on the equivalence of the two different solution sets of the black di-rings. Then the existence of thermodynamic black di-rings is shown, in which both isothermality and isorotation between the inner black ring and the outer black ring are realized. We also give detailed analysis of peculiar properties of the thermodynamic black di-ring including discussion about a certain kind of thermodynamic stability (instability) of the system.

  4. Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought

    PubMed Central

    OBERHUBER, Walter; GRUBER, Andreas

    2011-01-01

    Within a dry inner Alpine valley in the Eastern Central Alps (750 m a.s.l., Tyrol, Austria) the influence of climate variables (precipitation, air humidity, temperature) and soil water content on intra-annual dynamics of tree-ring development was determined in Scots pine (Pinus sylvestris L.) at two sites differing in soil water availability (xeric and dry-mesic site). Radial stem development was continuously followed during 2007 and 2008 by band dendrometers and repeated micro-sampling of the developing tree rings of mature trees. Daily and seasonal fluctuations of the stem radius, which reached almost half of total annual increment, primarily reflected changes in tree water status and masked radial stem growth especially during drought periods in spring. However, temporal dynamics of intra-annual radial growth determined by both methods were found to be quite similar, when onset of radial growth in dendrometer traces was defined by the occurrence of first enlarging xylem cells. Radial increments during the growing period, which lasted from early April through early August showed statistically significant relationships with precipitation (Kendall τ = 0.234, p < 0.01, and τ = 0.184, p < 0.05, at the xeric and dry-mesic site, respectively) and relative air humidity (Pearson r = 0.290, p < 0.05, and r = 0.306, p < 0.05 at the xeric and dry-mesic site, respectively). Soil water content and air temperature had no influence on radial stem increment. Culmination of radial stem growth was detected at both study plots around mid-May, prior to occurrence of more favourable climatic conditions, i.e. an increase in precipitation during summer. We suggest that the early decrease in radial growth rate is due to a high belowground demand for carbohydrates to ensure adequate resource acquisition on the drought prone substrate. PMID:22003269

  5. Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought.

    PubMed

    Oberhuber, Walter; Gruber, Andreas

    2010-06-25

    Within a dry inner Alpine valley in the Eastern Central Alps (750 m a.s.l., Tyrol, Austria) the influence of climate variables (precipitation, air humidity, temperature) and soil water content on intra-annual dynamics of tree-ring development was determined in Scots pine (Pinus sylvestris L.) at two sites differing in soil water availability (xeric and dry-mesic site). Radial stem development was continuously followed during 2007 and 2008 by band dendrometers and repeated micro-sampling of the developing tree rings of mature trees. Daily and seasonal fluctuations of the stem radius, which reached almost half of total annual increment, primarily reflected changes in tree water status and masked radial stem growth especially during drought periods in spring. However, temporal dynamics of intra-annual radial growth determined by both methods were found to be quite similar, when onset of radial growth in dendrometer traces was defined by the occurrence of first enlarging xylem cells. Radial increments during the growing period, which lasted from early April through early August showed statistically significant relationships with precipitation (Kendall τ = 0.234, p < 0.01, and τ = 0.184, p < 0.05, at the xeric and dry-mesic site, respectively) and relative air humidity (Pearson r = 0.290, p < 0.05, and r = 0.306, p < 0.05 at the xeric and dry-mesic site, respectively). Soil water content and air temperature had no influence on radial stem increment. Culmination of radial stem growth was detected at both study plots around mid-May, prior to occurrence of more favourable climatic conditions, i.e. an increase in precipitation during summer. We suggest that the early decrease in radial growth rate is due to a high belowground demand for carbohydrates to ensure adequate resource acquisition on the drought prone substrate. PMID:22003269

  6. A 3000-year annual-resolution record of the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Kelly, B. F.; Mariethoz, G.; Hellstrom, J.; Baker, A.

    2013-12-01

    The North Atlantic Oscillation provides an index of North Atlantic climate variability. The 947-yr long annual resolution record of the North Atlantic Oscillation (NAO) of Trouet et al. (2009, Science, 324, 78-81), the NAO Morocco-Scotland index, combined tree ring and stalagmite data, the latter a single stalagmite growth rate archive from NW Scotland. Trouet et al (2009) noted the unusual persistence of the positive phase of the NAO during the Medieval Climate Anomaly (MCA; 1050-1400AD). In order to better assess the uniqueness of the persistently positive NAO in the MCA, we extend the speleothem portion of the proxy NAO record with a composite of five stalagmites from the same cave system. We present the first-ever composite speleothem growth rate record. Using a combination of lamina counting, U-Th dating, and correlation between growth rate series, we build a continuous, annual-resolution, annually laminated, stalagmite growth rates series for the last 3000 years. We use geostatistical and stochastic approaches appropriate to stalagmite growth rate time series to characterise uncertainty in the stalagmite series and to screen them for periods of relative climate sensitivity vs. periods where there is hydrologically introduced, non-climatic variability. We produce the longest annual-resolution annual lamina record of the NAO for the last 3000 years. The screened stalagmite series is compared to instrumental and proxy records of the NAO. Spectral and wavelet analysis demonstrates that the series contains significant decadal to centennial scale periodicity throughout the record. We demonstrate that the persistently positive NAO during the MCA (1080-1460 CE) is remarkable within the last 3000 years. Two other phases of persistent, positive NAO, occur at 290-550 CE and 660-530 BCE, in agreement with the lower resolution, 5,200-yr Greenland lake sediment NAO proxy (Olsen et al, 2012, Nature Geoscience, 5, 808-812).

  7. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~<500m in size) have been indirectly identified in Saturn's A ring through their propeller signature in the images. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring. In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B

  8. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  9. Saturn's Other Ring Current

    NASA Astrophysics Data System (ADS)

    Crary, F. J.

    2014-04-01

    Saturn's main rings orbit the planet within an atmosphere and ionosphere of water, oxygen and hydrogen, produced by meteoritic impacts on and ultraviolet photodesorbtion of the ring particles [Johnson et al., 2006; Luhmann et al., 2006; Tseng et al., 2010]. The neutral atmosphere itself has only been tentatively detected through ultraviolet fluorescents of OH [Hall et al., 1996] while the ionosphere was observed in situ by the Cassini spacecraft shortly after orbital insertion [Coates et al.,2005; Tokar et al. 2005, Waite et al. 2005]. Although the plasma flow velocity of this ionosphere is not well-constrained, but the close association with the rings suggests that its speed would be couppled to the keplarian velocity of the rings themselves. As a result, the motion of the plasma through Saturn's magnetic field would produce an induced voltage, oriented away from the planet outside synchronous orbit and towards the planet inside synchronous orbit. Such a potential could result in currents flowing across the ring plane and closeing along magnetic field lines and through Saturn's ionosphere at latitudes between 36o and 48o. Cassini observations of whistler-mode plasma wave emissions [Xin et al.,2006] centered on synchronous orbit (1.76 Rs, mapping to 41o latitude) have been interpreted as a product of field-aligned electron beams associated with such a current. This presentation will investigate the magnitude of these currents and the resulting Joule heating of the ionosphere. An important constraint is that no auroral ultraviolet emissions have been observed at the relevant latitudes. In contrast, Joule heating could affect infrared emissions from H3+. Variations in H3+ emission associated with Saturn's rings have been reported by O'Donoghue et al., 2013, and interpreted as a result of ring "rain", i.e. precipitating water group species from the rings which alter ionosphereic chemistry and H3+ densities. As noted by O'Donoghue et al., this interpretation may be

  10. Tropical dendrochemistry: A novel approach for reconstructing seasonally-resolved growth rates from ringless tropical trees

    NASA Astrophysics Data System (ADS)

    Poussart, P. M.; Myneni, S. C.

    2005-12-01

    Although tropical forests play an active role in the global carbon cycle and are host to a variety of pristine paleoclimate archives, they remain poorly characterized as compared to other ecosystems on the planet. In particular, dating and reconstructing the growth rate history of tropical trees remains a challenge and continues to delay research efforts towards understanding tropical forest dynamics. Traditional dendrochronological techniques have found limited applications in the tropics because temperature seasonality is often too small to initiate the production of visible annual growth rings. Dendrometers, cambium scarring methods and sub-annual records of oxygen and carbon isotopes from tree cellulose may be used to estimate growth rate histories when growth rings are absent. However, dendrometer records rarely extend beyond the past couple of decades and the generation of seasonally-resolved isotopic records remains labour intensive, currently prohibiting the level of record replication necessary for statistical analysis. Here, we present evidence that Ca may also be used as a proxy for dating and reconstructing growth rates of trees lacking visible growth rings. Using the Brookhaven National Lab Synchrotron, we recover a radial record of cyclic variations in Ca from a Miliusa velutina tree from northern Thailand. We determine that the Ca cycles are seasonal based on a comparison between radiocarbon age estimates and a trace element age model, which agree within 2 years over the period of 1955 to 2000. The amplitude of the Ca annual cycle is significantly correlated with growth rate estimates, which are also correlated to the amount of dry season rainfall. The measurements at the Synchrotron are fast, non-destructive and require little sample preparation. Application of this technique in the tropics holds the potential to resolve longstanding questions about tropical forest dynamics and interannual to decadal changes in the carbon cycle.

  11. Piston Ring Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kuhn, M.

    1943-01-01

    The discovery and introduction of the internal combustion engine has resulted in a very rapid development in machines utilizing the action of a piston. Design has been limited by the internal components of the engine, which has been subjected to ever increasing thermal and mechanical stresses, Of these internal engine components, the piston and piston rings are of particular importance and the momentary position of engine development is not seldom dependent upon the development of both of the components, The piston ring is a well-known component and has been used in its present shape in the steam engine of the last century, Corresponding to its importance, the piston ring has been a rich field for creative activity and it is noteworthy that in spite of this the ring has maintained its shape through the many years. From the many and complicated designs which have been suggested as a packing between piston and cylinder wall hardly one suggestion has remained which does not resemble the original design of cast iron rectangular ring.

  12. Stacked Corrugated Horn Rings

    NASA Technical Reports Server (NTRS)

    Sosnowski, John B.

    2010-01-01

    This Brief describes a method of machining and assembly when the depth of corrugations far exceeds the width and conventional machining is not practical. The horn is divided into easily machined, individual rings with shoulders to control the depth. In this specific instance, each of the corrugations is identical in profile, and only differs in diameter and outer profile. The horn is segmented into rings that are cut with an interference fit (zero clearance with all machining errors biased toward contact). The interference faces can be cut with a reverse taper to increase the holding strength of the joint. The taper is a compromise between the interference fit and the clearance of the two faces during assembly. Each internal ring is dipped in liquid nitrogen, then nested in the previous, larger ring. The ring is rotated in the nest until the temperature of the two parts equalizes and the pieces lock together. The resulting assay is stable, strong, and has an internal finish that cannot be achieved through other methods.

  13. Two F Ring Views

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These views, taken two hours apart, demonstrate the dramatic variability in the structure of Saturn's intriguing F ring.

    In the image at the left, ringlets in the F ring and Encke Gap display distinctive kinks, and there is a bright patch of material on the F ring's inner edge. Saturn's moon Janus (181 kilometers, or 113 miles across) is shown here, partly illuminated by reflected light from the planet.

    At the right, Prometheus (102 kilometers, or 63 miles across) orbits ahead of the radial striations in the F ring, called 'drapes' by scientists. The drapes appear to be caused by successive passes of Prometheus as it reaches the greatest distance (apoapse) in its orbit of Saturn. Also in this image, the outermost ringlet visible in the Encke Gap displays distinctive bright patches.

    These views were obtained from about three degrees below the ring plane.

    The images were taken in visible light with the Cassini spacecraft narrow-angle camera on June 29, 2005, when Cassini was about 1.5 million kilometers (900,000 miles) from Saturn. The image scale is about 9 kilometers (6 miles) per pixel.

  14. A measuring tool for tree-rings analysis

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Kanatjev, Alexander; Kasatkina, Elena

    2013-04-01

    A special tool has been created for the annual tree-ring widths measurement and analysis. It consists of professional scanner, computer system and software. This created complex in many aspects does not yield the similar systems (LINTAB, WinDENDRO), but in comparison to manual measurement systems, it offers a number of advantages: productivity gain, possibility of archiving the results of the measurements at any stage of the processing, operator comfort. It has been developed a new software, allowing processing of samples of different types (cores, saw cuts), including those which is difficult to process, having got a complex wood structure (inhomogeneity of growing in different directions, missed, light and false rings etc.). This software can analyze pictures made with optical scanners, analog or digital cameras. The complex software program was created on programming language C++, being compatible with modern operating systems like Windows X. Annual ring widths are measured along paths traced interactively. These paths can have any orientation and can be created so that ring widths are measured perpendicular to ring boundaries. A graphic of ring-widths in function of the year is displayed on a screen during the analysis and it can be used for visual and numerical cross-dating and comparison with other series or master-chronologies. Ring widths are saved to the text files in a special format, and those files are converted to the format accepted for data conservation in the International Tree-Ring Data Bank. The created complex is universal in application that will allow its use for decision of the different problems in biology and ecology. With help of this complex it has been reconstructed a long-term juniper (1328-2004) and pine (1445-2005) tree-ring chronologies on the base of samples collected at Kola Peninsula (northwestern Russia).

  15. Study of seasonal variations of trace-element concentrations within tree rings by thick-target PIXE analyses

    NASA Astrophysics Data System (ADS)

    Harju, L.; Lill, J.-O.; Saarela, K.-E.; Heselius, S.-J.; Hernberg, F. J.; Lindroos, A.

    1996-04-01

    Thick-target PIXE has been used for the quantitative determination of trace elements in annual growth rings of different tree species. A scanning device was developed for the remote control of the sample and a video-camera system for the exact monitoring of the spot to be analyzed. The samples were analyzed in steps of 1 mm. The widths of the tree rings studied were in the range 2.5-8.0 mm. Samples of Norway spruce and Scots pine were collected from Harjavalta, a polluted area in southwestern Finland. The elements studied were S, Cl, Br, K, Ca, Mn, Fe, Zn, Cu, Ni, Pb, Rb and Sr. Large variations were observed in elemental concentrations within individual tree rings. The highest concentrations for most elements were obtained for earlywood in the beginning of the growth season and the lowest values for latewood thus reflecting the biological activity. The method was calibrated using international standard reference materials. For most elements the matrix effects were found to be negligible. The detection limits for most metals studied were in the range 1-5 ppm.

  16. The dating of dipterocarp tree rings: establishing a record of carbon cycling and climatic change in the tropics

    NASA Astrophysics Data System (ADS)

    Robertson, I.; Froyd, C. A.; Walsh, R. P. D.; Newbery, D. M.; Woodborne, S.; Ong, R. C.

    2004-10-01

    In a first step to obtain a proxy record of past climatic events (including the El Niño-Southern Oscillation) in the normally aseasonal tropical environment of Sabah, a radial segment from a recently fallen dipterocarp (Shorea superba) was radiocarbon dated and subjected to carbon isotope analysis. The high-precision radiocarbon results fell into the ambiguous modern plateau where several calibrated dates can exist for each sample. Dating was achieved by wiggle matching using a Bayesian approach to calibration. Using the defined growth characteristics of Shorea superba, probability density distributions were calculated and improbable dates rejected. It was found that the tree most likely started growing around AD 1660-1685. A total of 173 apparent growth increments were measured and, therefore, it could be determined that the tree formed one ring approximately every two years. Stable carbon isotope values were obtained from resin-extracted wholewood from each ring. Carbon cycling is evident in the juvenile effect, resulting from the assimilation of respired carbon dioxide and lower light levels below the canopy, and in the anthropogenic effect caused by increased industrial activity in the late-nineteenth and twentieth centuries. This study demonstrates that palaeoenvironmental information can be obtained from trees growing in aseasonal environments, where climatic conditions prevent the formation of well-defined annual rings. Copyright

  17. Tree-ring δ18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions

    NASA Astrophysics Data System (ADS)

    van der Sleen, Peter; Groenendijk, Peter; Zuidema, Pieter A.

    2015-04-01

    The availability of instrumental climate data in West and Central Africa is very restricted, both in space and time. This limits the understanding of the regional climate system and the monitoring of climate change and causes a need for proxies that allow the reconstruction of paleoclimatic variability. Here we show that oxygen isotope values (δ18O) in tree rings of Entandrophragma utile from North-western Cameroon correlate to precipitation on a regional to sub-continental scale (1930-2009). All found correlations were negative, following the proposed recording of the 'amount effect' by trees in the tropics. The capacity of E. utile to record the variability of regional precipitation is also confirmed by the significant correlation of tree-ring δ18O with river discharge data (1944-1983), outgoing longwave radiation (a proxy for cloud cover; 1974-2011) and sea surface salinity in the Gulf of Guinea (1950-2011). Furthermore, the high values in the δ18O chronology from 1970 onwards coincide with the Sahel drought period. Given that E. utile presents clear annual growth rings, has a wide-spread distribution in tropical Africa and is long lived (> 250 years), we argue that the analysis of oxygen isotopes in growth rings of this species is a promising tool for the study of paleoclimatic variability during the last centuries in West and Central Africa.

  18. Rings in the solar system

    SciTech Connect

    Pollack, J.B.; Cuzzi, J.N.

    1981-11-01

    Saturn, Jupiter, and Uranus have rings with different structure and composition. The rings consist of tiny masses in independent orbits. Photographs and data obtained by the Voyager project have aided in the understanding of Saturn's rings. Spokes have been found in B ring and boards, knots, and twist in F ring. Particles on the order of a micrometer in size are believed to occur in F, B, and A rings. The dominant component is water ice. The rings of Uranus are narrow and separated by broad empty regions. The technique used to study them has been stellar occulation. Nothing is known of particle size. The dominant component is believed to be silicates rich in compounds that absorb sunlight. Jupiter's rings consist of 3 main parts: a bright ring, a diffuse disk, and a halo. Use of Pioneer 10 data and other techniques have indicated particle sizes on the order of several micrometers and some at least a centimeter in diameter. The architecture of the ring system results from the interplay of a number of forces. These include gravitational forces due to moons outside the rings and moonlets embedded in them, electromagnetic forces due to the planet's rotating magnetic field, and even the gentle forces exerted by the dilute gaseous medium in which the rings rotate. Each of these forces is discussed. Several alternative explanations of how the rings arose are considered. The primary difference in these hypotheses is the account of the relationship between the ring particles of today and the primordial ring material. (SC)

  19. Double Ring Craters

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A faint double ring crater is seen at upper right in this picture of Mercury (FDS 166601) taken one hour and 40 minutes before Mariner 10's second rendezvous with the planet September 21. Located 35 degrees S. Lat. The outer ring is 170 kilometers (10 miles) across. Double ring craters are common features on Mercury. This particular feature and the bright rayed crater to its left were seen from a different viewing angle in pictures taken by Mariner 10 during its first Mercury flyby last March 29.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  20. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  1. Oligomeric ferrocene rings

    NASA Astrophysics Data System (ADS)

    Inkpen, Michael S.; Scheerer, Stefan; Linseis, Michael; White, Andrew J. P.; Winter, Rainer F.; Albrecht, Tim; Long, Nicholas J.

    2016-09-01

    Cyclic oligomers comprising strongly interacting redox-active monomer units represent an unknown, yet highly desirable class of nanoscale materials. Here we describe the synthesis and properties of the first family of molecules belonging to this compound category—differently sized rings comprising only 1,1‧-disubstituted ferrocene units (cyclo[n], n = 5-7, 9). Due to the close proximity and connectivity of centres (covalent Cp-Cp linkages; Cp = cyclopentadienyl) solution voltammograms exhibit well-resolved, separated 1e- waves. Theoretical interrogations into correlations based on ring size and charge state are facilitated using values of the equilibrium potentials of these transitions, as well as their relative spacing. As the interaction free energies between the redox centres scale linearly with overall ring charge and in conjunction with fast intramolecular electron transfer (˜107 s-1), these molecules can be considered as uniformly charged nanorings (diameter ˜1-2 nm).

  2. Oligomeric ferrocene rings

    NASA Astrophysics Data System (ADS)

    Inkpen, Michael S.; Scheerer, Stefan; Linseis, Michael; White, Andrew J. P.; Winter, Rainer F.; Albrecht, Tim; Long, Nicholas J.

    2016-09-01

    Cyclic oligomers comprising strongly interacting redox-active monomer units represent an unknown, yet highly desirable class of nanoscale materials. Here we describe the synthesis and properties of the first family of molecules belonging to this compound category—differently sized rings comprising only 1,1‧-disubstituted ferrocene units (cyclo[n], n = 5–7, 9). Due to the close proximity and connectivity of centres (covalent Cp–Cp linkages; Cp = cyclopentadienyl) solution voltammograms exhibit well-resolved, separated 1e– waves. Theoretical interrogations into correlations based on ring size and charge state are facilitated using values of the equilibrium potentials of these transitions, as well as their relative spacing. As the interaction free energies between the redox centres scale linearly with overall ring charge and in conjunction with fast intramolecular electron transfer (∼107 s‑1), these molecules can be considered as uniformly charged nanorings (diameter ∼1–2 nm).

  3. Child sex rings.

    PubMed

    Wild, N J; Wynne, J M

    1986-07-19

    Details of 11 child sex rings identified in one working class community were obtained by interviewing investigating police officers and examining health and social services records. The rings contained 14 adult male perpetrators and 175 children aged 6-15 years. Most perpetrators used child ringleaders to recruit victims; others became a "family friend" or obtained a position of authority over children. Secrecy was encouraged and bribery, threats, and peer pressure used to induce participation in sexual activities. Offences reported included fondling, masturbation, pornography, and oral, vaginal, and anal intercourse. Eleven perpetrators were successfully prosecuted; all but one received a sentence of three years or less. Behavioural problems were common among those children who had participated for a long time. Child sex rings are difficult to detect and may be common. Many children are seriously abused as a consequence of them. PMID:3730803

  4. Rings dominate western Gulf

    NASA Astrophysics Data System (ADS)

    Vidal L., Francisco V.; Vidal L., Victor M. V.; Molero, José María Pérez

    Surface and deep circulation of the central and western Gulf of Mexico is controlled by interactions of rings of water pinched from the gulf's Loop Current. The discovery was made by Mexican oceanographers who are preparing a full-color, 8-volume oceanographic atlas of the gulf.Anticyclonic warm-core rings pinch off the Loop Current at a rate of about one to two per year, the scientists of the Grupo de Estudios Oceanográficos of the Instituto de Investigaciones Eléctricas (GEO-IIE) found. The rings migrate west until they collide with the continental shelf break of the western gulf, almost always between 22° and 23°N latitude. On their westward travel they transfer angular momentum and vorticity to the surrounding water, generating cyclonic circulations and vortex pairs that completely dominate the entire surface and deep circulation of the central and western gulf.

  5. Sliding-Ring Catenanes.

    PubMed

    Fernando, Isurika R; Frasconi, Marco; Wu, Yilei; Liu, Wei-Guang; Wasielewski, Michael R; Goddard, William A; Stoddart, J Fraser

    2016-08-17

    Template-directed protocols provide a routine approach to the synthesis of mechanically interlocked molecules (MIMs), in which the mechanical bonds are stabilized by a wide variety of weak interactions. In this Article, we describe a strategy for the preparation of neutral [2]catenanes with sliding interlocked electron-rich rings, starting from two degenerate donor-acceptor [2]catenanes, consisting of a tetracationic cyclobis(paraquat-p-phenylene) cyclophane (CBPQT(4+)) and crown ethers containing either (i) hydroquinone (HQ) or (ii) 1,5-dioxynaphthalene (DNP) recognition units and carrying out four-electron reductions of the cyclophane components to their neutral forms. The donor-acceptor interactions between the CBPQT(4+) ring and both HQ and DNP units present in the crown ethers that stabilize the [2]catenanes are weakened upon reduction of the cyclophane components to their radical cationic states and are all but absent in their fully reduced states. Characterization in solution performed by UV-vis, EPR, and NMR spectroscopic probes reveals that changes in the redox properties of the [2]catenanes result in a substantial decrease of the energy barriers for the circumrotation and pirouetting motions of the interlocked rings, which glide freely through one another in the neutral states. The solid-state structures of the fully reduced catenanes reveal profound changes in the relative dispositions of the interlocked rings, with the glycol chains of the crown ethers residing in the cavities of the neutral CBPQT(0) rings. Quantum mechanical investigations of the energy levels associated with the four different oxidation states of the catenanes support this interpretation. Catenanes and rotaxanes with sliding rings are expected to display unique properties. PMID:27398609

  6. Ring laser gyroscope anode

    SciTech Connect

    Ljung, B.H.

    1981-03-17

    An anode for a ring laser gyroscope which provides improved current stability in the glow discharge path is disclosed. The anode of this invention permits operation at lower currents thereby allowing a reduction of heat dissipation in the ring laser gyroscope. The anode of one embodiment of this invention is characterized by a thumbtack appearance with a spherical end where the normal sharp end of the thumbtack would be located. The stem of the anode extends from the outside of the gyroscope structure to the interior of the structure such that the spherical end is substantially adjacent to the laser beam.

  7. The covariant chiral ring

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Troost, Jan

    2016-03-01

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N = (4 , 4) supersymmetry in two dimensions. For seed target spaces K3 and T 4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  8. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  9. Unidirectional ring lasers

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1994-01-01

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.

  10. Unidirectional ring lasers

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1994-09-20

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.

  11. Age and growth of the red tilefish, Branchiostegus japonicus in the northern East China Sea.

    PubMed

    Yoo, Joon Taek; Choi, Young Min; Kim, Yeong Hye; Choi, Jung Hwa

    2008-07-01

    Age and growth of the red tilefish, Branchiostegus japonicus in the northern East China Sea were examined from right otoliths of 591 fish. Marginal increment analysis showed that annual ring formation occurs during the early winter months, supporting the hypothesis that one growth ring is deposited each year Growth of red filefish was expressed by von Bertalanffy's equation as TLt = 61.5[1 - exp{-0.150(t-0.312)}] for males and TLt = 50.6[1 - exp{-0.162 (t + 0.337)}] for females, where TLt is the total length in cm and t is age in years. It was found that females during the first 3 years grew larger than males, but after 3 years females were smaller than males. This phenomenon may be closely related to sexual maturity of red filefish.

  12. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2004-01-01

    The dimensions of Saturn's A and B rings may be determined by the seasonal Yarkovsky effect and the Yarkovsky-Schach effect; the two effects confine the rings between approximately 1.68 and approximately 2.23 Saturn radii, in reasonable agreement with the observed values of 1.525 and 2.267. The C ring may be sparsely populated because its particles are transients on their way to Saturn; the infall may create a luminous Ring of Fire around Saturn's equator. The ring system may be young: in the past heat flow from Saturn's interior much above its present value would not permit rings to exist.

  13. Long term changes in Intrinsic Water Use Efficiency, the palaoe record derived from stable carbon isotope measurements from tree rings.

    NASA Astrophysics Data System (ADS)

    Gagen, Mary; McCarroll, Danny; Loader, Neil; Young, Giles; Robertson, Iain

    2015-04-01

    Stable carbon isotope (δ13C) measurements from the annual rings of trees are increasingly used to explore long term changes in plant-carbon-water relations, via changes in intrinsic water use efficiency (iWUE); the ratio of photosynthetic rate to stomatal conductance. Many studies report a significant increase in iWEU since industrialisation, which tracks rising global atmospheric CO2. Such changes are logical are trees are known to change their stomatal geometry, number and action in response to rising CO2. However, which increasing iWUE suggests physiological changes which should lead to increased growth increasing iWUE is rarely matched by enhanced tree growth when tree rings are measured, despite increases of up to 30% in iWUE over the recent past (van der Sleen et al 2015). Explanations for the mismatch between iWUE and tree growth records encompass questions over the veracity of δ13C records for recording physiological change (Silva and Howarth 2013), suggestions that moisture stress in warming climates becomes a limit to growth and prevents opportunistic use of rising CO2 by trees (Andreu-Hayles et al 2011) and questions regarding the use of tree ring width, which does not record tree height gain, to record growth. Here we present an extensive range of long term iWUE records, derived broadly from the temperate, high latitude and one tropical forest site to explore the palaeoclimatic perspective on the iWUE-fertilization conundrum in a spatio temporally extensive manner.

  14. Prediscovery evidence of planetary rings

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.

    1980-01-01

    The discoveries of the Uranian and Jovian ring systems were surprising events to most of the scientific community. However, as far back as 1787 reports of observations of rings about a planet other than Saturn were made; Herschel, the discoverer of Uranus, thought he had detected rings about that planet on several occasions. Although Herschel's observations were almost certainly due to defects in the optical system of his telescope, several valid observations and predictions have been made in the last two hundred years. This paper focuses on such prediscovery evidence for the Uranian and Jovian rings and for the newly designated F ring of Saturn. Some new work of the author on the structure of the Saturnian rings is included which is relevant to the F ring. The prospects for rings about Neptune and Pluto and a ring close to the Sun are also reviewed. The relevance of the prediscovery evidence to aspects of scientific methodology is discussed.

  15. Experimental results from the small isochronous ring

    SciTech Connect

    Eduard Pozdeyev

    2005-05-01

    The Small Isochronous Ring (SIR) is a compact, low-energy storage ring designed to investigate the beam dynamics of high-intensity isochronous cyclotrons and synchrotrons at the transition energy. The ring was developed at Michigan State University (MSU) and has been operational since December 2003. It stores 20 keV hydrogen beams with a peak current of 10-20 microamps for up to 200 turns. The transverse and longitudinal profiles of extracted bunches are measured with an accuracy of approximately 1 mm. The high accuracy of the measurements makes the experimental data attractive for validation of multi-particle space charge codes. The results obtained in the ring show a fast growth of the energy spread induced by the space charge forces. The energy spread growth is accompanied by a breakup of the beam bunches into separated clusters that are involved in the vortex motion specific to the isochronous regime. The experimental results presented in the paper show a remarkable agreement with simulations performed with the code CYCO. In this paper, we discuss specifics of space charge effects in the isochronous regime, present results of experiments in SIR, and conduct a detailed comparison of the experimental data with results of simulations.

  16. Self-assembled smooth muscle cell tissue rings exhibit greater tensile strength than cell-seeded fibrin or collagen gel rings

    PubMed Central

    Adebayo, Olufunmilayo; Gwyther, Tracy A.; Hu, Jason Z.; Billiar, Kristen L.; Rolle, Marsha W.

    2012-01-01

    In this study, we created self-assembled smooth muscle cell (SMC) tissue rings (comprised entirely of cells and cell-derived matrix; CDM) and compared their structure and material properties with tissue rings created from SMC-seeded fibrin or collagen gels. All tissue rings were cultured statically for 7 days in supplemented growth medium (with ε-amino caproic acid, ascorbic acid, and insulin-transferrin-selenium), prior to uniaxial tensile testing and histology. Self-assembled CDM rings exhibited ultimate tensile strength and stiffness values that were two-fold higher than fibrin gel and collagen gel rings. Tensile testing of CDM, fibrin gel and collagen gel rings treated with deionized water to lyse cells showed little to no change in mechanical properties relative to untreated ring samples, indicating that the ECM dominates the measured ring mechanics. In addition, CDM rings cultured in supplemented growth medium were significantly stronger than CDM rings cultured in standard, unsupplemented growth medium. These results illustrate the potential utility of self-assembled cell rings as model CDM constructs for tissue engineering and biomechanical analysis of ECM material properties. PMID:22865465

  17. Reconstructing annual area burned in the northern Rockies, USA: AD 1626-2008

    NASA Astrophysics Data System (ADS)

    Knapp, Paul A.; Soulé, Peter T.

    2011-09-01

    We used a tree-ring chronology as a proxy for annual area burned (AAB) in the northern Rockies, USA during AD 1626-2008. We correlated annual ring widths of alpine larch trees (Larex lyallii) sampled at a single high-elevation site in western Montana with AAB for the United States Forest Region 1. Radial growth was significantly associated with AAB (R2 = 0.35, p < 0.001), demonstrating the potential to use high-elevation conifers as markers of interannual variations in fire activity. The results suggest that the period 1929-1945 would have been the most active since the early 1600s had not extensive fire suppression and harvest activities altered the fire regime. Comparisons of the predicted values of area burned to a century-long fire atlas were significant for both the entire record (rs = 0.333, p < 0.01) and reconstruction period (rs = 0.645 p < 0.001). Similarly, predicted AAB was significantly correlated (r = 0.230) to fire-scar data during 1650-1900. These results suggest the feasibility of using tree-ring chronologies as an additional measure of fire activity, particularly as they allow an assessment and comparison of fire activity during centuries with and without fire suppression and harvest activities.

  18. Teasing Foggy Memories out of Pines on the California Channel Islands Using Tree-Ring Width and Stable Isotope Approaches

    NASA Astrophysics Data System (ADS)

    Williams, A. P.; Still, C. J.; Fischer, D. T.; Leavitt, S. W.

    2006-12-01

    The coast of California is home to many rare, endemic conifers and other plants that are not well adapted to the Mediterranean climate that prevails across most of the state. It has long been suggested that coastal pines survived the early-Pleistocene transition to a warmer and drier environment because they benefit from frequent fog and low stratus clouds that provide much needed water inputs and shading during the rainless summer. Here, we report evidence for the importance of this summer cloudiness to Torrey pines (Pinus torreyana) growing on Santa Rosa Island in Channel Islands National Park. We developed a tree-ring width chronology and quantified the relative importance of winter/spring precipitation and summer fog by comparing ring widths to nearby rainfall records and airport cloud-ceiling height data. While winter/spring precipitation explains most of the variation in annual tree-ring width (R2 = 0.592), the frequency of summertime fog correlated significantly and positively with annual ring width for 52 years of available fog data when the effect of winter/spring precipitation was removed (R2 = 0.118). The correlation between fog frequency and ring width decreased sharply when the range of possible cloud-ceiling heights deviated from the habitat range of the Torrey pine stand, emphasizing the importance of direct cloud immersion to these pines. In addition, the relationship between fog frequency and ring width was strongest in the 26 years that had enough winter/spring rainfall to maintain above-average soil moisture throughout the dry summer months (R2 = 0.312). This suggests that Torrey pines have an adaptive growing season length and that summer fog-water inputs are supplemental but not substantial enough to sustain tree growth independently. It may also be suggested that when summer growth does occur, the frequency of summer fog and stratus may govern growing season length. This made a "fog signal" difficult to detect in the stable isotope (carbon and

  19. Education and Economic Growth. Proceedings of the Annual Conference on the Economics of Education (1st, Tallahassee, Florida, December 15, 1967).

    ERIC Educational Resources Information Center

    Kraft, Richard H. P., Ed.

    This volume contains papers originally delivered at the First Annual Conference on the Economics of Education sponsored by the Educational Systems Development Center, held at Florida State University, December 15, 1967. The papers are organized under two broad headings: Planning education for economic and social development and strategies of human…

  20. Western juniper and ponderosa pine ecotonal climate-growth relationships across landscape gradients in southern Oregon

    USGS Publications Warehouse

    Knutson, K.C.; Pyke, D.A.

    2008-01-01

    Forecasts of climate change for the Pacific northwestern United States predict warmer temperatures, increased winter precipitation, and drier summers. Prediction of forest growth responses to these climate fluctuations requires identification of climatic variables limiting tree growth, particularly at limits of free species distributions. We addressed this problem at the pine-woodland ecotone using tree-ring data for western juniper (Juniperus occidentalis var. occidentalis Hook.) and ponderosa pine (Pinus ponderosa Dougl. ex Loud.) from southern Oregon. Annual growth chronologies for 1950-2000 were developed for each species at 17 locations. Correlation and linear regression of climate-growth relationships revealed that radial growth in both species is highly dependent on October-June precipitation events that recharge growing season soil water. Mean annual radial growth for the nine driest years suggests that annual growth in both species is more sensitive to drought at lower elevations and sites with steeper slopes and sandy or rocky soils. Future increases in winter precipitation could increase productivity in both species at the pine-woodland ecotone. Growth responses, however, will also likely vary across landscape features, and our findings suggest that heightened sensitivity to future drought periods and increased temperatures in the two species will predominantly occur at lower elevation sites with poor water-holding capacities. ?? 2008 NRC.

  1. Salix polaris growth responses to active layer detachment and solifluction processes in High Arctic.

    NASA Astrophysics Data System (ADS)

    Siekacz, Liliana

    2015-04-01

    The work is dedicated to demonstrate the potential of Salix polaris grow properties in the dendrogemorphologic image, analyzing periglacially induced slope processes in the high Arctic.. Observed anatomical and morphological plants responses to solifluction and active layer detachment processes are presented qualitatively and quantitatively as a summary of presented features frequency. The results are discussed against the background of the other research results in this field. The investigations was performed in Ebba valley, in the vicinity of Petunia Bay, northernmost part of Billefjorden in central Spitsbergen (Svalbard). Environmental conditions are characterized by annual precipitation sum lower than 200 mm (Hagen et al.,1993) and average summer temperature of about 5°C, with maximum daily temperatures rarely exceeding 10°C (Rachlewicz, 2009). Collected shrub material was prepared according to the methods presented by Schweingruber and Poschlod (2005). Thin (approx. 15-20μm) sections of the whole cross-section were prepared with a sledge microtome, stained with Safranine and Astra blue and finally permanently fixed on microslides with Canada balsam and dried. Snapshots were taken partially for each cross-section with digital camera (ColorView III, Olympus) connected to a microscope (Olympus BX41) and merged into one, high resolution image. After all, ring widths were measured in 3-4 radii in every single cross-section using ImageJ software. Analyzed plants revealed extremely harsh environmental conditions of their growth. Buchwał et al. (2013) provided quantitative data concerning missing rings and partially missing rings in shrubs growing on Ebba valley floor. Mean ring width at the level of 79μm represents one of the smallest values of yearly growth ever noted. The share of missing rings and partially missing rings was 11,2% and 13,6% respectively. Plants growing on Ebba valley slope indicate almost twice smaller values of ring width (41μm), and higher

  2. Flushing Ring for EDM

    NASA Technical Reports Server (NTRS)

    Earwood, L.

    1985-01-01

    Removing debris more quickly lowers cutting time. Operation, cutting oil and pressurized air supplied to ring placed around workpiece. Air forces oil through small holes and agitates oil as it flows over workpiece. High flow rate and agitation dislodge and remove debris. Electrical discharge removes material from workpiece faster.

  3. Ring of Stellar Death

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Spitzer Space Telescope shows a dying star (center) surrounded by a cloud of glowing gas and dust. Thanks to Spitzer's dust-piercing infrared eyes, the new image also highlights a never-before-seen feature -- a giant ring of material (red) slightly offset from the cloud's core. This clumpy ring consists of material that was expelled from the aging star.

    The star and its cloud halo constitute a 'planetary nebula' called NGC 246. When a star like our own Sun begins to run out of fuel, its core shrinks and heats up, boiling off the star's outer layers. Leftover material shoots outward, expanding in shells around the star. This ejected material is then bombarded with ultraviolet light from the central star's fiery surface, producing huge, glowing clouds -- planetary nebulas -- that look like giant jellyfish in space.

    In this image, the expelled gases appear green, and the ring of expelled material appears red. Astronomers believe the ring is likely made of hydrogen molecules that were ejected from the star in the form of atoms, then cooled to make hydrogen pairs. The new data will help explain how planetary nebulas take shape, and how they nourish future generations of stars.

    This image composite was taken on Dec. 6, 2003, by Spitzer's infrared array camera, and is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  4. Reading, Writing, and Rings!

    ERIC Educational Resources Information Center

    Aschbacher, Pamela; Li, Erika; Hammon, Art

    2008-01-01

    "Reading, Writing, and Rings!" was created by a team of elementary teachers, literacy experts, and scientists in order to integrate science and literacy. These free units bring students inside NASA's Cassini-Huygens mission to Saturn. The authors--a science teacher and education outreach specialist and two evaluators of educational programs--have…

  5. Ring laser scatterometer

    SciTech Connect

    Ackermann, Mark; Diels, Jean-Claude

    2005-06-28

    A scatterometer utilizes the dead zone resulting from lockup caused by scatter from a sample located in the optical path of a ring laser at a location where counter-rotating pulses cross. The frequency of one pulse relative to the other is varied across the lockup dead zone.

  6. Making Molecular Borromean Rings

    ERIC Educational Resources Information Center

    Pentecost, Cari D.; Tangchaivang, Nichol; Cantrill, Stuart J.; Chichak, Kelly S.; Peters, Andrea J.; Stoddart, Fraser J.

    2007-01-01

    A procedure that requires seven 4-hour blocks of time to allow undergraduate students to prepare the molecular Borromean rings (BRs) on a gram-scale in 90% yield is described. The experiment would serve as a nice capstone project to culminate any comprehensive organic laboratory course and expose students to fundamental concepts, symmetry point…

  7. Neptune may have polar rings

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.; Steiman-Cameron, T. Y.; Borderies, N. J.

    1989-08-01

    Perturbations from Neptune's highly inclined satellite Triton can maintain rings passing nearly over Neptune's poles. These hypothetical polar rings are nearly perpendicular to Triton's orbit as well, and lie within several degrees of the plane of Voyager II's trajectory through the Neptunian system. Polar rings can coexist with equatorial rings at different radii. A randomly oriented torus of debris around Neptune has a probability of several percent to settle into a polar ring. Voyager II stands a significant chance of encountering a polar ring.

  8. Narrow rings - Observations and theory

    NASA Astrophysics Data System (ADS)

    Porco, C. C.

    Voyager 1 and 2 observations have revealed that within the rings of Saturn lies a set of narrow, eccentric rings resembling those of Uranus. Voyager 2 observations have proven crucial in refining the Uranian ring orbit models to a remarkable level of precision. All these rings share some common structural and kinematical characteristics, such as spatially variable radial widths and uniform precession; however, interesting differences exist which provoke attention and may be related to the differing dynamical environments in which these rings dwell. The current state of the knowledge of the shape, behavior, and confinement of narrow rings is discussed.

  9. Tree-ring 14C links seismic swarm to CO2 spike at Yellowstone, USA

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, D.; McGeehin, J.P.; King, J.C.; Heasler, H.

    2010-01-01

    Mechanisms to explain swarms of shallow seismicity and inflation-deflation cycles at Yellowstone caldera (western United States) commonly invoke episodic escape of magma-derived brines or gases from the ductile zone, but no correlative changes in the surface efflux of magmatic constituents have ever been documented. Our analysis of individual growth rings in a tree core from the Mud Volcano thermal area within the caldera links a sharp ~25% drop in 14C to a local seismic swarm in 1978. The implied fivefold increase in CO2 emissions clearly associates swarm seismicity with upflow of magma-derived fluid and shows that pulses of magmatic CO2 can rapidly traverse the 5-kmthick brittle zone, even through Yellowstone's enormous hydrothermal reservoir. The 1978 event predates annual deformation surveys, but recognized connections between subsequent seismic swarms and changes in deformation suggest that CO2 might drive both processes. ?? 2010 Geological Society of America.

  10. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  11. Rings from Close Encounters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Weve recently discovered narrow sets of rings around two minor planets orbiting in our solar system. How did these rings form? A new study shows that they could be a result of close encounters between the minor planets and giants like Jupiter or Neptune.Unexpected Ring SystemsPositions of the centaurs in our solar system (green). Giant planets (red), Jupiter trojans (grey), scattered disk objects (tan) and Kuiper belt objects (blue) are also shown. [WilyD]Centaurs are minor planets in our solar system that orbit between Jupiter and Neptune. These bodies of which there are roughly 44,000 with diameters larger than 1 km have dynamically unstable orbits that cross paths with those of one or more giant planets.Recent occultation observations of two centaurs, 10199 Chariklo and 2060 Chiron, revealed that these bodies both host narrow ring systems. Besides our four giant planets, Chariklo and Chiron are the only other bodies in the solar system known to have rings. But how did these rings form?Scientists have proposed several models, implicating collisions, disruption of a primordial satellite, or dusty outgassing. But a team of scientists led by Ryuki Hyodo (Paris Institute of Earth Physics, Kobe University) has recently proposed an alternative scenario: what if the rings were formed from partial disruption of the centaur itself, after it crossed just a little too close to a giant planet?Tidal Forces from a GiantHyodo and collaborators first used past studies of centaur orbits to estimate that roughly 10% of centaurs experience close encounters (passing within a distance of ~2x the planetary radius) with a giant planet during their million-year lifetime. The team then performed a series of simulations of close encounters between a giant planet and a differentiated centaur a body in which the rocky material has sunk to form a dense silicate core, surrounded by an icy mantle.Some snapshots of simulation outcomes (click for a closer look!) for different initial states of

  12. Direct numerical simulation of a turbulent vortex ring

    NASA Astrophysics Data System (ADS)

    Archer, P. J.; Thomas, T. G.; Coleman, G. N.

    Engineers have been fascinated by vortex rings for over a hundred years, due to their numerous engineering and biological applications and their presence as a constituent of fully turbulent flow. Although the laminar ring has received much attention, the turbulent vortex ring is less well understood, due to the difficulty in its visualisation and measurement. Glezer and Coles [1] used ensemble averaging of experimental data to show that the radial expansion, circulation decay and slowing of the turbulent ring occur in a self-similar fashion. Circulation decreases in a staircase-like fashion [2] as the ring sheds hairpin vortices [3] into a wake. The radial growth of the ring is due to a slight excess in the amount of entrainment over detrainment[1]. The movement of dye within the ring suggests the existence of secondary vortices that wrap around the core, influencing the local entrainment, detrainment and production of turbulence [1]. In previous work [4], we investigated the laminar evolution of the ring and focused on the development of the Tsai-Widnall-Moore-Saffman (TWMS) instability [5, 6], and transition to turbulence. Here, we examine the temporal development of the turbulent vortex ring.

  13. Saturn ring temperature changes before and after ring equinox

    NASA Astrophysics Data System (ADS)

    Spilker, Linda; Flandes, Alberto; Morishima, Ryuji; Leyrat, Cedric; Altobelli, Nicolas; Ferrari, Cecile; Brooks, Shawn; Pilorz, Stu

    2010-05-01

    The Cassini Composite infrared spectrometer (CIRS) retrieved the temperatures of Saturn's main rings at solar elevations ranging from 24 degrees to zero degrees at equinox (August 2009) as the sun traversed from the south to north side of the rings. Over this broad range of solar elevation the CIRS data show that the ring temperatures vary as much as 29K- 38K for the A ring, 22K-34K for the B ring and 18K-23K for the C ring. Interestingly the unlit sides of the rings show a similar decrease in temperature with the decreasing solar elevation. As equinox approached, the main rings cooled to their lowest temperatures measured to date. At equinox the solar input is very small and the primary heat sources for the rings are Saturn thermal and visible energy. Temperatures are almost identical for similar geometries on the north and south sides of the rings. The ring temperatures at equinox were: C ring, 55-75 K; B ring, 45-60 K; Cassini Division, 45 - 58 K; and A ring, 43 - 52 K. After Saturn equinox the solar elevation angle began to increase again and the temperatures on both the lit (north) and unlit (south) sides of the rings have begun to increase as well. Ring thermal models developed by Flandes and Morishima are able to reproduce most of the equinox temperatures observed by CIRS. Results before and after equinox will be presented. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA and at CEA Saclay supported by the "Programme National de Planetologie". Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  14. Flexible models for analysing ring recovery data to estimate survival rates

    USGS Publications Warehouse

    Conroy, M.J.; Hines, J.E.

    1990-01-01

    We describe MULT, a flexible procedure for analysing ring recovery data. The procedure starts with parametric structures similar to, but more general than, those described by Brownie et al. (1985). Particular models, including those in Brownie et al. (1965), can be obtained by imposing constraints on the general parametric structures. Examples of models that are available in MULT include: analysis of ringing data when no birds are ringed in some years; analysis of twice-yearly ringing to estimate interval survivorship; and analysis of ringing data when survivorship is hypothesised to be a function of a covariate measured annually. We use North American ringings of Atlantic Brant (Branta bernicla hrota), Mallard (Anas platyrhynchos), and Ring-necked Ducks (Aythya collaris) to illustrate the above models. MULT is a menu-driven, IBM-PC compatible program, and is available from the second author.

  15. Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north?

    PubMed

    Sidorova, Olga Vladimirovna; Siegwolf, Rolf T W; Saurer, Matthias; Shashkin, Alexander V; Knorre, Anastasia A; Prokushkin, Anatoliy S; Vaganov, Eugene A; Kirdyanov, Alexander V

    2009-10-01

    Tree-ring width of Larix gmelinii (Rupr.) Rupr., ratios of stable isotopes of C (delta(13)C) and O (delta(18)O) of whole wood and cellulose chronologies were obtained for the northern part of central Siberia (Tura, Russia) for the period 1864-2006. A strong decrease in the isotope ratios of O and C (after atmospheric delta(13)C corrections) and tree-ring width was observed for the period 1967-2005, while weather station data show a decrease in July precipitation, along with increasing July air temperature and vapor pressure deficit (VPD). Temperature at the end of May and the whole month of June mainly determines tree radial growth and marks the beginning of the vegetation period in this region. A positive correlation between tree-ring width and July precipitation was found for the calibration period 1929-2005. Positive significant correlations between C isotope chronologies and temperatures of June and July were found for whole wood and cellulose and negative relationships with July precipitation. These relationships are strengthened when the likely physiological response of trees to increased CO(2) is taken into account (by applying a recently developed delta(13)C correction). For the O isotope ratios, positive relationships with annual temperature, VPD of July and a negative correlation with annual precipitation were observed. The delta(18)O in tree rings may reflect annual rather than summer temperatures, due to the late melting of the winter snow and its contribution to the tree water supply in summer. We observed a clear change in the isotope and climate trends after the 1960s, resulting in a drastic change in the relationship between C and O isotope ratios from a negative to a positive correlation. According to isotope fractionation models, this indicates reduced stomatal conductance at a relatively constant photosynthetic rate, as a response of trees to water deficit for the last half century in this permafrost region.

  16. North Brazil Current Ring Collisions With the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Fratantoni, D. M.; Richardson, P. L.

    2002-12-01

    The earth's largest ocean rings are spawned near 8°N in the western tropical Atlantic from the equator-crossing North Brazil Current (NBC). NBC rings, which can exceed 450 km in diameter and 2000 m in vertical extent, translate northwestward parallel to the South American coastline until they collide with the Lesser Antilles in the southeastern Caribbean Sea. The rings entrain filaments of nutrient- and sediment-rich Amazon and Orinoco River discharge, impact the distribution of icthyoplankton, and pose a physical threat to expanding offshore oil and gas exploration. The six rings generated annually are also responsible for up to one-third of the equatorial-to-subtropical mass and heat transport associated with the Atlantic meridional overturning circulation, a fundamental component of the earth climate system. Recent RAFOS float and surface drifter trajectories illustrate the translation and structural evolution of several NBC rings and enable the determination of the downstream fate of South Atlantic water trapped within the ring core. These results indicate that NBC rings do not enter the Caribbean Sea intact as simulated by numerical ocean models but are instead sheared apart through topographic interaction along the eastern flank of the Lesser Antilles.

  17. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  18. [A growth study of Prioria copaifera (Caesalpinaceae) using dendrochronological techniques].

    PubMed

    Giraldo Jiménez, Jorge Andrés; del Valle Arango, Jorge Ignacio

    2011-12-01

    The Cativo (Prioria copaifera) forms very homogeneous forests called cativales in the flooded plains of some rivers from Costa Rica to Colombia. For over 70 years Cativo has been the main base of the timber industry in the Colombian Darien area. Because of high productivity and high-dominance of Cativo trees, they represent one of the most prone tropical forests for sustainable forest management. The objective of this research is to model diameter and timber volume growth and growth rates (absolute, mean and relative) of Cativo as a function of age, using tree ring data derived from dendrochronologycal techniques. We evaluated the annual nature of the tree rings by radiocarbon analysis and crossdating techniques. Besides, the diameter and volume growth was modeled using von Bertalanffy's model. As of our results, we estimated the life span of Cativo in 614 years as the time required to reach 99% of the asymptotic diameter. By the mean value we have found that the mean rate of diameter growth is 0.31cm/y. The species requires 90 years to reach 40cm in diameter, the regulated cut diameter in Colombia. We find that Cativo reaches maximum current annual increment (ICA) in diameter at 40 years and in volume at 90 years with rates of 0.5cm/y and 0.032m3/y per tree, respectively. The maximum diameter mean annual increments (MAI) are achieved at 80 years and for the volume at 140 year, with growth rates of 0.45cm/y and 0.018m3/y per tree, respectively. The generated information is useful for the sustainable management of Cativò forests.

  19. [A growth study of Prioria copaifera (Caesalpinaceae) using dendrochronological techniques].

    PubMed

    Giraldo Jiménez, Jorge Andrés; del Valle Arango, Jorge Ignacio

    2011-12-01

    The Cativo (Prioria copaifera) forms very homogeneous forests called cativales in the flooded plains of some rivers from Costa Rica to Colombia. For over 70 years Cativo has been the main base of the timber industry in the Colombian Darien area. Because of high productivity and high-dominance of Cativo trees, they represent one of the most prone tropical forests for sustainable forest management. The objective of this research is to model diameter and timber volume growth and growth rates (absolute, mean and relative) of Cativo as a function of age, using tree ring data derived from dendrochronologycal techniques. We evaluated the annual nature of the tree rings by radiocarbon analysis and crossdating techniques. Besides, the diameter and volume growth was modeled using von Bertalanffy's model. As of our results, we estimated the life span of Cativo in 614 years as the time required to reach 99% of the asymptotic diameter. By the mean value we have found that the mean rate of diameter growth is 0.31cm/y. The species requires 90 years to reach 40cm in diameter, the regulated cut diameter in Colombia. We find that Cativo reaches maximum current annual increment (ICA) in diameter at 40 years and in volume at 90 years with rates of 0.5cm/y and 0.032m3/y per tree, respectively. The maximum diameter mean annual increments (MAI) are achieved at 80 years and for the volume at 140 year, with growth rates of 0.45cm/y and 0.018m3/y per tree, respectively. The generated information is useful for the sustainable management of Cativò forests. PMID:22208095

  20. Temperature reconstructions from tree-ring densities overestimate volcanic cooling

    NASA Astrophysics Data System (ADS)

    Tingley, Martin P.; Stine, Alexander R.; Huybers, Peter

    2014-11-01

    The fidelity of inferences on volcanic cooling from tree-ring density records has recently come into question, with competing claims that temperature reconstructions based on tree-ring records underestimate cooling due to an increased likelihood of missing rings or overestimate cooling due to reduced light availability accentuating the response. Here we test these competing hypotheses in the latitudes poleward of 45°N, using the two eruptions occurring between 1850 and 1960 with large-scale Northern Hemisphere climatic effects: Novarupta (1912) and Krakatau (1883). We find that tree-ring densities overestimate postvolcanic cooling with respect to instrumental data (Probability≥0.99), with larger magnitudes of bias where growth is more limited by light availability (Prob.≥0.95). Using a methodology that allows for direct comparisons with instrumental data, our results confirm that high-latitude tree-ring densities record not only temperature but also variations in light availability.

  1. O-Ring-Testing Fixture

    NASA Technical Reports Server (NTRS)

    Turner, James E.; Mccluney, D. Scott

    1990-01-01

    Fixture used to evalute properties of O-rings of various materials. Hydraulic actuator positions plug in housing, creating controlled, variable gap in O-ring glands formed by grooves in plug and by inner wall of housing. Creates controlled axial and radial gaps between sealing surfaces around ring so effectiveness of material in maintaining seal determined under dynamic conditions.

  2. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  3. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  4. Vortex Rings in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Alamri, Sultan Z.; Barenghi, Carlo F.

    2008-11-01

    We present results of numerical simulations of large-scale vortex rings in superfluid helium. These large-scale vortex rings consists of many discrete (quantized) vortex filaments which interact with each other moving according to the Biot-Savart law. Lifetime, structural stability and speed of large-scale vortex rings will be discussed and compared to experimental results.

  5. Uranus: the rings are black.

    PubMed

    Sinton, W M

    1977-11-01

    An upper limit of 0.05 is established for the geometric albedo of the newly discovered rings of Uranus. In view of this very low albedo, the particles of the rings cannot be ice-covered as are those of rings A and B of Saturn.

  6. Multicentury Reconstruction of Precipitations (1300-2014) in Eastern Canada from Tree-Ring Width and Carbon and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Giguère, Claudie; Boucher, Étienne; Bergeron, Yves

    2016-04-01

    Tree ring series enabling long hydroclimatic reconstructions are scarce in Northeastern America, mostly because most boreal species are rather thermo-dependant. Here we propose a new multi-proxy analysis (tree-ring, δ13C and δ18O) from one of the oldest Thuja occidentalis population in NE America (lake Duparquet, Quebec). These rare precipitation-sensitive, long-living trees (> 800 years) grow on xeric rocky shores and their potential for paleo-hydroclimatic reconstructions (based on ring widths solely) was previously assessed. The objectives of this study are twofold i) to strengthen the hydroclimatic signal of this long tree-ring chronology by adding analysis of stable isotope ratios (δ13C and δ18O) and ii) to reconstruct summer precipitation back to 1300 AD, which will represent, by far, the longest high-resolution hydroclimatic reconstruction in this region. A tree-ring chronology was constructed from 61 trees sampled in standing position. Eleven trees were also sampled to produce pooled carbon and oxygen isotope chronologies (annually resolved) with a replication of five to six trees per year. Signal analysis (correlation between climatic data and proxy values) confirms that growth is positively influenced by spring precipitations (May-June), while δ13C is negatively correlated to summer precipitation (June to August) and positively to June temperature. Adding δ18O analysis will strengthen the signal even more, since wood cellulose should be enriched in δ18O when high evapotranspiration conditions prevail. Based on a multi-proxy approach, a summer precipitation reconstruction was developed and compared to other temperature reconstructions from this region as well as to southernmost hydroclimatic reconstructions (e.g. Cook et al). A preliminary analysis of external and internal forcing is proposed in conclusion.

  7. Satellite Rings Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This brief movie clip (of which the release image is a still frame), taken by NASA's Cassini spacecraft as it approached Jupiter, shows the motions, over a 16 hour-period, of two satellites embedded in Jupiter's ring. The moon Adrastea is the fainter of the two, and Metis the brighter. Images such as these will be used to refine the orbits of the two bodies.

    The movie was made from images taken during a 40-hour sequence of the Jovian ring on December 11, 2000.

    Cassini is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages Cassini for NASA's Office of Space Science, Washington, D.C.

  8. Spiral and Rotor Patterns Produced by Fairy Ring Fungi.

    PubMed

    Karst, Nathaniel; Dralle, David; Thompson, Sally

    2016-01-01

    A broad class of soil fungi form the annular patterns known as 'fairy rings' and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns.

  9. Oligomeric ferrocene rings.

    PubMed

    Inkpen, Michael S; Scheerer, Stefan; Linseis, Michael; White, Andrew J P; Winter, Rainer F; Albrecht, Tim; Long, Nicholas J

    2016-09-01

    Cyclic oligomers comprising strongly interacting redox-active monomer units represent an unknown, yet highly desirable class of nanoscale materials. Here we describe the synthesis and properties of the first family of molecules belonging to this compound category-differently sized rings comprising only 1,1'-disubstituted ferrocene units (cyclo[n], n = 5-7, 9). Due to the close proximity and connectivity of centres (covalent Cp-Cp linkages; Cp = cyclopentadienyl) solution voltammograms exhibit well-resolved, separated 1e(-) waves. Theoretical interrogations into correlations based on ring size and charge state are facilitated using values of the equilibrium potentials of these transitions, as well as their relative spacing. As the interaction free energies between the redox centres scale linearly with overall ring charge and in conjunction with fast intramolecular electron transfer (∼10(7) s(-1)), these molecules can be considered as uniformly charged nanorings (diameter ∼1-2 nm). PMID:27554408

  10. Which Ringed Planet...!?

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Don't worry - you are not the only one who thought this was a nice amateur photo of planet Saturn, Lord of the Rings in our Solar System! But then the relative brightness and positions of the moons may appear somewhat unfamiliar... and the ring system does look unusually bright when compared to the planetary disk...?? Well, it is not Saturn, but Uranus , the next giant planet further out, located at a distance of about 3,000 million km, or 20 times the distance between the Sun and the Earth. The photo shows Uranus surrounded by its rings and some of the moons, as they appear on a near-infrared image that was obtained in the K s -band (at wavelength 2.2 µm) with the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile) . The exposure was made on November 19, 2002 (03:00 hrs UT) during a planetary research programme. The observing conditions were excellent (seeing 0.5 arcsec) and the exposure lasted 5 min. The angular diameter of Uranus is about 3.5 arcsec. The observers at ISAAC were Emmanuel Lellouch and Thérése Encrenaz of the Observatoire de Paris (France) and Jean-Gabriel Cuby and Andreas Jaunsen (both ESO-Chile). The rings The rings of Uranus were discovered in 1977, from observations during a stellar occultation event by astronomer teams at the Kuiper Airborne Observatory (KAO) and the Perth Observatory (Australia). Just before and after the planet moved in front of the (occulted) star, the surrounding rings caused the starlight to dim for short intervals of time. Photos obtained from the Voyager-2 spacecraft in 1986 showed a multitude of very tenuous rings. These rings are almost undetectable from the Earth in visible light. However, on the present VLT near-infrared picture, the contrast between the rings and the planet is strongly enhanced. At the particular wavelength at which this observation was made, the infalling sunlight is almost completely absorbed by gaseous methane present in the planetary atmosphere

  11. Uranus rings and two moons

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Voyager 2 has discovered two 'shepherd' satellites associated with the rings of Uranus. The two moons -- designated 1986U7 and 1986U8 -- are seen here on either side of the bright epsilon ring; all nine of the known Uranian rings are visible. The image was taken Jan. 21, 1986, at a distance of 4.1 million kilometers (2.5 million miles) and resolution of about 36 km (22 mi). The image was processed to enhance narrow features. The epsilon ring appears surrounded by a dark halo as a result of this processing; occasional blips seen on the ring are also artifacts. Lying inward from the epsilon ring are the delta, gamma and eta rings; then the beta and alpha rings; and finally the barely visible 4, 5 and 6 rings. The rings have been studied since their discovery in 1977, through observations of how they diminish the light of stars they pass in front of. This image is the first direct observation of all nine rings in reflected sunlight. They range in width from about 100 km (60 mi) at the widest part of the epsilon ring to only a few kilometers for most of the others. The discovery of the two ring moons 1986U7 and 1986U8 is a major advance in our understanding of the structure of the Uranian rings and is in good agreement with theoretical predictions of how these narrow rings are kept from spreading out. Based on likely surface brightness properties, the moons are of roughly 2O- and 3O-km diameter, respectively. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  12. Use of Tritium Accelerator Mass Spectrometry for Tree Ring Analysis

    PubMed Central

    LOVE, ADAM H.; HUNT, JAMES R.; ROBERTS, MARK L.; SOUTHON, JOHN R.; CHIARAPPA - ZUCCA, MARINA L.; DINGLEY, KAREN H.

    2010-01-01

    Public concerns over the health effects associated with low-level and long-term exposure to tritium released from industrial point sources have generated the demand for better methods to evaluate historical tritium exposure levels for these communities. The cellulose of trees accurately reflects the tritium concentration in the source water and may contain the only historical record of tritium exposure. The tritium activity in the annual rings of a tree was measured using accelerator mass spectrometry to reconstruct historical annual averages of tritium exposure. Milligram-sized samples of the annual tree rings from a Tamarix located at the Nevada Test Site are used for validation of this methodology. The salt cedar was chosen since it had a single source of tritiated water that was well-characterized as it varied over time. The decay-corrected tritium activity of the water in which the salt cedar grew closely agrees with the organically bound tritium activity in its annual rings. This demonstrates that the milligram-sized samples used in tritium accelerator mass spectrometry are suited for reconstructing anthropogenic tritium levels in the environment. PMID:12144257

  13. Tree-Ring Based Streamflow Reconstructions of the Yaqui River, MX and Implications for Drought and Water Management Studies

    NASA Astrophysics Data System (ADS)

    Hoover, K. J.; Ray, A. J.; Lukas, J. J.; Villanueva-Diaz, J.

    2008-05-01

    The Yaqui River is the irrigation source for an economically important agricultural region of Northwest Mexico. Currently, planning and forecasting are based on streamflow gauge data of only about 50 years. Understanding past variations in Yaqui streamflow is important to developing river forecasts and management plans. This presentation describes an effort to develop longer proxy records of streamflow to better understand the region's climate variability and drought history. The result is a 363-year dendrochronology based reconstruction model of Yaqui River streamflow. The model is based on a correlation between 44-years of Yaqui streamflow data and tree-ring chronologies dating to A.D. 1639. Chronologies are from Bisaloachi (28.66 N, 108.29 W), Cebadilla de Ocampo (28.122 N, 107.95 W) and Mesa de las Guacamayas (30.55 N, 108.62 W) in the state of Chihuahua, MX. The binary model uses a normalized index of annual total tree ring width (Tree-Ring Index, TRI). The model output is the probability that a given year experienced less than median streamflow, a possible indicator of drought. This model correctly predicts 100% of less than median streamflow years using a TRI input of <0.75. However, this model does not predict over 30% of less than median streamflow years, and thus is not adequate for assessing drought. The available data might limit assessment of low precipitation. Total ring width (TRW) is typically associated with winter precipitation (October-June, in this case), which represents less than 40% of annual streamflow in this region where much of the precipitation and streamflow are related to the North American Monsoon (NAM), typically from July-September. The late wood (LW) growth portion of tree-rings may better reflect the NAM precipitation and streamflow, and produce a better reconstruction model. These results show that representation of NAM streamflow is essential for a more accurate streamflow reconstruction model. More tree-ring chronologies from

  14. Extreme pointer years in tree-ring records of Central Spain as evidence of climatic events and the eruption of the Huaynaputina Volcano (Peru, 1600 AD)

    NASA Astrophysics Data System (ADS)

    Génova, M.

    2012-04-01

    The study of pointer years of numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama) could provide complementary information about climate variability over the last 405 yr. In total, 64 pointer years have been identified: 30 negative (representing minimum growths) and 34 positive (representing maximum growths), the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation was found to be the most limiting factor for the growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, these pointer years and intervals are not evenly distributed throughout time. Both in the first half of the 17th and in the second half of 20th, they were more frequent and more extreme and these periods are the most notable for the frequency of negative pointer years in Central Spain. The interval 1600-1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. We infer that this special minimum annual increase was the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of Southern Europe have been demonstrated.

  15. Seasonality and Disturbance Events in the Carbon Isotope Record of Slash Pine (Pinus elliottii) Tree Rings from Big Pine Key, Florida

    NASA Astrophysics Data System (ADS)

    Rebenack, C.; Anderson, W. T.; Cherubini, P.

    2011-12-01

    The South Florida coastal ecosystem is among the world's subtropical coastlines which are threatened by the potential effects of climate change. A well-developed localized paleohistory is essential in the understanding of the role climate variability/change has on both hydrological dynamics and disturbance event frequency and intensity; this understanding can then aid in the development of better predictive models. High resolution paleoclimate proxies, such as those developed from tree-ring archives, may be useful tools for extrapolating actual climate trends over time from the overlapping long-term and short-term climate cycles, such as the Atlantic Multidecadal Oscillation (AMO) and the El Niño-Southern Oscillation (ENSO). In South Florida, both the AMO and ENSO strongly influence seasonal precipitation, and a more complete grasp of how these cycles have affected the region in the past could be applied to future freshwater management practices. Dendrochronology records for the terrestrial subtropics, including South Florida, are sparse because seasonality for this region is precipitation driven; this is in contrast to the drastic temperature changes experienced in the temperate latitudes. Subtropical seasonality may lead to the complete lack of visible rings or to the formation of ring structures that may or may not represent annual growth. Fortunately, it has recently been demonstrated that Pinus elliottii trees in South Florida produce distinct annual growth rings; however ring width was not found to significantly correlate with either the AMO or ENSO. Dendrochronology studies may be taken a step beyond the physical tree-ring proxies by using the carbon isotope ratios to infer information about physiological controls and environmental factors that affect the distribution of isotopes within the plant. It has been well established that the stable isotope composition of cellulose can be related to precipitation, drought, large-scale ocean/atmospheric oscillations

  16. Ideals of generalized matrix rings

    SciTech Connect

    Budanov, Aleksandr V

    2011-01-31

    Let R and S be rings, and {sub R}M{sub S} and {sub S}N{sub R} bimodules. In the paper, in terms of isomorphisms of lattices, relationships between the lattices of one-sided and two-sided ideals of the generalized matrix ring and the corresponding lattices of ideals of the rings R and S are described. Necessary and sufficient conditions for a pair of ideals I, J of rings R and S, respectively, to be the main diagonal of some ideal of the ring K are also obtained. Bibliography: 8 titles.

  17. O-Ring-Testing Fixture

    NASA Technical Reports Server (NTRS)

    Turner, James E.; Mccluney, D. Scott

    1991-01-01

    Fixture tests O-rings for sealing ability under dynamic conditions after extended periods of compression. Hydraulic cylinder moves plug in housing. Taper of 15 degrees on plug and cavity of housing ensures that gap created between O-ring under test and wall of cavity. Secondary O-rings above and below test ring maintain pressure applied to test ring. Evaluates effects of variety of parameters, including temperature, pressure, rate of pressurization, rate and magnitude of radial gap movement, and pretest compression time.

  18. New instability of Saturn's ring

    SciTech Connect

    Goertz, C.K.; Morfill, G.

    1988-05-01

    Perturbations in the Saturn ring's mass density are noted to be prone to instabilities through the sporadic elevation of submicron-size dust particles above the rings, which furnishes an effective angular momentum exchange between the rings and Saturn. The dust thus elevated from the ring settles back onto it at a different radial distance. The range of wavelength instability is determinable in light of the dust charge, the average radial displacement of the dust, and the fluctuation of these quantities. It is suggested that at least some of the B-ring's ringlets may arise from the instability.

  19. Helmet latching and attaching ring

    NASA Technical Reports Server (NTRS)

    Chase, E. W.; Viikinsalo, S. J. (Inventor)

    1970-01-01

    A neck ring releasably secured to a pressurized garment carries an open-ended ring normally in the engagement position fitted into an annular groove and adapted to fit into a complementary annular groove formed in a helmet. Camming means formed on the inner surface at the end of the helmet engages the open-ended ring to retract the same and allow for one motion donning even when the garment is pressurized. A projection on the end of the split ring is engageable to physically retract the split ring.

  20. Supramolecular buffering by ring-chain competition.

    PubMed

    Paffen, Tim F E; Ercolani, Gianfranco; de Greef, Tom F A; Meijer, E W

    2015-02-01

    Recently, we reported an organocatalytic system in which buffering of the molecular catalyst by supramolecular interactions results in a robust system displaying concentration-independent catalytic activity. Here, we demonstrate the design principles of the supramolecular buffering by ring-chain competition using a combined experimental and theoretical approach. Our analysis shows that supramolecular buffering of a molecule is caused by its participation as a chain stopper in supramolecular ring-chain equilibria, and we reveal here the influence of various thermodynamic parameters. Model predictions based on independently measured equilibrium constants corroborate experimental data of several molecular systems in which buffering occurs via competition between cyclization, growth of linear chains, and end-capping by the chain-stopper. Our analysis reveals that the effective molarity is the critical parameter in optimizing the broadness of the concentration regime in which supramolecular ring-chain buffering occurs as well as the maximum concentration of the buffered molecule. To conclude, a side-by-side comparison of supramolecular ring-chain buffering, pH buffering, and molecular titration is presented.

  1. Inferring long-term carbon sequestration from tree rings at Harvard Forest: A calibration approach using tree ring widths and geochemistry / flux tower data

    NASA Astrophysics Data System (ADS)

    Belmecheri, S.; Maxwell, S.; Davis, K. J.; Alan, T. H.

    2012-12-01

    Improving the prediction skill of terrestrial carbon cycle models is important for reducing the uncertainties in global carbon cycle and climate projections. Additional evaluation and calibration of carbon models is required, using both observations and long-term proxy-derived data. Centennial-length data could be obtained from tree-rings archives that provide long continuous series of past forest growth changes with accurate annual resolution. Here we present results from a study conducted at Harvard Forest (Petersham, Massachusetts). The study examines the potential relationship between δ13C in dominant trees and GPP and/or NEE measured by the Harvard Forest flux tower (1992-2010). We have analyzed the δ13C composition of late wood-cellulose over the last 18 years from eastern hemlock (Tsuga canadensis) and northern red oak (Quercus rubra) trees growing in the flux tower footprint. δ13C values, corrected for the declining trend of atmospheric δ13C, show a decreasing trend from 1992 to 2010 and therefore a significant increase in discrimination (Δ). The intra-cellular CO2 (Ci) calculated from Δ shows a significant increase for both tree species and follows the same rate of atmospheric CO2 (Ca) increase (Ci/Ca increases). Interestingly, the net Ci and Δ increase observed for both species did not result in an increase of the iWUE. Ci/Ca is strongly related to the growing season Palmer Drought Severity Index (PDSI) for both species thus indicating a significant relationship between soil moisture conditions and stomatal conductance. The Ci trend is interpreted as a result of higher CO2 assimilation in response to increasing soil moisture allowing a longer stomata opening and therefore stimulating tree growth. This interpretation is consistent with the observed increase in GPP and the strengthening of the carbon sink (more negative NEE). Additionally, the decadal trends of basal area increment (BAI) calculated from tree-ring widths exhibit a positive trend over

  2. Coffee-ring effect beyond the dilute limit

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Ryu, Seul-A.; Kim, Hyungdae; Kim, Joon Heon; Park, Jung Su; Park, Yong Seok; Oh, Jeong Su; Weon, Byung Mook

    2015-11-01

    The coffee-ring effect, which is a natural generation of outward capillary flows inside drying coffee drops, is valid at the dilute limit of initial solute concentrations. If the solute is not dilute, the ring deposit is forced to have a non-zero width; higher initial concentration leads to a wider ring. Here we study the coffee-ring effect in the dense limit by demonstrating differences with various initial coffee concentrations from 0.1% to 60%. The coffee drops with high initial concentrations of real coffee particles show interesting evaporation dynamics: dense coffee drops tend to evaporate slowly. This result is different from the classic coffee-ring effect in the dilute limit. We suppose that the slow evaporation of dense coffee drops is associated with the ring growth dynamics. The coffee-ring effect becomes more significant in modern technologies such as self-assembly of nanoparticles, ink-jet printing, painting and ceramics. The complexity in evaporation dynamics of colloidal fluids would be able to be understood by expanding the coffee-ring effects in the dilute as well as the dense limits.

  3. Tree rings as an indicator of atmospheric pollutant deposition to subalpine spruce forests in the Sudetes (Southern Poland)

    NASA Astrophysics Data System (ADS)

    Godek, Michał; Sobik, Mieczysław; Błaś, Marek; Polkowska, Żaneta; Owczarek, Piotr; Bokwa, Anita

    2015-01-01

    In spite of their moderate altitude (1000-1600 m a.s.l.), the Western Sudety Mountains belong to areas with the most efficient fog precipitation in Europe. Intense industrial activity in the area of windward western foothills caused an exceptional intensification of atmospheric pollutant deposition via precipitation and fog to take place since the 1950s. In the second half of the 1970s a massive spruce forest dieback began affecting around 42% of coniferous forest in the Polish part of the Sudety Mountains. As the result of emission abatement in the region, gradual improvement of forest health status has been observed in the last decade. In October 2010 there were 70 dendrochronological samples collected from Norway spruce (Picea abies) stems at 7 different locations using an increment borer. It was documented for six sites that lowest annual growth rates took place between the early eighties and the early nineties which coincides with the highest pollutant deposition rates. Only one site representing the lowest parts of leeward slope showed gradual decrease of tree rings as a result of increasing tree age rather than due to an increase in ecological stress conditions. Tree ring widths were then compared with spatial distribution of fog frequency in the Western Sudety Mountains. The achieved results document a strongly negative dependence of tree ring widths on fog deposition rates. Spruce forest ecosystems have an ability to respond quickly to both negative and positive stimuli, related to increasing and decreasing environmental contamination.

  4. Linking Tree Growth Response to Measured Microclimate - A Field Based Approach

    NASA Astrophysics Data System (ADS)

    Martin, J. T.; Hoylman, Z. H.; Looker, N. T.; Jencso, K. G.; Hu, J.

    2015-12-01

    The general relationship between climate and tree growth is a well established and important tenet shaping both paleo and future perspectives of forest ecosystem growth dynamics. Across much of the American west, water limits growth via physiological mechanisms that tie regional and local climatic conditions to forest productivity in a relatively predictable way, and these growth responses are clearly evident in tree ring records. However, within the annual cycle of a forest landscape, water availability varies across both time and space, and interacts with other potentially growth limiting factors such as temperature, light, and nutrients. In addition, tree growth responses may lag climate drivers and may vary in terms of where in a tree carbon is allocated. As such, determining when and where water actually limits forest growth in real time can be a significant challenge. Despite these challenges, we present data suggestive of real-time growth limitation driven by soil moisture supply and atmospheric water demand reflected in high frequency field measurements of stem radii and cell structure across ecological gradients. The experiment was conducted at the Lubrecht Experimental Forest in western Montana where, over two years, we observed intra-annual growth rates of four dominant conifer species: Douglas fir, Ponderosa Pine, Engelmann Spruce and Western Larch using point dendrometers and microcores. In all four species studied, compensatory use of stored water (inferred from stem water deficit) appears to exhibit a threshold relationship with a critical balance point between water supply and demand. The occurrence of this point in time coincided with a decrease in stem growth rates, and the while the timing varied up to one month across topographic and elevational gradients, the onset date of growth limitation was a reliable predictor of overall annual growth. Our findings support previous model-based observations of nonlinearity in the relationship between

  5. Tree-Ring Evidence for Volcanic Eruption Effects on Temperate and Boreal Tree Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Krakauer, N. Y.; Smith, N. V.; Randerson, J. T.

    2003-12-01

    The 1991 Pinatubo eruption and the apparent increased terrestrial carbon uptake in 1992 and 1993 have motivated interest in understanding the impact on plant productivity of the climate and radiative change resulting from volcanic eruptions that generate large stratospheric aerosol loadings. We used tree ring width series to look for anomalously high or low tree growth following 10 large eruptions since 1500 (not including Pinatubo) that resulted in stratospheric aerosol loadings comparable to Pinatubo's. We obtained crossdated ring width series from the International Tree Ring Data Bank, developed regional mean width indices, and used a Monte Carlo approach to test for significant departures in the indices following eruptions. Boreal zone trees (north of 50° N) showed significantly reduced widths ( ˜5% below average) for several years centered around years 4-6 after eruptions. Temperate zone (35° -50° N) trees in eastern North America showed significantly increased (by ˜6%) widths on years 0-2 after eruptions. Temperate zone trees in western North America showed a smaller increase, and trees in Europe showed no increase. We tentatively suggest that eruption-induced cooling causes the growth reduction in boreal trees, whereas the differing regional patterns found in temperate trees could be due to a combination of differences in eruption climate effects between regions, temperature versus moisture limited growth depending on ambient climate, and enhancement of tree light use efficiency in closed-canopy forest because of an increase in diffuse light fraction. Our findings invite additional research to clarify how regional climate and ecology modulate the effects of eruptions on tree growth and to assess the net effect of eruptions on global plant productivity. A series of annual tree carbon increment compiled from coring in plots of Harvard Forest, Massachusetts (42.5° N, 72.2° W), as well as other series for eastern North America do not show increased growth

  6. In-situ characterization of growth and interfaces in a-Si:H devices. Annual subcontract report, 1 May 1991--30 April 1992

    SciTech Connect

    Collins, R.W.; Wronski, C.R.; An, I.; Li, Y.

    1992-12-01

    This report describes the in-situ characterization of growth and interfaces in amorphous silicon (a-Si:H) devices. The growth of a-Si:H by plasma-enhanced chemical vapor deposition (PECVD) is complex and involves many gas-phase and solid-surface chemical and physical processes, which are influenced by charged particle bombardment, ultraviolet light exposure, etc. The research consisted of two broad components. The first involved preparing a-Si:H by ``optimum`` PECVD and exposing the film to atomic hydrogen in-situ at the growth temperature. The processes of H-diffusion and incorporation in the exposed film were studied by spectroscopic ellipsometry, giving a picture of the processes by which the chemical potential in the film equilibrates with that in the gas phase. The properties of thin films were then prepared by alternating ``optimum`` PECVD growth and hydrogen exposure. Film properties were then studied again. The second component of the research is discussed only briefly in this report, as it is an outgrowth of previous work on single-wavelength ellipsometry. With the new spectroscopic capability developed at Penn State, it is now possible to quantify the nucleation and growth process of a-Si:H films.

  7. The ralationship between the Tamarix spp. growth and lake level change in the Bosten Lake,northwest China

    NASA Astrophysics Data System (ADS)

    Ye, Mao; Hou, JiaWen

    2015-04-01

    Dendrochronology methods are used to analyze the characteristics of Tamarix spp. growth in Bosten Lake. Based on the long-term annual and monthly data of lake level, this paper models the relationship between ring width of Tamarix spp. and lake level change. The sensitivity index is applied to determine the rational change range of lake level for protecting the Tamarix spp. growth. The results show that :( 1) the annual change of lake level in Bosten Lake has tree evident stages from 1955 to 2012. The monthly change of lake level has two peak values and the seasonal change is not significant; (2) the average value of radical width of Tamarix spp. is 3.39mm. With the increment of Tamarix spp. annual growth , the average radical width has a decreasing trend, which is similar to the annual change trend of lake level in the same years ;( 3) the response of the radical width of Tamarix spp. to annual change of lake level is sensitive significantly. When the lake level is 1045.66m, the Sk value of radical width of Tamarix spp. appears minimum .when the lake level is up to1046.27m, the Sk value is maximum. Thus the sensitivity level of radical width of Tamarix spp. is 1045.66- 1046.27m which could be regarded as the rational lake level change range for protecting the Tamarix spp. growth.

  8. Continuous ring furnaces

    SciTech Connect

    De Stefani, G.; Genevois, J.L.; Paolo, P.

    1981-01-06

    A smoke conducting apparatus for use particularly with continuous ring furnaces (e.g., Hoffman furnaces) wherein each furnace chamber is connected to the smoke channel, the latter being a metal pipe inclined slightly from horizontal and provided with one or more traps along the length of its bottom surface, each trap containing a removable receptacle, and heating means being disposed along the bottom of the channel to fluidize tarry deposits of combustion products so that such deposits will flow by gravity into the removable receptacle.

  9. Saturn ring temperature variations with approaching ring equinox

    NASA Astrophysics Data System (ADS)

    Spilker, L.; Leyrat, C.; Flandes, A.; Altobelli, N.; Pilorz, S.; Ferrari, C.; Edgington, S.

    2009-04-01

    Cassini's Composite Infrared Spectrometer (CIRS) has acquired a wide-ranging set of thermal measurements of Saturn's main rings (A, B, C and Cassini Division) at solar elevations ranging from less than one degree to 24 degrees. At Saturn equinox in August the solar elevation angle will reach zero as the sun traverses from the south to north side of the rings. For the data acquired to date, temperatures were retrieved for the lit and unlit rings over a variety of ring geometries that include solar elevation, as well as spacecraft elevation, phase angle and local hour angle. To first order, the largest temperature changes on the lit face of the rings are driven by variations in phase angle while differences in temperature with changing spacecraft elevation and local time are a secondary effect. Decreasing ring temperature with decreasing solar elevation are observed for both the lit and unlit faces of the rings after phase angle and local time effects are taken into account. As the solar elevation continues to decrease, the ring temperatures are decreasing in a non-linear fashion. The difference in temperature between the lit and unlit sides of the rings is decreasing also with decreasing solar elevation. Using ring thermal models developed by Leyrat we extrapolate to the expected minimum ring temperatures at equinox for our planned CIRS ring observations. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA and at CEA Saclay supported by the "Programme National de Planetologie". Copyright 2009 California Institute of Technology. Government sponsorship acknowledged.

  10. Growth of high T{sub c} superconducting fibers using a minaturized laser-heated float zone process. Annual progress report, January 1, 1993--December 31, 1993

    SciTech Connect

    Feigelson, R.S.

    1993-12-01

    This report covers the research done on {open_quotes}Growth of High Tc Superconducting Fibers using a Miniaturized Laser-Heated Float Zone Process{close_quotes} during the 12 months from Jan. 1, 1993 until Dec. 31, 1993. The effort during this period were directed into two areas; the influence of growth conditions on the properties of the superconducting fibers and the construction of the advanced fiber growth station. In the first area of emphasis, studies were done on constitutional super cooling effect, the influence of processing parameters on Tc, the correlation between Tc and growth parameters and the mechanical properties of 2212 fibers. These studies showed that there are two types of interfacial breakdowns; one type that involves low temperature inclusions caused by excessive solute buildup and another involving high temperature inclusions which require two conditions to be met. These condition are: (1) significant compositional gradients in the melt and (2) an interface melt temperature near the peritectic decomposition temperature. Analysis of the experimental data lead to the hypothesis that fibers with the highest crystallinity are grown from SrO-rich 2212 melts. Evaluation of the constitutional supercooling responsible for the high temperature inclusions suggested that growth under these conditions was most vulnerable to disruption by HT inclusions. Tc increased with growth temperature for as-grown fibers. The concentration of SrO in the fibers had a parabolic relationship with temperature. The same parabolic relationship was observed between composition and Tc. The thermal history of 2212 crystals has been shown to influence their oxygen content which played a significant role in determining their Tc`s. Fiber heat treatment and the ambient gaseous atmosphere were found to dominate the Tc variations measured in this study.

  11. High water-use efficiency and growth contribute to success of non-native Erodium cicutarium in a Sonoran Desert winter annual community

    PubMed Central

    Kimball, Sarah; Gremer, Jennifer R.; Barron-Gafford, Greg A.; Angert, Amy L.; Huxman, Travis E.; Venable, D. Lawrence

    2014-01-01

    The success of non-native, invasive species may be due to release from natural enemies, superior competitive abilities, or both. In the Sonoran Desert, Erodium cicutarium has increased in abundance over the last 30 years. While native species in this flora exhibit a strong among-species trade-off between relative growth rate and water-use efficiency, E. cicutarium seems to have a higher relative growth rate for its water-use efficiency value relative to the pattern across native species. This novel trait combination could provide the non-native species with a competitive advantage in this water-limited environment. To test the hypothesis that E. cicutarium is able to achieve high growth rates due to release from native herbivores, we compared the effects of herbivory on E. cicutarium and its native congener, Erodium texanum. We also compared these two species across a range of environmental conditions, both in a common garden and in two distinct seasons in the field, using growth analysis, isotopic compositions and leaf-level gas exchange. Additionally, we compared the competitive abilities of the two Erodium species in a greenhouse experiment. We found no evidence of herbivory to either species. Physiological measurements in a common environment revealed that E. cicutarium was able to achieve high growth rates while simultaneously controlling leaf-level water loss. Non-native E. cicutarium responded to favourable conditions in the field with greater specific leaf area and leaf area ratio than native E. texanum. The non-native Erodium was a stronger competitor than its native congener in a greenhouse competition experiment. The ability to maintain relatively higher values of water-use efficiency:relative growth rate in comparison to the native flora may be what enables E. cictarium to outcompete native species in both wet and dry years, resulting in an increase in abundance in the highly variable Sonoran Desert. PMID:27293627

  12. Particle rings and astrophysical accretion discs

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2016-03-01

    Norman Rostoker had a wide range of interests and significant impact on the plasma physics research at Cornell during the time he was a Cornell professor. His interests ranged from the theory of energetic electron and ion beams and strong particle rings to the related topics of astrophysical accretion discs. We outline some of the topics related to rings and discs including the Rossby wave instability which leads to formation of anticyclonic vortices in astrophysical discs. These vorticies are regions of high pressure and act to trap dust particles which in turn may facilitate planetesimals growth in proto-planetary disks and could be important for planet formation. Analytical methods and global 3D magneto-hydrodynamic simulations have led to rapid advances in our understanding of discs in recent years.

  13. Space charge effect in isochronous rings

    SciTech Connect

    Pozdeyev,E.; Rodriguez, J.A.; Marti, F.; York, R.

    2008-08-25

    Cyclotrons, rings for precise nuclear mass spectrometry, and some light sources with extremely short bunches are operated or planned to be operated in the isochronous or almost isochronous regime. Also, many hadron synchrotrons run in the isochronous regime for a short period of time during transition crossing. The longitudinal motion is frozen in the isochronous regime that leads to accumulation of the integral of the longitudinal space charge force. In low-gamma hadron machines, this can cause a fast growth of the beam energy spread even at modest beam intensities. Additionally, the transverse component of the space charge effectively modifies the dispersion function and the slip factor shifting the isochronous (transition) point. In this paper, we discuss space charge effects in the isochronous regime and present experimental results obtained in the Small Isochronous Ring, developed at Michigan State University specifically for studies of space charge in the isochronous regime.

  14. Ring Image Analyzer

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.

    2012-01-01

    Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.

  15. Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.

    2005-12-01

    The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology

  16. Renewable energy annual 1995

    SciTech Connect

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  17. Intraocular Radio-Opaque Ring.

    PubMed

    Shieh, Christine; Folz, Emily; Fekrat, Sharon

    2015-01-01

    A radiologist noted a radio-opaque object in the eye of a woman undergoing X-ray examination to determine the safety of magnetic resonance imaging (MRI). Water's X-ray shows the titanium locking c-ring of a type 1 Boston keratoprosthesis. This ring was added in 2004 to prevent intraocular disassembly of the device. The nonmagnetic ring does not prevent MRI imaging. The titanium locking c-ring and the titanium or polymethyl methacrylate back plate of the Boston keratoprosthesis are safe for MRI imaging. PMID:26271082

  18. Saturn's Rings Edge-on

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.

    For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.

    The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.

    This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).

    Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science

  19. Split ring containment attachment device

    DOEpatents

    Sammel, Alfred G.

    1996-01-01

    A containment attachment device 10 for operatively connecting a glovebag 200 to plastic sheeting 100 covering hazardous material. The device 10 includes an inner split ring member 20 connected on one end 22 to a middle ring member 30 wherein the free end 21 of the split ring member 20 is inserted through a slit 101 in the plastic sheeting 100 to captively engage a generally circular portion of the plastic sheeting 100. A collar potion 41 having an outer ring portion 42 is provided with fastening means 51 for securing the device 10 together wherein the glovebag 200 is operatively connected to the collar portion 41.

  20. Statistical ring current of Saturn

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.; Achilleos, N.; Arridge, C. S.

    2012-06-01

    The statistical ring current of Saturn has been determined from the curl of the median magnetic field derived from over 5 years of observations of the Cassini magnetometer. The main issue addressed here is the calculation of the statistical ring current of Saturn by directly computing, for the first time, the symmetrical part of the ring current J from the Maxwell equation ∇ × B = μ0J from assembling the perturbation magnetic field B from 2004 through 2010. This study validates previous studies, based on fewer data and not using ∇ × B, and shows that the ring current flows eastward (in the +ϕ or corotation direction) and extends from ˜3 RS to at least ˜20 RS (1 RS = 60,268 km), which is the vicinity of the dayside magnetopause; that the ring current has a peak strength of ˜75 pA/m2 at ˜9.5 RS; and that the ring current has a half-width of ˜1.5 RS. Two outcomes of this study are that the ring current bends northward, as suggested by the “bowl” model of Saturn's plasma sheet, and that the total ring current is 9.2 ± 1.0 MA. In the context of future endeavors, the statistical ring current presented here can be used for calculations of the magnetic field of Saturn for particle drifts, field line mapping, and J × B force.

  1. Formation of lunar basin rings

    USGS Publications Warehouse

    Hodges, C.A.; Wilhelms, D.E.

    1978-01-01

    The origin of the multiple concentric rings that characterize lunar impact basins, and the probable depth and diameter of the transient crater have been widely debated. As an alternative to prevailing "megaterrace" hypotheses, we propose that the outer scarps or mountain rings that delineate the topographic rims of basins-the Cordilleran at Orientale, the Apennine at Imbrium, and the Altai at Nectaris-define the transient cavities, enlarged relatively little by slumping, and thus are analogous to the rim crests of craters like Copernicus; inner rings are uplifted rims of craters nested within the transient cavity. The magnitude of slumping that occurs on all scarps is insufficient to produce major inner rings from the outer. These conclusions are based largely on the observed gradational sequence in lunar central uplifts:. from simple peaks through somewhat annular clusters of peaks, peak and ring combinations and double ring basins, culminating in multiring structures that may also include peaks. In contrast, belts of slump terraces are not gradational with inner rings. Terrestrial analogs suggest two possible mechanisms for producing rings. In some cases, peaks may expand into rings as material is ejected from their cores, as apparently occurred at Gosses Bluff, Australia. A second process, differential excavation of lithologically diverse layers, has produced nested experimental craters and is, we suspect, instrumental in the formation of terrestrial ringed impact craters. Peak expansion could produce double-ring structures in homogeneous materials, but differential excavation is probably required to produce multiring and peak-in-ring configurations in large lunar impact structures. Our interpretation of the representative lunar multiring basin Orientale is consistent with formation of three rings in three layers detected seismically in part of the Moon-the Cordillera (basin-bounding) ring in the upper crust, the composite Montes Rook ring in the underlying

  2. Ground Movement in SSRL Ring

    SciTech Connect

    Sunikumar, Nikita; /UCLA /SLAC

    2011-08-25

    Users of the Stanford Synchrotron Radiation Lightsource (SSRL) are being affected by diurnal motion of the synchrotron's storage ring, which undergoes structural changes due to outdoor temperature fluctuations. In order to minimize the effects of diurnal temperature fluctuations, especially on the vertical motion of the ring floor, scientists at SSRL tried three approaches: painting the storage ring white, covering the asphalt in the middle of the ring with highly reflective Mylar and installing Mylar on a portion of the ring roof and walls. Vertical motion in the storage ring is measured by a Hydrostatic Leveling System (HLS), which calculates the relative height of water in a pipe that extends around the ring. The 24-hr amplitude of the floor motion was determined using spectral analysis of HLS data, and the ratio of this amplitude before and after each experiment was used to quantitatively determine the efficacy of each approach. The results of this analysis showed that the Mylar did not have any significant effect on floor motion, although the whitewash project did yield a reduction in overall HLS variation of 15 percent. However, further analysis showed that the reduction can largely be attributed to a few local changes rather than an overall reduction in floor motion around the ring. Future work will consist of identifying and selectively insulating these local regions in order to find the driving force behind diurnal floor motion in the storage ring.

  3. Annual Energy Review 1999

    SciTech Connect

    Seiferlein, Katherine E.

    2000-07-01

    A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth of energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn

  4. Using Tree-Ring Data, Research, and Expeditions as an Accessible, Hands-on "Bridge" into Climate Studies for Diverse Audiences

    NASA Astrophysics Data System (ADS)

    Davi, N. K.; Wattenberg, F.; Pringle, P. T.; Tanenbaum, J.; O'Brien, A.; Greidanus, I.; Perry, M.

    2012-12-01

    Tree-ring research provides an engaging, intuitive, and relevant entryway into understanding both climate-change and environmental research, as well as the process of science from inspiration, to fieldwork, to analysis, to publishing and communicating. The basic premise of dendrochronology is that annual rings reflect environmental conditions year-by-year and that by studying long-lived trees we can learn about past environments and climates for hundreds-to-thousands of years in the past. Conceptually, this makes tree-ring studies accessible to students and faculty for a number of reasons. First, in order to collect their data, dendrochronologists often launch expeditions to stunningly picturesque and remote places in search of long-lived, climate sensitive trees. Scientist exciting stories and images from the field can be leveraged to connect students to the study and the data. Second, tree-rings can be more easily explained as a proxy for climate than other methods (ice cores, carbon-isotope ratios, etc.), and most people have prior-knowledge about trees and annual growth rings. It is even possible, for example, for non-expert audiences to see climate variability through time with the naked eye by looking at climate sensitive tree cores. Third, tree-rings are interdisciplinary and illustrate the interplay between the mathematical sciences, the biological sciences, and the geosciences—that is, they show that the biosphere is a fundamental component of the Earth system. Here, we will present several projects have been initiated for a range of audiences, including; elementary school, where 5th graders visited a local forest to collect samples and apply their samples and what they learned to math and science classes. 5th grade students also leaned how to use Climate Explorer (KNMI), an online tool that allows scientist and students the opportunity to access and visualize global climate data within a few clicks. Geared to 2 and 4 year colleges, we are also

  5. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.

    PubMed

    Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire

    2012-08-01

    Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration

  6. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.

    PubMed

    Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire

    2012-08-01

    Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration

  7. Influences of gaseous environment on low growth-rate fatigue crack propagation in steels. Annual report No. 1, January 1980. Report No. FPL/R/80/1030

    SciTech Connect

    Ritchie, R.O.; Suresh, S.; Toplosky, J.

    1980-01-01

    The influence of gaseous environment is examined on fatigue crack propagation behavior in steels. Specifically, a fully martensitic 300-M ultrahigh strength steel and a fully bainitic 2-1/4Cr-1Mo lower strength steel are investigated in environments of ambient temperature moist air and low pressure dehumidified hydrogen and argon gases over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, with particular emphasis given to behavior near the crack propagation threshold ..delta..K/sub 0/. It is found that two distinct growth rate regimes exist where hydrogen can markedly accelerate crack propagation rates compared to air, (1) at near-threshold levels below (5 x 10/sup -6/ mm/cycle) and (2) at higher growth rates, typically around 10/sup -5/ mm/cycle above a critical maximum stress intensity K/sub max//sup T/. Hydrogen-assisted crack propagation at higher growth rates is attributed to a hydrogen embrittlement mechanism, with K/sub max//sup T/ nominally equal to K/sub Iscc/ (the sustained load stress corrosion threshold) in high strength steels, and far below K/sub Iscc/ in the strain-rate sensitive lower strength steels. Hydrogen-assisted crack propagation at near-threshold levels is attributed to a new mechanism involving fretting-oxide-induced crack closure generated in moist (or oxygenated) environments. The absence of hydrogen embrittlement mechanisms at near-threshold levels is supported by tests showing that ..delta..K/sub 0/ values in dry gaseous argon are similar to ..delta..K/sub 0/ values in hydrogen. The potential ramifications of these results are examined in detail.

  8. Origin of outer rings in lunar multi-ringed basins - Evidence from morphology and ring spacing

    NASA Technical Reports Server (NTRS)

    Head, J. W.

    1977-01-01

    The reported investigation has the objective to examine both the morphology and morphometry of several of the freshest lunar basins including Orientale, Imbrium, Nectaris, Crisium, and Humorum, and to compare the characteristics of their three most prominent rings to features in smaller craters. On the basis of comparisons it is concluded that the outer basin ring forms within the region where significant structural uplift of the basin rim is to be expected. Therefore the formation of the outer ring scarp may be closely associated with structural uplift of the inner portion of the crater rim flank. According to a model suggested for the origin of the outer two rings, the cratering event formed two inner rings, a central peak ring, and an uplifted crater rim crest, with deposition of ejecta during the process.

  9. Star formation in nuclear rings of barred-spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Seo, Woo-Young

    2015-08-01

    Barred-spiral galaxies contain star-forming nuclear rings at their centers. Some rings show a well-defined azimuthal age gradient of star clusters along a ring, while others do not. Using hydrodynamic simulations with the prescriptions of star formation and feedback included, we study what control star formation occurring in the nuclear rings. In models without spiral arms, the star formation rate (SFR) in a ring exhibits a strong burst at early time and declines to small values at late time. The early burst is caused by a rapid gas infall along due to the bar growth, consuming most of the gas inside the bar region. On the other hand, models with spiral arms outside the bar region show multiple starburst activities at late time caused by arm-induced gas inflows, provided that the arm pattern speed is slower than that of the bar. The SFR in models with spirals is larger by a factor of ~ 1.4-4.0 than that in the bar-only models, with larger values corresponding to stronger and slower arms. In all models, young star clusters in nuclear ring show an azimuthal age gradient only when the SFR is small, such that younger clusters tend to locate closer to the contact points, since star formation occurs preferentially in the contact points between a ring and dust lanes.

  10. Black ring deconstruction

    SciTech Connect

    Gimon, Eric; Gimon, Eric G.; Levi, Thomas S.

    2007-06-22

    We present a sample microstate for a black ring in four and five dimensional language. The microstate consists of a black string microstate with an additional D6-brane. We show that with an appropriate choice of parameters the piece involving the black string microstate falls down a long AdS throat, whose M-theory lift is AdS_3 x S2. We wrap a spinning dipole M2-brane on the S2 in the probe approximation. In IIA, this corresponds to a dielectric D2-brane carrying only D0-charge. We conjecture this is the firstapproximation to a cloud of D0-branes blowing up due to their non-abelian degrees of freedom and the Myers effect.

  11. The Saturn Ring Observer: In situ studies of planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Tiscareno, M. S.; Spilker, L. J.

    2010-12-01

    As part of the Planetary Science Decadal Survey recently undertaken by the NRC's Space Studies Board for the National Academy of Sciences, studies were commissioned for a number of potential missions to outer planet targets. One of these studies examined the technological feasibility of a mission to carry out in situ studies of Saturn's rings, from a spacecraft placed in a circular orbit above the ring plane: the Saturn Ring Observer. The technical findings and background are discussed in a companion poster by T. R. Spilker et al. Here we outline the science goals of such a mission. Most of the fundamental interactions in planetary rings occur on spatial scales that are unresolved by flyby or orbiter spacecraft. Typical particle sizes in the rings of Saturn are in the 1 cm - 10 m range, and average interparticle spacings are a few meters. Indirect evidence indicates that the vertical thickness of the rings is as little as 5 - 10 m, which implies a velocity dispersion of only a few mm/sec. Theories of ring structure and evolution depend on the unknown characteristics of interparticle collisions and on the size distribution of the ring particles. The SRO could provide direct measurements of both the coefficient of restitution -- by monitoring individual collisions -- and the particles’ velocity dispersion. High-resolution observations of individual ring particles should also permit estimates of their spin states. Numerical simulations of Saturn’s rings incorporating both collisions and self-gravity predict that the ring particles are not uniformly distributed, but are instead clustered into elongated structures referred to as “self-gravity wakes”, which are continually created and destroyed on an orbital timescale. Theory indicates that the average separation between wakes in the A ring is of order 30-100 m. Direct imaging of self-gravity wakes, including their formation and subsequent dissolution, would provide critical validation of these models. Other

  12. Stable carbon isotopes and drought signal in the tree-rings of northern white-cedar trees from boreal central Canada. (Invited)

    NASA Astrophysics Data System (ADS)

    Tardif, J. C.; Au, R.

    2010-12-01

    Despite the demonstrated value of tree-ring δ13C analysis, there have been a limited number of dendroisotopic δ13C studies conducted throughout the North American boreal forest. Dendroisotopic series are generally short and few tree species/habitats have been investigated. We present recent work conducted in the boreal forest of Manitoba, central Canada. Old northern white-cedar (Thuja occidentalis L.) trees were sampled at their northwestern limit of distribution. The objectives of the study were 1) to determine the major climatic factors associated with each of the ring-width and δ13C chronology and 2) to provide a multi-century inference of drought events based on tree-ring δ13C and ring width analyses. We also compared the δ13C chronology developed from Thuja occidentalis trees to that of white spruce (Picea glauca Moench) and jack pine (Pinus banksiana Lamb.) trees developed in northern Manitoba. Fifteen T. occidentalis trees were selected for δ13C analysis and holocellulose was isolated from each tree-ring through standard chemical extraction techniques. The annually resolved δ13C chronology spanned from 1650 to 2006 A.D. and incorporated dead and living T. occidentalis trees selected from two sites. Hydric organic conditions on horizontal topography punctuated by scattered wet depressions prevailed at both sites. A ring-width chronology was also developed from both dead and living T. occidentalis trees from the region. All chronology development followed standardization of each of the δ13C series using a 60-year cubic spline function with a 50% frequency response. Results indicated that ring width was more often associated with climate conditions prevailing in the year prior to ring formation compared to the δ13C values. During the year of ring-formation, ring width was associated with spring and early summer conditions whereas, δ13C was more indicative of overall summer conditions. Conditions conducive to moisture stress were however important for

  13. Tree-ring evidence for long-term precipitation changes in subtropical South America

    NASA Astrophysics Data System (ADS)

    Villalba, Ricardo; Grau, Hector R.; Boninsegna, Jose A.; Jacoby, Gordon C.; Ripalta, Alberto

    1998-11-01

    In recent years there has been a notable increase in the number of tree-ring chronologies for the temperate and cold regions of the Americas. In comparison, few advances have been reported for the American tropics and subtropics, where the absence of seasonality appears to be the main reason for the lack of well-defined growth bands in most species. Distinct, annually formed tree-rings have recently been reported for subtropical montane trees on the eastern slope of the Andes (22-28°S). Six absolute-dated chronologies from Juglans australis and Cedrela lilloi at the upper treeline (between 1700 and 2000 m) in the montane forest of north-western Argentina were selected to explore the potential of these records to infer decade- to century-scale climatic variations in the subtropics. These tree-rings capture a significant percentage of the variances in regional temperature and precipitation records and appear to be suitable to reconstruct decade-long changes in large-scale circulation over the South American subtropics. In particular, tree-growth at xeric sites has been strongly influenced by precipitation changes, which in turn respond to alternating patterns of zonal versus meridional flows over subtropical South America. The upper treeline records indicate that the increase in precipitation during the past three decades, caused by an enhanced transport of humid air masses from the Brazilian-Bolivian lowland tropics to the semiarid subtropics, has been unprecedented for the past 200 years. Although this precipitation increase may reflect natural variability in the subtropics, it is also consistent with 2×CO2 climatic simulations from five general circulation models. There is a general agreement among model results about a noticeable increase in precipitation in north-western Argentina due to an intensification of the water transport across subtropical South America in response to a southward displacement of the continental low and an increasing warming at these

  14. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  15. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  16. Cambial Growth Season of Brevi-Deciduous Brachystegia spiciformis Trees from South Central Africa Restricted to Less than Four Months

    PubMed Central

    Trouet, Valérie; Mukelabai, Mukufute; Verheyden, Anouk; Beeckman, Hans

    2012-01-01

    We investigate cambial growth periodicity in Brachystegia spiciformis, a dominant tree species in the seasonally dry miombo woodland of southern Africa. To better understand how the brevi-deciduous (experiencing a short, drought-induced leaf fall period) leaf phenology of this species can be linked to a distinct period of cambial activity, we applied a bi-weekly pinning to six trees in western Zambia over the course of one year. Our results show that the onset and end of cambial growth was synchronous between trees, but was not concurrent with the onset and end of the rainy season. The relatively short (three to four months maximum) cambial growth season corresponded to the core of the rainy season, when 75% of the annual precipitation fell, and to the period when the trees were at full photosynthetic capacity. Tree-ring studies of this species have found a significant relationship between annual tree growth and precipitation, but we did not observe such a correlation at intra-annual resolution in this study. Furthermore, a substantial rainfall event occurring after the end of the cambial growth season did not induce xylem initiation or false ring formation. Low sample replication should be taken into account when interpreting the results of this study, but our findings can be used to refine the carbon allocation component of process-based terrestrial ecosystem models and can thus contribute to a more detailed estimation of the role of the miombo woodland in the terrestrial carbon cycle. Furthermore, we provide a physiological foundation for the use of Brachystegia spiciformis tree-ring records in paleoclimate research. PMID:23071794

  17. Growth responses of subalpine fir to climatic variability in the Pacific Northwest

    USGS Publications Warehouse

    Peterson, D.W.; Peterson, D.L.; Ettl, Gregory J.

    2002-01-01

    We studied regional variation in growth-limiting factors and responses to climatic variability in subalpine forests by analyzing growth patterns for 28 tree-ring growth chronologies from subalpine fir (Abies lasiocarpa (Hook.) Nutt.) stands in the Cascade and Olympic Mountains (Washington and Oregon, U.S.A.). Factor analysis identified four distinct time series of common growth patterns; the dominant growth pattern at any site varied with annual precipitation and temperature (elevation). Throughout much of the region, growth is negatively correlated with winter precipitation and spring snowpack depth, indicating that growth is limited primarily by short growing seasons. On the driest and warmest sites, growth is negatively correlated with previous summer temperature, suggesting that low summer soil moisture limits growth. Growth patterns in two regions were sensitive to climatic variability associated with the Pacific Decadal Oscillation, apparently responding to low-frequency variation in spring snowpack and summer soil moisture (one negatively, one positively). This regional-scale analysis shows that subalpine fir growth in the Cascades and Olympics is limited by different climatic factors in different subregional climates. Climatea??growth relationships are similar to those for a co-occurring species, mountain hemlock (Tsuga mertensiana (Bong.) Carri??re), suggesting broad biogeographic patterns of response to climatic variability and change by subalpine forest ecosystems in the Pacific Northwest.

  18. Prenatal Diagnosis of a Fetus with Congenital Heart Defect and Ring Chromosome 14

    PubMed Central

    Sánchez, Javier; García-Díaz, Lutgardo; Chinchón, David; Antiñolo, Guillermo

    2012-01-01

    Monosomy of chromosome 14 has been reported in only a few prenatal cases. Generally, this monosomy is associated with a mosaicism of ring chromosome 14. Ring chromosome 14 is a rare cytogenetic entity with clinical characteristics that include growth retardation, facial dysmorphia, hypotonia, seizures, and retinitis pigmentosa. Given that the majority of symptoms appear postnatally, few cases have been reported of prenatal diagnosis of mosaicism monosomy/ring chromosome 14. We describe the prenatal diagnosis of a case of chromosomal mosaicism, a cell line with ring chromosome 14, r(14), and a second cell line with monosomy 14, in a fetus with aortic coarctation and chamber asymmetry. This is the first case of a prenatal diagnosis associating mosaicism with ring chromosome 14, monosomy 14, and fetal cardiopathy. We identified the exact breakpoint in ring chromosome 14 in IGH locus, which may provide further insight into the mode of ring formation as well as prenatal findings. PMID:23198189

  19. Powdery Mildew Decreases the Radial Growth of Oak Trees with Cumulative and Delayed Effects over Years

    PubMed Central

    Bert, Didier; Lasnier, Jean-Baptiste; Capdevielle, Xavier; Dugravot, Aline; Desprez-Loustau, Marie-Laure

    2016-01-01

    Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001–2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70–90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production. PMID:27177029

  20. Reversible Seeding in Storage Rings

    SciTech Connect

    Ratner, Daniel; Chao, Alex; /SLAC

    2011-12-14

    We propose to generate steady-state microbunching in a storage ring with a reversible seeding scheme. High gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) are two promising methods for microbunching linac electron beams. Because both schemes increase the energy spread of the seeded beam, they cannot drive a coherent radiator turn-by-turn in a storage ring. However, reversing the seeding process following the radiator minimizes the impact on the electron beam and may allow coherent radiation at or near the storage ring repetition rate. In this paper we describe the general idea and outline a proof-of-principle experiment. Electron storage rings can drive high average power light sources, and free-electron lasers (FELs) are now producing coherent light sources of unprecedented peak brightness While there is active research towards high repetition rate FELs (for example, using energy recovery linacs), at present there are still no convenient accelerator-based sources of high repetition rate, coherent radiation. As an alternative avenue, we recently proposed to establish steady-state microbunching (SSMB) in a storage ring. By maintaining steady-state coherent microbunching at one point in the storage ring, the beam generates coherent radiation at or close to the repetition rate of the storage ring. In this paper, we propose a method of generating a microbunched beam in a storage ring by using reversible versions of linac seeding schemes.

  1. Biomechanics of Corneal Ring Implants

    PubMed Central

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. Results: For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. Conclusions: The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus. PMID:26312619

  2. Running Rings Around the Web.

    ERIC Educational Resources Information Center

    McDermott, Irene E.

    1999-01-01

    Describes the development and current status of WebRing, a service that links related Web sites into a central hub. Discusses it as a viable alternative to other search engines and examines issues of free speech, use by the business sector, and implications for WebRing after its purchase by Yahoo! (LRW)

  3. How Jupiter's Ring Was Discovered.

    ERIC Educational Resources Information Center

    Elliot, James; Kerr, Richard

    1985-01-01

    "Rings" (by astronomer James Elliot and science writer Richard Kerr) is a nontechnical book about the discovery and exploration of ring systems from the time of Galileo to the era of the Voyager spacecraft. One of this book's chapters is presented. (JN)

  4. Fibre ring cavity semiconductor laser

    SciTech Connect

    Duraev, V P; Medvedev, S V

    2013-10-31

    This paper presents a study of semiconductor lasers having a polarisation maintaining fibre ring cavity. We examine the operating principle and report main characteristics of a semiconductor ring laser, in particular in single- and multiple-frequency regimes, and discuss its application areas. (lasers)

  5. Study of mechanisms of time-dependent crack growth at elevated temperature: Second annual progress report, February 16, 1987-February 15, 1988

    SciTech Connect

    Saxena, A.; Stock, S.R.; Gieseke, B.; Banerji, K.

    1988-02-25

    The objective of this study is to conduct creep and creep-fatigue carck growth tests and to characterize the crack tip damage mechanisms in a model material (copper with 1 wt percent antimony) which is known to cavitate at the grain boundaries under creep deformation. The above data and observations will be used to develop mechanistic models for cumulative crack tip damage under complex loading conditions at elevated temperatures. The application of these models will also be extended to situations involving non-periodic loading. 6 refs., 16 figs.

  6. The rare-RI ring

    NASA Astrophysics Data System (ADS)

    Ozawa, A.; Uesaka, T.; Wakasugi, M.; Rare-RI Ring Collaboration

    2012-12-01

    We describe the rare-RI (radioactive isotope) ring at the RI Beam Factory (RIBF). The main purpose of the rare-RI ring is to measure the mass of very neutron-rich nuclei, the production rates of which are very small (hence ‘rare RI’) and the lifetimes of which are predicted to be very short. In the rare-RI ring, there are two innovative pieces of apparatus: individual injection, which can realize the injection of 200 A MeV rare RIs one by one, and a cyclotron-like storage ring, which allows high isochronous magnetic fields with large angular and momentum acceptances. With these devices, we will achieve a 10-6 mass resolution, and will be able to access rare RIs, the production rate of which is down to 1 event/day/pnA. Construction of the rare-RI ring started in fiscal year 2012.

  7. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ring cutter. 880.6200 Section 880.6200 Food and....6200 Ring cutter. (a) Identification. A ring cutter is a device intended for medical purposes that is used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates...

  8. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ring cutter. 880.6200 Section 880.6200 Food and....6200 Ring cutter. (a) Identification. A ring cutter is a device intended for medical purposes that is used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates...

  9. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ring cutter. 880.6200 Section 880.6200 Food and....6200 Ring cutter. (a) Identification. A ring cutter is a device intended for medical purposes that is used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates...

  10. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ring cutter. 880.6200 Section 880.6200 Food and....6200 Ring cutter. (a) Identification. A ring cutter is a device intended for medical purposes that is used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates...

  11. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ring cutter. 880.6200 Section 880.6200 Food and....6200 Ring cutter. (a) Identification. A ring cutter is a device intended for medical purposes that is used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates...

  12. Direct effects of soil amendments on field emergence and growth of the invasive annual grass Bromus tectorum L. and the native perennial grass Hilaria jamesii (Torr.) Benth

    USGS Publications Warehouse

    Newingham, B.A.; Belnap, J.

    2006-01-01

    Bromus tectorum L. is a non-native, annual grass that has invaded western North America. In SE Utah, B. tectorum generally occurs in grasslands dominated by the native perennial grass, Hilaria jamesii (Torr.) Benth. and rarely where the natives Stipa hymenoides Roem. and Schult. and S. comata Trin. & Rupr. are dominant. This patchy invasion is likely due to differences in soil chemistry. Previous laboratory experiments investigated using soil amendments that would allow B. tectorum to germinate but would reduce B. tectorum emergence without affecting H. jamesii. For this study we selected the most successful treatments (CaCl2, MgCl2, NaCl and zeolite) from a previous laboratory study and applied them in the field in two different years at B. tectorum-dominated field sites. All amendments except the lowest level of CaCl2 and zeolite negatively affected B. tectorum emergence and/or biomass. No amendments negatively affected the biomass of H. jamesii but NaCl reduced emergence. Amendment effectiveness depended on year of application and the length of time since application. The medium concentration of zeolite had the strongest negative effect on B. tectorum with little effect on H. jamesii. We conducted a laboratory experiment to determine why zeolite was effective and found it released large amounts of Na+, adsorbed Ca2+, and increased Zn2+, Fe2+, Mn2+, Cu2+, exchangeable Mg2+, exchangeable K, and NH 4+ in the soil. Our results suggest several possible amendments to control B. tectorum. However, variability in effectiveness due to abiotic factors such as precipitation and soil type must be accounted for when establishing management plans. ?? Springer 2006.

  13. Predator-Prey Model for Haloes in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Colwell, Joshua; Sremcevic, Miodrag; Madhusudhanan, Prasanna

    Particles in Saturn’s rings have a tripartite nature: (1) a broad distribution of fragments from the disruption of a previous moon that accrete into (2) transient aggregates, resembling piles of rubble, covered by a (3) regolith of smaller grains that result from collisions and meteoritic grinding. Evidence for this triple architecture of ring particles comes from a multitude of Cassini observations. In a number of ring locations (including Saturn’s F ring, the shepherded outer edges of rings A and B and at the locations of the strongest density waves) aggregation and dis-aggregation are operating now. ISS, VIMS, UVIS spectroscopy and occultations show haloes around the strongest density waves. Based on a predator-prey model for ring dynamics, we offer the following explanation: •Cyclic velocity changes cause the perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; •This forms a bright halo around the ILR, if the forcing is strong enough; •Surrounding particles diffuse back too slowly to erase the effect; they diffuse away to form the halo. The most rapid time scale is for forcing/aggregate growth/disaggregation; then irreversible regolith erosion; diffusion and/or ballistic transport; and slowest, meteoritic pollution/darkening. We observe both smaller and larger particles at perturbed regions. Straw, UVIS power spectral analysis, kittens and equinox objects show the prey (mass aggregates); while the haloes’ VIMS spectral signature, correlation length and excess variance are created by the predators (velocity dispersion) in regions stirred in the rings. Moon forcing triggers aggregation to create longer-lived aggregates that protect their interiors from meteoritic darkening and recycle the ring material to maintain the current purity of the rings. It also provides a mechanism for creation of new moons at resonance locations in the Roche zone, as proposed by Charnoz etal and

  14. Characterizing intra-annual density fluctuations using fine-spatial resolution blue intensity profiles

    NASA Astrophysics Data System (ADS)

    Babst, Flurin; Wright, William; Szejner, Paul; Wells, Leon; Belmecheri, Soumaya; Monson, Russell

    2016-04-01

    Rapidly rising evaporative demand threatens forests in semi-arid areas around the world, but the timing of stem growth response to drought is often coarsely known. This is partly due to a shortage of sub-annual growth records, particularly outside the Mediterranean region where most intra-annual density fluctuation (IADF) chronologies are based. We anticipate that an automated, cost-effective, and easily implementable method to characterize IADFs could foster more widespread development of sub-annual chronologies. Here, we applied a peak detection algorithm to fine-spatial resolution blue intensity (BI) profiles of Ponderosa pine tree rings from two sites located in neighboring mountain ranges in southern Arizona (~300 m elevation difference). This automated procedure proved reliable to isolate and characterize IADFs, thus offering an efficient and objective alternative to visual identification. Out of seven investigated BI parameters, peak height, width, and area showed satisfactory chronology statistics. We assessed the response of these BI and radial growth parameters to six monthly-resolved climate variables and to the onset date of the North American summer monsoon (NAM). The NAM is an atmospheric mode that provides a clear time marker for the termination of a pre-summer drought period (May-June) causing regular IADFs in trees growing near the dry margin of their distribution range. We observed divergent water limitation at the two sites, despite comparable site characteristics. Radial growth at the lower-elevation site depended mainly on winter precipitation, whereas the higher site relied on spring and monsoon precipitation. The pre-summer drought period indeed promoted IADFs in early ring portions at both sites. Yet, IADFs at the higher site were only formed, if spring was sufficiently humid to assume enough radial growth. Late-position IADFs were caused by a weak monsoon and additionally promoted by favorable conditions towards the end of the growing