Science.gov

Sample records for annual growth rings

  1. Validation of annual growth rings in freshwater mussel shells using cross dating .Can

    Treesearch

    Andrew L. Rypel; Wendell R. Haag; Robert H. Findlay

    2009-01-01

    We examined the usefulness of dendrochronological cross-dating methods for studying long-term, interannual growth patterns in freshwater mussels, including validation of annual shell ring formation. Using 13 species from three rivers, we measured increment widths between putative annual rings on shell thin sections and then removed age-related variation by...

  2. Occurrence of annual growth rings in Rhizophora mangle in a region with low climate seasonality.

    PubMed

    Souza, Brunna T; Estrada, Gustavo C D; Soares, Mário L G; Callado, Cátia H

    2016-01-01

    The formation of annual growth rings has been confirmed for several mangrove species in the last decade, among which is the Rhizophora mangle. However, the record of annual rings for this species was made in a region with high hydric seasonality, a widely recognized induction factor of annual rings in tropical species. In this sense, the present study aimed to verify the occurrence of annual growth rings in R. mangle in the mangroves of Guaratiba (Rio de Janeiro, Southeastern Brazil), a region with low hydric seasonality. For this purpose, the crossdating technique was applied in ten trees collected with known age (seven years). The growth rings are characterized by alternating layers of low vessel density (earlywood) and high vessel density (latewood). Multiple regression analysis indicated that growth rings width variation is driven by precipitation, water surplus, water deficit and water storage. Crossdating analysis confirmed the existence of annual growth rings in the R. mangle in Guaratiba. This discovery in a region with low hydric seasonality increases the dendrocronological potential of this species and suggests the importance of biological factors (eg. phenological behavior) as complementary inductors for the formation of growth rings in this species.

  3. Radiocarbon evidence for annual growth rings in a deep sea octocoral (Primnoa resedaeformis)

    SciTech Connect

    Sherwood, O A; Scott, D B; Risk, M J; Guilderson, T P

    2005-04-05

    The deep-sea gorgonian octocoral Primnoa resedaeformis is distributed throughout the Atlantic and Pacific Oceans at depths of 65-3200 m. It has a two-part skeleton of calcite and gorgonin. Towards the inside of the axial skeleton gorgonin and calcite are deposited in concentric growth rings, similar to tree rings. Colonies were collected from the Northeast Channel (northwest Atlantic Ocean, southwest of Nova Scotia, Canada) from depths of 250-475 m. Radiocarbon was measured in individual rings isolated from sections of each colony, after dissolution of calcite. Each {Delta}{sup 14}C measurement was paired with a ring age determined by three amateur ring counters. The precision of ring counts averaged better than {+-} 2 years. Accurate reconstruction of 20th century bomb-radiocarbon shows that (1) the growth rings are formed annually, (2) the gorgonin is derived from surface particulate organic matter (POM) and (3) useful environmental data are recorded in the organic endoskeletons of deep-sea octocorals. These results support the use of Primnoa resedaeformis as a long-term, high resolution monitor of surface ocean conditions, particularly in temperate and boreal environments where proxy data are lacking.

  4. Anomalous dark growth rings in black cherry

    Treesearch

    Robert P. Long; David W. Trimpey; Michael C. Wiemann; Susan L. Stout

    2012-01-01

    Anomalous dark growth rings have been observed in black cherry (Prunus serotina) sawlogs from northwestern Pennsylvania making the logs unsuitable for veneer products. Thirty-six cross sections with dark rings, each traceable to one of ten stands, were obtained from a local mill and sections were dated and annual ring widths were measured. One or...

  5. Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast

    PubMed Central

    Dié, Agathe; Kitin, Peter; Kouamé, François N'Guessan; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans

    2012-01-01

    Background and Aims Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. Methods The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. Key Results A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R2 = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. Conclusions The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution. PMID:22805529

  6. Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast.

    PubMed

    Dié, Agathe; Kitin, Peter; Kouamé, François N'guessan; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans

    2012-09-01

    Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R(2) = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.

  7. Annual Growth Bands in Hymenaea courbaril

    SciTech Connect

    Westbrook, J A; Guilderson, T P; Colinvaux, P A

    2004-02-09

    One significant source of annual temperature and precipitation data arises from the regular annual secondary growth rings of trees. Several tropical tree species are observed to form regular growth bands that may or may not form annually. Such growth was observed in one stem disk of the tropical legume Hymenaea courbaril near the area of David, Panama. In comparison to annual reference {Delta}{sup 14}C values from wood and air, the {Delta}{sup 14}C values from the secondary growth rings formed by H. courbaril were determined to be annual in nature in this one stem disk specimen. During this study, H. courbaril was also observed to translocate recently produced photosynthate into older growth rings as sapwood is converted to heartwood. This process alters the overall {Delta}{sup 14}C values of these transitional growth rings as cellulose with a higher {Delta}{sup 14}C content is translocated into growth rings with a relatively lower {Delta}{sup 14}C content. Once the annual nature of these growth rings is established, further stable isotope analyses on H. courbaril material in other studies may help to complete gaps in the understanding of short and of long term global climate patterns.

  8. Directional variance analysis of annual rings

    NASA Astrophysics Data System (ADS)

    Kumpulainen, P.; Marjanen, K.

    2010-07-01

    The wood quality measurement methods are of increasing importance in the wood industry. The goal is to produce more high quality products with higher marketing value than is produced today. One of the key factors for increasing the market value is to provide better measurements for increased information to support the decisions made later in the product chain. Strength and stiffness are important properties of the wood. They are related to mean annual ring width and its deviation. These indicators can be estimated from images taken from the log ends by two-dimensional power spectrum analysis. The spectrum analysis has been used successfully for images of pine. However, the annual rings in birch, for example are less distinguishable and the basic spectrum analysis method does not give reliable results. A novel method for local log end variance analysis based on Radon-transform is proposed. The directions and the positions of the annual rings can be estimated from local minimum and maximum variance estimates. Applying the spectrum analysis on the maximum local variance estimate instead of the original image produces more reliable estimate of the annual ring width. The proposed method is not limited to log end analysis only. It is usable in other two-dimensional random signal and texture analysis tasks.

  9. Annual rings in a native Hawaiian tree, Sophora chrysophylla, on Maunakea, Hawai‘i

    Treesearch

    Kainana S. Francisco; Patrick J. Hart; Jinbao Li; Edward R. Cook; Patrick J. Baker

    2015-01-01

    Annual rings are not commonly produced in tropical trees because they grow in a relatively aseasonal environment. However, in the subalpine zones of Hawai‘i's highest volcanoes, there is often strong seasonal variability in temperature and rainfall. Using classical dendrochronological methods, annual growth rings were shown to occur in Sophora...

  10. Climatic response of annual tree-rings

    NASA Astrophysics Data System (ADS)

    Ageev, Boris G.; Gruzdev, Aleksandr N.; Ponomarev, Yurii N.; Sapozhnikova, Valeria A.

    2014-11-01

    Extensive literature devoted to investigations into the influence of environmental conditions on the plant respiration and respiration rate. It is generally accepted that the respired CO2 generated in a stem completely diffuses into the atmosphere. Results obtained from explorations into the CO2 content in disc tree rings by the method proposed in this work shows that a major part of CO2 remains in tree stems and exhibits inter-annual variability. Different methods are used to describe of CO2 and H2O distributions in disc tree rings. The relation of CO2 and H2O variations in a Siberian stone pine disc to meteorological parameters are analyzed with use of wavelet, spectral and cross-spectral techniques. According to a multiple linear regression model, the time evolution of the width of Siberian stone pine rings can be partly explained by a combined influence of air temperature, precipitation, cloudiness and solar activity. Conclusions are made regarding the response of the CO2 and H2O content in coniferous tree disc rings to various climatic factors. Suggested method of CO2, (CO2+H2O) detection can be used for studying of a stem respiration in ecological risk areas.

  11. Ring Counts in Second-Growth Baldcypress

    Treesearch

    W. R. Beaufait; T. C. Nelson

    1957-01-01

    Many thrifty, second-growth baldcypress trees (Taxodium distichum) [L.] Rich. ) appear to lay down several rings each year. These false rings may cause foresters to underestimate the growth potential of a highly prized species by overestimating the age of sample trees.

  12. Validating the Assumption of Annual Shell Ring Deposition in Freshwater Mussels

    NASA Astrophysics Data System (ADS)

    Commens, A. M.; Haag, W. R.

    2005-05-01

    We evaluated the assumption of annual shell ring deposition by freshwater mussels in three rivers (Little Tallahatchie, Mississippi, 2000 and 2003; Sipsey, Alabama, 2000; St. Frances, Arkansas, 2003) using 14 species (Amblema plicata, Elliptio arca, Fusconaia cerina, F. flava, Lampsilis cardium, L. teres, Leptodea fragilis, Obliquaria reflexa, Potamilus purpuratus, Quadrula asperata, Q. pustulosa, Q. quadrula, Q, rumphiana, Tritogonia verrucosa). In 2000 we filed a notch in the shell margin, returned animals to the water, and retrieved them one year later. In 2003 we measured shell length and affixed numbered tags, returned animals to the water, and retrieved them one year later. After retrieval, we examined external and internal shell rings using thin-sections. For both methods, all species at all sites grew and deposited a single winter rest line between times of initial and final collection. Handling produced a conspicuous disturbance ring in all species. Characteristics of annual rings, disturbance rings, and false annuli differed qualitatively. Growth of some individuals was reduced after handling but negative growth occurred only in a few large individuals. Annual shell ring formation occurs consistently across species, space, and time. Formation of disturbance rings associated with collection indicates that mussels are extremely sensitive to handling.

  13. A test of "Annual resolution" in stalagmites using tree rings

    USGS Publications Warehouse

    Betancourt, J.L.; Grissino-Mayer, H. D.; Salzer, M.W.; Swetnam, T.W.

    2002-01-01

    So-called annual banding has been identified in a number of speleothems in which the number of bands approximates the time interval between successive U-series dates. The apparent annual resolution of speleothem records, however, remains largely untested. Here we statistically compare variations in band thickness from a late Holocene stalagmite in Carlsbad Cavern, Southern New Mexico, USA, with three independent tree-ring chronologies form the same region. We found no correspondence. Although there may be various explanations for the discordance, this limited exercise suggests that banded stalagmites should be held to the same rigorous standards in chronology building and climatic inference as annually resolved tree rings, corals, and ice cores. ?? 2002 University of Washington.

  14. Trees annual rings and "Sun-Climate" connection

    NASA Astrophysics Data System (ADS)

    Komitov, Boris; Duchlev, Peter; Bjandov, Georgy; Kirilova, Daniela

    The subject of the present work is an investigation of the relationship "Sun-Climate" for the territory of Central Bulgaria for the period from the end of 18th to the beginning of 21st century, based on dendro-chronoligical data. For this purpose the smoothed time series of the widths of annual rings of two beech samples from the region of Central Balkan Range are used. Special attention is paid to the 22 yr oscillations in the growth of tree mass and the relationship between the oscillation amplitude and the phase of solar cycles with sub-century and two-century duration. It is shown that the attenuation of 20-22 yr magnetic solar cycle during the hyper-centurial Dalton minimum (1795-1825/1830) is accompanied by strong drying and warming of the summers in Central Southern Bulgaria during this time. The onset of new Dalton-type hyper-centurial minimum in the beginning of the 21st century corresponds to an analogous climatic situation.

  15. Lignin staining ...a limited success in identifying koa growth rings

    Treesearch

    Herbert L. Wick

    1970-01-01

    Among the lignin stains tested in trying to identify growth rings in koa (Acacia koa Gray), phloroglucinol was the most effective. The light colored sapwood of mature trees stained readily, with growth rings apparent. But staining failed to emphasize rings in the dark colored heartwood. Growth rings were not apparent on samples from young fast...

  16. Tree Growth Rings: What They Tell Us.

    ERIC Educational Resources Information Center

    Sunal, Dennis W.; Sunal, Cynthia Szymanski

    1991-01-01

    Activities in which students can learn to determine the history of a tree from the growth pattern recorded in the rings of a cross-section of a tree are described. Activities include background information, objectives, a list of needed materials per group, and procedures. Cross-sections of four different tree types are included if real tree…

  17. Annually resolved atmospheric radiocarbon records reconstructed from tree-rings

    NASA Astrophysics Data System (ADS)

    Wacker, Lukas; Bleicher, Niels; Büntgen, Ulf; Friedrich, Michael; Friedrich, Ronny; Diego Galván, Juan; Hajdas, Irka; Jull, Anthony John; Kromer, Bernd; Miyake, Fusa; Nievergelt, Daniel; Reinig, Frederick; Sookdeo, Adam; Synal, Hans-Arno; Tegel, Willy; Wesphal, Torsten

    2017-04-01

    The IntCal13 calibration curve is mainly based on data measured by decay counting with a resolution of 10 years. Thus high frequency changes like the 11-year solar cycles or cosmic ray events [1] are not visible, or at least not to their full extent. New accelerator mass spectrometry (AMS) systems today are capable of measuring at least as precisely as decay counters [2], with the advantage of using 1000 times less material. The low amount of material required enables more efficient sample preparation. Thus, an annually resolved re-measurement of the tree-ring based calibration curve can now be envisioned. We will demonstrate with several examples the multitude of benefits resulting from annually resolved radiocarbon records from tree-rings. They will not only allow for more precise radiocarbon dating but also contain valuable new astrophysical information. The examples shown will additionally indicate that it can be critical to compare AMS measurements with a calibration curve that is mainly based on decay counting. We often see small offsets between the two measurement techniques, while the reason is yet unknown. [1] Miyake F, Nagaya K, Masuda K, Nakamura T. 2012. A signature of cosmic-ray increase in AD 774-775 from tree rings in Japan. Nature 486(7402):240-2. [2] Wacker L, Bonani G, Friedrich M, Hajdas I, Kromer B, Nemec M, Ruff M, Suter M, Synal H-A, Vockenhuber C. 2010. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52(2):252-62.

  18. The Annual North American Dendroecological Fieldweek: A workweek in applied tree-ring research

    SciTech Connect

    Brown, P.M.; Krusic, P.J.

    1995-12-31

    Trees record many events or processes that influence annual growth patterns. Dendrochronology is concerned with how environment and physiology affect tree growth as recorded within tree rings. The most basic principle of dendrochronology is that of crossdating, in which calendrical years are assigned to individual rings within a tree. Once crossdated, each ring is then a reflection of the climate or other environmental conditions that influenced that tree for that year. The Annual North American Dendroecological Fieldweek is a workweek in applied tree-ring research, designed to give both beginners to the discipline an introduction to its basic methodology and applications and more experienced users a change to work with and learn from others in the field in an informal group setting. The Fieldweek has had an outstanding history to date, with almost 250 participants in the five Fieldweeks from 1990 to 1994. The 6th Fieldweek is scheduled for 30 June to 8 July, 1995, at the Kananaskis Field Station in the Canadian Rockies near Calgary, Alberta.

  19. Bomb radiocarbon in annual tree rings from Thailand and Australia

    NASA Astrophysics Data System (ADS)

    Hua, Q.; Barbetti, M.; Jacobsen, G. E.; Zoppi, U.; Lawson, E. M.

    2000-10-01

    We have examined the atmospheric 14C excess in the tropics and the southern hemisphere temperate region in the bomb pulse period, using two sets of cross-dated tree rings. One set was from a medium-sized three-leaf pine ( Pinus kesiya) grown in northwestern Thailand and the other was from a Huon pine ( Lagarostrobos franklinii) grown in northwestern Tasmania, Australia. A total of 48 annual tree rings (24 pairs) from 1952 to 1975 AD were pretreated to alpha-cellulose, combusted to CO 2 and converted to graphite for 14C measurement in the tandem accelerator at ANSTO. Excellent agreement was found between our measured 14C data from tree rings and atmospheric 14C records at similar latitudes. A large depletion of atmospheric 14C for Thailand in 1953-1954 AD was observed. This might be due to a combination of the Suess effect and upwelling in the tropical Indian Ocean. The results also showed the rise and decay of bomb 14C peaks from north to south with a time delay of about 1.5 yr, and the effects of minor atmospheric nuclear tests in the late 1960s and early 1970s. A delay of at least one month for 14C in tree cellulose of Huon pine compared with that in the atmosphere was also found.

  20. Tree-ring model interprets growth decline in natural stands of loblolly pine in the southeastern United States

    Treesearch

    Robert Zahner; Joseph R. Saucier; Richard K. Myers

    1989-01-01

    Annual ring widths and ring areas from 131 even-aged, natural, well-stocked stands of loblolly pine (Pinus taeda L.) in the Piedmont region were analyzed to reveal possible causes of a previously reported decline in radial growth. A linear aggregate model was used to separate independent factors that are known to contribute to radial growth variation...

  1. Tree-ring model interprets growth decline in natural stands of loblolly pine in the southeastern United States

    Treesearch

    Robert Zahner; Joseph R. Saucier; Richard K. Myers

    1988-01-01

    Annual ring widths and ring areas from 131 even-aged, natural, well-stocked stands of loblolly pine (Pinus taeda L.) in the Piedmont region were analyzed to reveal possible causes of a previously reported decline in radial growth. A linear aggregate model was used to separate independent factors that are known to contribute to radial growth variation in this species....

  2. Annual growth bands in Hymenaea courbaril: implications for utilization in tropical paleoclimate reconstructions.

    NASA Astrophysics Data System (ADS)

    Westbrook, J. A.; Guilderson, T.; Colinvaux, P. A.; D'Arrigo, R.

    2004-12-01

    Instrumental records of environmental variables such as temperature and precipitation are necessary to understand climate patterns and variability. In general, such observations from the tropics do not exist prior to the late 19th century, and existing records contain large spatial and temporal gaps and are sparsely distributed. An important source of annual temperature and precipitation proxy-data comes from the regular annual growth rings of wood formed by trees. Tree growth rings occur in response to periodic seasonal changes in the environment. Although expansive and diverse in number and ecology, a vast majority of tropical trees do not produce distinct annual growth rings. Because of this, tropical dendrochronology and paleoclimate reconstructions have lagged behind their temperate and higher latitude cousins. Distinct secondary growth rings were investigated in a single individual of the tropical hardwood legume Hymenaea courbaril felled within the City of David, Republic of Panama. Rings that maintained circuitry were considered annual and were sampled for 14C. Radiocarbon values from the secondary growth rings from this specimen were compared with annual reference radiocarbon values from wood and air in North America, New Zealand and Germany. This comparison demonstrated that the secondary growth rings formed by H. courbaril were determined to be annual in nature in this one stem disk specimen. To confirm the consistency of the annual nature of the secondary growth rings in H. courbaril, nine (9) additional specimens were recovered from the small hamlet of San Carlos y Algarobbo in western Panama between the town of David and the cordillera approximately ~30km from the site of the first tree sample. Of the nine specimens, four were chosen for ring counts and isotope analyses. "Annual" rings were counted and samples corresponding to the equivalent time of the bomb-14C peak were sampled. In addition a small subset of years within one tree specimen were sub-annually

  3. Reconstruction of annual temperature (1590?1979) for Longmire, Washington, derived from tree rings

    NASA Astrophysics Data System (ADS)

    Graumlich, Lisa J.; Brubaker, Linda B.

    1986-03-01

    Annual growth records from trees at timberline in the Cascade Range of Washington are correlated with variations in temperature and snow depth and used to reconstruct climatic variation in the past. Response surfaces indicate that growth of mountain hemlock ( Tsuga mertensiana) and subalpine larch ( Larix lyallii) is positively correlated with summer (July to September) temperature and negatively correlated with spring (March) snow depth when snow depth is at or below average. During years of above average snow depth, temperature has little effect on mountain hemlock but has a negative effect on growth in subalpine larch. These interactions make it difficult to reconstruct these climatic variables separately using standard methods. Mean annual temperature values, which combine information on both summer temperature and spring snow depth, were estimated from a regression model that reconstructs past temperature at Longmire, Washington, as a function of larch and hemlock tree-ring chronologies. The reconstruction of mean annual temperature shows temperatures between 1590 and 1900 to be approximately 1°C lower than those of the 20th century. Only during a short period from 1650 to 1690 did temperatures approach 20th-century values.

  4. A study of emittance growth in the recycler ring

    SciTech Connect

    Krishnaswamy Gounder et al.

    2001-07-20

    We investigate processes contributing to emittance growth in the Fermilab Recycler Ring. In addition to beam-gas multiple scattering, we also examine other external factors such as Main Injector ramping affecting the emittance growth.

  5. Growth cessation uncouples isotopic signals in leaves and tree rings of drought-exposed oak trees.

    PubMed

    Pflug, Ellen E; Siegwolf, R; Buchmann, N; Dobbertin, M; Kuster, T M; Günthardt-Goerg, M S; Arend, M

    2015-10-01

    An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic (δ(13)C and δ(18)O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased δ(18)O and δ(13)C. Under severe drought, an unexpected isotopic pattern, with a decrease in δ(18)O, was observed in tree rings but not in leaves. This decrease in δ(18)O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses.

  6. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    NASA Astrophysics Data System (ADS)

    Nijland, W.; Jansma, E.; Addink, E. A.; Domínguez Delmás, M.; de Jong, S. M.

    2011-05-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex L. and Arbutus unedo L. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in southern France. The resulting chronologies were analysed in combination with 38 yr of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q.ilex and A.unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  7. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    NASA Astrophysics Data System (ADS)

    Nijland, W.; Jansma, E.; Addink, E. A.; Domínguez Delmás, M.; de Jong, S. M.

    2011-01-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex and Arbutus unedo. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in Southern France. The resulting chronologies were analysed in combination with 38 years of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q. ilex and A. unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  8. Parameterization of tree-ring growth in Siberia

    NASA Astrophysics Data System (ADS)

    Tychkov, Ivan; Popkova, Margarita; Shishov, Vladimir; Vaganov, Eugene

    2016-04-01

    No doubt, climate-tree growth relationship is an one of the useful and interesting subject of studying in dendrochronology. It provides an information of tree growth dependency on climatic environment, but also, gives information about growth conditions and whole tree-ring growth process for long-term periods. New parameterization approach of the Vaganov-Shashkin process-based model (VS-model) is developed to described critical process linking climate variables with tree-ring formation. The approach (co-called VS-Oscilloscope) is presented as a computer software with graphical interface. As most process-based tree-ring models, VS-model's initial purpose is to describe variability of tree-ring radial growth due to variability of climatic factors, but also to determinate principal factors limiting tree-ring growth. The principal factors affecting on the growth rate of cambial cells in the VS-model are temperature, day light and soil moisture. Detailed testing of VS-Oscilloscope was done for semi-arid area of southern Siberia (Khakassian region). Significant correlations between initial tree-ring chronologies and simulated tree-ring growth curves were obtained. Direct natural observations confirm obtained simulation results including unique growth characteristic for semi-arid habitats. New results concerning formation of wide and narrow rings under different climate conditions are considered. By itself the new parameterization approach (VS-oscilloscope) is an useful instrument for better understanding of various processes in tree-ring formation. The work was supported by the Russian Science Foundation (RSF # 14-14-00219).

  9. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  10. [Rapid prediction of annual ring density of Paulownia elongate standing tress using near infrared spectroscopy].

    PubMed

    Jiang, Ze-Hui; Wang, Yu-Rong; Fei, Ben-Hua; Fu, Feng; Hse, Chung-Yun

    2007-06-01

    Rapid prediction of annual ring density of Paulownia elongate standing trees using near infrared spectroscopy was studied. It was non-destructive to collect the samples for trees, that is, the wood cores 5 mm in diameter were unthreaded at the breast height of standing trees instead of fallen trees. Then the spectra data were collected by autoscan method of NIR. The annual ring density was determined by mercury immersion. And the models were made and analyzed by the partial least square (PLS) and full cross validation in the 350-2 500 nm wavelength range. The results showed that high coefficients were obtained between the annual ring and the NIR fitted data. The correlation coefficient of prediction model was 0.88 and 0.91 in the middle diameter and bigger diameter, respectively. Moreover, high coefficients of correlation were also obtained between annual ring density laboratory-determined and the NIR fitted data in the middle diameter of Paulownia elongate standing trees, the correlation coefficient of calibration model and prediction model were 0.90 and 0.83, and the standard errors of calibration (SEC) and standard errors of prediction(SEP) were 0.012 and 0.016, respectively. The method can simply, rapidly and non-destructively estimate the annual ring density of the Paulownia elongate standing trees close to the cutting age.

  11. Measurement of annual ring width of log ends in forest machinery

    NASA Astrophysics Data System (ADS)

    Marjanen, Kalle; Ojala, Petteri; Ihalainen, Heimo

    2008-02-01

    The quality of wood is of increasing importance in wood industry. One important quality aspect is the average annual ring width and its standard deviation that is related to the wood strength and stiffness. We present a camera based measurement system for annual ring measurements. The camera system is designed for outdoor use in forest harvesters. Several challenges arise, such as the quality of cutting process, camera positioning and the light variations. In the freshly cut surface of log end the annual rings are somewhat unclear due to small splinters and saw marks. In the harvester the optical axis of camera cannot be set orthogonally to the log end causing non-constant resolution of the image. The amount of natural light in forest varies from total winter darkness to midsummer brightness. In our approach the image is first geometrically transformed to orthogonal geometry. The annual ring width is measured with two-dimensional power spectra. The two-dimensional power spectra combined with the transformation provide a robust method for estimating the mean and the standard deviation of annual ring width. With laser lighting the variability due to natural lighting can be minimized.

  12. Determining the average annual ring width on the front side of lumber

    NASA Astrophysics Data System (ADS)

    Hanning, Tobias; Kickingereder, Reiner; Casasent, David

    2003-05-01

    Visual features of lumber can be used to assure its quality in stiffness and strength. Specifically, the average annual ring distance of the planks and the position of the center of the annual rings of the front side supply a close relation to some quality parameters of planks. Unfortunately, it turns out to be difficult to detect the average annual ring width by simple image vision methods due to distortions in the front side image of a plank caused by the cutting process. In this paper we propose two integrating methods which are capable of being used in an industrial application. One is based on quantizations of color images, the other on local Fourier transformations to detect the main wave in an image.

  13. Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce

    NASA Astrophysics Data System (ADS)

    Bouriaud, O.; Teodosiu, M.; Kirdyanov, A. V.; Wirth, C.

    2015-10-01

    Estimations of tree annual biomass increments are used by a variety of studies related to forest productivity or carbon fluxes. Biomass increment estimations can be easily obtained from diameter surveys or historical diameter reconstructions based on tree rings' records. However, the biomass models rely on the assumption that wood density is constant. Converting volume increment into biomass also requires assumptions about the wood density. Wood density has been largely reported to vary both in time and between trees. In Norway spruce, wood density is known to increase with decreasing ring width. This could lead to underestimating the biomass or carbon deposition in bad years. The variations between trees of wood density have never been discussed but could also contribute to deviations. A modelling approach could attenuate these effects but will also generate errors. Here a model of wood density variations in Norway spruce, and an allometric model of volume growth were developed. We accounted for variations in wood density both between years and between trees, based on specific measurements. We compared the effects of neglecting each variation source on the estimations of annual biomass increment. We also assessed the errors of the biomass increment predictions at tree level, and of the annual productivity at plot level. Our results showed a partial compensation of the decrease in ring width in bad years by the increase in wood density. The underestimation of the biomass increment in those years reached 15 %. The errors related to the use of an allometric model of volume growth were modest, around ±15 %. The errors related to variations in wood density were much larger, the biggest component being the inter-tree variability. The errors in plot-level annual biomass productivity reached up to 40 %, with a full account of all the error sources.

  14. Influence of wood density in tree-ring based annual productivity assessments and its errors in Norway spruce

    NASA Astrophysics Data System (ADS)

    Bouriaud, O.; Teodosiu, M.; Kirdyanov, A. V.; Wirth, C.

    2015-04-01

    Estimations of tree annual biomass increments are used by a variety of studies related to forest productivity or carbon fluxes. Biomass increment estimations can be easily obtained from diameter surveys or historical diameter reconstructions based on tree rings records. However, the biomass models rely on the assumption of a constant wood density. Converting volume increment into biomass also requires assumptions on the wood density. Wood density has been largely reported to vary both in time and between trees. In Norway spruce, wood density is known to increase with decreasing ring width. This could lead to underestimating the biomass or carbon deposition in bad years. The variations between trees of wood density has never been discussed but could also contribute to deviations. A modelling approach could attenuate these effects but will also generate errors. Here were developed a model of wood density variations in Norway spruce, and an allometric model of volume growth. We accounted for variations in wood density both between years and between trees, based on specific measurements. We compared the effects of neglecting each variation source on the estimations of annual biomass increment. We also assessed the errors of the biomass increment predictions at tree level, and of the annual productivity at plot level. Our results showed a partial compensation of the decrease in ring width in bad years by the increase in wood density. The underestimation of the biomass increment in those years reached 15%. The errors related to the use of an allometric model of volume growth were modest, around ±15%. The errors related to variations in wood density were much larger, the biggest component being the inter-tree variability. The errors in plot-level annual biomass productivity reached up to 40%, with a full account of all the error sources.

  15. Summer warming and changes in snow depth is reflected in the growth rings of Alaskan tundra shrubs (Toolik Lake)

    NASA Astrophysics Data System (ADS)

    Buchwal, A.; Welker, J. M.

    2016-12-01

    Arctic change is being manifested by shifts in the vegetation composition and abundance throughout many regions of the Arctic. These changes are primarily reflected by increases in shrub growth and density, but the extent to which shrub growth is expressed in greater shrub ring width and the degree to which natural and experimental warming correspond and or whether the secondary effect of deeper snow in winter acts to alter shrub ring growh and or shrub biomass is yet to be determined for Arctic Alaska. In order to explore growth response of arctic shrubs to on-going and predicted temperature and snow depth increase we investigated shrubs' annual growth rings using dendrochronological methods applied to plants growing under control and experimental treatments in Toolik Lake, Northern Alaska. Specifically we evaluated the effects of a 20-year experimental warming (due to open top chambers, OTC's) and snow depth increases on the growth rings pattern of two common shrub species of Northern Alaska, i.e. Betula nana and Salix pulchra. By applying a serial sectioning method patterns of annual growth were investigated across the entire plant including below-ground parts. Moreover this procedure allowed for a complete cross-dating and a detection of irregular radial growth, including common missing and partially missing rings. We found that the natural warming in Alaska occurring over the past 20 years is stimulating shrub ring growth, more so for Betula than for Salix. Experimental warming (simulating conditions in approximately 2030) stimulated the secondary growth ratio; however the allocation pattern between below-ground and above-ground is quite variable between individual shrubs. In addition, annual growth rings analyses were supplemented by quantitative wood anatomy properties, such as vessel size and density. Our findings indicate that there can be differential growth ring responses of deciduous shrubs to natural climate warming, that growth ring increases reflect

  16. Interpretation of tree-ring data with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Wang, H.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    We present a simple, generic model of annual tree growth, called ';T'. This model accepts input from a generic light-use efficiency model which is known to provide good simulations of terrestrial carbon exchange. The light-use efficiency model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine-root production and respiration, in such a way as to satisfy well-understood dimensional relationships. The result is a model that can represent both ontogenetic effects and the effects of environmental variations and trends on growth. The model has been applied to simulate ring-width series from multiple individual trees in temperature- and drought-limited contexts. Each tree is initialized at its actual diameter at the time when local climate records started. These records are used to drive the trees' subsequent growth. Realistic simulations of the pattern of interannual variability of ring-width are generated, and shown to relate statistically to climate. An upward trend in ring-width during 1958-2007 is shown to be present in the primary observations, and in the simulations; but not in the standard, detrended ring-width series. This approach combines two modelling approaches previously developed in the global carbon cycle and forest science literature respectively. Neither has been widely applied in the context of tree-ring based climate reconstruction. This combination of methods offers promise, however, because it could provide a way to sidestep several known problems. These include: reliance on correlations for the interpretation of ring-width variations in terms of climate; the necessity of detrending using empirical functions (which can remove trends caused by variations in the environment as well as those that are ontogenetic); and the difficulty of assessing effects of extrinsic, non

  17. Counting Tree Growth Rings Moderately Difficult to Distinguish

    Treesearch

    C. B. Briscoe; M. Chudnoff

    1964-01-01

    There is an extensive literature dealing with techniques and gadgets to facilitate counting tree growth rings. A relatively simple method is described below, satisfactory for species too difficult to count in the field, but not sufficiently difficult to require the preparation of microscope slides nor staining techniques.

  18. Testing the assumption of annual shell ring deposition in freshwater mussels

    Treesearch

    Wendell R. Haag; Amy M. Commens-Carson

    2008-01-01

    We tested the assumption of annual shell ring deposition by freshwater mussels in three rivers using 17 species. In 2000, we notched shell margins, returned animals to the water, and retrieved them in 2001. In 2003, we measured shells, affixed numbered tags, returned animals, and retrieved them in 2004 and 2005. We validated deposition of a single internal annulus per...

  19. Missing Rings, Synchronous Growth, and Ecological Disturbance in a 36-Year Pitch Pine (Pinus rigida) Provenance Study.

    PubMed

    Leland, Caroline; Hom, John; Skowronski, Nicholas; Ledig, F Thomas; Krusic, Paul J; Cook, Edward R; Martin-Benito, Dario; Martin-Fernandez, Javier; Pederson, Neil

    2016-01-01

    Provenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of 567 36-year-old pitch pine (Pinus rigida Mill.) trees from 27 seed sources to evaluate their performance in a New Jersey Pine Barrens provenance experiment. Unexpectedly, missing rings were prevalent in most trees, and some years-1992, 1999, and 2006-had a particularly high frequency of missing rings across the plantation. Trees from local seed sources (<55 km away from the plantation) had a significantly smaller percentage of missing rings from 1980-2009 (mean: 5.0%), relative to northernmost and southernmost sources (mean: 9.3% and 7.9%, respectively). Some years with a high frequency of missing rings coincide with outbreaks of defoliating insects or dry growing season conditions. The propensity for missing rings synchronized annual variations in growth across all trees and might have complicated the detection of potential differences in interannual variability among seed sources. Average ring width was significantly larger in seed sources from both the southernmost and warmest origins compared to the northernmost and coldest seed sources in most years. Local seed sources had the highest average radial growth. Adaptation to local environmental conditions and disturbances might have influenced the higher growth rate found in local seed sources. These findings underscore the need to understand the integrative impact of multiple environmental drivers, such as disturbance agents and climate change, on tree growth, forest dynamics, and the carbon cycle.

  20. Missing Rings, Synchronous Growth, and Ecological Disturbance in a 36-Year Pitch Pine (Pinus rigida) Provenance Study

    PubMed Central

    Leland, Caroline; Hom, John; Skowronski, Nicholas; Krusic, Paul J.; Cook, Edward R.; Martin-Benito, Dario; Martin-Fernandez, Javier; Pederson, Neil

    2016-01-01

    Provenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of 567 36-year-old pitch pine (Pinus rigida Mill.) trees from 27 seed sources to evaluate their performance in a New Jersey Pine Barrens provenance experiment. Unexpectedly, missing rings were prevalent in most trees, and some years—1992, 1999, and 2006—had a particularly high frequency of missing rings across the plantation. Trees from local seed sources (<55 km away from the plantation) had a significantly smaller percentage of missing rings from 1980–2009 (mean: 5.0%), relative to northernmost and southernmost sources (mean: 9.3% and 7.9%, respectively). Some years with a high frequency of missing rings coincide with outbreaks of defoliating insects or dry growing season conditions. The propensity for missing rings synchronized annual variations in growth across all trees and might have complicated the detection of potential differences in interannual variability among seed sources. Average ring width was significantly larger in seed sources from both the southernmost and warmest origins compared to the northernmost and coldest seed sources in most years. Local seed sources had the highest average radial growth. Adaptation to local environmental conditions and disturbances might have influenced the higher growth rate found in local seed sources. These findings underscore the need to understand the integrative impact of multiple environmental drivers, such as disturbance agents and climate change, on tree growth, forest dynamics, and the carbon cycle. PMID:27182599

  1. A 564-year annual minimum temperature reconstruction for the east central Tibetan Plateau from tree rings

    NASA Astrophysics Data System (ADS)

    Li, Teng; Li, Jinbao

    2017-10-01

    Minimum temperatures have increased rapidly on the Tibetan Plateau (TP) in recent decades, but there is still a lack of long-term background information to evaluate the nature of the anomaly. Here we present a 709-year tree-ring width chronology from Sabina tibetica Kom. on the east central TP, with reliable coverage from 1451 to 2014. Based on the significant relationship between tree growth and annual minimum temperature (Tmin), from previous April to current March, we reconstruct the pApril-cMarch Tmin for the past 564 years. The reconstruction shows six major warm (1490-1623, 1713-1729, 1784-1812, 1868-1877, 1918-1954, 1989-2014) and six major cold (1451-1489, 1624-1712, 1730-1783, 1813-1853, 1878-1917, 1955-1988) periods during the past five hundred years. The level of warming from 1989 to 2014 is unprecedented over the past five centuries. Comparison with other minimum temperature records indicates that our Tmin reconstruction represents large-scale temperature changes on the eastern TP. The positive correlation between the Tmin reconstruction and the Atlantic Multidecadal Oscillation (AMO) suggests that the latter may have played a crucial role on multidecadal temperature variations over the east central TP, with high temperatures coincident with the warm phases of the AMO, and low temperatures related to the cold phases of the AMO, respectively.

  2. Radial growth of an extended spoke in Saturn's B ring

    NASA Technical Reports Server (NTRS)

    Eplee, R. E., Jr.; Smith, B. A.

    1985-01-01

    An analysis is reported of the pattern of radial growth of an extended spoke observed in the Voyager 2 low-resolution Saturn ring 'movie'. The feature is atypical in that it orbits Saturn at the corotational rate for 1-1/2 hours after the onset of its formation and then undergoes a 40-min acceleration to sustained Keplerian velocities. A correlation between the dynamical phases and the radial growth modes of the spoke is observed, one that seems consistent with the plasma cloud model of spoke formation and evolution proposed by Goertz and Morfill (1983), taken in the limit of high charge density.

  3. Stimulated longitudinal emittance growth in the Main Ring

    SciTech Connect

    Jackson, G.; Ieiri, T.

    1989-03-01

    During fixed target operations -- beam intensity is limited by coherent instabilities in both the Main Ring and Tevatron. The growth rates for instabilities are generally inversely proportional to the proton bunch length. Since fixed target operations are insensitive to the longitudinal emittance of the beams, bunch spreaders are employed to increase the emittance, and hence the bunch length. Emittance growth is stimulated by injecting noise onto either the RF phase or amplitude control voltages. Test results of the efficiency of various stimulation schemes are reported. The design of a bunch length monitor, used to measure the effect of the bunch spreader, is also presented. 12 refs., 5 figs.

  4. Regional climate pattern during two millennia estimated from annual tree rings of Yaku cedar trees: a hint for solar variability?

    NASA Astrophysics Data System (ADS)

    Muraki, Yasushi; Mitsutani, Takumi; Shibata, Shoichi; Kuramata, Syuichi; Masuda, Kimiaki; Nagaya, Kentaro

    2015-02-01

    We analyzed trees that have survived on Yaku island (Yakushima) for 2,000 years. Quite surprisingly, the Fourier and wavelet analyses of the annual growth rate identified 2 cycles of periodicities of 11 and (24 ± 4) years during the Oort, Wolf, Spörer, Maunder, and Dalton minima. The 11-year periodicity originated from solar activity, while the (24 ± 4)-year periodicity may be related to the Pacific Decadal Oscillation (PDO). In particular, we have discovered an 11-year periodicity in the meteorological daylight-hour data from Yakushima in the month of June during 1938 to 2013 and a 24-year periodicity in July. The growth rate of the tree rings may be affected by the variation of the daylight hour.

  5. Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-12-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

  6. Simulation of tree ring-widths with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-07-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the P model). The P model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine root production and respiration, in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountain, northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilization over the past 50 years is too small to be distinguished in the ring-width data given ontogenetic trends and interannual variability in climate.

  7. Estimating annual growth losses from drought in loblolly pine plantations

    Treesearch

    Ralph L. Amateis; Harold E. Burkhart; Daniel Waiswa

    2013-01-01

    Growth data over the past 10 years from loblolly pine (Pinus taeda L.) plantations established across the natural range of the species were linked with annual rainfall data over the same period to evaluate the impact of drought on stand growth. Regression procedures were used to determine (1) whether dominant height growth or basal area growth or...

  8. Annual Tree Growth Predictions From Periodic Measurements

    Treesearch

    Quang V. Cao

    2004-01-01

    Data from annual measurements of a loblolly pine (Pinus taeda L.) plantation were available for this study. Regression techniques were employed to model annual changes of individual trees in terms of diameters, heights, and survival probabilities. Subsets of the data that include measurements every 2, 3, 4, 5, and 6 years were used to fit the same...

  9. A new serial pooling method of shifted tree ring blocks to construct millennia long tree ring isotope chronologies with annual resolution.

    PubMed

    Boettger, Tatjana; Friedrich, Michael

    2009-03-01

    The study presents a new serial pooling method of shifted tree ring blocks for the building of isotope chronologies. This method combines the advantages of traditional 'serial' and 'intertree' pooling, and can be recommended for the construction of sub-regional long isotope chronologies with sufficient replication, and on annual resolution, especially for the case of extremely narrow tree rings. For Scots pines (Pinus sylvestris L., Khibiny Low Mountains, NW Russia) and Silver firs (Abies alba Mill., Franconia, Southern Germany), serial pooling of five consecutive tree rings seems appropriate because the species- and site-specific particularities lead to blurs of climate linkages in their tree rings for the period up to ca. five years back. An equivalent to a five-year running means that curve gained on the base annual data sets of single trees can be derived from the analysis of yearly shifted five-year blocks of consecutive tree rings, and therefore, with approximately 20% of the expense. Good coherence of delta(13)C- and delta(18)O-values between calculated means of annual total rings or late wood data and means of five-year blocks of consecutive total tree rings analysed experimentally on most similar material confirms this assumption.

  10. Long Tree-Ring Chronologies Provide Evidence of Recent Tree Growth Decrease in a Central African Tropical Forest

    PubMed Central

    Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla- Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo

    2015-01-01

    It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2. PMID:25806946

  11. Long tree-ring chronologies provide evidence of recent tree growth decrease in a Central African tropical forest.

    PubMed

    Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla-Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo

    2015-01-01

    It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.

  12. Multi-proxy reconstructions of South American precipitation from oxygen isotopes and growth rings in tropical trees

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Baker, P.; Chambers, J.; Villalba, R.

    2004-12-01

    Most of our knowledge about climate variability is restricted to the high latitudes of the Northern Hemisphere. Although the tropics constitute 40% of the Earth's surface, very little is known about temperature and precipitation variability, even during the last century. By analyzing the growth and isotopic variability of tropical trees, we may resolve intra-annual fluctuations in precipitation. Certain taxa of tropical trees are known to possess annual growth rings and some taxa exceed 1,000 years old. Recent progress in tropical dendrochronology, has established a strong relationship between growth and precipitation amount, especially during the growth season. The relationship between \\delta18O in precipitation and precipitation amount has been well established; and is moderately significant for certain regions of the neotropics (r= -65). Although much of the variability in the \\delta18O of precipitation has been ascribed to changes in sea surface temperatures resulting from El Niño events, longer periods (12 yr.) of variability in \\delta18O remain unexplained. Here we combine measures of tree ring growth and \\delta18O in the cellulose of several tropical trees to capture the inter-annual variability in precipitation. Samples from the Andean genus Polylepis were cross-dated and analyzed for \\delta18O. The resulting 146-year time series reveals pronounced inter-annual variability in \\delta18O, as well as low frequency variability similar to the \\delta18O. An appreciable amount of regional precipitation is described by the ring-width and the high pass-filtered \\delta18O data. To validate the relationship between growth and cellulose \\delta18O, we also analyzed samples from Dipterix spp. and Tachigali spp. from the Amazon. In both taxa growth maxima and cellulose \\delta18O minima coincided during the rainy season (DJF). The analysis of \\delta13C, another isotope known to be fractionated under arid conditions may increase our ability to reconstruct

  13. North Pacific climate recorded in growth rings of geoduck clams: A new tool for paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Strom, Are; Francis, Robert C.; Mantua, Nathan J.; Miles, Edward L.; Peterson, David L.

    2004-03-01

    To better understand North Pacific climate variability at interannual to interdecadal scales, we have developed a new tool for paleoenvironmental reconstruction. We show that growth rings in long-lived geoduck clams (Panopea abrupta) can provide high quality, annually resolved records of sea-surface temperature (SST). We used shell samples from the Strait of Juan de Fuca, in Washington State, to extend the coastal SST record back to 1877. The spatial correlation pattern between the growth index and gridded SSTs bears a strong resemblance to the leading pattern of interdecadal global SST variations and underscores the remarkable long-distance coherence evident among coastal SST records in the northeast Pacific. Our results also indicate that the 1990s was the warmest decade in this region since at least the 1850s.

  14. A simple, single-substrate model to interpret intra-annual stable isotope signals in tree-ring cellulose

    NASA Astrophysics Data System (ADS)

    Ogée, J.; Barbour, M. M.; Wingate, L.; Bert, D.; Bosc, A.; Stievenard, M.; Lambrot, C.; Pierre, M.; Bariac, T.; Dewar, R. C.

    2009-04-01

    High-resolution intra-annual measurements of the carbon and oxygen stable isotope composition of cellulose in annual tree rings (δ13Ccellulose and δ18Ocellulose, respectively) reveal well-defined seasonal patterns that could contain valuable records of past climate and tree function. Interpreting these signals is nonetheless complex because they not only record the signature of current assimilates, but also depend on carbon allocation dynamics within the trees. Here, we present a simple, single-substrate model for wood growth containing only 12 main parameters. The model is used to interpret an isotopic intra-annual chronology collected in an even-aged maritime pine plantation growing in the South-West of France, where climate, soil and flux variables were also monitored. The empirical δ13Ccellulose and δ18Ocellulose exhibit dynamic seasonal patterns, with clear differences between years and individuals, that are mostly captured by the model. In particular, the amplitude of both signals is reproduced satisfactorily as well as the sharp 18O enrichment at the beginning of 1997 and the less pronounced 13C and 18O depletion observed at the end of the latewood. Our results suggest that the single-substrate hypothesis is a good approximation for tree ring studies on Pinus pinaster, at least for the environmental conditions covered by this study. A sensitivity analysis revealed that, in the early wood, the model was particularly sensitive to the date when cell wall thickening begins (twt). We therefore propose to use the model to reconstruct time series of twt and explore how climate influences this key parameter of xylogenesis.

  15. Annual Variation of Carbon Stable Isotope Ratio in Tree Rings of Riparian Cottonwood Over the Last 225 Years.

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.; Stricker, C. A.; Csank, A. Z.; Zhou, H.

    2016-12-01

    Annual ring width of riparian plains cottonwood (Populus deltoides subsp. monilifera) has recently been shown to be strongly correlated with precipitation in the northern Great Plains, allowing dendrochronological reconstruction of prehistoric climate. Because growth of trees is influenced by multiple environmental drivers, multiple proxies are desirable to improve accuracy of reconstructions. This study addresses the utility of carbon stable isotope ratios of cottonwood tree rings for supplementing climate reconstructions. We analyzed stable isotope ratios (13C/12C) of each annual ring in cores of seven cottonwood trees (two cores per tree) from the floodplain of the Little Missouri River in the North Unit of Theodore Roosevelt National Park, North Dakota, USA. To distinguish effects of age from those of climate variation we used trees established at a wide range of ages, with cores beginning in 1791, 1832, 1881, 1900, 1908, 1948, and 1972. We corrected for change over time in the 13C/12C ratio of atmospheric C02, and, because a juvenile effect was observed, removed the first 26 years from pith from each series. We measured stable isotope ratios using whole wood and, for every fourth sample, purified cellulose. We also measured the proportion of cellulose by mass as a function of years from pith. Mean adjusted stable isotope ratio was strongly negatively correlated (r = -0.60) with annual September-August precipitation for the years 1954-2010. The negative correlation follows the expected pattern of decreased discrimination against 13C under drought stress, and the strength of the correlation is consistent with the fact that growth of cottonwood in the western Great Plains is generally limited by water availability. There was no correlation with temperature after removing the effect of precipitation. Isotope ratios of purified cellulose were higher than for whole wood, reflecting the relatively low isotope ratio of lignin. The difference in isotope ratio between

  16. [Paleoclimate of La Guajira, Colombia; by the growth rings of Capparis odoratissima (Capparidaceae)].

    PubMed

    Ramírez, Jorge Andrés; Ignacio del Valle, Jorge

    2011-09-01

    There is great concern about the effect of climate change in arid and subarid areas of the tropics. Climate change combined with other anthropogenic activities such as deforestation, fires and over-grazing can accelerate their degradation and, consequently, the increases in losses of biological and economic productivity. Climate models, both local and global, predict that rainfall in the arid Peninsula of La Guajira in the Colombian Caribbean would be reduced and temperature would be increased as a result of climate change. However, as there are only suitable climate records since 1972, it is not possible to verify if, indeed, this is happening. To try to verify the hypothesis of reducing rainfall and rising temperatures we developed a growth ring chronology of Capparis odoratissima in the Middle Peninsula of La Guajira with 17 trees and 45 series which attain 48 years back. We use standard dendrochronological methods that showed statistically significant linear relationship with local climatic variables such as air temperature, sea surface temperature (SST), annual precipitation and wind speed; we also reach to successful relationship of the chronology with global climatic variables as the indices SOI and MEI of the ENSO phenomenon. The transfer functions estimated with the time series (1955 and 2003) do not showed statistically significant trends, indicating that during this period of time the annual precipitation or temperatures have not changed. The annual nature of C. odoratissima growth rings, the possibility of cross-dated among the samples of this species, and the high correlation with local and global climatic variables indicate a high potential of this species for dendrochronological studies in this part of the American continent.

  17. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    USGS Publications Warehouse

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  18. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality.

    PubMed

    Foster, Jane R; D'Amato, Anthony W; Bradford, John B

    2014-05-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20-30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25-30% higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  19. Distribution of trace element in Japanese red coral Paracorallium japonicum by μ-XRF and sulfur speciation by XANES: Linkage between trace element distribution and growth ring formation

    NASA Astrophysics Data System (ADS)

    Trong Nguyen, Luan; Rahman, Mohammad Azizur; Maki, Teruya; Tamenori, Yusuke; Yoshimura, Toshihiro; Suzuki, Atsushi; Iwasaki, Nozomu; Hasegawa, Hiroshi

    2014-02-01

    This study investigated the distribution of magnesium (Mg), phosphorus (P), sulfur (S) and strontium (Sr) using micro X-ray fluorescence (μ-XRF), and the speciation of S using X-ray absorption near edge spectroscopy (XANES) along the annual growth rings in the skeleton of Japanese red coral Paracorallium japonicum. The Mg, P and S distribution in μ-XRF mapping images correspond to the dark and light bands along the annual growth rings in microscopic images of the coral skeleton. The μ-XRF mapping data showed a positive correlation (r = 0.6) between P and S distribution in the coral skeleton. A contrasting distribution pattern of S and Mg along the axial skeleton of P. japonicum indicates a weak negative correlation (r = -0.2) between these two elements. The distribution pattern of S, P and Mg in the axial skeleton of P. japonicum reveals linkage between the trace element distribution and the formation of dark/light bands along the annual growth rings. Sulfur and P were distributed in the organic matrix rich dark bands, while Mg was distributed in the light bands of the annual growth rings. XANES analysis showed that inorganic sulfate is the major species of S in the skeleton of P. japonicum with a ratio of 1:20 for organic and inorganic sulfate.

  20. How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope.

    PubMed

    Schreiber, K U; Klügel, T; Wells, J-P R; Hurst, R B; Gebauer, A

    2011-10-21

    We demonstrate a 16 m(2) helium-neon ring laser gyroscope with sufficient sensitivity and stability to directly detect the Chandler wobble of the rotating Earth. The successful detection of both the Chandler and the annual wobble is verified by comparing the time series of the ring laser measurements against the "C04 series" of Earth rotation data from the International Earth Rotation and Reference System Service.

  1. How to Detect the Chandler and the Annual Wobble of the Earth with a Large Ring Laser Gyroscope

    NASA Astrophysics Data System (ADS)

    Schreiber, K. U.; Klügel, T.; Wells, J.-P. R.; Hurst, R. B.; Gebauer, A.

    2011-10-01

    We demonstrate a 16m2 helium-neon ring laser gyroscope with sufficient sensitivity and stability to directly detect the Chandler wobble of the rotating Earth. The successful detection of both the Chandler and the annual wobble is verified by comparing the time series of the ring laser measurements against the “C04 series” of Earth rotation data from the International Earth Rotation and Reference System Service.

  2. Basic tree-ring sample preparation techniques for aging aspen

    Treesearch

    Lance A. Asherin; Stephen A. Mata

    2001-01-01

    Aspen is notoriously difficult to age because of its light-colored wood and faint annual growth rings. Careful preparation and processing of aspen ring samples can overcome these problems, yield accurate age and growth estimates, and concisely date disturbance events present in the tree-ring record. Proper collection of aspen wood is essential in obtaining usable ring...

  3. A six hundred-year annual minimum temperature history for the central Tibetan Plateau derived from tree-ring width series

    NASA Astrophysics Data System (ADS)

    He, Minhui; Yang, Bao; Datsenko, Nina M.

    2014-08-01

    The recent unprecedented warming found in different regions has aroused much attention in the past years. How temperature has really changed on the Tibetan Plateau (TP) remains unknown since very limited high-resolution temperature series can be found over this region, where large areas of snow and ice exist. Herein, we develop two Juniperus tibetica Kom. tree-ring width chronologies from different elevations. We found that the two tree-ring series only share high-frequency variability. Correlation, response function and partial correlation analysis indicate that prior year annual (January-December) minimum temperature is most responsible for the higher belt juniper radial growth, while more or less precipitation signal is contained by the tree-ring width chronology at the lower belt and is thus excluded from further analysis. The tree growth-climate model accounted for 40 % of the total variance in actual temperature during the common period 1957-2010. The detected temperature signal is further robustly verified by other results. Consequently, a six century long annual minimum temperature history was firstly recovered for the Yushu region, central TP. Interestingly, the rapid warming trend during the past five decades is identified as a significant cold phase in the context of the past 600 years. The recovered temperature series reflects low-frequency variability consistent with other temperature reconstructions over the whole TP region. Furthermore, the present recovered temperature series is associated with the Asian monsoon strength on decadal to multidecadal scales over the past 600 years.

  4. A single-substrate model to interpret high-resolution intra-annual stable isotope signals in tree ring cellulose

    NASA Astrophysics Data System (ADS)

    Ogée, J.; Barbour, M. M.; Dewar, R. C.; Wingate, L.; Bert, D.; Bosc, A.; Lambrot, C.; Stievenard, M.; Bariac, T.; Berbigier, P.; Loustau, D.

    2007-12-01

    High-resolution measurements of the carbon and oxygen stable isotope composition of cellulose in annual tree rings (δ13Ccellulose and δ18Ocellulose, respectively) reveal well-defined seasonal patterns that could contain valuable records of past climate and tree function. Interpreting these signals is nonetheless complex because they not only record the signature of current assimilates, but also depend on carbon allocation dynamics within the trees. Here, we will present a single-substrate model for wood growth in order to interpret qualitatively and quantitatively these seasonal isotopic signals. We will also show how this model can relate to more complex models of phloem transport and cambial activity. The model will then be tested against an isotopic intra-annual chronology collected on a Pinus pinaster tree equipped with point dendrometers and growing on a Carboeurope site where climate, soil and flux variables are also monitored. The empirical δ13Ccellulose and δ18Ocellulose signals exhibit dynamic seasonal patterns with clear differences between years, which makes it suitable for model testing. We will show how our simple model of carbohydrate reserves, forced by sap flow and eddy covariance measurements, enables us to interpret these seasonal and inter-annual patterns. Finally, we will present a sensitivity analysis of the model, showing how gas-exchange parameters, carbon and water pool sizes or wood maturation times affect these isotopic signals. Acknowledgements: this study benefited from the CarboEurope-IP Bray site facilities and was funded by the French INSU programme Eclipse, with an additional support from the INRA department EFPA.

  5. Product suitability of wood...determined by density gradients across growth rings

    Treesearch

    Robert M. Echols

    1972-01-01

    The suitability of wood for various uses can be determined by synthesizing single growth-ring density curves from accumulated means of wood density classes. Wood density gradients across growth rings were measured in large increment cores from 46-year-old ponderosa pines (Pinus ponderosa Laws.) by using X-rays. Of the 48 trees analyzed, 36 had been...

  6. [Anatomic characterization of growth-rings in 80 potential tree species for dendrocronological studies in the Central Forest, Perú].

    PubMed

    Beltrán Gutiérrez, Lizandro Adal; Valencia Ramos, Gina Mariela

    2013-09-01

    The knowledge about the existence of annual tree rings in tropical trees, which was already found at the beginning of the last century, was ignored by many scientists for a long time. Wood samples of 80 tree species from seven different sites belonging to Satipo and Chanchamayo provinces in Central Forest, Perú. Wood slices were taken at 1.30 m height, following the Peruvian Technical Norms (NTP) 251-008, COPANT norms 30:1-019 and IAWA (1989). Results showed that 24 of the 80 tree species analyzed showed a potential for dendrocronological studies, 25 had problems for growth-rings analysis, and 31 did not have potential. The problems most frequently found were: barely visible or irregular ring growth, parenchyma bands and multiseriate rays difficult to be identified in rings growth. The "T" Student test showed that the significant variation in vessel and fiber diameters between growth zones (Early-wood and late-wood) of species with potential for dendrocronology, do have a periodic cells production, so is possible to suggest the annual formation of each growth-ring. However, those species without potential to dendrocronology may be influenced by of a lot of factors, such as biotic and abiotic conditions of environment, as well as the genetic aspect of each species.

  7. Mountain hemlock growth responds to climatic variability at annual and decadal time scales

    USGS Publications Warehouse

    Peterson, D.W.; Peterson, D.L.

    2001-01-01

    Improved understanding of tree growth responses to climate is needed to model and predict forest ecosystem responses to current and future climatic variability. We used dendroecological methods to study the effects of climatic variability on radial growth of a subalpine conifer, mountain hemlock (Tsuga mertensiana). Tree-ring chronologies were developed for 31 sites, spanning the latitudinal and elevational ranges of mountain hemlock in the Pacific Northwest. Factor analysis was used to identify common patterns of inter-annual growth variability among the chronologies, and correlation and regression analyses were used to identify climatic factors associated with that variability. Factor analysis identified three common growth patterns, representing groups of sites with different climate-growth relationships. At high-elevation and midrange sites in Washington and northern Oregon, growth was negatively correlated with spring snowpack depth, and positively correlated with growth-year summer temperature and the winter Pacific Decadal Oscillation index (PDO). In southern Oregon, growth was negatively correlated with spring snowpack depth and previous summer temperature, and positively correlated with previous summer precipitation. At the low-elevation sites, growth was mostly insensitive to annual climatic variability but displayed sensitivity to decadal variability in the PDO opposite to that found at high-elevation sites. Mountain hemlock growth appears to be limited by late snowmelt, short growing seasons, and cool summer temperatures throughout much of its range in the Pacific Northwest. Earlier snowmelt, higher summer temperatures, and lower summer precipitation in southern Oregon produce conditions under which growth is limited by summer temperature and/or soil water availability. Increasing atmospheric CO2 concentrations could produce warmer temperatures and reduced snowpack depths in the next century. Such changes would likely increase mountain hemlock growth

  8. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests.

    PubMed

    Xu, Kai; Wang, Xiangping; Liang, Penghong; An, Hailong; Sun, Han; Han, Wei; Li, Qiaoyan

    2017-05-16

    Tree rings have long been used to calibrate the net primary production (NPP) time-series predicted by process-based models, based on an implicit assumption that ring-width indices (RWI) can well reflect temporal NPP change. However, this assumption has seldom been tested systematically. In this study, 36 plots were set in three forest types from four sites along a latitudinal gradient in northeast China. For each plot, we constructed chronologies and stand NPP of the past 20 years to examine: is RWI a good proxy of inter-annual variation of forest NPP for different forest types under different climate? If it is, why? Our results indicate that RWI was closely related to stand NPP in most cases, and could be used as a good proxy of NPP in temperate forests. Standard and arstan chronologies were better related to NPP series than residual chronology. Stand NPP time-series were mainly determined by large trees, and the correlation between RWI and NPP was also higher for larger trees. We suggest that large trees and dominant species of canopy layer should be sampled for chronology construction. Large trees are major contributors of forest biomass and productivity, and should have priority in forest conservation in a rapid-warming world.

  9. 137Cs distribution among annual rings of different tree species contaminated after the Chernobyl accident.

    PubMed

    Soukhova, N V; Fesenko, S V; Klein, D; Spiridonov, S I; Sanzharova, N I; Badot, P M

    2003-01-01

    The distributions of 137Cs among annual rings of Pinus sylvestris and Betula pendula at four experimental sites located in the most contaminated areas in the Russian territory after the Chernobyl accident in 1986 were studied. Trees of different ages were sampled from four forest sites with different tree compositions and soil properties. The data analysis shows that 137Cs is very mobile in wood and the 1986 rings do not show the highest contamination. The difference between pine and birch in the pattern of radial 137Cs distribution can be satisfactorily explained by the difference in radial ray composition. 137Cs radial distribution in the wood can be described as the sum of two exponential functions for both species. The function parameters are height, age and species dependent. The distribution of 137Cs in birch wood reveals much more pronounced dependence on site characteristics and/or the age of trees than pines. The data obtained can be used to assess 137Cs content in wood.

  10. Seasonal, Inter-annual and Long Term Trends in the Element Composition of Tropical Tree Rings

    NASA Astrophysics Data System (ADS)

    Verheyden, A.; Beeckman, H.; Andre, L.

    2008-12-01

    The inorganic composition of Rhizophora mucronata wood was studied on 11 stem discs collected from two mangrove forests in Kenya. The aim of this preliminary study was to assess if elements could be used as proxies of environmental and/or anthropogenic change. Earlywood and late wood were separated and analyzed on ICP-MS and ICP-OES. A remarkable synchronicity was found between ring width and Mg/Ca and Mn/Ca ratios, both of which have been used as soil pH proxies. However, there was also a negative correlation between Ca and ring width, indicating a dilution effect at higher growth rates. The essential elements P and K were significantly higher in fast growing plantation trees, suggesting that these elements might be useful as nutrient proxies in mangrove wood. A high correlation was found between Ca and Sr in the wood, indicating that probably no differentiation is made by the tree during incorporation of these elements in the wood. Since Sr/Ca of seawater is related to salinity, we suggest that the Sr/Ca in the wood could be used as a salinity proxy for tree species growing in brackish waters. Finally, a high-resolution study was also conducted using LA-ICP-MS, which revealed a high spatial variability within one ring. This high variability was the result of different concentrations in each wood cell type analyzed. The heavy metals (Cu, Zn, Pb and Cr), as well as Ba, had highest concentrations in the fibers and lowest in the vessels. On the other hand, B, Mn, Ca, P, and Sr were highest in the rays and vessels and lowest in the fibers, while Mg was the highest in the rays, but lowest in the vessels. The implications of these results for the use of trace elements to delimit chemical ring boundaries in tropical trees will be discussed.

  11. Ring chromosome 5 associated with severe growth retardation as the sole major physical abnormality

    SciTech Connect

    Migliori, M.V.; Pettinari, A.; Cherubini, V.; Bartolotta, E.; Pecora, R.

    1994-01-01

    The authors report on a case of ring chromosome 5 in a 36-month-old girl with severe growth retardation, clinodactyly, mild psychological abnormalities, and normal facial appearance. Endocrine tests showed partial growth hormone deficiency. Cytogenetic investigation failed to demonstrate any apparent microscopic deletion of either the short or long arm of chromosome 5 as a consequence of ring formation. In 12% of cells examined, the ring was either absent or present in multiple copies. Only 3 previous cases of ring chromosome 5 have been reported in association with short stature of prenatal onset and minor anomalies, without mental retardation. 12 refs., 3 figs.

  12. Ideas and perspectives: use of tree-ring width as an indicator of tree growth

    NASA Astrophysics Data System (ADS)

    Hember, R. A.; Kurz, W. A.; Metsaranta, J. M.

    2015-06-01

    By taking core samples, dendroecological studies can reconstruct radial growth over the lifespan of a tree, providing a valuable way to estimate the sensitivity of tree productivity to environmental change. With increasing prevalence of such studies in global change science, it is worth cautioning that the incremental growth rate of a sub-dimension of a tree organ, such as annual ring width (w), does not respond to extrinsic perturbations with the same relative magnitude as the primary production of that organ. For example, if an extrinsic force causes a two-fold increase in the absolute growth rate of stemwood biomass (AGR), it should only theoretically translate into a 1.3-fold increase in w, or a 1.7-fold increase in basal area increment (BAI), when a 2:1 ratio in resource allocation to lateral and apical meristems is assumed. Expressing the magnitude of a response in relative terms does not, therefore, provide a valid means of comparing estimates of relative growth derived from measurement of different dimensional traits of the tree. From our perspective, enough conformity to facilitate comparison of environmental sensitivity across studies of tree growth is warranted so we emphasize the benefit of dimension analysis to transform measurements of w and BAI into the AGR. Although conversion to AGR introduces an error from the use of allometric equations, the approach is widely accepted in mainstream ecology and global change science at least partially because it avoids discrepancies in response magnitude owing to differences in dimension. Studies of organ elongation have historically provided invaluable information, yet it must be recognized that they systematically underestimate the response magnitude of primary production, and confound comparisons of growth sensitivity between many dendroecological studies that focus on w and studies of primary production.

  13. Using Novel Approaches in Process-Based Modeling for Interpreting Inter-Annual Variability in Tree Ring Widths, Wood Density Profiles, and Cellulose Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Friend, A. D.; Babst, F.; Belmecheri, S.; Frank, D. C.; Hacket Pain, A. J.; Hayat, A.; Poulter, B.; Rademacher, T. T.; Trouet, V.

    2015-12-01

    Time series annual of tree ring width, density variation, and oxygen and carbon isotopic compositions have the potential to substantially increase our knowledge of forest responses to environmental variation. However, their interpretation is not straightforward due to the simultaneous influences of a number of confounding factors, including carry-over effects from previous years, variable resource allocation with size, age, and canopy position, species-specific physiologies, and complex interactions between forcings such as temperature, soil moisture, and atmospheric CO2. Here we attempt to tease these factors apart and so substantially improve the interpretability of tree ring archives through the construction and application of novel approaches within a process-based model of individual tree growth. The model incorporates descriptions of xylem cell division, expansion, and secondary wall thickening, apical and lateral meristem activities with internal controls from internal signals, internal carbon storage, and the dynamics of canopy photosynthesis, stomatal movements, evapotranspiration, canopy temperatures, and soil moisture. Alternative treatments of isotopic fractionation and growth controls are evaluated using measured datasets. We demonstrate how this new model approach can be used to assess the information contained in tree rings concerning the influence of increasing atmospheric CO2 over the past century on growth and water use efficiency at a range of sites.

  14. Spatiotemporal analysis of sensor logs using growth ring maps.

    PubMed

    Bak, Peter; Mansmann, Florian; Janetzko, Halldor; Keim, Daniel A

    2009-01-01

    Spatiotemporal analysis of sensor logs is a challenging research field due to three facts: a) traditional two-dimensional maps do not support multiple events to occur at the same spatial location, b) three-dimensional solutions introduce ambiguity and are hard to navigate, and c) map distortions to solve the overlap problem are unfamiliar to most users. This paper introduces a novel approach to represent spatial data changing over time by plotting a number of non-overlapping pixels, close to the sensor positions in a map. Thereby, we encode the amount of time that a subject spent at a particular sensor to the number of plotted pixels. Color is used in a twofold manner; while distinct colors distinguish between sensor nodes in different regions, the colors' intensity is used as an indicator to the temporal property of the subjects' activity. The resulting visualization technique, called Growth Ring Maps, enables users to find similarities and extract patterns of interest in spatiotemporal data by using humans' perceptual abilities. We demonstrate the newly introduced technique on a dataset that shows the behavior of healthy and Alzheimer transgenic, male and female mice. We motivate the new technique by showing that the temporal analysis based on hierarchical clustering and the spatial analysis based on transition matrices only reveal limited results. Results and findings are cross-validated using multidimensional scaling. While the focus of this paper is to apply our visualization for monitoring animal behavior, the technique is also applicable for analyzing data, such as packet tracing, geographic monitoring of sales development, or mobile phone capacity planning.

  15. Juvenile/mature wood transition in loblolly pine as defined by annual ring specific gravity, proportion of latewood, and microfibril angle

    Treesearch

    Alexander Clark; Richard F. Daniels; Lewis Jordan

    2006-01-01

    The length of juvenility or number of years a tree produces juvenile wood at a fixed height can be defined by the age of the wood at which properties change from juvenile to mature wood. This paper estimates the age of transition from juvenile to mature wood based on ring specific gravity (SG), proportion of annual ring in latewood, and ring average microfibril angle (...

  16. Wood density of young-growth western hemlock: relation to ring age, radial growth, stand density, and site quality.

    Treesearch

    Dean S. DeBell; Ryan Singleton; Barbara L. Gartner; David D. Marshall

    2004-01-01

    Breast-high stem sections were sampled from 56 western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees growing in 15 plots representing a wide range of tree and site conditions in northwestern Oregon. Growth and wood density traits of individual rings were measured via X-ray densitometry, and relationships of ring density and its components to age...

  17. Tree-ring growth and wood chemistry response to manipulated precipitation variation for two temperate Quercus species

    SciTech Connect

    Wagner, Rebekah J.; Kaye, Margot W.; Abrams, Marc D.; Hanson, Paul J; Martin, Madhavi Z

    2012-01-01

    We examined the relationship among ambient and manipulated precipitation, wood chemistry, and their relationship with radial growth for two oak species in eastern Tennessee. The study took place on the Walker Branch Throughfall Displacement Experiment (TDE) site, located at the Oak Ridge National Laboratory in Oak Ridge, TN. Two dominant species, white oak (Quercus alba) and chestnut oak (Quercus prinus), were selected for study from a 13-year experiment of whole-stand precipitation manipulation (wet, ambient and dry). The relationships between tree-ring width and climate were compared for both species to determine the impact of precipitation manipulations on ring width index. This study used experimental spectroscopy techniques to measure the sensitivity of tree-ring responses to directional changes in precipitation over 13 years, and the results suggest that oaks at this study site are resilient to imposed changes, but sensitive to inter-annual variations in climate. Laser-induced breakdown spectroscopy (LIBS) allowed us to measure nutrient intensities (similar to element concentrations) at 0.5-1.0 mm spacing along the radial growth axis of trees growing in the wet, ambient, and dry treatment sites. A difference in stemwood nutrient levels was observed between the two oak species and among the three treatments. Significant variation in element intensity was observed across treatments for some elements (Ca, K, Mg, Na, N and P) suggesting the potential for long-term impacts on growth under a changing climate regimes for southeastern oaks.

  18. Growth ring response in shortleaf pine following glaze icing conditions in western Arkansas and eastern Oklahoma

    Treesearch

    Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin

    2013-01-01

    Width reduction in growth rings in shortleaf pine (Pinus echinata Mill.) following glaze ice conditions produces a characteristic pattern dependent on live-crown ratio and extent of crown loss. Ring widths of 133 trees for 3 years preceding and 7 years following the December 2000 ice storm (Bragg and others 2002) in western Arkansas and eastern...

  19. The growth of government annual budget through taxes collection

    NASA Astrophysics Data System (ADS)

    Maiga, Sekou; Xu, Feng Ju

    2017-09-01

    In this case study we examine the relationship between the collection of taxes and the growth of government annual revenues (case of republic of Mali). Taxation is the most important source of revenue for modern governments, typically accounting for ninety percent or more of their income, Taxes revenues has contributed a big chunk of funds to the Malian Treasury, about 40%, with our focus being on the years (2012-2017). The primary economic goals of developing countries are to increase the rate of economic growth and hence per capita income, which leads to a higher standard of living. Government needs money to be able to execute its social obligations to the public and these social obligations include but not limited to the provision of infrastructure and social services. Progressive tax rate can be employed to achieve equitable distribution of resources. After economic modeling and estimation, we realized that there is a positive correlation between taxes collection changes and the government annual revenue.

  20. Flood Plain Aggradation Rates Based on Tree-Ring Growth-Suppression Dates

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.

    2003-12-01

    When woody riparian plants are partially buried subsequent tree rings of the buried stems resemble those of roots. Annual rings in a buried stem are narrower and have larger vessels then those in unburied sections of the same stem. We have used this phenomenon to date flood plain sediments exposed in trenches, along two ephemeral streams in New Mexico (Rio Puerco and Chaco Wash) where the sediments are predominantly silt and very fine sand and the plants are predominantly tamarisk and willow. Cross dating down the stem allows dating of the first growth-season following burial by thick beds, and constrains the age of all stratigraphic units deposited since germination of the tree. We observed that the anatomical reaction to burial increases with bed thickness and cumulative deposition. Beds that are thicker than 30 cm can be dated to the year of the deposition event. Beds 10 to 30 cm thick can usually be dated to within several years. The period of deposition of multiple very thin beds can be constrained to the decade. Results can be improved by analyzing multiple stems from one tree and multiple trees linked together by the stratigraphy. Along our study streams, sites far from the channel tend to have moderate and relatively steady point-aggradation rates. Levees next to the channel tend to have the thickest deposits per flood and variable long-term rates, which can differ from the whole flood plain aggradation rates by several fold. Cross-sectionally averaged flood plain aggradation has been as large as a meter per decade along our study streams.

  1. Tree-ring based reconstruction of annual precipitation in the south-central United States from 1750 to 1980

    NASA Astrophysics Data System (ADS)

    Blasing, T. J.; Stahle, D. W.; Duvick, D. N.

    1988-01-01

    A 231-year reconstruction of annual precipitation, from 1750 through 1980 A.D., was developed from 10 tree ring chronologies (9 post oak, Quercus stellata, and 1 white oak, Q. alba, series) in the south-central United States. Straight line regression was used to calibrate regionally averaged precipitation with ring width data, and the derived reconstruction was verified with independent climatic data and historical evidence. A variance trend in the tree ring data, which may have resulted from nonclimatic factors, was removed. The reconstructed precipitation series indicates that (1) a drought which appears to have been more severe than any in the instrumental record occurred about 1860 and (2) severe and prolonged droughts comparable to twentieth century events have occurred at roughly 15- to 25-year intervals throughout the past 231 years. It follows that serious droughts in the south-central United States could be expected to recur even in the absence of projected CO2-induced warming.

  2. Element concentrations in growth rings of trees near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Yanosky, T.M.; Carmichael, J.K.

    1993-01-01

    Multielement analysis was performed on individual annual rings of trees growing at and near an abandoned wood-preserving plant site in Jackson, Tennessee, that operated from the early 1930's until 1981. Numerous organic compounds associated with the wood-preserving process have been detected in soils, ground water, and surface water within much of the site. Tree-ring investigations were conducted prior to investigations of ground water downgradient from the site to determine if trees preserved an areal and temporal record of contaminant movement into offsite areas. Increment cores were collected from trees on the abandoned plant site, in downgradient areas west and south of the site, and at two locations presumably unaffected by contamination from the site. Multielement analysis by proton-induced X-ray emission was performed on 5 to 15 individual growth rings from each of 34 trees that ranged in age from about 5 to 50 years. Concentrations of 16 elements were evaluated by analyzing average concentrations within the 1987, 1989, and 1990 rings of all trees; analyzing element-concentration trends along entire core radii; and analyzing element correlations between and among trees. Concentrations of some nutrients and trace metals were elevated in the outermost sapwood rings of some trees that grow south and southwest of the most contaminated part of the site; small trees on the main part of the site and larger trees to the west generally contained fewer rings with elevated concentrations, particularly of trace metals. Concentrations of several elements elevated in tree rings also were elevated in water samples collected from the reach of a stream that flows near the southwestern part of the site. Multielement analysis of each ring of a willow growing along the southern boundary of the site detected extremely large concentrations of chromium, nickel, and iron in rings that formed in 1986 and thereafter. Relative increases in the concentrations of these elements also

  3. Integrating inter- and intra-annual tree-ring width, carbon isotopes and anatomy: responses to climate variability in a temperate oak forest

    NASA Astrophysics Data System (ADS)

    Granda, Elena; Bazot, Stéphane; Fresneau, Chantal; Boura, Anaïs; Faccioni, Georgia; Damesin, Claire

    2015-04-01

    While many forests are experiencing strong tree declines due to climate change in temperate ecosystems, others nearby to those declining show no apparent signs of decline. This could be due to particular microsite conditions or, for instance, to a higher plasticity of given traits that allow a better performance under stressful conditions. We studied oak functional mechanisms (Quercus petraea) leading to the apparently healthy status of the forest and their relation to the observed climatic variability. This study was conducted in the Barbeau Forest (northern France), where cores from mature trees were collected. Three types of functional traits (secondary growth, physiological variables - δ13C and derived Δ13C and iWUE- and several anatomical ones -e.g. vessel area, density-) were recorded for each ring for the 1991-2011 period, distinguishing EW from LW in all measured traits. Among the three types of functional traits, those related to growth experienced the highest variability both between years and between individuals, followed by anatomical and physiological ones. Secondary growth maintained a constant trend during the study period. Instead, ring, EW and LW δ13C slightly declined from 1991 to 2011. Additional intra-ring δ13C analyses allowed for a more detailed understanding of the seasonal dynamics within each year. In particular, the year 2007 (an especially favorable climatic year during the growing season) showed the lowest δ13C values during the EW-LW transition for the whole study period. Inter-annual anatomical traits varied in their responses, but in general, no temporal trends were found. The results from structural equation modeling (SEM) showed direct relationships of seasonal climate and growth, as well as indirect relationships mediated by anatomical and physiological traits. We further discuss the implications of these results on future forest responses to ongoing climate changes.

  4. High-precision analysis on annual variations of heavy metals, lead isotopes and rare earth elements in mangrove tree rings by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, Ke-Fu; Kamber, Balz S.; Lawrence, Michael G.; Greig, Alan; Zhao, Jian-Xin

    2007-02-01

    Annual variations from 1982 to 1999 of a wide range of trace elements and reconnaissance Pb isotopes ( 207Pb/ 206Pb and 208Pb/ 206Pb) were analyzed by solution ICP-MS on digested ash from mangrove Rhizophora apiculata, obtained from Leizhou Peninsula, along northern coast of South China Sea. The concentrations of the majority of elements show a weak declining trend with growth from 1982 to 1999, punctuated by several high concentration spikes. The declining trends are positively correlated with ring width and negatively correlated with inferred water-use efficiency, suggesting a physiological control over metal-uptake in this species. The episodic metal concentration-peaks cannot be interpreted with lateral movement or growth activities and appear to be related to environmental pollution events. Pb isotope ratios for most samples plot along the 'Chinese Pb line' and clearly document the importance of gasoline Pb as a source of contaminant. Shale-normalised REE + Y patterns are relatively flat and consistent across the growth period, with all patterns showing a positive Ce anomaly and elevated Y/Ho ratio. The positive Ce anomaly is observed regardless of the choice of normaliser, in contrast to previously reported REE patterns for terrestrial and marine plants. This pilot study of trace element, REE + Y and Pb isotope distribution in mangrove tree rings indicates the potential use of mangroves as monitors of historical environmental change.

  5. Chaparral growth-ring analysis as an indicator of stand biomass development

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; John F. O' Leary; Christina Tague; Philip J. Riggan

    2016-01-01

    Chaparral wildfires typically create even-aged stands of vegetation that grow quickly in the first 2 decades following a fire. Patterns of this growth are important for understanding ecosystem productivity and re-establishment success, but are logistically challenging to measure over long time periods. We tested the utility of a novel method of using shrub growth rings...

  6. Tree demography dominates long-term growth trends inferred from tree rings.

    PubMed

    Brienen, Roel J W; Gloor, Manuel; Ziv, Guy

    2017-02-01

    Understanding responses of forests to increasing CO2 and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, van der Sleen et al. (2014) Nature Geoscience, 8, 4 used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use efficiency, no growth stimulation is observed. This challenges the idea that increasing CO2 would stimulate growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While their study evaluated several biases, it does not account for all. In particular, one bias may have seriously affected their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as 'fast-growing' trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend to have earlier calendar dates. We assessed the effect of this 'nonuniform age bias' on observed growth trends and find that van der Sleen's conclusions of a lack of growth stimulation do not hold. Growth trends are - at least partially - driven by underlying recruitment or age distributions. Species with more clustered age distributions show more negative growth trends, and simulations to estimate the effect of species' age distributions show growth trends close to those observed. Re-evaluation of the growth data and correction for the bias result in significant positive growth trends of 1-2% per decade for the full period, and 3-7% since 1950. These observations, however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes are not carefully accounted for. © 2016 The Authors. Global Change

  7. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO(2) assimilation and growth in Douglas-fir.

    PubMed

    Saffell, Brandy J; Meinzer, Frederick C; Voelker, Steven L; Shaw, David C; Brooks, J Renée; Lachenbruch, Barbara; McKay, Jennifer

    2014-07-01

    Swiss needle cast (SNC) is a fungal disease of Douglas-fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree-rings of Douglas-fir and a non-susceptible reference species (western hemlock, Tsuga heterophylla) to evaluate their use as proxies for variation in past SNC infection, particularly in relation to potential explanatory climate factors. We sampled trees from an Oregon site where a fungicide trial took place from 1996 to 2000, which enabled the comparison of stable isotope values between trees with and without disease. Carbon stable isotope discrimination (Δ(13)C) of treated Douglas-fir tree-rings was greater than that of untreated Douglas-fir tree-rings during the fungicide treatment period. Both annual growth and tree-ring Δ(13)C increased with treatment such that treated Douglas-fir had values similar to co-occurring western hemlock during the treatment period. There was no difference in the tree-ring oxygen stable isotope ratio between treated and untreated Douglas-fir. Tree-ring Δ(13)C of diseased Douglas-fir was negatively correlated with relative humidity during the two previous summers, consistent with increased leaf colonization by SNC under high humidity conditions that leads to greater disease severity in following years.

  8. Double hexagonal graphene ring synthesized using a growth-etching method

    NASA Astrophysics Data System (ADS)

    Liu, Jinyang; Xu, Yangyang; Cai, Hongbing; Zuo, Chuandong; Huang, Zhigao; Lin, Limei; Guo, Xiaomin; Chen, Zhendong; Lai, Fachun

    2016-07-01

    Precisely controlling the layer number, stacking order, edge configuration, shape and structure of graphene is extremely challenging but highly desirable in scientific research. In this report, a new concept named the growth-etching method has been explored to synthesize a graphene ring using the chemical vapor deposition process. The graphene ring is a hexagonal structure, which contains a hexagonal exterior edge and a hexagonal hole in the centre region. The most important concept introduced here is that the oxide nanoparticle derived from annealing is found to play a dual role. Firstly, it acts as a nucleation site to grow the hexagonal graphene domain and then it works as a defect for etching to form a hole. The evolution process of the graphene ring with the etching time was carefully studied. In addition, a double hexagonal graphene ring was successfully synthesized for the first time by repeating the growth-etching process, which not only confirms the validity and repeatability of the method developed here but may also be further extended to grow unique graphene nanostructures with three, four, or even tens of graphene rings. Finally, a schematic model was drawn to illustrate how the double hexagonal graphene ring is generated and propagated. The results shown here may provide valuable guidance for the design and growth of unique nanostructures of graphene and other two-dimensional materials.

  9. Graphene Layer Growth Chemistry: Five-Six-Ring Flip Reaction

    SciTech Connect

    Whitesides, Russell; Domin, Dominik; Lester Jr., William A.; Frenklach, Michael

    2007-03-24

    A theoretical study revealed a new reaction pathway, in which a fused five and six-membered ring complex on the zigzag edge of a graphene layer isomerizes to reverse its orientation, or 'flips,' after activation by a gaseous hydrogen atom. The process is initiated by hydrogen addition to or abstraction from the surface complex. The elementary steps of the migration pathway were analyzed using density-functional theory (DFT) calculations to examine the region of the potential energy surface associated with the pathway. The DFT calculations were performed on substrates modeled by the zigzag edges of tetracene and pentacene. Rate constants for the flip reaction were obtained by the solution of energy master equation utilizing the DFT energies, frequencies, and geometries. The results indicate that this reaction pathway is competitive with other pathways important to the edge evolution of aromatic species in high temperature environments.

  10. Soil Warming and Fertilization Effects on Growth Ring Widths of Arctic Shrubs - Application of a Novel Dendroecological Approach.

    NASA Astrophysics Data System (ADS)

    Iturrate Garcia, M.; Heijmans, M.; Schweingruber, F. H.; Niklaus, P. A.; Schaepman-Strub, G.

    2015-12-01

    Climate warming is suggested as the main driver of shrub expansion in arctic tundra regions. Shrub expansion may have consequences on biodiversity and climate, especially through its feedbacks with the energy budget. A better understanding of shrub expansion mechanisms, including growth rate patterns and stem anatomy changes, and their sensitivity to climate is needed in order to quantify related feedbacks. We present a novel dendroecological approach to determine the response of three arctic shrub species to increased soil temperature and nutrients. A full factorial block-design experiment was run for four years with a total of thirty plots. Six individuals of each species were sampled from each plot to test for treatment effects on growth rate and stem anatomy. We compared the ring width of the four years of experiment with the one of the four previous years. The preliminary results for Betula nana and Salix pulchra suggest a significant effect of the treatments on the growth ring width. The response is stronger in Salix pulchra than in Betula nana individuals. And, while Salix pulchra is more sensitive to the combined soil warming and fertilization treatment, Betula nana is to the fertilization treatment. We could not observe an effect of treatment on the stem anatomy, likely because bark thickness co-varies with age. We found significant positive correlations of cork, cortex and phloem thickness with xylem thickness (used as a proxy of age), and a significant difference in stem anatomy between species. The results suggest species-specific growth sensitivity to soil warming and nutrient enhancement. The use of experimental dendroecology by manipulating environmental conditions according to future climate scenarios and testing effects on shrub anatomy and annual growth will increase our understanding on shrub expansion mechanisms. Ongoing plant trait analysis and consecutive application in a 3D radiative transfer model will allow to quantify the feedback of

  11. Catch-up growth and growth deficits: Nine-year annual panel child growth for native Amazonians in Bolivia

    PubMed Central

    Zhang, Rebecca; Undurraga, Eduardo A.; Zeng, Wu; Reyes-García, Victoria; Tanner, Susan; Leonard, William R.; Behrman, Jere R.; Godoy, Ricardo A.

    2017-01-01

    Background Childhood growth stunting is negatively associated with cognitive and health outcomes, claimed to be irreversible after age 2. Aim To estimate growth rates for children 2 ≤ age ≤ 7 who were stunted (sex-age standardized z-score [HAZ] <−2), marginally-stunted (−2≤ HAZ ≤ −1), or not-stunted (HAZ >−1) at baseline and tracked annually until age 11; frequency of movement among height categories; and variation in height predicted by early childhood height. Participants/methods We used a nine-year annual panel (2002–2010) from a native Amazonian society of horticulturalists-foragers (Tsimane’; n=174 girls; 179 boys at baseline) is used. We used descriptive statistics and random-effect regressions. Results We found some evidence of catch-up growth in HAZ but persistent height deficits. Children stunted at baseline improved 1 HAZ unit by age 11, and had higher annual growth rates than non-stunted children. Marginally-stunted boys had a 0.1 HAZ units higher annual growth rate than non-stunted boys. Despite some catch up, ~80% of marginally-stunted children at baseline remained marginally-stunted by age 11. The height deficit increased from age 2 to11. We found modest year-to-year movement between height categories. Conclusions The prevalence of growth faltering among the Tsimane’ has declined, but hurdles still substantially lock children into height categories. PMID:27251215

  12. Detecting long-term growth trends using tree rings: a critical evaluation of methods.

    PubMed

    Peters, Richard L; Groenendijk, Peter; Vlam, Mart; Zuidema, Pieter A

    2015-05-01

    Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability

  13. Growth ring analysis of fossil coniferous woods from early cretaceous of Araripe Basin.

    PubMed

    Pires, Etiene F; Guerra-Sommer, Margot

    2011-06-01

    Growth ring analysis on silicified coniferous woods from the Missão Velha Formation (Araripe Basin - Brazil) has yielded important information about periodicity of wood production during the Early Cretaceous in the equatorial belt. Despite warm temperatures, dendrological data indicate that the climate was characterized by cyclical alternation of dry and rainy periods influenced by cyclical precipitations, typical of tropical wet and dry or savanna climate. The abundance of false growth rings can be attributed to both occasional droughts and arthropod damage. The present climate data agree with palaeoclimatic models that inferred summer-wet biomes for the Late Jurassic/Early Cretaceous boundary in the southern equatorial belt.

  14. The AFIS tree growth model for updating annual forest inventories in Minnesota

    Treesearch

    Margaret R. Holdaway

    2000-01-01

    As the Forest Service moves towards annual inventories, states may use model predictions of growth to update unmeasured plots. A tree growth model (AFIS) based on the scaled Weibull function and using the average-adjusted model form is presented. Annual diameter growth for four species was modeled using undisturbed plots from Minnesota's Aspen-Birch and Northern...

  15. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia.

    PubMed

    Büntgen, Ulf; Frank, David C; Kaczka, Ryszard J; Verstege, Anne; Zwijacz-Kozica, Tomasz; Esper, Jan

    2007-05-01

    We analyzed growth responses to climate of 24 tree-ring width and four maximum latewood density chronologies from the greater Tatra region in Poland and Slovakia. This network comprises 1183 ring-width and 153 density measurement series from four conifer species (Picea abies (L.) Karst., Larix decidua Mill., Abies alba (L.) Karst., and Pinus mugo (L.)) between 800 and 1550 m a.s.l. Individual spline detrending was used to retain annual to multi-decadal scale climate information in the data. Twentieth century temperature and precipitation data from 16 grid-boxes covering the 48-50 degrees N and 19-21 degrees E region were used for comparison. The network was analyzed to assess growth responses to climate as a function of species, elevation, parameter, frequency and site ecology. Twenty ring-width chronologies significantly correlated (P<0.05) with June-July temperatures, whereas the latewood density chronologies were correlated with the April-September temperatures. Climatic effects of the previous-year summer generally did not significantly influence ring formation, whereas site elevation and frequency of growth variations (i.e., inter-annual and decadal) were significant variables in explaining growth response to climate. Response to precipitation increased with decreasing elevation. Correlations between summer temperatures and annual growth rates were lower for Larix decidua than for Picea abies. Principal component analysis identified five dominant eigenvectors that express somewhat contrasting climatic signals. The first principal component contained highest loadings from 11 Picea abies ring-width chronologies and one Pinus mugo ring-width chronology and explained 42% of the network's variance. The mean of these 12 high-elevation chronologies was significantly correlated at 0.62 with June-July temperatures, whereas the mean of three latewood density chronologies, which loaded most strongly on the fourth principal component, significantly correlated at 0.69 with

  16. Age determination and growth rate of Mactra chinensis (Bivalvia: Mactridae) by external rings and chondrophore growth bands

    NASA Astrophysics Data System (ADS)

    Kim, Jung Yeon; Na, Jong Hun; Oh, Chul-Woong

    2016-12-01

    Age, growth and mortality of Mactra chinensis were investigated during the period from October 2012 to September 2013 in Busan, South Korea. The monthly variation of the marginal index (MI) of the shell and chondrophore showed that the ring of this species was formed once a year during July. We estimated the age of M. chinensis by reading the external rings on the shell and the growth bands of the chondrophore to compare growth parameters between the two growth characters. The age of this species ranged from 0 to 8 years (shell-based age reading) and from 0 to 10 years (chondrophore-based age reading). Based on external rings and growth bands of chondrophore for the same period, the von Bertalanffy growth functions were expressed by the equation, L t = 101.53[1-exp {-0.15( t + 0.75)}] and L t = 90.03[1-exp {-0.20( t + 0.50)}], respectively. The likelihood test showed that there was a significant difference in L ∞ ( P < 0.001), K ( P < 0.001), to ( P < 0.001) estimated from non-linear regression between the two growth characters.

  17. Stand structure and composition provide differential tree-ring growth signals in eastern U.S. forests

    NASA Astrophysics Data System (ADS)

    Alexander, M. R.; Rollinson, C.; Dye, A.; Pederson, N.; Moore, D. J.; Trouet, V.

    2016-12-01

    The assumption that a single dominant climatic factor synchronizes regional forest growth response is the foundation of annually resolved climate reconstructions. However, growth-limiting factors affect individual trees and in complex forests, such as those in the eastern U.S., these limitations may not be uniform across the entire stand. Forest structure and composition can influence climate growth responses and result in multiple growth signals recorded in the tree rings that may not be isolated using conventional techniques. To address this issue, we collected tree cores from five eastern U.S. forest stands that are influenced by large-scale climate factors as well as small-scale ecological pressures, such as competition between individuals. We used generalized additive mixed models to form multivariate models of tree growth at the site-, species-, and canopy class-levels that account for the simultaneous influences that climate and size factors exert on growth through time. Species- and canopy position-specific models adhere more closely to observations (R2 = 0.73 and R2 = 0.71, respectively) than the site-level model (R2 = 0.60). Across all models, sensitivities to temperature and size are more dynamic through time than precipitation sensitivity. Size is the primary limiting factor as trees establish during the juvenile phase and temperature and precipitation limit growth as stands mature and individuals emerge into the canopy. We see that the species response to climate is relatively well conserved across all sites, but the dynamic nature of the size effect unique to each site alters the expressed limiting factor. We find that sub-canopy individuals show an opposite response to temperature than that the dominant and intermediate strata, likely due to the microclimate conditions created by a stratified canopy. Tree growth is thus limited by a combination of climatological and forest structural factors (i.e. canopy class) and growth limitations vary through

  18. Stochastic Generation of Drought Events using Reconstructed Annual Streamflow Time Series from Tree Ring Analysis

    NASA Astrophysics Data System (ADS)

    Lopes, A.; Dracup, J. A.

    2011-12-01

    The statistical analysis of multiyear drought events in streamflow records is often restricted by the size of samples since only a few number of droughts events can be extracted from common river flow time series data. An alternative to those conventional datasets is the use of paleo hydrologic data such as streamflow time series reconstructed from tree ring analysis. In this study, we analyze the statistical characteristics of drought events present in a 1439 year long time series of reconstructed annual streamflow records at the Feather river inflow to the Oreville reservoir, California. Also, probabilistic distributions were used to describe duration and severity of drought events and the results were compared with previous studies that used only the observed streamflow data. Finally, a stochastic simulation model was developed to synthetically generate sequences of drought and high-flow events with the same characteristics of the paleo hydrologic record. The long term mean flow was used as the single truncation level to define 248 drought events and 248 high flow events with specific duration and severity. The longest drought and high flow events had 13 years (1471 to 1483) and 9 years of duration (1903 to 1911), respectively. A strong relationship between event duration and severity in both drought and high flow events were found so the longest droughts also corresponded to the more severe ones. Therefore, the events were classified by duration (in years) and probability distributions were fitted to the frequency distribution of drought and high flow severity for each duration. As a result, it was found that the gamma distribution describes well the frequency distribution of drought severities for all durations. For high flow events, the exponential distribution is more adequate for one year events while the gamma distribution is better suited for the longer events. Those distributions can be used to estimate the recurrence time of drought events according to

  19. Propagation of vortex rings and starting plumes in high and low g. [during crystal growth

    NASA Technical Reports Server (NTRS)

    Hallett, J.

    1988-01-01

    The propagation of vortex rings and starting plumes during crystal growth in supercooled solutions was investigated in variable gravity environment created by acceleration-deceleration routine of a NASA's KC-135 flight. A specially designed crystal growth cell was used to study convection around crystals growing in supersaturated solutions of Na2SO4 and NaCl aboard the NASA KC-135. The results of vertical velocity measurements have shown that a continuously fed plume attains a higher velocity than the individual vortex ring. The results also indicated that the vortex ring decelerates as it propagates, and slows down much more rapidly than the starting plume, indicating a less efficient transport. It is suggested that inertial effects and buoyancy effects on vortex and plume propagation can be separated in the controlled environment of a Space Station borne centrifuge.

  20. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape.

    PubMed

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D; Tardif, Jacques C; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems.

  1. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape

    PubMed Central

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D.; Tardif, Jacques C.; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems. PMID:26528316

  2. The influence of sampling design on tree-ring-based quantification of forest growth.

    PubMed

    Nehrbass-Ahles, Christoph; Babst, Flurin; Klesse, Stefan; Nötzli, Magdalena; Bouriaud, Olivier; Neukom, Raphael; Dobbertin, Matthias; Frank, David

    2014-09-01

    Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in

  3. National health expenditure projections: modest annual growth until coverage expands and economic growth accelerates.

    PubMed

    Keehan, Sean P; Cuckler, Gigi A; Sisko, Andrea M; Madison, Andrew J; Smith, Sheila D; Lizonitz, Joseph M; Poisal, John A; Wolfe, Christian J

    2012-07-01

    For 2011-13, US health spending is projected to grow at 4.0 percent, on average--slightly above the historically low growth rate of 3.8 percent in 2009. Preliminary data suggest that growth in consumers' use of health services remained slow in 2011, and this pattern is expected to continue this year and next. In 2014, health spending growth is expected to accelerate to 7.4 percent as the major coverage expansions from the Affordable Care Act begin. For 2011 through 2021, national health spending is projected to grow at an average rate of 5.7 percent annually, which would be 0.9 percentage point faster than the expected annual increase in the gross domestic product during this period. By 2021, federal, state, and local government health care spending is projected to be nearly 50 percent of national health expenditures, up from 46 percent in 2011, with federal spending accounting for about two-thirds of the total government share. Rising government spending on health care is expected to be driven by faster growth in Medicare enrollment, expanded Medicaid coverage, and the introduction of premium and cost-sharing subsidies for health insurance exchange plans.

  4. Missing Rings, Synchronous Growth, and Ecological Disturbance in a 36-Year Pitch Pine (Pinus rigida) Provenance Study

    Treesearch

    Caroline Leland; John Hom; Nicholas Skowronski; F. Thomas Ledig; Paul J. Krusic; Edward R. Cook; Dario Martin-Benito; Javier Martin-Fernandez; Neil Pederson; Dusan Gomory

    2016-01-01

    Provenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of...

  5. Validating Annual Growth Bands of Deep Sea Corals from the Gulf of Mexico and Southeastern United States

    NASA Astrophysics Data System (ADS)

    Mohon, L. M.; Roark, E.; Guillemette, R. N.; Prouty, N.; Ross, S.

    2012-12-01

    The deep-water black corals, Leiopathes sp., have the potential to be used as an archive of historical oceanographic and biochemical changes. Deep-sea corals can extend our observations of ocean dynamics and climate well beyond the onset of instrumental records. In this study we investigate different methods of determining the growth rates and age distributions of deep-water black corals (Leiopathes sp.) in the Gulf of Mexico and the southeastern Unites States. Leiopathes sp. grow in a tree-like fashion by depositing growth rings resulting in decadally resolved and perhaps annually resolved paleoceanographic records. We use radiocarbon measurements to validate annual growth bands and annual variations in iodine concentrations. Radiocarbon results from five specimens show that these animals have been growing continuously for at least the last two millennia, with growth rates ranging from 8 to 22 μm yr-1. Results from scanning electron microscope (SEM) work to image growth rings (90x and 900x) in back-scattered electrons (BSE) mode and measure iodine by wavelength dispersive spectrometer (WDS). Ages were determined by the counting of growth bands by independent observes and counting of peaks of iodine and BSE measured with 1 μm spots shoulder to shoulder across the radius of the specimen. Peaks in iodine concentration associated with the glueing regions of the growth bands are also in excellent agreement with the radiocarbon results suggesting annual ring formation. For example in one specimen from the Gulf of Mexico (GOM-JSL04-4734-BC1), the 14C derived age (670 ± 40 yrs.) was in excellent agreement with the iodine derived age of (666 ± 65 yrs.), while the BSE counts (626 ± 60 yrs.) and the visual ring counts (783 ±78 yrs.) were only in good agreement. These results indicate that at a minimum, the iodine derived ages can be used as an independent chronology. Iodine derived ages were used to determine the atmospheric 14C age which was subtracted from the

  6. Alpha-cellulose δ13C variation in mangrove tree rings correlates well with annual sea level trend between 1982 and 1999

    NASA Astrophysics Data System (ADS)

    Yu, Ke-Fu; Zhao, Jian-Xin; Liu, Tung-Sheng; Wang, Pin-Xian; Qian, Jun-Long; Chen, Te-Gu

    2004-06-01

    A pilot study of tree rings in a modern mangrove tree (Rhizophora apiculata) from Leizhou Peninsula, northern South China Sea shows that (1) the tree-rings are annual; (2) the ring widths decrease; and (3) their alpha-cellulose δ13C values increase from 1982 to 1999 AD, consistent with the trends of annual sea level, salinity and sea surface temperatures in the same period. We propose that such changes were caused by increasingly longer duration of waterlogging in response to sea-level rise. If this is the case, alpha-cellulose δ13C in mangrove tree rings can be used as a potential indicator of past sea level fluctuations.

  7. Fine-scale spatiotemporal influences of salmon on growth and nitrogen signatures of Sitka spruce tree rings

    PubMed Central

    2013-01-01

    Background The marine-terrestrial transfer of salmon (Oncorhynchus spp.) provides a substantial pulse of nutrients to receiving ecosystems along the Pacific coast of North America and has been shown to enhance productivity and isotopic signatures of conifers and other riparian vegetation. An explicitly spatial, within-watershed investigation of the influence of salmon on conifers has never been previously investigated. In a small salmon-bearing watershed in Haida Gwaii, Canada, the transfer and distributional pattern of salmon carcasses into the riparian zone by black bears provided a spatial basis for investigating the influence of salmon on Sitka spruce tree ring growth and nitrogen isotopic signatures (δ15N) across a gradient of salmon carcass densities in relation to salmon escapement. Results Annual growth was found to be highest in the high salmon carcass zone and δ15N signatures closely tracked the known distribution of salmon carcasses at distances into the forest and upstream. Tree diameter demonstrated a positive relationship with δ15N signatures for trees with and without salmon carcass influence. Using an information theoretics approach with general linear mixed models (GLMMs), we show that salmon abundance, mean annual temperature and the interaction terms salmon abundance*temperature and salmon abundance*distance into the forest best predict tree growth. In addition, spatial variables (distance into forest and upstream) and their interaction are the strongest predictors of δ15N signatures. However patterns observed in individual trees, particularly those at increased distance into the forest, suggest positive relationships with historical salmon abundance. Conclusions Using a replicated spatial sampling design across a sharp gradient in salmon nutrient loading, our study provides clear evidence that the temporal pattern in an allochthonous nutrient source and an interaction with temperature and spatial location influences conifer growth. Although

  8. Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest.

    PubMed

    Ohashi, Shinta; Durgante, Flávia M; Kagawa, Akira; Kajimoto, Takuya; Trumbore, Susan E; Xu, Xiaomei; Ishizuka, Moriyoshi; Higuchi, Niro

    2016-03-01

    In Amazonian non-flooded forests with a moderate dry season, many trees do not form anatomically definite annual rings. Alternative indicators of annual rings, such as the oxygen (δ(18)Owc) and carbon stable isotope ratios of wood cellulose (δ(13)Cwc), have been proposed; however, their applicability in Amazonian forests remains unclear. We examined seasonal variations in the δ(18)Owc and δ(13)Cwc of three common species (Eschweilera coriacea, Iryanthera coriacea, and Protium hebetatum) in Manaus, Brazil (Central Amazon). E. coriacea was also sampled in two other regions to determine the synchronicity of the isotopic signals among different regions. The annual cyclicity of δ(18)Owc variation was cross-checked by (14)C dating. The δ(18)Owc showed distinct seasonal variations that matched the amplitude observed in the δ(18)O of precipitation, whereas seasonal δ(13)Cwc variations were less distinct in most cases. The δ(18)Owc variation patterns were similar within and between some individual trees in Manaus. However, the δ(18)Owc patterns of E. coriacea differed by region. The ages of some samples estimated from the δ(18)Owc cycles were offset from the ages estimated by (14)C dating. In the case of E. coriacea, this phenomenon suggested that missing or wedging rings may occur frequently even in well-grown individuals. Successful cross-dating may be facilitated by establishing δ(18)Owc master chronologies at both seasonal and inter-annual scales for tree species with distinct annual rings in each region.

  9. A possible paleoclimatic ENSO indicator in the spatial variation of annual tree-ring [sup 14]C

    SciTech Connect

    Jirikowic, J.L. ); Kalin, R.M. )

    1993-03-19

    Preliminary investigations show regional differences in atmospheric [sup 14]C activity archived in tree-ring cellulose may reflect oceanic and atmospheric shifts associated with ENSO (El Nino-Southern Oscillation) events. Much of the shared variation between sites in Washington and Arizona can be attributed to global forcings such as anthropogenic [sup 14]C-depleted CO[sub 2] emissions and modulation of [sup 14]C production. The contrasted residual variation between the Washington and Arizona data sets correlates with the annual Southern Oscillation Index (SOI) of the previous year. The spatial differences between [Delta][sup 14]C data sets may provide a proxy indicator of ENSO phenomenon. 16 refs., 2 figs., 1 tab.

  10. Hydrometeorology organizes intra-annual patterns of tree growth across time, space and species in a montane watershed.

    PubMed

    Martin, Justin; Looker, Nathaniel; Hoylman, Zachary; Jencso, Kelsey; Hu, Jia

    2017-09-01

    Tree radial growth is often systematically limited by water availability, as is evident in tree ring records. However, the physiological nature of observed tree growth limitation is often uncertain outside of the laboratory. To further explore the physiology of water limitation, we observed intra-annual growth rates of four conifer species using point dendrometers and microcores, and coupled these data to observations of water potential, soil moisture, and vapor pressure deficit over 2 yr in the Northern Rocky Mountains, USA. The onset of growth limitation in four species was well explained by a critical balance between soil moisture supply and atmospheric demand representing relatively mesic conditions, despite the timing of this threshold response varying by up to 2 months across topographic and elevation gradients, growing locations, and study years. Our findings suggest that critical water deficits impeding tissue growth occurred at relatively high water potential values, often occurring when hydrometeorological conditions were relatively wet during the growing season (e.g. in early spring in some cases). This suggests that species-specific differences in water use strategies may not necessarily affect tree growth, and that tissue growth may be more directly linked to environmental moisture conditions than might otherwise be expected. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau.

    PubMed

    Yang, Bao; Qin, Chun; Wang, Jianglin; He, Minhui; Melvin, Thomas M; Osborn, Timothy J; Briffa, Keith R

    2014-02-25

    An annually resolved and absolutely dated ring-width chronology spanning 4,500 y has been constructed using subfossil, archaeological, and living-tree juniper samples from the northeastern Tibetan Plateau. The chronology represents changing mean annual precipitation and is most reliable after 1500 B.C. Reconstructed precipitation for this period displays a trend toward more moist conditions: the last 10-, 25-, and 50-y periods all appear to be the wettest in at least three and a half millennia. Notable historical dry periods occurred in the 4th century BCE and in the second half of the 15th century CE. The driest individual year reconstructed (since 1500 B.C.) is 1048 B.C., whereas the wettest is 2010. Precipitation variability in this region appears not to be associated with inferred changes in Asian monsoon intensity during recent millennia. The chronology displays a statistical association with the multidecadal and longer-term variability of reconstructed mean Northern Hemisphere temperatures over the last two millennia. This suggests that any further large-scale warming might be associated with even greater moisture supply in this region.

  12. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau

    PubMed Central

    Yang, Bao; Qin, Chun; Wang, Jianglin; He, Minhui; Melvin, Thomas M.; Osborn, Timothy J.; Briffa, Keith R.

    2014-01-01

    An annually resolved and absolutely dated ring-width chronology spanning 4,500 y has been constructed using subfossil, archaeological, and living-tree juniper samples from the northeastern Tibetan Plateau. The chronology represents changing mean annual precipitation and is most reliable after 1500 B.C. Reconstructed precipitation for this period displays a trend toward more moist conditions: the last 10-, 25-, and 50-y periods all appear to be the wettest in at least three and a half millennia. Notable historical dry periods occurred in the 4th century BCE and in the second half of the 15th century CE. The driest individual year reconstructed (since 1500 B.C.) is 1048 B.C., whereas the wettest is 2010. Precipitation variability in this region appears not to be associated with inferred changes in Asian monsoon intensity during recent millennia. The chronology displays a statistical association with the multidecadal and longer-term variability of reconstructed mean Northern Hemisphere temperatures over the last two millennia. This suggests that any further large-scale warming might be associated with even greater moisture supply in this region. PMID:24516152

  13. Individualistic and Time-Varying Tree-Ring Growth to Climate Sensitivity

    PubMed Central

    Carrer, Marco

    2011-01-01

    The development of dendrochronological time series in order to analyze climate-growth relationships usually involves first a rigorous selection of trees and then the computation of the mean tree-growth measurement series. This study suggests a change in the perspective, passing from an analysis of climate-growth relationships that typically focuses on the mean response of a species to investigating the whole range of individual responses among sample trees. Results highlight that this new approach, tested on a larch and stone pine tree-ring dataset, outperforms, in terms of information obtained, the classical one, with significant improvements regarding the strength, distribution and time-variability of the individual tree-ring growth response to climate. Moreover, a significant change over time of the tree sensitivity to climatic variability has been detected. Accordingly, the best-responder trees at any one time may not always have been the best-responders and may not continue to be so. With minor adjustments to current dendroecological protocol and adopting an individualistic approach, we can improve the quality and reliability of the ecological inferences derived from the climate-growth relationships. PMID:21829523

  14. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers' climate on ring width.

    PubMed

    Hacket-Pain, Andrew J; Friend, Andrew D; Lageard, Jonathan G A; Thomas, Peter A

    2015-03-01

    Tree growth is frequently linked to weather conditions prior to the growing season but our understanding of these lagged climate signatures is still poorly developed. We investigated the influence of masting behaviour on the relationship between growth and climate in European Beech (Fagus sylvatica L.) using a rare long-term dataset of seed production and a new regional tree ring chronology. Fagus sylvatica is a masting species with synchronous variations in seed production which are strongly linked to the temperature in the previous two summers. We noted that the weather conditions associated with years of heavy seed production (mast years) were the same as commonly reported correlations between growth and climate for this species. We tested the hypothesis that a trade-off between growth and reproduction in mast years could be responsible for the observed lagged correlations between growth and previous summers' temperatures. We developed statistical models of growth based on monthly climate variables, and show that summer drought (negative correlation), temperature of the previous summer (negative) and temperature of the summer 2 years previous (positive) are significant predictors of growth. Replacing previous summers' temperature in the model with annual seed production resulted in a model with the same predictive power, explaining the same variance in growth. Masting is a common behaviour in many tree species and these findings therefore have important implications for the interpretation of general climate-growth relationships. Lagged correlations can be the result of processes occurring in the year of growth (that are determined by conditions in previous years), obviating or reducing the need for 'carry-over' processes such as carbohydrate depletion to be invoked to explain this climate signature in tree rings. Masting occurs in many tree species and these findings therefore have important implications for the interpretation of general climate-growth

  15. Pinus halepensis tree-ring widths at the periphery of the eastern Mediterranean forest growth as a possible proxy for recontruction of vegetation greeness.

    NASA Astrophysics Data System (ADS)

    Ababneh, L. N.

    2015-12-01

    The IPCC report (2014) signifies the importance of understanding the dynamic and elastic relationship between global climate change and forest growth as ramifications are still uncertain despite increased experimental efforts (IPCC 2014, Frank et al.,2015). Further, understanding and modeling this relationship is over emphasized in arid to semi-arid areas such as the Middle East where limited natural resources have proven record of correlation with conflict (e.g.Kelley et al., 2015). This work reports on the response of a forest stand of Pinus halepensis (Aleppo pine) from north Jordan to variability in precipitation using instrumental and satellite derived data. The site is located in north Jordan on the transitional zones from forest to steppe of the eastern Mediterranean as classified by the European Forest Genetic Resources Programme (EUFORGEN, 2015). The aim is to model the relationship between annual earlywood, latewood and tree-ring width indices with instrumental data, reanalysis data and Normalized Difference Vegetation Index (NDVI) in the period from 1976-2012 for a possible use of tree-ring widths as vegetation greenness proxy. The highest significant correlation (p< 0.005, α =0.05) is between current year's growth and prior spring precipitation (instrumental and reanalysis) and NDVI. Reanalysis data correlates significantly (p<0.005, α =0.05, r: 0.85) with instrumental data (1976-2012) but is limited by the records' length. There is definitely a proven correlation between seasonal tree-ring widths and vegetation index that offers the potential for reconstruction of vegetation index if applied at the regional level and could be extrapolated to desert areas that lacks proxy data with annually resolved resolution such as tree-rings.

  16. Laser ablation-combustion-GC-IRMS--a new method for online analysis of intra-annual variation of delta13C in tree rings.

    PubMed

    Schulze, Brigit; Wirth, Christian; Linke, Petra; Brand, Willi A; Kuhlmann, Iris; Horna, Viviana; Schulze, Ernst-Detlef

    2004-11-01

    We present a new, rapid method for high-resolution online determination of delta13C in tree rings, combining laser ablation (LA), combustion (C), gas chromatography (GC) and isotope ratio mass spectrometry (IRMS) (LA-C-GC-IRMS). Sample material was extracted every 6 min with a UV-laser from a tree core, leaving 40-microm-wide holes. Ablated wood dust was combusted to CO2 at 700 degrees C, separated from other gases on a GC column and injected into an isotope ratio mass spectrometer after removal of water vapor. The measurements were calibrated against an internal and an external standard. The tree core remained intact and could be used for subsequent dendrochronological and dendrochemical analyses. Cores from two Scots pine trees (Pinus sylvestris spp. sibirica Lebed.) from central Siberia were sampled. Inter- and intra-annual patterns of delta13C in whole-wood and lignin-extracted cores were indistinguishable apart from a constant offset, suggesting that lignin extraction is unnecessary for our method. Comparison with the conventional method (microtome slicing, elemental analysis and IRMS) indicated high accuracy of the LA-C-GC-IRMS measurements. Patterns of delta13C along three parallel ablation lines on the same core showed high congruence. A conservative estimate of the precision was +/- 0.24 per thousand. Isotopic patterns of the two Scots pine trees were broadly similar, indicating a signal related to the forest stand's climate history. The maximum variation in delta13C over 22 years was about 5 per thousand, ranging from -27 to -22.3 per thousand. The most obvious pattern was a sharp decline in delta13C during latewood formation and a rapid increase with spring early growth. We conclude that the LA-C-GC-IRMS method will be useful in elucidating short-term climate effects on the delta13C signal in tree rings.

  17. Radiocarbon in annual coral rings from the eastern tropical Pacific ocean

    SciTech Connect

    Druffel, E.M.

    1981-01-01

    Sixty radiocarbon measurements were performed on aragonite from annually banded corals collected from three sites in the Galapagos Islands. Preanthropogenic ..delta../sup 14/C values of coral that grew around A.D. 1930 averaged -70%/sub 0/. This is substantially lower than average values previously reported (-51%/sub 0/) for corals from Florida and Belize in the western North Atlantic Ocean. A decrease of 6% was noticed in coral that grew from 1930 to 1954. This decrease could be interpreted as a Suess effect in surface ocean water. The 100%/sub 0/ increase in ..delta../sup 14/C for coral that grew from 1954 to 1973 is the result of bomb-produced /sup 14/C that was introduced to the surface ocean waters. The /sup 14/C levels in corals that grew during El Nino years were considerably higher than those for normal years. These higher values are attributed to the absence of upwelling at the equator during El Nino events.

  18. Ozone air pollution effects on tree-ring growth, delta(13)C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species.

    PubMed

    Novak, Kristopher; Cherubini, Paolo; Saurer, Matthias; Fuhrer, Jürg; Skelly, John M; Kräuchi, Norbert; Schaub, Marcus

    2007-07-01

    We assessed the effects of ambient tropospheric ozone on annual tree-ring growth, delta(13)C in the rings, leaf gas exchange and visible injury in three ozone-sensitive woody plant species in southern Switzerland. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air (CF) and non-filtered air (NF) in open-top chambers, and to ambient air (AA) in open plots during the 2001 and 2002 growing seasons. Ambient ozone exposures in the region were sufficient to cause visible foliar injury, early leaf senescence and premature leaf loss in all species. Ozone had significant negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular CO(2) concentrations increased in all species in response to ozone in 2002 only. The width and delta(13)C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Compared with CF seedlings, mean ring width in the AA and NF P. nigra seedlings was reduced by 52 and 46%, respectively, in 2002, whereas in V. lantana and F. excelsior, ring width showed no significant reductions in either year. Although delta(13)C was usually more negative in CF seedlings than in AA and NF seedlings, with the exception of F. excelsior in 2001, ozone effects on delta(13)C were significant only for V. lantana and P. nigra in 2001. Among species, P. nigra exhibited the greatest response to ozone for the measured parameters as well as the most severe foliar injury and was the only species to show a significant reduction in ring width in response to ozone exposure, despite significant negative ozone effects on leaf gas exchange and the development of visible foliar injury in V. lantana and F. excelsior. Thus, significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased delta(13)C in all species

  19. Age trends in tree ring growth and isotopic archives: A case study of Pinus sylvestris L. from northwestern Norway

    NASA Astrophysics Data System (ADS)

    Young, Giles H. F.; Demmler, Joanne C.; Gunnarson, BjöRn E.; Kirchhefer, Andreas J.; Loader, Neil J.; McCarroll, Danny

    2011-06-01

    Measurements of tree ring width and relative density have contributed significantly to many of the large-scale reconstructions of past climatic change, but to extract the climate signal it is first necessary to remove any nonclimatic age-related trends. This detrending can limit the lower-frequency climate information that may be extracted from the archive (the "segment length curse"). This paper uses a data set of ring widths, maximum latewood density and stable carbon and oxygen isotopes from 28 annually resolved series of known-age Pinus sylvestris L. trees in northwestern Norway to test whether stable isotopes in tree rings require an equivalent statistical detrending. Results indicate that stable oxygen and carbon isotope ratios from tree rings whose cambial age exceeds c.50 years exhibit no significant age trends and thus may be used to reconstruct environmental variability and physiological processes at this site without the potential loss of low-frequency information associated with detrending.

  20. Regime switch in karstic caves atmosphere; possible consequence on annual speleothem growth.

    NASA Astrophysics Data System (ADS)

    Bourges, F.; Genthon, P.; Mangin, A.; D'Hulst, D.

    2005-12-01

    Speleothem are usually considered as records of past climate, and are supposed to present annual growth rings. Yet, they grow inside caves that benefit from very stable environment. However, Bourges et al. 2001, have shown that the atmosphere of Aven d'Orgnac (South East France), was characterized by drop of CO2 concentration and 222Rn activity at the end of autumn and presented each year the succession of a winter and a summer regime. Temperature data are now used to constrain the climate of this cave system. Our data consist in 5 years monitoring with 0.01°C accuracy, three short thermal profiling campaigns, and sparser data gathered in different French painted caves. Near the opening of Aven d'Orgnac, the Salle de Jolys room records each year at the end of autumn the onset of the winter regime that is shown to be triggered by the inverse density stratification induced by the decrease of the outside night temperature. Comparison of summer and winter vertical temperature profiles point to a thermoconvective destabilization of this room atmosphere, involving the downward flow of cold outside bearing air near the cave floor during winter nights. The winter regime propagates then stepwise inside the Aven d'Orgnac cave system. In Salle Plane, which is situated more than one kilometer away from the entrance, the winter regime has never been observed. Our thermal profiling experiment shows there low amplitude (0.03°C) temperature changes, with major daily and half daily components, that are strongly correlated with the pressure first time derivative. Comparison with temperature records from other rooms of the Aven d'Orgnac cave system and with other caves monitored by our team suggest that a strong correlation between temperature changes and the pressure first time derivative could be considered as a clue to the confined character of a given cave room. We propose therefore that the Aven d'Orgnac cave system could be divided in two parts : the open system, where the

  1. Updating Indiana Annual Forest Inventory and Analysis Plot Data Using Eastern Broadleaf Forest Diameter Growth Models

    Treesearch

    Veronica C. Lessard

    2001-01-01

    The Forest Inventory and Analysis (FIA) program of the North Central Research Station (NCRS), USDA Forest Service, has developed nonlinear, individual-tree, distance-independent annual diameter growth models. The models are calibrated for species groups and formulated as the product of an average diameter growth component and a modifier component. The regional models...

  2. An annual plant growth proxy in the Mojave Desert using MODIS-EVI data

    USGS Publications Warehouse

    Wallace, C.S.A.; Thomas, K.A.

    2008-01-01

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R2 = 0.61 for 2005 and R 2 = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  3. An Annual Plant Growth Proxy in the Mojave Desert Using MODIS-EVI Data

    PubMed Central

    Wallace, Cynthia S.A.; Thomas, Kathryn A.

    2008-01-01

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R2 = 0.61 for 2005 and R2 = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert. PMID:27873958

  4. Growth Regulator Herbicides Prevent Invasive Annual Grass Seed Production

    USDA-ARS?s Scientific Manuscript database

    Auxinic herbicides, such as 2,4-D and dicamba, that act as plant growth regulators are commonly used for broadleaf weed control in cereal crops (e.g. wheat, barley), grasslands, and non-croplands. If applied at later growth stages, while cereals are developing reproductive parts, the herbicides can...

  5. Intra-annual growth and mortality of four Populus clones in pure and mixed plantings

    Treesearch

    Warren D. Devine; Constance A. Harrington; Dean S. DeBell

    2010-01-01

    Intra-annual growth rates were assessed during 3 years for four Populus clones grown in pure and mixed clonal stands at square spacings of 0.5, 1.0, and 1.5 m in western Washington, USA. Height growth rate peaked in August, except at the 0.5-m spacing where it peaked in July and June in years 2 and 3, respectively. Diameter growth rate generally...

  6. A general model of intra-annual tree growth using dendrometer bands

    PubMed Central

    McMahon, Sean M; Parker, Geoffrey G

    2015-01-01

    Tree growth is an important indicator of forest health, productivity, and demography. Knowing precisely how trees' grow within a year, instead of across years, can lead to a finer understanding of the mechanisms that drive these larger patterns. The growing use of dendrometer bands in research forests has only rarely been used to measure growth at resolutions finer than yearly, but intra-annual growth patterns can be observed from dendrometer bands using precision digital calipers and weekly measurements. Here we present a workflow to help forest ecologists fit growth models to intra-annual measurements using standard optimization functions provided by the R platform. We explain our protocol, test uncertainty in parameter estimates with respect to sample sizes, extend the optimization protocol to estimate robust lower and upper annual diameter bounds, and discuss potential challenges to optimal fits. We offer R code to implement this workflow. We found that starting values and initial optimization routines are critical to fitting the best functional forms. After using a bounded, broad search method, a more focused search algorithm obtained consistent results. To estimate starting and ending annual diameters, we combined the growth function with early and late estimates of beginning and ending growth. Once we fit the functions, we present extension algorithms that estimate periodic reductions in growth, total growth, and present a method of controlling for the shifting allocation to girth during the growth season. We demonstrate that with these extensions, an analysis of growth response to weather (e.g., the water available to a tree) can be derived in a way that is comparable across trees, years, and sites. Thus, this approach, when applied across broader data sets, offers a pathway to build inference about the effects of seasonal weather on growth, size- and light-dependent patterns of growth, species-specific patterns, and phenology. PMID:25691954

  7. Tree ring-based reconstruction of annual precipitation in the South-Central United State from 1750 to 1980. [Quercus stellata; Quercus alba

    SciTech Connect

    Blasing, T.J.; Stahle, D.W.; Duvick, D.N.

    1988-01-01

    A 231-year reconstruction of annual precipitation, from 1750 through 1980 A.D., was developed from 10 tree ring chronologies (9 post oak, Quercus stellata, and 1 white oak, Q. alba, series) in the south-central United States. Straight line regression was used to calibrate regionally averaged precipitation with ring width data, and the derived reconstruction was verified with independent climatic data and historical evidence. A variance trend in the tree ring data, which may have resulted from nonclimatic factors, was removed. The reconstructed precipitation series indicates that (1) a drought which appears to have been more severe than any in the instrumental record occurred about 1860 and (2) severe and prolonged droughts comparable to twentieth century events have occurred at roughly 15- to 25-years intervals throughout the past 231 years. It follows that serious droughts in the south-central United States could be expected to recur even in the absence of projected CO/sub 2/-induced warming.

  8. Annual expenditures for nursing home care: private and public payer price growth, 1977 to 2004.

    PubMed

    Stewart, Kate A; Grabowski, David C; Lakdawalla, Darius N

    2009-03-01

    Long-term nursing home care is primarily funded by out-of-pocket payments and public Medicaid programs. Few studies have explored price growth in nursing home care, particularly trends in the real cost of a year spent in a nursing home. To evaluate changes in private and public prices for annual nursing home care from 1977 to 2004, and to compare nursing home price growth to overall price growth and growth in the price of medical care. We estimated annual private prices for nursing home care between 1977 and 2004 using data from the National Nursing Home Survey. We compared private nursing home price growth to public prices obtained from surveys of state Medicaid offices, and evaluated the Bureau of Labor Statistics Consumer Price Indexes to compare prices for nursing homes, medical care, and general goods and services over time. Annual private pay nursing homes prices grew by 7.5% annually from $8645 in 1977 to $60,249 in 2004. Medicaid prices grew by 6.7% annually from $9491 in 1979 to $48,056 in 2004. Annual price growth for private pay nursing home care outpaced medical care and other goods and services (7.5% vs. 6.6% and 4.4%, respectively) between 1977 and 2004. The recent rapid growth in nursing home prices is likely to persist, because of an aging population and greater disability among the near-elderly. The result will place increasing financial pressure on Medicaid programs. Better data on nursing prices are critical for policy-makers and researchers.

  9. Effect of tree-ring detrending method on apparent growth trends of black and white spruce in interior Alaska

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick F.; Pattison, Robert R.; Brownlee, Annalis H.; Cahoon, Sean M. P.; Hollingsworth, Teresa N.

    2016-11-01

    Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We measured ring widths from a large set of increment cores collected across a vast area of interior Alaska and examined implications of data processing decisions for apparent trends in black and white spruce growth. We found that choice of detrending method had important implications for apparent long-term growth trends and the strength of climate-growth correlations. Trends varied from strong increases in growth since the Industrial Revolution, when ring widths were detrended using single-curve regional curve standardization (RCS), to strong decreases in growth, when ring widths were normalized by fitting a horizontal line to each ring width series. All methods revealed a pronounced growth peak for black and white spruce centered near 1940. Most detrending methods showed a decline from the peak, leaving recent growth of both species near the long-term mean. Climate-growth analyses revealed negative correlations with growing season temperature and positive correlations with August precipitation for both species. Multiple-curve RCS detrending produced the strongest and/or greatest number of significant climate-growth correlations. Results provide important historical context for recent growth of black and white spruce. Growth of both species might decline with future warming, if not mitigated by increasing precipitation. However, widespread drought-induced mortality is probably not imminent, given that recent growth was near the long-term mean.

  10. Tropical tree rings reveal preferential survival of fast-growing juveniles and increased juvenile growth rates over time.

    PubMed

    Rozendaal, Danaë M A; Brienen, Roel J W; Soliz-Gamboa, Claudia C; Zuidema, Pieter A

    2010-02-01

    Long-term juvenile growth patterns of tropical trees were studied to test two hypotheses: fast-growing juvenile trees have a higher chance of reaching the canopy ('juvenile selection effect'); and tree growth has increased over time ('historical growth increase'). Tree-ring analysis was applied to test these hypotheses for five tree species from three moist forest sites in Bolivia, using samples from 459 individuals. Basal area increment was calculated from ring widths, for trees < 30 cm in diameter. For three out of five species, a juvenile selection effect was found in rings formed by small juveniles. Thus, extant adult trees in these species have had higher juvenile growth rates than extant juvenile trees. By contrast, rings formed by somewhat larger juveniles in four species showed the opposite pattern: a historical growth increase. For most size classes of > 10 cm diameter none of the patterns was found. Fast juvenile growth may be essential to enable tropical trees to reach the forest canopy, especially for small juvenile trees in the dark forest understorey. The historical growth increase requires cautious interpretation, but may be partially attributable to CO(2) fertilization.

  11. Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients

    USGS Publications Warehouse

    Thomas, Brenda L.; Doyle, Thomas W.; Krauss, Ken W.

    2015-01-01

    The effects of salinity on Taxodium distichum seedlings have been well documented, but few studies have examined mature trees in situ. We investigated the environmental drivers of T. distichum growth along a salinity gradient on the Waccamaw (South Carolina) and Savannah (Georgia) Rivers. On each river, T. distichum increment cores were collected from a healthy upstream site (Upper), a moderately degraded mid-reach site (Middle), and a highly degraded downstream site (Lower). Chronologies were successfully developed for Waccamaw Upper and Middle, and Savannah Middle. Correlations between standardized chronologies and environmental variables showed significant relationships between T. distichum growth and early growing season precipitation, temperature, and Palmer Drought Severity Index (PDSI). Savannah Middle chronology correlated most strongly with August river salinity levels. Both lower sites experienced suppression/release events likely in response to local anthropogenic impacts rather than regional environmental variables. The factors that affect T. distichum growth, including salinity, are strongly synergistic. As sea-level rise pushes the freshwater/saltwater interface inland, salinity becomes more limiting to T. distichum growth in tidal freshwater swamps; however, salinity impacts are exacerbated by locally imposed environmental modifications.

  12. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    PubMed

    Hamada-Kawaguchi, Noriko; Nishida, Yasuyoshi; Yamamoto, Daisuke

    2015-01-01

    Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.

  13. Responses of tree-ring growth and crop yield to drought indices in the Shanxi province, North China.

    PubMed

    Sun, Junyan; Liu, Yu

    2014-09-01

    In this paper, we analyze the relationships among the tree-ring chronology, meteorological drought (precipitation), agricultural drought (Palmer Drought Severity Index PDSI), hydrological drought (runoff), and agricultural data in the Shanxi province of North China. Correlation analyses indicate that the tree-ring chronology is significantly correlated with all of the drought indices during the main growing season from March to July. Sign test analyses further indicate that the tree-ring chronology shows variation similar to that of the drought indices in both high and low frequencies. Comparisons of the years with narrow tree rings to the severe droughts reflected in all three indices from 1957 to 2008 reveal that the radial growth of the trees in the study region can accurately record the severe drought for which all three indices were in agreement (1972, 1999, 2000, and 2001). Comparisons with the dryness/wetness index indicate that tree-ring growth can properly record the severe droughts in the history. Correlation analyses among agricultural data, tree-ring chronology, and drought indices indicate that the per-unit yield of summer crops is relatively well correlated with the agricultural drought, as indicated by the PDSI. The PDSI is the climatic factor that significantly influences both tree growth and per-unit yield of summer crops in the study region. These results indicate that the PDSI and tree-ring chronology have the potential to be used to monitor and predict the yield of summer crops. Tree-ring chronology is an important tool for drought research and for wider applications in agricultural and hydrological research.

  14. A single-substrate model to interpret intra-annual stable isotope signals in tree-ring cellulose.

    PubMed

    Ogée, J; Barbour, M M; Wingate, L; Bert, D; Bosc, A; Stievenard, M; Lambrot, C; Pierre, M; Bariac, T; Loustau, D; Dewar, R C

    2009-08-01

    The carbon and oxygen stable isotope composition of wood cellulose (delta(13)C(cellulose) and delta(18)O(cellulose), respectively) reveal well-defined seasonal variations that contain valuable records of past climate, leaf gas exchange and carbon allocation dynamics within the trees. Here, we present a single-substrate model for wood growth to interpret seasonal isotopic signals collected in an even-aged maritime pine plantation growing in South-west France, where climate, soil and flux variables were also monitored. Observed seasonal patterns in delta(13)C(cellulose) and delta(18)O(cellulose) were different between years and individuals, and mostly captured by the model, suggesting that the single-substrate hypothesis is a good approximation for tree ring studies on Pinus pinaster, at least for the environmental conditions covered by this study. A sensitivity analysis revealed that the model was mostly affected by five isotopic discrimination factors and two leaf gas-exchange parameters. Modelled early wood signals were also very sensitive to the date when cell wall thickening begins (t(wt)). Our model could therefore be used to reconstruct t(wt) time series and improve our understanding of how climate influences this key parameter of xylogenesis.

  15. Sep7 Is Essential to Modify Septin Ring Dynamics and Inhibit Cell Separation during Candida albicans Hyphal Growth

    PubMed Central

    González-Novo, Alberto; Correa-Bordes, Jaime; Labrador, Leticia; Sánchez, Miguel

    2008-01-01

    When Candida albicans yeast cells receive the appropriate stimulus, they switch to hyphal growth, characterized by continuous apical elongation and the inhibition of cell separation. The molecular basis of this inhibition is poorly known, despite its crucial importance for hyphal development. In C. albicans, septins are important for hypha formation and virulence. Here, we used fluorescence recovery after photobleaching analysis to characterize the dynamics of septin rings during yeast and hyphal growth. On hyphal induction, septin rings are converted to a hyphal-specific state, characterized by the presence of a frozen core formed by Sep7/Shs1, Cdc3 and Cdc12, whereas Cdc10 is highly dynamic and oscillates between the ring and the cytoplasm. Conversion of septin rings to the hyphal-specific state inhibits the translocation of Cdc14 phosphatase, which controls cell separation, to the hyphal septum. Modification of septin ring dynamics during hyphal growth is dependent on Sep7 and the hyphal-specific cyclin Hgc1, which partially controls Sep7 phosphorylation status and protein levels. Our results reveal a link between the cell cycle machinery and septin cytoskeleton dynamics, which inhibits cell separation in the filaments and is essential for hyphal morphogenesis. PMID:18234840

  16. Development of a rainfall sensitive tree-ring chronology in Zimbabwe

    SciTech Connect

    Stahle, D.W.; Cleaveland, M.K.; Nicholson, S.E.

    1997-11-01

    This paper reports the discovery of annual tree ring formation in two species of trees in Zimbabwe and describes their paleoclimatic reconstruction potential. Due to the strong influence of El Nino-Southern Oscillation on the climate and crop yields of Zimbabwe and surrenting areas, and the rarity of annual tree ring chronologies in the tropics, the discovery of climatically sensitive growth rings is extremely significant. In particular, the Pterocarpus angolensis shows a strong correlation between the derived tree ring chronology and regional rainfall amounts. Based on sampling at the Sikumi Forest, it is speculated that P. angolensis may routinely achieve over 200 years in age. Four lines of evidence are identified which indicate that the semi-ring porous growth bands in P. angolensis are exactly annual growth rings. 18 refs., 3 figs.

  17. Modeling regional and climatic variation of wood density and ring width in intensively managed Douglas-fir

    Treesearch

    Cosmin N. Filipescue; Eini C. Lowell; Ross Koppenaal; Al K. Mitchell

    2014-01-01

    Characteristics of annual rings are reliable indicators of growth and wood quality in trees. The main objective of our study was to model the variation in annual ring attributes due to intensive silviculture and inherent regional differences in climate and site across a wide geographic range of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)....

  18. Long-term Artificial Annual Flooding Reduces Nuttall Oak Bole Growth

    Treesearch

    Bryce E. Schlaegel

    1984-01-01

    Nuttall oak (Quercus nuttallii Palmer) bole volume growth is significantly reduced by longterm artificial annual flooding of thinned stands, Regardless of size, trees growing in a green-tree reservoir grew significantly less in cubic-foot volume than trees in a nearby nonflooded area during the 6-year study period. Trees subject to heavy thinning...

  19. Arizona Measure of Academic Progress: Third Annual Look at Growth in Arizona Schools.

    ERIC Educational Resources Information Center

    Aportela, Anabel

    The 2001 results of Arizonas Measure of Academic Progress (MAP) mark the third annual release of this important school accountability tool. The 2001 MAP results are slightly different from the results of previous years in that they show the percent of students who achieve One Years Growth (OYG) and present results in a more accessible format. The…

  20. Reconstruction of Pacific salmon abundance from riparian tree-ring growth.

    PubMed

    Drake, D C; Naiman, Robert J

    2007-07-01

    We use relationships between modern Pacific salmon (Oncorhynchus spp.) escapement (migrating adults counted at weirs or dams) and riparian tree-ring growth to reconstruct the abundance of stream-spawning salmon over 150-350 years. After examining nine sites, we produced reconstructions for five mid-order rivers and four salmon species over a large geographic range in the Pacific Northwest: chinook (O. tschwatcha) in the Umpqua River, Oregon, USA; sockeye (O. nerka) in Drinkwater Creek, British Columbia, Canada; pink (O. gorbuscha) in Sashin Creek, southeastern Alaska, USA; chum (O. keta) in Disappearance Creek, southeastern Alaska, USA; and pink and chum in the Kadashan River, southeastern Alaska, USA. We first derived stand-level, non-climatic growth chronologies from riparian trees using standard dendroecology methods and differencing. When the chronologies were compared to 18-55 years of adult salmon escapement we detected positive, significant correlations at five of the nine sites. Regression models relating escapement to tree-ring growth at the five sites were applied to the differenced chronologies to reconstruct salmon abundance. Each reconstruction contains unique patterns characteristic of the site and salmon species. Reconstructions were validated by comparison to local histories (e.g., construction of dams and salmon canneries) and regional fisheries data such as salmon landings and aerial surveys and the Pacific Decadal Oscillation climate index. The reconstructions capture lower-frequency cycles better than extremes and are most useful for determination and comparison of relative abundance, cycles, and the effects of interventions. Reconstructions show lower population cycle maxima in both Umpqua River chinook and Sashin Creek pink salmon in recent decades. The Drinkwater Creek reconstruction suggests that sockeye abundance since the mid-1990s has been 15-25% higher than at any time since 1850, while no long-term deviations from natural cycles are

  1. Effect of tree-ring detrending method on apparent growth trends of black and white spruce in interior Alaska

    Treesearch

    Patrick F Sullivan; Robert R Pattison; Annalis H Brownlee; Sean M P Cahoon; Teresa N Hollingsworth

    2016-01-01

    Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We measured ring widths from a large set of increment cores collected across a vast area of...

  2. The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil

    Treesearch

    James Grogan; Mark Schulze

    2012-01-01

    Understanding tree growth in response to rainfall distribution is critical to predicting forest and species population responses to climate change. We investigated inter-annual and seasonal variation in stem diameter by three emergent tree species in a seasonally dry tropical forest in southeast Pará, Brazil. Annual diameter growth rates by Swietenia macrophylla...

  3. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica

    PubMed Central

    Kitin, Peter; Fujii, Tomoyuki; Abe, Hisashi; Takata, Katsuhiko

    2009-01-01

    Background and Aims Although the lateral movement of water and gas in tree stems is an important issue for understanding tree physiology, as well as for the development of wood preservation technologies, little is known about the vascular pathways for radial flow. The aim of the current study was to understand the occurrence and the structure of anatomical features of sugi (Cryptomeria japonica) wood including the tracheid networks, and area fractions of intertracheary pits, tangential walls of ray cells and radial intercellular spaces that may be related to the radial permeability (conductivity) of the xylem. Methods Wood structure was investigated by light microscopy and scanning electron microscopy of traditional wood anatomical preparations and by a new method of exposed tangential faces of growth-ring boundaries. Key Results Radial wall pitting and radial grain in earlywood and tangential wall pitting in latewood provide a direct connection between subsequent tangential layers of tracheids. Bordered pit pairs occur frequently between earlywood and latewood tracheids on both sides of a growth-ring boundary. In the tangential face of the xylem at the interface with the cambium, the area fraction of intertracheary pit membranes is similar to that of rays (2·8 % and 2·9 %, respectively). The intercellular spaces of rays are continuous across growth-ring boundaries. In the samples, the mean cross-sectional area of individual radial intercellular spaces was 1·2 µm2 and their total volume was 0·06 % of that of the xylem and 2·07 % of the volume of rays. Conclusions A tracheid network can provide lateral apoplastic transport of substances in the secondary xylem of sugi. The intertracheid pits in growth-ring boundaries can be considered an important pathway, distinct from that of the rays, for transport of water across growth rings and from xylem to cambium. PMID:19258338

  4. Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils.

    PubMed

    Castanheira, N; Dourado, A C; Kruz, S; Alves, P I L; Delgado-Rodríguez, A I; Pais, I; Semedo, J; Scotti-Campos, P; Sánchez, C; Borges, N; Carvalho, G; Barreto Crespo, M T; Fareleira, P

    2016-03-01

    To search for culturable Burkholderia species associated with annual ryegrass in soils from natural pastures in Portugal, with plant growth-promoting effects. Annual ryegrass seedlings were used to trap Burkholderia from two different soils in laboratory conditions. A combined approach using genomic fingerprinting and sequencing of 16S rRNA and recA genes resulted in the identification of Burkholderia strains belonging to the species Burkholderia graminis, Burkholderia fungorum and the Burkholderia cepacia complex. Most strains were able to solubilize mineral phosphate and to synthesize indole acetic acid; some of them could produce siderophores and antagonize the phytopathogenic oomycete, Phytophthora cinnamomi. A strain (G2Bd5) of B. graminis was selected for gnotobiotic plant inoculation experiments. The main effects were the stimulation of root growth and enhancement of leaf lipid synthesis and turnover. Fluorescence in situ hybridization and confocal laser microscopy evidenced that strain G2Bd5 is a rhizospheric and endophytic colonizer of annual ryegrass. This work revealed that annual ryegrass can naturally associate with members of the genus Burkholderia. A novel plant growth promoting strain of B. graminis was obtained. The novel strain belongs to the plant-associated Burkholderia cluster and is a promising candidate for exploitation as plant inoculant in field conditions. © 2015 The Society for Applied Microbiology.

  5. Annual ryegrass-associated bacteria with potential for plant growth promotion.

    PubMed

    Castanheira, Nádia; Dourado, Ana Catarina; Alves, Paula Isabel; Cortés-Pallero, Alícia Maria; Delgado-Rodríguez, Ana Isabel; Prazeres, Ângela; Borges, Nuno; Sánchez, Claudia; Barreto Crespo, Maria Teresa; Fareleira, Paula

    2014-01-01

    Annual ryegrass is a fast-growing cool-season grass broadly present in the Portuguese "montado", a typically Mediterranean agro-forestry-pastoral ecosystem. A culture-dependent approach was used to investigate natural associations of this crop with potentially beneficial bacteria, aiming to identify strains suitable for biofertilization purposes. Annual ryegrass seedlings were used to trap bacteria from three different soils in laboratory conditions. Using a nitrogen-free microaerophilic medium, 147 isolates were recovered from the rhizosphere, rhizoplane, and surface-sterilized plant tissues, which were assigned to 12 genera in classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. All isolates were able to grow in the absence of nitrogen and several of them were able to perform in vitro activities related to plant growth promotion. Isolates of the genera Sphingomonas and Achromobacter were found to be the most effective stimulators of annual ryegrass growth under nitrogen limitation (47-92% biomass increases). Major enhancements were obtained with isolates G3Dc4 (Achromobacter sp.) and G2Ac10 (Sphingomonas sp.). The latest isolate was also able to increment plant growth in nitrogen-supplemented medium, as well as the phosphate solubilizer and siderophore producer, G1Dc10 (Pseudomonas sp.), and the cellulose/pectin hydrolyser, G3Ac9 (Paenibacillus sp.). This study represents the first survey of annual ryegrass-associated bacteria in the "montado" ecosystem and unveiled a set of strains with potential for use as inoculants.

  6. Mongolian tree rings and 20th-century warming

    SciTech Connect

    Jacoby, G.C.; D`Arrigo, R.D.; Davaajamts, T.

    1996-08-09

    A 450-year tree-ring width chronology of Siberian pine (Pinus sibirica Du Tour) growing at timberline (2450 meters) in the Tarvagatay Mountains in west central Mongolia shows wide annual growth rings for the recent century. Ecological site observations and comparisons with instrumental temperature records indicate that the ring widths of these trees are sensitive to annual temperature variations. Low-frequency variations in the Tarvagatay tree-ring record are similar to those in a reconstruction of Arctic annual temperatures, which is based on 20 tree-ring width series from northern North America, Scandinavia, and western Russia. The results indicate that recent warming is unusual relative to temperatures of the past 450 years. 29 refs., 2 figs.

  7. RING1 and YY1 binding protein suppresses breast cancer growth and metastasis.

    PubMed

    Zhou, Hongyan; Li, Jie; Zhang, Zhanqiang; Ye, Runyi; Shao, Nan; Cheang, Tuckyun; Wang, Shenming

    2016-12-01

    Evidence suggests that RING1 and YY1 binding protein (RYBP) functions as a tumor suppressor. However, its role in breast cancer remains unclear. In the present study, the expression of RYBP was assessed in breast cancer patients and cell lines. Disease-free survival durations of breast cancer patients with high RYBP expression were determined based on the ATCG dataset. The effects of RYBP overexpression on cell growth, migration and invasive potency were also assessed. Nude mouse xenograft and lung metastasis models were also used to confirm the role of RYBP. The involvement of SRRM3 in RYBP-mediated breast cancer suppression was explored using SRRM3 siRNA. The potential relationship between RYBP, SRRM3, and REST-003 was examined by qPCR. The results showed that RYBP was downregulated in breast cancer patients and in several breast cancer cell lines. Breast cancer patients with high expression levels of RYBP displayed better disease-free survival. Overexpression of RYBP in MDA-MB-231 and SK-BR-3 cells significantly decreased cell proliferation, migration, and invasion ability, and increased the proportion of cells arrested in S-phase compared with the negative control cells. Additionally, upregulation of proliferation-related cell cycle proteins (cyclin A and cyclin B1) and E-cadherin, and downregulation of snail were observed in RYBP-overexpressing cells. Overexpression of RYBP reduced tumor volume and weight as well as metastatic foci in the lungs of nude mice. SRRM3 knockdown by siRNA, which is downregulated after RYBP overexpression, suppressed cell growth and metastasis in MDA-MB-231 and SK-BR-3 cells. Furthermore, qPCR analysis revealed that REST-003 ncRNA was downregulated in cells overexpressing RYBP and in SRRM3-inhibited cells. Moreover, cell invasion ability and growth were increased after SRRM3 upregulation in RYBP-overexpressing cells, but they were decreased following si-REST-003 transfection. In conclusion, overexpression of RYBP suppresses breast

  8. Variations in Environmental Signals in Tree-Ring Indices in Trees with Different Growth Potential

    PubMed Central

    Hafner, Polona; Gričar, Jožica; Skudnik, Mitja; Levanič, Tom

    2015-01-01

    We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970–2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon

  9. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname.

    PubMed

    Köhl, Michael; Neupane, Prem R; Lotfiomran, Neda

    2017-01-01

    The world's forests play a pivotal role in the mitigation of global climate change. By photosynthesis they remove CO2 from the atmosphere and store carbon in their biomass. While old trees are generally acknowledged for a long carbon residence time, there is no consensus on their contribution to carbon accumulation due to a lack of long-term individual tree data. Tree ring analyses, which use anatomical differences in the annual formation of wood for dating growth zones, are a retrospective approach that provides growth patterns of individual trees over their entire lifetime. We developed time series of diameter growth and related annual carbon accumulation for 61 trees of the species Cedrela odorata L. (Meliacea), Hymenaea courbaril L. (Fabacea) and Goupia glabra Aubl. (Goupiacea). The trees grew in unmanaged tropical wet-forests of Suriname and reached ages from 84 to 255 years. Most of the trees show positive trends of diameter growth and carbon accumulation over time. For some trees we observed fluctuating growth-periods of lower growth alternate with periods of increased growth. In the last quarter of their lifetime trees accumulate on average between 39 percent (C. odorata) and 50 percent (G. glabra) of their final carbon stock. This suggests that old-growth trees in tropical forests do not only contribute to carbon stocks by long carbon resistance times, but maintain high rates of carbon accumulation at later stages of their life time.

  10. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    PubMed Central

    Wingler, Astrid

    2015-01-01

    Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants. PMID:25628637

  11. Constrained growth flips the direction of optimal phenological responses among annual plants.

    PubMed

    Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas

    2016-03-01

    Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory.

  12. Increase in platinum group elements in Mexico City as revealed from growth rings of Taxodium mucronatum ten.

    PubMed

    Morton-Bermea, Ofelia; Beramendi-Orosco, Laura; Martínez-Reyes, Ángeles; Hernández-Álvarez, Elizabeth; González-Hernández, Galia

    2016-02-01

    Tree rings may be used as indicators of contamination events providing information on the chronology and the elemental composition of the contamination. In this framework, we report PGEs enrichment in growth rings of Taxodium mucronatum ten for trees growing in the central area of Mexico City as compared to trees growing in a non-urban environment. Concentrations of PGE were determined by ICP-MS analysis on microwave-digested tree rings. The element found in higher concentrations was Pd (1.13-87.98 μg kg(-1)), followed by Rh (0.28-36.81 μg kg(-1)) and Pt (0.106-7.21 μg kg(-1)). The concentration trends of PGEs in the tree-ring sequences from the urban area presented significant correlation values when comparing between trees (r between 0.618 and 0.98, P < 0.025) and between elements within individual trees (r between 0.76 and 0.994, P < 0.01). Furthermore, a clear increase was observed for rings after 1997, with enrichment of up to 60 times the mean concentration found for the sequence from the non-urban area and up to 40 times the mean concentration for the pre-1991 period in the urban trees. These results also demonstrate the feasibility of applying T. mucronatum ten to be used as a bioindicator of the increase in PGE in urban environments.

  13. Sub-annual Fluctuations in Water Sources Utilised by Mediterranean RiparianTrees Determined Through Highly Resolved Oxygen Isotope Analysis of Tree-ring Cellulose

    NASA Astrophysics Data System (ADS)

    Sargeant, C. I.; Singer, M. B.

    2014-12-01

    The sensitivity of trees to water availability within their rooting zones is a major determinant of tree and forest health. Yet, we have a poor understanding of subterranean water availability and its fluctuations due to climate. Such shortcomings limit our ability to predict how climatic variability will impact water availability to trees, and corresponding forest health. Understanding of water partitioning within the 'critical zone' of riparian areas are particularly lacking, especially in the vulnerable Mediterranean climate regimes. A substantial body of research uses isotope dendrochronology to assess riparian forest-water relations at annual (tree-ring) timescales, which integrate variability in seasonal hydrology. However, the sub-annual variations in water availability have been largely overlooked, which may have important ramifications for riparian ecohydrology. We present a new method for determining the sub-annual hydrologic variability within a floodplain forest using two co-occurring Mediterranean tree species along the Rhône River, southern France. We conducted oxygen isotope (δ18O) analysis of cellulose for 11 microslices within each tree ring to detect sub-annual patterns in δ18O that reflect the variability in hydrological partitioning. We back-calculated the seasonal time series of source waters used by the trees via a mechanistic model. Differences in rooting between the species allow us to constrain fluctuations in water availability and use between the vadose and phreatic zones. The two different species of streamside trees use distinct water sources and their seasonal patterns of water use are also fundamentally different. We develop strong links between these sub-annual patterns of δ18O signatures and the climatic characteristics of the hydrological year. We also present isotopic analyses of source waters from the vadose and phreatic zones, precipitation, and the Rhône to bolster our interpretations of water partitioning. This research

  14. Radiocarbon content in the annual tree rings during last 150 years and time variation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Metskvarishvili, R. Y.; Tsereteli, S. L.

    1985-01-01

    The results of the high accuracy measurements of radiocarbon abundance in precisely dated tree rings in the interval 1800 to 1950 yrs are discussed. Radiocarbon content caused by solar activity is established. The temporal dependence of cosmic rays is constructed, by use of radio abundance data.

  15. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname

    PubMed Central

    Neupane, Prem R.

    2017-01-01

    The world’s forests play a pivotal role in the mitigation of global climate change. By photosynthesis they remove CO2 from the atmosphere and store carbon in their biomass. While old trees are generally acknowledged for a long carbon residence time, there is no consensus on their contribution to carbon accumulation due to a lack of long-term individual tree data. Tree ring analyses, which use anatomical differences in the annual formation of wood for dating growth zones, are a retrospective approach that provides growth patterns of individual trees over their entire lifetime. We developed time series of diameter growth and related annual carbon accumulation for 61 trees of the species Cedrela odorata L. (Meliacea), Hymenaea courbaril L. (Fabacea) and Goupia glabra Aubl. (Goupiacea). The trees grew in unmanaged tropical wet-forests of Suriname and reached ages from 84 to 255 years. Most of the trees show positive trends of diameter growth and carbon accumulation over time. For some trees we observed fluctuating growth—periods of lower growth alternate with periods of increased growth. In the last quarter of their lifetime trees accumulate on average between 39 percent (C. odorata) and 50 percent (G. glabra) of their final carbon stock. This suggests that old-growth trees in tropical forests do not only contribute to carbon stocks by long carbon resistance times, but maintain high rates of carbon accumulation at later stages of their life time. PMID:28813429

  16. Annual Precipitation since A.D. 1460 reconstructed from the juniper growth of Qilian Mountains

    NASA Astrophysics Data System (ADS)

    Tian, Q.

    2009-04-01

    We present a century-scale annual precipitation reconstruction from previous August to current July over the past 540 years based on a tree ring-width chronology developed from juniper (Juniperus przewalskii Kom) on the Qilian Mountains. The reconstruction is verified with dependent data, and accounts for 41% of the instrument data variance during their common period (1960-2000). The full reconstruction indicates that the regional precipitation variability is relative stable except for the significant wetter epoch (1680-1760 A.D.) and an extreme drought event in the late 1920 over a large geographic area in northwestern China, which is corroborated by other paleoclimatic indicators. The wavelet analysis reveals the strong low frequency cycles (2.8, 2.1-2.6, 4.5, 5.5-6.1 yr) on the whole reconstructed period. The cycle of 16 yr is also examined, but it is discontinuous for the whole period. Overall, our reconstruction not only extends the regional precipitation history, and provides the valuable information to understand some proposed climate forcing. Keyword: Tree-ring Width Index Precipitation Qilian Mountains

  17. Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua.

    PubMed

    Carrer, Marco; Urbinati, Carlo

    2006-01-01

    Tree rings are widely used long-term proxy data which, if combined with long-term instrumental climate records, can provide excellent information on global climate variability. This research aimed to determine whether interannual climate-growth responses in Alpine treeline forests are stationary over time. We used tree-ring width chronologies of Larix decidua (European larch) from 17 sites and monthly temperatures and precipitation data for the period 1800-1999. Climate-growth relationships were assessed with correlation and response functions, and their stationarity and consistency over time were measured using moving correlation. Tree-ring chronologies showed similar interannual variations over the last two centuries, suggesting that the same climatic factors synchronously limited growth at most sites. The most sensitive variables showed significant transient responses varying within the time period, indicating a possible deviation from the uniformitarian principle applied to dendroclimatology. If these findings are confirmed in future studies on other species and in other regions, we suggest that time-dependent variables should be taken into account to avoid overestimation of treeline advance, future forest carbon storage in temperature-limited environments and inaccurate reconstruction of past climate variability.

  18. Annualized diameter and height growth equations for Pacific Northwest plantation-grown Douglas-fir, western hemlock, and red alder.

    Treesearch

    A.R. Weiskittel; S.M. Garber; G.P. Johnson; D.A. Maguire; R.A. Monserud

    2007-01-01

    Simulating the influence of intensive management and annual weather fluctuations on tree growth requires a shorter time step than currently employed by most regional growth models. High-quality data sets are available for several plantation species in the Pacific Northwest region of the United States, but the growth periods ranged from 2 to 12 years. Measurement...

  19. Gas exchange parameters inferred from {delta}{sup 13}C of conifer annual rings throughout the 20th century

    SciTech Connect

    Marshall, J.D.; Monserud, R.A.

    1995-12-31

    In this study the stable isotopes of carbon in plant tissue provided a means of inferring the proportional decrease in carbon dioxide concentration across the stomata, which is closely related to photosynthetic water-use efficiency. The authors analyzed the stable carbon isotope composition of tree rings laid down over the past 80 years to determine whether the proportional decrease in CO{sub 2} concentration across the stomata had increased. Dominant and codominant trees of western white pine (Pinus monticola), ponderosa pine (P. ponderosa), and Douglas-fir (Pseudotsuga menziesii var. glauca) growing at the Priest River Experimental Forest, in northern Idaho, were analyzed. To avoid confounding age and year, the authors compared the innermost rings of mature trees to trees of intermediate age and to saplings. The isotopic data were corrected for changes in isotopic composition and carbon dioxide concentration using published data from ice cores.

  20. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    PubMed

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  1. Population differentiation in tree-ring growth response of white fir (Abies concolor) to climate: Implications for predicting forest responses to climate change

    SciTech Connect

    Jensen, Deborah Bowne

    1993-01-01

    Forest succession models and correlative models have predicted 200--650 kilometer shifts in the geographic range of temperate forests and forest species as one response to global climate change. Few studies have investigated whether population differences may effect the response of forest species to climate change. This study examines differences in tree-ring growth, and in the phenotypic plasticity of tree-ring growth in 16-year old white fir, Abies concolor, from ten populations grown in four common gardens in the Sierra Nevada of California. For each population, tree-ring growth was modelled as a function of precipitation and degree-day sums. Tree-ring growth under three scenarios of doubled CO2 climates was estimated.

  2. Annual Glyphosate Treatments Alter Growth of Unaffected Bentgrass (Agrostis) Weeds and Plant Community Composition

    PubMed Central

    Ahrens, Collin W.; Auer, Carol A.

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities. PMID:23226530

  3. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  4. Do tree ring chronologies have missing rings that distort volcanic cooling signal?: Fixing tree ring chronologies yields closer agreement with models

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-09-01

    Climate models generally show that when a massive volcano erupts, scattering reflective aerosols across the globe, the planet's temperature declines for up to a few years. However, when researchers look at reconstructed temperature records built on annual tree ring measurements, this volcanic cooling often appeared much weaker than expected or was nonexistent. In a new study reanalyzing regional tree ring growth records, Mann et al. provide a possible explanation for the absence of the cooling effect.

  5. Tree-ring growth of Scots pine, Common beech and Pedunculate oak under future climate in northeastern Germany

    NASA Astrophysics Data System (ADS)

    Jurasinski, Gerald; Scharnweber, Tobias; Schröder, Christian; Lennartz, Bernd; Bauwe, Andreas

    2017-04-01

    Tree growth depends, among other factors, largely on the prevailing climatic conditions. Therefore, tree growth patterns are to be expected under climate change. Here, we analyze the tree-ring growth response of three major European tree species to projected future climate across a climatic (mostly precipitation) gradient in northeastern Germany. We used monthly data for temperature, precipitation, and the standardized precipitation evapotranspiration index (SPEI) over multiple time scales (1, 3, 6, 12, and 24 months) to construct models of tree-ring growth for Scots pine (Pinus syl- vestris L.) at three pure stands, and for Common beech (Fagus sylvatica L.) and Pedunculate oak (Quercus robur L.) at three mature mixed stands. The regression models were derived using a two-step approach based on partial least squares regression (PLSR) to extract potentially well explaining variables followed by ordinary least squares regression (OLSR) to consolidate the models to the least number of variables while retaining high explanatory power. The stability of the models was tested with a comprehensive calibration-verification scheme. All models were successfully verified with R2s ranging from 0.21 for the western pine stand to 0.62 for the beech stand in the east. For growth prediction, climate data forecasted until 2100 by the regional climate model WETTREG2010 based on the A1B Intergovernmental Panel on Climate Change (IPCC) emission scenario was used. For beech and oak, growth rates will likely decrease until the end of the 21st century. For pine, modeled growth trends vary and range from a slight growth increase to a weak decrease in growth rates depending on the position along the climatic gradient. The climatic gradient across the study area will possibly affect the future growth of oak with larger growth reductions towards the drier east. For beech, site-specific adaptations seem to override the influence of the climatic gradient. We conclude that in Northeastern

  6. Analysis of tracheid development in suppressed-growth Ponderosa Pine using the FPL ring profiler

    Treesearch

    C. Tim Scott; David W. Vahey

    2012-01-01

    The Ring Profiler was developed to examine the cross-sectional morphology of wood tracheids in a 12.5-mm core sample. The instrument integrates a specially designed staging apparatus with an optical imaging system to obtain high-contrast, high-resolution images containing about 200-500 tracheids. These images are further enhanced and analyzed to extract tracheid cross-...

  7. Degree-day accumulation influences annual variability in growth of age-0 walleye

    USGS Publications Warehouse

    Uphoff, Christopher S.; Schoenebeck, Casey W.; Hoback, W. Wyatt; Koupal, Keith D.; Pope, Kevin L.

    2013-01-01

    The growth of age-0 fishes influences survival, especially in temperate regions where size-dependent over-winter mortality can be substantial. Additional benefits of earlier maturation and greater fecundity may exist for faster growing individuals. This study correlated prey densities, growing-degree days, water-surface elevation, turbidity, and chlorophyll a with age-0 walleye Sander vitreus growth in a south-central Nebraska irrigation reservoir. Growth of age-0 walleye was variable between 2003 and 2011, with mean lengths ranging from 128 to 231 mm by fall (September 30th–October 15th). A set of a priori candidate models were used to assess the relative support of explanatory variables using Akaike's information criterion (AIC). A temperature model using the growing degree-days metric was the best supported model, describing 65% of the variability in annual mean lengths of age-0 walleye. The second and third best supported models included the variables chlorophyll a (r2 = 0.49) and larval freshwater drum density (r2 = 0.45), respectively. There have been mixed results concerning the importance of temperature effects on growth of age-0 walleye. This study supports the hypothesis that temperature is the most important predictor of age-0 walleye growth near the southwestern limits of its natural range.

  8. Understanding the growth rate patterns of ion Bernstein instabilities driven by ring-like proton velocity distributions

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2016-04-01

    Fast magnetosonic waves in Earth's inner magnetosphere, which have as their source ion Bernstein instabilities, are driven by hot proton velocity distributions (fp) with ∂fp(v⊥)/∂v⊥>0. Two typical types of distributions with such features are ring and shell velocity distributions. Both have been used in studies of ion Bernstein instabilities and fast magnetosonic waves, but the differences between instabilities driven by the two types of distributions have not been thoroughly addressed. The present study uses linear kinetic theory to examine and understand these differences. It is found that the growth rate pattern is primarily determined by the cyclotron resonance condition and the structure of the velocity distribution in gyroaveraged velocity space. For ring-driven Bernstein instabilities, as the parallel wave number (k∥) increases, the discrete unstable modes approximately follow the corresponding proton cyclotron harmonic frequencies while they become broader in frequency space. At sufficiently large k∥, the neighboring discrete modes merge into a continuum. In contrast, for shell-driven Bernstein instabilities, the curved geometry of the shell velocity distribution in gyroaveraged velocity space results in a complex alternating pattern of growth and damping rates in frequency and wave number space and confines the unstable Bernstein modes to relatively small k∥. In addition, when k∥ increases, the unstable modes are no longer limited to the proton cyclotron harmonic frequencies. The local growth rate peak near an exact harmonic at small k∥ bifurcates into two local peaks on both sides of the harmonic when k∥ becomes large.

  9. Effect of temperature-transfer on growth of laboratory populations of a South American annual fish Cynolebias bellottii.

    PubMed

    Liu, R K; Leung, B E; Walford, R L

    1975-09-01

    Previous observation had shown that annual fish living at 15 degrees C grow faster and live longer than those at 20 degrees C. We now demonstrate that when populations of these fish undergo reciprocal transfer between these two temperatures, their growth rates change to that of animals living at the temperature into which they have been transferred. These growth rates do not entirely correlate with the longevity patterns observed in annual fish subjected to temperature-transfer, nor to certain other observations of the relationships among growth, temperature and longevity as reported in the literature.

  10. CASSIA--a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine.

    PubMed

    Schiestl-Aalto, Pauliina; Kulmala, Liisa; Mäkinen, Harri; Nikinmaa, Eero; Mäkelä, Annikki

    2015-04-01

    The control of tree growth vs environment by carbon sources or sinks remains unresolved although it is widely studied. This study investigates growth of tree components and carbon sink-source dynamics at different temporal scales. We constructed a dynamic growth model 'carbon allocation sink source interaction' (CASSIA) that calculates tree-level carbon balance from photosynthesis, respiration, phenology and temperature-driven potential structural growth of tree organs and dynamics of stored nonstructural carbon (NSC) and their modifying influence on growth. With the model, we tested hypotheses that sink demand explains the intra-annual growth dynamics of the meristems, and that the source supply is further needed to explain year-to-year growth variation. The predicted intra-annual dimensional growth of shoots and needles and the number of cells in xylogenesis phases corresponded with measurements, whereas NSC hardly limited the growth, supporting the first hypothesis. Delayed GPP influence on potential growth was necessary for simulating the yearly growth variation, indicating also at least an indirect source limitation. CASSIA combines seasonal growth and carbon balance dynamics with long-term source dynamics affecting growth and thus provides a first step to understanding the complex processes regulating intra- and interannual growth and sink-source dynamics. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Using ring width correlations to study the effects of plantation density on wood density and anatomical properties of red pine (Pinus resinosa Ait.)

    Treesearch

    J. Y. Zhu; C. T. Scott; K. L. Scallon; G. C. Myers

    2006-01-01

    This study demonstrated that average ring width (or average annual radial growth rate) is a reliable parameter to quantify the effects of tree plantation ndensity (growth suppression) on wood density and tracheid anatomical properties. The average ring width successfully correlated wood density and tracheid anatomical properties of red pines (Pinus resinosa Ait.) from...

  12. Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.

    PubMed

    Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei

    2017-09-13

    Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiNx solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.

  13. Critical Role of the Ubiquitin Ligase Activity of UHRF1, a Nuclear RING Finger Protein, in Tumor Cell GrowthD⃞

    PubMed Central

    Jenkins, Yonchu; Markovtsov, Vadim; Lang, Wayne; Sharma, Poonam; Pearsall, Denise; Warner, Justin; Franci, Christian; Huang, Betty; Huang, Jianing; Yam, George C.; Vistan, Joseph P.; Pali, Erlina; Vialard, Jorge; Janicot, Michel; Lorens, James B.; Payan, Donald G.; Hitoshi, Yasumichi

    2005-01-01

    Early cellular events associated with tumorigenesis often include loss of cell cycle checkpoints or alteration in growth signaling pathways. Identification of novel genes involved in cellular proliferation may lead to new classes of cancer therapeutics. By screening a tetracycline-inducible cDNA library in A549 cells for genes that interfere with proliferation, we have identified a fragment of UHRF1 (ubiquitin-like protein containing PHD and RING domains 1), a nuclear RING finger protein, that acts as a dominant negative effector of cell growth. Reduction of UHRF1 levels using an UHRF1-specific shRNA decreased growth rates in several tumor cell lines. In addition, treatment of A549 cells with agents that activated different cell cycle checkpoints resulted in down-regulation of UHRF1. The primary sequence of UHRF1 contains a PHD and a RING motif, both of which are structural hallmarks of ubiquitin E3 ligases. We have confirmed using an in vitro autoubiquitination assay that UHRF1 displays RING-dependent E3 ligase activity. Overexpression of a GFP-fused UHRF1 RING mutant that lacks ligase activity sensitizes cells to treatment with various chemotherapeutics. Taken together, our results suggest a general requirement for UHRF1 in tumor cell proliferation and implicate the RING domain of UHRF1 as a functional determinant of growth regulation. PMID:16195352

  14. Transformation rules and degradation of CAHs by Fentonlike oxidation in growth ring of water distribution network-A review

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Ma, W. C.; Jiang, X. Q.; Yuan, Y. X.; Yuan, Y.; Wang, Z. Q.; Fang, T. T.; Huang, W. Y.

    2017-08-01

    Chlorinated hydrocarbons are widely used as organic solvent and chemical raw materials. After treatment, water polluted with trichloroethylene (TCE)/tetrachloroethylene (PCE) can reach the water quality requirements, while water with trace amounts of TCE/PCE is still harmful to humans, which will cause cancers. Water distribution network is an extremely complicated system, in which adsorption, desorption, flocculation, movement, transformation and reduction will occur, leading to changes of TCE/PCE concentrations and products. Therefore, it is important to investigate the transformation rules of TCE/PCE in water distribution network. What’s more, growth-ring, including drinking water pipes deposits, can act as catalysts in Fenton-like reagent (H2O2). This review summarizes the status of transformation rules of CAHs in water distribution network. It also evaluates the effectiveness and fruit of CAHs degradation by Fenton-like reagent based on growth-ring. This review is important in solving the potential safety problems caused by TCE/PCE in water distribution network.

  15. A 7500-year record of plant physiology as palaeoenvironmental proxy from tree-ring δ13C and growth rates - the CARATE project

    NASA Astrophysics Data System (ADS)

    Arppe, L.; Helama, S.; Mielikäinen, K.; Oinonen, M.; Timonen, M.

    2012-12-01

    This contribution presents a recently launched 4-year research project, "CARATE", aiming to produce new climatic and plant physiological records at high temporal resolution by the synthesis of annually/decadally resolved tree-ring archives of growth-rates and cellulose δ13C values from high-latitude continental Europe. The project mainly relies on a supra-long pinewood chronology from Finnish Lapland covering the mid and late Holocene times continuously through the millennia since 5634 B.C. until the present-day (Eronen et al. 2002, Helama et al. 2008). The chronology provides a highly sensitive, absolutely dated proxy record of past environment and climate variability at highest possible resolution that can be calibrated directly with instrumental records of environmental variables. While growth rate records are invaluable tools for paleoclimate research at high frequencies, tree-ring δ13C compositions have the potential to portray the high-to-low-frequency climate signals per se, without complications from time-series analysis. By combining isotope and growth rate information, we aim to reconstruct regional high- and low-frequency climate variability over the past 7500 years with increased reliability, and explore the climate forcings behind the observed variations. The project was started by studying the strength of the common climatic signal both within- and between-sites, and possible associations to tree-physiological parameters. For this purpose, a set of 70 living pine trees (Pinus sylvestris) , growing in proximity of the subfossil pinewood collection sites in western and eastern Lapland, were cored for analysis of growth rates and δ13C values. α-cellulose was extracted from decadal samples corresponding to the time period 1970-2010 including both early- and latewood. The δ13C time series show a consistent response to regional environmental forcing over the entire study area, with no discernable differences between western and eastern Lapland. Within

  16. A Void Growth Failure Criterion Applied to Dynamically and Statically Loaded Thin Rings.

    DTIC Science & Technology

    1980-06-01

    schematic diagram of this system is shown. A small gas laser (Spectra Physics 122) provides the required intense parallel beam of light. This beam was...LU "O e (3.24) Z LU 0 zz Using the Equations (3.21) to (3.23) in Equation (3.19), we get (Lke + a0 IeY it - FaeU)ieZ = ( FLue + Fa UyeU - CyIeU + (FLU...of a small collimated beam passing between the ring and a fixci knife edge positioned perpendi- cular to the specimen. The light intensity variation is

  17. Rapid growth, early maturation and short generation time in African annual fishes

    PubMed Central

    2013-01-01

    Background Extreme environmental conditions can give rise to extreme adaptations. We document growth, sexual maturation and fecundity in two species of African annual fish inhabiting temporary savanna pools. Results Nothobranchius kadleci started to reproduce at the age of 17 days and size of 31 mm and Nothobranchius furzeri at 18 days and 32 mm. All four study populations demonstrated rapid growth rates of up to 2.72 mm/day (23.4% of their total length). Both species may produce diapausing embryos or embryos that are able to hatch in as few as 15 days, resulting in a minimum generation time as short as only one month. Incubation on the surface of damp peat moss results in high embryo survival (73%) and a high proportion of rapidly developing embryos (58%) that skip diapauses and hatch in less than 30 days. We further demonstrated that rapid growth and maturation do not compromise subsequent fecundity. Conclusions Our data suggest that both species have the most rapid sexual maturation and minimum generation time of any vertebrate species, and that rapid maturity does not involve paedogenesis. PMID:24007640

  18. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  19. Recent developments in annual growth lignocellulosics as reinforcing fillers in thermoplastics

    SciTech Connect

    Jacobson, R.E.; Caulfield, D.F.; Rowell, R.M.

    1995-11-01

    Recent interest in reducing the environmental impact of materials is leading to the development of newer agricultural based materials that can reduce the stress to the environment. Several billion pounds of fillers and reinforcements are used annually in the plastics industry and their use is likely to increase, to reduce the amount of plastics used in a product, with improved compounding technology and new coupling agents. The use of lignocellulosic fibers (eg. kenaf, jute, etc.) as reinforcing fillers in plastics has generated significant interest in recent years. The use of lignocellosic fibers permit the use of high volume fillings due to their lower densities and non-abrasive properties, and therefore reduces the use of plastics in a product. The specific tensile and flexural moduli of a 50% weight of glass fiber-PP injection molded composite and are superior to typical calcium carbonate or talc based PP composites. Results indicate that annual growth lignocellulosic wastes and fibers are viable reinforcing fillers as long as the right processing conditions and aids are used, and for applications where the higher water absorption of the agro-base fiber composite is not critical.

  20. Growth decline and divergent tree ring isotopic composition (δ(13) C and δ(18) O) contradict predictions of CO2 stimulation in high altitudinal forests.

    PubMed

    Gómez-Guerrero, Armando; Silva, Lucas C R; Barrera-Reyes, Miguel; Kishchuk, Barbara; Velázquez-Martínez, Alejandro; Martínez-Trinidad, Tomás; Plascencia-Escalante, Francisca Ofelia; Horwath, William R

    2013-06-01

    Human-induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low-latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high-elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual-resolution) and isotopic composition (decadal-resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood (13) C discrimination, resulting from increasing water use efficiency (20-60%), coinciding with rising atmospheric CO2 . Changes in (13) C discrimination were not followed, however, by shifts in tree ring δ(18) O, indicating site- and species-specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming-induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high-elevation ecosystems to atmospheric change.

  1. [Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern northeast: a case study in Qianshan Mountains].

    PubMed

    Teng, Li; Xing-Yuan, He; Zhen-Ju, Chen

    2014-07-01

    Mongolian oak is one of the most important broad-leaved tree species in forests, Northeast China. Based on the methodology of dendrochronology, the variations of tree ring radial growth of Mongolian oak in Qianshan Mountains, south of Northeast China, were analyzed. Combined with the temperature and precipitation data from meteorological stations since 1951, the relationships between standardized tree ring width chronology and main climatic factors were analyzed. In this region, the precipitation between April and July of the current year had an significant relationship with the tree ring width of Mongolian oak, and was the main factor limiting the radial growth. The extreme maximum temperature of May was also a key factor influencing the tree ring width, which had a significant on the tree ring width of Mongolian oak. The precipitation in April had a significant and stable relationship with the growth of Mongolian oak since the 1950s. The 'divergence problem' was found in the study area, which the sensitivity of tree growth to summer temperature reduced since the 1980s. The tree growth response to temperature showed a seasonal change from summer to spring.

  2. Traffic pollution affects P. pinea growth according to tree ring width and C and N isotopic composition

    NASA Astrophysics Data System (ADS)

    Battipaglia, Giovanna; Marzaioli, Fabio; Lubritto, Carmine; Altieri, Simona; Strumia, Sandro; Cherubini, Paolo; Cotrufo, M. Francesca

    2010-05-01

    Urbanization and industrialization are rapidly growing, as a consequence roads and their associated vehicular traffic exerts major and increasing impacts on adjacent ecosystems. Various studies have shown the impact of vehicle exhausts on road side vegetation through their visible and non-visible effects (Farmer and Lyon 1977, Sarkar et al., 1986, Angold 1997, Nuhoglu 2005) but, presently there is little known about the long term effect of air pollution on vegetation and on trees, in particular. Developing proxies for atmospheric pollution that would be used to identify the physiological responses of trees under roadside car exhaust pollution stress is needed. In this context we propose a novel method to determine the effect of car exhaust pollution on tree growth, coupling classical dendrochronological analyses and analyses of 15N and 13C in tree rings, soils and leaves with tree ring radiocarbon (14C) data. Pinus pinea individuals, adjacent to main roads in the urban area of Caserta (South Italy) and exposed to large amounts of traffic exhausts since 1980, were sampled and the time-related trend in the growth residuals was estimated. We found a consistent decrease in the ring width starting from 1980, with a slight increase in δ13C value, which was considered to be a consequence of environmental stress. No clear pattern was identified in δ15N, while an increasing effect of the fossil fuel dilution on the atmospheric bomb-enriched 14C background was detected in tree rings, as a consequence of the increase in traffic exhausts. Our findings suggest that radiocarbon is a very sensitive tool to investigate small-scale (i.e. traffic exhaust at the level crossing) and large-scale (urban area pollution) induced disturbances. References Angold PG. Impact of a road upon adjacent heathland vegetations: effect on plant species compositions. J Appl Ecol 1997; 34 (2): 409-417. Farmer JC, Lyon TDB. Lead in Glasgow street dirt and soil. Sci Tot Environ 1977; 8: 89-93. Nuhoglu

  3. Relationship between the growth of the ring current and the interplanetary quantity. [solar wind energy-magnetospheric coupling parameter correlation with substorm AE index

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.

  4. Analysis of the differential response of five annuals to elevated CO sub 2 during growth

    SciTech Connect

    Garbutt, K. ); Williams, W.E. ); Bazzaz, F.A. )

    1990-06-01

    In order to investigate the effects, without competition, of CO{sub 2} on germination, growth, physiological response, and reproduction, the authors focussed on co-occurring species that are prominent members of an annual community in Illinois. Five species of old field annual plants - Abutilon theophrasti (C{sub 3}), Amaranthus retroflexus (C{sub 4}), Ambrosia artemisiifolia (C{sub 3}), Chenopodium album (C{sub 3}), and Setaria faberii (C{sub 4}) - were grown for their entire life cycle as individuals at CO{sub 2} concentration of 350 {mu}L/O, 500 {mu}L/L, and 700 {mu}L/L. Emergence time, growth rate, shoot water status, photosynthesis, conductance, flowering time, nitrogen content, and biomass and reproductive biomass were measured. There was no detectable effect of enhanced CO{sub 2} on timing of emergency in any of the species. The three levels of carbon dioxide concentration were shown to produce varying effects on remaining quantities measured in the five different plants. Some of these differences were not statistically significant. The response of most characters had a significant species {times} CO{sub 2} interaction. However, this was not simply caused by the C{sub 3}/C{sub 4} dichotomy. Reproductive biomass (seed, fruits, and flowers) increased with increasing CO{sub 2} in Amaranthus (C{sub 4}) and in Chenopodium and Ambrosia (both C{sub 3}), but there was no change in Setaria (C{sub 4}), and Abutilon (C{sub 3}) showed a peak at 500 {mu}L/L. Species of the same community differed in their response to CO{sub 2}, and these differences may help explain the outcome of competitive interactions among these species above ambient CO{sub 2} levels.

  5. Growth response of temperate mountain grasslands to inter-annual variations of snow cover duration

    NASA Astrophysics Data System (ADS)

    Choler, P.

    2015-02-01

    A remote sensing approach is used to examine the direct and indirect effects of snow cover duration and weather conditions on the growth response of mountain grasslands located above the tree line in the French Alps. Time-integrated normalized difference vegetation index (NDVIint), used as a surrogate for aboveground primary productivity, and snow cover duration were derived from a 13 year long time series of the Moderate Resolution Imaging Spectro-radiometer (MODIS). A regional-scale meteorological forcing that accounted for topographical effects was provided by the SAFRAN-Crocus-MEPRA model chain. A hierarchical path analysis was developed to analyze the multivariate causal relationships between forcing variables and proxies of primary productivity. Inter-annual variations in primary productivity were primarily governed by year-to-year variations in the length of the snow-free period and to a much lesser extent by temperature and precipitation during the growing season. A prolonged snow cover reduces the number and magnitude of frost events during the initial growth period but this has a negligeable impact on NDVIint as compared to the strong negative effect of a delayed snow melting. The maximum NDVI slightly responded to increased summer precipitation and temperature but the impact on productivity was weak. The period spanning from peak standing biomass to the first snowfall accounted for two thirds of NDVIint and this explained the high sensitivity of NDVIint to autumn temperature and autumn rainfall that control the timing of the first snowfall. The ability of mountain plants to maintain green tissues during the whole snow-free period along with the relatively low responsiveness of peak standing biomass to summer meteorological conditions led to the conclusion that the length of the snow-free period is the primary driver of the inter-annual variations in primary productivity of mountain grasslands.

  6. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration

    NASA Astrophysics Data System (ADS)

    Choler, P.

    2015-06-01

    A remote sensing approach is used to examine the direct and indirect effects of snow cover duration and weather conditions on the growth response of mountain grasslands located above the tree line in the French Alps. Time-integrated Normalized Difference Vegetation Index (NDVIint), used as a surrogate for aboveground primary productivity, and snow cover duration were derived from a 13-year long time series of the Moderate-resolution Imaging Spectroradiometer (MODIS). A regional-scale meteorological forcing that accounted for topographical effects was provided by the SAFRAN-CROCUS-MEPRA model chain. A hierarchical path analysis was developed to analyze the multivariate causal relationships between forcing variables and proxies of primary productivity. Inter-annual variations in primary productivity were primarily governed by year-to-year variations in the length of the snow-free period and to a much lesser extent by temperature and precipitation during the growing season. A prolonged snow cover reduces the number and magnitude of frost events during the initial growth period but this has a negligible impact on NDVIint as compared to the strong negative effect of a delayed snow melting. The maximum NDVI slightly responded to increased summer precipitation and temperature but the impact on productivity was weak. The period spanning from peak standing biomass to the first snowfall accounted for two-thirds of NDVIint and this explained the high sensitivity of NDVIint to autumn temperature and autumn rainfall that control the timing of the first snowfall. The ability of mountain plants to maintain green tissues during the whole snow-free period along with the relatively low responsiveness of peak standing biomass to summer meteorological conditions led to the conclusion that the length of the snow-free period is the primary driver of the inter-annual variations in primary productivity of mountain grasslands.

  7. Microbial growth on pall rings: a problem when upgrading biogas with the water-wash absorption technique.

    PubMed

    Tynell, Asa; Börjesson, Gunnar; Persson, Margareta

    2007-01-01

    Biogas is upgraded using an absorption with water-wash technique by 11 of a total of 14 upgrading plants in Sweden. However, problems with microbial growth on the pall rings in the absorption column, and in one case in the desorption column, have a negative impact on the upgrading of raw gas to vehicle gas. Five of the nine biogas plants studied here have experienced problems with microbial growth. The objectives of this study were to identify such microbial growth and to determine possible factors for its control, in order to provide recommendations for process management. A questionnaire was sent out and visits were made to the upgrading plants to collect information about the upgrading process. Phospholipid fatty acid (PLFA) analysis was performed to determine microbial biomass and community structure in samples from four upgrading plants. In samples from two of the plants, methane-oxidizing bacteria (type I methanotrophs) were indicated, while samples from one of the other plants showed biomarkers indicating actinomycetes. Factors affecting development of microbial growth were found to be water quality and the pH and temperature of the process water. Plants that used wastewater in the upgrading process experienced far more problems than those using clean water of drinking quality.

  8. Tree-ring stable isotope and growth impacts of climate variability: future implications for prairie-forest ecotones

    NASA Astrophysics Data System (ADS)

    Reed, Alexis S.; Billings, Sharon A.

    2010-05-01

    Shifts in prairie-forest ecotones are expected with forecasted global climate change. Understanding how co-occurring tree species respond to environmental variability may help in understanding species responses and potential retraction of tree species under future climate conditions. Contrasting growth-climate relationships derived from tree-rings among co-occurring Quercus macrocarpa, a predominant tree species along the North American prairie-forest ecotone, and Q. rubra, a species generally found in more mesic conditions, suggests a constant growth-climate relationship throughout the life of the tree. For example, no significant difference (P> 0.05) was found between residuals from regression of tree-ring basal area increments and Palmer Drought Severity Index (PDSI) in early or later years of either species, as derived from increment cores. These findings contrast with recent evidence of declines in drought sensitivity in Q. macrocarpa as this species ages, which may be linked to increased atmospheric carbon dioxide levels, and emphasize the need for further understanding of prairie-forest ecotone dynamics. Utilization of δ13C data from α-cellulose will provide further insight into the changing water-use and carbon dynamics in response to climate variability. Used in conjunction with growth-climate relationships, δ13C data may also assist in predicting future drought sensitivity and forest retraction in trees in prairie-forest ecotones. Continued sensitivity to drought regardless of the age of a tree remains an important concern in predicting future species ranges and prairie-forest species composition in the future.

  9. Technetium-99 ((99)Tc) in annual growth segments of knotted wrack (Ascophyllum nodosum).

    PubMed

    Heldal, Hilde Elise; Sjøtun, Kjersti

    2010-10-15

    The distribution of technetium-99 ((99)Tc) in annual growth segments of the brown seaweed Ascophyllum nodosum (Fucales, Phaeophyceae) from the southwestern coast of Norway is examined in samples collected from January to November 2006. A twenty-fold increase in the (99)Tc-concentration from the youngest to the oldest growth segments was found. The concentrations ranged from 42 to 98Bq/kg dry weight (d.w.) and from 964 to 1000Bq/kg d.w. in growth segments formed in 2006 and 1996, respectively. In addition, a seasonal variation in the (99)Tc concentration was observed in the actively growing 2006-segments: concentrations decreased from 98Bq/kg d.w. in April to 54Bq/kg d.w. in June; there was a further reduction from June to August (42Bq/kg d.w.); and, finally there was an increase from August to November (93Bq/kg d.w.). In most of the segments formed between 2000 and 2005, there was a tendency of slightly decreasing (99)Tc-concentrations between June and November but this pattern was not observed for the older growth segments. In order to find an explanation for the non-homogenous distribution of (99)Tc within thalli of A. nodosum, different hypotheses are discussed. Uptake and elimination of (99)Tc appears to be most pronounced in the actively growing segments. To date, such non-homogenous distribution of (99)Tc within thalli of A. nodosum has not been taken into consideration, neither in connection with sample collection nor analysis. This paper shows that special protocols must be followed if A. nodosum is going to be used as a bioindicator for (99)Tc in the marine environment. A sampling strategy is proposed.

  10. δ(13)C and Water Use Efficiency in the Glucose of Annual Pine Tree Rings as Ecological Indicators of the Forests in the Most Industrialized Part of Poland.

    PubMed

    Sensuła, Barbara M

    In this study, stable carbon isotope ratios in the glucose samples were extracted from annual pine tree rings as bio-indicators of contemporary environmental changes in heavily urbanized areas. The sampling sites were located in close proximity to point source pollution emitters, such as a heat and power plant "Łaziska" and steelworks "Huta Katowice" in Silesia (Poland). The analysed samples covered the time span from 1975 to 2012 AD, the time period of the development of industrialization and the modernization in the industrial sector in Poland, similarly as in Eastern Europe. This modernization was connected with EU legislation and the implementation of restrictive governmental regulations on emissions. The carbon isotope discrimination has been proposed as a method for evaluating water use efficiency. The measurements of carbon isotopes were carried out using the continuous flow isotope ratio mass spectrometer coupled to the elemental analyser. The δ(13)C values were calibrated relative to the C-3 and C-5 international standards. Diffuse air pollution caused the variation in δ(13)C and iWUE (the ratio between CO2 assimilation and stomatal conductance) dependency on the type of emitter and some local effects of other human activities. In this study, the first results of water use efficiency in glucose are presented. In the period of time from 1975 to 2012, the water use efficiency values increased from 98 to 122 μmol/mol.

  11. Effects of climatic conditions on annual shoot length and tree-ring width of alpine dwarf pine Pinus pumila in central Japan.

    PubMed

    Takahashi, Koichi; Aoki, Keigo

    2015-07-01

    This study compared the effects of climatic conditions on annual shoot length (ASL) and tree-ring width (TRW) of alpine dwarf pine Pinus pumila in central Japan, by using dendrochronological techniques. Chronologies of ASL (1951-2009) and TRW (1972-2009) were standardized to remove non-climatic signals, and correlation tests were done for non-standardized observed values and standardized indices with monthly temperatures and precipitation. Monthly mean temperatures from March to October, except for July, increased during 1951‒2009; observed values and a standardized index of ASL increased during this period. For the rate of increase in ASL, the standardized index was lower than the observed values. However, these values of TRW showed no trends. The observed values and standardized index of TRW positively correlated with temperatures of the beginning of the growing season of the current year. The observed values of ASL positively correlated with temperatures during the growing season of the previous and current years. However, the standardized index of ASL positively correlated with only June temperatures of the previous and current years. The different results of ASL between observed values and standardized indices indicate that many significant correlations of observed values were attributable to increasing trends of temperature and ASL. This study suggests that standardized ASL of P. pumila tended to increase greater than TRW, that high temperatures at the beginning of the growing season increases ASL and TRW, and that analyzing observed values of ASL may overestimate the effects of temperature on ASL of P. pumila.

  12. Emittance growth in heavy ion rings due to effects of space charge and dispersion

    SciTech Connect

    Barnard, J.J., LLNL

    1998-06-03

    We review the derivation of moment equations which include the effects of space charge and dispersion in bends first presented in ref [1]. These equations generalize the familiar envelope equations to include the dispersive effects of bends. We review the application of these equations to the calculation of the change in emittance resulting from a sharp transition from a straight section to a bend section, using an energy conservation constraint. Comparisons of detailed 2D and 3D simulations of intense beams in rings using the WARP code (refs [2,3]) are made with results obtained from the moment equations. We also compare the analysis carried out in ref [1], to more recent analyses, refs [4,5]. We further examine self-consistent distributions of beams in bends and discuss the relevance of these distributions to the moment equation formulation.

  13. Crystal growth mechanisms in miarolitic cavities in the Lake George ring complex and vicinity, Colorado

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    1999-01-01

    The Crystal Peak area of the Pikes Peak batholith, near Lake George in central Colorado, is world-renowned for its crystals of amazonite (the blue-green variety of microcline) and smoky quartz. Such crystals, collected from individual miarolitic pegmatites, have a remakably small variation in crystal size within each pegmatite, and the shapes of plots of their crystal size distributions (CSDs) are invariably lognormal or close to lognormal in all cases. These observations are explained by a crystal growth mechanism that was governed initially by surface-controlled kinetics, during which crystals tended to grow larger in proportion to their size, thereby establishing lognormal CSDs. Surface-controlled growth was followed by longer periods of supply controlled growth, during which growth rate was predominantly size-independent, consequently preserving the lognormal shapes of the CSDs and the small size variation. The change from surface- to supply controlled growth kinetics may have resulted from an increasing demand for nutrients that exceeded diffusion limitations of the system. The proposed model for crystal growth in this locality appears to be common in the geologic record, and can be used with other information, such as isotopic data, to deduce physico-chemical conditions during crystal formation.

  14. Twisted mannitol crystals establish homologous growth mechanisms for high-polymer and small-molecule ring-banded spherulites.

    PubMed

    Shtukenberg, Alexander G; Cui, Xiaoyan; Freudenthal, John; Gunn, Erica; Camp, Eric; Kahr, Bart

    2012-04-11

    D-Mannitol belongs to a large and growing family of crystals with helical morphologies (Yu, L. J. Am. Chem. Soc.2003, 125, 6380). Two polymorphs of D-mannitol, α and δ, when grown in the presence of additives such as poly(vinylpyrrolidone) (PVP) or D-sorbitol, form ring-banded spherulites composed of handed helical fibrils, where the helix axes correspond to the radial growth directions. The two polymorphs form helices with opposite senses in the presence of PVP but the same sense in the presence of D-sorbitol. The characteristic dimensions of the fibrils, including thickness, aspect ratio, and pitch, were determined by scanning probe and electron microscopies. These values must form the basis of any theory that presupposes what forces give rise to crystal twisting, a problem that has been broached but unsettled in the literature of polymer crystallization. The interdependence of the rhythmic variations of both linear and circular birefringence, as determined by Mueller matrix microscopy, informs the cooperative organization of mannitol fibers. The microstructure of mannitol ring-banded spherulites compares favorably to that of high polymers and is evaluated within the context of current theories of crystal twisting.

  15. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene

    PubMed Central

    Ma, Changping; Song, Huibin; Yu, Lei; Guan, Kaifeng; Hu, Pandi; Li, Yang; Xia, Xuanyan; Li, Jialian; Jiang, Siwen; Li, Fenge

    2016-01-01

    A growing number of reports have revealed that microRNAs (miRNAs) play critical roles in spermatogenesis. Our previous study showed that miR-762 is differentially expressed in immature and mature testes of Large White boars. Our present data shows that miR-762 directly binds the 3′ untranslated region (3′UTR) of ring finger protein 4 (RNF4) and down-regulates RNF4 expression. A single nucleotide polymorphism (SNP) in the RNF4 3′UTR that is significantly associated with porcine sperm quality traits leads to a change in the miR-762 binding ability. Moreover, miR-762 promotes the proliferation of and inhibits apoptosis in porcine immature Sertoli cells, partly by accelerating DNA damage repair and by reducing androgen receptor (AR) expression. Taken together, these findings suggest that miR-762 may play a role in pig spermatogenesis by regulating immature Sertoli cell growth. PMID:27596571

  16. The Influence of Precipitation-Driven Annual Plant Growth on Dust Emission in the Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Reynolds, R. L.; Fulton, R. E.

    2009-12-01

    Sparsely vegetated drylands are an important source for dust emission. However, little detail is known about dust generation in response to timing of precipitation and the consequent effects on soil and vegetation dynamics in these settings. This deficiency is especially acute at intermediate landscape scales, tens of meters to several hundred meters. It is essential to consider dust emission at this scale, because it links dust generation at scales of grains and wind tunnels with regional-scale dust examined using remotely sensed data from satellites. Three sites of slightly different geomorphic settings in the vicinity of Soda (dry) Lake were instrumented (in 1999) with meteorological and sediment transport sensors to measure wind erosion through saltating particle detection during high winds. Changes in vegetation in close proximity to the instrumented sites were bi-annually documented through measurements of plant type, cover, and repeat photographic imagery. Whereas high wind events are the dominant driver of saltation and dust emission, emissive conditions prevail only when annual plants are sparse or absent. Results show that wind erosion and dust emission at two study sites are highly variable and that such variability is dominantly related to vegetation type and cover as influenced by the amount and timing of antecedent precipitation. Secondary controls on dust emission are availability of new sediment related to flood deposits at the sites and seasonally differential wind strength. At sites where annual plants respond quickly and advantageously to precipitation, emissive conditions typically shut down because of vegetation growth within two to three months. This cover of annual plants, even when dead, persists in the desert landscape as a stabilizing agent for varying amounts of time, ten months to three years depending on the amount and vegetation type and subsequent input of precipitation and further annual plant growth. The lasting stabilization effect

  17. Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium

    NASA Astrophysics Data System (ADS)

    Yanqoritha, Nyimas; Turmuzi, Muhammad; Derlini

    2017-05-01

    The appropriate process to resolve sewage contamination which have a high organic using anaerobic technology. Hybrid Upflow Anaerobic Sludge Blanket reactor is one of the anaerobic process which consists of a suspended growth media and attached growth media. The reactor has the ability to work at high load rate, sludge produced easily settles, high biomass and the separation of gas, solid and liquid excelent. The purpose of research is to study the acclimatization process in the reactor of Hybrid Upflow Anaerobic Sludge Blanket using a polyvinl chloride ring as the attached growth medium. Reactor of Hybrid Upflow Anaerobic Sludge Blanket use a working volume of 8.6 L. The operation consisting of 3 L suspended reactor and 5.6 L attached reactor. Acclimatization is conducted by providing the substrate from the smallest concentration of COD up to a concentration that will be processed. During the 50th day, acclimatization process assumed the bacteria begin to work, indicated by the dissolved COD and VSS decrease and biogas production. Due to the wastewater containing the high of protein in consequence operational parameters should be controlled and some precautions should be taken to prevent process partially or totally inhibited.

  18. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  19. Nutrition and Child Growth and Development in Tunisia. Annual Progress Report, September 1, 1971--August 31, 1972.

    ERIC Educational Resources Information Center

    Young, Harben Boutourline

    This annual report of the Yale Project describes the progress made on the nutrition and growth study of Tunisian children from September 1, 1971 through August 31, 1972. The report details: (1) the progress in analysis of the cross-sectional study data, which was completed as of June 30, 1972, and (2) the development of the present longitudinal…

  20. Measuring annual growth using written expression curriculum-based measurement: An examination of seasonal and gender differences.

    PubMed

    Keller-Margulis, Milena A; Mercer, Sterett H; Payan, Anita; McGee, Wendy

    2015-06-01

    The purpose of this study was to examine annual growth patterns and gender differences in written expression curriculum-based measurement (WE-CBM) when used in the context of universal screening. Students in second through fifth grade (n = 672) from 2 elementary schools that used WE-CBM as a universal screener participated in the study. Student writing samples were scored for production-dependent, production-independent, and accurate-production indicators. Results of latent growth models indicate that for most WE-CBM outcome indicators across most grade levels, average growth was curvilinear, with increasing curvilinearity on all indicators as grade level increased. Evidence of gender differences was mixed with girls having higher initial scores on all WE-CBM indicators except for total words written (second and third grades), correct minus incorrect writing sequences (fourth grade only), and percent correct writing sequences (second-fourth grades) where differences were not statistically significant. Despite differences in initial level, there were few gender differences in growth and limited overall between-student variability in linear slope. The results of this study extend research on annual patterns of growth and gender differences in WE-CBM by analyzing all 3 types of WE-CBM indicators, including upper elementary grades, and assessing skills more frequently (i.e., 4 to 5 times in 1 year) than in prior research on annual growth. The findings have implications for universal screening in WE-CBM and for understanding gender differences in writing performance.

  1. Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria.

    PubMed

    Castanheira, Nádia L; Dourado, Ana Catarina; Pais, Isabel; Semedo, José; Scotti-Campos, Paula; Borges, Nuno; Carvalho, Gilda; Barreto Crespo, Maria Teresa; Fareleira, Paula

    2017-05-01

    Multi-strain inoculants have increased potential to accomplish a diversity of plant needs, mainly attributed to its multi-functionality. This work evaluated the ability of a mixture of three bacteria to colonize and induce a beneficial response on the pasture crop annual ryegrass. Pseudomonas G1Dc10 and Paenibacillus G3Ac9 were previously isolated from annual ryegrass and were selected for their ability to perform multiple functions related to plant growth promotion. Sphingomonas azotifigens DSMZ 18530(T) was included due to nitrogen fixing ability. The effects of the bacterial mixture were assessed in gnotobiotic plant inoculation assays and compared with single and dual inoculation treatments. Triple inoculation with 3×10(8) bacteria significantly increased plant dry weight and leaf pigments, indicating improved photosynthetic performance. Plant lipid biosynthesis was enhanced by 65%, mainly due to the rise of linolenic acid, an omega-3 fatty acid with high dietary value. Electrolyte leakage, an indicator of plant membrane stability under stress, was decreased pointing to a beneficial effect by inoculation. Plants physiological condition was more favoured by triple inoculation than by single, although benefits on biomass were only evident relative to non-inoculated plants. The colonization behaviour and coexistence in plant tissues were assessed using FISH and GFP-labelling, combined with confocal microscopy and a cultivation-based approach for quantification. The three strains occupied the same sites, localizing preferentially along root hairs and in stem epidermis. Endophytic colonization was observed as bacteria entered root and stem inner tissues. This study reveals the potential of this mixture of strains for biofertilization, contributing to improve crop productivity and nutritional value.

  2. Nonannual tree rings in a climate-sensitive Prioria copaifera chronology in the Atrato River, Colombia.

    PubMed

    Herrera-Ramirez, David; Andreu-Hayles, Laia; Del Valle, Jorge I; Santos, Guaciara M; Gonzalez, Paula L M

    2017-08-01

    In temperate climates, tree growth dormancy usually ensures the annual nature of tree rings, but in tropical environments, determination of annual periodicity can be more complex. The purposes of the work are as follows: (1) to generate a reliable tree-ring width chronology for Prioria copaifera Griseb. (Leguminoceae), a tropical tree species dwelling in the Atrato River floodplains, Colombia; (2) to assess the climate signal recorded by the tree-ring records; and (3) to validate the annual periodicity of the tree rings using independent methods. We used standard dendrochronological procedures to generate the P. copaifera tree-ring chronology. We used Pearson correlations to evaluate the relationship of the chronology with the meteorological records, climate regional indices, and gridded precipitation/sea surface temperature products. We also evaluated 24 high-precision (14)C measurements spread over a range of preselected tree rings, with assigned calendar years by dendrochronological techniques, before and after the bomb spike in order to validate the annual nature of the tree rings. The tree-ring width chronology was statistically reliable, and it correlated significantly with local records of annual and October-December (OND) streamflow and precipitation across the upper river watershed (positive), and OND temperature (negative). It was also significantly related to the Oceanic Niño Index, Pacific Decadal Oscillation, and the Southern Oscillation Index, as well as sea surface temperatures over the Caribbean and the Pacific region. However, (14)C high-precision measurements over the tree rings demonstrated offsets of up to 40 years that indicate that P. copaifera can produce more than one ring in certain years. Results derived from the strongest climate-growth relationship during the most recent years of the record suggest that the climatic signal reported may be due to the presence of annual rings in some of those trees in recent years. Our study alerts

  3. Tree growth inference and prediction from diameter censuses and ring widths

    Treesearch

    James S. Clark; Michael Wolosin; Michael Dietze; Ines Ibanez; Shannon LaDeau; Miranda Welsh; Brian Kloeppel

    2007-01-01

    Knowledge of tree growth is needed to understand population dynamics (Condit et al. 1993, Fastie 1995, Frelich and Reich 1995, Clark and Clark 1999, Wyckoff and Clark 2002, 2005, Webster and Lorimer 2005), species interactions (Swetnam and Lynch 1993), carbon sequestration (DeLucia et al. 1999, Casperson et al. 2000), forest response to climate change (Cook 1987,...

  4. Growth Patterns of Signet Ring Cell Carcinoma of the Stomach for Endoscopic Resection.

    PubMed

    Kim, Hyunki; Kim, Jie-Hyun; Lee, Yong Chan; Kim, Hoguen; Youn, Young Hoon; Park, Hyojin; Choi, Seung Ho; Noh, Sung Hoon; Gotoda, Takuji

    2015-11-23

    It is difficult to precisely detect the lateral margin during endoscopic submucosal dissection (ESD) for signet ring cell carcinoma (SRC) because SRC often expands to lateral direction through the lamina propria. Thus, the aim of this study was to classify the intramucosal spreading patterns of SRC and to analyze the patients' clinicopathological findings according to the spreading patterns. The intramucosal spreading patterns of SRC were classified as expansive or infiltrative types. A total of 100 surgical and 42 ESD specimens were reviewed. In the surgical specimens, the proportions of expansive and infiltrative types were 44% and 56%, respectively. The infiltrative type was more commonly associated with old age, atrophy, and intestinal metaplasia in surrounding mucosa and the absence of Helicobacter pylori compared with the expansive type. In ESD specimens, the proportions of expansive and infiltrative types were each 50%. When lateral margin-positive lesions were compared with -negative lesions, larger size, residual lesion, and the lack of a neutrophil infiltration were more significantly associated with lateral margin-positive lesions. All cases with residual tumors in lateral margin-positive lesions were classified as the infiltrative type. SRC surrounded with atrophy and/or intestinal metaplasia often spreads subepithelially in the margin. This finding may suggest that a larger safety margin is necessary in this type during ESD.

  5. Telemetry carrier ring and support

    NASA Technical Reports Server (NTRS)

    Wakeman, Thomas G. (Inventor)

    1992-01-01

    A telemetry carrier ring for use in a gas turbine engine includes an annular support ring connected to the engine and an annular carrier ring coupled to the support ring, each ring exhibiting different growth characteristics in response to thermal and mechanical loading. The carrier ring is coupled to the support ring by a plurality of circumferentially spaced web members which are relatively thin in an engine radial direction to provide a predetermined degree of radial flexibility. the web members have a circumferential width and straight axial line of action selected to transfer torque and thrust between the support ring and the carrier ring without substantial deflection. The use of the web members with radial flexibility provides compensation between the support ring and the carrier ring since the carrier ring grows at a different rate than the supporting ring.

  6. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress. © 2013 the Anatomical Society and John Wiley & Sons Ltd.

  7. Intra-annual response of tree growth to climate in temperate forests: larger implications of fine-scale responses

    NASA Astrophysics Data System (ADS)

    McMahon, S.; Parker, G. G.

    2013-12-01

    Tree growth is a key component in the movement of carbon through terrestrial ecosystems. Although correlating annual growth rates to temperature an precipitation averages is the most common approach to extrapolating climate sensitivities, individual trees respond to weather at a much finer temporal scale. This response, further, is sensitive to many environmental factors and that sensitivity can depend on species, individual location in the species range, or size of the individual among other factors. Using weekly and bi-weekly measurements of dendrometer bands on 100 trees in three sites in the eastern US (Massachusetts, Virginia, and Maryland) over four years, we fit functional forms to intra-annual growth and compared patterns in productivity response to daily temperature and water balance information. We also determined phenological patterns in growth initiation, cessation, and maximum rate. We found that across size classes and species, trees respond to high temperatures and minor droughts by pausing in diameter increase. Although water retention may contribute some to this pattern, large differences in end-of-year biomass gain demonstrate a clear relationship between these pauses and overall annual carbon gain. Species did show some distinct patterns in this sensitivity and the overall phenology of growth. Further, the growing season as defined by when the majority of biomass increase actually occurred was much smaller than the leaf-out season indicating that droughts and heat-waves in a key subset of the green season can have a disproportionate effect on tree carbon uptake and forest carbon balance.

  8. Tree growth and its climate signal along latitudinal and altitudinal gradients: comparison of tree rings between Finland and the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lyu, Lixin; Suvanto, Susanne; Nöjd, Pekka; Henttonen, Helena M.; Mäkinen, Harri; Zhang, Qi-Bin

    2017-06-01

    Latitudinal and altitudinal gradients can be utilized to forecast the impact of climate change on forests. To improve the understanding of how these gradients impact forest dynamics, we tested two hypotheses: (1) the change of the tree growth-climate relationship is similar along both latitudinal and altitudinal gradients, and (2) the time periods during which climate affects growth the most occur later towards higher latitudes and altitudes. To address this, we utilized tree-ring data from a latitudinal gradient in Finland and from two altitudinal gradients on the Tibetan Plateau. We analysed the latitudinal and altitudinal growth patterns in tree rings and investigated the growth-climate relationship of trees by correlating ring-width index chronologies with climate variables, calculating with flexible time windows, and using daily-resolution climate data. High latitude and altitude plots showed higher correlations between tree-ring chronologies and growing season temperature. However, the effects of winter temperature showed contrasting patterns for the gradients. The timing of the highest correlation with temperatures during the growing season at southern sites was approximately 1 month ahead of that at northern sites in the latitudinal gradient. In one out of two altitudinal gradients, the timing for the strongest negative correlation with temperature at low-altitude sites was ahead of treeline sites during the growing season, possibly due to differences in moisture limitation. Mean values and the standard deviation of tree-ring width increased with increasing mean July temperatures on both types of gradients. Our results showed similarities of tree growth responses to increasing seasonal temperature between latitudinal and altitudinal gradients. However, differences in climate-growth relationships were also found between gradients due to differences in other factors such as moisture conditions. Changes in the timing of the most critical climate variables

  9. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO2 assimilation and growth in Douglas-fir

    EPA Science Inventory

    Swiss needle cast (SNC) is a fungal disease of Douglas-fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree-rings of Douglas-fir and a non-susceptible...

  10. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO2 assimilation and growth in Douglas-fir

    EPA Science Inventory

    Swiss needle cast (SNC) is a fungal disease of Douglas-fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree-rings of Douglas-fir and a non-susceptible...

  11. Effect of growth ring orientation and placement of earlywood and latewood on MOE and MOR of very-small clear Douglas-fir beams.

    Treesearch

    Amy T. Grotta; Robert J. Leichti; Barbara L. Gartner; G.R. Johnson

    2005-01-01

    ASTM standard sizes for bending tests (either 50 x 50 mm or 25 x 25 mm in cross-section) are not always suitable for research purposes that characterize smaller sections of wood. Moreover, the ASTM standards specify loading the sample on the longitudinal-tangential surface. If specimens are small enough, then the effects of both growth-ring orientation and whether...

  12. Studies and calculations of transverse emittance growth in high-energy proton storage rings

    SciTech Connect

    Mane, S.R.; Jackson, G.

    1989-03-01

    In the operation of proton-antiproton colliders, an important goal is to maximize the integrated luminosity. During such operations in the Fermilab Tevatron, the transverse beam emittances were observed to grow unexpectedly quickly, thus causing a serious reduction of the luminosity. We have studied this phenomenon experimentally and theoretically. A formula for the emittance growth rate, due to random dipole kicks, is derived. In the experiment, RF phase noise of known amplitude was deliberately injected into the Tevatron to kick the beam randomly, via dispersion at the RF cavities. Theory and experiment are found to agree reasonably well. We also briefly discuss the problem of quadrupole kicks. 14 refs., 2 figs., 3 tabs.

  13. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth

    PubMed Central

    Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland

    2015-01-01

    Intercellular bridges called “ring canals” (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs’ anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin–containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs’ anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin–dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth. PMID:26424451

  14. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth.

    PubMed

    Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland

    2015-10-13

    Intercellular bridges called "ring canals" (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs' anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin-containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs' anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin-dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth.

  15. Density, growth and annual food consumption of gobiid fish in the saline Lake Grevelingen, The Netherlands

    NASA Astrophysics Data System (ADS)

    Doornbos, G.; Twisk, F.

    Within the scope of a study of the carbon budget of the 108 km 2 saline Lake Grevelingen, investigations were made on density, mortality, growth and food consumption of the main gobiid fish during the period 1980 to 1982. In August 1980 the O-group of Pomatoschistus minutus was estimated at 424 million individuals (on average 3.9 fishes per m 2) with a biomass of 203 tons FW. In 1981 and 1982 peak numbers were less high. O-group P. microps accounted for 282 million individuals (2.6 fishes per m 2) and 133 tons FW in September 1981. By far the highest density was found in the 0 to 0.6 m zone, 15 common gobies per m 2 (7 g FW·m -2). With approximately 5.1 million individuals (13 tons FW) Gobius niger was most abundant in 1982. For adult G. niger a monthly mortality of 27% was estimated. Mortality rates in P. minutus and P. microps were found to be fairly constant over the year. The estimated rates of annual mortality of 99.9% (˜46% per month) and 99.996% (˜57% per month), respectively, appear to be much higher than recorded for estuarine populations. Approximately 60% of the decline in numbers of demersal gobiid fish could be accounted for by the predation of two species of flatfish and two species of piscivorous birds. Young of the year of over 20 mm total length of both species were first caught in June. At the end of the first growing season, the average length and weight of P. microps was 39 mm and 0.6 g FW. In their second year they attained an average size of 51 mm. In O-group P. minutus, the 1980 and 1981 year classes reached an average length of 45 mm and 57 mm, respectively. In their second year, however, the difference disappeared and the mean length in both classes approximated 62 mm. Juvenile G. niger were first caught in August at a length of approximately 3.5 cm. They attained an average size of 4 to 5 cm in the first year, 8 to 8.5 cm in the second and 11 to 12.5 cm in the third year. The maximum production of P. minutus and P. microps, although

  16. Tree ring record chronicles major Mesoamerican droughts

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-05-01

    A new tree ring record chronicles major Mesoamerican droughts in the past millennium that may have contributed to the decline of some pre-Hispanic civilizations. Although there is other evidence of droughts during the past millennium, the paleoclimate record had gaps. Stahle et al. used core samples from Montezuma bald cypress trees found in Barranca de Amealco, Querétaro, Mexico, to develop a 1238-year tree ring chronology. They reconstructed the soil moisture record from the tree ring growth patterns. The new record provides the first dated, annually resolved climate record for Mexico and Central America spanning this time period.(Geophysical Research Letters, doi:10.1029/2010GL046472, 2011)

  17. Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using δ(15) N values from bone growth rings.

    PubMed

    Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Peckham, S Hoyt; Avens, Larisa; Kurle, Carolyn M

    2017-05-01

    Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ(15) N) patterns that differentiate distinct ocean regions to create a 'regional isotope characterization', analysed the δ(15) N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the

  18. Discounting Report, 2012: Growth in Discounting Slows as Economy Improves. Ninth Annual Comparative Research Study

    ERIC Educational Resources Information Center

    Noel-Levitz, Inc, 2012

    2012-01-01

    This annual report summarizes the previous fall's outcomes and long-term trends for a sizable sample of private colleges and universities across the United States. The report is based on the annually aggregated freshman data of institutions that are currently partnering with Noel-Levitz to strategically manage more than $2 billion in institutional…

  19. Estimates of annual survival, growth, and recruitment of a white-tailed ptarmigan population in Colorado over 43 years

    USGS Publications Warehouse

    Wann, Greg; Aldridge, Cameron L.; Braun, Clait E.

    2014-01-01

    Long-term datasets for high-elevation species are rare, and considerable uncertainty exists in understanding how high-elevation populations have responded to recent climate warming. We present estimates of demographic vital rates from a 43-year population study of white-tailed ptarmigan (Lagopus leucura), a species endemic to alpine habitats in western North America. We used capture-recapture models to estimate annual rates of apparent survival, population growth, and recruitment for breeding-age ptarmigan, and we fit winter weather covariates to models in an attempt to explain annual variation. There were no trends in survival over the study period but there was strong support for age and sex effects. The average rate of annual growth suggests a relatively stable breeding-age population ( λ ¯ = 1.036), but there was considerable variation between years for both population growth and recruitment rates. Winter weather covariates only explained a small amount of variation in female survival and were not an important predictor of male survival. Cumulative winter precipitation was found to have a quadratic effect on female survival, with survival being highest during years of average precipitation. Cumulative winter precipitation was positively correlated with population growth and recruitment rates, although this covariate only explained a small amount of annual variation in these rates and there was considerable uncertainty among the models tested. Our results provide evidence for an alpine-endemic population that has not experienced extirpation or drastic declines. However, more information is needed to understand risks and vulnerabilities of warming effects on juveniles as our analysis was confined to determination of vital rates for breeding-age birds.

  20. How to make a tree ring: Coupling stem water flow and cambial activity in mature Alpine conifers

    NASA Astrophysics Data System (ADS)

    Peters, Richard L.; Frank, David C.; Treydte, Kerstin; Steppe, Kathy; Kahmen, Ansgar; Fonti, Patrick

    2017-04-01

    Inter-annual tree-ring measurements are used to understand tree-growth responses to climatic variability and reconstruct past climate conditions. In parallel, mechanistic models use experimentally defined plant-atmosphere interactions to explain past growth responses and predict future environmental impact on forest productivity. Yet, substantial inconsistencies within mechanistic model ensembles and mismatches with empirical data indicate that significant progress is still needed to understand the processes occurring at an intra-annual resolution that drive annual growth. However, challenges arise due to i) few datasets describing climatic responses of high-resolution physiological processes over longer time-scales, ii) uncertainties on the main mechanistic process limiting radial stem growth and iii) complex interactions between multiple environmental factors which obscure detection of the main stem growth driver, generating a gap between our understanding of intra- and inter-annual growth mechanisms. We attempt to bridge the gap between inter-annual tree-ring width and sub-daily radial stem-growth and provide a mechanistic perspective on how environmental conditions affect physiological processes that shape tree rings in conifers. We combine sub-hourly sap flow and point dendrometer measurements performed on mature Alpine conifers (Larix decidua) into an individual-based mechanistic tree-growth model to simulate sub-hourly cambial activity. The monitored trees are located along a high elevational transect in the Swiss Alps (Lötschental) to analyse the effect of increasing temperature. The model quantifies internal tree hydraulic pathways that regulate the turgidity within the cambial zone and induce cell enlargement for radial growth. The simulations are validated against intra-annual growth patterns derived from xylogenesis data and anatomical analyses. Our efforts advance the process-based understanding of how climate shapes the annual tree-ring structures

  1. Model-based analysis on the relationship between production and tree-ring growth in Japanese conifer-hardwood mixed forests

    NASA Astrophysics Data System (ADS)

    Koide, D.; Ito, A.

    2015-12-01

    Forest productivity is a basic and important component of terrestrial material flow and its importance increases according to recent climate warming and the increase in atmospheric-CO2 concentrations. Forest productivity study progresses through measurement by eddy-covariance data from flux tower and prediction by terrestrial ecosystem models. However, flux tower observation has spatiotemporal bias and limitation. On the other hand, tree-ring data have a close connection with forest ecosystem productivity. Compared to flux tower observation, we can collect tree-ring data from a larger number of sites and longer time scales. Comparisons between tree-ring observation and model-estimated productivity is important to reveal underlying mechanisms of forest ecosystem productivity and growth in wide spatiotemporal scale. This study aimed at revealing the relationship between temporal changes in tree-ring data and estimated forest ecosystem productivity in Japanese conifer-hardwood mixed forest. We also addressed climatic bias in the relationship by comparing between sites at different climatic conditions. Tree-ring data of Sakhalin spruce (Picea glehnii) were obtained from the International Tree Ring Data Bank. Six sites on the Hokkaido island (northern island of Japan) were selected for the present analysis. The Vegetation Integrated SImulator for Trace gasses (VISIT) model was validated by comparing with carbon flux data from Asia flux network sites. Past climatic parameters were obtained from ERA-20C reanalysis data from the European Center for Medium-range Weather Forecasts. Correlation between basal area increment and net ecosystem productivity was highest in the coldest site but this correlation weakened in warmer sites. This result implies that long-term growth trend was mainly restricted by cold stress associated with productivity reduction in colder sites but this factor is less important and other factors exert influence in warmer sites.

  2. Statistical methodologies for tree-ring research to understand the climate-growth relationships over time and space

    EPA Science Inventory

    The International Tree-Ring Database is a valuable resource for studying climate change and its effects on terrestrial ecosystems over time and space. We examine the statistical methods in current use in dendroclimatology and dendroecology to process the tree-ring data and make ...

  3. Statistical methodologies for tree-ring research to understand the climate-growth relationships over time and space

    EPA Science Inventory

    The International Tree-Ring Database is a valuable resource for studying climate change and its effects on terrestrial ecosystems over time and space. We examine the statistical methods in current use in dendroclimatology and dendroecology to process the tree-ring data and make ...

  4. Annual Enrollment Report: Growth in Number of Students Studying Journalism and Mass Communication Slows.

    ERIC Educational Resources Information Center

    Becker, Lee B.; Vlad, Tudor; Huh, Jisu; Daniels, George L.

    2002-01-01

    Provides the key findings of the 2001 Annual Survey of Journalism and Mass Communication Enrollments. Shows that undergraduate enrollments continued to grow while graduate enrollments declined. Discusses degrees granted and race, ethnicity, and gender factors. (PM)

  5. [Annual variation of different phosphorus forms and response of algae growth in Meiliang bay of Taihu Lake].

    PubMed

    Wang, Ming; Wu, Xiao-fei; Li, Da-peng; Li, Xiang; Huang, Yong

    2015-01-01

    Based on the monthly investigations of different forms of phosphorus(P) and algae growth from January to December 2013 in Meiliang bay of Taihu Lake, the transformation of different P forms and the relationship between different P forms and algae growth was investigated under the dual conditions of disturbance due to wind and wave and algae growth. Results of the total P(TP), particulate P (PP), dissolved total P(DTP), dissolved inorganic P(DIP) and bioavailable P(BAP) showed that the monthly concentrations reached the maximum in summer and autumn while the minimum in winter and spring. In addition, the algae growth showed the same trends as above. However, no variation was found in the dissolved organic P(DOP) and bioavailable particulate P(BAPP). The bioavailability of PP was only 12.75% from June to October, which was obviously lower than the annual mean (37.14%). It was attributed to the acceleration on the transformation of PP to DTP due to the immobilization of sedimentary P under sediment disturbance and algae adsorption. The percentage of DTP in BAP was up to 69.33% (average), which was obviously higher than the percentage of bioavailable PP (30.66%, average) and the annual mean (56.63%) of DTP during the interval. In addition, the algae bloom appeared in the interval.

  6. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.

    PubMed

    Hines, Jes; Eisenhauer, Nico; Drake, Bert G

    2015-12-01

    Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2. © 2015 John Wiley & Sons Ltd.

  7. Regionally averaged diameter growth in New England forests

    Treesearch

    Robert B. Smith; James W. Hornbeck; C. Anthony Federer; Paul J., Jr. Krusic; Paul J. Krusic

    1990-01-01

    A regional sample of tree-ring measurements was used to determine average annual growth in trees of 10 major species in New England. There have been extended periods of decreasing growth rates in red spruce since about 1960 and in balsam fir since about 1965. The other eight species, which included sugar maple and white pine, showed constant or increasing growth rates...

  8. Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe

    PubMed Central

    Vaganov, Eugene A.; Skomarkova, Marina V.; Knohl, Alexander; Brand, Willi A.; Roscher, Christiane

    2009-01-01

    Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage

  9. Intra-annual variability of anatomical structure and delta(13)C values within tree rings of spruce and pine in alpine, temperate and boreal Europe.

    PubMed

    Vaganov, Eugene A; Schulze, Ernst-Detlef; Skomarkova, Marina V; Knohl, Alexander; Brand, Willi A; Roscher, Christiane

    2009-10-01

    Tree-ring width, wood density, anatomical structure and (13)C/(12)C ratios expressed as delta(13)C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, delta(13)C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29-58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and delta(13)C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The delta(13)C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between delta(13)C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the delta(13)C between late wood and early wood. The results are interpreted in the context of the biochemistry

  10. Tree-ring growth patterns and climatic signals along a vertical transect of larch sites in the Simplon and Rhône Valleys (Switzerland)

    NASA Astrophysics Data System (ADS)

    Riechelmann, Dana F. C.; Esper, Jan

    2017-04-01

    State-of-the-art millennial long temperature reconstructions from the European Alps integrate wood samples of Larix decidua Mill. from the Lötschental and Simplon regions in Switzerland (Büntgen et al., 2005; 2006). Some of the oldest samples that enable the extension of the time-series back into the first millennium AD are obtained from old buildings in Simplon Village, through the precise location of these samples and the elevation of sampling sites remain unknown. We here evaluate the growth characteristics of larch tree-ring width data along a vertical transect in the Simplon and Rhône valleys. 330 trees from nine sites in 985, 1100, 1400, 1575, 1710, 1712, 1900, 2020, and 2150 m asl have been sampled and analysed for their climate signals. The results indicate a stronger temperature signal in the tree-ring width with increasing elevation. The lower the sites the more a drought signal is imprinted in the ring width data. The intermediate site at 1400 m asl does not show any pronounced climate signal. A comparison of growth patterns of living-tree sites with samples from the historical buildings in Simplon Village (Riechelmann et al., 2013) indicates the construction timber to origin from intermediate to higher elevations. We therefore do not expect strong temperature signal from these timbers. References: Büntgen, U., Esper, J., Frank, D.C., Nicolussi, K., Schmidhalter, M., 2005. A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics 25: 141-153. Büntgen, U., Frank, D.C., Nievergelt, D., Esper J., 2006. Summer temperature variations in the European Alps, A.D. 755-2004. Journal of Climate 19: 5606-5623. Riechelmann, D.F.C., Schmidhalter, M., Büntgen, U., Esper, J., 2013. Extending a high-elevation larch ring width chronology from the Simplon region in the Swiss Alps over the past millenium. TRACE 11:103-108.

  11. Ecotypic variation in growth responses to simulated herbivory: trade-off between maximum relative growth rate and tolerance to defoliation in an annual plant

    PubMed Central

    Camargo, Iván D.; Tapia-López, Rosalinda; Núñez-Farfán, Juan

    2015-01-01

    It has been hypothesized that slow-growing plants are more likely to maximize above-ground biomass and fitness when defoliated by herbivores than those with an already high relative growth rate (RGR). Some populations of the annual herb Datura stramonium L. can tolerate foliar damage better than others. The physiological basis of this difference is examined here in a comparative study of two ecotypes that differ in tolerance and maximum growth rate, using a growth analytical approach. One hundred and fifty-four plants of each ecotype grown under controlled conditions were suddenly defoliated (35 % of total leaf area removed) and a similar sample size of plants remained undefoliated (control). Ontogenetic plastic changes in RGR and its growth components [net assimilation rate (NAR), specific leaf area and leaf weight ratio (LWR)] after defoliation were measured to determine whether these plastic changes maximize plant growth and fitness. Different ontogenetic phases of the response were discerned and increased RGR of defoliated plants was detected at the end of the experimental period, but brought about by a different growth component (NAR or LWR) in each ecotype. These changes in RGR are putatively related to increases in fitness in defoliated environments. At the intra-specific scale, data showed a trade-off between the ability to grow under benign environmental conditions and the ability to tolerate resource limitation due to defoliation. PMID:25725085

  12. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands.

    PubMed

    Simard, Sonia; Giovannelli, Alessio; Treydte, Kerstin; Traversi, Maria Laura; King, Gregory M; Frank, David; Fonti, Patrick

    2013-09-01

    The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.

  13. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator.

    PubMed

    Guzzo, Matthew M; Blanchfield, Paul J; Rennie, Michael D

    2017-09-12

    There is a pressing need to understand how ecosystems will respond to climate change. To date, no long-term empirical studies have confirmed that fish populations exhibit adaptive foraging behavior in response to temperature variation and the potential implications this has on fitness. Here, we use an unparalleled 11-y acoustic telemetry, stable isotope, and mark-recapture dataset to test if a population of lake trout (Salvelinus namaycush), a cold-water stenotherm, adjusted its use of habitat and energy sources in response to annual variations in lake temperatures during the open-water season and how these changes translated to the growth and condition of individual fish. We found that climate influenced access to littoral regions in spring (data from telemetry), which in turn influenced energy acquisition (data from isotopes), and growth (mark-recapture data). In more stressful years, those with shorter springs and longer summers, lake trout had reduced access to littoral habitat and assimilated less littoral energy, resulting in reduced growth and condition. Annual variation in prey abundance influenced lake trout foraging tactics (i.e., the balance of the number and duration of forays) but not the overall time spent in littoral regions. Lake trout greatly reduced their use of littoral habitat and occupied deep pelagic waters during the summer. Together, our results provide clear evidence that climate-mediated behavior can influence the dominant energy pathways of top predators, with implications ranging from individual fitness to food web stability.

  14. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator

    PubMed Central

    Blanchfield, Paul J.; Rennie, Michael D.

    2017-01-01

    There is a pressing need to understand how ecosystems will respond to climate change. To date, no long-term empirical studies have confirmed that fish populations exhibit adaptive foraging behavior in response to temperature variation and the potential implications this has on fitness. Here, we use an unparalleled 11-y acoustic telemetry, stable isotope, and mark–recapture dataset to test if a population of lake trout (Salvelinus namaycush), a cold-water stenotherm, adjusted its use of habitat and energy sources in response to annual variations in lake temperatures during the open-water season and how these changes translated to the growth and condition of individual fish. We found that climate influenced access to littoral regions in spring (data from telemetry), which in turn influenced energy acquisition (data from isotopes), and growth (mark–recapture data). In more stressful years, those with shorter springs and longer summers, lake trout had reduced access to littoral habitat and assimilated less littoral energy, resulting in reduced growth and condition. Annual variation in prey abundance influenced lake trout foraging tactics (i.e., the balance of the number and duration of forays) but not the overall time spent in littoral regions. Lake trout greatly reduced their use of littoral habitat and occupied deep pelagic waters during the summer. Together, our results provide clear evidence that climate-mediated behavior can influence the dominant energy pathways of top predators, with implications ranging from individual fitness to food web stability. PMID:28808011

  15. iTREE: Long-term variability of tree growth in a changing environment - identifying physiological mechanisms using stable C and O isotopes in tree rings.

    NASA Astrophysics Data System (ADS)

    Siegwolf, R. T. W.; Buchmann, N.; Frank, D.; Joos, F.; Kahmen, A.; Treydte, K.; Leuenberger, M.; Saurer, M.

    2012-04-01

    Trees play are a critical role in the carbon cycle - their photosynthetic assimilation is one of the largest terrestrial carbon fluxes and their standing biomass represents the largest carbon pool of the terrestrial biosphere. Understanding how tree physiology and growth respond to long-term environmental change is pivotal to predict the magnitude and direction of the terrestrial carbon sink. iTREE is an interdisciplinary research framework to capitalize on synergies among leading dendroclimatologists, plant physiologists, isotope specialists, and global carbon cycle modelers with the objectives of reducing uncertainties related to tree/forest growth in the context of changing natural environments. Cross-cutting themes in our project are tree rings, stable isotopes, and mechanistic modelling. We will (i) establish a European network of tree-ring based isotope time-series to retrodict interannual to long-term tree physiological changes, (ii) conduct laboratory and field experiments to adapt a mechanistic isotope model to derive plant physiological variables from tree-ring isotopes, (iii) implement this model into a dynamic global vegetation model, and perform subsequent model-data validation exercises to refine model representation of plant physiological processes and (iv) attribute long-term variation in tree growth to plant physiological and environmental drivers, and identify how our refined knowledge revises predictions of the coupled carbon-cycle climate system. We will contribute to i) advanced quantifications of long-term variation in tree growth across Central Europe, ii) novel long-term information on key physiological processes that underlie variations in tree growth, and iii) improved carbon cycle models that can be employed to revise predictions of the coupled carbon-cycle climate system. Hence iTREE will significantly contribute towards a seamless understanding of the responses of terrestrial ecosystems to long-term environmental change, and ultimately

  16. Tree-ring based history of climate and disease in western Oregon forests

    EPA Science Inventory

    Annual tree-ring width data are often used to make inferences of past climate and the spatiotemporal climate-growth relationships. However, the climatic signal may be confounded with non-climatic signals such as disease or pest disturbances at unknown times in the past. Signal e...

  17. Tree-ring based history of climate and disease in western Oregon forests

    EPA Science Inventory

    Annual tree-ring width data are often used to make inferences of past climate and the spatiotemporal climate-growth relationships. However, the climatic signal may be confounded with non-climatic signals such as disease or pest disturbances at unknown times in the past. Signal e...

  18. Trace elements in tree rings: evidence of recent and historical air pollution

    SciTech Connect

    Bates, C.F. III; McLaughlin, S.B.

    1984-05-04

    Annual growth rings from short-leaf pine trees in the Great Smoky Mountains National Park show suppressed growth and increased iron content between 1863 and 1912, a period of smelting activity and large sulfur dioxide releases at Copperhill, Tennessee, 88 kilometers upwind. Similar growth suppression and increases of iron and other metals were found in rings formed in the past 20 to 25 years, a period when regional fossil fuel combustion emissions increased about 200 percent. Metals concentrations in phloem and cambium are high, but whether they exceed toxic thresholds for these tissues is not known.

  19. Biomonitoring of environmental pollution using growth tree rings of Tipuana tipu: Quantification by synchrotron radiation total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Geraldo, S. M.; Canteras, F. B.; Moreira, S.

    2014-02-01

    Currently, many studies use the bioindicators to qualitatively and/or quantitatively measure pollution. The analyses of tree growth rings represent one such bioindicator as changes in the environment are often recorded as impressions in the wood. The main objective of the present study is to examine the growth rings of Tipuana tipu - a member of the Leguminosae family that is native to Argentina and Bolivia and was introduced in Brazil as an ornamental plant - for potentially toxic elements. T. tipu is one of the most common trees in the urban landscape of Sao Paulo city and would provide an accurate reflection of environment changes. Tree ring samples previously dated using Synchrotron Radiation Total Reflection X-ray Fluorescence were collected from strategic locations in Sao Paulo. These locations include Piracicaba (SP) that has little access and small flow traffic and the campus of the University of São Paulo. Some trace elements present concentrations higher than considered as normal in some periods. In São Paulo city, samples collected from the campus of University of São Paulo (Butantã), showed the highest toxicity, with concentrations above the tolerable limit for the elements: Cr, Cu, and Pb. For the samples collected in Piracicaba city, one sample presented highest concentrations for the majority of the elements when compared to the other four samples collected at the same place, exceeding the toxicity limits for: Cr, Ni, Cu, and Pb.

  20. High Variability of the Metal Content of Tree Growth Rings as Measured by Synchrotron Micro X-ray Fluorescence Spectrometry

    SciTech Connect

    Martin,R.; Naftel, S.; Macfie, S.; Jones, K.; Feng, H.; Trembley, C.

    2006-01-01

    Synchrotron radiation analysis was used to investigate the metal content of tree rings collected from paper birch, Betula papyrifera Marsh, on transects downwind from two metal smelters (nickel and copper). Individual trees reflected changes in ring metal content with time, which may be presumed to represent changes in local metal bioavailability. However, between-tree variations were large and no statistically significant differences in metal content as a function of time were found within or between sites. Although concentrations of both total and exchangeable copper and nickel in the soil increased with proximity to the respective smelter, this pattern was reflected only in the nickel content of rings near the nickel smelter; copper content did not vary with distance from either smelter. The sites did differ with respect to lead, manganese and zinc content of the rings, which may be related to pH. In conclusion, the variability between trees at each site suggests that dendroanalysis is a poor method for evaluating metal exposure at a large (site) scale. Tree ring metal content may be used to evaluate the metal uptake by individual trees but metal mobility in the stem makes it difficult to establish a reliable chronology.

  1. Time scaling of tree rings cell production in Siberia

    NASA Astrophysics Data System (ADS)

    Popkova, Margarita; Babushkina, Elena; Tychkov, Ivan; Shishov, Vladimir; Vaganov, Eugene

    2016-04-01

    It is assumed that an annual tree-ring growth is adequately determined by a linear function of local or regional precipitation and temperature with a set of coefficients that are temporally invariant. But often that relations are non-linear. The process-based tree-ring VS-model can be used to resolve the critical processes linking climate variables to tree-ring formation. This work describes a new block of VS-model which allows to estimate a cell production in tree rings and transfer it into time scale based on the simulated integral growth rates of the model. In the algorithm of time identification for cell production we used a integral growth rates simulated by the VS-model for each growing season. The obtained detailed approach with a calculation of the time of each cell formation improves significantly the date accuracy of new cell formation in growing season. As a result for each cell in the tree-ring we estimate the temporal moment of the cell production corresponded to the seasonal growth rate in the same time scale. The approach was applied and tested for the cell measurements obtained for Scots pine (Pinus sylvestris) for the period 1964-2013 in Malaya Minusa river (Khakassia, South Siberia). The work was supported by the Russian Science Foundation (RSF # 14-14-00219)

  2. Effects of Agaricus lilaceps fairy rings on soil aggregation and microbial community structure in relation to growth stimulation of western wheatgrass (Pascopyrum smithii) in Eastern Montana rangeland.

    PubMed

    Caesar-Tonthat, The Can; Espeland, Erin; Caesar, Anthony J; Sainju, Upendra M; Lartey, Robert T; Gaskin, John F

    2013-07-01

    Stimulation of plant productivity caused by Agaricus fairy rings has been reported, but little is known about the effects of these fungi on soil aggregation and the microbial community structure, particularly the communities that can bind soil particles. We studied three concentric zones of Agaricus lilaceps fairy rings in Eastern Montana that stimulate western wheatgrass (Pascopyrum smithii): outside the ring (OUT), inside the ring (IN), and stimulated zone adjacent to the fungal fruiting bodies (SZ) to determine (1) soil aggregate proportion and stability, (2) the microbial community composition and the N-acetyl-β-D-glucosaminidase activity associated with bulk soil at 0-15 cm depth, (3) the predominant culturable bacterial communities that can bind to soil adhering to wheatgrass roots, and (4) the stimulation of wheatgrass production. In bulk soil, macroaggregates (4.75-2.00 and 2.00-0.25 mm) and aggregate stability increased in SZ compared to IN and OUT. The high ratio of fungal to bacteria (fatty acid methyl ester) and N-acetyl-β-D-glucosaminidase activity in SZ compared to IN and OUT suggest high fungal biomass. A soil sedimentation assay performed on the predominant isolates from root-adhering soil indicated more soil-binding bacteria in SZ than IN and OUT; Pseudomonas fluorescens and Stenotrophomonas maltophilia isolates predominated in SZ, whereas Bacillus spp. isolates predominated in IN and OUT. This study suggests that growth stimulation of wheatgrass in A. lilaceps fairy rings may be attributed to the activity of the fungus by enhancing soil aggregation of bulk soil at 0-15 cm depth and influencing the amount and functionality of specific predominant microbial communities in the wheatgrass root-adhering soil.

  3. Growth Regulator Herbicides Prevent Invasive Annual grass Seed Production Under Field Conditions

    USDA-ARS?s Scientific Manuscript database

    Growth regulator herbicides, such as 2,4-D, dicamba, picloram, and aminopyralid, are commonly used to control broadleaf weeds in grasslands, non-croplands and cereal crops (e.g. wheat, barley). If applied to cereals at late growth stages, while the grasses are developing reproductive parts, the her...

  4. The influence of summertime fog and overcast clouds on the growth of a coastal Californian pine: a tree-ring study.

    PubMed

    Williams, A Park; Still, Christopher J; Fischer, Douglas T; Leavitt, Steven W

    2008-06-01

    The coast of California is home to numerous rare, endemic conifers and other plants that are limited in distribution by drought sensitivity and the summer-dry climate that prevails across most of the state. Ecologists have long assumed that some coastal plant populations survived the early Pleistocene transition to a warmer and drier environment because they benefit from frequent fog and stratus clouds that provide water and shade during the rainless summer. One such population is that of Torrey pine (Pinus torreyana ssp. Insularis) on Santa Rosa Island in Channel Islands National Park. Here we report that the tree-ring width record from this population indicates strong growth sensitivities to summer fog drip and cloud shading. We quantified the effects of summer cloud cover by comparing ring-width indices to coastal airport cloud-frequency records (1944-2004). For the first time observed, summertime cloud frequency correlated positively with ring-width indices, regardless of whether the effect of rainfall was first removed from the ring-width record. The effect of ground-level fog was strongest in July early mornings (03:00 PST, R(2) = 0.262, P < 0.0002). The effect of clouds high enough to provide shade but not fog water was also strongest in July, but climbed steadily throughout the day before becoming strongest in late afternoon (16:00-18:00 PST, R(2) = 0.148, P < 0.004). Correlations were substantially stronger in years with higher soil moisture, suggesting that growth response to summer clouds is strongly affected by pre-summer rainfall. A change in the height and/or timing of coastal cloud formation with climate change would likely affect this and other populations of California's coastal vegetation.

  5. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  6. Arctic tree rings as recorders of variations in light availability

    NASA Astrophysics Data System (ADS)

    Stine, A. R.; Huybers, P.

    2014-05-01

    Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity.

  7. Arctic tree rings as recorders of variations in light availability.

    PubMed

    Stine, A R; Huybers, P

    2014-05-07

    Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity.

  8. Arctic tree rings as recorders of variations in light availability

    PubMed Central

    Stine, A. R.; Huybers, P.

    2014-01-01

    Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity. PMID:24805143

  9. Development of annualized diameter and height growth equations for red alder: preliminary results.

    Treesearch

    Aaron Weiskittel; Sean M. Garber; Greg Johnson; Doug Maguire; Robert A. Monserud

    2006-01-01

    Most individual-tree based growth and yield models use a 5- to 10-year time step, which can make projections for a fast-growing species like red alder quite difficult. Further, it is rather cumbersome to simulate the effects of intensive silvicultural treatments such as thinning or pruning on a time step longer than one year given the highly dynamic nature of growth...

  10. [Plant growth with limited water]. [Annual report, December 15, 1992--December 14, 1993

    SciTech Connect

    Not Available

    1993-12-01

    We used a soybean seedling system to explore the mechanism of growth limitation by water deficiency (low {Psi}{sub W}). Our prior work had show that (low {Psi}{sub W} inhibited plant growth initially because of a physical limitation to water uptake that appeared to result from a decrease in the {Psi}{sub W} gradient feeding water to the enlarging cells. The gradient was shown to originate from cell wall yielding and was altered primarily at the vascular tissue. In the present grant, we reported the detailed shape of the gradient. We also found that growth could mobilize water from mature tissues in the complete absence of external water using the gradient in {Psi}{sub W}. Growth was maintained by this mobilization. After growth has been inhibited a few hours, metabolic changes occur and a 28kD protein accumulates in the wall fraction of the growth-affected cells. In the present grant, we showed that the mRNA for the protein accumulated in a tissue-specific manner similar to that of the protein, and the accumulation was correlated with the growth response. Other investigators working independently with an acid phosphatase found a deduced amino acid sequence similar to that for the 28kD protein we had published. Biochemical tests showed that the 28kD protein and a related 3lkD protein expressed acid phosphatase activity. We found that the acid phosphatase Of the 28kD protein was in the cell walls of intact plants (in addition to being in the cytoplasm). Current work focuses on the role of this protein. Efforts were made to reverse the growth inhibition at low {Phi}{sub W} by treating growing tissues with low pH buffer, but the protons apparently failed to penetrate the cuticle.

  11. Selections from the ABC 2014 Annual Conference, Philadelphia, Pennsylvania: Let Favorite Assignments Ring: Sharpening Communication Tools and Self and Career Development

    ERIC Educational Resources Information Center

    Whalen, D. Joel; Crenshaw, Cheri; Ortiz, Lorelei A.; Vik, Gretchen N.; Meredith, Michael J.; Deambrosi, Alfredo; Luck, Susan L.; Rausch, Georgi; Canas, Kathryn; Hicks, Nancy; Newman, Amy; Hofacker, Cynthia M.; Webb, Susan Hall; Zizik, Catherine H.

    2015-01-01

    This article, the first of a two-part series, catalogs teaching innovations from the 2014 Association for Business Communication Annual Conference. These 12 assignments debuted during two "My Favorite Assignment" sessions. Learning experiences included job-seeking skills--résumé writing, writing job applications, sharpening interview…

  12. Selections from the ABC 2014 Annual Conference, Philadelphia, Pennsylvania: Let Favorite Assignments Ring: Sharpening Communication Tools and Self and Career Development

    ERIC Educational Resources Information Center

    Whalen, D. Joel; Crenshaw, Cheri; Ortiz, Lorelei A.; Vik, Gretchen N.; Meredith, Michael J.; Deambrosi, Alfredo; Luck, Susan L.; Rausch, Georgi; Canas, Kathryn; Hicks, Nancy; Newman, Amy; Hofacker, Cynthia M.; Webb, Susan Hall; Zizik, Catherine H.

    2015-01-01

    This article, the first of a two-part series, catalogs teaching innovations from the 2014 Association for Business Communication Annual Conference. These 12 assignments debuted during two "My Favorite Assignment" sessions. Learning experiences included job-seeking skills--résumé writing, writing job applications, sharpening interview…

  13. Genetic associations among average annual productivity, growth traits, and stayability: a parallel between Nelore and composite beef cattle.

    PubMed

    Santana, M L; Eler, J P; Bignardi, A B; Ferraz, J B S

    2013-06-01

    This study was conducted to examine the relationship among average annual productivity of the cow (PRODAM), yearling weight (YW), postweaning BW gain (PWG), scrotal circumference (SC), and stayability in the herd for at least 6 yr (STAY) of Nelore and composite beef cattle. Measurements were taken on animals born between 1980 and 2010 on 70 farms located in 7 Brazilian states. Estimates of heritability and genetic and environmental correlations were obtained by Bayesian approach with 5-trait animal models. Genetic trends were estimated by regressing means of estimated breeding values by year of birth. The heritability estimates were between 0.14 and 0.47. Estimates of genetic correlation among female traits (PRODAM and STAY) and growth traits ranged from -0.02 to 0.30. Estimates of genetic correlations ranged from 0.23 to 0.94 among growth traits indicating that selection for these traits could be successful in tropical breeding programs. Genetic correlations among all traits were favorable and simultaneous selection for growth, productivity, and stayability is therefore possible. Genetic correlation between PRODAM and STAY was 0.99 and 0.85 for Nelore and composite cattle, respectively. Therefore, PRODAM and STAY might be influenced by many of the same genes. The inclusion of PRODAM instead of STAY as a selection criterion seems to be more advantageous for tropical breeding programs because the generation interval required to obtain accurate estimates of genetic merit for PRODAM is shorter. Average annual genetic changes were greater in Nelore than in composite cattle. This was not unexpected because the breeding program of composite cattle included a large number of farms, different production environments, and genetic level of the herds and breeds. Thus, the selection process has become more difficult in this population.

  14. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum)

    SciTech Connect

    Evans, Barbara R; Bali, Garima; Reeves, David T; O'Neill, Hugh Michael; Sun, Qining; Shah, Riddhi S; Ragauskas, Arthur

    2014-01-01

    In present paper, we report the production and detailed structural analysis of deuterium-enriched rye grass (Lolium multiflorum) for neutron scattering experiments. An efficient method to produce deuterated biomass was developed by designing hydroponic perfusion chambers. In preliminary studies, the partial deuterated rye samples were grown in increasing levels of D2O to study the seed germination and the level of deuterium incorporation as a function of D2O concentration. Solution NMR method indicated 36.9 % deuterium incorporation in 50 % D2O grown annual rye samples and further significant increase in the deuterium incorporation level was observed by germinating the rye seedlings in H2O and growing in 50 % D2O inside the perfusion chambers. Moreover, in an effort to compare the substrate characteristics related to enzymatic hydrolysis on deuterated and protiated version of biomass, annual rye grown in 50 % D2O was selected for detailed biomass characterization studies. The compositional analyses, degree of polymerization and cellulose crystallinity were compared with its protiated control. The cellulose molecular weight indicated slight variation with deuteration; however, hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration. Besides the minor differences in biomass components, the development of deuterated biomass for neutron scattering application is essential to understand the complex biomass conversion processes.

  15. The dynamic of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrêne, E.; François, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-02-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will condition the response of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study is to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). Combining field measurements and process-based simulations at 49 sites (931 site-years), we assessed the stand biomass growth dependences at both inter-site and inter-annual scales. Specifically, the relative influence of forest C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in stand C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual stand woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. We provide an evaluation of the spatio-temporal dynamics of annual carbon allocation to wood in European forests. Our study supports the premise that European forest growth is under a complex control including both source and sink limitations. The relative influences of the different growth drivers strongly vary across years and spatial ecological gradients. We suggest a

  16. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  17. Ring World

    NASA Image and Video Library

    2007-03-01

    Our robotic emissary, flying high above Saturn, captured this view of an alien copper-colored ring world. The overexposed planet has deliberately been removed to show the unlit rings alone, seen from an elevation of 60 degrees

  18. Neptune Rings

    NASA Image and Video Library

    1999-10-29

    This 591-second exposure of the rings of Neptune were taken with the clear filter by NASA Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged.

  19. Ring Backdrop

    NASA Image and Video Library

    2011-01-03

    Saturn moon Enceladus brightly reflects sunlight before a backdrop of the planet rings and the rings shadows cast onto the planet. NASA Cassini spacecraft captured this snapshot during its flyby of the moon on Nov. 30, 2010.

  20. Spark ignited turbulent flame kernel growth. Annual report, January--December, 1992

    SciTech Connect

    Santavicca, D.A.

    1994-06-01

    Cyclic combustion variations in spark-ignition engines limit the use of dilute charge strategies for achieving low NO{sub x} emissions and improved fuel economy. Results from an experimental study of the effect of incomplete fuel-air mixing (ifam) on spark-ignited flame kernel growth in turbulent propane-air mixtures are presented. The experiments were conducted in a turbulent flow system that allows for independent variation of flow parameters, ignition system parameters, and the degree of fuel-air mixing. Measurements were made at 1 atm and 300 K conditions. Five cases were studied; a premixed and four incompletely mixed cases with 6%, 13%, 24% and 33% RMS (root-mean-square) fluctuations in the fuel/air equivalence ratio. High speed laser shadowgraphy at 4,000 frames-per-second was used to record flame kernel growth following spark ignition, from which the equivalent flame kernel radius as a function of time was determined. The effect of ifam was evaluated in terms of the flame kernel growth rate, cyclic variations in the flame kernel growth, and the rate of misfire. The results show that fluctuations in local mixture strength due to ifam cause the flame kernel surface to become wrinkled and distorted; and that the amount of wrinkling increases as the degree of ifam. Ifam was also found to result in a significant increase in cyclic variations in the flame kernel growth. The average flame kernel growth rates for the premixed and the incompletely mixed cases were found to be within the experimental uncertainty except for the 33%-RMS-fluctuation case where the growth rate is significantly lower. The premixed and 6%-RMS-fluctuation cases had a 0% misfire rate. The misfire rates were 1% and 2% for the 13%-RMS-fluctuation and 24%-RMS-fluctuation cases, respectively; however, it drastically increased to 23% in the 33%-RMS-fluctuation case.

  1. Ring-opening copolymerization of maleic anhydride with epoxides: a chain-growth approach to unsaturated polyesters.

    PubMed

    DiCiccio, Angela M; Coates, Geoffrey W

    2011-07-20

    We report the ring-opening copolymerization of maleic anhydride with a variety of epoxides catalyzed by a chromium(III) salen complex. Quantitative isomerization of the cis-maleate form of all polymers affords the trans-fumarate analogues. Addition of chain transfer reagents yields low M(n), narrow PDI polymer samples. This method provides access to a range of new unsaturated polyesters with versatile functionality, as well as the first synthesis of high molecular weight poly(propylene fumarate).

  2. Positive effects of non-native grasses on the growth of a native annual in a southern california ecosystem.

    PubMed

    Pec, Gregory J; Carlton, Gary C

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem.

  3. Positive Effects of Non-Native Grasses on the Growth of a Native Annual in a Southern California Ecosystem

    PubMed Central

    Pec, Gregory J.; Carlton, Gary C.

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem. PMID:25379790

  4. Constraints to obtaining consistent annual yields in perennial tree crops. I: Heavy fruit load dominates over vegetative growth.

    PubMed

    Smith, Harley M; Samach, Alon

    2013-06-01

    Farmers lack effective methods to achieve and maintain stable production from year to year in many commercial fruit crops. Annual fruit yield within a region often alternates between high and low fruit load and is termed alternate bearing. The underlying cause of alternate bearing is the negative impact of high fruit load on vegetative growth and next year's flowering. In this review, we emphasize common responses of diverse perennials to heavy crop load. We present botanical, ecological and horticultural perspectives on irregular bearing. The later part of this review focuses on understanding how high fruit load dominates over vegetative growth. We discuss sink strengths and putative mobile signals (hormones), perhaps seed-derived. We highlight gaps in current understanding of alternate bearing, and discuss new approaches to better understand fruit load dominance. Assuming the effect of high fruit load may be related to other mechanisms of sink partitioning, other forms of dominance are presented such as apical, first fruit and king fruit dominance. Dominance seems to be enforced, in independent cases through the establishment of a polar auxin transport system from the stronger sink. Once established this somehow perturbs the transport of auxin out of weaker sinks. Possibly, fruit derived auxin may alter the polar auxin transport system of the shoot to inhibit shoot growth. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Small Variance in Growth Rate in Annual Plants has Large Effects on Genetic Drift

    USDA-ARS?s Scientific Manuscript database

    When plant size is strongly correlated with plant reproduction, variance in growth rates results in a lognormal distribution of seed production within a population. Fecundity variance affects effective population size (Ne), which reflects the ability of a population to maintain beneficial mutations ...

  6. Benchmarks for Expected Annual Academic Growth for Students in the Bottom Quartile of the Normative Distribution

    ERIC Educational Resources Information Center

    Scammacca, Nancy K.; Fall, Anna-Mária; Roberts, Greg

    2015-01-01

    Effect sizes are commonly reported for the results of educational interventions. However, researchers struggle with interpreting their magnitude in a way that transcends generic guidelines. Effect sizes can be interpreted in a meaningful context by benchmarking them against typical growth for students in the normative distribution. Such benchmarks…

  7. Benchmarks for Expected Annual Academic Growth for Students in the Bottom Quartile of the Normative Distribution

    ERIC Educational Resources Information Center

    Scammacca, Nancy K.; Fall, Anna-Mária; Roberts, Greg

    2015-01-01

    Effect sizes are commonly reported for the results of educational interventions. However, researchers struggle with interpreting their magnitude in a way that transcends generic guidelines. Effect sizes can be interpreted in a meaningful context by benchmarking them against typical growth for students in the normative distribution. Such benchmarks…

  8. Resin distribution in second-growth ponderosa pine

    Treesearch

    B.H. Paul

    1955-01-01

    In a study of specific gravity of second-growth ponderosa pine, there was visible evidence of resin in a part of the specific gravity specimens. Each specimen contained 10 annual growth rings in cross sections taken at 4 heights in the merchantable length of the trees. Since the presence of resin introduced an uncertain amount of error in the specific gravity values,...

  9. Mass spectrometric study of glucose and cellobiose produced during enzymatic hydrolysis of alpha-cellulose extracted from oak late-wood annual rings.

    PubMed

    Sensuła, Barbara M; Derrick, Peter J; Bickerton, John C; Pazdur, Anna

    2009-07-01

    We present the first results concerning interannual variations in concentrations of glucose and cellobiose, obtained through enzymatic hydrolysis of alpha-cellulose. The alpha-cellulose was extracted from late-wood of oak. The tree-ring chronologies, wood components and their physical and chemical properties provide information about the ecosystem in which the tree grew, and thus information regarding climate variability and the impact of human activity in the past. The large molecular size and insolubility make it difficult to determine precisely the chemical and physical properties of the intact cellulose polymer. Enzymatic hydrolysis is the principal method of degradation of cellulose. In this study the feasibility has been examined of characterizing alpha-cellulose through analysis by mass spectrometry (MS) of the degradation products from hydrolysis. Degradation of alpha-cellulose was possible without using alkaline or acid buffers. Analysis by MS provided the opportunity to obtain information on the biodegradation of saccharides. The presence of cellobiose and glucose in the degradation product was evidenced by the mass spectra. We have compared the abundances of these glucose and cellobiose ions with carbon isotope ratios, the efficiency of extraction of alpha-cellulose from the wood and tree-ring width indices. The challenge is to establish, with respect to climate changes and environmental conditions, the significance of the variations from one year to another in the observed abundances of glucose and cellobiose ions.

  10. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    PubMed

    Carroll, Allyson L; Sillett, Stephen C; Kramer, Russell D

    2014-01-01

    Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have

  11. Millennium-Scale Crossdating and Inter-Annual Climate Sensitivities of Standing California Redwoods

    PubMed Central

    Carroll, Allyson L.; Sillett, Stephen C.; Kramer, Russell D.

    2014-01-01

    Extremely decay-resistant wood and fire-resistant bark allow California’s redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have

  12. Facile solvothermal synthesis of abnormal growth of one-dimensional ZnO nanostructures by ring-opening reaction of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Xu, G.; Wang, X. L.; Liu, G. Z.

    2015-02-01

    Abnormal growth of one-dimensional (1-D) ZnO nanostructures (NSs) have been accomplished with the assistance of polyvinylpyrrolidone (PVP) under a super high alkaline alcoholic solvothermal condition. The products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The effect of synthetic conditions, such as reaction temperature and the addition of PVP, on the morphologies of ZnO products were investigated. The results show that PVP molecules had the significant role in the transformation of morphologies of ZnO NSs ranging from nanorods, nanoparticles to pyramids, as well as flower-like assembly features. The possible growth mechanism of ZnO pyramids was proposed based on ring-opening reaction of PVP.

  13. Relating annual increments of the endangered Blanding's turtle plastron growth to climate

    PubMed Central

    Richard, Monik G; Laroque, Colin P; Herman, Thomas B

    2014-01-01

    This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration. PMID:24963390

  14. Relating annual increments of the endangered Blanding's turtle plastron growth to climate.

    PubMed

    Richard, Monik G; Laroque, Colin P; Herman, Thomas B

    2014-05-01

    This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.

  15. Tree Ring Chronology Indexes and Reconstructions of Precipitation in Central Iowa, USA (1984) (NDP-002)

    DOE Data Explorer

    Blasing, T. J.; Duvick, D. N.

    2012-01-01

    Tree core samples (4 mm in diameter) were extracted from the trunks of white oak (Quercus alba) at three sites in central Iowa (Duvick Back Woods, Ledges State Park, and Pammel). At least 60 trees were sampled at each site, and at least two cores were taken from each tree. The growth rings of each core were dated by calendar year and measured; the measurements were then transformed into dimensionless ring-width indices and correlated with annual precipitation. Data were collected for the years 1680 through 1979. Each tree ring was characterized by the site, year, tree-ring-width index, number of core samples, decade year, and the annual reconstructed precipitation estimate. These data have more than 50% of their variance in common with the known annual statewide average precipitation for Iowa and serve as useful indicators of the precipitation and drought history of the region for the past 300 years. The data are in two files: tree-ring-chronology data (8 kB) and the annual reconstructed precipitation data for central Iowa (2 kB).

  16. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  17. A relationship between galactic cosmic radiation and tree rings.

    PubMed

    Dengel, Sigrid; Aeby, Dominik; Grace, John

    2009-11-01

    Here, we investigated the interannual variation in the growth rings formed by Sitka spruce (Picea sitchensis) trees in northern Britain (55 degrees N, 3 degrees W) over the period 1961-2005 in an attempt to disentangle the influence of atmospheric variables acting at different times of year. Annual growth rings, measured along the north radius of freshly cut (frozen) tree discs and climatological data recorded at an adjacent site were used in the study. Correlations were based on Pearson product-moment correlation coefficients between the annual growth anomaly and these climatic and atmospheric factors. Rather weak correlations between these variables and growth were found. However, there was a consistent and statistically significant relationship between growth of the trees and the flux density of galactic cosmic radiation. Moreover, there was an underlying periodicity in growth, with four minima since 1961, resembling the period cycle of galactic cosmic radiation. * We discuss the hypotheses that might explain this correlation: the tendency of galactic cosmic radiation to produce cloud condensation nuclei, which in turn increases the diffuse component of solar radiation, and thus increases the photosynthesis of the forest canopy.

  18. DOE/BES/NSET annual report on growth of metal and semiconductor nanostructures using localized photocatalysts.

    SciTech Connect

    Haddad, Raid Edward; Brinker, C. Jeffrey; Shelnutt, John Allen; Yang, Yi; Nuttall, H. Eric; Watt, Richard K.; Singl, Anup K.; Challa, Sivakumar R.; Wang, Zhongchun; van Swol, Frank B.; Pereira, Eulalia; Qiu, Yan; Jiang, Ying-Bing; Xu, Huifang; Medforth, Craig J.; Song, Yujiang

    2003-10-01

    Our overall goal is to understand and develop a novel light-driven approach to the controlled growth of unique metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures to provide metal nucleation and growth centers. Photocatalyst molecules are pre-positioned at the nanoscale to control the location and morphology of the metal nanostructures grown. Self-assembly, chemical confinement, and molecular templating are some of the methods used for nanoscale positioning of the photocatalyst molecules. When exposed to light, the photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition and the synthesis of the new nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies, the University of New Mexico, and Sandia National Laboratories. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled synthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. The proposed nanoscience concentrates on three thematic research areas: (1) the creation of nanoscale structures for realizing novel phenomena and quantum control, (2) understanding nanoscale processes in the environment, and (3) the development and use of multi-scale, multi-phenomena theory and simulation. Our goals for FY03 have been to understand the role of photocatalysis in the synthesis of dendritic platinum nanostructures grown from aqueous surfactant solutions under ambient

  19. Effects of salinity on the growth, physiology and relevant gene expression of an annual halophyte grown from heteromorphic seeds

    PubMed Central

    Cao, Jing; Lv, Xiu Yun; Chen, Ling; Xing, Jia Jia; Lan, Hai Yan

    2015-01-01

    Seed heteromorphism provides plants with alternative strategies for survival in unfavourable environments. However, the response of descendants from heteromorphic seeds to stress has not been well documented. Suaeda aralocaspica is a typical annual halophyte, which produces heteromorphic seeds with disparate forms and different germination characteristics. To gain an understanding of the salt tolerance of descendants and the impact of seed heteromorphism on progeny of this species, we performed a series of experiments to investigate the plant growth and physiological parameters (e.g. osmolytes, oxidative/antioxidative agents and enzymes), as well as expression patterns of corresponding genes. Results showed that osmolytes (proline and glycinebetaine) were significantly increased and that excess reactive oxygen species (O2−, H2O2) produced under high salinity were scavenged by increased levels of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase and glutathione reductase) and corresponding antioxidants (ascorbic acid and glutathione). Moreover, enhancement of phosphoenolpyruvate carboxylase activity at high salt intensity had a positive effect on photosynthesis. The descendants from heteromorphic seeds presented no significant difference in performance with or without salinity. In conclusion, we found that high salinity induced the same active physiological responses in plants from heteromorphic seeds of S. aralocaspica, there was no carry-over of seed heteromorphism to plants: all the descendants required salinity for optimal growth and adaptation to their natural habitat. PMID:26386128

  20. Regional Rates of Young US Forest Growth Estimated From Annual Landsat Disturbance History and IKONOS Stereo Imagery

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S. R.; Masek, Jeffrey G.; Bourget, Paul; Rishmawi, Khaldoun; Zhao, Feng; Huang, Chengquan; Cook, Bruce D.; Nelson, Ross

    2015-01-01

    Forests of the Contiguous United States (CONUS) have been found to be a large contributor to the global atmospheric carbon sink. The magnitude and nature of this sink is still uncertain and recent studies have sought to define the dynamics that control its strength and longevity. The Landsat series of satellites has been a vital resource to understand the long-term changes in land cover that can impact ecosystem function and terrestrial carbonstock. We combine annual Landsat forest disturbance history from 1985 to 2011 with single date IKONOS stereoimagery to estimate the change in young forest canopy height and above ground live dry biomass accumulation for selected sites in the CONUS. Our approach follows an approximately linear growth rate following clearing over short intervals and does not estimate the distinct non-linear growth rate over longer intervals.We produced canopy height models by differencing digital surface models estimated from IKONOS stereo pairs with national elevation data (NED). Correlations between height and biomass were established independently using airborne LiDAR, and then applied to the IKONOS-estimated canopy height models. Graphing current biomass against time since disturbance provided biomass accumulation rates. For 20 study sites distributed across five regions of the CONUS, 19 showed statistically significant recovery trends (p is less than 0.001) with canopy growth from 0.26 m yr-1to 0.73 m yr-1. Above ground live dry biomass (AGB) density accumulation ranged from 1.31 t/ha yr-1 to 12.47 t/ha yr-1. Mean forest AGB accumulationwas 6.31 t/ha yr-1 among all sites with significant growth trends. We evaluated the accuracy of our estimates by comparing to field estimated site index curves of growth, airborne LiDAR data, and independent model predictions of C accumulation. Growth estimates found with this approach are consistent with site index curves and total biomass estimates fall within the range of field estimates. This is aviable

  1. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  2. Spark ignited turbulent flame kernel growth. Annual report, January--December 1991

    SciTech Connect

    Santavicca, D.A.

    1994-06-01

    An experimental study of the effect of spark power on the growth rate of spark-ignited flame kernels was conducted in a turbulent flow system at 1 atm, 300 K conditions. All measurements were made with premixed, propane-air at a fuel/air equivalence ratio of 0.93, with 0%, 8% or 14% dilution. Two flow conditions were studied: a low turbulence intensity case with a mean velocity of 1.25 m/sec and a turbulence intensity of 0.33 m/sec, and a high turbulence intensity case with a mean velocity of 1.04 m/sec and a turbulence intensity of 0.88 m/sec. The growth of the spark-ignited flame kernel was recorded over a time interval from 83 {mu}sec to 20 msec following the start of ignition using high speed laser shadowgraphy. In order to evaluate the effect of ignition spark power, tests were conducted with a long duration (ca 4 msec) inductive discharge ignition system with an average spark power of ca 14 watts and two short duration (ca 100 nsec) breakdown ignition systems with average spark powers of ca 6 {times} 10{sup 4} and ca 6 {times} 10{sup 5} watts. The results showed that increased spark power resulted in an increased growth rate, where the effect of short duration breakdown sparks was found to persist for times of the order of milliseconds. The effectiveness of increased spark power was found to be less at high turbulence and high dilution conditions. Increased spark power had a greater effect on the 0--5 mm burn time than on the 5--13 mm burn time, in part because of the effect of breakdown energy on the initial size of the flame kernel. And finally, when spark power was increased by shortening the spark duration while keeping the effective energy the same there was a significant increase in the misfire rate, however when the spark power was further increased by increasing the breakdown energy the misfire rate dropped to zero.

  3. Translucent Rings

    NASA Image and Video Library

    2014-12-08

    Although solid-looking in many images, Saturn's rings are actually translucent. In this picture, we can glimpse the shadow of the rings on the planet through (and below) the A and C rings themselves, towards the lower right hand corner. For centuries people have studied Saturn's rings, but questions about the structure and composition of the rings lingered. It was only in 1857 when the physicist James Clerk Maxwell demonstrated that the rings must be composed of many small particles and not solid rings around the planet, and not until the 1970s that spectroscopic evidence definitively showed that the rings are composed mostly of water ice. This view looks toward the sunlit side of the rings from about 17 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on Aug. 12, 2014 in near-infrared light centered at 752 nanometers. The view was obtained at a distance of approximately 1.4 million miles (2.3 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 24 degrees. Image scale is 85 miles (136 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18295

  4. Reconfiguration of tree architecture under the effect of wind, competition for light, and annual growth

    NASA Astrophysics Data System (ADS)

    Eloy, Christophe

    2015-11-01

    In general, trees have self-similar architectures with longer and thicker branches near the roots. Yet, branch segments grown each year always have approximately the same length. This hierarchy of branch lengths and the whole self-similar characteristics results in fact from a continuous process of growth of new branches and shedding of old ones. To assess how such a process affects tree architecture, a functional-structural mechanically-based model of virtual trees is developed. In this model, trees grow into fractal structures to promote efficient photosynthesis in a competing environment. In addition, branch diameters increase in response to wind-induced loads. The results of this model suggest that most self-similar characteristics of trees can be explained by considering that tree are growing structure able to resist mechanical loads due to wind efficiently.

  5. Effect of complete competition control and annual fertilization on stem growth and canopy relations for a chronosequence of loblolly pine plantations in the lower coastal plain of Georgia

    Treesearch

    B.E. Borders; R.E. Will; D. Marewitz; Alexander Clark; R. Hendrick; R.O. Teskey; Y. Zhang

    2004-01-01

    Stem growth, developmental patterns and canopy relations were measured in a chronosequence of intensively managed loblolly pine stands. The study was located on two distinct sites in the lower coastal plain of Georgia, USA and contained a factorial arrangement of complete control of interspecific competition (W) and annual nitrogen fertilization (F). The W treatment...

  6. The Tunguska Event in 1908: Evidence from Tree-Ring Anatomy

    NASA Astrophysics Data System (ADS)

    Vaganov, Evgenii A.; Hughes, Malcolm K.; Silkin, Pavel P.; Nesvetailo, Valery D.

    2004-09-01

    We analyzed tree rings in wood samples collected from some of the few surviving trees found close to the epicenter (within 4-5 km) of the Tunguska event that occurred on the last day of June 1908. Tree-ring growth shows a depression starting in the year after the event and continuing during a 4-5-year period. The most remarkable traces of the event were found in the rings??? anatomical structure: (1) formation of "light" rings and a reduction of maximum density in 1908; (2) non-thickened tracheids (the cells that make up most of the wood volume) in the transition and latewood zones (the middle and last-formed parts of the ring, respectively); and (3) deformed tracheids, which are located on the 1908 annual ring outer boundary. In the majority of samples, normal earlywood and latewood tracheids were formed in all annual rings after 1908. The observed anomalies in wood anatomy suggest two main impacts of the Tunguska event on surviving trees-(1) defoliation and (2) direct mechanical stress on active xylem tissue. The mechanical stress needed to fell trees is less than the stress needed to cause the deformation of differentiating tracheids observed in trees close to the epicenter. In order to resolve this apparent contradiction, work is suggested on possible topographic modification of the overpressure experienced by these trees, as is an experimental test of the effects of such stresses on precisely analogous growing trees.

  7. The Tunguska event in 1908: evidence from tree-ring anatomy.

    PubMed

    Vaganov, Evgenii A; Hughes, Malcolm K; Silkin, Pavel P; Nesvetailo, Valery D

    2004-01-01

    We analyzed tree rings in wood samples collected from some of the few surviving trees found close to the epicenter (within 4-5 km) of the Tunguska event that occurred on the last day of June 1908. Tree-ring growth shows a depression starting in the year after the event and continuing during a 4-5-year period. The most remarkable traces of the event were found in the rings' anatomical structure: (1) formation of "light" rings and a reduction of maximum density in 1908; (2) non-thickened tracheids (the cells that make up most of the wood volume) in the transition and latewood zones (the middle and last-formed parts of the ring, respectively); and (3) deformed tracheids, which are located on the 1908 annual ring outer boundary. In the majority of samples, normal earlywood and latewood tracheids were formed in all annual rings after 1908. The observed anomalies in wood anatomy suggest two main impacts of the Tunguska event on surviving trees--(1) defoliation and (2) direct mechanical stress on active xylem tissue. The mechanical stress needed to fell trees is less than the stress needed to cause the deformation of differentiating tracheids observed in trees close to the epicenter. In order to resolve this apparent contradiction, work is suggested on possible topographic modification of the overpressure experienced by these trees, as is an experimental test of the effects of such stresses on precisely analogous growing trees.

  8. The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrene, E.; Francois, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-05-01

    The extent to which wood growth is limited by carbon (C) supply (i.e. source control) or by cambial activity (i.e. sink control) will strongly determine the responses of trees to global changes. Nevertheless, the physiological processes that are responsible for limiting forest growth are still a matter of debate. The aim of this study was to evaluate the key determinants of the annual C allocation to wood along large soil and climate regional gradients over France. The study was conducted for five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). The drivers of stand biomass growth were assessed on both inter-site and inter-annual scales. Our data set comprised field measurements performed at 49 sites (931 site-years) that included biometric measurements and a variety of stand characteristics (e.g. soil water holding capacity, leaf area index). It was complemented with process-based simulations when possible explanatory variables could not be directly measured (e.g. annual and seasonal tree C balance, bioclimatic water stress indices). Specifically, the relative influences of tree C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in the stand C allocation to wood was predominantly driven by age-related decline. The direct effects of temperature and water stress on sink activity (i.e. effects independent from their effects on the C supply) exerted a strong influence on the annual stand wood growth in all of the species considered, including deciduous temperate species. The lagged effect of the past environmental conditions (e.g. the previous year's water stress and low C uptake) significantly affected the annual C allocation to wood. The C supply

  9. Variation of Maximum Tree Height and Annual Shoot Growth of Smith Fir at Various Elevations in the Sygera Mountains, Southeastern Tibetan Plateau

    PubMed Central

    Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan

    2012-01-01

    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range. PMID:22396738

  10. Widening Rings

    NASA Image and Video Library

    2010-03-18

    Saturn rings and its moon Rhea are imaged before a crescent of the planet in this image captured by NASA Cassini spacecraft. The shadows of the rings continue to grow wider after their disappearing act during the planet August 2009 equinox.

  11. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  12. Ring Slicer

    NASA Image and Video Library

    2015-07-06

    Saturn's moon Prometheus, seen here looking suspiciously blade-like, is captured near some of its sculpting in the F ring. Prometheus' (53 miles or 86 kilometers across) orbit sometimes takes it into the F ring. When it enters the ring, it leaves a gore where its gravitational influence clears out some of the smaller ring particles. Below Prometheus, the dark lanes interior to the F ring's bright core provide examples of previous ring-moon interactions. This view looks toward the unilluminated side of the rings from about 7 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on March 15, 2015. The view was obtained at a distance of approximately 286,000 miles (461,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 115 degrees. Image scale is 1.7 miles (2.8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18324

  13. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  14. When tree rings go global: challenges and opportunities for retro- and prospective insights

    NASA Astrophysics Data System (ADS)

    Babst, Flurin; Bouriaud, Olivier; Poulter, Benjamin; Zhang, Zhen; Trouet, Valerie; Evans, Margaret; Charney, Noah; Record, Sydne; Enquist, Brian; Seftigen, Kristina; Björklund, Jesper; Klesse, Stefan; Bodesheim, Paul; Mahecha, Miguel; Girardin, Martin; Friend, Andrew; Frank, David

    2017-04-01

    The demand for extensive empirical data on forest growth and its climate sensitivity is growing rapidly with continued anthropogenic warming of the Earth. In principal, tree-ring records are the only resource that can provide such information along large environmental gradients and over sub-annual to centennial time scales. Yet, global tree-ring archives have remained an underrepresented resource in Earth system science. Some of the major challenges that complicate the use of existing tree-ring archives in environmental change research include: i) their limited spatial representativity for global forests, ii) varying sampling schemes that often preclude absolute estimates of forest growth, iii) different spatial and temporal resolution compared to remotely sensed and in-situ Earth observations, and iv) uncertainties arising when past climate-growth relationships are extrapolated into the future. Here we provide a perspective on possible solutions to these issues that emerged from recent and ongoing work. Regarding existing tree-ring networks, we show how spatial interpolation, statistical upscaling, and mechanistic modelling may improve their spatiotemporal coverage. An option to account for non-climatic (e.g. CO2) effects in projections of changing climate-growth relationships is also presented. Regarding future research avenues, we advocate for intensified data collection in warm regions, improved coordination with Earth observation networks, and refined concepts to integrate tree-ring data with computational estimates of forest productivity. Such efforts are expected to elevate tree-ring data as an essential component in Earth system science.

  15. Extreme Drought Events Revealed in Amazon Tree Ring Records

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Baker, P. A.; Guilderson, T. P.

    2010-12-01

    The Amazon basin is a center of deep atmospheric convection and thus acts as a major engine for global hydrologic circulation. Yet despite its significance, a full understanding of Amazon rainfall variability remains elusive due to a poor historical record of climate. Temperate tree rings have been used extensively to reconstruct climate over the last thousand years, however less attention has been given to the application of dendrochronology in tropical regions, in large part due to a lower frequency of tree species known to produce annual rings. Here we present a tree ring record of drought extremes from the Madre de Dios region of southeastern Peru over the last 190 years. We confirm that tree ring growth in species Cedrela odorata is annual and show it to be well correlated with wet season precipitation. This correlation is used to identify extreme dry (and wet) events that have occurred in the past. We focus on drought events identified in the record as drought frequency is expected to increase over the Amazon in a warming climate. The Cedrela chronology records historic Amazon droughts of the 20th century previously identified in the literature and extends the record of drought for this region to the year 1816. Our analysis shows that there has been an increase in the frequency of extreme drought (mean recurrence interval = 5-6 years) since the turn of the 20th century and both Atlantic and Pacific sea surface temperature (SST) forcing mechanisms are implicated.

  16. Directed Growth of Polymer Nanorods Using Surface-Initiated Ring-Opening Polymerization of N-Allyl N-Carboxyanhydride.

    PubMed

    Lu, Lu; Lahasky, Samuel H; Zhang, Donghui; Garno, Jayne C

    2016-02-17

    A stepwise chemistry route was used to prepare arrays of polymer nanostructures of poly(N-allyl glycine) on Si(111) using particle lithography. The nanostructures were used for studying surface reactions with advanced measurements of atomic force microscopy (AFM). In the first step to fabricate the surface platform, isolated nanopores were prepared within a thin film of octadecyltrichlorosilane (OTS). The OTS served as a surface resist, and the areas of nanopores provided multiple, regularly shaped sites for further reaction. An initiator, (3-aminopropyl)triethoxysilane (APTES), was grown selectively inside the nanopores to define sites for polymerization. The initiator attached selectively to the sites of nanopores indicating OTS prevented nonspecific adsorption. Surface-initiated ring-opening polymerization of N-allyl N-carboxyanhydride with APTES produced polymer nanorods on the nanodots of APTES presenting amine functional groups. The surface changes for each step were monitored using high resolution atomic force microscopy (AFM). Slight variations in the height of the poly(N-allyl glycine) nanorods were observed which scale correspondingly to the initial dimensions of nanopores. The distance between adjacent polymer nanorods was controlled by the size of mesoparticle masks used in the experiment. This surface platform has potential application in biotechnology for smart coatings or biosensors.

  17. NSLS annual report 1984

    SciTech Connect

    Klaffky, R.; Thomlinson, W.

    1984-01-01

    The first comprehensive Annual Report of the National Synchrotron Light Source comes at a time of great activity and forward motion for the facility. In the following pages we outline the management changes that have taken place in the past year, the progress that has been made in the commissioning of the x-ray ring and in the enhanced utilization of the uv ring, together with an extensive discussion of the interesting scientific experiments that have been carried out.

  18. Ring Infiltrate in Staphylococcal Keratitis

    PubMed Central

    Wallang, Batriti S.; Sharma, Savitri; Sahu, Srikant K.; Mittal, Ruchi

    2013-01-01

    Smear and culture tests of corneal scrapings from a patient with a ring infiltrate confirmed significant growth of a Staphylococcus species resistant to fluoroquinolones. Because of nonresponse to medical management, the patient underwent therapeutic penetrating keratoplasty. Staphylococcal infection of the cornea may appear as a ring-like infiltrate that is recalcitrant to medical management. PMID:23100354

  19. Using intra annual density fluctuations and d13C to assess the impact of summer drought on Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Battipaglia, G.; Brand, W. A.; Linke, P.; Schaefer, I.; Noetzli, M.; Cherubini, P.

    2009-04-01

    Tree- ring growth and wood density have been used extensively as indicators of climate change, and tree-ring has been commonly applied as a proxy estimate for seasonal integration of temperatures and precipitation with annual resolution (Hughes 2002). While these relationships have been well established in temperate ecosystems (Fritts, 1976; Schweingruber, 1988, Briffa et al., 1998, 2004), in Mediterranean region dendrochronological studies are still scarce (Cherubini et al, 2003). In Mediterranean environment, trees may form intra-annual density fluctuations, also called "false rings" or "double rings" (Tingley 1937; Schulman 1938). They are usually induced by sudden drought events, occurring during the vegetative period, and, allowing intra-annual resolution, they may provide detailed information at a seasonal level, as well as species-specific sensitivity to drought. We investigated the variability of tree- ring width and carbon stable isotopes of a Mediterranean species, Arbutus unedo L., sampled on Elba island, (Tuscany, Italy). The samples were taken at two different sites, one characterized by wet and one by dry conditions. d13C was measured using Laser- Ablation- Combustion -GC-IRMS. Here, we present first results showing the impact of drought on tree growth and on false ring formation at the different sites and we underline the importance of using Laser Ablation to infer drought impact at the intra -annual level. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Harris IC, Shiyatov SG, Vaganov EA, Grudd H (1998) Trees tell of past climates: but are they speaking less clearly today? Phil Transact Royal Soc London 353:65-73 Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Panet Change 40:11-26 Cherubini, P., B.L. Gartner, R. Tognetti, O.U. Bräker, W. Schoch & J.L. Innes. 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev

  20. Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling.

    PubMed

    Jiménez-Brenes, F M; López-Granados, F; de Castro, A I; Torres-Sánchez, J; Serrano, N; Peña, J M

    2017-01-01

    . Combining UAV-based images and an OBIA procedure allowed measuring tree dimensions and quantifying the impacts of three different pruning treatments on hundreds of trees with minimal field work. Tree foliage losses and annual canopy growth showed different trends as affected by the type and severity of the pruning treatments. Additionally, this technology offers valuable geo-spatial information for designing site-specific crop management strategies in the context of precision agriculture, with the consequent economic and environmental benefits.

  1. A tree-ring perspective on the terrestrial carbon cycle.

    PubMed

    Babst, Flurin; Alexander, M Ross; Szejner, Paul; Bouriaud, Olivier; Klesse, Stefan; Roden, John; Ciais, Philippe; Poulter, Benjamin; Frank, David; Moore, David J P; Trouet, Valerie

    2014-10-01

    Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective.

  2. Drought responses of conifers in ecotone forests of northern Arizona: tree ring growth and leaf delta13C.

    PubMed

    Adams, Henry D; Kolb, Thomas E

    2004-07-01

    We sought to understand differences in tree response to meteorological drought among species and soil types at two ecotone forests in northern Arizona, the pinyon-juniper woodland/ponderosa pine ecotone, and the higher elevation, wetter, ponderosa pine/mixed conifer ecotone. We used two approaches that provide different information about drought response: the ratio of standardized radial growth in wet years to dry years (W:D) for the period between years 1950 and 2000 as a measure of growth response to drought, and delta13C in leaves formed in non-drought (2001) and drought (2002) years as a measure of change in water use efficiency (WUE) in response to drought. W:D and leaf delta13C response to drought for Pinus edulis and P. ponderosa did not differ for trees growing on coarse-texture soils derived from cinders compared with finer textured soils derived from flow basalts or sedimentary rocks. P. ponderosa growing near its low elevation range limit at the pinyon-juniper woodland/ponderosa pine ecotone had a greater growth response to drought (higher W:D) and a larger increase in WUE in response to drought than co-occurring P. edulis growing near its high elevation range limit. P. flexilis and Pseudotsuga menziesii growing near their low elevation range limit at the ponderosa pine/mixed conifer ecotone had a larger growth response to drought than co-occurring P. ponderosa growing near its high elevation range limit. Increases in WUE in response to drought were similar for all species at the ponderosa pine/mixed conifer ecotone. Low elevation populations of P. ponderosa had greater growth response to drought than high-elevation populations, whereas populations had a similar increase in WUE in response to drought. Our findings of different responses to drought among co-occurring tree species and between low- and high-elevation populations are interpreted in the context of drought impacts on montane coniferous forests of the southwestern USA.

  3. Ring King

    NASA Image and Video Library

    2014-08-18

    Saturn reigns supreme, encircled by its retinue of rings. Although all four giant planets have ring systems, Saturn's is by far the most massive and impressive. Scientists are trying to understand why by studying how the rings have formed and how they have evolved over time. Also seen in this image is Saturn's famous north polar vortex and hexagon. This view looks toward the sunlit side of the rings from about 37 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on May 4, 2014 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 2 million miles (3 million kilometers) from Saturn. Image scale is 110 miles (180 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18278

  4. A season in Saturn's rings: Cycling, recycling and ring history

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Meinke, B. K.; Albers, N.; Sremcevic, M.

    2012-04-01

    : Self gravity causes wakes, viscosity, overstability and local aggregate growth. Nearby moons and resonant forcing drive the ring system away from equilibrium through streamline crowding, which allows enhanced accretional growth. Structures form and disappear at length scales from meters to kilometers, on time scales of hours to months. This cyclic behavior resembles an ecological predator-prey system or a boom-and-bust economic cycle. In such an agitated stochastic system, solid bodies may represent the absorbing states of a Markov chain: rare events can produce a distibution with many transient but a few long-lasting bodies. These bodies would preferentially form at shepherded ring edges near the Roche limit, as hypothesized by Charnoz. These large bodies can sequester material in their interiors, reducing the amount of meteoritic ring pollution and recycling the ring material into new rings. Such processes would allow the rings to be as ancient as the solar system.

  5. [Growth modeling of Albizia niopoides (Mimosaceae) using dendrochronological methods].

    PubMed

    Giraldo, Víctor David; del Valle, Jorge Ignacio

    2012-09-01

    The annual growth rings in tropical trees are fairly common, but their study is relatively recent. Growth rings were found in trees of Albizia niopoides from the Porce River Canyon, Central Cordillera of the Colombian Andes. A total of 33 cross-sections were collected from trees distributed throughout the study area from 664-870masl. Cross-dating, spaguetti plot and 14C analyses were used to demonstrate ring annuality, assuming as hypothesis that these are real annual growth rings. A combination of descriptive analysis of time series (smoothing and pre-whitening) to filter climate noise and nonlinear regression with weighted residuals was used to fit the diameter to Korfs growth model, in which the coefficient of determination reaches values close to 100%. The positive residual autocorrelation of order 1, although not significant, is explained by the existence of energy reserves in the stem and by the accumulation of diameter increments required for the construction of the diameter growth model. The current and mean annual maximum increment rates are 1.03 and 0.94cm/year at ages 18 and 46 years old, respectively. These trees are classified within the group of fast growing species which can reach a cut diameter of over 50cm in approximately 52 years.

  6. Vascular rings.

    PubMed

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K

    2016-06-01

    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions.

    PubMed

    Suh, Ji Yeon; Kim, Woo Taek

    2015-08-07

    Phosphate (Pi) remobilization in plants is critical to continuous growth and development. AtATL80 is a plasma membrane (PM)-localized RING E3 ubiquitin (Ub) ligase that belongs to the Arabidopsis Tóxicos en Levadura (ATL) family. AtATL80 was upregulated by long-term low Pi (0-0.02 mM KH2PO4) conditions in Arabidopsis seedlings. AtATL80-overexpressing transgenic Arabidopsis plants (35S:AtATL80-sGFP) displayed increased phosphorus (P) accumulation in the shoots and lower biomass, as well as reduced P-utilization efficiency (PUE) under high Pi (1 mM KH2PO4) conditions compared to wild-type plants. The loss-of-function atatl80 mutant line exhibited opposite phenotypic traits. The atatl80 mutant line bolted earlier than wild-type plants, whereas AtATL80-overexpressors bloomed significantly later and produced lower seed yields than wild-type plants under high Pi conditions. Thus, AtATL80 is negatively correlated not only with P content and PUE, but also with biomass and seed yield in Arabidopsis. In addition, AtATL80-overexpressors were significantly more sensitive to cold stress than wild-type plants, while the atatl80 mutant line exhibited an increased tolerance to cold stress. Taken together, our results suggest that AtATL80, a PM-localized ATL-type RING E3 Ub ligase, participates in the Pi mobilization and cold stress response as a negative factor in Arabidopsis.

  8. Saturn Ring

    NASA Image and Video Library

    2007-12-12

    Like Earth, Saturn has an invisible ring of energetic ions trapped in its magnetic field. This feature is known as a "ring current." This ring current has been imaged with a special camera on Cassini sensitive to energetic neutral atoms. This is a false color map of the intensity of the energetic neutral atoms emitted from the ring current through a processed called charged exchange. In this process a trapped energetic ion steals and electron from cold gas atoms and becomes neutral and escapes the magnetic field. The Cassini Magnetospheric Imaging Instrument's ion and neutral camera records the intensity of the escaping particles, which provides a map of the ring current. In this image, the colors represent the intensity of the neutral emission, which is a reflection of the trapped ions. This "ring" is much farther from Saturn (roughly five times farther) than Saturn's famous icy rings. Red in the image represents the higher intensity of the particles, while blue is less intense. Saturn's ring current had not been mapped before on a global scale, only "snippets" or areas were mapped previously but not in this detail. This instrument allows scientists to produce movies (see PIA10083) that show how this ring changes over time. These movies reveal a dynamic system, which is usually not as uniform as depicted in this image. The ring current is doughnut shaped but in some instances it appears as if someone took a bite out of it. This image was obtained on March 19, 2007, at a latitude of about 54.5 degrees and radial distance 1.5 million kilometres (920,000 miles). Saturn is at the center, and the dotted circles represent the orbits of the moon's Rhea and Titan. The Z axis points parallel to Saturn's spin axis, the X axis points roughly sunward in the sun-spin axis plane, and the Y axis completes the system, pointing roughly toward dusk. The ion and neutral camera's field of view is marked by the white line and accounts for the cut-off of the image on the left. The

  9. A 500-year dual stable isotope tree ring chronology of a Late Glacial cooling event

    NASA Astrophysics Data System (ADS)

    Pauly, Maren; Helle, Gerhard; Büntgen, Ulf; Friedrich, Michael; Heinrich, Ingo; Kromer, Bernd; Nievergelt, Daniel; Reinig, Frederick; Riedel, Frank; Sookdeo, Adam; Treydte, Kerstin; Wacker, Lukas; Brauer, Achim

    2017-04-01

    A recent discovery of over 250 subfossil pine trees in Zürich (dated 14 000 - 11 000 cal BP) has provided the opportunity to study the inconsistent warming transition from the last ice age to the current interglacial. This period (the Late Glacial) has been extensively studied through the development of mostly non-tree ring palaeoclimate proxy records due to the intrigue of numerous prominent climate oscillations. However, such existing (lake sediment and ice core) records often lack the temporal resolution required to interpret rapid environmental changes. Tree rings can help to resolve such events due to their high resolution (annually-resolved) growth banding and absolute dating potential. Moreover, the analysis of stable isotopes can strongly improve the climate signal implemented in tree-ring width. Since numerous environmental conditions are all integrated in the rather simple ring-width series, measurements of chemical tree responses (via stable isotopes) can greatly refine the climate-growth-dynamics. In this study, we are developing a well replicated 500-year annually resolved dual stable isotope (δ18O, δ13C) chronology from tree-ring cellulose, in an effort to reconstruct the environmental dynamics of a short-term Late Glacial cooling event (13 950 - 13 450 cal BP) in an otherwise naturally warming world. We will present and discuss the biological response to this rapid climate oscillation in the face of low atmospheric CO2 concentrations and other site conditions without any human fingerprint.

  10. A cluster of stratospheric volcanic eruptions in the AD 530s recorded in Siberian tree rings

    NASA Astrophysics Data System (ADS)

    Churakova (Sidorova), Olga V.; Bryukhanova, Marina V.; Saurer, Matthias; Boettger, Tatjana; Naurzbaev, Mukhtar M.; Myglan, Vladimir S.; Vaganov, Eugene A.; Hughes, Malcolm K.; Siegwolf, Rolf T. W.

    2014-11-01

    Recently published, improved chronologies for volcanic sulfate in Greenland and Antarctic ice permit a comparison of the growth responses of absolutely annually dated tree rings at three locations in Siberia with annual ice-core records of volcanic eruptions centered on AD 536. For the first time for this region and period, we present unique data sets for tree-ring width, cell-wall thickness, δ13C and δ18O in cellulose. These were based on multiple samples from relict wood of larch obtained from two sites close to the northern limit of tree growth on the Taimyr Peninsula and in northeastern Yakutia, and at a high-elevation, location 20° further South in the Altai Mts. An event in AD 536 was associated with different, but marked, changes in tree-ring parameters at the high-latitude sites compared with the high elevation site. An AD 541 event was associated with its own distinctive tree-ring responses across the three sites and multiple variables. The years after AD 532 were marked by a strong and sustained decrease in growth at the high-elevation, more southerly, site. The combination of improved ice-core chronology for the climatically effective volcanic eruptions of this part of the 6th century AD, and an array of tree-ring sites with different climates and multiple tree-ring variables permits a richer description of tree responses to this cluster of events. The pattern of tree-ring parameter responses at the three locations in AD 536, AD 541, and perhaps AD 532 is consistent with responses to climatically effective volcanic eruptions influencing tree response in those and subsequent years.

  11. X-linked inhibitor of apoptosis protein (XIAP) lacking RING domain localizes to the nuclear and promotes cancer cell anchorage-independent growth by targeting the E2F1/Cyclin E axis

    PubMed Central

    Cao, Zipeng; Li, Xueyong; Li, Jingxia; Luo, Wenjing; Huang, Chuanshu; Chen, Jingyuan

    2014-01-01

    The inhibitor of apoptosis protein XIAP (X-linked inhibitor of apoptosis protein) is a well-documented protein that is located in cytoplasm acting as a potent regulator of cell apoptosis. Here, we showed that expressing XIAP with RING (Really Interesting New Gene) domain deletion (XIAPΔRING) in cancer cells promoted cancer cell anchorage-independent growth and G1/S phase transition companied with increasing cyclin e transcription activity and protein expression. Further studies revealed that XIAPΔRING was mainly localized in nuclear with increased binding with E2F1, whereas XIAP with BIR (Baculoviral IAP Repeat) domains deletion (XIAPΔBIRs) was entirely presented in cytoplasma with losing its binding with E2F1, suggesting that RING domain was able to inhibit BIR domains nuclear localization, by which impaired BIRs binding with E2F1 in cellular nucleus in intact cells. These studies identified a new function of XIAP protein in cellular nucleus is to regulate E2F1 transcriptional activity by binding with E2F1 in cancer cells. Our current finding of an effect of XIAPΔRING expression on cancer cell anchorage-independent growth suggests that overexpression of this protein may contribute to genetic instability associated with cell cycle and checkpoint perturbations, in addition to its impact on cellular apoptosis. PMID:25216527

  12. Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains.

    PubMed

    Shih, Yu-Ling; Fu, Xiaoli; King, Glenn F; Le, Trung; Rothfield, Lawrence

    2002-07-01

    The MinE protein functions as a topological specificity factor in determining the site of septal placement in Escherichia coli. MinE assembles into a membrane-associated ring structure near midcell and directs the localization of MinD and MinC into a membrane- associated polar zone that undergoes a characteristic pole-to-pole oscillation cycle. Single (green fluorescent protein) and double label (yellow fluorescent protein/cyan fluorescent protein) fluorescence labeling experiments showed that mutational alteration of a site on the alpha-face of MinE led to a failure to assemble the MinE ring, associated with loss of the ability to support a normal pattern of division site placement. The absence of the MinE ring did not prevent the assembly and disassembly of the MinD polar zone. Mutant cells lacking the MinE ring were characterized by the growth of MinD polar zones past their normal arrest point near midcell. The results suggested that the MinE ring acts as a stop-growth mechanism to prevent the MinCD polar zone from extending beyond the midcell division site.

  13. Luminescent Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This view shows the unlit face of Saturn's rings, visible via scattered and transmitted light. In these views, dark regions represent gaps and areas of higher particle densities, while brighter regions are filled with less dense concentrations of ring particles.

    The dim right side of the image contains nearly the entire C ring. The brighter region in the middle is the inner B ring, while the darkest part represents the dense outer B Ring. The Cassini Division and the innermost part of the A ring are at the upper-left.

    Saturn's shadow carves a dark triangle out of the lower right corner of this image.

    The image was taken in visible light with the Cassini spacecraft wide-angle camera on June 8, 2005, at a distance of approximately 433,000 kilometers (269,000 miles) from Saturn. The image scale is 22 kilometers (14 miles) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  14. Cave Rings

    DTIC Science & Technology

    2010-10-13

    hypothesis, that cave rings are formed in the same manner as coffee rings[3], that is, due to the enhanced deposition at the edges of sessile drops ...Literature The ‘splash ring’ conjecture is described in [5]. It is claimed that 45◦ is the most probable angle for secondary drops to be ejected at, and that...ring’ is the deposit formed when a sessile drop of a solution containing dissolved particles, such as coffee or salt, dries. This was investigated by

  15. Influence of age on the relationship between annual changes in horn growth rate and prolactin secretion in the European mouflon (Ovis gmelini musimon).

    PubMed

    Santiago-Moreno, J; Gómez-Brunet, A; Toledano-Díaz, A; González-Bulnes, A; Picazo, R A; López-Sebastián, A

    2005-02-01

    Annual variations in the growth of horns, and their correlation with seasonal changes of testicular size, and prolactin (PRL) and melatonin secretion were monitored in six pubertal mouflon rams living in their original latitude (40 degrees N). Mouflons born and maintained under captive conditions were classified in two age classes: sub-adult (2 years; n=3) and adult (> or =3 years; n=3). The rate of horn growth was greater (P <0.001) in sub-adult than in adult mouflon rams. Horn growth was influenced by season in both adult and sub-adult mouflons (P <0.05) with largest monthly growth occurring in spring and summer. Seasonal variations of plasma PRL concentrations were correlated with horn growth in adult, but not in sub-adult mouflon rams. The rate of horn growth was inversely correlated with testicular size (r=-0.5, P=0.07). Seasonal changes in the amplitude of the daily melatonin rhythm in solstices and equinoxes were observed, which were not correlated with variations in the rate of horn growth. These results provide support for a possible role of PRL in the control of growth of horns in the adult mouflon.

  16. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China.

    PubMed

    Zhou, Xiaobing; Zhang, Yuanming; Niklas, Karl J

    2014-02-01

    Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions. Nitrogen was added to the soil at rates of 0, 0.5, 1.0, 3.0, 6.0 and 24.0 g N m(-2) year(-1). Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass. Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship. These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric.

  17. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    PubMed

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI).

  18. Insensitivity of Tree-Ring Growth to Temperature and Precipitation Sharpens the Puzzle of Enhanced Pre-Eruption NDVI on Mt. Etna (Italy).

    PubMed

    Seiler, Ruedi; Kirchner, James W; Krusic, Paul J; Tognetti, Roberto; Houlié, Nicolas; Andronico, Daniele; Cullotta, Sebastiano; Egli, Markus; D'Arrigo, Rosanne; Cherubini, Paolo

    2017-01-01

    On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We consequently aimed at determining whether an increase in ambient temperature or additional water availability owing to the rise of magma and degassing of water vapour prior to the eruption could have increased photosynthesis of Mt. Etna's trees. Using dendro-climatic analyses we quantified the sensitivity of tree ring widths to temperature and precipitation at high elevation stands on Mt. Etna. Our findings suggest that tree growth at high elevation on Mt. Etna is weakly influenced by climate, and that neither an increase in water availability nor an increase in temperature induced by pre-eruptive activity is a plausible mechanism for enhanced photosynthesis before the 2002/2003 flank eruption. Our findings thus imply that other, yet unknown, factors must be sought as causes of the pre-eruption enhancement of NDVI on Mt. Etna.

  19. Insensitivity of Tree-Ring Growth to Temperature and Precipitation Sharpens the Puzzle of Enhanced Pre-Eruption NDVI on Mt. Etna (Italy)

    PubMed Central

    Krusic, Paul J.; Tognetti, Roberto; Houlié, Nicolas; Andronico, Daniele; Egli, Markus; D'Arrigo, Rosanne

    2017-01-01

    On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We consequently aimed at determining whether an increase in ambient temperature or additional water availability owing to the rise of magma and degassing of water vapour prior to the eruption could have increased photosynthesis of Mt. Etna's trees. Using dendro-climatic analyses we quantified the sensitivity of tree ring widths to temperature and precipitation at high elevation stands on Mt. Etna. Our findings suggest that tree growth at high elevation on Mt. Etna is weakly influenced by climate, and that neither an increase in water availability nor an increase in temperature induced by pre-eruptive activity is a plausible mechanism for enhanced photosynthesis before the 2002/2003 flank eruption. Our findings thus imply that other, yet unknown, factors must be sought as causes of the pre-eruption enhancement of NDVI on Mt. Etna. PMID:28099435

  20. A 150 year record of annual Bristlecone Pine 14C from the second millennium BC

    NASA Astrophysics Data System (ADS)

    Pearson, Charlotte; Salzer, Matthew; Brewer, Peter; Hodgins, Gregory; Jull, A. J. Timothy; Lange, Todd; Cruz, Richard; Brown, David; Boswijk, Gretel

    2017-04-01

    The Interdisciplinary Chronology of Civilizations Project (ICCP) at the University of Arizona (UA) aims to resolve longstanding chronological issues for Aegean and Near Eastern archaeology. A central component of this work is the production of annual resolution sequences of 14C from securely anchored tree-ring chronologies. Contemporary growth rings from Northern and Southern Hemisphere locations will be tested against a dataset of consecutive annual resolution 14C measurements from tree-rings of securely dated North American bristlecone pine (Pinus longaeva D.K. Bailey). These data will be used in a number of ways: to investigate potential issues with the current IntCal dataset due to interpolation, smoothing, or the inclusion of annual scale rapid changes in 14C; to identify 14C off-sets; to evaluate whether annual determinations of 14C present sufficient advantages for dating to justify the substantial costs involved in creating an annual resolution calibration curve; to explore whether the degree of reproducibility between species and growth locations justifies the construction of regional curves or allows us to pioneer 'annual resolution wigglematching' to anchor substantial floating tree-ring chronologies from Mediterranean archaeological contexts, and; if new rapid changes in 14C (aka 'spikes') are discovered, to use these to achieve this same goal. The initial focus of the project is the first and second millennium BC. From this period we present 150 annual 14C determinations from bristlecone pine and explore preliminary findings based on comparisons with the existing IntCal dataset, decadal data from the Mediterranean, and some contemporary years from Irish Oak (Quercus spp.) and New Zealand Kauri (Agathis australis (D. Don) Lindl.). This work, in combination with results from another UA project team (see abstract by Jull et al.) helps confirm the potential of the bristlecone pine archive for high resolution radiocarbon research.

  1. Large-area sheet task: advanced denritic-web-growth development. Annual report, October 23, 1980-October 22, 1981

    SciTech Connect

    Duncan, C S; Seidensticker, R G; McHugh, J P; Hopkins, R H; Meier, D; Schruben, J

    1982-03-02

    Significant progress has been made in our understanding of the web growth process. Thermal models have been developed that accurately predict the thermally generated stresses in the web crystal which, if too high, cause the crystal to degenerate. The application of the modeling results to the design of low-stress experimental growth configurations will allow growth of wider web crystals at higher growth velocities. A new experimental web growth machine was constructed. This facility includes all the features necessary for carrying out growth experiments under steady state thermal conditions. Programmed growth initiation has been developed to give reproducible crystal starts. Width control permits the growth of long ribbons at constant width. Melt level is controlled to 0.1 mm or better. Thus, the capability exists to grow long web crystals of constant width and thickness with little operator intervention, and web growth experiments can now be performed with growth variables controlled to a degree not previously possible.

  2. Long term observations of halogenated greenhouse gases in a European continental background station for assessing atmospheric trends, annual growth rates and emission sources

    NASA Astrophysics Data System (ADS)

    Maione, M.; Arduini, J.; Uguccioni, F.; Giostra, U.; Furlani, F.; Belfiore, L.; Cava, D.

    2009-04-01

    Climate altering halocarbons are continuously monitored at the atmospheric research station "O. Vittori" located on the top of Monte Cimone, Northern Apennines, Italy ( 2165 m asl), in the frame of the SOGE (System for Observation of halogenated Greenhouse gases in Europe) network, an integrated system based on a combination of observations and models aimed at assessing atmospheric trends, annual growth rates and at estimating European halocarbon emissions. The use of such a top-down approach is useful to ascertain compliance to International Protocols regulating production/emission of halogenated greenhouse gases. Establishing the baseline is essential both for estimating annual growth rates and because back attribution techniques are based on the clear identification of "above the background" data. That is particularly challenging in a Station like Monte Cimone characterised by a complex meteorological and source field. The approach proposed is based on the identification of the lowest concentration values in a given temporal range to which a ∆c representing variation due to instrumental error is added. Trends are evaluated by using a non-linear regression function, able to take into account both annual and seasonal variation. In order to identify source, regions baseline data are subtracted from the full data set and an inversion modelling cascade, which makes use of MM5 model to reproduce meteorological fields and of FLEXPART to simulate tracer dispersion, is used to find the best emissions map that fits the observations.

  3. The dynamics of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth.

    NASA Astrophysics Data System (ADS)

    Guillemot, Joannès; Martin-StPaul, Nicolas K.; Dufrêne, Eric; François, Christophe; Soudani, Kamel; Ourcival, Jean-Marc; Leadley, Paul; Delpierre, Nicolas

    2015-04-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will strongly determines the responses of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study was i) to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in four tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex and Picea abies) ii) to implement the identified key drivers in a new C allocation scheme within the CASTANEA terrestrial biosphere model (TBM). Combining field measurements and process-based simulations at 49 sites (931 site-years), our analyses revealed that the inter-site variability in C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. Our study supports the premise that European forest growth is under a complex panel of source- and sink- limitations, contradicting the simple source control implemented in most TBMs. The implementation of these combined forest growth limitations in the CASTANEA model significantly improved its performance when evaluated against independent stand growth data at the regional scale (mainland France, >10000 plots). We finally discuss how the sink imitation affects the CASTANEA simulated projections of forest productivity along the 21th century, especially with respect to the expected fertilizing effect of increasing atmospheric

  4. Tree ring chronology indexes and reconstructions of precipitation in Central Iowa, USA

    SciTech Connect

    Blasing, T.J.; Duvick, D.N.

    1984-09-01

    Over sixty trees were sampled at each of the three Iowa sites; at least two cores were taken from most of the trees. The growth rings of each core were dated by calendar year, following standard procedures. Ring widths were measured to the nearest one-hundredth of a millimeter. Low-frequency variations resulting from tree age, changes in competitive status, and other nonclimatic factors were minimized by fitting a spline curve to the ring-width series and dividing each ring width by the value of the curve for the corresponding span. The average adjusted ring-width index for each year was computed from the indices of all cores at a site to obtain the chronology of ring-width indices (or tree ring chronologies) presented here. Based on the oldest tree samples, the initial years of the three chronologies in the study were 1635 at Pammel, 1654 at Duvick Back Woods, and 1663 at Ledges, Iowa. The sample sizes of the chronologies ranged from 6 to 16 cores by the year 1680 and increased steadily in each chronology after 1800. Indices are included for the three sites through 1981. A reconstruction of annual precipitation for central Iowa for the period 1860-1979 is based on these three chronologies.

  5. Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in the Drosophila melanogaster Neurofibromatosis-1 Growth Deficiency

    PubMed Central

    Walker, James A.; Gouzi, Jean Y.; Long, Jennifer B.; Huang, Sidong; Maher, Robert C.; Xia, Hongjing; Khalil, Kheyal; Ray, Arjun; Van Vactor, David; Bernards, René; Bernards, André

    2013-01-01

    Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise

  6. Tracing the history of nuclear releases: determination of 129I in tree rings.

    PubMed

    Rao, Usha; Fehn, Udo; Muramatsu, Yasuyuki; McNeil, Heather; Sharma, Pankaj; Elmore, David

    2002-03-15

    Concentrations of the long-lived radioisotope 1291 were measured in dated tree rings in order to determine whether the distribution of this isotope reflects the history of nuclear deposition. 129I concentrations and 129I/127I ratios were analyzed in tree rings and bark samples from four trees at West Valley, NY, and from one tree at Rochester, NY. West Valley was the site of short-lived nuclear fuel reprocessing activities (1966-1972), while Rochester, located 115 km to the northeast, provided a regional control site for the study. The selected trees reflect different modes of fluid and nutrient transport in trees, with three species of ring-porous trees (elm, oak, and locust), one semidiffuse (cherry), and one diffuse-porous tree (maple). The results show that 1291 levels in ring-porous trees, in which xylem or hydrologic tissue is localized in the outermost growth ring, are generally well correlated with the expected 1291 deposition pattern for the region. In contrast, tree rings of the more common semidiffuse to diffuse-porous wood, where xylem is disseminated throughout the trunk, show a less well developed 129I signal, probably due to the transport of iodine ions across annual rings. Iodine concentrations in the tree rings range from 0.04 to 2 mg/kg, 129I/127I ratios from 6 x 10(-10) to 3.8 x 10(-6). Tree bark and the outermost rings show significantly higher 129I concentrations than the wood of the trunk. The 129I/127I ratios for bark are very similar to values obtained for surface soil and water at the two localities, while inner rings have ratios similar to those in deeper layers of the soil, reflecting different pathways for 129I uptake and the differences in ambient 1291 levels between the atmosphere and deep soil. Although ring porous trees preserve the depositional pattern of nuclear releases, rings older than or close to the onset of the nuclear age have 129I/127I ratios significantly above the preanthropogenic level, suggesting that even in these

  7. Silicified wood from the Permian and Triassic of Antarctica: Tree rings from polar paleolatitudes

    USGS Publications Warehouse

    Ryberg, P.E.; Taylor, E.L.

    2007-01-01

    The mass extinction at the Permian-Triassic boundary produced a floral turnover in Gondwana in which Paleozoic seed ferns belonging to the Glossopteridales were replaced by corystosperm seed ferns and other seed plant groups in the Mesozoic. Secondary growth (wood production) in both plant groups provides information on plant growth in relation to environment in the form of permineralized tree rings. Techniques utilized to analyze extant wood can be used on fossil specimens to better understand the climate from both of these periods. Late Permian and early Middle Triassic tree rings from the Beardmore Glacier area indicate an environment where extensive plant growth occurred at polar latitudes (~80–85°S, Permian; ~75°S, Triassic). A rapid transition to dormancy in both the Permian and Triassic woods suggests a strong influence of the annual light/dark cycle within the Antarctic Circle on ring production. Latewood production in each ring was most likely triggered by the movement of the already low-angled sun below the horizon. The plants which produced the wood have been reconstructed as seasonally deciduous, based on structural and sedimentologic evidence. Although the Late Permian climate has been reconstructed as cold temperate and the Middle Triassic as a greenhouse, these differences are not reflected in tree ring anatomy or wood production in these plant fossils from the central Transantarctic Mountains.

  8. For Profit Child Care: Four Decades of Growth. Nineteenth Annual Status Report on For Profit Child Care

    ERIC Educational Resources Information Center

    Neugebauer, Roger

    2006-01-01

    For decades "Exchange" magazine has tracked the growth of the for profit child care sector. In this article, the author reflects on trends in the for profit sector over the past four decades. Overall, it has been a period of tremendous growth for the for profit sector. However, it has also been characterized by alternating periods of rapid growth,…

  9. Seed size effects on early seedling growth and response to applied nitrogen in annual ryegrass (Lolium multiflorum L.)

    USDA-ARS?s Scientific Manuscript database

    Use of individual plants as experimental units may be necessary when resources are limited, but inter-plant variation risks obscuring differences among treatments. Experiments were undertaken to measure the effects of seed size on seedling size and response to applied nitrogen of annual ryegrass (Lo...

  10. Structure-activity relationships of hybrid annonaceous acetogenins: powerful growth inhibitory effects of their connecting groups between heterocycle and hydrophobic carbon chain bearing THF ring on human cancer cell lines.

    PubMed

    Kojima, Naoto; Fushimi, Tetsuya; Tatsukawa, Takahiro; Yoshimitsu, Takehiko; Tanaka, Tetsuaki; Yamori, Takao; Dan, Shingo; Iwasaki, Hiroki; Yamashita, Masayuki

    2013-05-01

    Five novel hybrid molecules of annonaceous acetogenins and insecticides targeting mitochondrial complex I were synthesized and their growth inhibitory activities against 39 human cancer cell lines were investigated. It was revealed that the connecting group between the N-methylpyrazole part and the hydrophobic alkyl chain bearing the THF ring influenced their biological activities significantly. Amide-connected analog 2, in particular, showed selective and very potent activity (<10 nM) against some cancer cell lines.

  11. Arsenic in tree rings at a highly contaminated site.

    PubMed

    Cheng, Zhongqi; Buckley, Brendan M; Katz, Beth; Wright, William; Bailey, Richard; Smith, Kevin T; Li, Jingbo; Curtis, Ashley; Geen, Alexander van

    2007-04-15

    Arsenic concentrations were measured in annual rings, pith, bark, and leaves of five tree species (four genera) from a site highly contaminated with As in Vineland, New Jersey, and two nearby uncontaminated areas. The highest As concentrations were found in bark (0.68+/-0.89 mg/kg, n=16) and leaves (1.9+/-1.8 mg/kg, n=4) from the contaminated area. Tree-ring As levels from the contaminated area (0.28+/-0.15 mg/kg, n=32) were low but still considerably higher than those from the control areas (0.06+/-0.06 mg/kg, n=30). There is a generally positive relationship between soil and tree-ring As levels. The overall low uptake of As by trees contrasts with that of P, a chemical analog for As(V) in aerated soils. Much higher P concentration in sapwood than in heartwood indicates that P is exported into more recently formed wood during the conversion from sapwood to heartwood; this again is drastically different than the behavior of As which is present in sapwood and heartwood at comparable levels. Variable sapwood As concentrations observed in detailed radial profiles of tree-ring chemistry of a pine and an oak from the contaminated site suggest that As is most likely transported among multiple rings within the sapwood. Therefore, tree species for which sapwood is thin (e.g., oak as in this study) should be preferred for reconstructing the history of contamination of a site. Due to the possibility of lateral translocation between growth rings, further studies are necessary to understand within-tree As transport and storage before dendrochemistry can be confidently accepted for such applications.

  12. The Dynamic of Annual Carbon Allocation to Wood in European Forests Is Consistent with a Combined Source-Sink Limitation of Growth: Implications on Growth Simulations in a Terrestrial Biosphere Model

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrêne, E.; François, C.; Soudani, K.; Ourcival, J. M.; Leadley, P.; Delpierre, N.

    2014-12-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will strongly determines the responses of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study was i) to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in four tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex and Picea abies) ii) to implement the identified key drivers in a new C allocation scheme within the CASTANEA terrestrial biosphere model (TBM). Combining field measurements and process-based simulations at 49 sites (931 site-years), our analyses revealed that the inter-site variability in C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. Our study supports the premise that European forest growth is under a complex panel of source- and sink- limitations, contradicting the simple source control implemented in most TBMs. The implementation of these combined forest growth limitations in the CASTANEA model significantly improved its performance when evaluated against independent stand growth data at the regional scale (mainland France, >103 plots). We finally discuss how the sink imitation affects the CASTANEA simulated projections of forest productivity along the 21th century, especially with respect to the expected fertilizing effect of increasing atmospheric

  13. Ringing wormholes

    SciTech Connect

    Konoplya, R.A.; Molina, C.

    2005-06-15

    We investigate the response of traversable wormholes to external perturbations through finding their characteristic frequencies and time-domain profiles. The considered solution describes traversable wormholes between the branes in the two brane Randall-Sundrum model and was previously found within Einstein gravity with a conformally coupled scalar field. The evolution of perturbations of a wormhole is similar to that of a black hole and represents damped oscillations (ringing) at intermediately late times, which are suppressed by power-law tails (proportional to t{sup -2} for monopole perturbations) at asymptotically late times.

  14. Physics of planetary rings

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2007-08-01

    It is difficult to enumerate all the surprises presented by the planetary rings. The Saturnian rings are stratified into thousands of ringlets and the Uranian rings are compressed into narrow streams, which for some reason or other differ from circular orbits like the wheel of an old bicycle. The edge of the rings is jagged and the rings themselves are pegged down under the gravitational pressure of the satellites, bending like a ship's wake. There are spiral waves, elliptical rings, strange interlacing of narrow ringlets, and to cap it all one has observed in the Neptunian ring system three dense, bright arcs - like bunches of sausages on a transparent string. For celestial mechanics this is a spectacle as unnatural as a bear's tooth in the necklace of the English queen. In the dynamics of planetary rings the physics of collective interaction was supplemented by taking collisions between particles into account. One was led to study a kinetic equation with a rather complex collision integral - because the collisions are inelastic - which later on made it possible, both by using the Chapman-Enskog method and by using the solution of the kinetic equation for a plasma in a magnetic field, to reduce it to a closed set of (hydrodynamical) moment equations [1]. The hydrodynamical instabilities lead to the growth of short-wavelength waves and large-scale structures of the Saturnian rings [1]. We have shown that the formation of the existing dense Uranian rings is connected with the capture of positively drifting ring particles in inner Lindblad resonances which arrest this drift [1]. After the formation of dense rings at the positions of satellite resonances the collective interaction between resonant particles is amplified and the rings can leave the resonance and drift away from the planet and the parent resonance. We can expect in the C ring an appreciable positive ballistic particle drift caused by the erosion of the B ring by micrometeorites. It is therefore natural

  15. Interannual variability of ring formations in the Gulf Stream region

    NASA Astrophysics Data System (ADS)

    Sasaki, Y. N.

    2016-02-01

    An oceanic ring in the Gulf Stream (GS) region plays important roles in across-jet transport of heat, salt, momentum, and nutrients. This study examines interannual variability of rings shed from the GS jet and their properties using satellite altimeter observations from 1993 to 2013. An objective method is used to capture a ring shedding from the GS jet and track its movement. A spatial distribution of the ring formations in the GS region showed that both cyclonic (cold-core) and anticyclonic (warm-core) rings were most frequently formed around the New England Seamount chain between 62°-65°W, suggesting the importance of the bottom topography on the pinch-off process. These rings moved westward, although about two-third of these rings was reabsorbed by the GS jet. The number of ring formations, especially cyclonic ring formations, indicated prominent fluctuations on interannual to decadal timescales. The annual maximum number of the pinched-off rings is four times larger than the annual minimum number of the rings. These fluctuations of the ring formations were negatively correlated with the strength of the GS. This situation is similar that in the Kuroshio Extension region. The interannual variability of the number of ring formations is also negatively correlated with the North Atlantic Oscillation (NAO) index with one-year lag (NAO leads). Interannual variations of the propagation tendency and shape of rings are also discussed.

  16. Biophysical modelling of intra-ring variations in tracheid features and wood density of Pinus pinaster trees exposed to seasonal droughts.

    PubMed

    Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa

    2015-03-01

    Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest.

    PubMed

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2013-07-01

    Seasonal and inter-annual dynamics of growth, non-structural carbohydrates (NSC) and carbon isotope composition (δ(13)C) of NSC were studied in a beech forest of Central Italy over a 2-year period characterized by different environmental conditions. The net C assimilated by forest trees was mainly used to sustain growth early in the season and to accumulate storage carbohydrates in trunk and root wood in the later part of the season, before leaf shedding. Growth and NSC concentration dynamics were only slightly affected by the reduced soil water content (SWC) during the drier year. Conversely, the carbon isotope analysis on NSC revealed seasonal and inter-annual variations of photosynthetic and post-carboxylation fractionation processes, with a significant increase in δ(13)C of wood and leaf soluble sugars in the drier summer year than in the wetter one. The highly significant correlation between δ(13)C of leaf soluble sugars and SWC suggests a decrease of the canopy C isotope discrimination and, hence, an increased water-use efficiency with decreasing soil water availability. This may be a relevant trait for maintaining an acceptable plant water status and a relatively high C sink capacity during dry seasonal periods. Our results suggest a short- to medium-term homeostatic response of the Collelongo beech stand to variations in water availability and solar radiation, indicating that this Mediterranean forest was able to adjust carbon-water balance in order to prevent C depletion and to sustain plant growth and reserve accumulation during relatively dry seasons.

  18. Correlation of bristlecone pine ring widths with atmospheric C-14 variations - A climate-sun relation

    NASA Astrophysics Data System (ADS)

    Sonett, C. P.; Suess, H. E.

    1984-01-01

    An unusually convincing correlation is shown between variations of cosmic ray-produced C-14 activity of the CO2 in the terrestrial atmosphere during the past five millenia and annual growth ring widths for bristlecone pine wood from Campito Mountain in eastern California. The correlation is based on power spectral densities (PSDs) and cross-covariance. The PSDs are computed using the maximum entropy method, and major spectral features are also confirmed using the Yule-Walker algorithm and the fast Fourier transform. The results suggest that a forcing function is present which mediates both the atmospheric C-14 level and tree growth.

  19. Molecular dynamics of simulation of the nucleation, growth, inhibition and control of gas hydrates. Annual report, March 1992-June 1993

    SciTech Connect

    Clancy, P.

    1993-06-01

    This is the second year of a three-year project using molecular simulation techniques tailored specifically for the determination of early-stage kinetics of natural gas hydrate crystal growth and dissolution. This year, extensive simulations of the kinetics of growth of a model system showed the appearance of magic numbers' in the growth rate versus cluster size. The feasibility of monitoring the kinetics of hydrate growth and dissolution has been demonstrated. A preliminary mechanism for hydrate dissolution has been proposed. A building block' for hydrate growth has been identified as a long-lived entity in the liquid; this single dodecahedron has also been seen by preliminary NMR studies. Inhibition studies have begun with biopolymers and will continue next year with studies of simple inhibitors, in concert with molecular spectroscopic techniques.

  20. Tree-ring δ13C and δ18O, leaf δ13C and wood and leaf N status demonstrate tree growth strategies and predict susceptibility to disturbance.

    PubMed

    Billings, S A; Boone, A S; Stephen, F M

    2016-05-01

    Understanding how tree growth strategies may influence tree susceptibility to disturbance is an important goal, especially given projected increases in diverse ecological disturbances this century. We use growth responses of tree rings to climate, relationships between tree-ring stable isotopic signatures of carbon (δ(13)C) and oxygen (δ(18)O), wood nitrogen concentration [N], and contemporary leaf [N] and δ(13)C values to assess potential historic drivers of tree photosynthesis in dying and apparently healthy co-occurring northern red oak (Quercus rubra L. (Fagaceae)) during a region-wide oak decline event in Arkansas, USA. Bole growth of both healthy and dying trees responded negatively to drought severity (Palmer Drought Severity Index) and temperature; healthy trees exhibited a positive, but small, response to growing season precipitation. Contrary to expectations, tree-ring δ(13)C did not increase with drought severity. A significantly positive relationship between tree-ring δ(13)C and δ(18)O was evident in dying trees (P < 0.05) but not in healthy trees. Healthy trees' wood exhibited lower [N] than that of dying trees throughout most of their lives (P < 0.05), and we observed a significant, positive relationship (P < 0.05) in healthy trees between contemporary leaf δ(13)C and leaf N (by mass), but not in dying trees. Our work provides evidence that for plants in which strong relationships between δ(13)C and δ(18)O are not evident, δ(13)C may be governed by plant N status. The data further imply that historic photosynthesis in healthy trees was linked to N status and, perhaps, C sink strength to a greater extent than in dying trees, in which tree-ring stable isotopes suggest that historic photosynthesis was governed primarily by stomatal regulation. This, in turn, suggests that assessing the relative dominance of photosynthetic capacity vs stomatal regulation as drivers of trees' C accrual may be a feasible means of predicting tree

  1. Tree-ring δ13C and δ18O, leaf δ13C and wood and leaf N status demonstrate tree growth strategies and predict susceptibility to disturbance

    PubMed Central

    Billings, S.A.; Boone, A.S.; Stephen, F.M.

    2016-01-01

    Understanding how tree growth strategies may influence tree susceptibility to disturbance is an important goal, especially given projected increases in diverse ecological disturbances this century. We use growth responses of tree rings to climate, relationships between tree-ring stable isotopic signatures of carbon (δ13C) and oxygen (δ18O), wood nitrogen concentration [N], and contemporary leaf [N] and δ13C values to assess potential historic drivers of tree photosynthesis in dying and apparently healthy co-occurring northern red oak (Quercus rubra L. (Fagaceae)) during a region-wide oak decline event in Arkansas, USA. Bole growth of both healthy and dying trees responded negatively to drought severity (Palmer Drought Severity Index) and temperature; healthy trees exhibited a positive, but small, response to growing season precipitation. Contrary to expectations, tree-ring δ13C did not increase with drought severity. A significantly positive relationship between tree-ring δ13C and δ18O was evident in dying trees (P < 0.05) but not in healthy trees. Healthy trees’ wood exhibited lower [N] than that of dying trees throughout most of their lives (P < 0.05), and we observed a significant, positive relationship (P < 0.05) in healthy trees between contemporary leaf δ13C and leaf N (by mass), but not in dying trees. Our work provides evidence that for plants in which strong relationships between δ13C and δ18O are not evident, δ13C may be governed by plant N status. The data further imply that historic photosynthesis in healthy trees was linked to N status and, perhaps, C sink strength to a greater extent than in dying trees, in which tree-ring stable isotopes suggest that historic photosynthesis was governed primarily by stomatal regulation. This, in turn, suggests that assessing the relative dominance of photosynthetic capacity vs stomatal regulation as drivers of trees’ C accrual may be a feasible means of predicting tree responses to some

  2. Potential for assessing long-term dynamics in soil nitrogen availability from variations in delta15N of tree rings.

    PubMed

    Hart, S C; Classen, A T

    2003-03-01

    Numerous researchers have used the isotopic signatures of C, H, and O in tree rings to provide a long-term record of changes in the physiological status, climate, or water-source use of trees. The frequently limiting element N is also found in tree rings, and variation in its isotopic signature may provide insight into long-term changes in soil N availability of a site. However, research has suggested that N is readily translocated among tree ring of different years; such infidelity between the isotopic compositions of the N taken up from the soil and the N contained in the ring of that growth year would obscure the long-term N isotopic record. We used a 15-year 15N-tracer study to assess the degree of N translocation among tree rings in ponderosa pine (Pinus ponderosa) trees growing in a young, mixed-conifer plantation. We also measured delta13C and delta15N values in unlabeled trees to assess the degree of their covariance in wood tissue, and to explore the potential for a biological linkage between them. We found that the maximum delta15N values in rings from the labeled trees occurred in the ring formed one-year after the 15N was applied to the roots. The delta15N value of rings from labeled trees declined exponentially and bidirectionally from this maximum peak, toward younger and older rings. The unlabeled trees showed considerable interannual variation in the delta15N values of their rings (up to 3 and 5 per thousand), but these values correlated poorly between trees over time and differed by as much as 6 per thousand. Removal of extractives from the wood reduced their delta15N value, but the change was fairly small and consistent among unlabeled trees. The delta13C and delta15N values of tree rings were correlated over time in only one of the unlabeled trees. Across all trees, both delta13C values of tree rings and annual stem wood production were well correlated with annual precipitation, suggesting that soil water balance is an important environmental

  3. Genetic and phenotypic parameters and annual trends for growth and fertility traits of Charolais and Hereford beef cattle breeds in Kenya.

    PubMed

    Orenge, J S K; Ilatsia, E D; Kosgey, I S; Kahi, A K

    2009-06-01

    This study estimated genetic and phenotypic parameters and annual trends for growth and fertility traits of Charolais and Hereford cattle in Kenya. Traits considered were birth weight (BW, kg), pre-weaning average daily gain (ADG, kg/day) and weaning weight (WW, kg); calving interval (CI, days) and age at first calving (AFC, days). Direct heritability estimates for growth traits were 0.36 and 0.21; 0.25 and 0.10; 0.23 and 0.13 for BW, ADG and WW in Charolais and Hereford, respectively. Maternal heritability estimates were 0.11 and 0.01; 0.18 and 0.00; 0.17 and 0.17 for BW, ADG and WW in Charolais and Hereford, respectively. Direct-maternal genetic correlations ranged between -0.46 and 1.00; -0.51 and -1.00; -0.47 and -0.39 for BW, ADG and WW in Charolais and Hereford, respectively. Genetic correlations ranged from -0.99 to unity and -1.00 to unity for growth and fertility traits respectively. Prospects for improvement of growth and fertility traits exist.

  4. Growth and annual survival estimates to examine the ecology of larval lamprey and the implications of ageing error in fitting models.

    PubMed

    Schultz, L D; Chasco, B E; Whitlock, S L; Meeuwig, M H; Schreck, C B

    2017-04-01

    This study used existing western brook lamprey Lampetra richardsoni age information to fit three different growth models (i.e. von Bertalanffy, Gompertz and logistic) with and without error in age estimates. Among these growth models, there was greater support for the logistic and Gompertz models than the von Bertalanffy model, regardless of ageing error assumptions. The von Bertalanffy model, however, appeared to fit the data well enough to permit survival estimates; using length-based estimators, annual survival varied between 0·64 (95% credibility interval: 0·44-0·79) and 0·81 (0·79-0·83) depending on ageing and growth process error structure. These estimates are applicable to conservation and management of L. richardsoni and other western lampreys (e.g. Pacific lamprey Entosphenus tridentatus) and can potentially be used in the development of life-cycle models for these species. These results also suggest that estimators derived from von Bertalanffy growth models should be interpreted with caution if there is high uncertainty in age estimates. © 2016 The Fisheries Society of the British Isles.

  5. A Cross-Sectional Model of Annual Interregional Migration and Employment Growth: Intertemporal Evidence of Structural Change, 1958-1975.

    DTIC Science & Technology

    1981-04-01

    NAVAL ANALYSES , 󈨕 5 2𔄁 094 r ,’- - - T -" 4 . - , . . - , ,. . ..-- - .-r , " ,-.. . .T " - ." . The ideas expressed in this paper are those of the...in the file were never put on an annual basis until done so for this project . T he data are therefore unique. They are the only available U.S. data...8217Effecto of tsUemployment In- the Square Root Theory of Scientific Publicatuin meet Sciece 9 Mlay 1977. Sari P iaci. Coo iurance Entitfenent on Duration

  6. Influences of exogenous melatonin on the oocyte growth and oxidative status of ovary during different reproductive phases of an annual cycle in carp Catla catla.

    PubMed

    Mondal, Pradip; Hasan, Kazi Nurul; Pal, Palash Kumar; Maitra, Saumen Kumar

    2017-01-01

    The present study aimed to evaluate antioxidant role of melatonin in determining seasonality of ovarian growth in adult carp Catla catla. Accordingly, an identical regimen of exogenous melatonin administration (100 μg/100 g body weight per day for 15 days) was followed during the preparatory, prespawning, and spawning phases of an annual reproductive cycle. The study did not include postspawning phase, when the ovaries were completely regressed and devoid of any healthy growing follicles. The ovarian response was evaluated by determining relative number of developing oocytes as well as measuring the levels of melatonin, oxidative stress (using malondialdehyde [MDA] as the marker), both enzymatic (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], and glutathione S-transferase [GST]) and nonenzymatic (reduced glutathione [GSH]) antioxidants in the ovarian homogenates. Due to melatonin treatment, oocyte growth was accelerated in the preparatory phase but retarded in the prespawning and spawning phases of annual cycle. Conversely, melatonin administration in each reproductive phase led to a significant reduction of MDA and elevations of SOD, CAT, GPx, GST, GSH, as well as melatonin levels in the ovary. As a result, melatonin titers in the ovary always reported a negative correlation with MDA and a positive correlation with SOD, CAT, GST, GPx, as well as GSH levels. However, melatonin content of ovary and the values of gonosomatic index in melatonin-treated carp displayed a positive correlation in the preparatory phase and a negative correlation in the remaining parts of reproductive cycle. Thus, it seems likely that melatonin by acting as an antioxidant reduces intraovarian oxidative stress throughout the seasons of follicular growth, whereas exogenous melatonin administration exerts progonadal influences during the preparatory phase, but antigonadal effects during the prespawning and spawning phases of reproductive cycle. Copyright © 2016

  7. Using Tree-Ring Width Data From 1000 Sites to Predict how American Forests Will Respond to Climate Change

    NASA Astrophysics Data System (ADS)

    Williams, P.; Still, C. J.; Leavitt, S. W.; Fischer, D. T.

    2007-12-01

    Beginning in the early 1900s, tree-ring scientists began analyzing the relative widths of annual growth rings preserved in the cross-sections of trees. Over the years, many ring-width index chronologies, each representing a specific site and species, have been developed and analyzed to infer details regarding past climate, growth response to environmental fluctuation, fire activity, logging practices by past societies, and more. Of the many ring-width chronologies constructed, 1035 represent sites within the continental United States and have been published online within The International Tree-Ring Data Bank as of September 2007 (ITRDB, http://www.ncdc.noaa.gov/paleo/treering.html). Approximately 85% of these sites are located west of the Mississippi River. Here we present results from a three-step study, using this large reserve of tree-growth data to determine how various tree species in various regions have responded to climate fluctuations in the past and how they can be expected to respond to future change. In the first step, we used linear regression to compare each time series of ring-width index values to a suite of local monthly climate variables that may influence tree growth, such as rainfall, temperature, and drought severity (PDSI). We identified the range of months (of a 24- month period) during which each climate parameter most strongly affects growth by comparing Pearson correlation coefficients. In the second step, we identified all sites where at least one climate parameter, during some rage of months, correlates significantly (95% confidence) with ring-width index values. For each of these sites, we constructed a growth model that uses each significantly correlating climate parameter as a growth predictor. In the third step, we applied the growth model to predict the next 100 years of growth response to a monthly climate forecast created by the Hadley Centre for Climate Prediction and Research. This forecast (HadCM3 IS92a) assumes a business as

  8. Kinetics of ring formation

    NASA Astrophysics Data System (ADS)

    Ben-Naim, E.; Krapivsky, P. L.

    2011-06-01

    We study reversible polymerization of rings. In this stochastic process, two monomers bond and, as a consequence, two disjoint rings may merge into a compound ring or a single ring may split into two fragment rings. This aggregation-fragmentation process exhibits a percolation transition with a finite-ring phase in which all rings have microscopic length and a giant-ring phase where macroscopic rings account for a finite fraction of the entire mass. Interestingly, while the total mass of the giant rings is a deterministic quantity, their total number and their sizes are stochastic quantities. The size distribution of the macroscopic rings is universal, although the span of this distribution increases with time. Moreover, the average number of giant rings scales logarithmically with system size. We introduce a card-shuffling algorithm for efficient simulation of the ring formation process and we present numerical verification of the theoretical predictions.

  9. Iowa Climate Reconstructed From Tree Rings, 1640-1982

    NASA Astrophysics Data System (ADS)

    Cleaveland, M. K.; Duvick, D. N.

    1992-10-01

    Tree ring indices from an expanded network of 17 white oak (Quercus alba} sites in eastern and central Iowa were used to reconstruct state average July Palmer hydrological drought index (PHDI), annual precipitation (previous August to current July), and other climate variables for 1640-1982. We removed nonclimatic variance trends caused by changing sample size and senescent growth. July PHDI correlated better with tree growth than annual precipitation. Occurrence of prolonged droughts throughout the reconstruction suggests that decades like the 1930s occur about twice per century in Iowa. Iowa climate is correlated with the Southern Oscillation Index (SOI) from June in the year of El Niño onset (Yr0) through the next February (Yr+1), with negative SOI (El Niño) associated with wetter conditions. When the June (Yr0) to February (Yr+1) average SOI reaches extremes ≥ + 1.0 or ≤-1.0, it correlates significantly with observed and reconstructed July PHDI (r = -0.37 and -0.56, respectively). Climate during solar cycles centered on sunspot minima alternates between wet and dry regimes that differ by an average of 1.21 units of observed July PHDI and 46.7 mm of annual precipitation for 1877-1982. The solar relationship has been stable since 1640. Combining solar and SOI influences in forecasts may improve prediction of Iowa climate.

  10. Stand structure and growth of Abies magnifica responded to five thinning levels in northeastern California, USA

    Treesearch

    Jianwei Zhang; William W. Oliver

    2006-01-01

    A 60-year old red fir stand with 23,950 stems per ha was thinned to five stand densities. Thinning occurred in 1972, 1976, and 1980. Height, DBH, and crown characteristics were measured seven times at four- to seven-year intervals from 1972 to 2002. Tree rings were measured retrospectively to determine growth of individual years. Periodic annual increment (PAI) was...

  11. Long-term growth decline in Toona ciliata in a moist tropical forest in Bangladesh: Impact of global warming

    NASA Astrophysics Data System (ADS)

    Rahman, Mizanur; Islam, Rofiqul; Islam, Mahmuda

    2017-04-01

    Tropical forests are carbon rich ecosystems and small changes in tropical forest tree growth substantially influence the global carbon cycle. Forest monitoring studies report inconsistent growth changes in tropical forest trees over the past decades. Most of the studies highlighted changes in the forest level carbon gain, neglecting the species-specific growth changes which ultimately determine community-level responses. Tree-ring analysis can provide historical data on species-specific tree growth with annual resolution. Such studies are inadequate in Bangladesh, which is one of the most climate sensitive regions in the tropics. In this study, we investigated long-term growth rates of Toona ciliata in a moist tropical forest of Bangladesh by using tree-ring analysis. We sampled 50 trees of varying size, obtained increment cores from these trees and measured tree-ring width. Analyses of growth patterns revealed size-dependent growth increments. After correcting for the effect of tree size on tree growth (ontogenetic changes) by two different methods we found declining growth rates in T. ciliata from 1960 to 2013. Standardized ring-width index (RWI) was strongly negatively correlated with annual mean and maximum temperatures suggesting that rising temperature might cause the observed growth decline in T. ciliata. Assuming that global temperatures will rise at the current rate, the observed growth decline is assumed to continue. The analysis of stable carbon and oxygen isotopes may reveal more insight on the physiological response of this species to future climatic changes.

  12. Reconstructing Tritium Exposure Using Tree Rings at Lawrence Berkeley National Laboratory, California

    PubMed Central

    LOVE, ADAM H.; HUNT, JAMES R.; KNEZOVICH, JOHN P.

    2010-01-01

    Annual tritium exposures were reconstructed using tree cores from Pinus jeffreyi and Eucalyptus globulus near a tritiated water vapor release stack. Both tritium (3H) and carbon-14 (14C) from the wood were measured from milligram samples using accelerator mass spectrometry. Because the annual nature of the eucalyptus tree rings was in doubt, 14C measurements provided growth rates used to estimate the age for 3H determinations. A 30-yr comparison of organically bound tritium (OBT) levels to reported 3H release data is achieved using OBT measurements from three trees near the stack. The annual average 3H, determined from atmospheric water vapor monitoring stations, is comparable to the OBT in proximal trees. For situations without adequate historical monitoring data, this measurement-based historical assessment provides the only independent means of assessing exposure as compared to fate and transport models that require prior knowledge of environmental conditions and 3H discharge patterns. PMID:14572081

  13. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles.

    PubMed

    Bukata, Andrew R; Kyser, T Kurtis

    2007-02-15

    Increasing anthropogenic pollution from urban centers and fossil fuel combustion can impact the carbon and nitrogen cycles in forests. To assess the impact of twentieth century anthropogenic pollution on forested system carbon and nitrogen cycles, variations in the carbon and nitrogen isotopic compositions of tree-rings were measured. Individual annual growth rings in trees from six sites across Ontario and one in New Brunswick, Canada were used to develop site chronologies of tree-ring delta 15N and delta 13C values. Tree-ring 615N values were approximately 0.5% per hundred higher and correlated with contemporaneous foliar samples from the same tree, but not with delta 15N values of soil samples. Temporal trends in carbon and nitrogen isotopic compositions of these tree-rings are consistent with increasing anthropogenic influence on both the carbon and nitrogen cycles since 1945. Tree-ring delta 13C values and delta 15N values are correlated at both remote and urban-proximal sites, with delta 15N values decreasing since 1945 and converging on 1% per hundred at urban-proximal sites and decreasing but not converging on a single delta 15N value in remote sites. These results indicate that temporal trends in tree-ring nitrogen and carbon isotopic compositions record the regional extent of pollution.

  14. Technical Note: An improved guideline for rapid and precise sample preparation of tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Schollaen, K.; Baschek, H.; Heinrich, I.; Helle, G.

    2015-07-01

    The procedure of wood sample preparation, including tree-ring dissection, cellulose extraction, homogenization and finally weighing and packing for stable isotope analysis is labour intensive and time consuming. We present an elaborated methodical guideline from pre-analyses considerations, wood sample preparation through semi-automated chemical extraction of cellulose directly from tree-ring cross-sections to tree-ring dissection for high-precision isotope ratio mass spectrometry. This guideline reduces time and maximizes the tree-ring stable isotope data throughput significantly. The method was applied to ten different tree species (coniferous and angiosperm wood) with different wood growth rates and differently shaped tree-ring boundaries. The tree-ring structures of the cellulose cross-sections largely remained well identifiable. FTIR (Fourier transform infrared) spectrometry and the comparison of stable isotope values with classical method confirm chemical purity of the resultant cellulose. Sample homogenization is no longer necessary. Cellulose extraction is now faster, cheaper and more user friendly allowing (i) the simultaneous treatment of wood cross-sections of a total length of 180 cm (equivalent to 6 increment cores of 30 cm length) and thickness of 0.5 to 2 mm, and (ii) precise tree-ring separation at annual to high-resolution scale utilizing manual devices or UV-laser microdissection microscopes.

  15. Effects of agaricus lilaceps fairy rings on soil aggregation and microbial community structure in relation to growth stimulation of western wheatgrass (pascopyrum smithii) in Eastern Montana rangeland

    USDA-ARS?s Scientific Manuscript database

    Stimulation of plant productivity caused by Agaricus fairy rings has been reported, but nothing is known about soil aggregation and the microbial community structure of the stimulated zone, particularly the communities that can bind to soil particles. We studied three concentric zones of Agaricus li...

  16. Structural disorder and transformation in crystal growth: direct observation of ring-opening isomerization in a metal–organic solid solution

    PubMed Central

    Jiang, Ji-Jun; He, Jian-Rong; Lü, Xing-Qiang; Wang, Da-Wei; Li, Guo-Bi; Su, Cheng-Yong

    2014-01-01

    A rare example is reported in which discrete Ag2 L 2 ring and (AgL)∞ chain motifs [L = N,N′-bis(3-imidazol-1-yl-propyl)-pyromellitic diimide] co-crystallize in the same crystal lattice with varying ratios and degrees of disorder. Crystal structures obtained from representative crystals reveal compatible packing arrangements of the cyclic and polymeric isomers within the crystal lattice, which enables them to co-exist within a crystalline solid solution. A feasible pathway for transformation between the isomers is suggested via facile rotation of the coordinating imidazolyl groups. This chemical system could provide a chance for direct observation of ring-opening isomerization at the crystal surface. Mass spectrometry and 1H NMR titration show a dynamic equilibrium between cyclic and oligomeric species in solution, and a potential crystallization process is suggested involving alignment of precursors directed by aromatic stacking interactions between pyromellitic diimide units, followed by ring-opening isomerization at the interface between the solid and the solution. Both cyclic and oligomeric species can act as precursors, with interconversion between them being facile due to a low energy barrier for rotation of the imidazole rings. Thermogravimetric analysis and variable-temperature powder X-ray diffraction indicate a transition to a different crystalline phase around 120°C, which is associated with loss of solvent from the crystal lattice. PMID:25295173

  17. Structural disorder and transformation in crystal growth: direct observation of ring-opening isomerization in a metal-organic solid solution.

    PubMed

    Jiang, Ji-Jun; He, Jian-Rong; Lü, Xing-Qiang; Wang, Da-Wei; Li, Guo-Bi; Su, Cheng-Yong

    2014-09-01

    A rare example is reported in which discrete Ag2 L 2 ring and (AgL)∞ chain motifs [L = N,N'-bis(3-imidazol-1-yl-propyl)-pyromellitic diimide] co-crystallize in the same crystal lattice with varying ratios and degrees of disorder. Crystal structures obtained from representative crystals reveal compatible packing arrangements of the cyclic and polymeric isomers within the crystal lattice, which enables them to co-exist within a crystalline solid solution. A feasible pathway for transformation between the isomers is suggested via facile rotation of the coordinating imidazolyl groups. This chemical system could provide a chance for direct observation of ring-opening isomerization at the crystal surface. Mass spectrometry and (1)H NMR titration show a dynamic equilibrium between cyclic and oligomeric species in solution, and a potential crystallization process is suggested involving alignment of precursors directed by aromatic stacking interactions between pyromellitic diimide units, followed by ring-opening isomerization at the interface between the solid and the solution. Both cyclic and oligomeric species can act as precursors, with interconversion between them being facile due to a low energy barrier for rotation of the imidazole rings. Thermogravimetric analysis and variable-temperature powder X-ray diffraction indicate a transition to a different crystalline phase around 120°C, which is associated with loss of solvent from the crystal lattice.

  18. The relation between pituitary gland and thyroid growth during the lifespan of the annual fish Cynolebias whitei and Nothobranchius korthausae: gonadotropic and thyrotropic cells.

    PubMed

    Ruijter, J M; Peute, J; Levels, P J

    1987-06-01

    In the annual cyprinodont Cynolebias whitei the cell types responsible for the increase of pituitary growth at the onset of maturation and for pituitary hyperplasia in old specimens were identified as gonadotropic cells and thyrotropic cells, respectively. The gonadotropic cells showed a high affinity to anti-carp alpha beta-GTH serum, both at light- and electron-microscopical levels. The allometric relation of total gonadotropic cell volume to body length, determined for fish from six weeks up to six months of age, showed no inflections. Therefore pituitary growth in maturing fish may be partly a result of proliferation of gonadotropes, although gonadotropic cells do not contribute to pituitary hyperplasia in old fish. Thyrotropic cells showed a weak affinity to anti-carp alpha beta-GTH serum at light-microscopical level. Under the electron microscope thyrotropic cells displayed signs of activation in maturing fish and signs of proliferation in old fish. The allometric relation of thyroid gland volume to body length paralleled that of pituitary volume to body length. Histologically the thyroid gland showed signs of inactivity in adult fish and of hyperplasia in old fish. The possibility, that gonadal maturation, pituitary thyrotropic activity, and growth of the thyroid in maturing fish are related through the inhibitory action of gonadal steroids on thyroid hormone release, is discussed. Pituitary hyperplasia in old fish is the result of proliferation of thyrotropic cells. Similar hyperplasia of pituitary and thyroid glands was observed in old Nothobranchius korthausae.

  19. Differential response of two Pinus spp. to avian nitrogen input as revealed by nitrogen isotope analysis for tree rings.

    PubMed

    Mizota, Chitoshi; Lopez Caceres, Maximo Larry; Yamanaka, Toshiro; Nobori, Yoshihiro

    2011-03-01

    Temporal variations in N concentration and δ(15)N value of annual tree rings (1 year of time resolution) of two Japanese Black Pine (Pinus thunbergii) and three Japanese Red Pine (Pinus densiflora) trees under current breeding activity of the Great Cormorant (Pharacrocorax carbo) and the Black-tailed Gull (Larus crassirostris), respectively, in central and northeastern Japan were studied. Both species from control sites where no avian input occurs show negative values (δ(15)N = around -4 ‰ to -2 ‰) which are common among higher plants growing under high rainfall regimes. The δ(15)N values of P. densiflora show uniformly positive values several years before and after the breeding event, indicating N translocation that moved the absorbed N of a given growth year to tree rings of the previous year while a clear historical value of soil N dynamics was kept intact in the annual rings of P. thunbergii. Long-term N trends inferred from tree rings must take into account tree species with limited translocation rates that can retain actual N annual acquisition.

  20. Ringing phenomenon of the fiber ring resonator.

    PubMed

    Ying, Diqing; Ma, Huilian; Jin, Zhonghe

    2007-08-01

    A resonator fiber-optic gyro (R-FOG) is a high-accuracy inertial rotation sensor based on the Sagnac effect. A fiber ring resonator is the core sensing element in the R-FOG. When the frequency of the fiber ring resonator input laser is swept linearly with time, ringing of the output resonance curve is observed. The output field of the fiber ring resonator is derived from the superposition of the light transmitted through the directional coupler directly and the multiple light components circulated in the fiber ring resonator when the frequency of the laser is swept. The amplitude and phase of the output field are analyzed, and it is found that the difference in time for different light components in the fiber ring resonator to reach a point of destructive interference causes the ringing phenomenon. Finally the ringing phenomenon is observed in experiments, and the experimental results agree with the theoretical analysis well.

  1. Inter-annual variability in apparent relative production, survival, and growth of juvenile Lost River and shortnose suckers in Upper Klamath Lake, Oregon, 2001–15

    USGS Publications Warehouse

    Burdick, Summer M.; Martin, Barbara A.

    2017-06-15

    Executive SummaryPopulations of the once abundant Lost River (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) of the Upper Klamath Basin, decreased so substantially throughout the 20th century that they were listed under the Endangered Species Act in 1988. Major landscape alterations, deterioration of water quality, and competition with and predation by exotic species are listed as primary causes of the decreases in populations. Upper Klamath Lake populations are decreasing because fish lost due to adult mortality, which is relatively low for adult Lost River suckers and variable for adult shortnose suckers, are not replaced by new young adult suckers recruiting into known adult spawning aggregations. Catch-at-age and size data indicate that most adult suckers presently in Upper Klamath Lake spawning populations were hatched around 1991. While, a lack of egg production and emigration of young fish (especially larvae) may contribute, catch-at-length and age data indicate high mortality during the first summer or winter of life may be the primary limitation to the recruitment of young adults. The causes of juvenile sucker mortality are unknown.We compiled and analyzed catch, length, age, and species data on juvenile suckers from Upper Klamath Lake from eight prior studies conducted from 2001 to 2015 to examine annual variation in apparent production, survival, and growth of young suckers. We used a combination of qualitative assessments, general linear models, and linear regression to make inferences about annual differences in juvenile sucker dynamics. The intent of this exercise is to provide information that can be compared to annual variability in environmental conditions with the hopes of understanding what drives juvenile sucker population dynamics.Age-0 Lost River suckers generally grew faster than age-0 shortnose suckers, but the difference in growth rates between the two species varied among years. This unsynchronized annual variation in

  2. EFFECT OF SOIL NITROGEN STRESS ON THE RELATIVE GROWTH RATE OF ANNUAL AND PERENNIAL GRASSES IN THE INTERMOUNTAIN WEST

    USDA-ARS?s Scientific Manuscript database

    A trade-off between inherent relative growth rate (RGR) and tolerance to low nutrient availability is a central theory in plant ecology and is predicted to be a key factor influencing invasion resistance in nutrient-poor systems. Specifically, low nutrient conditions are predicted to favor native s...

  3. Annual growth and environmental relationships of the invasive species Sargassum muticum and Undaria pinnatifida in the lagoon of Venice

    NASA Astrophysics Data System (ADS)

    Sfriso, A.; Facca, C.

    2013-09-01

    The growth and autoecology of two alien invasive species: Sargassum muticum and Undaria pinnatifida spreading in the Venice Lagoon were studied monthly, during one year, in two sites of different depth. S. muticum was present year-round and reached its largest size (485 cm) and maximum growth (8.33 cm d-1) at the deepest station. U. pinnatifida was present only from November to May, reaching the highest size (130 cm) in March-April in the shallow station with growth peaks of 2.32 cm d-1. The growth of both species was mainly regulated by water temperature, nutrient concentration, especially nitrogen, and water turbidity. The study highlights the different ecological role already observed for the two species: U. pinnatifida prefers eutrophic areas and is not present along the sea-coastline. Its total standing crop does not exceed 0.2 ktonnes fwt for all the Venice Lagoon. Conversely, S. muticum colonizes areas with a lower eutrophication level, such as the lagoon inlets, reaching a total lagoon standing crop of 4-6 ktonnes fwt.

  4. The Ring Sculptor

    NASA Image and Video Library

    2006-09-08

    Prometheus zooms across the Cassini spacecraft field of view, attended by faint streamers and deep gores in the F ring. This movie sequence of five images shows the F ring shepherd moon shaping the ring inner edge

  5. Beyond Bright Rings

    NASA Image and Video Library

    2009-12-30

    The tiny moon Pandora appears beyond the bright disk of Saturn rings in this image taken by NASA Cassini spacecraft. Pandora orbits outside the F ring and, in this image, is farther from Cassini than the rings are.

  6. Growth of consumer-directed health plans to one-half of all employer-sponsored insurance could save $57 billion annually.

    PubMed

    Haviland, Amelia M; Marquis, M Susan; McDevitt, Roland D; Sood, Neeraj

    2012-05-01

    Enrollment is increasing in consumer-directed health insurance plans, which feature high deductibles and a personal health care savings account. We project that an increase in market share of these plans--from the current level of 13 percent of employer-sponsored insurance to 50 percent--could reduce annual health care spending by about $57 billion. That decrease would be the equivalent of a 4 percent decline in total health care spending for the nonelderly. However, such growth in consumer-directed plan enrollment also has the potential to reduce the use of recommended health care services, as well as to increase premiums for traditional health insurance plans, as healthier individuals drop traditional coverage and enroll in consumer-directed plans. In this article we explore options that policy makers and employers facing these challenges should consider, including more refined plan designs and decision support systems to promote recommended services.

  7. Biological Basis of Tree-Ring Formation: A Crash Course

    PubMed Central

    Rathgeber, Cyrille B. K.; Cuny, Henri E.; Fonti, Patrick

    2016-01-01

    Wood is of crucial importance for man and biosphere. In this mini review, we present the fundamental processes involved in tree-ring formation and intra-annual dynamics of cambial activity, along with the influences of the environmental factors. During wood formation, new xylem cells produced by the cambium are undergoing profound transformations, passing through successive differentiation stages, which enable them to perform their functions in trees. Xylem cell formation can be divided in five major phases: (1) the division of a cambial mother cell that creates a new cell; (2) the enlargement of this newly formed cell; (3) the deposition of its secondary wall; (4) the lignification of its cell wall; and finally, (5) its programmed cell death. In most regions of the world cambial activity follows a seasonal cycle. At the beginning of the growing season, when temperature increases, the cambium resumes activity, producing new xylem cells. These cells are disposed along radial files, and start their differentiation program according to their birth date, creating typical developmental strips in the forming xylem. The width of these strips smoothly changes along the growing season. Finally, when climatic conditions deteriorate (temperature or water availability in particular), cambial activity stops, soon followed by cell enlargement, and later on by secondary wall deposition. Without a clear understanding of the xylem formation process, it is not possible to comprehend how annual growth rings and typical wood structures are formed, recording normal seasonal variations of the environment as well as extreme climatic events. PMID:27303426

  8. Pooled versus separate measurements of tree-ring stable isotopes.

    PubMed

    Dorado Liñán, Isabel; Gutiérrez, Emilia; Helle, Gerhard; Heinrich, Ingo; Andreu-Hayles, Laia; Planells, Octavi; Leuenberger, Markus; Bürger, Carmen; Schleser, Gerhard

    2011-05-01

    δ(13)C and δ(18)O of tree rings contain time integrated information about the environmental conditions weighted by seasonal growth dynamics and are well established as sources of palaeoclimatic and ecophysiological data. Annually resolved isotope chronologies are frequently produced by pooling dated growth rings from several trees prior to the isotopic analyses. This procedure has the advantage of saving time and resources, but precludes from defining the isotopic error or statistical uncertainty related to the inter-tree variability. Up to now only a few studies have compared isotope series from pooled tree rings with isotopic measurements from individual trees. We tested whether or not the δ(13)C and the δ(18)O chronologies derived from pooled and from individual tree rings display significant differences at two locations from the Iberian Peninsula to assess advantages and constraints of both methodologies. The comparisons along the period 1900-2003 reveal a good agreement between pooled chronologies and the two mean master series which were created by averaging raw individual values (Mean) or by generating a mass calibrated mean (MassC). In most of the cases, pooled chronologies show high synchronicity with averaged individual samples at interannual scale but some differences also show up especially when comparing δ(18)O decadal to multi-decadal variations. Moreover, differences in the first order autocorrelation among individuals may be obscured by pooling strategies. The lack of replication of pooled chronologies prevents detection of a bias due to a higher mass contribution of one sample but uncertainties associated with the analytical process itself, as sample inhomogeneity, seems to account for the observed differences.

  9. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  10. Accretion in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    opaque in occultation. We suggest that Icicles may evolve into Moonlets, which are an order of magnitude less abundant in UVIS observations. Motivated by the observations and previous models, I develop a more rigorous model of the evolution of aggregates in Saturn's F ring via tidally-modified accretion. I apply the model to the F ring for bodies of constant density undergoing binary collisions. Because the locations of the UVIS-observed clump-associated features are weakly correlated to the location of Prometheus (Esposito et al. 2012) and images show material stirred up after Prometheus passage (Murray et al. 2008), we develop an additional production term describing "enhanced growth" beyond sticking of hard spheres in binary collisions. In the scenario we devise, Prometheus creates high-density regions in which larger bodies efficiently sweep up smaller bodies. Including a term for this growth mechanism in the numerical model results in the modeled size distribution evolving to a state consistent with observations. Together, the observations and model tell a story of how moonlets are made. Prometheus may be the agent responsible for moonlet growth, a complicated and rare process in the F ring. This can explain how accretion gets the upper hand in forming F ring aggregates. Growth and destruction may be cyclical on a longer time scale. This research was supported by the Cassini project.

  11. Using Tree-Ring Data to Develop Critical Scientific and Mathematical Thinking Skills in Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Fiondella, F.; Davi, N. K.; Wattenberg, F.; Pringle, P. T.; Greidanus, I.; Oelkers, R.

    2015-12-01

    Tree-ring science provides an engaging, intuitive, and relevant entryway into understanding both climate change and environmental research. It also sheds light on the process of science--from inspiration, to fieldwork, to analysis, to publishing and communication. The basic premise of dendrochronology is that annual rings reflect year-to-year environmental conditions and that by studying long-lived trees we can learn about environmental and climatic conditions going back hundreds to thousands of years. Conceptually, this makes tree-ring studies accessible to students and faculty for a number of reasons. First, in order to collect their data, dendrochronologists often launch expeditions to stunningly picturesque and remote places in search of long-lived, climate sensitive trees. The exciting stories and images that scientists bring back from the field can help connect students to the studies, their motivation, and the data collected. Second, tree rings can be more easily explained as a proxy for climate than ice cores, speleothems and others. Most people have prior knowledge about trees and annual growth rings. It is even possible, for example, for non-expert audiences to see climate variability through time with the naked eye by looking at climate-sensitive tree cores. Third, tree rings are interdisciplinary and illustrate the interplay between the mathematical sciences, the biological sciences, and the geosciences—that is, they show that the biosphere is a fundamental component of the Earth system. Here, we present online, multi-media learning modules for undergraduates that introduce students to several foundational studies in tree-ring science. These include evaluating tree-ring cores from ancient hemlock trees growing on a talus slope in New Paltz, NY to learn about drought in the Northeastern US, evaluating long-term streamflow and drought of the Colorado River based on tree-ring records, and using tree-ring dating techniques to develop construction

  12. Lake Roosevelt Fisheries Evaluation Program; Movements and Growth of Marked Walleye Recaptured in Lake Roosevelt, 2000-2001 Annual Report.

    SciTech Connect

    McLellan, Holly; Scholz, Allan

    2002-03-01

    Walleye (Stizostedion vitreum) have been marked with floy tags in Lake Roosevelt since 1997 to estimate abundance, distribution and movement trends. In 2000, walleye were collected and marked during the spawning run in the Spokane River through electrofishing and angling to supplement movement and growth data collected in previous years. Walleye were also collected and marked during the 2000 and 2001 Kettle Falls Governor's Cup Walleye Tournaments. Seventy-six tag returns were recovered in 2000 and twenty-three in 2001. Walleye migrated into the Spokane River to spawn in mid April and early May. The majority of marked walleye were recovered within 25 km of their original marking location, with a few traveling long distances between recovery locations. Data also verified earlier results that walleye establish summer home ranges. Some walleye remained in the Spokane River, while others moved downstream, or upstream after entering the mainstem of Lake Roosevelt. Those moving upstream moved as far north as Keenlyside Dam in British Columbia (245 km). Growth data indicated similar trends exhibited in the past. Walleye growth and mortality rates were consistent with other walleye producing waters. Walleye condition was slightly below average when compared to other systems.

  13. Use of tree rings to investigate the onset of contamination of a shallow aquifer by chlorinated hydrocarbons

    USGS Publications Warehouse

    Yanosky, T.M.; Hansen, B.P.; Schening, M.R.

    2001-01-01

    Oaks (Quercus velutina Lam.) growing over a shallow aquifer contaminated by chlorinated hydrocarbons were studied to determine if it was possible to estimate the approximate year that contamination began. The annual rings of some trees downgradient from the contaminant release site contained elevated concentrations of chloride possibly derived from dechlorination of contaminants. Additionally, a radial-growth decline began in these trees at approximately the same time that chloride became elevated. Growth did not decline in trees that contained smaller concentrations of chloride. The source of elevated chloride and the corresponding reductions in tree growth could not be explained by factors other than contamination. On the basis of tree-ring evidence alone, the release occurred in the late 1960s or early 1970s. Contaminant release at a second location apparently occurred in the mid- to late 1970s, suggesting that the area was used for disposal for at least 5 years and possibly longer. Copyright ?? 2001 Elsevier Science B.V.

  14. A study of Solar-Enso correlation with southern Brazil tree ring index (1955- 1991)

    NASA Astrophysics Data System (ADS)

    Rigozo, N.; Nordemann, D.; Vieira, L.; Echer, E.

    The effects of solar activity and El Niño-Southern Oscillation on tree growth in Southern Brazil were studied by correlation analysis. Trees for this study were native Araucaria (Araucaria Angustifolia)from four locations in Rio Grande do Sul State, in Southern Brazil: Canela (29o18`S, 50o51`W, 790 m asl), Nova Petropolis (29o2`S, 51o10`W, 579 m asl), Sao Francisco de Paula (29o25`S, 50o24`W, 930 m asl) and Sao Martinho da Serra (29o30`S, 53o53`W, 484 m asl). From these four sites, an average tree ring Index for this region was derived, for the period 1955-1991. Linear correlations were made on annual and 10 year running averages of this tree ring Index, of sunspot number Rz and SOI. For annual averages, the correlation coefficients were low, and the multiple regression between tree ring and SOI and Rz indicates that 20% of the variance in tree rings was explained by solar activity and ENSO variability. However, when the 10 year running averages correlations were made, the coefficient correlations were much higher. A clear anticorrelation is observed between SOI and Index (r=-0.81) whereas Rz and Index show a positive correlation (r=0.67). The multiple regression of 10 year running averages indicates that 76% of the variance in tree ring INdex was explained by solar activity and ENSO. These results indicate that the effects of solar activity and ENSO on tree rings are better seen on long timescales.

  15. The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia.

    PubMed

    Rinne, K T; Saurer, M; Kirdyanov, A V; Loader, N J; Bryukhanova, M V; Werner, R A; Siegwolf, R T W

    2015-11-01

    Significant gaps still exist in our knowledge about post-photosynthetic leaf level and downstream metabolic processes and isotopic fractionations. This includes their impact on the isotopic climate signal stored in the carbon isotope composition (δ(13)C) of leaf assimilates and tree rings. For the first time, we compared the seasonal δ(13)C variability of leaf sucrose with intra-annual, high-resolution δ(13)C signature of tree rings from larch (Larix gmelinii Rupr.). The trees were growing at two sites in the continuous permafrost zone of Siberia with different growth conditions. Our results indicate very similar low-frequency intra-seasonal trends of the sucrose and tree ring δ(13)C records with little or no indication for the use of 'old' photosynthates formed during the previous year(s). The comparison of leaf sucrose δ(13)C values with that in other leaf sugars and in tree rings elucidates the cause for the reported (13)C-enrichment of sink organs compared with leaves. We observed that while the average δ(13)C of all needle sugars was 1.2‰ more negative than δ(13)C value of wood, the δ(13)C value of the transport sugar sucrose was on an average 1.0‰ more positive than that of wood. Our study shows a high potential of the combined use of compound-specific isotope analysis of sugars (leaf and phloem) with intra-annual tree ring δ(13)C measurements for deepening our understanding about the mechanisms controlling the isotope variability in tree rings under different environmental conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Saturn's Spectacular Ring System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Saturn's beautiful rings have fascinated astronomers since they were first observed by Galileo in 1610. The main rings consist of solid particles mostly in the 1 cm - 10 m range, composed primarily of water ice. The ring disk is exceptionally thin - the typical local thickness of the bright rings is tens of meters, whereas the diameter of the main rings is 250,000 km! The main rings exhibit substantial radial variations "ringlets", many of which are actively maintained via gravitational perturbations from Saturn's moons. Exterior to the main rings lie tenuous dust rings, which have little mass but occupy a very large volume of space. This seminar will emphasize the physics of ring-moon interactions, recent advances in our understanding of various aspects of the rings obtained from observations taken during 1995 when the rings appeared edge-on to the Earth and then to the Sun, and observations in subsequent years from HST.

  17. Fluid entrainment by isolated vortex rings

    NASA Astrophysics Data System (ADS)

    Dabiri, John O.; Gharib, Morteza

    2004-07-01

    Of particular importance to the development of models for isolated vortex ring dynamics in a real fluid is knowledge of ambient fluid entrainment by the ring. This time-dependent process dictates changes in the volume of fluid that must share impulse delivered by the vortex ring generator. Therefore fluid entrainment is also of immediate significance to the unsteady forces that arise due to the presence of vortex rings in starting flows. Applications ranging from industrial and transportation, to animal locomotion and cardiac flows, are currently being investigated to understand the dynamical role of the observed vortex ring structures. Despite this growing interest, fully empirical measurements of fluid entrainment by isolated vortex rings have remained elusive. The primary difficulties arise in defining the unsteady boundary of the ring, as well as an inability to maintain the vortex ring in the test section sufficiently long to facilitate measurements. We present a new technique for entrainment measurement that utilizes a coaxial counter-flow to retard translation of vortex rings generated from a piston cylinder apparatus, so that their growth due to fluid entrainment can be observed. Instantaneous streamlines of the flow are used to determine the unsteady vortex ring boundary and compute ambient fluid entrainment. Measurements indicate that the entrainment process does not promote self-similar vortex ring growth, but instead consists of a rapid convection-based entrainment phase during ring formation, followed by a slower diffusive mechanism that entrains ambient fluid into the isolated vortex ring. Entrained fluid typically constitutes 30% to 40% of the total volume of fluid carried with the vortex ring. Various counter-flow protocols were used to substantially manipulate the diffusive entrainment process, producing rings with entrained fluid fractions up to 65%. Measurements of vortex ring growth rate and vorticity distribution during diffusive entrainment

  18. Monthly Paleostreamflow Reconstruction from Annual Dendrochronologies for Water Systems Analysis

    NASA Astrophysics Data System (ADS)

    Stagge, J. H.; Rosenberg, D. E.; DeRose, R. J.; Rittenour, T. M.

    2016-12-01

    With concerns about drought and hydroclimatic change in the Western US, water managers have increasingly sought to evaluate system vulnerability using paleo-reconstructed streamflows. However, the widespread adoption of these approaches in the water resources field has been slowed due to the temporal scale mismatch between tree-ring chronologies, measured at an annual resolution, and water systems models, which typically simulate decisions at monthly or daily scales. This study presents a novel approach to address this challenge, generating monthly paleo-streamflow reconstructions by disaggregating an existing time series of annual reconstructed streamflows. The method relies on tree-ring anomalies from regionally different species and sites to accurately adjust the seasonal hydrograph, while also incorporating reconstructions of global-scale climate patterns, such as the El Nino Southern Oscillation (ENSO) or Pacific Decadal Oscillation (PDO), as hydrograph predictors. In this way, the model combines local, regional, and global measures in an approach that is flexible enough for use at any site with sufficient tree-ring data. An example is presented using two sites in the Bear River watershed, located in northeastern Utah. Monthly flows, disaggregated using 50 tree-ring chronologies and ENSO/PDO reconstructions, accurately reproduce seasonal patterns, extreme events, and flows outside the typical tree ring growth season. This approach is unique within the paleo-hydrology field, due to its direct reconstruction of monthly flows without the need for more complex hydrologic models. Retained model covariates can also provide insights into the drivers of local hydrological droughts. Ultimately, the proposed method can greatly improve the implementation of paleo-reconstructed streamflows in water resources management, allowing for easier and more accurate simulations of water vulnerability in the Western US over a wider range of historic natural variability.

  19. Population differentiation for germination and early seedling root growth traits under saline conditions in the annual legume Medicago truncatula (Fabaceae).

    PubMed

    Cordeiro, Matilde A; Moriuchi, Ken S; Fotinos, Tonya D; Miller, Kelsey E; Nuzhdin, Sergey V; von Wettberg, Eric J; Cook, Douglas R

    2014-03-01

    Seedling establishment and survival are highly sensitive to soil salinity and plants that evolved in saline environments are likely to express traits that increase fitness in those environments. Such traits are of ecological interest and they may have practical value for improving salt tolerance in cultivated species. We examined responses to soil salinity and tested potential mechanisms of salt tolerance in Medicago truncatula, using genotypes that originated from natural populations occurring on saline and nonsaline soils. Germination and seedling responses were quantified and compared between saline and nonsaline origin genotypes. Germination treatments included a range of sodium chloride (NaCl) concentrations in both offspring and parental environments. Seedling treatments included NaCl, abscisic acid (ABA), and potassium chloride (KCl). Saline origin genotypes displayed greater salinity tolerance for germination and seedling traits relative to nonsaline origin genotypes. We observed population specific differences for the effects of salinity on time to germination and for the impact of parental environment on germination rates. ABA and NaCl treatments had similar negative effects on root growth, although relative sensitivities differed, with saline population less sensitive to NaCl and more sensitive to ABA compared to their nonsaline counterparts. We report population differentiation for germination and seedling growth traits under saline conditions among populations derived from saline and nonsaline environments. These observations are consistent with a syndrome of adaptations for salinity tolerance during early plant development, including traits that are common among saline environments and those that are idiosyncratic to local populations.

  20. Uranus Tenth Ring

    NASA Image and Video Library

    1996-01-29

    On Jan. 23, 1986, NASA Voyager 2 discovered a tenth ring orbiting Uranus. The tenth ring is about midway between the bright, outermost epsilon ring and the next ring down, called delta. http://photojournal.jpl.nasa.gov/catalog/PIA00035

  1. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  2. Birth Control Ring

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Birth Control Ring KidsHealth > For Teens > Birth Control Ring Print A A A What's in this ... español Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ring ...

  3. Evidence of solar activity and El Niño signals in tree rings of Araucaria araucana and A. angustifolia in South America

    NASA Astrophysics Data System (ADS)

    Perone, A.; Lombardi, F.; Marchetti, M.; Tognetti, R.; Lasserre, B.

    2016-10-01

    Tree rings reveal climatic variations through years, but also the effect of solar activity in influencing the climate on a large scale. In order to investigate the role of solar cycles on climatic variability and to analyse their influences on tree growth, we focused on tree-ring chronologies of Araucaria angustifolia and Araucaria araucana in four study areas: Irati and Curitiba in Brazil, Caviahue in Chile, and Tolhuaca in Argentina. We obtained an average tree-ring chronology of 218, 117, 439, and 849 years for these areas, respectively. Particularly, the older chronologies also included the period of the Maunder and Dalton minima. To identify periodicities and trends observable in tree growth, the time series were analysed using spectral, wavelet and cross-wavelet techniques. Analysis based on the Multitaper method of annual growth rates identified 2 cycles with periodicities of 11 (Schwebe cycle) and 5.5 years (second harmonic of Schwebe cycle). In the Chilean and Argentinian sites, significant agreement between the time series of tree rings and the 11-year solar cycle was found during the periods of maximum solar activity. Results also showed oscillation with periods of 2-7 years, probably induced by local environmental variations, and possibly also related to the El-Niño events. Moreover, the Morlet complex wavelet analysis was applied to study the most relevant variability factors affecting tree-ring time series. Finally, we applied the cross-wavelet spectral analysis to evaluate the time lags between tree-ring and sunspot-number time series, as well as for the interaction between tree rings, the Southern Oscillation Index (SOI) and temperature and precipitation. Trees sampled in Chile and Argentina showed more evident responses of fluctuations in tree-ring time series to the variations of short and long periodicities in comparison with the Brazilian ones. These results provided new evidence on the solar activity-climate pattern-tree ring connections over

  4. New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring

    SciTech Connect

    de Pater, I; Hammel, H B; Gibbard, S G; Showalter, M R

    2006-02-02

    We compare near-infrared observations of the recently discovered outer rings of Uranus with HST results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced via impacts into the embedded moon Mab, which apparently orbits at a location where non-gravitational perturbations favor the survival and spreading of sub-micron sized dust. R/2003 U 2 more closely resembles Saturn's G ring.

  5. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual

    PubMed Central

    Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro

    2015-01-01

    Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ13C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706

  6. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual.

    PubMed

    Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro

    2015-10-03

    Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ(13)C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Dendrochronology and lakes: using tree-rings of alder to reconstruct lake levels

    NASA Astrophysics Data System (ADS)

    van der Maaten, Ernst; Buras, Allan; Scharnweber, Tobias; Simard, Sonia; Kaiser, Knut; Lorenz, Sebastian; van der Maaten-Theunissen, Marieke; Wilmking, Martin

    2014-05-01

    Climate change is considered a major threat for ecosystems around the world. Assessing its effects is challenging, amongst others, as we are unsure how ecosystems may respond to climate conditions they were not exposed to before. However, increased insight may be obtained by analyzing responses of ecosystems to past climate variability. In this respect, lake ecosystems appear as valuable sentinels, because they provide direct and indirect indicators of change through effects of climate. Lake-level fluctuations of closed catchments, for example, reflect a dynamic water balance, provide detailed insight in past moisture variations, and thereby allow for assessments of effects of anticipated climate change. Up to now, lake-level data are mostly obtained from gauging records and reconstructions from sediments and landforms. However, these records are in many cases only available over relatively short time periods, and, since geoscientific work is highly demanding, lake-level reconstructions are lacking for many regions. Here, we present and discuss an alternative method to reconstruct lake levels, which is based on tree-ring data of black alder (Alnus glutinosa L.). This tree species tolerates permanently waterlogged and temporally flooded conditions (i.e. riparian vegetation), and is often found along lakeshores. As the yearly growth of trees varies depending upon the experienced environmental conditions, annual rings of black alder from lakeshore vegetation likely capture information on variations in water table, and may therefore be used to reconstruct lake levels. Although alder is a relatively short-lived tree species, the frequent use of its' decay-resistant wood in foundations of historical buildings offers the possibility of extending living tree-chronologies back in time for several centuries. In this study, the potential to reconstruct lake-level fluctuations from tree-ring chronologies of black alder is explored for three lake ecosystems in the Mecklenburg

  8. Growth

    Treesearch

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  9. Gonadotropins and Growth Hormone Family Characterization in an Endangered Siluriform Species, Steindachneridion parahybae (Pimelodidae): Relationship With Annual Reproductive Cycle and Induced Spawning in Captivity.

    PubMed

    Honji, Renato Massaaki; Caneppele, Danilo; Pandolfi, Matias; Nostro, Fabiana Laura Lo; Moreira, Renata Guimarães

    2015-09-01

    The aim of this study was to identify and characterize pituitary cells of Steindachneridion parahybae females in captivity, highlighting the possible relationship with reproductive disorders at this level, since this species shows oocyte final maturation, ovulation and spawning dysfunction in captivity. The localization and distribution of growth hormone (GH), prolactin (PRL), somatolactin (SL), β-luteinizing hormone (β-LH), and β-follicle stimulating hormone (β-FSH) immunoreactive (-ir) cells in the adenohypophysis was studied by immunohistochemical and Western blot methods. In addition, cellular morphometric analyses and semi-quantification of ir-cells optical density (OD) during the annual reproductive cycle and after artificial induced spawning (AIS) were performed. Results showed that the distribution and general localization of pituitary cell types were similar to that of other teleost species. However, the morphometrical study of adenohypophysial cells showed differences along the reproductive cycle and following AIS. In general, females at the vitellogenic stage presented greater OD values for GH, PRL and SL than at other maturation stages (previtellogenic and regression stages), probably indicating an increased cellular activity during this stage. Conversely, β-LH OD did not vary during the annual reproductive cycle. After AIS, β-LH, SL and GH ir-cells showed an increase in OD values suggesting a possible involvement on oocyte final maturation, ovulation and spawning or a feedback control on the brain-pituitary-gonads axis. Reproductive dysfunction in S. parahybae females in captivity may be due to alteration of the synthesis pathways of β-LH. In addition, GH family of hormones could modulate associated mechanisms that influence the reproductive status in this species. © 2015 Wiley Periodicals, Inc.

  10. Efficient inhibition of iron superoxide dismutase and of Trypanosoma cruzi growth by benzo[g]phthalazine derivatives functionalized with one or two imidazole rings.

    PubMed

    Sanz, Ana M; Gómez-Contreras, Fernando; Navarro, Pilar; Sánchez-Moreno, Manuel; Boutaleb-Charki, Samira; Campuzano, Jose; Pardo, Mercedes; Osuna, Antonio; Cano, Carmen; Yunta, María J R; Campayo, Lucrecia

    2008-03-27

    The synthesis and trypanosomatic behavior of a new series of 1,4-bis(alkylamino)benzo[g]phthalazines 1- 4 containing the biologically significant imidazole ring are reported. In vitro antiparasitic activity against Trypanosoma cruzi epimastigotes is remarkable, especially for compound 2, whereas toxicity against Vero cells is very low. Conversion of epimastigotes to metacyclic forms in the presence of the tested compounds causes significant decreases in the amastigote and trypomastigote numbers. Fe-SOD inhibition is noteworthy, whereas effect on human Cu/Zn-SOD is negligible.

  11. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    PubMed

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability.

  12. Temperature signal instability of tree-ring δ13C chronology in the northeastern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Wenzhi; Liu, Xiaohong; Xu, Guobao; Zeng, Xiaomin; Wu, Guoju; Zhang, Xuanwen; Qin, Dahe

    2016-04-01

    Tree ring δ13C as a climate proxy is widely used for palaeoclimate research, however, its temporal stability response to the climate change remains unclear under more than one limited factors on tree growth. Here, we used a millennium tree-ring δ13C chronology combining two annual-resolution δ13C chronologies since 1800 from long-lived Qilian juniper (Sabina przewalskii) to assess its instability of the climate signal in the northeastern Qinghai-Tibetan Plateau. Tree-ring δ13C chronologies were strongly correlated with the regional mean April to August temperature from 1956 to 2008, but the associations were absent within the period 1901 to 1955 values in the CRU TS dataset. Comparison of the millennium-long δ13C series with reconstructed Asian temperatures also demonstrated that the δ13C chronology exhibited climate signal temporal instability. Substantial oscillations were revealed using a frequency-dependent analysis and 51-year running correlation analysis from the millennium-long tree-ring δ13C and δ18O series. Dual-isotope approach indicated that stomatal limitations created a statistical significant positive correlation between tree-ring δ13C and δ18O, but photosynthetic rate may be dominant when the correlations were not significant. Our results suggest that tree-ring δ13C series in the northeastern Qinghai-Tibetan Plateau is responded instability to temperature variations in the past 1000 years.

  13. Storage ring injection

    SciTech Connect

    Burke, R.J.

    1980-01-01

    Some basic issues involved in injecting the beam into storage rings with the principal parameters of those studied at the workshop have been considered. The main conclusion is that straightforward adjustments of the storage ring parameters makes injection easy. The largest number of injected turns is fourteen, and the phase space dilution allowance seems adequate to ensure very small beam loss during injection. The adjustments also result in lower bending magnet fields, and high field superconducting magnets (e.g., 5 Tesla) are not necessary. The design changes do not necessarily affect the Keil-Schnell criterion for stability of the longitudinal microwave instability, although that criterion appears to be irrelevant. Because the beams are expected to be unstable, but with slow growth rates, the vacuum chamber impedances required to give equal risetimes for the various designs are compared for systems posing various degrees of difficulty for injection. Finally, the impact of the parameters on cost is noted, and a system is considered that cuts the length of the linac in half by using doubly charged ions.

  14. Vessel anomalies in Quercus macrocarpa tree rings associated with recent floods along the Red River of the North, United States

    NASA Astrophysics Data System (ADS)

    Wertz, Erika L.; St. George, Scott; Zeleznik, Joseph D.

    2013-01-01

    Estimates of future flood risks are based on the observations of past floods, but instrumental records of basin hydrology are often too short to assess potential changes in the frequency or magnitude of extreme floods over time. In this study, we show that bur oak (Quercus macrocarpa Michx.) growing along the Red River of the North in North Dakota and Minnesota preserve evidence of past floods within their annual growth rings. Rings formed during major floods often displayed (i) marked reductions in the size of their earlywood vessels or (ii) a more diffuse distribution of vessels throughout the increment. Because of the correspondence between major floods and widespread anatomical anomalies within riparian oaks, we suggest that these features can be described as "flood rings." The frequency of flood-ring formation varied substantially along the river, which implies that this evidence can only provide an accurate estimate of flood history when it is obtained from many trees sampled across a dense network of sites. The rate of flood-ring formation is primarily influenced by flood magnitude but is also controlled by the timing and duration of inundation relative to the period of cambial growth. Although flood-affected oaks are imperfect recorders of past floods, this approach offers significant potential as a means to estimate the preinstrumental flood history of the Red River within the United States.

  15. Growth induced magnetic anisotropy in amorphous thin films. Annual progress report year 1, November 4, 1994--October 31, 1995

    SciTech Connect

    Hellman, F.

    1995-07-01

    The work in the past year has primarily involved three areas of magnetic thin films: amorphous rare earth-transition metal alloys, epitaxial COPt3 thin films, and exchange coupled antiferromagnetic insulators. In the amorphous alloys, the authors have focused on understanding the cause and the effect of the growth-surface-induced perpendicular magnetic anisotropy. Using the results of previous work, they are able to control this anisotropy quite precisely. This anisotropy is predicted to have dramatic and as-yet unobserved effects on the underlying nature of the magnetism. The work on the epitaxial Co-Pt alloys was originally undertaken as a comparison study to the amorphous alloys. The authors have discovered that these alloys exhibit a remarkable new phenomena; a surface-induced miscibility gap in a material which is believed to be completely miscible in the bulk. This miscibility gap is 100% correlated with the perpendicular anisotropy, although the connection is not yet clear, and is presumably linked to a magnetic energy of mixing which tends to drive a material towards clustering. The problem of exchange coupling in multilayers impacts many of the current research areas in magnetism. NiO/CoO multilayers can be prepared with coherent interfaces. The specific heat shows unambiguously the ordering of the spins in the layers. The results show clearly the transition from a single transition temperature to two distinct transitions with increasing thickness of the individual layers. From this data, the authors are able to determine the interface magnetic exchange coupling constant and the effect on the transition temperature of finite layer thickness.

  16. Soil amendment effects on the exotic annual grass Bromus tectorum L. and facilitation of its growth by the native perennial grass Hilaria jamesii (Torr.) Benth

    USGS Publications Warehouse

    Belnap, J.; Sherrod, S.K.

    2009-01-01

    Greenhouse experiments were undertaken to identify soil factors that curtail growth of the exotic annual grass Bromus tectorum L. (cheatgrass) without significantly inhibiting growth of native perennial grasses (here represented by Hilaria jamesii [Torr.] Benth). We grew B. tectorum and H. jamesii alone (monoculture pots) and together (combination pots) in soil treatments that manipulated levels of soil phosphorus, potassium, and sodium. Hilaria jamesii showed no decline when its aboveground biomass in any of the applied treatments was compared to the control in either the monoculture or combination pots. Monoculture pots of B. tectorum showed a decline in aboveground biomass with the addition of Na2HPO4 and K2HPO4. Interestingly, in pots where H. jamesii was present, the negative effect of these treatments was ameliorated. Whereas the presence of B. tectorum generally decreased the aboveground biomass of H. jamesii (comparing aboveground biomass in monoculture versus combination pots), the presence of H. jamesii resulted in an enhancement of B. tectorum aboveground biomass by up to 900%. We hypothesize that B. tectorum was able to obtain resources from H. jamesii, an action that benefited B. tectorum while generally harming H. jamesii. Possible ways resources may be gained by B. tectorum from native perennial grasses include (1) B. tectorum is protected from salt stress by native plants or associated soil biota; (2) when B. tectorum is grown with H. jamesii, the native soil biota is altered in a way that favors B. tectorum growth, including B. tectorum tapping into the mycorrhizal network of native plants and obtaining resources from them; (3) B. tectorum can take advantage of root exudates from native plants, including water and nutrients released by natives via hydraulic redistribution; and (4) B. tectorum is able to utilize some combination of the above mechanisms. In summary, land managers may find adding soil treatments can temporarily suppress B. tectorum

  17. Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-08-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  18. Relation of nickel concentrations in tree rings to groundwater contamination

    USGS Publications Warehouse

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-01-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  19. From process to proxy: Ecological challenges and opportunities of tree-ring based environmental reconstructions

    NASA Astrophysics Data System (ADS)

    Wilmking, Martin; Buras, Allan; Heinrich, Ingo; Scharnweber, Tobias; Simard, Sonia; Smiljanic, Marko; van der Maaten, Ernst; van der Maaten-Theunissen, Marieke

    2014-05-01

    Trees are sessile, long-living organisms and as such constantly need to adapt to changing environmental conditions. Accordingly, they often show high phenotypic plasticity (the ability to change phenotypic traits, such as allocation of resources) in response to environmental change. This high phenotypic plasticity is generally considered as one of the main ingredients for a sessile organism to survive and reach high ages. Precisely because of the ability of trees to reach old age and their in-ability to simply run away when conditions get worse, growth information recorded in tree rings has long been used as a major environmental proxy, covering time scales from decades to millennia. Past environmental conditions (e.g. climate) are recorded in i.e. annual tree-ring width, early- and latewood width, wood density, isotopic concentrations, cell anatomy or wood chemistry. One prerequisite for a reconstruction is that the relationship between the environmental variable influencing tree growth and the tree-growth variable itself is stable through time. This, however, might contrast the ecological theory of high plasticity and the trees ability to adapt to change. To untangle possible mechanisms leading to stable or unstable relationships between tree growth and environmental variables, it is helpful to have exact site information and several proxy variables of each tree-ring series available. Although we gain insight into the environmental history of a sampling site when sampling today, this is extremely difficult when using archeological wood. In this latter case, we face the additional challenge of unknown origin, provenance and (or) site conditions, making it even more important to use multiple proxy time-series from the same sample. Here, we review typical examples, where the relationship between tree growth and environmental variables seems 1) stable and 2) instable through time, and relate these two cases to ecological theory. Based on ecological theory, we then

  20. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  1. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  2. Phosphorus status and microbial community of paddy soil with the growth of annual ryegrass (Lolium multiflorum Lam.) under different phosphorus fertilizer treatments*

    PubMed Central

    Guo, Hai-chao; Wang, Guang-huo

    2009-01-01

    Annual ryegrass (Lolium multiflorum Lam.) was grown in paddy soil in pots under different phosphorus (P) fertilizer treatments to investigate changes of P fractions and microbial community of the soil. The treatments included Kunyang phosphate rock (KPR) applications at 50 mg P/kg (KPR50) and 250 mg P/kg (KPR250), mono-calcium phosphate (MCP) application at 50 mg P/kg (MCP50), and the control without P application. The results showed that KPR50, KPR250, and MCP50 applications significantly increased the dry weight of the ryegrass by 13%, 38%, and 55%, and increased P uptake by 19%, 135%, and 324%, respectively. Compared with MCP50, the relative effectiveness of KPR50 and KPR250 treatments in ryegrass production was about 23% and 68%, respectively. After one season of ryegrass growth, the KPR50, KPR250, and MCP50 applications increased soil-available P by 13.4%, 26.8%, and 55.2%, respectively. More than 80% of the applied KPR-P remained as HCl-P fraction in the soil. Phospholipid fatty acid (PLFA) analysis showed that the total and bacterial PLFAs were significantly higher in the soils with KPR250 and MCP50 treatments compared with KPR50 and control. The latter had no significant difference in the total or bacterial PLFAs. The KPR50, KPR250, and MCP50 treatments increased fungal PLFA by 69%, 103%, and 69%, respectively. Both the principal component analysis and the cluster analysis of the PLFA data suggest that P treatments altered the microbial community composition of the soils, and that P availability might be an important contributor to the changes in the microbial community structure during the ryegrass growth in the paddy soils. PMID:19817001

  3. Tree-ring width reveals the preparation of the 1974 Mt. Etna eruption

    NASA Astrophysics Data System (ADS)

    Seiler, Ruedi; Houlié, Nicolas; Cherubini, Paolo

    2017-03-01

    Reduced near-infrared reflectance observed in September 1973 in Skylab images of the western flank of Mt. Etna has been interpreted as an eruption precursor of the January 1974 eruption. Until now, it has been unclear when this signal started, whether it was sustained and which process(es) could have caused it. By analyzing tree-ring width time-series, we show that the reduced near-infrared precursory signal cannot be linked to a reduction in annual tree growth in the area. However, comparing the tree-ring width time-series with both remote sensing observations and volcano-seismic activity enables us to discuss the starting date of the pre-eruptive period of the 1974 eruption.

  4. Tree-ring width reveals the preparation of the 1974 Mt. Etna eruption

    PubMed Central

    Seiler, Ruedi; Houlié, Nicolas; Cherubini, Paolo

    2017-01-01

    Reduced near-infrared reflectance observed in September 1973 in Skylab images of the western flank of Mt. Etna has been interpreted as an eruption precursor of the January 1974 eruption. Until now, it has been unclear when this signal started, whether it was sustained and which process(es) could have caused it. By analyzing tree-ring width time-series, we show that the reduced near-infrared precursory signal cannot be linked to a reduction in annual tree growth in the area. However, comparing the tree-ring width time-series with both remote sensing observations and volcano-seismic activity enables us to discuss the starting date of the pre-eruptive period of the 1974 eruption. PMID:28266610

  5. Annual Report to the Bonneville Power Administration, Reporting Period: April 2008 - February 2009 [re: "Survival and Growth in the Columbia River Plume and north California Current"].

    SciTech Connect

    Northwest Fisheries Science Center, NOAA Fisheries; Cooperative Institute for Marine Resources Studies, Oregon State University; OGI School of Science & Engineering, Oregon Health Sciences University.

    2009-07-17

    We have made substantial progress toward our objectives outlined in our BPA supported proposal entitled 'Columbia River Basin Juvenile Salmonids: Survival and Growth in the Columbia River Plume and northern California Current' which we report on herein. During 2008, we were able to successfully conduct 3 mesoscale cruises. We also were able to conduct 7 biweekly predator cruises, along with substantial shore-based visual observations of seabirds. Detailed results of the mesoscale cruises are available in the Cruise Reports and summarized in the next section. We have taken a proactive approach to getting the results of our research to fisheries managers and the general public. We have begun to make annual predictions based on ocean conditions of the relative survival of juvenile coho and Chinook salmon well before they return as adults. This is based on both biological and physical indicators that we measure during our surveys or collect from outside data sources. Examples of our predictions for 2009 and 2010 are available on the following web site: http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/a-ecinhome.cfm.

  6. Refining Climatic Interpretations of Lower Forest Border Bristlecone Pine Tree-Ring Chronologies Over Recent Millennia

    NASA Astrophysics Data System (ADS)

    Larson, E. R.; Wilding, T.; Salzer, M. W.

    2012-12-01

    High-resolution paleoclimatology has been enhanced by the development of many proxy records of past climate variability derived from annually-resolved tree-ring widths. Bristlecone pine (Pinus longaeva) from western North America provides a unique and particularly useful proxy record that is both annually resolved and can extend for millennia. One challenge in interpreting bristlecone pine ring-width records is that ring growth can be influenced by both precipitation and temperature; we show that data from a separate species of pine improves understanding of these growth factors. The Methuselah Walk chronology (MWK) from the White Mountains of southern California provides a continuous, annually-resolved time series that has been used to estimate variability in precipitation over the past 8000 years (Hughes and Graumlich 1996). The reconstruction fails to capture five of the ten driest years during the calibration period of 1930-1980, however, possibly due to the shifting influence of temperature on factors such as snow pack retention that affect tree growth and that are important at this relatively high-elevation lower-forest border (~2800 m). The MWK reconstruction thus likely overestimates moisture availability over the reconstruction period. To improve interpretation of the MWK chronology we developed a tree-ring chronology from piñon pine trees (Pinus monophylla) growing in the same mountain range but approximately 400 m below MWK and therefore less likely to be influenced by temperature variability. The piñon living tree chronology (GVP) spans over five centuries, and cross sections collected from remnants predate AD 900, indicating the potential for developing a millennial-scale piñon chronology for use in conjunction with MWK. Tree growth at GVP was positively correlated with spring and summer precipitation, negatively correlated with summer temperatures over the instrumental record, and tracked precipitation during three of five drought years missed by

  7. Oxygen Isotopes in Tree Rings: A 345 Year Record of Precipitation in Amazonia

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Baker, P. A.; Evans, M. N.

    2008-12-01

    The Amazon basin is one of the world's key centers of atmospheric convection and acts as an engine for global hydrologic circulation. Despite its importance, a paucity of high resolution climate data exists for this region, in large part due to a poor instrumental record. The oxygen isotopic measurement of meteoric water has been used extensively to reconstruct past temperatures derived from ice cores, corals, and tree rings but is only recently recognized as a precipitation proxy in the tropics. Here we present a continuous, highly resolved (intra-annual), 345 year oxygen isotopic record from the Madre de Dios department in Southeastern Peru. Using tropical hardwood species Dipteryx micrantha, we present oxygen (and carbon) isotopic data from digested tree ring cellulose. We also present some of the first intra-annual (early wood versus late wood) isotopic data on this old growth tropical species. We demonstrate the utility of Amazon tropical tree rings to accurately record rainfall. We also identify that this meteoric water was delivered to the region via the South American Low-level Jet (SALLJ), which develops over the Atlantic and is the major water source during the South American Summer Monsoon.

  8. A tree-ring reconstruction of monsoon precipitation for the southwestern United States

    NASA Astrophysics Data System (ADS)

    Griffin, D.; Woodhouse, C. A.; Meko, D. M.; Touchan, R.; Leavitt, S. W.; Castro, C. L.

    2010-12-01

    The southwestern United States (SWUS) receives up to sixty percent of its annual precipitation from July-September in association with the North American monsoon system. However, because the SWUS is largely on the fringe of monsoon influence, warm-season precipitation across the region is highly variable on annual to decadal time scales. Although tree rings have revealed much about long-term moisture variability in this region’s westerly-driven winter climate regime, no dendroclimatic studies have systematically targeted the monsoon across the SWUS. Toward this end, the region’s first network of monsoon-sensitive chronologies is currently being developed, drawing on variability in the latewood (summer growth) of precisely dated tree rings. This study presents the first tree-ring reconstruction of monsoon (July-August) precipitation for southeastern Arizona and southwestern New Mexico, where the monsoon’s influence is most substantial in the SWUS. The long-term history of monsoon drought is characterized and contrasted with a reconstruction of winter (November-April) precipitation for the region. The widely discussed phase relationship between cool- and warm-season precipitation is examined and the reconstructions are analyzed in the frequency domain for evidence of amplified variance at wavelengths corresponding to the large-scale modes of climate thought to influence the region’s seasonal precipitation regimes.

  9. Management implications of long-term tree growth and mortality rates: A modeling study of big-leaf mahogany (Swietenia macrophylla) in the Brazilian Amazon

    Treesearch

    C.M. Free; R.M. Landis; J. Grogan; M.D. Schulze; M. Lentini; O. Dunisch; NO-VALUE

    2014-01-01

    Knowledge of tree age-size relationships is essential towards evaluating the sustainability of harvest regulations that include minimum diameter cutting limits and fixed-length cutting cycles. Although many tropical trees form annual growth rings and can be aged from discs or cores, destructive sampling is not always an option for valuable or threatened species. We...

  10. New dust belts of Uranus: one ring, two ring, red ring, blue ring.

    PubMed

    de Pater, Imke; Hammel, Heidi B; Gibbard, Seran G; Showalter, Mark R

    2006-04-07

    We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings.

  11. Rings Through Atmosphere

    NASA Image and Video Library

    2010-05-26

    NASA Cassini spacecraft looks toward the limb of Saturn and, on the right of this image, views part of the rings through the planet atmosphere. Saturn atmosphere can distort the view of the rings from some angles.

  12. Wavy, Wiggly Ring

    NASA Image and Video Library

    2012-04-23

    The constant change in Saturn wavy, wiggly F ring is on display in this image obtained by NASA Cassini spacecraft. The image shows a view looking directly down onto the ring with the planet removed from the center.

  13. Saturn Rings in Infrared

    NASA Image and Video Library

    2006-10-11

    This mosaic of Saturn rings was acquired by NASA Cassini visual and infrared mapping spectrometer instrument on Sept. 15, 2006, while the spacecraft was in the shadow of the planet looking back towards the rings

  14. The Inner Rings

    NASA Image and Video Library

    2007-02-01

    The Cassini spacecraft looks toward the innermost region of Saturn rings, capturing from right to left the C and B rings. The dark, inner edge of the Cassini Division is just visible in the lower left corner

  15. Ultra-high Resolution Carbon Isotope Records in Tree Rings: Indicators of Carbon Allocation and Growing Season Precipitation/Temperature (Invited)

    NASA Astrophysics Data System (ADS)

    Jahren, A.; Schubert, B.

    2010-12-01

    The rapidity and ease of carbon stable isotope measurements on organic substrates has opened the possibility of ultra-high resolution δ13C analyses within tree rings at < 30 to 100 micron increments. We present such measurements for 80 individual tree rings, from 10 trees spanning the last 55 million years in age from arctic, temperate, and tropical environments. Morphological features such as growth rings and resin canals were not preserved in some ancient specimens making identification of annual rings via standard techniques impossible. However, the annual patterns observed in ultra-high resolution δ13C records allowed for characterization of these unknown specimens as evergreen or deciduous. A combination of our data with that published in the literature showed a strong correlation between the amplitude of the δ13C pattern and growing season precipitation/temperature in > 90% of modern evergreen trees examined to date. Ultra-high resolution δ13C analyses of ancient, non-permineralized, evergreen trees could therefore provide quantitative estimates of past climate at annual or seasonal resolution.

  16. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  17. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  18. Fertility regulation in nursing women. IX. Contraceptive performance, duration of lactation, infant growth, and bleeding patterns during use of progesterone vaginal rings, progestin-only pills, Norplant implants, and Copper T 380-A intrauterine devices.

    PubMed

    Díaz, S; Zepeda, A; Maturana, X; Reyes, M V; Miranda, P; Casado, M E; Peralta, O; Croxatto, H B

    1997-10-01

    This study evaluated the performance of progesterone vaginal rings (n = 187), progestin-only pills (n = 117), Norplant implants (n = 120), and Copper T 380-A intrauterine devices (n = 122) in lactating women. Contraceptive efficacy, bleeding pattern, and influence of the method upon breastfeeding duration and infant growth were compared with those of untreated women (n = 236) who relied on lactational infertility. Participants were healthy, 18 to 38 years, had had a normal delivery, and were intending to breastfeed for as long as possible. Contraceptives were initiated at day 57 +/- 3 postpartum. Results are reported for the first year of use. All methods were highly effective, with pregnancy rates below 1%. None affected breastfeeding performance or the rate of infant growth. Users of the progestin-only methods experienced a period of lactational amenorrhea 4 to 5 months longer than did users of Copper T or untreated women. More than half of the women in each contraceptive group reported a bleeding in the first month after treatment initiation, which was not considered in the calculation of the duration of amenorrhea. Prolonged or frequent bleedings were infrequent. The proportion of bleedings lasting more than 10 days ranged from 0 in the progestin-only pills group to 7% in the Norplant implants group. The four methods, initiated around the eighth postpartum week, provided effective contraception with no negative effects upon lactation or infant growth and without the bleeding problems associated with their use in nonlactating women.

  19. Tree ring anatomical variability as an indicator for large-magnitude spring flooding in the Lower Mississippi Basin

    NASA Astrophysics Data System (ADS)

    Therrell, M. D.; Meko, M. D.; Bialecki, M.; Harley, G. L.

    2015-12-01

    Predicting the magnitude and frequency of floods relies on instrumental measurements of flood stage and discharge, however instrumental observations prior to the late-nineteenth century are rare. Using paleoproxies such as tree rings to study floods that occurred before the instrumental record, can help provide context for the modern flood record especially the variability of flood recurrence patterns. Riparian trees growing on flooded sites often record flood events as inter- and intra-annual variability in size, shape and arrangement of vessels in the annual xylem growth increment. In this study, we used anomalous anatomical features as well as a modified measure of earlywood (EW) vessel width of oak (Quercus sp.) annual tree rings to identify large-magnitude spring-season flood events at three locations in the Lower Mississippi River (LMR) basin for the past ~300 years. We compared the flood-ring anomaly and EW chronologies with daily river stage height data at several locations and these comparisons indicate that our new flood ring records can individually and jointly explain significant amounts of the variance in both stage height and number of days in flood during spring flood events. Our analyses indicate that our chronologies are recording nearly all large observed LMR floods in the 20th century, and provide a new record of similar events in the 18th and 19th centuries. These results suggest that tree-rings can be effectively used to develop and improve pre-instrumental flood records throughout the LMW region and potentially other similar systems.

  20. Modules over hereditary rings

    SciTech Connect

    Tuganbaev, A A

    1998-04-30

    Let A be a hereditary Noetherian prime ring that is not right primitive. A complete description of {pi}-injective A-modules is obtained. Conditions under which the classical ring of quotients of A is a {pi}-projective A-module are determined. A criterion for a right hereditary right Noetherian prime ring to be serial is obtained.

  1. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  2. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  3. Eyeing the E Ring

    NASA Image and Video Library

    2009-12-24

    NASA Cassini spacecraft takes a look at Saturn diffuse E ring which is formed from icy material spewing out of the south pole of the moon Enceladus. The E ring is seen nearly edge-on from slightly above the northern side of Saturn ring plane.

  4. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  5. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  6. Dusty D Ring

    NASA Image and Video Library

    2014-02-24

    Saturn D ring is easy to overlook since it trapped between the brighter C ring and the planet itself. In this view from NASA Cassini spacecraft, all that can be seen of the D ring is the faint and narrow arc as it stretches from top right of the ima

  7. On certain Hecke rings

    PubMed Central

    Evens, Sam; Bressler, Paul

    1987-01-01

    We examine rings that embed into the smash product of the group algebra of the Weyl group with the field of meromorphic functions on the Cartan subalgebra and are generated by elements that satisfy braid relations. We prove that every such ring is isomorphic to either the Hecke algebra, the nil Hecke ring, or the group algebra of the Weyl group. PMID:16593804

  8. Soft normed rings.

    PubMed

    Uluçay, Vakkas; Şahin, Mehmet; Olgun, Necati

    2016-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft normed rings by soft set theory. The notions of soft normed rings, soft normed ideals, soft complete normed rings are introduced and also several related properties and examples are given.

  9. Annual Energy Outlook

    EIA Publications

    2017-01-01

    The Annual Energy Outlook provides modeled projections of domestic energy markets through 2050, and includes cases with different assumptions of macroeconomic growth, world oil prices, technological progress, and energy policies. With strong domestic production and relatively flat demand, the United States becomes a net energy exporter over the projection period in most cases.

  10. Annual Energy Outlook

    EIA Publications

    2017-01-01

    The Annual Energy Outlook provides modeled projections of domestic energy markets through 2050, and includes cases with different assumptions of macroeconomic growth, world oil prices, technological progress, and energy policies. With strong domestic production and relatively flat demand, the United States becomes a net energy exporter over the projection period in most cases.

  11. Climate variability of Late Pleistocene deglaciation in the North American midcontinent derived from tree rings

    NASA Astrophysics Data System (ADS)

    Panyushkina, Irina P.; Livina, Valerie N.; Leavitt, Steve W.; Mode, William N.

    2016-04-01

    High-resolution climatic proxies, such as tree rings spanning millennia, have excellent potential to describe high- and low-frequency variability of climate. In practice, however, although the number of Holocene millennium-length tree-ring records is still rather limited, they are especially rare for the Late Pleistocene warming period following the Last Glacial Maximum. Furthermore, detection of climatic variability in tree-ring data is hindered due to intricate methodology of chronology development that transforms changes in tree geometry and a variety of environmental responses of tree growth to a climatic signal. Following meticulous derivation of a new tree-ring chronology, we propose a novel approach to analyze annual, decadal, multi-decadal and centennial climate-related variability of floating tree rings dated back near the end of the Pleistocene. We have developed a 1400-year tree-ring width chronology of spruce from the Green Bay area (Wisconsin) dated from 14.5 ka to 13.1ka cal BP. This new North American midcontinent record is composed of 10 overlapped site chronologies and has two short gaps filled with linear interpolation. The Green Bay chronology covers most of the warm and moist Bølling-Allerød interstadial (14.7 ka -12.7 ka BP). Within the Bølling-Allerød interstadial, there were several abrupt and brief cooling excursions such as the Older Dryas with full-glacial-like temperature conditions. We have applied tipping point analysis to detect the changes of climate-system states during these turbulent times and obtained early warning signals in the tree-ring variance. The analysis detected four short-term bifurcations dated ca. 14,450 cal BP, 14,000 cal BP, 13,750-13,600 cal BP and 13,180-13,100 cal BP. The bifurcation events of the tree-ring record correspond well to the abrupt and short cooling temperature excursions of the Bølling-Allerød interstadial documented in δ18O and Ca of GRIP ice-core records, and the Laurentide ice sheet dynamics

  12. Fagus sylvatica trunk epicormics in relation to primary and secondary growth

    PubMed Central

    Colin, F.; Sanjines, A.; Fortin, M.; Bontemps, J.-D.; Nicolini, E.

    2012-01-01

    Background and Aims European beech epicormics have received far less attention than epicormics of other species, especially sessile oak. However, previous work on beech has demonstrated that there is a negative effect of radial growth on trunk sprouting, while more recent investigations on sessile oak proved a strong positive influence of the presence of epicormics. The aims of this study were, first, to make a general quantification of the epicormics present along beech stems and, secondly, to test the effects of both radial growth and epicormic frequency on sprouting. Methods In order to test the effect of radial growth, ten forked individuals were sampled, with a dominant and a dominated fork of almost equal length for every individual. To test the effects of primary growth and epicormic frequency, on the last 17 annual shoots of each fork arm, the number of axillary buds, shoot length, ring width profiles, epicormic shoots and other epicormics were carefully recorded. Key Results The distribution of annual shoot length, radial growth profiles and parallel frequencies of all epicormics are presented. The latter frequencies were parallel to the annual shoot lengths, nearly equivalent for both arms of each tree, and radial growth profiles included very narrow rings in the lowest annual shoots and even missing rings in the dominated arms alone. The location of the latent buds and the epicormics was mainly at branch base, while epicormic shoots, bud clusters and spheroblasts were present mainly in the lowest annual shoots investigated. Using a zero-inflated mixed model, sprouting was shown to depend positively on epicormic frequency and negatively on radial growth. Conclusions Support for a trade-off between cambial activity and sprouting is put forward. Sprouting mainly depends on the frequency of epicormics. Between- and within-tree variability of the epicormic composition in a given species may thus have fundamental and applied implications. PMID:22887022

  13. Measuring tree-ring increments on tree bole sections with a video-based robotic positioner.

    PubMed

    Schmidt, R A; Kaufmann, M R; Porth, L; Watkins, R K

    1996-10-01

    We report on the design and performance of a system that speeds measurement of radial tree-ring increments on tree stem disks; this method replaces the usual binocular microscope with a video image, and automates the measuring and recording processes. The system was used to measure bole sections cut from stems at various heights to determine volume growth of representative trees in an old-growth ponderosa pine stand. The objective of the measurement system was to speed acquisition of annual growth increments from a large number of disks. A personal computer controls the location of a video camera in a 3-axis positioning system. The operator views the sample on a video monitor and positions the camera over each ring by selecting it with a computer-driven mouse. The computer measures and records the distance that the camera moves between each ring. Task selection is facilitated by menu-driven software that also formats, checks and organizes data files. Measurements have a resolution of 0.026 mm; however, finer resolution could be obtained with a different camera lens. Tests of measurement variability (repeated measurements by individual operators on a single radius) indicated standard errors of 0.006 mm or less for the first measurement sets for four operators. Correlation coefficients among four radii per bole section were as low as 0.66 for a whole tree, suggesting that measurements on single radii may provide poor estimates of radial growth for old trees. This system also offers the potential for automatic ring detection and measurement.

  14. Tree growth-climate relationships in a forest-plot network on Mediterranean mountains.

    PubMed

    Fyllas, Nikolaos M; Christopoulou, Anastasia; Galanidis, Alexandros; Michelaki, Chrysanthi Z; Dimitrakopoulos, Panayiotis G; Fulé, Peter Z; Arianoutsou, Margarita

    2017-11-15

    In this study we analysed a novel tree-growth dataset, inferred from annual ring-width measurements, of 7 forest tree species from 12 mountain regions in Greece, in order to identify tree growth - climate relationships. The tree species of interest were: Abies cephalonica, Abies borisii-regis, Picea abies, Pinus nigra, Pinus sylvestris, Fagus sylvatica and Quercus frainetto growing across a gradient of climate conditions with mean annual temperature ranging from 5.7 to 12.6°C and total annual precipitation from 500 to 950mm. In total, 344 tree cores (one per tree) were analysed across a network of 20 study sites. We found that water availability during the summer period (May-August) was a strong predictor of interannual variation in tree growth for all study species. Across species and sites, annual tree growth was positively related to summer season precipitation (PSP). The responsiveness of annual growth to PSP was tightly related to species and site specific measurements of instantaneous photosynthetic water use efficiency (WUE), suggesting that the growth of species with efficient water use is more responsive to variations in precipitation during the dry months of the year. Our findings support the importance of water availability for the growth of mountainous Mediterranean tree species and highlight that future reductions in precipitation are likely to lead to reduced tree-growth under climate change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis

    PubMed Central

    De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan

    2016-01-01

    Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414

  16. Stable isotopic and chemical indicators of volcanic eruptions in tree rings from Paricutin, Mexico

    NASA Astrophysics Data System (ADS)

    France, C.; Sheppard, P. R.; Jimenez Cano, N.; Speakman, R. J.

    2009-12-01

    Annual growth rings obtained from well dated tree ring cores from Paricutin, Mexico are examined for unique chemical signatures that reflect a known local volcanic eruption and its subsequent atmospheric and terrestrial inputs. Stable carbon isotopic profiles are combined with elemental analyses to construct a chemical profile before, during, and after the known eruptive years (1943-1952) when a cinder cone formed near the town of Paricutin. Data from this well documented eruption are combined with controls obtained from outside the ash fall zone. Carbon isotopes exhibit an enriched spike (~3‰) during the eruptive period followed by a subsequent return to baseline values. This in combination with other stable isotopic indicators and increases in phosphorus, sulfur, and possibly other elements, suggest a unique set of chemical inputs from the eruption. The analytical approach developed here potentially can be used to date unknown eruptions which in the past have often relied on the common dendrochronologic technique of tree ring width determination, or on historic human records. The former method can be somewhat subjective as changes in ring width can be attributed to multiple causes in addition to volcanically induced environmental stresses; the latter method is restricted to eruptions occurring in the last few thousand years. The quantitative approach of chemical analyses presented in this study can now be combined with standard 14C dating to precisely date eruption events and place them in an anthropologic context.

  17. A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.

    PubMed

    De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan

    2016-06-01

    Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  19. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2.

    PubMed

    Schippers, Peter; Sterck, Frank; Vlam, Mart; Zuidema, Pieter A

    2015-01-28

    Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree-ring study over a 30-year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2 ) in different combinations to estimate the contribution of each climate factor in explaining the inter-annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter-annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and - to a lesser extent - by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter-annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter-annual variation in stem growth. Our innovative approach - combining a simulation model with historical data on tree-ring growth and climate - allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of

  20. On the solar dust ring(s)

    NASA Astrophysics Data System (ADS)

    Mukai, T.

    Based on a mechanism to form the solar dust ring, it is proved that the observed peak in infrared F-corona cannot be explained by silicate type grains alone. Preliminary analysis on the recent infrared data of the F-corona by Maihara et al. (1984) has suggested that the ring particles have different physical properties compared with the dust grains, which produce the background F-corona.

  1. Ring Shake in Eastern Hemlock: Frequency and Relationship to Tree Attributes

    Treesearch

    John E. Baumgras; Paul E. Sendak; David L. Sonderman; David L. Sonderman

    2000-01-01

    Ring shake is a barrier to improved utilization of eastern hemlock, an important component of the total softwood timber resource in the Eastern United States and Canada. Ring shake is the lengthwise separation of wood that occurs between and parallel to growth rings, diminishing lumber yields and values. Evaluating the potential for ring shake is essential to improving...

  2. Ring shake in eastern hemlock: frequency and relationship to tree attributes

    Treesearch

    John E. Baumgras; Paul E. Sendak; David L. Sonderman

    2000-01-01

    Ring shake is a barrier to improved utilization of eastern hemlock, an important component of the total softwood timber resource in the Eastern United States and Canada. Ring shake is the lengthwise separation of wood that occurs between and parallel to growth rings, diminishing lumber yields and values. Evaluating the potential for ring shake is essential to improving...

  3. Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps

    PubMed Central

    Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V.; Zafirov, Nikolay; de Luis, Martin

    2016-01-01

    Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events. PMID:27200063

  4. Structure and Function of Intra-Annual Density Fluctuations: Mind the Gaps.

    PubMed

    Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V; Zafirov, Nikolay; de Luis, Martin

    2016-01-01

    Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events.

  5. A 4500 year Southern Hemisphere record of ENSO activity from kauri tree rings

    NASA Astrophysics Data System (ADS)

    Fowler, Anthony; Boswijk, Gretel; Lorrey, Andrew

    2013-04-01

    Kauri (Agathis australis (D. Don) Lindl.) is a long-lived closed-canopy emergent conifer endemic to northern New Zealand. Its clear annual rings carry a regional-scale climate signal which is amplified by pooling data across the modern growth range. Annual rings are predominantly laid down in September through December, coincident with El Niño and La Niña events peaking and with the strongest El Niño - Southern Oscillation (ENSO) teleconnection to New Zealand. Statistical analyses indicate that ENSO was the dominant 20th century driver of inter-annual variability of kauri growth with El Niño and La Niña events usually associated with wide and narrow tree rings respectively. A consequence is that the waxing and waning of ENSO activity through time is registered in kauri master tree-ring chronologies as evolving time series variance (variance increases during ENSO active periods). A multi-millennial master kauri tree-ring chronology has been built from samples extracted from living trees, historic building timbers, logging relics, and wood preserved in swamps. Recent work has extended the chronology to 2489 BCE and has increased sample depth to a minimum of nine trees from 1589 BCE (to 2002 CE). We describe this chronology and critically evaluate the utility of its running variance as a proxy for ENSO activity and/or regional teleconnection changes. Issues related to signal contamination, associated with complex evolving sample mix and depth, are highlighted. Inferred changes in past ENSO activity and/or teleconnections are related to plausible climate drivers (solar activity, volcanism, and global warming). In line with multi-proxy ENSO studies, our results indicate increasing ENSO activity as the world has warmed over the last 500 years or so, with superimposed quasi-periodic multi-decadal oscillations. We also find evidence of decadal-scale spectral features emerging at times of high chronology variance, consistent with the results of wavelet analysis of 20th

  6. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    NASA Astrophysics Data System (ADS)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  7. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  8. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    PubMed

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  9. Surge in the Ring

    NASA Image and Video Library

    2016-08-29

    An ethereal, glowing spot appears on Saturn's B ring in this view from NASA's Cassini spacecraft. There is nothing particular about that place in the rings that produces the glowing effect -- instead, it is an example of an "opposition surge" making that area on the rings appear extra bright. An opposition surge occurs when the Sun is directly behind the observer looking toward the rings. The particular geometry of this observation makes the point in the rings appear much, much brighter than would otherwise be expected. This view looks toward the sunlit side of the rings from about 28 degrees above the ring plane. The image was taken in visible light with the Cassini wide-angle camera on June 26, 2016. The view was acquired at a distance of approximately 940,000 miles (1.5 million kilometers) from the rings and at a Sun-ring-spacecraft, or phase, angle of 0 degrees. Image scale on the rings at center is 56 miles (90 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20496

  10. Traceable Ring Signature

    NASA Astrophysics Data System (ADS)

    Fujisaki, Eiichiro; Suzuki, Koutarou

    The ring signature allows a signer to leak secrets anonymously, without the risk of identity escrow. At the same time, the ring signature provides great flexibility: No group manager, no special setup, and the dynamics of group choice. The ring signature is, however, vulnerable to malicious or irresponsible signers in some applications, because of its anonymity. In this paper, we propose a traceable ring signature scheme. A traceable ring scheme is a ring signature except that it can restrict “excessive” anonymity. The traceable ring signature has a tag that consists of a list of ring members and an issue that refers to, for instance, a social affair or an election. A ring member can make any signed but anonymous opinion regarding the issue, but only once (per tag). If the member submits another signed opinion, possibly pretending to be another person who supports the first opinion, the identity of the member is immediately revealed. If the member submits the same opinion, for instance, voting “yes” regarding the same issue twice, everyone can see that these two are linked. The traceable ring signature can suit to many applications, such as an anonymous voting on a BBS. We formalize the security definitions for this primitive and show an efficient and simple construction in the random oracle model.

  11. Proxy-based annual and seasonal precipitation estimates for the Craters of the Moon lava-complex

    NASA Astrophysics Data System (ADS)

    Crawford, C. J.; Kipfmueller, K. F.; St George, S.

    2012-12-01

    Four millennial to multi-centennial length tree-ring chronologies were constructed from ancient lower-forest border limber pine (Pinus flexilis) and Douglas-fir (Pseudotsuga menziesii Mirb Franco) trees growing on basaltic lava at Craters of the Moon (COM) on the eastern Snake River Plain (SRP), south-central Idaho, USA. Standardized radial growth increments for limber pine ring-width (RW) and Douglas-fir ring-width (RW), earlywood-width (EW), and adjusted latewood-width (LWa) are weakly correlated, but share frequency-dependent coherency at interdecadal (2-5 yrs.) and decadal (13-21 yrs.) timescales. Monte-Carlo simulations between instrumental climate data and each tree-ring width chronology indicate that monthly-seasonal precipitation during late summer-winter is the primary positive, and dominant climate signal in limber pine RW and Douglas-fir LWa. Annual (previous summer-spring) and monthly precipitation during spring is positive, and dominant signals in Douglas-fir RW and EW, respectively. Based upon COM tree-ring width climate signals, and summer-winter precipitation autocorrelation structure on the central and eastern SRP, two independent proxy-based precipitation reconstructions (1532-2008) were developed using 'leave-n-out' stepwise multiple regression with cross-validation. Multiple calibrations for annual and seasonal time periods during 1930-2009 used Douglas-fir EW as a predictor for annual precipitation (pJuly-June), and limber pine RW and Douglas-fir LWa as predictors for summer-winter precipitation (July-March). Models explained between 32-37% (annual) and 26-36% (summer-winter) of the observed precipitation variance. Each model exhibited skillful prediction and validation while also passing verification tests across time periods with independently withheld precipitation data. Annual and summer-winter reconstructions only show moderate agreement (r=0.38, p<0.01, 1532-2008). The clear difference between annual and summer-winter estimates is the

  12. Use of tree-ring chemistry to document historical ground-water contamination events

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  13. Elevation Pattern in Growth Coherency on the Southeastern Tibetan Plateau

    PubMed Central

    Lyu, Lixin; Deng, Xu; Zhang, Qi-Bin

    2016-01-01

    It is generally expected that inter-annual changes in radial growth among trees would be similar to the increase in altitude due to the limitation of increasingly harsher climatic factors. Here, we examine whether this pattern exists in alpine forests on the southeastern Tibetan Plateau. Increment cores were collected from mature trees at the lower, middle and upper limits of balfour spruce (Picea likiangensis var. balfouriana (Rehd. et Wils.) Hillier ex Slsvin) forests at the Buze and Yela Mountains in Basu County, Changdu Prefecture of Tibet, China. The treeline elevations are 4320 m and 4510 m a.s.l. for Buze and Yela, respectively. Tree-ring widths were measured, crossdated, and detrended to obtain a sequence of ring-width indices for each individual sample. Annual growth rate, climate sensitivity, growth-climate relationships, and growth synchrony among trees were calculated and compared across altitudes. In Buze Mountain, the annual growth rate of trees has no significant difference across altitudes. The mean sensitivity of trees is lower at the treelines than at lower elevations. Tree growth has stronger correlation with winter temperature at upper elevations than at lower elevations, has significant correlation with moisture, not temperature, in the growing season, and the growth response to moisture is lower at the treeline than at lower elevations. The correlation among individual tree-ring sequences is lower at the treeline than at sites at lower elevation. In Yela Mountain, the characterisitics of annual growth rate, mean sensitivity, tree growth-climate relationships, and inter-serial correlation are similar to those in Buze, but their differences along altitudinal gradients are less significant as those in Buze. Our data do not support the general expectation of growth convergence among individuals with increasing altitude. We conclude that individual heterogeneity and microhabitat diversity are important features for treeline trees that may dampen

  14. Suppressor of K+ transport growth defect 1 (SKD1) interacts with RING-type ubiquitin ligase and sucrose non-fermenting 1-related protein kinase (SnRK1) in the halophyte ice plant

    PubMed Central

    Chiang, Chih-Pin; Li, Chang-Hua; Jou, Yingtzy; Chen, Yu-Chan; Lin, Ya-Chung; Yang, Fang-Yu; Huang, Nu-Chuan; Yen, Hungchen Emilie

    2013-01-01

    SKD1 (suppressor of K+ transport growth defect 1) is an AAA-type ATPase that functions as a molecular motor. It was previously shown that SKD1 accumulates in epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. SKD1 knock-down Arabidopsis mutants showed an imbalanced Na+/K+ ratio under salt stress. Two enzymes involved in protein post-translational modifications that physically interacted with McSKD1 were identified. McCPN1 (copine 1), a RING-type ubiquitin ligase, has an N-terminal myristoylation site that links to the plasma membrane, a central copine domain that interacts with McSKD1, and a C-terminal RING domain that catalyses protein ubiquitination. In vitro ubiquitination assay demonstrated that McCPN1 was capable of mediating ubiquitination of McSKD1. McSnRK1 (sucrose non-fermenting 1-related protein kinase) is a Ser/Thr protein kinase that contains an N-terminal STKc catalytic domain to phosphorylate McSKD1, and C-terminal UBA and KA1 domains to interact with McSKD1. The transcript and protein levels of McSnRK1 increased as NaCl concentrations increased. The formation of an SKD1–SnRK1–CPN1 ternary complex was demonstrated by yeast three-hybrid and bimolecular fluorescence complementation. It was found that McSKD1 preferentially interacts with McSnRK1 in the cytosol, and salt induced the re-distribution of McSKD1 and McSnRK1 towards the plasma membrane via the microtubule cytoskeleton and subsequently interacted with RING-type E3 McCPN1. The potential effects of ubiquitination and phosphorylation on McSKD1, such as changes in the ATPase activity and cellular localization, and how they relate to the functions of SKD1 in the maintenance of Na+/K+ homeostasis under salt stress, are discussed. PMID:23580756

  15. Slowing of Vortex Rings

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Bolster, Diogo; Hershberger, Robert

    2008-11-01

    We have investigated the slowing of vortex rings in water which are created with very thin cores. We find that these rings propagate with no measurable change in diameter or core size. The drag appears to be the result of viscous forces on the core. A simple model for this drag describes experimental data in terms of a drag coefficient, which depends only on Reynolds number. Barenghi's group at Newcastle found that the translational velocity of a ring in an inviscid fluid perturbed by Kelvin waves decreases with increasing amplitude of Kelvin waves. This suggests that the velocity of vortex rings in a viscous fluid may well depend on the amplitude of Kelvin waves at the time of formation. Rings with substantial amplitude of Kelvin waves will be expected to move more slowly than rings with little or no Kelvin wave amplitude. We present experimental data confirming this suggestion.

  16. Ring Details on Display

    NASA Image and Video Library

    2016-11-07

    This view from NASA's Cassini spacecraft showcases some of the amazingly detailed structure of Saturn's rings. The rings are made up of many smaller ringlets that blur together when seen from a distance. But when imaged up close, the rings' structures display quite a bit of variation. Ring scientists are debating the nature of these features -- whether they have always appeared this way or if their appearance has evolved over time. This view looks toward the sunlit side of the rings from about 4 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Sept. 24, 2016. The view was acquired at a distance of approximately 283,000 miles (456,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 32 degrees. Image scale is 17 miles (27 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20506

  17. Saturn's rings - an overview

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2005-08-01

    Saturn's rings embody in their diversity the entire spectrum of ring properties seen across the outer solar system, and remain unique in fundamental ways. The Voyager flybys revealed their complexity in 1980-1981, while groundbased and HST observations have provided important new insights since that time. Since July 2004, when it skimmed only tens of thousands of km over the unlit face of the rings - collecting unique remote and in-situ observations as it entered orbit - Cassini has been fulfilling the long-held dream of understanding Saturn's rings in depth. As of this meeting, if all continues as planned, seven orbits designed specifically with ring observations in mind will have been completed - each providing even better geometric opportunities than an entire Voyager flyby (to a spacecraft with far more powerful instruments than Voyager). Even these represent only a fraction of what the complete mission will tell us about the rings. This talk will review the key properties of the rings, highlight the themes and new insights emerging from recent studies, and serve as a context for new results presented at the meeting. The key properties include the relationship of the rings to their close-in and embedded moons; the composition of the rings and its spatial variation; and the complex radial and vertical structure of the rings, as related to local particle sizes and mass density. The main themes are that several evolutionary processes cause all these to vary - we think substantially - with time, and that the rings may be much younger than Saturn. To achieve our goal of understanding the origin of the rings, we must start from an in-depth characterization of their current state, and peer back through their extensive evolution. Cassini observations, and their theoretical analysis, will ultimately make this possible.

  18. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  19. Growth-climate relationships across topographic gradients in the northern Great Lakes

    USGS Publications Warehouse

    Dymond, S.F.; D'Amato, A.W.; Kolka, R.K.; Bolstad, P.V.; Sebestyen, S.D.; Bradford, John B.

    2016-01-01

    Climatic conditions exert important control over the growth, productivity, and distribution of forests, and characterizing these relationships is essential for understanding how forest ecosystems will respond to climate change. We used dendrochronological methods to develop climate–growth relationships for two dominant species, Populus tremuloides (quaking aspen) and Pinus resinosa (red pine), in the upper Great Lakes region to understand how climate and water availability influence annual forest productivity. Trees were sampled along a topographic gradient at the Marcell Experimental Forest (Minnesota, USA) to assess growth response to variations in temperature and different water availability metrics (precipitation, potential evapotranspiration (PET), cumulative moisture index (CMI), and soil water storage). Climatic variables were able to explain 33–58% of the variation in annual growth (as measured by ring-width increment) for quaking aspen and 37–74% of the variation for red pine. Climate–growth relationships were influenced by topography for quaking aspen but not for red pine. Annual ring growth for quaking aspen decreased with June CMI on ridges, decreased with temperature in the November prior to the growing season on sideslopes, and decreased with June PET on toeslopes. Red pine growth increased with increasing July PET across all topographic positions. These results indicate the sensitivity of both quaking aspen and red pine to local climate and show several vulnerabilities of these species to shifts in water supply and temperature because of climate change.

  20. Human 2D (index) and 4D (ring) finger lengths and ratios: cross-sectional data on linear growth patterns, sexual dimorphism and lateral asymmetry from 4 to 60 years of age

    PubMed Central

    Gillam, L; McDonald, R; Ebling, F J P; Mayhew, T M

    2008-01-01

    Human 2D:4D ratios (measures of the relative lengths of index and ring fingers) attract considerable research interest because they exhibit sexual dimorphism and are associated with various morphological, physiological and behavioural traits as well as sporting abilities and medical conditions. In an attempt to identify potential confounding factors in such studies, we have examined how relative and absolute digit lengths vary with gender and tested whether they are influenced by age, right–left asymmetry and hand preference. Participants between 4 and 60years of age were recruited from local educational sites. Hand photocopies and calliper measurement were used to obtain digit lengths. We employed linear regression analysis to examine the growth trajectories of individual digits, analyses of variance to isolate main and interaction effects of age, gender and hand preference, and paired t-tests to identify lateral asymmetries. Both digits exhibited biphasic growth with an early growth phase followed by a stable length phase. Digits in females attained their maximum length about 2.2years (dextral subjects) or 5.1years (sinistral subjects) earlier than those in males. Sexual dimorphism in 2D:4D ratios was apparent by 4years of age and age changes in ratios depended on gender, side and hand preference. Relative and absolute lengths displayed age, gender, hand-preference and age×gender interaction effects. Lengths tended to be greater in females in younger subjects and greater in males in older subjects. Ratios tended to be greater in sinistral subjects. In dextral subjects, significant lateral asymmetries in 2D lengths were seen at all ages but asymmetries in males and 4D lengths seemed to be age-dependent. We conclude that age, lateral asymmetry and hand preference are potential confounding factors and that future study designs should take account of these as well as other known confounders such as ethnicity, birth order, menstrual cycle phase and sexual

  1. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  2. Tiny Mimas, Huge Rings

    NASA Image and Video Library

    2016-11-28

    Saturn's icy moon Mimas is dwarfed by the planet's enormous rings. Because Mimas (near lower left) appears tiny by comparison, it might seem that the rings would be far more massive, but this is not the case. Scientists think the rings are no more than a few times as massive as Mimas, or perhaps just a fraction of Mimas' mass. Cassini is expected to determine the mass of Saturn's rings to within just a few hundredths of Mimas' mass as the mission winds down by tracking radio signals from the spacecraft as it flies close to the rings. The rings, which are made of small, icy particles spread over a vast area, are extremely thin -- generally no thicker than the height of a house. Thus, despite their giant proportions, the rings contain a surprisingly small amount of material. Mimas is 246 miles (396 kilometers) wide. This view looks toward the sunlit side of the rings from about 6 degrees above the ring plane. The image was taken in red light with the Cassini spacecraft wide-angle camera on July 21, 2016. The view was obtained at a distance of approximately 564,000 miles (907,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 31 degrees. Image scale is 34 miles (54 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20509

  3. Faint D Ring

    NASA Image and Video Library

    2015-04-27

    Not all of Saturn's rings are created equal: here the C and D rings appear side-by-side, but the C ring, which occupies the bottom half of this image, clearly outshines its neighbor. The D ring appears fainter than the C ring because it is comprised of less material. However, even rings as thin as the D ring can pose hazards to spacecraft. Given the high speeds at which Cassini travels, impacts with particles just fractions of a millimeter in size have the potential to damage key spacecraft components and instruments. Nonetheless, near the end of Cassini's mission, navigators plan to thread the spacecraft's orbit through the narrow region between the D ring and the top of Saturn's atmosphere. This view looks toward the unilluminated side of the rings from about 12 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Feb. 11, 2015. The view was acquired at a distance of approximately 372,000 miles (599,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 133 degrees. Image scale is 2.2 miles (3.6 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18313

  4. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  5. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  6. Saturn's E ring revisited

    NASA Astrophysics Data System (ADS)

    Feibelman, W. A.; Klinglesmith, D. A.

    1980-07-01

    Images of the E ring of Saturn obtained by the image processing of photographs of the 1966 edge-on presentation of the planet's ring plane are presented. Two methods of image enhancement were used: scanning with an image quantizer operated in the derivative mode to enhance contrast and computerized subtraction of a circularly symmetric image of the overexposed Saturn disk. Further photographic and CCD observation confirming the existence of the ring extending to twice the diameter of the A ring, which was not detected by the Pioneer 11 imaging photopolarimeter, is indicated.

  7. Jupiter Ring Halo

    NASA Image and Video Library

    1998-03-26

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age. Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal "halo" is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest being

  8. Viscosity in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Shu, F. H.; Cuzzi, J. N.

    1982-01-01

    The technique of estimating the viscosity in Saturn's rings from the damping rate of waves observed to be propagating within the rings is discussed. The wavetrains of attempts using spiral density waves as a diagnostic suffer significant complications that compromise the interpretations. A method that considers the damping of spiral bending waves was used to deduce a kinematic viscosity of 260 (+150, -100) sqcm/sec for the middle of the A ring where bending waves are excited by the 5:3 vertical resonance with Mimas. This value implies upper limits on the particle velocity dispersion and local ring thickness of 0.4 cm/sec and 30 m, respectively.

  9. Modified spiral wound retaining ring

    NASA Technical Reports Server (NTRS)

    Lawson, A. G. (Inventor)

    1980-01-01

    A spiral wound retaining ring with angled ends is described. The ring is crimped at the same angle as the ring ends to maintain a constant thickness dimension. The angling of the ends of the ring and crimp allow the ends to be positioned closer together while maintaining enough clearance to enable insertion and removal of the ring. By reducing the separation distance between the ends a stronger ring results since the double layer area of the ring is maximized.

  10. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There

  11. Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Coulthard, Bethany L.; Touchan, Ramzi; Anchukaitis, Kevin J.; Meko, David M.; Sivrikaya, Fatih

    2017-08-01

    Linking annual tree growth with remotely-sensed terrestrial vegetation indices provides a basis for using tree rings as proxies for ecosystem primary productivity over large spatial and long temporal scales. In contrast with most previous tree ring/remote sensing studies that have focused on temperature-limited boreal and taiga environments, here we compare the normalized difference vegetation index (NDVI) with a network of Pinus brutia tree ring width chronologies collected along ecological gradients in semiarid Cyprus, where both radial tree growth and broader vegetation activity are controlled by drought. We find that the interaction between precipitation, elevation, and land-cover type generate a relationship between radial tree growth and NDVI. While tree ring chronologies at higher-elevation forested sites do not exhibit climate-driven linkages with NDVI, chronologies at lower-elevation dry sites are strongly correlated with NDVI during the winter precipitation season. At lower-elevation sites, land cover is dominated by grasslands and shrublands and tree ring widths operate as a proxy for ecosystem-scale vegetation activity. Tree rings can therefore be used to reconstruct productivity in water-limited grasslands and shrublands, where future drought stress is expected to alter the global carbon cycle, biodiversity, and ecosystem functioning in the 21st century.

  12. A 3000-year annual-resolution record of the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Kelly, B. F.; Mariethoz, G.; Hellstrom, J.; Baker, A.

    2013-12-01

    The North Atlantic Oscillation provides an index of North Atlantic climate variability. The 947-yr long annual resolution record of the North Atlantic Oscillation (NAO) of Trouet et al. (2009, Science, 324, 78-81), the NAO Morocco-Scotland index, combined tree ring and stalagmite data, the latter a single stalagmite growth rate archive from NW Scotland. Trouet et al (2009) noted the unusual persistence of the positive phase of the NAO during the Medieval Climate Anomaly (MCA; 1050-1400AD). In order to better assess the uniqueness of the persistently positive NAO in the MCA, we extend the speleothem portion of the proxy NAO record with a composite of five stalagmites from the same cave system. We present the first-ever composite speleothem growth rate record. Using a combination of lamina counting, U-Th dating, and correlation between growth rate series, we build a continuous, annual-resolution, annually laminated, stalagmite growth rates series for the last 3000 years. We use geostatistical and stochastic approaches appropriate to stalagmite growth rate time series to characterise uncertainty in the stalagmite series and to screen them for periods of relative climate sensitivity vs. periods where there is hydrologically introduced, non-climatic variability. We produce the longest annual-resolution annual lamina record of the NAO for the last 3000 years. The screened stalagmite series is compared to instrumental and proxy records of the NAO. Spectral and wavelet analysis demonstrates that the series contains significant decadal to centennial scale periodicity throughout the record. We demonstrate that the persistently positive NAO during the MCA (1080-1460 CE) is remarkable within the last 3000 years. Two other phases of persistent, positive NAO, occur at 290-550 CE and 660-530 BCE, in agreement with the lower resolution, 5,200-yr Greenland lake sediment NAO proxy (Olsen et al, 2012, Nature Geoscience, 5, 808-812).

  13. Inner B Ring Terminus

    NASA Image and Video Library

    2009-09-21

    This mosaic, part of a larger mosaic of images captured by NASA Cassini Orbiter just hours before exact equinox at Saturn, shows that the spiral corrugation in the planet’s inner rings continues right up to the inner B ring.

  14. Neptune's ring system.

    NASA Astrophysics Data System (ADS)

    Porco, C. C.; Nicholson, P. D.; Cuzzi, J. N.; Lissauer, J. J.; Esposito, L. W.

    The authors review the current state of knowledge regarding the structure, particle properties, kinematics, dynamics, origin, and evolution of the Neptune rings derived from Earth-based and Voyager data. Neptune has a diverse system of five continuous rings - 2 broad (Galle and Lassell) and 3 narrow (Adams, Le Verrier, and Arago) - plus a narrow discontinuous ring sharing the orbit of one of its ring-region satellites, Galatea. The outermost Adams ring contains the only arcs observed so far in Voyager images. The five arcs vary in angular extent from ≡1° to ≡10°, and exhibit internal azimuthal structure with typical spatial scales of ≡0.5°. All five lie within ≡40° of longitude. Dust is present throughout the Neptune system and measureable quantities of it were detected over Neptune's north pole. The Adams ring (including the arcs) and the Le Verrier ring contain a significant fraction of dust. The Neptune ring particles are probably red, and may consist of ice "dirtied" with silicates and/or some carbon-bearing material. A kinematic model for the arcs derived from Voyager data, the arcs' physical characteristics, and their orbital geometry and phasing are all roughly in accord with single-satellite arc shepherding by Galatea, though the presence of small kilometer-sized bodies embedded either within the arcs or placed at their Lagrange points may explain some inconsistencies with this model.

  15. EBT ring physics

    SciTech Connect

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)

  16. Uranus Ring System

    NASA Image and Video Library

    1996-01-29

    This image captured by NASA's Voyager 2 in 1986 revealed a continuous distribution of small particles throughout the Uranus ring system. This unique geometry, the highest phase angle at which Voyager imaged the rings, allowed us to see lanes of fine dust. http://photojournal.jpl.nasa.gov/catalog/PIA00142

  17. Smoke Ring Physics

    NA