7 CFR Appendix A to Subpart B of... - Review Rating Summary, RUS Form 300
Code of Federal Regulations, 2014 CFR
2014-01-01
.... System Load Conditions and Losses a. Annual System Loses, ____%—Rating:____ b. Annual Load Factor... ____ Date Prepared ____ Ratings on form are: 0: Unsatisfactory—no records 1: Unsatisfactory—corrective action needed 2: Acceptable, but should be improved—see attached recommendations 3: Satisfactory—no...
NASA Astrophysics Data System (ADS)
Jordan, Yuyan C.; Ghulam, Abduwasit; Hartling, Sean
2014-01-01
In this paper, spatial and temporal trajectories of land cover/land use change (LCLUC) derived from Landsat data record are combined with hydrological modeling to explore the implication of vegetation dynamics on soil erosion and total suspended sediment (TSS) loading to surface rivers. The inter-annual coefficient of variation (CoV) of normalized difference vegetation index (NDVI) is used to screen the LCLUC and climate change. The Soil and Water Assessment Tool (SWAT) is employed to identify the monthly TSS for two times interval (1991 to 2001 and 2001 to 2011) at subbasin levels. SWAT model is calibrated from 1991 to 2001 and validated from 2002 to 2011 at three USGS gauging sites located in the study area. The Spearman's rank correlation of annual mean TSS is used to assess the temporal trends of TSS dynamics in the subbasins in the two study periods. The spatial correlation among NDVI, LCLUC, climate change and TSS loading rate changes is quantified by using linear regression model and negative/positive trend analysis. Our results showed that higher rainfall yields contribute to higher TSS loading into surface waters. A higher inter-annual accumulated vegetation index and lower inter-annual CoV distributed over the uplands resulted in a lower TSS loading rate, while a relatively low vegetation index with larger CoV observed over lowlands resulted in a higher TSS loading rate. The TSS loading rate at the basin outlet increased with the decrease of annual NDVI due to expanding urban areas in the watershed. The results also suggested nonlinearity between the trends of TSS loading with any of a specific land cover change because of the fact that the contribution of a factor can be influenced by the effects of other factors. However, dominant factors that shape the relationship between the trend of TSS loading and specific land cover changes were detected. The change of forest showed a negative relationship while agriculture and pasture demonstrated positive relationships with TSS loading change. Our results do not show any significant causal relationship between urbanization and the TSS loading change suggesting that further investigation needs to be carried out to understand the mechanism of the impact of urban sprawl on surface water quality.
Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas
Haggard, B.E.; Soerens, T.S.; Green, W.R.; Richards, R.P.
2003-01-01
The development of total maximum daily loads (TMDLs) requires evaluating existing constituent loads in streams. Accurate estimates of constituent loads are needed to calibrate watershed and reservoir models for TMDL development. The best approach to estimate constituent loads is high frequency sampling, particularly during storm events, and mass integration of constituents passing a point in a stream. Most often, resources are limited and discrete water quality samples are collected on fixed intervals and sometimes supplemented with directed sampling during storm events. When resources are limited, mass integration is not an accurate means to determine constituent loads and other load estimation techniques such as regression models are used. The objective of this work was to determine a minimum number of water-quality samples needed to provide constituent concentration data adequate to estimate constituent loads at a large stream. Twenty sets of water quality samples with and without supplemental storm samples were randomly selected at various fixed intervals from a database at the Illinois River, northwest Arkansas. The random sets were used to estimate total phosphorus (TP) loads using regression models. The regression-based annual TP loads were compared to the integrated annual TP load estimated using all the data. At a minimum, monthly sampling plus supplemental storm samples (six samples per year) was needed to produce a root mean square error of less than 15%. Water quality samples should be collected at least semi-monthly (every 15 days) in studies less than two years if seasonal time factors are to be used in the regression models. Annual TP loads estimated from independently collected discrete water quality samples further demonstrated the utility of using regression models to estimate annual TP loads in this stream system.
NASA Astrophysics Data System (ADS)
Restrepo López, Juan Camilo; Orejarena R, Andrés F.; Torregroza, Ana Carolina
2017-12-01
Monthly averaged suspended sediment load data from seven rivers in northern Colombia (Caribbean alluvial plain) draining into the Caribbean Sea were analyzed to quantify magnitudes, estimate long-term trends, and evaluate variability patterns of suspended sediment load. Collectively these rivers deliver an average of around 146.3 × 106 t yr-1 of suspended sediments to the Colombian Caribbean coast. The largest sediment supply is provided by the Magdalena River, with a mean suspended sediment load of 142.6 × 106 t yr-1, or 38% of the total fluvial discharge estimated for the whole Caribbean littoral zone. Between 2000 and 2010, the annual suspended sediment load of these rivers increased by as much as 36%. Wavelet spectral analyses identified periods of intense variability between 1987-1990 and 1994-2002, where major oscillation processes appeared simultaneously. The semi-annual, annual and quasi-decadal bands are the main factors controlling suspended sediment load variability in fluvial systems, whereas the quasi-biennial and interannual bands constitute second-order sources of variability. The climatic and oceanographic drivers of the oscillations identified through wavelet spectral analyses define a signal of medium-long-term variability for the suspended sediment load, while the physiographic and environmental characteristics of the basins determine their ability to magnify, attenuate or modify this signal.
Liebermann, Timothy D.; Mueller, David K.; Kircher, James E.; Choquette, Anne F.
1989-01-01
Annual and monthly concentrations and loads of dissolved solids and major constituents were estimated for 70 streamflow-gaging stations in the Upper Colorado River Basin. Trends in streamflow, dissolved-solids concentrations, and dissolved-solids loads were identified. Nonparametric trend-analysis techniques were used to determine step trends resulting from human activities upstream and long-term monotonic trends. Results were compared with physical characteristics of the basin and historical water-resource development in the basin to determine source areas of dissolved solids and possible cause of trends. Mean annual dissolved-solids concentration increases from less than 100 milligrams per liter in the headwater streams to more than 500 milligrams per liter in the outflow from the Upper Colorado River Basin. All the major tributaries that have high concentrations of dissolved solids are downstream from extensive areas of irrigated agriculture. However, irrigation predated the period of record for most sites and was not a factor in many identified trends. Significant annual trends were identified for 30 sites. Most of these trends were related to transbasin exports, changes in land use, salinity-control practices, or reservoir development. The primary factor affecting streamflow and dissolved-solids concentration and load has been the construction of large reservoirs. Reservoirs have decreased the seasonal and annual variability of streamflow and dissolved solids in streams that drain the Gunnison and San Juan River basins. Fontenelle and Flaming Gorge Reservoirs have increased the dissolved-solids load in the Green River because of dissolution of mineral salts from the bank material. The largest trends occurred downstream from Lake Powell. However, the period of record since the completion of filling was too short to estimate the long-term effects of that reservoir.
Continental hydrology loading observed by VLBI measurements
NASA Astrophysics Data System (ADS)
Eriksson, David; MacMillan, D. S.
2014-07-01
Variations in continental water storage lead to loading deformation of the crust with typical peak-to-peak variations at very long baseline interferometry (VLBI) sites of 3-15 mm in the vertical component and 1-2 mm in the horizontal component. The hydrology signal at VLBI sites has annual and semi-annual components and clear interannual variations. We have calculated the hydrology loading series using mass loading distributions derived from the global land data assimilation system (GLDAS) hydrology model and alternatively from a global grid of equal-area gravity recovery and climate experiment (GRACE) mascons. In the analysis of the two weekly VLBI 24-h R1 and R4 network sessions from 2003 to 2010 the baseline length repeatabilities are reduced in 79 % (80 %) of baselines when GLDAS (GRACE) loading corrections are applied. Site vertical coordinate repeatabilities are reduced in about 80 % of the sites when either GLDAS or GRACE loading is used. In the horizontal components, reduction occurs in 70-80 % of the sites. Estimates of the annual site vertical amplitudes were reduced for 16 out of 18 sites if either loading series was applied. We estimated loading admittance factors for each site and found that the average admittances were 1.01 0.05 for GRACE and 1.39 0.07 for GLDAS. The standard deviations of the GRACE admittances and GLDAS admittances were 0.31 and 0.68, respectively. For sites that have been observed in a set of sufficiently temporally dense daily sessions, the average correlation between VLBI vertical monthly averaged series and GLDAS or GRACE loading series was 0.47 and 0.43, respectively.
23 CFR 650.707 - Rating factor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Average Daily Truck Traffic in thousands (Pick up trucks and light delivery trucks not included). For load... restricted. The ADTT should be the annual average volume, not peak or seasonal; (4) N is National Highway...
23 CFR 650.707 - Rating factor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Average Daily Truck Traffic in thousands (Pick up trucks and light delivery trucks not included). For load... restricted. The ADTT should be the annual average volume, not peak or seasonal; (4) N is National Highway...
23 CFR 650.707 - Rating factor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Average Daily Truck Traffic in thousands (Pick up trucks and light delivery trucks not included). For load... restricted. The ADTT should be the annual average volume, not peak or seasonal; (4) N is National Highway...
23 CFR 650.707 - Rating factor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Average Daily Truck Traffic in thousands (Pick up trucks and light delivery trucks not included). For load... restricted. The ADTT should be the annual average volume, not peak or seasonal; (4) N is National Highway...
23 CFR 650.707 - Rating factor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Average Daily Truck Traffic in thousands (Pick up trucks and light delivery trucks not included). For load... restricted. The ADTT should be the annual average volume, not peak or seasonal; (4) N is National Highway...
NASA Astrophysics Data System (ADS)
Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu
2017-09-01
Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.
NASA Astrophysics Data System (ADS)
Saraswat, S. K.; Rao, K. V. S.
2018-03-01
Jaisalmer town in Rajasthan, India is having annual average solar insolation of 5.80 kWh/m2/day and 270 – 300 clear sky days in a year. A 10 kW off-grid hybrid energy system (HES) consisting of solar photovoltaic panels – diesel generator – bidirectional converter and batteries with zero percentage loss of load for Jaisalmer is designed using HOMER (version 3.4.3) software. Different system load factors of 0.33, 0.50, 0.67, 0.83 and 1 corresponding to fraction of running hours per day of the system are considered. The system is analyzed for all three aspects, namely, electrical, economic and emission point of view. Least levelized cost of electricity (LCOE) of Rs. 8.43/kWh is obtained at a load factor value of 0.5. If diesel generator alone (without Solar PV) is used to fulfil the demand for a load factor of 0.5the value of LCOE is obtained Rs.19.23/kWh. Comparison of results obtained for HES and diesel generator are made for load factor of 0.5 and 1.
Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer
2018-01-01
Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.
49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with the...
49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 9 2014-10-01 2014-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with the...
49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 9 2013-10-01 2013-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with the...
49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with the...
49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 9 2012-10-01 2012-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with the...
Phosphorus and water budgets in an agricultural basin.
Faridmarandi, Sayena; Naja, Ghinwa M
2014-01-01
Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas.
Methods for Estimating Annual Wastewater Nutrient Loads in the Southeastern United States
McMahon, Gerard; Tervelt, Larinda; Donehoo, William
2007-01-01
This report describes an approach for estimating annual total nitrogen and total phosphorus loads from point-source dischargers in the southeastern United States. Nutrient load estimates for 2002 were used in the calibration and application of a regional nutrient model, referred to as the SPARROW (SPAtially Referenced Regression On Watershed attributes) watershed model. Loads from dischargers permitted under the National Pollutant Discharge Elimination System were calculated using data from the U.S. Environmental Protection Agency Permit Compliance System database and individual state databases. Site information from both state and U.S. Environmental Protection Agency databases, including latitude and longitude and monitored effluent data, was compiled into a project database. For sites with a complete effluent-monitoring record, effluent-flow and nutrient-concentration data were used to develop estimates of annual point-source nitrogen and phosphorus loads. When flow data were available but nutrient-concentration data were missing or incomplete, typical pollutant-concentration values of total nitrogen and total phosphorus were used to estimate load. In developing typical pollutant-concentration values, the major factors assumed to influence wastewater nutrient-concentration variability were the size of the discharger (the amount of flow), the season during which discharge occurred, and the Standard Industrial Classification code of the discharger. One insight gained from this study is that in order to gain access to flow, concentration, and location data, close communication and collaboration are required with the agencies that collect and manage the data. In addition, the accuracy and usefulness of the load estimates depend on the willingness of the states and the U.S. Environmental Protection Agency to provide guidance and review for at least a subset of the load estimates that may be problematic.
Occurrence and load of selected herbicides and metabolites in the lower Mississippi River
Clark, G.M.; Goolsby, D.A.
2000-01-01
Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991-1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1-2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico. Copyright (C) 2000 Elsevier Science B.V.
Occurrence and load of selected herbicides and metabolites in the lower Mississippi River
Clark, Gregory M.; Goolsby, Donald A.
2000-01-01
Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991–1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1–2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico.
Baldys, Stanley; Raines, T.H.; Mansfield, B.L.; Sandlin, J.T.
1998-01-01
Local regression equations were developed to estimate loads produced by individual storms. Mean annual loads were estimated by applying the storm-load equations for all runoff-producing storms in an average climatic year and summing individual storm loads to determine the annual load.
Li, Yuyuan; Meng, Cen; Gao, Ru; Yang, Wen; Jiao, Junxia; Li, Yong; Wang, Yi; Wu, Jinshui
2014-05-01
Water eutrophication in subtropical regions of southern China threatens watershed health and is of major concern. However, annual phosphorus (P) loading and its dominant causes are still unclear, especially at the watershed scale. In this study, we investigated dynamic P loadings and associated factors (e.g., land use, livestock production, and runoff depth) in ten watersheds that varied in area from 9 to 5,212 ha in a hilly area of Hunan Province, China. A flowmeter was installed at the outlet of each watershed, and total P (TP) and soluble P (SP) concentrations were monitored periodically from June 2010 to October 2012. The results showed that annual P loadings (APLs) in the ten watersheds ranged from 22.8 to 247.8 kg P/km(2) and that P loss primarily occurred from April to June of each year during the main rainfall season in the study area. In addition, the average eutrophication (>0.05 mg P/L) ratio for stream waters was 86.7 % during the study period, which was indicative of a potentially serious condition for the local water environments. Annual P loadings were linearly related to livestock density (LD; R = 0.92, p < 0.01), whereas the eutrophication ratio of stream water was significantly (p < 0.05) correlated with LD (R = 0.61), percentage cropland (R = 0.71), and percentage forest cover (R = -0.68). Thus, it is concluded that the control of livestock production has the greatest potential for reducing P loadings in watersheds in this subtropical area. This will be beneficial to the amelioration and protection of local environment.
Rating curve estimation of nutrient loads in Iowa rivers
Stenback, G.A.; Crumpton, W.G.; Schilling, K.E.; Helmers, M.J.
2011-01-01
Accurate estimation of nutrient loads in rivers and streams is critical for many applications including determination of sources of nutrient loads in watersheds, evaluating long-term trends in loads, and estimating loading to downstream waterbodies. Since in many cases nutrient concentrations are measured on a weekly or monthly frequency, there is a need to estimate concentration and loads during periods when no data is available. The objectives of this study were to: (i) document the performance of a multiple regression model to predict loads of nitrate and total phosphorus (TP) in Iowa rivers and streams; (ii) determine whether there is any systematic bias in the load prediction estimates for nitrate and TP; and (iii) evaluate streamflow and concentration factors that could affect the load prediction efficiency. A commonly cited rating curve regression is utilized to estimate riverine nitrate and TP loads for rivers in Iowa with watershed areas ranging from 17.4 to over 34,600km2. Forty-nine nitrate and 44 TP datasets each comprising 5-22years of approximately weekly to monthly concentrations were examined. Three nitrate data sets had sample collection frequencies averaging about three samples per week. The accuracy and precision of annual and long term riverine load prediction was assessed by direct comparison of rating curve load predictions with observed daily loads. Significant positive bias of annual and long term nitrate loads was detected. Long term rating curve nitrate load predictions exceeded observed loads by 25% or more at 33% of the 49 measurement sites. No bias was found for TP load prediction although 15% of the 44 cases either underestimated or overestimate observed long-term loads by more than 25%. The rating curve was found to poorly characterize nitrate and phosphorus variation in some rivers. ?? 2010 .
Ortiz, Roderick F.; Edelmann, Patrick; Ferguson, Sheryl; Stogner, Robert
2002-01-01
Metal contamination in the upper Alamosa River Basin has occurred for decades from the Summitville Mine site, from other smaller mines, and from natural, metal-enriched acidic drainage in the basin. In 1995, the need to quantify contamination from various source areas in the basin and to quantify the spatial, seasonal, and annual metal loads in the basin was identified. Data collection occurred from 1995 through 1997 at numerous sites to address data gaps. Metal loads were calculated and the percentages of metal load contributions from tributaries to three risk exposure areas were determined. Additionally, a modified time-interval method was used to estimate seasonal and annual metal loads in the Alamosa River and Wightman Fork. Sources of dissolved and total-recoverable aluminum, copper, iron, and zinc loads were determined for Exposure Areas 3a, 3b, and 3c. Alum Creek is the predominant contributor of aluminum, copper, iron, and zinc loads to Exposure Area 3a. In general, Wightman Fork was the predominant source of metals to Exposure Area 3b, particularly during the snowmelt and summer-flow periods. During the base-flow period, however, aluminum and iron loads from Exposure Area 3a were the dominant source of these metals to Exposure Area 3b. Jasper and Burnt Creeks generally contributed less than 10 percent of the metal loads to Exposure Area 3b. On a few occasions, however, Jasper and Burnt Creeks contributed a substantial percentage of the loads to the Alamosa River. The metal loads calculated for Exposure Area 3c result from upstream sources; the primary upstream sources are Wightman Fork, Alum Creek, and Iron Creek. Tributaries in Exposure Area 3c did not contribute substantially to the metal load in the Alamosa River. In many instances, the percentage of dissolved and/or total-recoverable metal load contribution from a tributary or the combined percentage of metal load contribution was greater than 100 percent of the metal load at the nearest downstream site on the Alamosa River. These data indicate that metal partitioning and metal deposition from the water column to the streambed may be occurring in Exposure Areas 3a, 3b, and 3c. Metals that are deposited to the streambed probably are resuspended and transported downstream during high streamflow periods such as during snowmelt runoff and rainfall runoff. Seasonal and annual dissolved and totalrecoverable aluminum, copper, iron, and zinc loads> for 1995?97 were estimated for Exposure Areas 1, 2, 3a, 3b, and 3c. During 1995?97, many tons of metals were transported annually through each exposure area. Generally, the largest estimated annual totalrecoverable metal mass for most metals was in 1995. The smallest estimated annual total-recoverable metal mass was in 1996, which also had the smallest annual streamflow. In 1995 and 1997, more than 60 percent of the annual total-recoverable metal loads generally was transported through each exposure area during the snowmelt period. A comparison of the estimated storm load at each site to the corresponding annual load indicated that storms contribute less than 2 percent of the annual load at any site and about 5 to 20 percent of the load during the summer-flow period.
Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan
2015-07-01
Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source composition of TP (38.1 %) is rural life; the maximum contribution rates of TN and TP in Baota district are 36.26 and 39.26 %, respectively. Results may provide data support for NPS pollution prevention and control in the loess hilly and gully region and also provide scientific reference for the protection of ecological environment of the Loess Plateau in northern Shaanxi.
Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.
2006-01-01
Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and sand concentrations at the South Yuba River (11417500) gage were typically higher than those at the Middle Yuba River (11410000) gage for a given streamflow throughout the three year project period. Factors contributing to differences in sediment loads and grain-size distributions at the Middle Yuba River (11410000) and South Yuba River (11417500) gages include contributing drainage area, flow diversions, and deposition of bed-material-sized sediment in reservoirs upstream of the Middle Yuba River (11410000) gage. Owing to its larger drainage area, higher flows, and absence of man-made structures that restrict sediment movement in the lower basin, the South Yuba River transports a greater and coarser sediment load.
Nutrient loading to Lewisville Lake, north-central Texas, 1984-87
Gain, W.S.; Baldys, Stanley
1995-01-01
The estimated long-term (1974-89 water years) average annual total nitrogen load (excluding loads from sewage-treatment plants in ungaged areas) is 11,800 pounds per day. The estimated long-term (1974 89 water years) average annual total phosphorus load (excluding loads from sewage-treatment plants in ungaged areas) is 1,100 pounds per day.
40 CFR 90.207 - Credit calculation and manufacturer compliance with emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... = Production×(Standard—FEL)×Power×Useful life×Load Factor Where: Production = eligible production as defined in this part. Annual production projections are used to project credit availability for initial... kilowatt hour. Power = the maximum modal power of the certification test engine, in kilowatts, as...
NASA Astrophysics Data System (ADS)
Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.
2009-06-01
In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070-2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (-2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.
Watershed Effects on Streamflow Quantity and Quality in Six Watersheds of Gwinnett County, Georgia
Landers, Mark N.; Ankcorn, Paul D.; McFadden, Keith W.
2007-01-01
Watershed management is critical for the protection and enhancement of streams that provide multiple benefits for Gwinnett County, Georgia, and downstream communities. Successful watershed management requires an understanding of how stream quality is affected by watershed characteristics. The influence of watershed characteristics on stream quality is complex, particularly for the nonpoint sources of pollutants that affect urban watersheds. The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources (formerly known as Public Utilities), established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. Between 1996 and 2003, more than 10,000 analyses were made for more than 430 water-quality samples. Continuous-flow and water-quality data have been collected since 1998. Loads have been computed for selected constituents from 1998 to 2003. Changing stream hydrology is a primary driver for many other water-quality and aquatic habitat effects. Primary factors affecting stream hydrology (after watershed size and climate) within Gwinnett County are watershed slope and land uses. For the six study watersheds in Gwinnett County, watershedwide imperviousness up to 12 percent does not have a well-defined influence on stream hydrology, whereas two watersheds with 21- and 35-percent impervious area are clearly impacted. In the stream corridor, however, imperviousness from 1.6 to 4.4 percent appears to affect baseflow and stormflow for all six watersheds. Relations of concentrations to discharge are used to develop regression models to compute constituent loads using the USGS LOAD ESTimator model. A unique method developed in this study is used to calibrate the model using separate baseflow and stormflow sample datasets. The method reduced model error and provided estimates of the load associated with the baseflow and stormflow parts of the hydrograph. Annual load of total suspended sediment is a performance criterion in Gwinnett County's Watershed Protection Plan. Median concentrations of total suspended solids in stormflow range from 30 to 180 times greater than in baseflow. This increase in total suspended solids concentration with increasing discharge has a multiplied effect on total suspended solids load, 97 to 99 percent of which is transported during stormflow. Annual total suspended solids load is highly dependent on annual precipitation; between 1998 and 2003 load for the wettest year was up to 28 times greater than for the driest year. Average annual total suspended solids yield from 1998-2003 in the six watersheds increased with high-density and transportation/utility land uses, and generally decreased with low-density residential, estate/park, and undeveloped land uses. Watershed characteristics also were related to annual loads of total phosphorus, dissolved phosphorus, total nitrogen, total dissolved solids, biochemical oxygen demand, and total zinc, as well as stream alkalinity. Flow-adjusted total suspended solids, total phosphorus, and total zinc stormflow concentrations between 1996 and 2003 have a seasonal pattern in five of the six watersheds. Flow-adjusted concentrations typically peak during late summer, between July and August. The seasonal pattern is stronger for more developed watersheds and may be related to seasonal land-disturbance activities and/or to seasonal rainfall intensity, both of which increase in summer. Adjusting for seasonality in the computation of constituent load caused the standard error of annual total suspended solids load to improve by an average of 11 percent, and increased computed summer total suspended solids loads by an average of 45 percent and decreased winter total suspended solids loads by an average of 40 percent. Total annual loads changed by less than 5 percent on the average. Graphical and statistical analyses do not indicate a time tre
Zhang, Qian; Ball, William P.; Moyer, Douglas
2016-01-01
The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with that of forested land under all hydrological conditions. Overall, this work has informed understanding with respect to four major factors affecting constituent export (i.e., source input, reservoir modulation, streamflow, and land use) and demonstrated the value of long-term river monitoring.
Medalie, Laura
2012-01-01
An assessment of the effectiveness of several urban best management practice structures, including a wet extended detention facility and a shallow marsh wetland (together the "wet extended detention ponds"), was made using data collected from 2000 through 2010 at Englesby Brook in Burlington, Vermont. The purpose of the best management practices was to reduce high streamflows and phosphorus and suspended-sediment loads and concentrations and to increase low streamflows. Englesby Brook was monitored for streamflow, phosphorus, and suspended-sediment concentrations at a streamgage downstream of the best management practice structures for 5 years before the wet extended detention ponds were constructed in 2005 and for 4 years (phosphorus and suspended-sediment concentrations) or 5 years (streamflow) after they were constructed. The period after construction of the best management practice structures was wetter and had higher discharges than the period before construction. Despite the wetter conditions, streamflow duration curves provided evidence that the streamflow regime appeared to have shifted so that the percentages of low streamflows have increased and those of high streamflows may have slightly decreased. Two other hydrologic measures showed improvements in the years following construction of the best management practices: the percentage of annual discharge transported during the 3 days with highest discharges and the number of days with zero streamflow have both decreased. Evidence was mixed for the effectiveness of the best management practices in reducing phosphorus and suspended-sediment concentrations and loads. Annual phosphorus and suspended-sediment loads, monthly loads, low-streamflow concentrations, storm-averaged streamflow-adjusted concentrations, and total storm loads either did not change significantly or increased in the period after construction. These results likely were because of the wetter conditions in the period after construction. For example, monthly loads assessed using analysis of covariance, which compensated for the effects of streamflow on loads, suggested no difference in phosphorus or suspended-sediment loads between the two periods, whereas the comparison of monthly loads without factoring in streamflow showed an increase. This result could be viewed as evidence that the ponds may have mitigated the effect of greater discharges in the period after construction by preventing a corresponding increase in loads. In another analysis used to adjust for the difference in discharge between the two comparison periods, annual and monthly load results were grouped into dry and wet years. Large (50 percent) reductions in annual loads were observed when data from dry (or wet) years before construction were compared with data from dry (or wet) years after construction. When paired monthly loads of each constituent were grouped into dry and wet years, approximately the same number of months had increases as did decreases with the magnitudes of the decreases generally larger than the magnitudes of the increases. These differences in magnitude explain the decrease in annual loads for dry and wet years. The close association of phosphorus with suspended-sediment data suggested that most of the phosphorus was in the particulate form and was controlled by suspended-sediment dynamics.
Runner, Michael S.; Turnipseed, D. Phil; Coupe, Richard H.
2002-01-01
Increased nutrient loading to the Gulf of Mexico from off-continent flux has been identified as contributing to the increase in the areal extent of the low dissolved-oxygen zone that develops annually off the Louisiana and Texas coast. The proximity of the Yazoo River Basin in northwestern Mississippi to the Gulf of Mexico, and the intensive agricultural activities in the basin have led to speculation that the Yazoo River Basin contributes a disproportionate amount of nitrogen and phosphorus to the Mississippi River and ultimately to the Gulf of Mexico. An empirical measurement of the flux of nitrogen and phosphorus from the Yazoo Basin has not been possible due to the hydrology of the lower Yazoo River Basin. Streamflow for the Yazoo River below Steele Bayou is affected by backwater from the Mississippi River. Flow at the gage is non-uniform and varying, with bi-directional and reverse flows possible. Streamflow was computed by using remote sensing and acoustic and conventional discharge and velocity measurement techniques. Streamflow from the Yazoo River for the 1996-2000 period accounted for 2.8 percent of the flow of the Mississippi River for the same period. Water samples from the Yazoo River were collected from February 1996 through December 2000 and were analyzed for total nitrogen, nitrate, total phosphorus, and orthophosphorus as part of the U.S. Geological Survey National Water-Quality Assessment Program. These data were used to compute annual loads of nitrogen and phosphorus discharged from the Yazoo River for the period 1996-2000. Annual loads of nitrogen and phosphorus were calculated by two methods. The first method used multivariate regression and the second method multiplied the mean annual concentration by the total annual flow. Load estimates based on the product of the mean annual concentration and the total annual flow were within the 95 percent confidence interval for the load calculated by multivariate regression in 10 of 20 cases. The Yazoo River loads, compared to average annual loads in the Mississippi River, indicated that the Yazoo River was contributing 1.4 percent of the total nitrogen load, 0.7 percent of the nitrate load, 3.4 percent of the total phosphorus load, and 1.6 percent of the orthophosphorus load during 1996 - 2000. The total nitrogen, nitrate, and orthophosphorus loads in the Yazoo River Basin were less than expected, whereas the total phosphorus load was slightly higher than expected based on discharge.
Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.
2009-01-01
[1] In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070–2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (−2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.
Sebestyen, S.D.; Boyer, E.W.; Shanley, J.B.
2009-01-01
In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070-2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff+20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (-2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States. Copyright 2009 by the American Geophysical Union.
Foster, Katharine; Kenney, Terry A.
2010-01-01
Annual dissolved-solids load at the mouth of Henrys Fork was estimated by using data from U.S. Geological Survey streamflow-gaging station 09229500, Henrys Fork near Manila, Utah. The annual dissolved-solids load for water years 1970-2009 ranged from 18,300 tons in 1977 to 123,300 tons in 1983. Annual streamflows for this period ranged from 14,100 acre-feet in 1977 to 197,500 acre-feet in 1983. The 25-percent trimmed mean dissolved-solids load for water years 1970-2009 was 44,300 tons per year at Henrys Fork near Manila, Utah. Previous simulations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model for dissolved solids specific to water year 1991 conditions in the Upper Colorado River Basin predicted an annual dissolved-solids load of 25,000 tons for the Henrys Fork Basin upstream from Antelope Wash. On the basis of computed dissolved-solids load data from Henrys Fork near Manila, Utah, together with estimated annual dissolved-solids load from Antelope Wash and Peoples Canal, this prediction was adjusted to 37,200 tons. As determined by simulations with the Upper Colorado River Basin SPARROW model, approximately 56 percent (14,000 tons per year) of the dissolved-solids load at Henrys Fork upstream from Antelope Wash is associated with the 21,500 acres of irrigated agricultural lands in the upper Henrys Fork Basin.
40 CFR 90.207 - Credit calculation and manufacturer compliance with emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... = Production×(Standard—FEL)×Power×Useful life×Load Factor Where: Production = eligible production as defined in this part. Annual production projections are used to project credit availability for initial... calculated from the applicable federal test procedure as described in this part. Useful Life = the useful...
Nontidal Loading Applied in VLBI Geodetic Analysis
NASA Astrophysics Data System (ADS)
MacMillan, D. S.
2015-12-01
We investigate the application of nontidal atmosphere pressure, hydrology, and ocean loading series in the analysis of VLBI data. The annual amplitude of VLBI scale variation is reduced to less than 0.1 ppb, a result of the annual components of the vertical loading series. VLBI site vertical scatter and baseline length scatter is reduced when these loading models are applied. We operate nontidal loading services for hydrology loading (GLDAS model), atmospheric pressure loading (NCEP), and nontidal ocean loading (JPL ECCO model). As an alternative validation, we compare these loading series with corresponding series generated by other analysis centers.
Mullaney, John R.; Schwarz, Gregory E.
2013-01-01
The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year during water years 1999–2009. Total annual loads from the monitored basins represent 63 to 74 percent of the total load. Computed annual nitrogen loads from four stations near the Massachusetts border with Connecticut represent 52 to 54 percent of the total nitrogen load during water years 2008–9, the only years with data for all the border sites. During the latter part of the 1999–2009 study period, total nitrogen loads to Long Island Sound from the study area appeared to increase slightly. The apparent increase in loads may be due to higher than normal streamflows, which consequently increased nonpoint nitrogen loads during the study, offsetting major reductions of nitrogen from wastewater-treatment facilities. Nitrogen loads from wastewater treatment facilities declined as much as 2.3 million pounds per year in areas of Connecticut upstream from the monitoring stations and as much as 5.8 million pounds per year in unmonitored areas downstream in coastal and central Connecticut.
Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.
2010-01-01
Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.
Wang, Hongguang
2018-01-01
Annual power load forecasting is not only the premise of formulating reasonable macro power planning, but also an important guarantee for the safety and economic operation of power system. In view of the characteristics of annual power load forecasting, the grey model of GM (1,1) are widely applied. Introducing buffer operator into GM (1,1) to pre-process the historical annual power load data is an approach to improve the forecasting accuracy. To solve the problem of nonadjustable action intensity of traditional weakening buffer operator, variable-weight weakening buffer operator (VWWBO) and background value optimization (BVO) are used to dynamically pre-process the historical annual power load data and a VWWBO-BVO-based GM (1,1) is proposed. To find the optimal value of variable-weight buffer coefficient and background value weight generating coefficient of the proposed model, grey relational analysis (GRA) and improved gravitational search algorithm (IGSA) are integrated and a GRA-IGSA integration algorithm is constructed aiming to maximize the grey relativity between simulating value sequence and actual value sequence. By the adjustable action intensity of buffer operator, the proposed model optimized by GRA-IGSA integration algorithm can obtain a better forecasting accuracy which is demonstrated by the case studies and can provide an optimized solution for annual power load forecasting. PMID:29768450
Thomas, Judith C.; Leib, Kenneth J.; Mayo, John W.
2008-01-01
Elevated selenium concentrations in streams are a water-quality concern in western Colorado. The U.S. Geologic Survey, in cooperation with the Colorado Department of Public Health and Environment, summarized selenium loading in the Lower Gunnison River Basin to support the development of total maximum daily selenium loads at sites that represent the cumulative contribution to U.S. Environmental Protection Agency 303(d) list segments. Analysis of selenium loading included quantifying loads and determining the amount of load that would need to be reduced to bring the site into compliance, referred to as 'the load reduction,' with the State chronic aquatic-life standard for dissolved selenium [85th percentile selenium concentration not to exceed 4.6 ?g/L (micrograms per liter)], referred to as 'the water-quality standard.' Streamflow and selenium concentration data for 54 historical water-quality/water-quantity monitoring sites were compiled from U.S. Geological Survey and Colorado Department of Public Health and Environment data sources. Three methods were used for analysis of selenium concentration data to address the variable data density among sites. Mean annual selenium loads were determined for only 10 of the 54 sites due to data availability limitations. Twenty-two sites had 85th percentile selenium concentrations that exceeded the water-quality standard, 3 sites had 85th percentile selenium concentrations less than the State standard, and 29 sites could not be evaluated with respect to 85th percentile selenium concentration (sample count less than 5). To bring selenium concentrations into compliance with the water-quality standard, more than 80 percent of the mean annual selenium load would need to be reduced at Red Rock Canyon, Dry Cedar Creek, Cedar Creek, Loutzenhizer Arroyo, Sunflower Drain, and Whitewater Creek. More than 50 percent of the mean annual load would need to be reduced at Dry Creek to bring the site into compliance with the water-quality standard. The Uncompahgre River, Gunnison River at Delta, and Gunnison River near Grand Junction would require 69, 34 and 53 percent, respectively, of the mean annual load to be reduced for water years 2001 through 2005 to meet the water-quality standard. Mean annual load reductions can be further reduced by targeting the periods of time when selenium would be removed from streams by remediation. During a previous study of selenium loads in the Lower Gunnison River Basin, mean annual load reductions were estimated at the Gunnison River near Grand Junction for the 1997?2001 study period. Mean annual load reductions estimated for this study period were less than those estimated for the 2001?05 study period, emphasizing the importance of understanding that different study periods can result in different load reduction estimates.
Krug, W.R.; Goddard, G.L.
1986-01-01
Increases in flood flow would tend to enlarge the channel. An increase in the mean annual flood by a factor of 2. 0 to 2.4 will cause a 40 to 50 percent increase in channel width and a 30 to 40 percent increase in channel depth.
Solvent Assisted Delamination Crack Growth Behavior of Amorphous Thermoplastic Materials
1989-02-01
72CRD285. October 1972. 4. Standard Method of Test for Plane- Strain Fracture Toughness of Metallic Materials. 1988 Annual Book of ASTM Standards, Technical...intensity factor K I or the associated strain energy release rate, G I . ASTM compact tension test yields stress intensity factor, KI, via Equation 1...are such that a constant deadweight load results in increasing strain energy release rate with increasing crack length. Figure 3 shows the neat resin
Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.
He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan
2009-01-01
Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.
46 CFR 42.11-20 - Application for annual survey.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Application for annual survey. 42.11-20 Section 42.11-20... BY SEA Applications for Load Line Assignments, Surveys, and Certificates § 42.11-20 Application for annual survey. (a) The owner, master, or agent of a vessel holding a load line certificate shall apply to...
46 CFR 42.11-20 - Application for annual survey.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Application for annual survey. 42.11-20 Section 42.11-20... BY SEA Applications for Load Line Assignments, Surveys, and Certificates § 42.11-20 Application for annual survey. (a) The owner, master, or agent of a vessel holding a load line certificate shall apply to...
46 CFR 42.11-20 - Application for annual survey.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Application for annual survey. 42.11-20 Section 42.11-20... BY SEA Applications for Load Line Assignments, Surveys, and Certificates § 42.11-20 Application for annual survey. (a) The owner, master, or agent of a vessel holding a load line certificate shall apply to...
46 CFR 42.11-20 - Application for annual survey.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Application for annual survey. 42.11-20 Section 42.11-20... BY SEA Applications for Load Line Assignments, Surveys, and Certificates § 42.11-20 Application for annual survey. (a) The owner, master, or agent of a vessel holding a load line certificate shall apply to...
46 CFR 42.11-20 - Application for annual survey.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Application for annual survey. 42.11-20 Section 42.11-20... BY SEA Applications for Load Line Assignments, Surveys, and Certificates § 42.11-20 Application for annual survey. (a) The owner, master, or agent of a vessel holding a load line certificate shall apply to...
Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan
2017-07-01
This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.
Pollutant loading from low-density residential neighborhoods in California.
Bale, Andrew E; Greco, Steven E; Pitton, Bruno J L; Haver, Darren L; Oki, Lorence R
2017-08-01
This paper presents a comparison of pollutant load estimations for runoff from two geographically distinct residential suburban neighborhoods in northern and southern California. The two neighborhoods represent a single urban land use type: low-density residential in small catchments (<0.3 km 2 ) under differing regional climates and irrigation practices. Pollutant loads of pesticides, nutrients, and drinking water constituents of concern are estimated for both storm and non-storm runoff. From continuous flow monitoring, it was found that a daily cycle of persistent runoff that peaks mid-morning occurs at both sites. These load estimations indicate that many residential neighborhoods in California produce significant non-storm pollutant loads year-round. Results suggest that non-storm flow accounted for 47-69% of total annual runoff and significantly contributed to annual loading rates of most nutrients and pesticides at both sites. At the Southern California site, annual non-storm loads are 1.2-10 times higher than storm loads of all conventional constituents and nutrients with one exception (total suspended solids). At the Northern California site, annual storm loads range from 51 to 76% of total loads for all conventional constituents and nutrients with one exception (total dissolved solids). Non-storm yields of pesticides at the Southern California site range from 1.3-65 times higher than those at the Northern California site. The disparity in estimated pollutant loads between the two sites indicates large potential variation from site-to-site within the state and suggests neighborhoods in drier and milder climates may produce significantly larger non-storm loads due to persistent dry season runoff and year-round pest control.
A program for the calculation of paraboloidal-dish solar thermal power plant performance
NASA Technical Reports Server (NTRS)
Bowyer, J. M., Jr.
1985-01-01
A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.
Danz, Mari E.; Corsi, Steven R.; Graczyk, David J.; Bannerman, Roger T.
2010-01-01
Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area Ecoregion, the Northern Lakes and Forests Ecoregion, the North Central Hardwoods Ecoregion, and the Southeastern Wisconsin Till Plains Ecoregion. The Northern Lakes and Forests and the North Central Hardwoods Ecoregions were combined into one region for analysis due to a lack of sufficient data in each region. Urban watersheds, all located in the Southeastern Wisconsin Till Plains, were analyzed separately from rural watersheds as the Rural Southeastern Wisconsin Till Plains region and the Urban Southeastern Wisconsin Till Plains region. Results provide information on the distribution of loadings and streamflow between base flow and stormflow, the timing of loadings and streamflow throughout the year, and information regarding the number of days in which the majority of the annual loading is transported. The average contribution to annual solids loading from stormflow periods for the Driftless Area Ecoregion was 84 percent, the Northern Lakes and Forests/North Central Hardwoods region was 71 percent, the Rural Southeastern Wisconsin Till Plains region was 70 percent, and the Urban Southeastern Wisconsin Till Plains region was 90 percent. The average contributions to annual total phosphorus loading from stormflow periods were 72, 49, 61, and 76 percent for each of the respective regions. The average contributions to annual streamflow from stormflow periods are 20, 23, 31, and 50 percent for each of the respective regions. In all regions, the most substantial loading contributions for solids were in the late winter (February through March), spring (April through May), and early summer (June through July), with fall (October through November) and early winter (December through January) contributing the smallest loadings. The Northern Lakes and Forests/North Central Hardwoods region had some substantial loading in September. There was a similar pattern for total phosphorus loading in all regions, with the pattern somewhat less pronounced in urban watersheds. As with the loading results, average monthly streamflow values were greatest in late winter, spring, and early summer, with the lowest values typically in fall and early winter. Loading contributions were greater from stormflow than from base flow in all instances, except total phosphorus in the Northern Lakes and Forests/North Central Hardwoods region, which had equal or greater base-flow contribution for several months. Base flow constituted a greater percentage of the total streamflow than stormflow in all rural watersheds for all regions. Only a few storms each year dominated the annual loading totals for solids and total phosphorus. When daily loading values were ranked for the year, all regions reached 50 percent of the annual solids loading in the 5 highest loading days and nearly 50 percent of the annual total phosphorus loading in the 14 highest loading days.
Zhang, Qian; Ball, William P; Moyer, Douglas L
2016-09-01
The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with that of forested land under all hydrological conditions. Overall, this work has informed understanding with respect to four major factors affecting constituent export (i.e., source input, reservoir modulation, streamflow, and land use) and demonstrated the value of long-term river monitoring. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Estimating annual suspended-sediment loads in the northern and central Appalachian Coal region
Koltun, G.F.
1985-01-01
Multiple-regression equations were developed for estimating the annual suspended-sediment load, for a given year, from small to medium-sized basins in the northern and central parts of the Appalachian coal region. The regression analysis was performed with data for land use, basin characteristics, streamflow, rainfall, and suspended-sediment load for 15 sites in the region. Two variables, the maximum mean-daily discharge occurring within the year and the annual peak discharge, explained much of the variation in the annual suspended-sediment load. Separate equations were developed employing each of these discharge variables. Standard errors for both equations are relatively large, which suggests that future predictions will probably have a low level of precision. This level of precision, however, may be acceptable for certain purposes. It is therefore left to the user to asses whether the level of precision provided by these equations is acceptable for the intended application.
[Survey on the occupational musculoskeletal disorder and its risk factors among male steelworkers].
Xu, Lei; Wang, Zheng-lun; Chen, Biao; Wu, Lei; Yi, Gui-lin; Li, Ji-chao; He, Li-hua; Wang, Sheng; Yang, Lei
2013-03-01
To study the prevalence of occupational musculoskeletal disorders (OMSD) of male steelworkers and explore its occupational and individual risk factors. 1620 male workers from a steel mill were selected as subjects through random cluster sampling in 2010. A revised Nordic Musculoskeletal disorder standard questionnaire and a questionnaire from National Institute for Occupational and Health of the Netherlands were used to ask and record the OMSD and its risk factors. The questionnaires were filled in by the workers. Annual prevalence of OMSD in different parts of the body were counted according to different age, working years and educational level, logistic regression was used to analyze its influence factors. OMSD in these workers primarily located in waist, neck and shoulders, annual prevalence were 51.0% (825), 48.5% (785) and 37.7% (610) respectively. Annual prevalence of other body parts were 28.0% (454) for back, 23.6% (383) for knee, 21.0% (341) for wrist, 17.9% (290) for ankle/foot, 14.1% (229) for elbow and 12.7% (205) for coxa. The annual prevalence of OMSD for each part tended to increase with age, mainly in waist and neck. Of the different age groups ≤ 24, 25 - 29, 30 - 34, 35 - 39, 40 - 44, 45 - 49, ≥ 50, the annual prevalence in waist was 26.4% (43/163), 37.8% (71/188), 52.8% (162/307), 55.6% (160/288), 53.8% (99/184), 55.9% (80/143), 61.6% (204/331) respectively (χ(2) = 72.5, P < 0.05); correspondingly, the annual prevalence in neck was 22.7% (37/163), 40.4% (76/188), 50.2% (154/307), 48.6% (140/288), 56.0% (103/184), 53.1% (76/143), 57.7% (191/331) respectively (χ(2) = 65.3, P < 0.05). The annual prevalence of OMSD increased with the working years. Of the different working years groups ≤ 4, 5 - 9, 10 - 14, 15 - 19, 20 - 24, 25 - 29, ≥ 30, the annual prevalence in waist was 30.2% (85/281), 46.2% (66/143), 56.4% (162/287), 56.8% (137/241), 50.6% (78/154), 59.2% (90/152), 60.7% (173/285) respectively (χ(2) = 71.3, P < 0.05);correspondingly, the annual prevalence in neck was 28.8% (81/281), 49.0% (70/143), 52.6% (151/287), 50.2% (121/241), 51.9% (80/154), 53.9% (82/152), 59.3% (169/285) respectively (χ(2) = 61.5, P < 0.05). The annual prevalence of OMSD decreased with education level. Of the different groups of education level (junior high school level and below, senior high school level, university level or above), the OMSD prevalence in waist was 61.5% (176/286), 61.9% (359/692), 44.2% (272/615) respectively (χ(2) = 26.0, P < 0.05);correspondingly, the annual prevalence in neck was 56.3% (161/286), 50.0% (346/692), 42.3% (260/615)respectively (χ(2) = 21.2, P < 0.05). Univariate logistic regression showed that the work load factors such as the working years ≥ 30 (OR = 3.562, 95%CI: 2.514 - 5.046), maintain substantial stoop for a long time (OR = 2.003, 95%CI: 1.612 - 2.488), often stooping with vast scale (OR = 1.897, 95%CI: 1.557 - 2.312), and torso repeating same action many times per minute (OR = 1.870, 95%CI: 1.529 - 2.288) could increase the annual prevalence of OMSD in waist most likely (P < 0.05). The working years ≥ 30 (OR = 3.597, 95%CI: 2.535 - 5.105), neck leaning forward (OR = 2.455, 95%CI: 2.010-2.99), neck leaning back (OR = 1.999, 95%CI: 1.569 - 2.546), and neck rotation (OR = 2.381, 95%CI: 1.907 - 2.972) were main risk factors causing OMSD in neck (P < 0.05). The most serious musculoskeletal disorders of male steelworkers were waist and neck pain. Personal factors such as age, working years, work load factors such as harmful working postures, manual heavy lifting, and labour organizational factors such as work overtime were the main risk factors of musculoskeletal disorders to the male steelworkers.
Buck, Stephanie D.
2014-01-01
The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.
The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id; Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id
Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data.more » Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.« less
Macek-Rowland, Kathleen M.
2000-01-01
Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak. The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek. Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin. Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998. Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98. Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River. Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River. Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River. The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries. The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile. The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area.
NASA Astrophysics Data System (ADS)
Griffiths, Ronald E.; Topping, David J.
2017-11-01
Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability. Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not necessarily correlate with drainage size, and may vary by two orders of magnitude on an annual basis, using techniques such as sediment-yield equations to estimate the sediment loads of ungaged tributaries may lead to large errors in sediment budgets.
Griffiths, Ronald; Topping, David
2017-01-01
Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability.Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not necessarily correlate with drainage size, and may vary by two orders of magnitude on an annual basis, using techniques such as sediment-yield equations to estimate the sediment loads of ungaged tributaries may lead to large errors in sediment budgets.
Wilkison, Donald H.; Armstrong, Daniel J.; Hampton, Sarah A.
2009-01-01
Water-quality and ecological character and trends in the metropolitan Blue River Basin were evaluated from 1998 through 2007 to provide spatial and temporal resolution to factors that affect the quality of water and biota in the basin and provide a basis for assessing the efficacy of long-term combined sewer control and basin management plans. Assessments included measurements of stream discharge, pH, dissolved oxygen, specific conductance, turbidity, nutrients (dissolved and total nitrogen and phosphorus species), fecal-indicator bacteria (Escherichia coli and fecal coliform), suspended sediment, organic wastewater and pharmaceutical compounds, and sources of these compounds as well as the quality of stream biota in the basin. Because of the nature and myriad of factors that affect basin water quality, multiple strategies are needed to decrease constituent loads in streams. Strategies designed to decrease or eliminate combined sewer overflows (CSOs) would substantially reduce the annual loads of nutrients and fecal-indicator bacteria in Brush Creek, but have little effect on Blue River loadings. Nonpoint source reductions to Brush Creek could potentially have an equivalent, if not greater, effect on water quality than would CSO reductions. Nonpoint source reductions could also substantially decrease annual nutrient and bacteria loadings to the Blue River and Indian Creek. Methods designed to decrease nutrient loads originating from Blue River and Indian Creek wastewater treatment plants (WWTPs) could substantially reduce the overall nutrient load in these streams. For the main stem of the Blue River and Indian Creek, primary sources of nutrients were nonpoint source runoff and WWTPs discharges; however, the relative contribution of each source varied depending on how wet or dry the year was and the number of upstream WWTPs. On Brush Creek, approximately two-thirds of the nutrients originated from nonpoint sources and the remainder from CSOs. Nutrient assimilation processes, which reduced total nitrogen loads by approximately 13 percent and total phosphorus loads by double that amount in a 20-kilometer reach of the Blue River during three synoptic base-flow sampling events between August through September 2004 and September 2005, likely are limited to selected periods during any given year and may not substantially reduce annual nutrient loads. Bacteria densities typically increased with increasing urbanization, and bacteria loadings to the Blue River and Indian Creek were almost entirely the result of nonpoint source runoff. WWTPs contributed, on average, less than 1 percent of the bacteria to these reaches, and in areas of the Blue River that had combined sewers, CSOs contributed only minor amounts (less than 2 percent) of the total annual load in 2005. The bulk of the fecal-indicator bacteria load in Brush Creek also originated from nonpoint sources with the remainder from CSOs. From October 2002 through September 2007, estimated daily mean Escherichia coli bacteria density in upper reaches of the Blue River met the State of Missouri secondary contact criterion standard approximately 85 percent of the time. However, in lower Blue River reaches, the same threshold was exceeded approximately 45 percent of the time. The tributary with the greatest number of CSO discharge points, Brush Creek, contributed approximately 10 percent of the bacteria loads to downstream reaches. The tributary Town Fork Creek had median base-flow Escherichia coli densities that were double that of other basin sites and stormflow densities 10 times greater than those in other parts of the basin largely because approximately one-fourth of the runoff in the Town Fork Creek Basin is believed to originate in combined sewers. Genotypic source typing of bacteria indicated that more than half of the bacteria in this tributary originated from human sources with two storms contributing the bulk of all bacteria sourced as human. However, areas outsid
Large-scale suspended sediment transport and sediment deposition in the Mekong Delta
NASA Astrophysics Data System (ADS)
Manh, N. V.; Dung, N. V.; Hung, N. N.; Merz, B.; Apel, H.
2014-08-01
Sediment dynamics play a major role in the agricultural and fishery productivity of the Mekong Delta. However, the understanding of sediment dynamics in the delta, one of the most complex river deltas in the world, is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains, and the scarcity of observations. This study quantifies, for the first time, the suspended sediment transport and sediment deposition in the whole Mekong Delta. To this end, a quasi-2D hydrodynamic model is combined with a cohesive sediment transport model. The combined model is calibrated using six objective functions to represent the different aspects of the hydraulic and sediment transport components. The model is calibrated for the extreme flood season in 2011 and shows good performance for 2 validation years with very different flood characteristics. It is shown how sediment transport and sediment deposition is differentiated from Kratie at the entrance of the delta on its way to the coast. The main factors influencing the spatial sediment dynamics are the river and channel system, dike rings, sluice gate operations, the magnitude of the floods, and tidal influences. The superposition of these factors leads to high spatial variability of sediment transport, in particular in the Vietnamese floodplains. Depending on the flood magnitude, annual sediment loads reaching the coast vary from 48 to 60% of the sediment load at Kratie. Deposited sediment varies from 19 to 23% of the annual load at Kratie in Cambodian floodplains, and from 1 to 6% in the compartmented and diked floodplains in Vietnam. Annual deposited nutrients (N, P, K), which are associated with the sediment deposition, provide on average more than 50% of mineral fertilizers typically applied for rice crops in non-flooded ring dike floodplains in Vietnam. Through the quantification of sediment and related nutrient input, the presented study provides a quantitative basis for estimating the benefits of annual Mekong floods for agriculture and fishery, and is an important piece of information with regard to the assessment of the impacts of deltaic subsidence and climate-change-related sea level rise on delta morphology.
Kelly, Valerie J.; Hooper, Richard P.; Aulenbach, Brent T.; Janet, Mary
2001-01-01
This report contains concentrations and annual mass fluxes (loadings) for a broad range of water-quality constituents measured during 1996-2000 as part of the U.S. Geological Survey National Stream Quality Accounting Network (NASQAN). During this period, NASQAN operated a network of 40-42 stations in four of the largest river basins of the USA: the Colorado, the Columbia, the Mississippi (including the Missouri and Ohio), and the Rio Grande. The report contains surface-water quality data, streamflow data, field measurements (e.g. water temperature and pH), sediment-chemistry data, and quality-assurance data; interpretive products include annual and average loads, regression parameters for models used to estimate loads, sub-basin yield maps, maps depicting percent detections for censored constituents, and diagrams depicting flow-weighted average concentrations. Where possible, a regression model relating concentration to discharge and season was used for flux estimation. The interpretive context provided by annual loads includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean.
Hoos, Anne B.; Williams, Shannon D.; Wolfe, William J.
2016-11-22
The U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation (TDEC), measured continuous discharge at 4 water-quality monitoring sites and developed stage-discharge ratings for 10 additional water-quality monitoring sites in the Elk River Basin during 2006 through 2008. The discharge data were collected to support stream load assessments by TDEC. Annual nitrogen and phosphorus loads were estimated for the four sites where continuous daily discharge records were collected. Reported loads for the period 2006 through 2008 are not representative of long-term mean annual conditions at the sites in this study, however, because of severe drought conditions in the Elk River Basin during this period.
Muller, Onno; Cohu, Christopher M; Stewart, Jared J; Protheroe, Johanna A; Demmig-Adams, Barbara; Adams, William W
2014-09-01
Foliar vascular anatomy and photosynthesis were evaluated for a number of summer annual species that either load sugars into the phloem via a symplastic route (Cucumis sativus L. cv. Straight Eight; Cucurbita pepo L. cv. Italian Zucchini Romanesco; Citrullus lanatus L. cv. Faerie Hybrid; Cucurbita pepo L. cv. Autumn Gold) or an apoplastic route (Nicotiana tabacum L.; Solanum lycopersicum L. cv. Brandywine; Gossypium hirsutum L.; Helianthus annuus L. cv. Soraya), as well as winter annual apoplastic loaders (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0, Swedish and Italian ecotypes). For all summer annuals, minor vein cross-sectional xylem area and tracheid number as well as the ratio of phloem loading cells to phloem sieve elements, each when normalized for foliar vein density (VD), was correlated with photosynthesis. These links presumably reflect (1) the xylem's role in providing water to meet foliar transpirational demand supporting photosynthesis and (2) the importance of the driving force of phloem loading as well as the cross-sectional area for phloem sap flux to match foliar photosynthate production. While photosynthesis correlated with the product of VD and cross-sectional phloem cell area among symplastic loaders, photosynthesis correlated with the product of VD and phloem cell number per vein among summer annual apoplastic loaders. Phloem cell size has thus apparently been a target of selection among symplastic loaders (where loading depends on enzyme concentration within loading cells) versus phloem cell number among apoplastic loaders (where loading depends on membrane transporter numbers). © 2014 Scandinavian Plant Physiology Society.
Lucci, Gina M; Nash, David; McDowell, Richard W; Condron, Leo M
2014-07-01
Many factors affect the magnitude of nutrient losses from dairy farm systems. Bayesian Networks (BNs) are an alternative to conventional modeling that can evaluate complex multifactor problems using forward and backward reasoning. A BN of annual total phosphorus (TP) exports was developed for a hypothetical dairy farm in the south Otago region of New Zealand and was used to investigate and integrate the effects of different management options under contrasting rainfall and drainage regimes. Published literature was consulted to quantify the relationships that underpin the BN, with preference given to data and relationships derived from the Otago region. In its default state, the BN estimated loads of 0.34 ± 0.42 kg TP ha for overland flow and 0.30 ± 0.19 kg TP ha for subsurface flow, which are in line with reported TP losses in overland flow (0-1.1 kg TP ha) and in drainage (0.15-2.2 kg TP ha). Site attributes that cannot be managed, like annual rainfall and the average slope of the farm, were found to affect the loads of TP lost from dairy farms. The greatest loads (13.4 kg TP ha) were predicted to occur with above-average annual rainfall (970 mm), where irrigation of farm dairy effluent was managed poorly, and where Olsen P concentrations were above pasture requirements (60 mg kg). Most of this loading was attributed to contributions from overland flow. This study demonstrates the value of using a BN to understand the complex interactions between site variables affecting P loss and their relative importance. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Scott, D.; Harvey, J.; Alexander, R.; Schwarz, G.
2007-01-01
The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.
NASA Astrophysics Data System (ADS)
Scott, Durelle; Harvey, Judson; Alexander, Richard; Schwarz, Gregory
2007-03-01
The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.
Hannouche, Ali; Chebbo, Ghassan; Joannis, Claude; Gasperi, Johnny; Gromaire, Marie-Christine; Moilleron, Régis; Barraud, Sylvie; Ruban, Véronique
2017-12-01
This article describes a stochastic method to calculate the annual pollutant loads and its application over several years at the outlet of three catchments drained by separate storm sewers. A stochastic methodology using Monte Carlo simulations is proposed for assessing annual pollutant load, as well as the associated uncertainties, from a few event sampling campaigns and/or continuous turbidity measurements (representative of the total suspended solids concentration (TSS)). Indeed, in the latter case, the proposed method takes into account the correlation between pollutants and TSS. The developed method was applied to data acquired within the French research project "INOGEV" (innovations for a sustainable management of urban water) at the outlet of three urban catchments drained by separate storm sewers. Ten or so event sampling campaigns for a large range of pollutants (46 pollutants and 2 conventional water quality parameters: TSS and total organic carbon (TOC)) are combined with hundreds of rainfall events for which, at least one among three continuously monitored parameters (rainfall intensity, flow rate, and turbidity) is available. Results obtained for the three catchments show that the annual pollutant loads can be estimated with uncertainties ranging from 10 to 60%, and the added value of turbidity monitoring for lowering the uncertainty is demonstrated. A low inter-annual and inter-site variability of pollutant loads, for many of studied pollutants, is observed with respect to the estimated uncertainties, and can be explained mainly by annual precipitation.
Biomechanical Factors in Tibial Stress Fracture
2001-08-01
Relationship between Loading Rates and Tibial Accelerometry in Forefoot Strike Runners. Presented at the Annual American Society of Biomechanics Mtg...of the APTA, Seattle, WA, 2/99. McClay, IS, Williams, DS, and Manal, KT. Lower Extremity Mechanics of Runners with a Converted Forefoot Strike ...Management, Inc, 1998-1999 The Effect of Different Orthotic Devices on Lower Extremity Mechanics of Rearfoot and Forefoot Strikers, $3,500. Foot Management
Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone.
Craig, Timothy J; Chanard, Kristel; Calais, Eric
2017-12-15
The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or 'stable' plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load.
Hazell, William F.; Huffman, Brad A.
2011-01-01
A study was conducted to characterize sediment transport upstream and downstream from a proposed dam on the First Broad River near the town of Lawndale in Cleveland County, North Carolina. Streamflow was measured continuously, and 381 suspended-sediment samples were collected between late March 2008 and September 2009 at two monitoring stations on the First Broad River to determine the suspended-sediment load at each site for the period April 2008-September 2009. In addition, 22 bedload samples were collected at the two sites to describe the relative contribution of bedload to total sediment load during selected events. Instantaneous streamflow, suspended-sediment, and bedload samples were collected at Knob Creek near Lawndale, North Carolina, to describe general suspended-sediment and bedload characteristics at this tributary to the First Broad River. Suspended- and bedload-sediment samples were collected at all three sites during a variety of flow conditions. Streamflow and suspended-sediment measurements were compared with historical data from a long-term (1959-2009) streamflow station located upstream from Lawndale. The mean streamflow at the long-term streamflow station was approximately 60 percent less during the study period than the long-term annual mean streamflow for the site. Suspended-sediment concentrations and continuous records of streamflow were used to estimate suspended-sediment loads and yields at the two monitoring stations on the First Broad River for the period April 2008-September 2009 and for a complete annual cycle (October 2008-September 2009), also known as a water year. Total suspended-sediment loads during water year 2009 were 18,700 and 36,500 tons at the two sites. High-flow events accounted for a large percentage of the total load, suggesting that the bulk of the total suspended-sediment load was transported during these events. Suspended-sediment yields during water year 2009 were 145 and 192 tons per square mile at the two monitoring stations. Historically, the estimated mean annual suspended-sediment yield at the long-term streamflow station during the period 1970-1979 was 250 tons per square mile, with an estimated mean annual suspended-sediment load of 15,000 tons. Drought conditions throughout most of the study period were a potential factor in the smaller yields at the monitoring stations compared to the yields estimated at the long-term streamflow station in the 1970s. During an extreme runoff event on January 7, 2009, bedload was 0.4 percent, 0.8 percent, and 0.1 percent of the total load at the three study sites, which indicates that during extreme runoff conditions the percentage of the total load that is bedload is not significant. The percentages of the total load that is bedload during low-flow conditions ranged from 0.1 to 90.8, which indicate that the bedload is variable both spatially and temporally.
Luo, Xin; Jiao, Jiu Jimmy
2016-10-01
Multiple tracers, including radium quartet, (222)Rn and silica are used to quantify submarine groundwater discharge (SGD) into Tolo Harbor, Hong Kong in 2005 and 2011. Five geotracer models based on the end member model of (228)Ra and salinity and mass balance models of (226)Ra, (228)Ra, (222)Rn, and silica were established and all the models lead to an estimate of the SGD rate of the same order of magnitude. In 2005 and 2011, respectively, the averaged SGD based on these models is estimated to be ≈ 5.42 cm d(-1) and ≈2.66 cm d(-1), the SGD derived DIN loadings to be 3.5 × 10(5) mol d(-1) and 1.5 × 10(5) mol d(-1), and DIP loadings to be 6.2 × 10(3) mol d(-1) and 1.1 × 10(3) mol d(-1). Groundwater borne nutrients are 1-2 orders of magnitude larger than other nutrient sources and the interannual variation of nutrient concentration in the embayment is more influenced by the SGD derived loadings. Annual DIP concentrations in the harbor water is positively correlated with the precipitation and annual mean tidal range, and negatively correlated with evapotranspiration from 2000 to 2013. Climatologically driven SGD variability alters the SGD derived DIP loadings in this phosphate limited environment and may be the causative factor of interannual variability of red tide outbreaks from 2000 to 2013. Finally, a conceptual model is proposed to characterize the response of red tide outbreaks to climatological factors linked by SGD. The findings from this study shed light on the prediction of red tide outbreaks and coastal management of Tolo Harbor and similar coastal embayments elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.
Woods, Paul F.
1982-01-01
Limnological data collected at Lake Koocanusa were used to investigate the relationship of nutrient loadings, primary productivity, and trophic state of the reservoir during 1972-80. The reservoir, on the Kootenai River, was impounded by Libby Dam on March 21, 1972. Manipulation of the 7.16-cubic-kilometer reservoir for flood control, its primary function, created large fluctuations in reservoir volume and produced annual lake-filling times that ranged from 0.14 to 0.66 year. Loadings of nitrogen and phosphorus prior to and following impoundment of Lake Koocanusa were found to be large enough to predict eutrophic conditions. Beginning in 1976, total phosphorus loadings, but not total nitrogen loadings, were substantially reduced following improvements in waste-water treatment at a fertilizer plant located upstream from the reservoir. The closure of Libby Dam substantially reduced loadings of nitrogen and phosphorus downstream from Lake Koocanusa. On the average, the reservoir retained 63 percent of its influent loading of total phosphorus and 25 percent of its influent loading of total nitrogen. Daily areal and volumetric primary productivity varied widely in each year at four sampled limnological stations. During the 9 years studied, daily areal primary productivity, in milligrams of carbon fixed per square meter, ranged from 0.4 to 420.0; the mean of the 313 sampled days was 128.5. Annual areal primary productivity ranged from 23.2 to 38.5 grams of carbon fixed per square meter and thereby categorized Lake Koocanusa as oligotrophic. The relationship of annual areal primary productivity and 12 selected environmental variables was determined by multiple regression analysis. One of the models that was derived used two variables-annual euphotic zone depth and annual areal phosphorus loading-and accounted for 62.0 percent of the variation in annual areal primary productivity. The distribution of chlorophyll a within the water column indicated that, on the average, more than one-half of the phytoplankton in the reservoir was beneath the euphotic zone. These results support the hypothesis that the reservoir's weak thermal structure had allowed circulation of phytoplankton out of the euphotic zone. The trophic state of Lake Koocanusa was categorized as eutrophic when based on the relationship of the nutrient loadings and the reservoir's ratio of mean depth to hydraulic-residence time. This result conflicted with the oligotrophic ranking the reservoir received based on its areal primary productivity. The discrepancy in trophic state was attributed mainly to the failure of nutrient loading models to adequately account for physical processes within reservoirs. Part of the nutrient loading that entered Lake Koocanusa was unavailable to phytoplankton because the nutrients were carried beneath the euphotic zone by large volumes of interflow and underflow. Another part of the nutrient loading was adsorbed to suspended sediment and removed from the water column. Thus, phytoplankton primary productivity was controlled not only by nutrients, but also by other limno logical processes.
Bradley, Beverly D.; Howie, Stephen R. C.; Chan, Timothy C. Y.; Cheng, Yu-Ling
2014-01-01
Background Planning for the reliable and cost-effective supply of a health service commodity such as medical oxygen requires an understanding of the dynamic need or ‘demand’ for the commodity over time. In developing country health systems, however, collecting longitudinal clinical data for forecasting purposes is very difficult. Furthermore, approaches to estimating demand for supplies based on annual averages can underestimate demand some of the time by missing temporal variability. Methods A discrete event simulation model was developed to estimate variable demand for a health service commodity using the important example of medical oxygen for childhood pneumonia. The model is based on five key factors affecting oxygen demand: annual pneumonia admission rate, hypoxaemia prevalence, degree of seasonality, treatment duration, and oxygen flow rate. These parameters were varied over a wide range of values to generate simulation results for different settings. Total oxygen volume, peak patient load, and hours spent above average-based demand estimates were computed for both low and high seasons. Findings Oxygen demand estimates based on annual average values of demand factors can often severely underestimate actual demand. For scenarios with high hypoxaemia prevalence and degree of seasonality, demand can exceed average levels up to 68% of the time. Even for typical scenarios, demand may exceed three times the average level for several hours per day. Peak patient load is sensitive to hypoxaemia prevalence, whereas time spent at such peak loads is strongly influenced by degree of seasonality. Conclusion A theoretical study is presented whereby a simulation approach to estimating oxygen demand is used to better capture temporal variability compared to standard average-based approaches. This approach provides better grounds for health service planning, including decision-making around technologies for oxygen delivery. Beyond oxygen, this approach is widely applicable to other areas of resource and technology planning in developing country health systems. PMID:24587089
Lambing, John H.; Sando, Steven K.
2008-01-01
The purpose of this report is to present estimated daily and annual loads of suspended sediment and selected trace elements for water years 2004-07 at two sites upstream and one site downstream from Milltown Reservoir. Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. The estimated loads were used to quantify annual net gains and losses (mass balance) of suspended sediment and trace elements within Milltown Reservoir before and after June 1, 2006, which was the start of Stage 1 of a permanent drawdown of the reservoir in preparation for removal of Milltown Dam. This study was done in cooperation with the U.S. Environmental Protection Agency. Daily loads of suspended sediment were estimated for water years 2004-07 by using either high-frequency sampling as part of daily sediment monitoring or regression equations relating suspended-sediment discharge to streamflow. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to suspended-sediment discharge. Regression equations were developed from data for eriodic water-quality samples collected during water years 2004-07. The equations were applied to daily records of either streamflow or suspended-sediment discharge to produce estimated daily loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. For most of the period before June 1, 2006, differences in daily loads transported to and from Milltown Reservoir were minor or indicated small amounts of deposition; however, losses of suspended sediment and trace elements from the reservoir occurred during temporary drawdowns in July-August 2004 and October-December 2005. After the start of Stage 1 of the permanent drawdown on June 1, 2006, losses of suspended sediment and trace elements from the reservoir persisted for all streamflow conditions during the entire interval of the Stage 1 drawdown (June 1, 2006-September 30, 2007) within the study period. Estimated daily loads of suspended sediment and trace elements were summed for each year to produce estimated annual loads used to determine the annual net gains (deposition) or losses (erosion) of each constituent within Milltown Reservoir during water years 2004-07. During water year 2004, there was an annual net gain of suspended sediment in the reservoir. The annual net gains and losses of trace elements were inconsistent in water year 2004, with gains occurring for arsenic ad iron, but losses occurring for cadmium, copper, lead, manganese, and zinc. In water year 2005, there were annual net gains of suspended sediment and all the trace elements within the reservoir. In water year 2006, there were annual net losses of all constituents from the reservoir, likely as the result of sediment erosion from the reservoir during both a temporary drawdown in October-December 2005 and Stage 1 of the permanent drawdown that continued after June 1, 2006. In water year 2007, when the Stage 1 drawdown was in effect for the entire year, there were large annual net losses of suspended sediment and trace elements from the reservoir. The annual net losses of constituents from Milltown Reservoir in water year 2007 were the largest of any year during the 2004-07 study period. In water year 2007, the annual net loss of suspended sediment from the reservoir was 130,000 tons, which was more than double (about 222 percent) the combined inflow to the reservoir. The largest annual net losses of trace elements in water year 2007, in percent of the combined inflow to the reservoir, occurred for cadmium, copper, lead, and zinc-about 190 percent for cadmium, 170 percent for copper, 150 percent for lead, and 238 p
Control factors and scale analysis of annual river water, sediments and carbon transport in China.
Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu
2016-05-11
Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m(-2)·a(-1)) to medium spatial scale basins (258 g·m(-2)·a(-1)), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.
NASA Astrophysics Data System (ADS)
Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.
2012-03-01
Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes) and levels (concentrations) can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn). Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.
Temporal and spatial trends in nutrient and sediment loading to Lake Tahoe, California-Nevada, USA
Coats, Robert; Lewis, Jack; Alvarez, Nancy L.; Arneson, Patricia
2016-01-01
Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream-discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use-land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long-term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.
Influence of various water quality sampling strategies on load estimates for small streams
Robertson, Dale M.; Roerish, Eric D.
1999-01-01
Extensive streamflow and water quality data from eight small streams were systematically subsampled to represent various water‐quality sampling strategies. The subsampled data were then used to determine the accuracy and precision of annual load estimates generated by means of a regression approach (typically used for big rivers) and to determine the most effective sampling strategy for small streams. Estimation of annual loads by regression was imprecise regardless of the sampling strategy used; for the most effective strategy, median absolute errors were ∼30% based on the load estimated with an integration method and all available data, if a regression approach is used with daily average streamflow. The most effective sampling strategy depends on the length of the study. For 1‐year studies, fixed‐period monthly sampling supplemented by storm chasing was the most effective strategy. For studies of 2 or more years, fixed‐period semimonthly sampling resulted in not only the least biased but also the most precise loads. Additional high‐flow samples, typically collected to help define the relation between high streamflow and high loads, result in imprecise, overestimated annual loads if these samples are consistently collected early in high‐flow events.
Solar-energy-system performance evaluation, October 1980-August 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, P.E.
The solar site is an Animal Quarantine Center in Upton, New York, using 2484 ft/sup 2/ of flat-plate collectors and 5300 gallons of solar hot water storage located outside and above ground. The system was designed to provide 20% of the annual heating load and 100% of the annual domestic hot water load. The solar system actually provided 5% of the total system load. Many control and mechanical malfunctions contributed to the poor performance. (MHR)
Wise, Daniel R.; Rinella, Frank A.; Rinella, Joseph F.; Fuhrer, Greg J.; Embrey, Sandra S.; Clark, Gregory M.; Schwarz, Gregory E.; Sobieszczyk, Steven
2007-01-01
This study focused on three areas that might be of interest to water-quality managers in the Pacific Northwest: (1) annual loads of total nitrogen (TN), total phosphorus (TP) and suspended sediment (SS) transported through the Columbia River and Puget Sound Basins, (2) annual yields of TN, TP, and SS relative to differences in landscape and climatic conditions between subbasin catchments (drainage basins), and (3) trends in TN, TP, and SS concentrations and loads in comparison to changes in landscape and climatic conditions in the catchments. During water year 2000, an average streamflow year in the Pacific Northwest, the Columbia River discharged about 570,000 pounds per day of TN, about 55,000 pounds per day of TP, and about 14,000 tons per day of SS to the Pacific Ocean. The Snake, Yakima, Deschutes, and Willamette Rivers contributed most of the load discharged to the Columbia River. Point-source nutrient loads to the catchments (almost exclusively from municipal wastewater treatment plants) generally were a small percentage of the total in-stream nutrient loads; however, in some reaches of the Spokane, Boise, Walla Walla, and Willamette River Basins, point sources were responsible for much of the annual in-stream nutrient load. Point-source nutrient loads generally were a small percentage of the total catchment nutrient loads compared to nonpoint sources, except for a few catchments where point-source loads comprised as much as 30 percent of the TN load and as much as 80 percent of the TP load. The annual TN and TP loads from point sources discharging directly to the Puget Sound were about equal to the annual loads from eight major tributaries. Yields of TN, TP, and SS generally were greater in catchments west of the Cascade Range. A multiple linear regression analysis showed that TN yields were significantly (p < 0.05) and positively related to precipitation, atmospheric nitrogen load, fertilizer and manure load, and point-source load, and were negatively related to average slope. TP yields were significantly related positively to precipitation, and point-source load and SS yields were significantly related positively to precipitation. Forty-eight percent of the available monitoring sites for TN had significant trends in concentration (2 increasing, 19 decreasing), 32 percent of the available sites for TP had significant trends in concentration (7 increasing, 9 decreasing), and 40 percent of the available sites for SS had significant trends in concentration (4 increasing, 15 decreasing). The trends in load followed a similar pattern, but with fewer sites showing significant trends. The results from this study indicate that inputs from nonpoint sources of nutrients probably have decreased over time in many of the catchments. Despite the generally small contribution of point-source nutrient loads, they still may have been partially responsible for the significant decreasing trends for nutrients at sites where the total point-source nutrient loads to the catchments equaled a substantial proportion of the in-stream load.
A simple model is presented that uses the annual loading rate of total nitrogen (TN) and the water residence time to calculate: 1) average annual TN concentration and intemalloss rates (e.g. denitrification and incorporation in sediments) in an estuary, and 2) the rate of nitroge...
7 CFR Appendix A to Subpart B of... - Review Rating Summary, RUS Form 300
Code of Federal Regulations, 2012 CFR
2012-01-01
...—ENGINEERING 11. System Load Conditions and Losses a. Annual System Loses, ____%—Rating:____ b. Annual Load..., RUS Form 300 Borrower Designation ____ Date Prepared ____ Ratings on form are: 0: Unsatisfactory—no... recommendations 3: Satisfactory—no additional action required at this time N/A: Not applicable PART I—TRANSMISSION...
7 CFR Appendix A to Subpart B of... - Review Rating Summary, RUS Form 300
Code of Federal Regulations, 2013 CFR
2013-01-01
...—ENGINEERING 11. System Load Conditions and Losses a. Annual System Loses, ____%—Rating:____ b. Annual Load..., RUS Form 300 Borrower Designation ____ Date Prepared ____ Ratings on form are: 0: Unsatisfactory—no... recommendations 3: Satisfactory—no additional action required at this time N/A: Not applicable PART I—TRANSMISSION...
7 CFR Appendix A to Subpart B of... - Review Rating Summary, RUS Form 300
Code of Federal Regulations, 2010 CFR
2010-01-01
...—ENGINEERING 11. System Load Conditions and Losses a. Annual System Loses, ____%—Rating:____ b. Annual Load..., RUS Form 300 Borrower Designation ____ Date Prepared ____ Ratings on form are: 0: Unsatisfactory—no... recommendations 3: Satisfactory—no additional action required at this time N/A: Not applicable PART I—TRANSMISSION...
7 CFR Appendix A to Subpart B of... - Review Rating Summary, RUS Form 300
Code of Federal Regulations, 2011 CFR
2011-01-01
...—ENGINEERING 11. System Load Conditions and Losses a. Annual System Loses, ____%—Rating:____ b. Annual Load..., RUS Form 300 Borrower Designation ____ Date Prepared ____ Ratings on form are: 0: Unsatisfactory—no... recommendations 3: Satisfactory—no additional action required at this time N/A: Not applicable PART I—TRANSMISSION...
Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.
2011-01-01
The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year. The Pacolet River had a mean annual total nitrogen load of 99,780 kilograms per year and yield of 1.82 kilograms per hectare per year. Mean annual total phosphorus loads of 2,576; 9,404; and 11,710 kilograms per year and yields of 0.180, 0.313, and 0.213 kilograms per hectare per year were estimated at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. Annually, the intervening subbasin of the Pacolet River contributed negligible amounts of total nitrogen and total phosphorus loads, and large losses of dissolved nitrate plus nitrite and orthophosphate loads were determined for the subbasin. Biological (algal) uptake in the two reservoirs in this intervening area was considered the likely explanation for the loss of these constituents. Estimated mean annual suspended-sediment loads were 21,190,000; 9,895,000; and 6,547,000 kilograms per year at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. In the intervening Pacolet River subbasin, computed annual suspended-sediment loads were consistently negative, indicating large percentage losses in annual suspended-sediment load. Sedimentation processes in the two reservoirs are the most likely explanations for these apparent losses. At all sites, the winter season tended to have the highest estimated seasonal dissolved orthophosphate and dissolved nitrate plus nitrite fluxes, and the summer and fall seasons tended to have the lowest fluxes. The reverse pattern, however, was observed in the intervening drainage area in the Pacolet River where the lowest fluxes of dissolved orthophosphate and nitrate plus nitrite occurred during the winter and spring seasons and the highest occurred during the summer and fall seasons. Synoptic samples were collected during a high-flow event in August 2009 at eight sites that represented shoreline and minor tributary drainages. The South Pacolet River site was identified as contributing greater than 80 percent of the cumulative nutrient and sediment l
Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy
2015-01-01
Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on average, within ±20% of estimates based on streamflow and turbidity combined. Results demonstrate that large suspended sediment loads are delivered to Cheney Reservoir in very short time periods, indicating that sediment management plans eventually must address large, infrequent inflow events to be effective.
Galloway, Joel M.; Nustad, Rochelle A.
2012-01-01
Natural-resource agencies are concerned about possible geomorphic effects of a proposed diversion project to reduce the flood risk in the Fargo-Moorhead metropolitan area. The U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers collected data in the spring of 2010 and 2011, and from June to November 2011, during rainfall-runoff events and base-flow conditions to provide information on sediment transport. The data were used to examine sediment concentrations, loads, and particle-size distributions at nine selected sites in the Red River and its tributaries near the Fargo-Moorhead metropolitan area. Suspended-sediment concentration varied among sites in 2010 and 2011. The least suspended-sediment concentrations were measured at the Red River (site 1) and the Buffalo River (site 9), and the greatest concentrations were measured at the two Sheyenne River sites (sites 3 and 4). Estimated daily suspended-sediment loads were highly variable in 2010 and 2011 in the Red River and its tributaries, with the greatest loads occurring in the spring and the smallest loads occurring in the winter. For the Red River, daily suspended-sediment loads ranged from 26 to 3,500 tons per day at site 1 and from 30 to 9,010 tons per day at site 2. For the Sheyenne River, daily loads ranged from less than 10 to 10,200 tons per day at site 3 and from less than 10 to 4,530 tons per day at site 4. The mean daily load was 191 tons per day in 2010 and 377 tons per day in 2011 for the Maple River, and 610 tons per day in 2011 for the Wild Rice River (annual loads were not computed for 2010). For the three sites that were only sampled in 2011 (sites 7, 8 and 9), the mean daily suspended-sediment loads ranged from 40 tons per day at the Lower Branch Rush River (site 8) to 118 tons per day at the Buffalo River (site 9). For sites that had estimated loads in 2010 and 2011 (sites 1–5), estimated annual (March–November) suspended-sediment loads were greater in 2011 compared to 2010. In 2010, annual loads ranged from 68,650 tons per year at the Maple River (site 5) to 249,040 tons per year at the Sheyenne River (site 3). In 2011, when all nine sites were sampled, annual loads ranged from 8,716 tons per year at the Lower Branch Rush River (site 8) to 552,832 tons per year at the Sheyenne River (site 3). With the exception of the Sheyenne River (site 4), the greatest monthly loads occurred in March for 2010, with as little as 27 percent (site 1) and as much as 42 percent (site 3) of the annual load occurring in March. For 2011, the greatest monthly loads occurred in April, ranging from 33 percent (site 1) to 63 percent (site 7) of the 2011 annual load. A relatively small amount of sediment was transported past the nine sites as bedload in 2010 and 2011. For most of the samples collected at the nine sites, the bedload composed less than 1 percent of the calculated daily total sediment load.
Mullaney, John R.; Martin, Joseph W.; Morrison, Jonathan
2018-03-20
The daily and annual loads of nitrate plus nitrite and total nitrogen for the Connecticut River at Middle Haddam, Connecticut, were determined for water years 2009 to 2014. The analysis was done with a combination of methods, which included a predefined rating curve method for nitrate plus nitrite and total nitrogen for water years 2009 to 2011 and a custom rating curve method that included sensor measurements of nitrate plus nitrite nitrogen concentration and turbidity along with mean daily flow to determine total nitrogen loads for water years 2011 to 2014. Instantaneous concentrations of total nitrogen were estimated through the use of a regression model based on sensor measurements at 15-minute intervals of nitrate plus nitrite nitrogen and turbidity for water years 2011 to 2014.Annual total nitrogen loads at the Connecticut River at Middle Haddam ranged from 12,900 to 19,200 metric tons, of which about 42 to 49 percent was in the form of nitrate plus nitrite. The mean 95-percent prediction intervals on daily total nitrogen load estimates were smaller from the custom model, which used sensor data, than those calculated by the predefined model.Annual total nitrogen load estimates at the Connecticut River at Middle Haddam were compared with the upstream load estimates at the Connecticut River at Thompsonville, Conn. Annual gains in total nitrogen loads between the two stations ranged from 3,430 to 6,660 metric tons. These increases between the two stations were attributed to the effects of increased urbanization and to combined annual discharges of 1,540 to 2,090 metric tons of nitrogen from 24 wastewater treatment facilities in the drainage area between the two stations. The contribution of total nitrogen from wastewater discharge between the two stations had declined substantially before the beginning of this study and accounted for from 31 to 52 percent of the gain in nitrogen load between the Thompsonville and Middle Haddam sites.
Maupin, Molly A.; Ivahnenko, Tamara
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.
Majcher, Emily H.; Woytowitz, Ellen L.; Reisinger, Alexander J.; Groffman, Peter M.
2018-03-30
Factors affecting water-quality trends in urban streams are not well understood, despite current regulatory requirements and considerable ongoing investments in gray and green infrastructure. To address this gap, long-term water-quality trends and factors affecting these trends were examined in the Gwynns Falls, Maryland, watershed during 1998–2016 in cooperation with Blue Water Baltimore. Data on water-quality constituents and potential factors of influence were obtained from multiple sources and compiled for analysis, with a focus on data collected as part of the National Science Foundation funded Long-Term Ecological Research project, the Baltimore Ecosystem Study.Variability in climate (specifically, precipitation) and land cover can overwhelm actions taken to improve water quality and can present challenges for meeting regulatory goals. Analysis of land cover during 2001–11 in the Gwynns Falls watershed indicated minimal change during the study time frame; therefore, land-cover change is likely not a factor affecting trends in water quality. However, a modest increase in annual precipitation and a significant increase in winter precipitation were apparent in the region. A higher proportion of runoff producing storms was observed in the winter and a lower proportion in the summer, indicating that climate change may affect water quality in the watershed. The increase in precipitation was not reflected in annual or seasonal trends of streamflow in the watershed. Nonetheless, these precipitation changes may exacerbate the inflow and infiltration of water to gray infrastructure and reduce the effectiveness of green infrastructure. For streamflow and most water-quality constituents examined, no discernable trends were noted over the timeframe examined. Despite the increases in precipitation, no trends were observed for annual or seasonal discharge at the various sites within the study area. In some locations, nitrate, phosphate, and total nitrogen show downward trends, and total phosphorus and chloride show upward trends.Sanitary sewer overflows (gray infrastructure) and best management practices (green infrastructure) were identified as factors affecting water-quality change. The duration of sanitary sewer overflows was positively correlated with annual loads of nutrients and bacteria, and the drainage area of best management practices was negatively correlated with annual loads of phosphate and sulfate. Results of the study indicate that continued investments in gray and green infrastructure are necessary for urban water-quality improvement. Although this outcome is not unexpected, long-term datasets such as the one used in this study, allow the effects of gray and green infrastructures to be quantified.Results of this study have implications for the Gwynns Falls watershed and its residents and Baltimore City and County managers. Moreover, outcomes are relevant to other watersheds in the metropolitan region that do not have the same long-term dataset. Further, this study has established a framework for ongoing statistical analysis of primary factors affecting urban water-quality trends as regulatory programs mature.
Green, W. Reed; Haggard, Brian E.
2001-01-01
Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.
NASA Astrophysics Data System (ADS)
van Dam, T.; Wahr, J.; LavalléE, David
2007-03-01
We compare approximately 3 years of GPS height residuals (with respect to the International Terrestrial Reference Frame) with predictions of vertical surface displacements derived from the Gravity Recovery and Climate Experiment (GRACE) gravity fields for stations in Europe. An annual signal fit to the residual monthly heights, corrected for atmospheric pressure and barotropic ocean loading effects, should primarily represent surface displacements due to long-wavelength variations in water storage. A comparison of the annual height signal from GPS and GRACE over Europe indicates that at most sites, the annual signals do not agree in amplitude or phase. We find that unlike the annual signal predicted from GRACE, the annual signal in the GPS heights is not coherent over the region, displaying significant variability from site to site. Confidence in the GRACE data and the unlikely possibility of large-amplitude small-scale features in the load field not captured by the GRACE data leads us to conclude that some of the discrepancy between the GPS and GRACE observations is due to technique errors in the GPS data processing. This is evidenced by the fact that the disagreement between GPS and GRACE is largest at coastal sites, where mismodeling of the semidiurnal ocean tidal loading signal can result in spurious annual signals.
Huiliang, Wang; Zening, Wu; Caihong, Hu; Xinzhong, Du
2015-09-01
Nonpoint source (NPS) pollution is considered as the main reason for water quality deterioration; thus, to quantify the NPS loads reliably is the key to implement watershed management practices. In this study, water quality and NPS loads from a watershed with limited data availability were studied in a mountainous area in China. Instantaneous water discharge was measured through the velocity-area method, and samples were taken for water quality analysis in both flood and nonflood days in 2010. The streamflow simulated by Hydrological Simulation Program-Fortran (HSPF) from 1995 to 2013 and a regression model were used to estimate total annual loads of various water quality parameters. The concentrations of total phosphorus (TP) and total nitrogen (TN) were much higher during the flood seasons, but the concentrations of ammonia nitrogen (NH3-N) and nitrate nitrogen (NO3-N) were lower during the flood seasons. Nevertheless, only TP concentration was positively correlated with the flow rate. The fluctuation of annual load from this watershed was significant. Statistical results indicated the significant contribution of pollutant fluxes during flood seasons to annual fluxes. The loads of TP, TN, NH3-N, and NO3-N in the flood seasons were accounted for 58-85, 60-82, 63-88, 64-81% of the total annual loads, respectively. This study presented a new method for estimation of the water and NPS loads in the watershed with limited data availability, which simplified data collection to watershed model and overcame the scale problem of field experiment method.
Shih, Jhih-Shyang; Alexander, Richard B.; Smith, Richard A.; Boyer, Elizabeth W.; Shwarz, Grogory E.; Chung, Susie
2010-01-01
Watersheds play many important roles in the carbon cycle: (1) they are a site for both terrestrial and aquatic carbon dioxide (CO2) removal through photosynthesis; (2) they transport living and decomposing organic carbon in streams and groundwater; and (3) they store organic carbon for widely varying lengths of time as a function of many biogeochemical factors. Using the U.S. Geological Survey (USGS) Spatially Referenced Regression on Watershed Attributes (SPARROW) model, along with long-term monitoring data on total organic carbon (TOC), this research quantitatively estimates the sources, transport, and fate of the long-term mean annual load of TOC in streams of the conterminous United States. The model simulations use surrogate measures of the major terrestrial and aquatic sources of organic carbon to estimate the long-term mean annual load of TOC in streams. The estimated carbon sources in the model are associated with four land uses (urban, cultivated, forest, and wetlands) and autochthonous fixation of carbon (stream photosynthesis). Stream photosynthesis is determined by reach-level application of an empirical model of stream chlorophyll based on total phosphorus concentration, and a mechanistic model of photosynthetic rate based on chlorophyll, average daily solar irradiance, water column light attenuation, and reach dimensions. It was found that the estimate of in-stream photosynthesis is a major contributor to the mean annual TOC load per unit of drainage area (that is, yield) in large streams, with a median share of about 60 percent of the total mean annual carbon load in streams with mean flows above 500 cubic feet per second. The interquartile range of the model predictions of TOC from in-stream photosynthesis is from 0.1 to 0.4 grams (g) carbon (C) per square meter (m-2) per day (day-1) for the approximately 62,000 stream reaches in the continental United States, which compares favorably with the reported literature range for net carbon fixation by phytoplankton in lakes and streams. The largest contributors per unit of drainage area to the mean annual stream TOC load among the terrestrial sources are, in descending order: wetlands, urban lands, mixed forests, agricultural lands, evergreen forests, and deciduous forests . It was found that the SPARROW model estimates of TOC contributions to streams associated with these land uses are also consistent with literature estimates. SPARROW model calibration results are used to simulate the delivery of TOC loads to the coastal areas of seven major regional drainages. It was found that stream photosynthesis is the largest source of the TOC yields ( about 50 percent) delivered to the coastal waters in two of the seven regional drainages (the Pacific Northwest and Mississippi-Atchafalaya-Red River basins ), whereas terrestrial sources are dominant (greater than 60 percent) in all other regions (North Atlantic, South Atlantic-Gulf, California, Texas-Gulf, and Great Lakes).
Elwan, Ahmed; Singh, Ranvir; Patterson, Maree; Roygard, Jon; Horne, Dave; Clothier, Brent; Jones, Geoffrey
2018-01-11
Better management of water quality in streams, rivers and lakes requires precise and accurate estimates of different contaminant loads. We assessed four sampling frequencies (2 days, weekly, fortnightly and monthly) and five load calculation methods (global mean (GM), rating curve (RC), ratio estimator (RE), flow-stratified (FS) and flow-weighted (FW)) to quantify loads of nitrate-nitrogen (NO 3 - -N), soluble inorganic nitrogen (SIN), total nitrogen (TN), dissolved reactive phosphorus (DRP), total phosphorus (TP) and total suspended solids (TSS), in the Manawatu River, New Zealand. The estimated annual river loads were compared to the reference 'true' loads, calculated using daily measurements of flow and water quality from May 2010 to April 2011, to quantify bias (i.e. accuracy) and root mean square error 'RMSE' (i.e. accuracy and precision). The GM method resulted into relatively higher RMSE values and a consistent negative bias (i.e. underestimation) in estimates of annual river loads across all sampling frequencies. The RC method resulted in the lowest RMSE for TN, TP and TSS at monthly sampling frequency. Yet, RC highly overestimated the loads for parameters that showed dilution effect such as NO 3 - -N and SIN. The FW and RE methods gave similar results, and there was no essential improvement in using RE over FW. In general, FW and RE performed better than FS in terms of bias, but FS performed slightly better than FW and RE in terms of RMSE for most of the water quality parameters (DRP, TP, TN and TSS) using a monthly sampling frequency. We found no significant decrease in RMSE values for estimates of NO 3 - N, SIN, TN and DRP loads when the sampling frequency was increased from monthly to fortnightly. The bias and RMSE values in estimates of TP and TSS loads (estimated by FW, RE and FS), however, showed a significant decrease in the case of weekly or 2-day sampling. This suggests potential for a higher sampling frequency during flow peaks for more precise and accurate estimates of annual river loads for TP and TSS, in the study river and other similar conditions.
NASA Technical Reports Server (NTRS)
Kenner, WInfred S.; Jones, Thomas C.; Doggett, William R.; Duncan, Quinton; Plant, James
2015-01-01
An experimental study of the effects of environmental temperature and humidity conditions on long-term creep displacement data of high strength Kevlar and VectranTM woven fabric webbings under constant load for inflatable structures is presented. The restraint layer of an inflatable structure for long-duration space exploration missions is designed to bear load and consists of an assembly of high strength webbings. Long-term creep displacement data of webbings can be utilized by designers to validate service life parameters of restraint layers of inflatable structures. Five groups of high-strength webbings were researched over a two year period. Each group had a unique webbing length, load rating, applied load, and test period. The five groups consisted of 1.) 6K Vectran webbings loaded to 49% ultimate tensile strength (UTS), 2.) 6K Vectran webbings loaded to 55% UTS, 3.) 12.5K Vectran webbings loaded to 22% UTS, 4.) 6K Kevlar webbings loaded to 40% and 43% UTS, and 5.) 6K Kevlar webbings loaded to 48% UTS. Results show that all webbing groups exhibit the initial two stages of three of a typical creep curve of an elastic material. Results also show that webbings exhibit unique local wave patterns over the duration of the test period. Data indicate that the local pattern is primarily generated by daily variations in relative humidity values within the test facility. Data indicate that after a three to six month period, where webbings reach a steady-state creep condition, an annual sinusoidal displacement pattern is exhibited, primarily due to variations in annual mean temperature values. Data indicates that variations in daily temperature values and annual mean humidity values have limited secondary effects on creep displacement behavior. Results show that webbings in groups 2 and 5 do not exhibit well defined annual displacement patterns because the magnitude of the applied loads cause large deformations, and data indicate that material yielding within a webbing tends to neutralize the annual sinusoidal displacement pattern. Study indicates that applied load, environmental effects, mechanical strength, coefficient of thermal expansion, and hygroscopic properties of webbings are fundamental requirements for quantifying accurate creep displacements and behaviors over multiple year time periods. Results from a study of the environmental effects on long-term creep displacement data of Kevlar and Vectran woven webbings are presented to increase the knowledge base of webbing materials and to enhance designs of inflatable space structures for long-duration space missions.
Annual estimates of water and solute export from 42 tributaries to the Yukon River
Frederick Zanden,; Suzanne P. Anderson,; Striegl, Robert G.
2012-01-01
Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions.
NASA Astrophysics Data System (ADS)
Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.
2014-12-01
Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.
Lacour, C; Joannis, C; Chebbo, G
2009-05-01
This article presents a methodology for assessing annual wet weather Suspended Solids (SS) and Chemical Oxygen Demand (COD) loads in combined sewers, along with the associated uncertainties from continuous turbidity measurements. The proposed method is applied to data from various urban catchments in the cities of Paris and Nantes. The focus here concerns the impact of the number of rain events sampled for calibration (i.e. through establishing linear SS/turbidity or COD/turbidity relationships) on the uncertainty of annual pollutant load assessments. Two calculation methods are investigated, both of which rely on Monte Carlo simulations: random assignment of event-specific calibration relationships to each individual rain event, and the use of an overall relationship built from the entire available data set. Since results indicate a fairly low inter-event variability for calibration relationship parameters, an accurate assessment of pollutant loads can be derived, even when fewer than 10 events are sampled for calibration purposes. For operational applications, these results suggest that turbidity could provide a more precise evaluation of pollutant loads at lower cost than typical sampling methods.
Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82
Thompson, K.R.
1985-01-01
The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)
Zhang, Lei; Lu, Wenxi; An, Yonglei; Li, Di; Gong, Lei
2012-01-01
The impacts of climate change on streamflow and non-point source pollutant loads in the Shitoukoumen reservoir catchment are predicted by combining a general circulation model (HadCM3) with the Soil and Water Assessment Tool (SWAT) hydrological model. A statistical downscaling model was used to generate future local scenarios of meteorological variables such as temperature and precipitation. Then, the downscaled meteorological variables were used as input to the SWAT hydrological model calibrated and validated with observations, and the corresponding changes of future streamflow and non-point source pollutant loads in Shitoukoumen reservoir catchment were simulated and analyzed. Results show that daily temperature increases in three future periods (2010-2039, 2040-2069, and 2070-2099) relative to a baseline of 1961-1990, and the rate of increase is 0.63°C per decade. Annual precipitation also shows an apparent increase of 11 mm per decade. The calibration and validation results showed that the SWAT model was able to simulate well the streamflow and non-point source pollutant loads, with a coefficient of determination of 0.7 and a Nash-Sutcliffe efficiency of about 0.7 for both the calibration and validation periods. The future climate change has a significant impact on streamflow and non-point source pollutant loads. The annual streamflow shows a fluctuating upward trend from 2010 to 2099, with an increase rate of 1.1 m(3) s(-1) per decade, and a significant upward trend in summer, with an increase rate of 1.32 m(3) s(-1) per decade. The increase in summer contributes the most to the increase of annual load compared with other seasons. The annual NH (4) (+) -N load into Shitoukoumen reservoir shows a significant downward trend with a decrease rate of 40.6 t per decade. The annual TP load shows an insignificant increasing trend, and its change rate is 3.77 t per decade. The results of this analysis provide a scientific basis for effective support of decision makers and strategies of adaptation to climate change.
Domagalski, Joseph; Majewski, Michael S; Alpers, Charles N; Eckley, Chris S; Eagles-Smith, Collin A; Schenk, Liam; Wherry, Susan
2016-10-15
Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio>1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (<0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (<0.1), whereas urbanized areas had higher ratios (0.34-1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
LI, E.; Li, D.; Wang, Y.; Fu, X.
2017-12-01
The Yellow River is well known for its high sediment load and serious water shortage. The long-term averaged sediment load is about 1.6´103 million tons per year, resulting in aggrading and perched lower reaches. In recent years, however, dramatic decreases in runoff and sediment load have been observed. The annual sediment load has been less than 150 million tons in the last ten years. Extrapolation of this trend into the future would motivate substantial change in the management strategies of the Lower Yellow River. To understand the possible trend and its coevolving drivers, we performed a case study of the Huangfuchuang River, which is a tributary to the Middle Yellow River, with a drainage area of 3246 km2 and an annual precipitation of 365 mm. Statistical analysis of historical data from 1960s to 2015 showed a significantly decreasing trend in runoff and sediment load since 1984. As potential drivers, the precipitation does not show an obvious change in annual amount, while the vegetation cover and the number of check dams have been increased gradually as a result of the national Grain for Green project. A simulation with the Soil and Water Assessment Tool (SWAT) reproduced the historical evolution processes, and showed that human activities dominated the reduction in runoff and sediment load, with a contribution of around 80%. We then projected the runoff and sediment load for the next 50 years (2016-2066), considering typical scenarios of climate change and accounting for vegetation cover development subject to climate conditions and storage capacity loss of check dams due to sediment deposition. The differences between the projected trend and the historical record were analyzed, so as to highlight the coevolving processes of climate, vegetation, and check dam retention on a time scale of decades. Keywords: Huangfuchuan River Basin, sediment load, vegetation cover, check dams, annual precipitation, SWAT.
Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan
2016-01-01
Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (< 0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (< 0.1), whereas urbanized areas had higher ratios (0.34–1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.
NASA Astrophysics Data System (ADS)
Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.
2011-11-01
Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds have been established, such as critical loads (deposition fluxes) and levels (concentrations). For Mediterranean ecosystems, few studies have been carried out to assess these parameters. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for Mediterranean evergreen woodlands. For that we have considered changes in epiphytic lichen communities, which have been shown to be one of the most sensitive to excessive N. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done under Mediterranean climate, in evergreen cork-oak woodlands, by sampling lichen functional diversity and annual atmospheric ammonia concentrations and modelling N deposition downwind from a reduced N source (a cattle barn). By modelling the highly significant relationship between lichen functional groups and N deposition, the critical load was estimated to be below 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. By modelling the highly significant relationship of lichen functional groups with annual atmospheric ammonia concentration, the critical level was estimated to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should be taken into account in policies that aim at protecting Mediterranean woodlands from the initial effects of excessive N.
Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.
2011-01-01
We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Atieh, M.; Mehltretter, S. L.; Gharabaghi, B.; Rudra, R.
2015-12-01
One of the most uncertain modeling tasks in hydrology is the prediction of ungauged stream sediment load and concentration statistics. This study presents integrated artificial neural networks (ANN) models for prediction of sediment rating curve parameters (rating curve coefficient α and rating curve exponent β) for ungauged basins. The ANN models integrate a comprehensive list of input parameters to improve the accuracy achieved; the input parameters used include: soil, land use, topographic, climatic, and hydrometric data sets. The ANN models were trained on the randomly selected 2/3 of the dataset of 94 gauged streams in Ontario, Canada and validated on the remaining 1/3. The developed models have high correlation coefficients of 0.92 and 0.86 for α and β, respectively. The ANN model for the rating coefficient α is directly proportional to rainfall erosivity factor, soil erodibility factor, and apportionment entropy disorder index, whereas it is inversely proportional to vegetation cover and mean annual snowfall. The ANN model for the rating exponent β is directly proportional to mean annual precipitation, the apportionment entropy disorder index, main channel slope, standard deviation of daily discharge, and inversely proportional to the fraction of basin area covered by wetlands and swamps. Sediment rating curves are essential tools for the calculation of sediment load, concentration-duration curve (CDC), and concentration-duration-frequency (CDF) analysis for more accurate assessment of water quality for ungauged basins.
Secular and annual hydrologic effects from the Plate Boundary Observatory GPS network
NASA Astrophysics Data System (ADS)
Meertens, C. M.; Wahr, J. M.; Borsa, A. A.; Jackson, M. E.; Herring, T.
2009-12-01
The Plate Boundary Observatory (PBO) GPS network is providing accurate and spatially coherent vertical signals that can be interpreted in terms of hydrological loading and poroelastic effects from both natural and anthropogenic changes in water storage. Data used for this analysis are the precise coordinate time series produced on a daily basis by PBO Analysis Centers at New Mexico Institute of Mining and Technology and at Central Washington University and combined by the Analysis Center Coordinator at the Massachusetts Institute of Technology. These products, as well as derived velocity solutions, are made freely available from the UNAVCO Data Center in Boulder. Analysis of secular trends and annual variations in the time series was made using the analysis software of Langbein, 2008. Spatial variations in the amplitude and phase of the annual vertical component of motion allow for identification of anthropogenic effects due to water pumping, irrigation, and reservoir lake variations, and of outliers due to instrumental or other local site effects. Vertical annual signals of 8-10 mm peak-to-peak amplitude are evident at stations in the mountains of northern and central California and the Pacific Northwest. The peak annual uplift is in October and is correlated to hydrological loading effects. Mountainous areas appear to be responding elastically to the load of the water contained in surface soil, fractures, and snow. Vertical signals are highest when the water load is at a minimum. The vertical elastic hydrologic loading signal was modeled using the 0.25 degree community NOAH land-surface model (LSM) and generally fits the observed GPS signal. Addition comparisons will be made using the Mosaic LSM and the NOAA “Leaky Bucket” hydrologic model. In contrast to mountain stations that are installed principally in bedrock, stations in the valleys of California are installed in sediments. Observations from these stations show greater spatial variability ranging from almost no detectable annual signal to very large, 20-30 mm, vertical amplitudes that reach a maximum in March. Vertical signals in the valleys are the result of poroelastic effects induced by groundwater variations caused by pumping for irrigation or other purposes and are highest when groundwater is at maximum recharge level. Secular trends in the vertical time series show 1-3 mm/yr of subsidence across the western U.S. In areas of groundwater pumping the rates are up to several cm/yr showing subsidence as pumping exceeds annual recharge over a multi-year time period. In the mountainous areas where hydrologic loading is evident in the annual signals, secular trends show uplift of 1-3 mm/yr possibly due to regional drought and decreased overall water volumes that result in less load and vertical uplift. Overall, these results illustrate the potential of using GPS data to constrain hydrological models. In return, accurate hydrologic loading models will be needed to better measure and detect vertical tectonic motions at the mm-level.
Simulated impacts of climate change on phosphorus loading to Lake Michigan
Robertson, Dale M.; Saad, David A.; Christiansen, Daniel E.; Lorenz, David J
2016-01-01
Phosphorus (P) loading to the Great Lakes has caused various types of eutrophication problems. Future climatic changes may modify this loading because climatic models project changes in future meteorological conditions, especially for the key hydrologic driver — precipitation. Therefore, the goal of this study is to project how P loading may change from the range of projected climatic changes. To project the future response in P loading, the HydroSPARROW approach was developed that links results from two spatially explicit models, the SPAtially Referenced Regression on Watershed attributes (SPARROW) transport and fate watershed model and the water-quantity Precipitation Runoff Modeling System (PRMS). PRMS was used to project changes in streamflow throughout the Lake Michigan Basin using downscaled meteorological data from eight General Circulation Models (GCMs) subjected to three greenhouse gas emission scenarios. Downscaled GCMs project a + 2.1 to + 4.0 °C change in average-annual air temperature (+ 2.6 °C average) and a − 5.1% to + 16.7% change in total annual precipitation (+ 5.1% average) for this geographic area by the middle of this century (2045–2065) and larger changes by the end of the century. The climatic changes by mid-century are projected to result in a − 21.2% to + 8.9% change in total annual streamflow (− 1.8% average) and a − 29.6% to + 17.2% change in total annual P loading (− 3.1% average). Although the average projected changes in streamflow and P loading are relatively small for the entire basin, considerable variability exists spatially and among GCMs because of their variability in projected future precipitation.
Tobin, R.L.
1993-01-01
Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.
NASA Astrophysics Data System (ADS)
Fang, Huaiyang; Lu, Qingshui; Gao, Zhiqiang; Shi, Runhe; Gao, Wei
2013-09-01
China economy has been rapidly increased since 1978. Rapid economic growth led to fast growth of fertilizer and pesticide consumption. A significant portion of fertilizers and pesticides entered the water and caused water quality degradation. At the same time, rapid economic growth also caused more and more point source pollution discharge into the water. Eutrophication has become a major threat to the water bodies. Worsening environment problems forced governments to take measures to control water pollution. We extracted land cover from Landsat TM images; calculated point source pollution with export coefficient method; then SWAT model was run to simulate non-point source pollution. We found that the annual TP loads from industry pollution into rivers are 115.0 t in the entire watershed. Average annual TP loads from each sub-basin ranged from 0 to 189.4 ton. Higher TP loads of each basin from livestock and human living mainly occurs in the areas where they are far from large towns or cities and the TP loads from industry are relatively low. Mean annual TP loads that delivered to the streams was 246.4 tons and the highest TP loads occurred in north part of this area, and the lowest TP loads is mainly distributed in middle part. Therefore, point source pollution has much high proportion in this area and governments should take measures to control point source pollution.
Westenbroek, Stephen M.
2010-01-01
The Lake Michigan Mass Balance Project (LMMBP) measured and modeled the concentrations of environmentally persistent contaminants in air, river and lake water, sediment, and fish and bird tissues in and around Lake Michigan for an 18-month period spanning 1994-95. Tributary loads were calculated as part of the LMMBP. The work described in this report was designed to provide updated concentration data and load estimates for 5 nutrients, total mercury, and total polychlorinated biphenyl (PCB) at 5 of the original 11 LMMBP sampling sites. Samples were collected at five Lake Michigan tributary monitoring sites during 2005 and 2006. Annual loads calculated for the 2005-6 sampling period are as much as 50 percent lower relative to the 1994-95 time period. Differences between the loads calculated for the two time periods are likely related to a combination of (1) biases introduced by a reduced level of sampling effort, (2) differences in hydrological characteristics, and (3) actual environmental change. Estimated annual total mercury loads during 2005-6 ranged from 51 kilograms per year (kg/yr) in the Fox River to 2.2 kg/yr in the Indiana Harbor and Ship Canal. Estimated annual total PCB loads during 2005-6 ranged from 132 kg/yr in the Fox River to 6.2 kg/yr in the Grand River.
Crain, Angela S.
2006-01-01
Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of 0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual yield of nitrite plus nitrate was observed at the South Fork Little River site. The North Fork Little River site had the largest estimated mean annual yield of suspended sediment (450,000 lb/yr/mi2). Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the Little River Basin. Commercial fertilizer and livestock-waste applications on row crops are a principal source of nutrients for most of the Little River Basin. Sources of nutrients in the urban areas of the basin mainly are from effluent discharge from wastewater-treatment facilities and fertilizer applications to lawns and golf courses.
NASA Astrophysics Data System (ADS)
Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.
2018-06-01
The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graydon, Jennifer A; Louis, Vincent; Hintelmann, Holger
2008-11-01
Although a positive relationship between atmospheric loadings of inorganic mercury (Hg(II)) to watersheds and concentrations of methyl mercury (MeHg) in fish has now been established, net wet and dry deposition of Hg(II) and MeHg to watersheds remains challenging to quantify. In this study, concentrations and loadings of total mercury (THg; all forms of Hg in a sample) and MeHg in open area wet deposition, throughfall, and litterfall were quantified at the remote Experimental Lakes Area in the boreal ecoregion, NW Ontario, Canada. Between 1992 and 2006, mean annual THg and MeHg loadings in the open were 36 17 and 0.5more » 0.2 mg ha 1, respectively. Throughfall THg and MeHg loadings were generally 2 4 times and 0.8 2 times higher, respectively, than loadings in the open. Loadings of both THg and MeHg were highest under an old growth spruce/fir canopy and lowest under a deciduous maple canopy, whereas loadings under young jack pine and wetland spruce/pine/alder canopies were intermediate. Litterfall generally represented the largest input of THg (86 105 mg ha 1) and MeHg (0.7 0.8 mg ha 1) to the landscape on an annual basis. Using the direct method of estimating dry deposition (thoughfall + litterfall open loadings), we calculated that annual dry deposition of THg and MeHg under forest canopies ranged from 105 to 201 mg ha 1, whereas dry deposition of MeHg ranged from 0.7 to 1.2 mg ha 1. Photoreduction and emission of wet-deposited Hg(II) from canopy foliage were accounted for, resulting in 3 5% (5 6 mg ha 1) higher annual estimates of dry deposition than via the direct method alone. Net THg and MeHg loadings to this remote landscape were lower than at any other previously studied forested site globally. This study shows that THg and MeHg loading can be extremely variable within a heterogeneous boreal landscape and that processes such as Hg photoreduction and emission from foliage should be considered when estimating dry deposition of Hg.« less
Analysis of Nitrogen Loads From Long Island Sound Watersheds, 1988-98
NASA Astrophysics Data System (ADS)
Mullaney, J. R.; Trench, E. C.
2001-05-01
The U.S. Geological Survey (USGS) recently estimated annual nonpoint-source nitrogen loads from watersheds that drain to Long Island Sound. The study, was conducted in cooperation with the Connecticut Department of Environmental Protection, the New York State Department of Environmental Conservation and the U.S. Environmental Protection Agency, to assist these agencies with the issue of low concentrations of dissolved oxygen in Long Island Sound caused by nitrogen enrichment. A regression model was used to determine annual nitrogen loads at 27 streams monitored by the USGS during 1988-98. Estimates of nitrogen loads from municipal wastewater-treatment plants (where applicable) were subtracted from the total nitrogen loads to determine the nonpoint-source nitrogen load for each water-quality monitoring station. The nonpoint-source load information was applied to unmonitored areas by comparing the land-use and land-cover characteristics of monitored areas with unmonitored areas, and selecting basins that were most similar. In extrapolating load estimates to unmonitored areas, regional differences in mean annual runoff between monitored and unmonitored areas also were considered, using flow information from nearby USGS gaging stations. Estimates of nonpoint nitrogen loads from monitored areas with point sources of nitrogen discharge and estimates from unmonitored areas are subject to uncertainty. These estimates could be improved with additional data collection in coastal basins and in basins with a large percentage of urbanized land, measurements of instream transformation or losses of nitrogen, improved reporting of total nitrogen concentrations from municipal wastewater treatment facilities, and tracking of intrabasin and (or) interbasin diversion of water.
Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent
Maupin, M.A.; Ivahnenko, T.
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
1989-12-27
is important to note also that as interdisciplinary studies have gained in -kj ’- popularity, theories incorporating physical and behavi6ral hypothesis...have gained strength due to approaches which focus multiple measures on single factors. Th( study of military sustained performance/operations...related fields of study . These environmental and interdisciplinary areas of study are typically sleep deprivation, work load, exercise physiology
NASA Astrophysics Data System (ADS)
Li, Zhen; Yue, Jianping; Li, Wang; Lu, Dekai; Li, Xiaogen
2017-08-01
The 0.5° × 0.5° gridded hydrological loading from Global Land Surface Discharge Model (LSDM) mass distributions is adopted for 32 GPS sites on the Eurasian plate from January 2010 to January 2014. When the heights of these sites that have been corrected for the effects of non-tidal atmospheric and ocean loading are adjusted by the hydrological loading deformation, more than one third of the root-mean-square (RMS) values of the GPS height variability become larger. After analyzing the results by continuous wavelet transform (CWT) and wavelet transform coherence (WTC), we confirm that hydrological loading primarily contributes to the annual variations in GPS heights. Further, the cross wavelet transform (XWT) is used to investigate the relative phase between the time series of GPS heights and hydrological deformation, and it is indicated that the annual oscillations in the two time series are physically related for some sites; other geophysical effect, GPS systematic errors and hydrological modeling errors could result in the phase asynchrony between GPS and hydrological loading signals for the other sites. Consequently, the phase asynchrony confirms that the annual fluctuations in GPS observations result from a combination of geophysical signals and systematic errors.
Modelling of different measures for improving removal in a stormwater pond.
German, J; Jansons, K; Svensson, G; Karlsson, D; Gustafsson, L G
2005-01-01
The effect of retrofitting an existing pond on removal efficiency and hydraulic performance was modelled using the commercial software Mike21 and compartmental modelling. The Mike21 model had previously been calibrated on the studied pond. Installation of baffles, the addition of culverts under a causeway and removal of an existing island were all studied as possible improvement measures in the pond. The subsequent effect on hydraulic performance and removal of suspended solids was then evaluated. Copper, cadmium, BOD, nitrogen and phosphorus removal were also investigated for that specific improvement measure showing the best results. Outcomes of this study reveal that all measures increase the removal efficiency of suspended solids. The hydraulic efficiency is improved for all cases, except for the case where the island is removed. Compartmental modelling was also used to evaluate hydraulic performance and facilitated a better understanding of the way each of the different measures affected the flow pattern and performance. It was concluded that the installation of baffles is the best of the studied measures resulting in a reduction in the annual load on the receiving lake by approximately 8,000 kg of suspended solids (25% reduction of the annual load), 2 kg of copper (10% reduction of the annual load) and 600 kg of BOD (10% reduction of the annual load).
NASA Astrophysics Data System (ADS)
Domagalski, J. L.; Majewski, M. S.; Alpers, C. N.; Eckley, C.
2015-12-01
Many streams in the western United States (US) are listed as impaired by mercury (Hg), and it is important to understand the magnitudes of the various sources in order to implement management strategies. Atmospheric deposition of Hg and can be a major source of aquatic contamination, along with mine wastes, and other sources. Prior studies in the eastern US have shown that streams deliver less than 50% of the atmospherically deposited Hg on an annual basis. In this study, we compared annual stream Hg loads for 20 watersheds in the western US to measured wet and modeled dry deposition. Land use varies from undisturbed to mixed (agricultural, urban, forested, mining). Data from the Mercury Deposition Network was used to estimate Hg input from precipitation. Dry deposition was not directly measured, but can be modeled using the Community Multi-scale Air Quality model. At an undeveloped watershed in the Rocky Mountains, the ratio of stream Hg load to atmospheric deposition was 0.2 during a year of average precipitation. In contrast, at the Carson River in Nevada, with known Hg contamination from historical silver mining with Hg amalgamation, stream export exceeded atmospheric deposition by a factor of 60, and at a small Sierran watershed with gold mining, the ratio was 70. Larger watersheds with mixed land uses, tend to have lower ratios of stream export relative to atmospheric deposition suggesting storage of Hg. The Sacramento River was the largest watershed for which Hg riverine loads were available with an average ratio of stream Hg export to atmospheric deposition of 0.10. Although Hg was used in upstream historical mining operations, the downstream river Hg load is partially mitigated by reservoirs, which trap sediment. This study represents the first compilation of riverine Hg loads in comparison to atmospheric deposition on a regional scale; the approach may be useful in assessing the relative importance of atmospheric and non-atmospheric Hg sources.
Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.
2017-09-06
Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the suspended-sediment load at the downstream site was about 28,300 short tons greater than the upstream site over the study period.As expected, high-flow events (the top 5 percent of daily mean flows) accounted for the majority of the sediment load; 80 percent at the upstream site and 90 percent at the downstream site. A similar relation between turbidity (the top 5 percent of daily mean turbidity) and high loads was also noted. In general, when instantaneous streamflows at the upstream site exceeded 5,000 cubic feet per second, increased daily loads were computed at the downstream site. During low to moderate flows, estimated suspended-sediment loads were lower at the downstream site when compared to the upstream site, which suggests that sediment deposition may be occurring in the intervening reach during those conditions. During the high-flow events, the estimated suspended-sediment loads were higher at the downstream site; however, it is impossible to say with certainty whether the increase in loading was due to scouring of lake sediment, contributions from the additional source area, model error, or a combination of one or more of these factors. The computed loads for a one-week period (December 24–31, 2015), during which the two largest high-flow events of the study period occurred, were approximately 52 percent of the 2015 annual sediment load (36 percent of 2-year load) at the upstream site and approximately 72 percent of the 2015 annual sediment load (57 percent of 2-year load) at the downstream site. Six bedload samples were collected during three events; two high-flow events and one base-flow event. The contribution of bedload to the total sediment load was determined to be insignificant for sampled flows. In general, streamflows for long-term streamgages in the study area were below normal for the majority of the study period; however, flows during the last 3 months of the study period were above normal, including the extreme events during the last week of the study period.
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Zhang, Qi
2017-04-01
Phosphorus losses from excessive fertilizer application and improper land exploitation were found to be the limiting factor for freshwater quality deterioration and eutrophication. Phosphorus transport from uplands to river is related to hydrological, soil erosion and sediment transport processes, which is impacted by several physiographic and meteorological factors. The objective of this study was to investigate the spatiotemporal variation of phosphorus losses and response to climate change at a typical upstream tributary (Le'An river) of Poyang Lake. To this end, a process-oriented hydrological and nutrient transport model HYPE (Hydrological Predictions for the Environment) was set up for discharge and phosphorus transport simulation at Le'An catchment. Parameter ESTimator (PEST) was combined with HYPE model for parameter sensitivity analysis and optimisation. In runoff modelling, potential evapotranspiration rate of the dominant land use (forest) is most sensitive; parameters of surface runoff rate and percolation capacity for the red soil are also very sensitive. In phosphorus transport modelling, the exponent of equation for soil erosion processes induced by surface runoff is most sensitive, coefficient of adsorption/desorption processes for red soil is also very sensitive. Flow dynamics and water balance were simulated well at all sites for the whole period (1978-1986) with NSE≥0.80 and PBIAS≤14.53%. The optimized hydrological parameter set were transferable for the independent period (2009-2010) with NSE≥0.90 and highest PBIAS of -7.44% in stream flow simulation. Seasonal dynamics and balance of stream water TP (Total Phosphorus ) concentrations were captured satisfactorily indicated by NSE≥0.53 and highest PBIAS of 16.67%. In annual scale, most phosphorus is transported via surface runoff during heavy storm flow events, which may account for about 70% of annual TP loads. Based on future climate change analysis under three different emission scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), there is no considerable change in average annual rainfall amount in 2020-2035 while increasing occurrence frequency and intensity of extreme rainfall events were predicted. The validated HYPE model was run on the three emission scenarios. Overall increase of TP loads was found in future with the largest increase of annual TP loads under the high emission scenario (RCP 8.5). The outcomes of this study (i) verified the transferability of HYPE model at humid subtropical and heterogeneous catchment; (ii) revealed the sensitive hydrological and phosphorus transport processes and relevant parameters; (iii) implied more TP losses in future in response to increasing extreme rainfall events.
Military Free Fall Scheduling And Manifest Optimization Model
2016-12-01
engines running waiting for the next student load. The annual blade hour cost, which consists of fuel, maintenance, and personnel, is $5.6M for FY-16...tarmac with engines running waiting for the next student load (J. Enke, personal communication, 2016). The annual blade hour cost, which consists of...33 Scenario 2 Nonstandard Run #1 C-27 Two Passes per Lift .......................34 Table 9. xii THIS PAGE INTENTIONALLY LEFT BLANK xiii
Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.
2017-02-21
Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.
Model-centric distribution automation: Capacity, reliability, and efficiency
Onen, Ahmet; Jung, Jaesung; Dilek, Murat; ...
2016-02-26
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
Model-centric distribution automation: Capacity, reliability, and efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onen, Ahmet; Jung, Jaesung; Dilek, Murat
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
Foster, G.D.; Miller, C.V.; Huff, T.B.; Roberts, E.
2003-01-01
Concentrations of current-use pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine (OC) insecticides were determined above the reach of tide in the Chesterville Branch and Nanticoke River on the eastern shore of Chesapeake Bay during base-flow and storm-flow hydrologic regimes to evaluate mass transport to Chesapeake Bay. The two rivers monitored showed relatively high concentrations of atrazine, simazine, alachlor, and metolachlor in comparison to previously investigated western shore tributaries, and reflected the predominant agricultural land use in the eastern shore watersheds. The four current use pesticides showed the greatest seasonal contribution to annual loadings to tidal waters of Chesapeake Bay from the two rivers, and the relative order of annual loadings for the other contaminant classes was PAHs > PCBs > OC insecticides. Annual loadings normalized to the landscape areas of selected Chesapeake Bay watersheds showed correlations to identifiable source areas, with the highest pesticide yields (g/km2/yr) occurring in eastern shore agricultural landscapes, and the highest PAH yields derived from urban regions.
NASA Astrophysics Data System (ADS)
Johnson, Christopher W.; Fu, Yuning; Bürgmann, Roland
2017-12-01
Stresses in the lithosphere arise from multiple natural loading sources that include both surface and body forces. The largest surface loads include near-surface water storage, snow and ice, atmosphere pressure, ocean loading, and temperature changes. The solid Earth also deforms from celestial body interactions and variations in Earth's rotation. We model the seasonal stress changes in California from 2006 through 2014 for seven different loading sources with annual periods to produce an aggregate stressing history for faults in the study area. Our modeling shows that the annual water loading, atmosphere, temperature, and Earth pole tides are the largest loading sources and should each be evaluated to fully describe seasonal stress changes. In California we find that the hydrological loads are the largest source of seasonal stresses. We explore the seasonal stresses with respect to the background principal stress orientation constrained with regional focal mechanisms and analyze the modulation of seismicity. Our results do not suggest a resolvable seasonal variation for the ambient stress orientation in the shallow crust. When projecting the seasonal stresses into the background stress orientation we find that the timing of microseismicity modestly increases from an 8 kPa seasonal mean-normal-stress perturbation. The results suggest that faults in California are optimally oriented with the background stress field and respond to subsurface pressure changes, possibly due to processes we have not considered in this study. At any time a population of faults are near failure as evident from earthquakes triggered by these slight seasonal stress perturbations.
NASA Astrophysics Data System (ADS)
Gruszczynska, M.; Rosat, S.; Klos, A.; Bogusz, J.
2017-12-01
In this study, Singular Spectrum Analysis (SSA) along with its multivariate extension MSSA (Multichannel SSA) were used to estimate long-term trend and gravimetric factor at the Chandler wobble frequency from superconducting gravimeter (SG) records. We have used data from seven stations located worldwide and contributing to the International Geodynamics and Earth Tides Service (IGETS). The timespan ranged from 15 to 19 years. Before applying SSA and MSSA, we had removed local tides, atmospheric (ECMWF data), hydrological (MERRA2 products) loadings and non-tidal ocean loading (ECCO2 products) effects. In the first part of analysis, we used the SSA approach in order to estimate the long-term trends from SG observations. We use the technique based on the classical Karhunen-Loève spectral decomposition of time series into long-term trend, oscillations and noise. In the second part, we present the determination of common time-varying pole tide (annual and Chandler wobble) to estimate gravimetric factor from SG time series using the MSSA approach. The presented method takes advantage over traditional methods like Least Squares Estimation by determining common modes of variability which reflect common geophysical field. We adopted a 6-year lag-window as the optimal length to extract common seasonal signals and the Chandler components of the Earth polar motion. The signals characterized by annual and Chandler wobble account for approximately 62% of the total variance of residual SG data. Then, we estimated the amplitude factors and phase lags of Chandler wobble with respect to the IERS (International Earth Rotation and Reference Systems Service) polar motion observations. The resulting gravimetric factors at the Chandler Wobble period are finally compared with previously estimates. A robust estimate of the gravimetric Earth response to the Chandlerian component of the polar motion is required to better constrain the mantle anelasticity at this frequency and hence the attenuation models of the Earth interior.
The energy performance of thermochromic glazing
NASA Astrophysics Data System (ADS)
Diamantouros, Pavlos
This study investigated the energy performance of thermochromic glazing. It was done by simulating the model of a small building in a highly advanced computer program (EnergyPlus - U.S. DOE). The physical attributes of the thermochromic samples examined came from actual laboratory samples fabricated in UCL's Department of Chemistry (Prof I. P. Parkin). It was found that they can substantially reduce cooling loads while requiring the same heating loads as a high end low-e double glazing. The reductions in annual cooling energy required were in the 20%-40% range depending on sample, location and building layout. A series of sensitivity analyses showed the importance of switching temperature and emissivity factor in the performance of the glazing. Finally an ideal pane was designed to explore the limits this technology has to offer.
Huntington, Jena M.; Savard, Charles S.
2015-09-30
During this study, total annual sediment loads ranged from 355 tons per year in 2010 to 1,768 tons per year in 2011 and were significantly lower than the previous study (water years 2004–07). Bedload represented between 29 and 38 percent of total sediment load in water years 2010–12, and between 72 and 90 percent of the total sediment load in water years 2004–07, which indicates a decrease in bedload between study periods. Annual suspended-sediment loads in water years 2010–12 indicated no significant change from water years 2004–07. Mean daily discharge was significantly lower in water years 2010–12 than in waters years 2004–07 and may be the reason for the decrease in bedload that resulted in a lower total sediment load.
Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong
2016-01-01
On the basis of monthly runoff series obtained in 1950–2013 and annual sediment load measured in 1956–-2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003–2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities. PMID:27479591
Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong
2016-01-01
On the basis of monthly runoff series obtained in 1950-2013 and annual sediment load measured in 1956--2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003-2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities.
Ding, Ning; Chen, Qian; Zhu, Zhanling; Peng, Ling; Ge, Shunfeng; Jiang, Yuanmao
2017-10-26
In order to define the effects of fruit crop load on the distribution and utilization of carbon and nitrogen in dwarf apple trees, we conducted three crop load levels (High-crop load, 6 fruits per trunk cross-sectional area (cm 2 , TCA)), Medium-crop load (4 fruits cm -2 TCA), Low-crop load (2 fruits cm -2 TCA)) in 2014 and 2015. The results indicated that the 15 N derived from fertilizer (Ndff) values of fruits decreased with the reduction of crop load, but the Ndff values of annual branches, leaves and roots increased. The plant 15 N-urea utilization rates on Medium and Low-crop load were 1.12-1.35 times higher than the High-crop load. With the reduction of crop load, the distribution rate of 13 C and 15 N in fruits was gradually reduced, but in contrast, the distribution of 13 C and 15 N gradually increased in annual branches, leaves and roots. Compared with High-crop load, the Medium and Low-crop load significantly improved fruit quality p < 0.05. Hence, controlling fruit load effectively regulated the distribution of carbon and nitrogen in plants, improved the nitrogen utilization rate and fruit quality. The appropriate crop load level for mature M.26 interstocks apple orchards was deemed to be 4.0 fruits cm -2 TCA.
NASA Technical Reports Server (NTRS)
Ginoux, P.; Prospero, J.; Torres, O.; Chin, M.
2002-01-01
Global distribution of aeolian dust is simulated from 1981 to 1996 with the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. The results are assessed with in-situ measurements and the Total Ozone Mapping Spectrometer (TOMS) aerosol products. The annual budget over the different continents and oceans are analyzed. It is found that there is a maximum of 25% difference of global annual emission from the minimum in 1996 to the maximum in 1988. There is a downward trend of dust emission over Africa and East Asia, of 6 and 2 Tg/yr, respectively. The inter-annual variability of dust distribution is analyzed over the North Atlantic and Africa. It is found that in winter most of the North Atlantic and Africa dust loading is correlated with the North Atlantic Oscillation. The GOCART model indicates that a controlling factor of such correlation can be attributed to dust emission from the Sahel. The Bodele depression is the major dust source in winter and its inter-annual variability is highly correlated with the NAO. However, it is not possible to conclude without further analysis that the North Atlantic Oscillation is forcing the inter-annual variability of dust emission and in-turn dust concentration over the North Atlantic.
NASA Astrophysics Data System (ADS)
Jawitz, J. W.
2011-12-01
What are the relative contributions of climatic variability, land management, and local geomorphology in determining the temporal dynamics of streamflow and the export of solutes from watersheds to receiving water bodies? A simple analytical framework is introduced for characterizing the temporal inequality of stream discharge and solute export from catchments using Lorenz diagrams and the associated Gini coefficient. These descriptors are used to illustrate a broad range of observed flow variability with a synthesis of multi-decadal flow data from 22 rivers in Florida. The analytical framework is extended to comprehensively link variability in flows and loads to climatically-driven inputs in terms of these inequality-based metrics. Further, based on a synthesis of data from the basins of the Baltic Sea, the Mississippi River, the Kissimmee River and other tributaries to Lake Okeechobee, FL, it is shown that inter-annual variations in exported loads for geogenic constituents, and for total N and total P, are dominantly controlled by discharge. Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. Multi-decadal phosphorus load data from 4 of the primary tributaries to Lake Okeechobee and sodium and nitrate load data from 9 of the Hubbard Brook, NH long-term study site catchments are used to examine the relation between inequality of climatic inputs, river flows and catchment loads. The intra-annual loads to Lake Okeechobee are shown to be highly unequal, such that 90% of annual load is delivered in as little as 15% of the time. Analytic expressions are developed for measures of inequality in terms of parameters of the lognormal distribution under general conditions that include intermittency. In cases where climatic variability is high compared to that of concentrations (chemostatic conditions), such as for P in the Lake Okeechobee basin and Na in Hubbard Brook, the temporal inequality of rainfall and flow are strong surrogates for load inequality. However, in cases where variability of concentrations is high compared to that of flows (chemodynamic conditions), such as for nitrate in the Hubbard Brook catchments, load inequality is greater than rainfall or flow inequality. The measured degree of correspondence between climatic, flow, and load inequality for these data sets are shown to be well described using the general inequality framework introduced here. Important implications are that (1) variations in hydro-climatic or anthropogenic forcing can be used to robustly predict inter-annual variations in flows and loads, (2) water quality problems in receiving inland and coastal waters may persist until the accumulated storages of nutrients have been substantially depleted, and (3) remedial measures designed to intercept or capture exported flows and loads must be designed with consideration of the intra-annual inequality.
Li, Yuyuan; Jiao, Junxia; Wang, Yi; Yang, Wen; Meng, Cen; Li, Baozhen; Li, Yong; Wu, Jinshui
2015-02-01
Increasingly, the characteristics of nitrogen (N) loading have been recognized to be critical for the maintenance and restoration of water quality in agricultural watersheds, in response to the spread of water eutrophication. This paper estimates N loading and investigates its influencing factors in ten small watersheds variously dominated by forest and agricultural land use types in the subtropics of China, over an observation period of 23-29 months. The results indicate that the average concentrations of total nitrogen (TN), NH4 (+)-N, and NO3 (-)-N were 0.83, 0.07, and 0.46 mg N L(-1) in the forest watersheds and 1.49-5.16, 0.21-3.23, and 0.99-1.30 mg N L(-1) in the agricultural watersheds, respectively. Such concentrations exceed the national criteria for nutrient pollution in surface waters considerably, suggesting severe stream pollution in the studied agricultural watersheds. The average annual TN loadings (ANL) were estimated to be 1,640.8 kg N km(-2) year(-1) in the agricultural watersheds, 63.3-86.1 % of which was composed of dissolved inorganic N (DIN; comprising NO3 (-)-N and NH4 (+)-N). The watershed with intensive livestock production (i.e., the maximum livestock density of 2.66 animal units (AU) ha(-1)) exhibited the highest ANL (2,928.7 kg N km(-2) year(-1)) related to N loss with effluent discharge. The results of correlation and principle component analysis suggest that livestock production was the dominant influencing factor for the TN and NH4 (+)-N loadings and that the percentages of cropland in watersheds can significantly increase the NO3 (-)-N loading in agricultural watersheds. Therefore, to restore and maintain water quality, animal production regulations and more careful planning of land use are necessary in the agricultural watersheds of subtropical China.
Dornblaser, Mark M.; Striegl, Robert G.
2009-01-01
Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001–2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a−1 and 387 Gg a−1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer‐autumn, with very little export in winter. On average, a minimum of 11 Mt a−1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.
NASA Astrophysics Data System (ADS)
Dornblaser, Mark M.; Striegl, Robert G.
2009-06-01
Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001-2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a-1 and 387 Gg a-1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer-autumn, with very little export in winter. On average, a minimum of 11 Mt a-1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.
Internal loading of phosphorus in western Lake Erie
Matisoff, Gerald; Kaltenberg, Eliza M.; Steely, Rebecca L.; Hummel, Stephanie K.; Seo, Jinyu; Gibbons, Kenneth J.; Bridgeman, Thomas B.; Seo, Youngwoo; Behbahani, Mohsen; James, William F.; Johnson, Laura; Doan, Phuong; Dittrich, Maria; Evans, Mary Anne; Chaffin, Justin D.
2016-01-01
This study applied eight techniques to obtain estimates of the diffusive flux of phosphorus (P) from bottom sediments throughout the western basin of Lake Erie. The flux was quantified from both aerobic and anaerobic incubations of whole cores; by monitoring the water encapsulated in bottom chambers; from pore water concentration profiles measured with a phosphate microelectrode, a diffusive equilibrium in thin films (DET) hydrogel, and expressed pore waters; and from mass balance and biogeochemical diagenetic models. Fluxes under aerobic conditions at summertime temperatures averaged 1.35 mg P/m2/day and displayed spatial variability on scales as small as a centimeter. Using two different temperature correction factors, the flux was adjusted to mean annual temperature yielding average annual fluxes of 0.43–0.91 mg P/m2/day and a western basin-wide total of 378–808 Mg P/year as the diffusive flux from sediments. This is 3–7% of the 11,000 Mg P/year International Joint Commission (IJC) target load for phosphorus delivery to Lake Erie from external sources. Using these average aerobic fluxes, the sediment contributes 3.0–6.3 μg P/L as a background internal contribution that represents 20–42% of the IJC Target Concentration of 15 μg P/L for the western basin. The implication is that this internal diffusive recycling of P is unlikely to trigger cyanobacterial blooms by itself but is sufficiently large to cause blooms when combined with external loads. This background flux may be also responsible for delayed response of the lake to any decrease in the external loading.
Life cycle contributions of copper from vessel painting and maintenance activities
Earley, Patrick J.; Swope, Brandon L.; Barbeau, Katherine; Bundy, Randelle; McDonald, Janessa A.; Rivera-Duarte, Ignacio
2013-01-01
Copper-based epoxy and ablative antifouling painted panels were exposed in natural seawater to evaluate environmental loading parameters. In situ loading factors including initial exposure, passive leaching, and surface refreshment were measured utilizing two protocols developed by the US Navy: the dome method and the in-water hull cleaning sampling method. Cleaning techniques investigated included a soft-pile carpet and a medium duty 3M™ pad for fouling removal. Results show that the passive leach rates of copper peaked three days after both initial deployment and cleaning events (CEs), followed by a rapid decrease over about 15 days and a slow approach to asymptotic levels on approximately day 30. Additionally, copper was more bioavailable during a CE in comparison to the passive leaching that immediately followed. A paint life cycle model quantifying annual copper loading estimates for each paint and cleaning method based on a three-year cycle of painting, episodic cleaning, and passive leaching is presented. PMID:24199998
CONTROL TECHNOLOGY EVALUATION FOR GASOLINE LOADING OF BARGES
The report gives results of a study to determine the feasibility, safety, and cost of methods to control the emission of hydrocarbon vapor during the loading of gasoline barges. Approximately 4 lb of hydrocarbons are emitted per 1000 gal. of gasoline loaded; annually about 1 mill...
LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi
2015-01-01
In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.
Developing a passive load reduction blade for the DTU 10 MW reference turbine
NASA Astrophysics Data System (ADS)
de Vaal, J. B.; Nygaard, T. A.; Stenbro, R.
2016-09-01
This paper presents the development of a passive load reduction blade for the DTU 10 MW reference wind turbine, using the aero-hydro-servo-elastic analysis tool 3DFloat. Passive load reduction is achieved by introducing sweep to the path of the blade elastic axis, so that out-of-plane bending deflections result in load alleviating torsional deformations of the blade. Swept blades are designed to yield similar annual energy production as a rotor with a reference straight blade. This is achieved by modifying the aerodynamic twist distribution for swept blades based on non-linear blade deflection under steady state loads. The passive load reduction capability of a blade design is evaluated by running a selection of fatigue- and extreme load cases with the analysis tool 3DFloat and determining equivalent fatigue loads, fatigue damage and extreme loads at the blade root and tower base. The influence of sweep on the flutter speed of a blade design is also investigated. A large number of blade designs are evaluated by varying the parameters defining the sweep path of a blade's elastic axis. Results show that a moderate amount of sweep can effectively reduce equivalent fatigue damage and extreme loads, without significantly reducing the flutter speed, or compromising annual energy production.
NREL: International Activities - Afghanistan Resource Maps
facilities, load centers, terrain conditions, and land use. The high-resolution (1-km) annual wind power maps . The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather -km Resolution Annual Maps (Direct) Low-Res (JPG 104 KB) | High-Res (ZIP 330 KB) 40-km Resolution
Willoughby, T.C.
1995-01-01
Northwestern Indiana is one of the most heavily industrialized and largest steel-producing areas in the United States. High temperature processes, such as fossil-fuel combustion and steel production, release contaminants to the atmosphere that may result in wet deposition being a major contributor to major ion and trace-metal loadings in north- western Indiana and Lake Michigan. A wet-deposition collection site was established at the Gary (Indiana) Regional Airport in June 1992 to monitor the chemical quality of wet deposition. Weekly samples were collected at this site from June 30, 1992, through August 31, 1993, and were analyzed for pH, specific conductance, and selected major ions and trace metals. Forty-eight samples collected during the study were of sufficient volumes for some of the determinations to be performed. Median constituent concentrations were determined for samples collected during warm weather and cold weather (November 1 through March 31). Median concentrations were substituted for missing values from samples with insufficient volumes for analysis of all the constituents of interest. Constituent concentrations were converted to weekly loadings. Two values were calculated to provide a range for the weekly loading for samples with measured concentrations of constituents less than the method reporting limit. The minimum weekly loading was computed by substituting zero for the constituent concentration; the maximum weekly loading was computed by substituting the method reporting limit for the concentration. If all of the sample concentrations measured were greater than the method reporting limit, an annual loading value was computed. The annual loadings could be used to assist in estimating the contribution of wet deposition to the total annual constituent loadings in the Grand Calumet River in northwestern Indiana.
Hoard, Christopher J.; Fogarty, Lisa R.; Duris, Joseph W.
2018-02-21
In 1998, the Michigan Department of Environmental Quality and the U.S. Geological Survey began the Water Chemistry Monitoring Program for select streams in the State of Michigan. Objectives of this program were to provide assistance with (1) statewide water-quality assessments, (2) the National Pollutant Discharge Elimination System permitting process, and (3) water-resource management decisions. As part of this program, water-quality data collected from 1998 to 2013 were analyzed to identify potential trends for select constituents that were sampled. Sixteen water-quality constituents were analyzed at 32 stations throughout Michigan. Trend analysis on the various water-quality data was done using either the uncensored Seasonal Kendall test or through Tobit regression. In total, 79 trends were detected in the constituents analyzed for 32 river stations sampled for the study period—53 downward trends and 26 upward trends were detected. The most prevalent trend detected throughout the State was for ammonia, with 11 downward trends and 1 upward trend estimated.In addition to trends, constituent loads were estimated for 31 stations from 2002 to 2013 for stations that were sampled 12 times per year. Loads were computed using the Autobeale load computation program, which used the Beale ratio estimator approach to estimate an annual load. Constituent loads were the largest in large watershed streams with the highest annual flows such as the Saginaw and Grand Rivers. Likewise, constituent loads were the smallest in smaller tributaries that were sampled as part of this program such as the Boardman and Thunder Bay Rivers.
Phosphorus Loading Trends in Lake Michigan: A Historic Surprise
Total phosphorus (TP) loads to the Great Lakes have been of interest to researchers since the 1960s. The International Joint Commission (IJC) was the primary source of Great Lakes TP loading data during the 1970s and 1980s when the IJC released annual reports detailing Great Lake...
Donato, Mary M.
2006-01-01
Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow differences in the two regression models, 1999-2001 and 1999-2004. Flow-weighted concentrations (FWCs) calculated from the estimated loads for 1999-2004 were examined to aid interpretation of metal load estimates, which were influenced by large spatial and temporal variations in streamflow. FWCs of total cadmium ranged from 0.04 micrograms per liter (?g/L) at Enaville to 14 ?g/L at Ninemile Creek. Total lead FWCs were lowest at Long Lake (1.3 ?g/L) and highest at Ninemile Creek (120 ?g/L). Elevated total lead FWCs at Harrison confirmed that the high total lead loads at this station were not simply due to higher streamflow. Conversely, relatively low total lead loads combined with high total lead FWCs at Ninemile and Canyon Creeks reflected low streamflow but high concentrations of total lead. Very low total lead FWCs (1.3 to 2.7 ?g/L) at the stations downstream of Coeur d'Alene Lake are a result both of deposition of lead-laden sediments in the lake and dilution by additional streamflow. Total zinc FWCs also demonstrated the effect of streamflow on load calculations, and highlighted source areas for zinc in the basin. Total zinc FWCs at Canyon and Ninemile Creeks, 1,600 ?g/L and 2,200 ?g/L, respectively, were by far the highest in the basin but contributed among the lowest total zinc loads due to their relatively low streamflow. Total zinc FWCs ranged from 38 to 67 ?g/L at stations downstream of Coeur d'Alene Lake, but total zinc load estimates at these stations were relatively high because of high mean streamflow compared to other stations in the basin. Long-term regression models for 1991 to 2003 or 2004 were developed and annual trace-metal loads and FWCs were estimated for Pinehurst, Enaville, Harrison, and Post Falls to better understand the variability of metal loading with time. Long-term load estimates are similar to the results for 1999-2004 in terms of spatial distribution of metal loads throughout the basin. LOADEST results for 1991-2004 indicated that statistically significant downward temporal trends for dissolved and total cadmium, dissolved zinc, and total lead were occurring at Pinehurst, Enaville, Harrison, and Post Falls. Additionally, data for Enaville and Post Falls showed significant downward trends for dissolved lead and total zinc loads; Harrison total zinc loads also decreased with time. The Mann-Kendall trend test results agreed with the LOADEST trend results in most cases, but gave contradictory results for total zinc at Pinehurst and at Post Falls. Long- and short-term load and flow-weighted concentration estimates yielded valuable information about metal storage and transport processes, and demonstrated that water quality data are a great aid in understanding these processes.
Malcolm, R.L.; Durum, W.H.
1976-01-01
The organic carbon load during 1969-70 of each of the six rivers in this study is substantial. The 3.4-billion-kilogram (3.7-million-ton) and 47-million-kilogram (52-thousandton) annual organic carbon loads of the Mississippi River and the Brazos River (Tex.), respectively, were approximately equally distributed between dissolved and suspended phases, whereas the 725-million-kilogram (79.8-million-ton) organic load of the Missouri River was primarily in the suspended phase. The major portion of the 6.4-million-kilogram (7.3 thousand-ton) and the 19-million-kilogram (21-thousand-ton) organic carbon loads of the Sopchoppy River (Fla.) and the Neuse River (N.C.), respectively, was in the dissolved phase. DOC (dissolved organic carbon) concentrations in most rivers were usually less than 8 milligrams per litre. SOC (suspended organic carbon) concentrations fluctuated markedly with discharge, ranging between 1 and 14 percent, by weight, in sediment of most rivers. DOC concentrations were found to be independent of discharge, whereas SOC and SIC (suspended inorganic carbon) concentrations were positively correlated with discharge. Seasonal fluctuations in DOC and SOC were exhibited by the Missouri, Neuse, Ohio, and Brazos Rivers, but both SOC and DOC concentrations were relatively constant throughout the year in the Mississippi and Sopchoppy Rivers. The carbon-nitrogen ratio in the sediment phase of all river waters averaged less than 8 1 as compared with 12:1 or greater for most soils. This high nitrogen content shows a nitrogen enrichment of the stream sediment over that in adjacent soils, which suggests that different decomposition and humification processes are operating in streams than in the soils. The abundance of organic material in the dissolved and suspended phase of all river waters in this study indicate a large capacity factor for various types of organic reactivity within all streams and the quantitative importance of organic constituents in relation to the water quality of rivers and streams.
Deacon, Jeffrey R.; Smith, Thor E.; Johnston, Craig M.; Moore, Richard B.; Blake, Laura J.; Weidman, Rebecca M.
2006-01-01
A study of total nitrogen concentrations and loads was conducted from December 2002 to September 2005 at 13 river sites in the upper Connecticut River Basin. Ten sites were selected to represent contributions of nitrogen from forested, agricultural, and urban land. Three sites were distributed spatially on the main stem of the Connecticut River to assess the cumulative total nitrogen loads. To further improve the understanding of the sources and concentrations and loads of total nitrogen in the upper Connecticut River Basin, ambient surface water-quality sampling was supplemented with sampling of effluent from 19 municipal and paper mill wastewater-treatment facilities. Mean concentrations of total nitrogen ranged from 0.19 to 2.8 milligrams per liter (mg/L) at river sampling sites. Instantaneous mean loads of total nitrogen ranged from 162 to 58,300 pounds per day (lb/d). Estimated mean annual loads of total nitrogen ranged from 49,100 to 21.6 million pounds per year (lb/yr) with about 30 to 55 percent of the loads being transported during the spring. The estimated mean annual yields of total nitrogen ranged from 1,190 to 7,300 pounds per square mile per year (lb/mi2)/yr. Mean concentrations of total nitrogen ranged from 4.4 to 30 mg/L at wastewater-treatment sampling sites. Instantaneous mean loads of total nitrogen from municipal wastewater-treatment facilities ranged from 36 to 1,780 lb/d. Instantaneous mean loads of total nitrogen from paper mill wastewater-treatment facilities ranged from 96 to 160 lb/d. The median concentration of total nitrogen was 0.24 mg/L at forested sites, 0.48 mg/L at agricultural sites, 0.54 mg/L at urban sites, 0.48 mg/L at main-stem sites, and 14 mg/L at wastewater-treatment sites. Concentrations of total nitrogen at forested sites were significantly less than at all other site types (p0.05) but were significantly greater (p<0.05) than at forested sites and significantly less than concentrations at wastewater-treatment sites (p<0.05). Total nitrogen concentrations at wastewater-treatment sites were significantly different from all other site types (p<0.05). Annual yields of total nitrogen ranged from 732 to 1,920 (lb/mi2)/yr at forested sites; 1,550 to 2,980 (lb/mi2)/yr at agricultural sites; 1,280 to 1,860 (lb/mi2)/yr at urban sites that were not directly affected by wastewater effluent; 7,090 to 7,770 (lb/mi2)/yr at an urban site directly affected by wastewater effluent; and 1,300 to 2,390 (lb/mi2)/yr at main-stem sites. In this study, the mean annual load and yield of total nitrogen at the Connecticut River at Wells River, VT, was estimated at 4.47 million lb/yr and 1,690 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen at the Connecticut River at North Walpole, NH, was estimated at 9.60 million lb/yr and 1,750 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen leaving the upper Connecticut River Basin, as estimated at the Connecticut River at Thompsonville, CT, was 21.6 million lb/yr and 2,230 (lb/mi2)/yr, respectively.
Annual variability of PAH concentrations in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Dynamics of organic contaminant transport in a large river system is influenced by annual variability in organic contaminant concentrations. Surface runoff and groundwater input control the flow of river waters. They are also the two major inputs of contaminants to river waters. The annual variability of contaminant concentrations in rivers may or may not represent similar trends to the flow changes of river waters. The purpose of the research is to define the annual variability in concentrations of polycyclic aromatic hydrocarbons (PAH) in riverine environment. To accomplish this, from March 1992 to March 1995 samples of Potomac River water weremore » collected monthly or bimonthly downstream of the Chesapeake Bay fall line (Chain Bridge) during base flow and main storm flow hydrologic conditions. Concentrations of selected PAHs were measured in the dissolved phase and the particulate phase via GC/MS. The study of the annual variability of PAH concentrations will be performed through comparisons of PAH concentrations seasonally, annually, and through study of PAH concentration river discharge dependency and rainfall dependency. For selected PAHs monthly and annual loadings will be estimated based on their measured concentrations and average daily river discharge. The monthly loadings of selected PAHs will be compared by seasons and annually.« less
He, Zhi Chao; Huang, Shuo; Guo, Qing Hai; Xiao, Li Shan; Yang, De Wei; Wang, Ying; Yang, Yi Fu
2016-08-01
Urban sprawl has impacted increasingly on water environment quality in watersheds. Based on water environmental response, the simulation and prediction of expanding threshold of urban building land could provide an alternative reference for urban construction planning. Taking three watersheds (i.e., Yundang Lake at complete urbanization phase, Maluan Bay at peri-urbanization phase and Xinglin Bay at early urbanization phase) with 2009-2012 observation data as example, we calculated the upper limit of TN and TP capacity in three watersheds and identified the threshold value of urban building land in watersheds using the regional nutrient management (ReNuMa) model, and also predicted the water environmental effects associated with the changes of urban landscape pattern. Results indicated that the upper limit value of TN was 12900, 42800 and 43120 kg, while that of TP was 340, 420 and 450 kg for Yundang, Maluan and Xinglin watershed, respectively. In reality, the environment capacity of pollutants in Yundang Lake was not yet satura-ted, and annual pollutant loads in Maluan Bay and Xinglin Bay were close to the upper limit. How-ever, an obvious upward trend of annual TN and TP loads was observed in Xinglin Bay. The annual pollutant load was not beyond the annual upper limit in three watersheds under Scenario 1, while performed oppositely under Scenario 3. Under Scenario 2, the annual pollutant load in Yundang Lake was under-saturation, and the TN and TP in Maluan Bay were over their limits. The area thresholds of urban building land were 1320, 5600 and 4750 hm 2 in Yundang Lake, Maluan Bay and Xinglin Bay, respectively. This study could benefit the regulation on urban landscape planning.
NASA Astrophysics Data System (ADS)
Mitsui, Yuta; Yamada, Kyohei
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) has monitored global gravity changes since 2002. Gravity changes are considered to represent hydrological water mass movements around the surface of the globe, although fault slip of a large earthquake also causes perturbation of gravity. Since surface water movements are expected to affect earthquake occurrences via elastic surface load or pore-fluid pressure increase, correlation between gravity changes and occurrences of small (not large) earthquakes may reflect the effects of surface water movements. In the present study, we focus on earthquakes smaller than magnitude 7.5 and examine the relation between annual gravity changes and earthquake occurrences at worldwide subduction zones. First, we extract amplitudes of annual gravity changes from GRACE data for land. Next, we estimate background seismicity rates in the epidemic-type aftershock sequence model from shallow seismicity data having magnitudes of over 4.5. Then, we perform correlation analysis of the amplitudes of the annual gravity changes and the shallow background seismicity rates, excluding source areas of large earthquakes, and find moderate positive correlation. It implies that annual water movements can activate shallow earthquakes, although the surface load elastostatic stress changes are on the order of or below 1 kPa, as small as a regional case in a previous study. We speculate that periodic stress perturbation is amplified through nonlinear responses of frictional faults.[Figure not available: see fulltext.
Testing the Wisconsin Phosphorus Index with year-round, field-scale runoff monitoring.
Good, Laura W; Vadas, Peter; Panuska, John C; Bonilla, Carlos A; Jokela, William E
2012-01-01
The Wisconsin Phosphorus Index (WPI) is one of several P indices in the United States that use equations to describe actual P loss processes. Although for nutrient management planning the WPI is reported as a dimensionless whole number, it is calculated as average annual dissolved P (DP) and particulate P (PP) mass delivered per unit area. The WPI calculations use soil P concentration, applied manure and fertilizer P, and estimates of average annual erosion and average annual runoff. We compared WPI estimated P losses to annual P loads measured in surface runoff from 86 field-years on crop fields and pastures. As the erosion and runoff generated by the weather in the monitoring years varied substantially from the average annual estimates used in the WPI, the WPI and measured loads were not well correlated. However, when measured runoff and erosion were used in the WPI field loss calculations, the WPI accurately estimated annual total P loads with a Nash-Sutcliffe Model Efficiency (NSE) of 0.87. The DP loss estimates were not as close to measured values (NSE = 0.40) as the PP loss estimates (NSE = 0.89). Some errors in estimating DP losses may be unavoidable due to uncertainties in estimating on-farm manure P application rates. The WPI is sensitive to field management that affects its erosion and runoff estimates. Provided that the WPI methods for estimating average annual erosion and runoff are accurately reflecting the effects of management, the WPI is an accurate field-level assessment tool for managing runoff P losses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12
Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald
2015-01-01
Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.
Spatial characterization of acid rain stress in Canadian Shield Lakes
NASA Technical Reports Server (NTRS)
Tanis, Fred J.
1987-01-01
The acidification of lake waters from airborne pollution is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern U.S. and on the Canadian Shield is though to be enormous. How seasonal changes in lake transparency are related to annual acidic load was examined. The relationship between variations in lake acidification and ecophysical units was also examined. The utility of Thematic Mapper based observations to measure seasonal changes in the optical transparency in acid lakes was investigated. The potential for this optical response is related to a number of local ecophysical factors with bedrock geology being, perhaps, the most important. Other factors include sulfate deposition, vegetative cover, and terrain drainage/relief. The area of southern Ontario contains a wide variety of geologies from the most acid rain sensitive granite quartzite types to the least sensitive limestone dolomite sediments. Annual sulfate deposition ranges from 1.0 to 4.0 grams/sq m.
Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08
Bragg, Heather M.; Uhrich, Mark A.
2010-01-01
Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.
Modeling sediment supply of the Congo watershed since the last 23 ka.
NASA Astrophysics Data System (ADS)
Molliex, Stéphane; Kettner, Albert J.; Laurent, Dimitri; Droz, Laurence; Marsset, Tania; Laraque, Alain; Rabineau, Marina
2017-04-01
The Congo River is the world's second river in term of drainage area (3.7 millions of km2) and water discharge (42,000 m3.s-1). Located in equatorial Africa, the basin extends over the two hemispheres, leading to an annual homogeneous repartition of climatic parameters and modest variation in intra-annual discharge. Monitored for decades, a large dataset is available for both the hydrology and sediment load for the Congo system. Moreover, the Quaternary Congo turbidite system geometry has been widely studied and an abundance of paleo-environmental parameters have been inferred from chemical proxies analyzed from offshore cores. These numerous data, both onshore and offshore, allow for accurate calibration of numeric modeling and for efficient comparison between observed and simulated data. This study aims (i) to quantify the evolution of sediment supply leaving the Congo watershed during the last 23 ka; (ii) to decipher the forcing parameters controlling the sediment supply over glacial/interglacial stages. HydroTrend is a model that simulates water discharge and sediment load leaving a hydrologic system. It is based on morphologic, climatic, hydrologic, lithologic, land cover and anthropogenic factors. After calibrating the present-day discharge and sediment load, we simulated discharge and sediment supply over 23 ka, integrating the changes in environmental conditions during this period. Results show that present-day simulations fit the observed data well if a significant part of sediments is being trapped by the catchment, in the floodplain. The long-term simulations show that the changes in climatic conditions (temperature and precipitations) between glacial and interglacial stages only account for a maximum variation of about 20 % of the sediment supply. The resulting land cover changes are most likely a more significant factor controlling the sediment supply; the loss of forest during colder and dryer stages can be responsible for up to 50 % of sediment supply increase.
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.
2015-02-01
The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.
Performance Assessment of Flashed Steam Geothermal Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alt, Theodore E.
1980-12-01
Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor ismore » the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.« less
Annual modulation of non-volcanic tremor in northern Cascadia
Pollitz, Fred; Wech, Aaron G.; Kao, Honn; Burgmann, Roland
2013-01-01
Two catalogs of episodic tremor events in northern Cascadia, one from 2006 to 2012 and the other from 1997 to 2011, reveal two systematic patterns of tremor occurrence in southern Vancouver Island: (1) most individual events tend to occur in the third quarter of the year; (2) the number of events in prolonged episodes (i.e., episodic tremor and slip events), which generally propagate to Vancouver Island from elsewhere along the Cascadia subduction zone, is inversely correlated with the amount of precipitation that occurred in the preceding 2 months. We rationalize these patterns as the product of hydrologic loading of the crust of southern Vancouver Island and the surrounding continental region, superimposed with annual variations from oceanic tidal loading. Loading of the Vancouver Island crust in the winter (when the land surface receives ample precipitation) and unloading in the summer tends to inhibit and enhance downdip shear stress, respectively. Quantitatively, for an annually variable surface load, the predicted stress perturbation depends on mantle viscoelastic rheology. A mechanical model of downdip shear stress on the transition zone beneath Vancouver Island—driven predominantly by the annual hydrologic cycle—is consistent with the 1997–2012 tremor observations, with peak-to-peak downdip shear stress of about 0.4 kPa. This seasonal dependence of tremor occurrence appears to be restricted to southern Vancouver Island because of its unique situation as an elongated narrow-width land mass surrounded by ocean, which permits seasonal perturbations in shear stress at depth.
Climate change impacts on forest soil critical acid loads and exceedances at a national scale
Steven G. McNulty; Erika C. Cohen; Jennifer A. Moore Myers
2013-01-01
Federal agencies are currently developing guidelines for forest soil critical acid loads across the United States. A critical acid load is defined as the amount of acid deposition (usually expressed on an annual basis) that an ecosystem can absorb. Traditionally, an ecosystem is considered to be at risk for health impairment when the critical acid load exceeds a level...
Hyle, Emily P; Jani, Ilesh V; Rosettie, Katherine L; Wood, Robin; Osher, Benjamin; Resch, Stephen; Pei, Pamela P; Maggiore, Paolo; Freedberg, Kenneth A; Peter, Trevor; Parker, Robert A; Walensky, Rochelle P
2017-09-24
To examine the clinical and economic value of point-of-care CD4 (POC-CD4) or viral load monitoring compared with current practices in Mozambique, a country representative of the diverse resource limitations encountered by HIV treatment programs in sub-Saharan Africa. We use the Cost-Effectiveness of Preventing AIDS Complications-International model to examine the clinical impact, cost (2014 US$), and incremental cost-effectiveness ratio [$/year of life saved (YLS)] of ART monitoring strategies in Mozambique. We compare: monitoring for clinical disease progression [clinical ART monitoring strategy (CLIN)] vs. annual POC-CD4 in rural settings without laboratory services and biannual laboratory CD4 (LAB-CD4), biannual POC-CD4, and annual viral load in urban settings with laboratory services. We examine the impact of a range of values in sensitivity analyses, using Mozambique's 2014 per capita gross domestic product ($620) as a benchmark cost-effectiveness threshold. In rural settings, annual POC-CD4 compared to CLIN improves life expectancy by 2.8 years, reduces time on failed ART by 0.6 years, and yields an incremental cost-effectiveness ratio of $480/YLS. In urban settings, biannual POC-CD4 is more expensive and less effective than viral load. Compared to biannual LAB-CD4, viral load improves life expectancy by 0.6 years, reduces time on failed ART by 1.0 year, and is cost-effective ($440/YLS). In rural settings, annual POC-CD4 improves clinical outcomes and is cost-effective compared to CLIN. In urban settings, viral load has the greatest clinical benefit and is cost-effective compared to biannual POC-CD4 or LAB-CD4. Tailoring ART monitoring strategies to specific settings with different available resources can improve clinical outcomes while remaining economically efficient.
USDA-ARS?s Scientific Manuscript database
Accurate estimates of annual nutrient loads are required to evaluate trends in water quality following changes in land use or management and to calibrate and validate water quality models. While much emphasis has been placed on understanding the uncertainty of watershed-scale nutrient load estimates...
Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed
Brakebill, John W.; Preston, Stephen D.
1999-01-01
Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.
Scorca, Michael P.; Monti, Jack
2001-01-01
Fresh ground water that discharges from the northern part of Long Island's aquifer system to Long Island Sound contains elevated concentrations of nitrogen from agricultural fertilizer, domestic waste and fertilizer, and precipitation. The nitrogen contributes to algal blooms, which consume oxygen as the algae die and decompose. The resulting low dissolved oxygen concentrations (hypoxia) adversely affect plant and animal populations in Long Island Sound.The four major streams on the north shore of Long Island that have long-term discharge and water-quality records were selected for analysis of geographic, long-term, and seasonal trends in nitrogen concentration. Nitrogen concentrations generally decrease eastward among three Nassau County streams, then increase again at the easternmost stream, Nissequogue River in Suffolk County. A long-term (1970-96) increase in total nitrogen concentrations in the Nissequogue River also is evident. Seasonal fluctuations in nitrogen concentrations in all four streams reflect chemical reactions and microbial activity in the stream system, so total nitrogen concentrations in the three easternmost streams generally were lowest during summer and highest in winter, whereas those in the westernmost stream (Glen Cove Creek) were highest during summer and lowest in winter.The nitrogen loads discharged to Long Island Sound from each of the four streams for each year during 1985-96 were calculated from the annual mean total nitrogen concentration and the annual mean discharge. Nissequogue River's annual mean discharges were 3 to 6 times larger than those of Glen Cove and Mill Neck Creeks, and produced the largest annual loads of nitrogen--65 to 149 ton/yr (59,000 to 135,000 kg/yr). Cold Spring Brook had the lowest annual mean discharges and annual mean total nitrogen concentrations of the four streams; its annual mean nitrogen load ranged from 1.2 to 2.8 ton/yr (1,100 to 2,500 kg/yr).The nitrogen load carried to Long Island Sound by shallow ground water from the north shore of Long Island was calculated from simulated shallow-aquifer discharges from Nassau and Suffolk Counties (9,200 and 21,400 Mgal/yr or 34,800,000 and 81,100,000 m3/yr, respectively) and median total nitrogen concentrations at selected wells (2.2 and 4.3 milligrams per liter as N, respectively). The resultant nitrogen load was 84 ton/yr (76,500 kg/yr) for Nassau County and 384 ton/yr (349,000 kg/yr) for Suffolk County.The nitrogen load carried to Long Island Sound by deep ground water from the north shore was calculated from simulated deep-aquifer discharges from Nassau and Suffolk counties (13,200 and 47,300 Mgal/yr or 50,000,000 and 179,000,000 m3/yr, respectively). The median nitrogen concentrations of deep ground water for the two counties were 1.62 and 1.34 mg/L as N, respectively. The resultant nitrogen load from deep-aquifer discharge was 89 ton/yr (81,000 kg/yr) for Nassau County and 265 ton/yr (240,000 kg/yr) for Suffolk County.Nitrogen loads entering Long Island Sound from the shallow aquifer underlying three areas of differing land use along the north shore--a sewered residential area in Nassau County, an unsewered residential area in Suffolk County, and an agricultural area in Suffolk County--were evaluated. The agricultural area contains no major streams and, therefore, produces very little surface runoff to Long Island Sound and substantially greater shallow-aquifer discharge than in the sewered and unsewered areas. Ground water in the agricultural area also had the highest median nitrogen concentration (9.9 mg/L as N) of the three land-use areas and discharged the largest estimated nitrogen load to Long Island Sound--152 ton/yr (138,000 kg/yr), which represents about 40 percent of the estimated total nitrogen load from Suffolk County. Ground water in the sewered area had the lowest nitrogen concentration (1.9 mg/L as N) and discharged the smallest nitrogen load to Long Island Sound--7.28 ton/yr (6,600 kg/yr). The analysis indicates that land use on the north shore of Long Island can greatly affect the nitrogen concentration of water in the shallow aquifer and the resultant nitrogen load discharged to Long Island Sound from ground water.
NASA Astrophysics Data System (ADS)
McIver, R.; Milewski, I.; Loucks, R.; Smith, R.
2018-05-01
Far-field nutrient impacts associated with finfish aquaculture have been identified as a topic of concern for regulators, managers, scientists, and the public for over two decades but disentangling aquaculture impacts from those caused by other natural and anthropogenic sources has impeded the development of monitoring metrics and management plans. We apply a bulk, steady-state nitrogen loading model (NLM) framework to estimate the annual input of Total Dissolved Nitrogen (TDN) from point and non-point sources to the watershed surrounding Port Mouton Bay, Nova Scotia (Canada). We then use the results of the NLM together with estimates of dissolved inorganic nitrogen (DIN) loading from a sea-cage trout farm in the Bay and progressive vector diagrams to illustrate potential patterns of DIN dispersal from the trout farm. Our estimated anthropogenic nitrogen contribution to Port Mouton Bay from all terrestrial and atmospheric sources is ∼211,703 kg TDN/year with atmospheric deposition accounting for almost all (98.6%). At a stocking level of ∼400,000 rainbow trout, the Port Mouton Bay sea-cage farm increases the annual anthropogenic TDN loading to the bay by 14.4% or 30,400 kg. Depending on current flow rates, nitrogen flux from the trout farm can be more than double the background concentrations of TDN near the farm site. Although it is unlikely that nitrogen loading from this single fish farm is saturating the DIN requirements of the entire bay, progressive vector diagrams suggest that the dispersal potential may be insufficient to mitigate potential symptoms of eutrophication associated with nitrogen fluxes. We present an accessible and user-friendly tool for managers to estimate baseline nutrient loading in relation to aquaculture and our use of progressive vector diagrams illustrate a practical and simple method for characterizing potential nutrient dispersal based on local conditions and spatial scales. Our study joins numerous studies which have highlighted the need for more effective monitoring and assessment methods to improve the detection of aquaculture effects at far-field scales and to assess those effects in relation to other natural and anthropogenic factors impacting coastal habitats.
Validating pollutant load estimates from highways and roads.
DOT National Transportation Integrated Search
2015-12-31
Rain and snowmelt that runs off of roadways carries pollutants. Pollutant event mean concentrations have been developed for various land uses to calculate annual pollutant loads. These were developed for total suspended solids, total phosphorus, and ...
NASA Astrophysics Data System (ADS)
Levi, L.; Cvetkovic, V.; Destouni, G.
2015-12-01
This study compiles estimates of waterborne nutrient concentrations and loads in the Sava River Catchment (SRC). Based on this compilation, we investigate hotspots of nutrient inputs and retention along the river, as well as concentration and load correlations with river discharge and various human drivers of excess nutrient inputs to the SRC. For cross-regional assessment and possible generalization, we also compare corresponding results between the SRC and the Baltic Sea Drainage Basin (BSDB). In the SRC, one small incremental subcatchment, which is located just downstream of Zagreb and has the highest population density among the SRC subcatchments, is identified as a major hotspot for net loading (input minus retention) of both total nitrogen (TN) and total phosphorus (TP) to the river and through it to downstream areas of the SRC. The other SRC subcatchments exhibit relatively similar characteristics with smaller net nutrient loading. The annual loads of both TN and TP along the Sava River exhibit dominant temporal variability with considerably higher correlation with annual river discharge (R2 = 0.51 and 0.28, respectively) than that of annual average nutrient concentrations (R2 = 0.0 versus discharge for both TN and TP). Nutrient concentrations exhibit instead dominant spatial variability with relatively high correlation with population density among the SRC subcatchments (R2=0.43-0.64). These SRC correlation characteristics compare well with corresponding ones for the BSDB, even though the two regions are quite different in their hydroclimatic, agricultural and wastewater treatment conditions. Such cross-regional consistency in dominant variability type and explanatory catchment characteristics may be a useful generalization basis, worthy of further investigation, for at least first-order estimation of nutrient concentration and load conditions in less data-rich regions.
Prioritizing subwatersheds for stormwater pollution to Wachusett Reservoir.
Cho, Kyung Hwa; Park, Mi-Hyun
2013-02-01
The Wachusett Reservoir is a primary drinking water resource for the greater Boston, Massachusetts, area. With a drainage area of 280 km2, the watershed has been gradually urbanized with increased residential, commercial, industrial, and transportation land uses. Increased impervious surface area as a result of urbanization results in increased runoff volume and pollutant loads to the reservoir. This study estimated annual stormwater pollutant mass loads in the watershed to prioritize sub-basins and to identify areas susceptible to stormwater pollution. Catchment Prioritization Index (CPI) was calculated using annual stormwater pollutant mass loads, which were further used to identify clustered hotspots through application of the Getis-Ord Gi* statistic. Validation with observed data showed higher levels of fecal coliform bacteria loading from identified hotspots. This approach will be useful to prioritize sub-basins for future (1) development of stormwater monitoring strategies and (2) best management practices (BMPs) in the watershed.
Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D
2012-01-01
Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.
Saad, David A.; Benoy, Glenn A.; Robertson, Dale M.
2018-05-11
Streamflow and nutrient concentration data needed to compute nitrogen and phosphorus loads were compiled from Federal, State, Provincial, and local agency databases and also from selected university databases. The nitrogen and phosphorus loads are necessary inputs to Spatially Referenced Regressions on Watershed Attributes (SPARROW) models. SPARROW models are a way to estimate the distribution, sources, and transport of nutrients in streams throughout the Midcontinental region of Canada and the United States. After screening the data, approximately 1,500 sites sampled by 34 agencies were identified as having suitable data for calculating the long-term mean-annual nutrient loads required for SPARROW model calibration. These final sites represent a wide range in watershed sizes, types of nutrient sources, and land-use and watershed characteristics in the Midcontinental region of Canada and the United States.
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1984-01-01
Applying vortex generators from 20 to 100 percent span of the Mod-2 rotor resulted in a projected increase in annual energy capture of 20 percent and reduced the wind speed at which rated power is reached by nearly 3 m/sec. Application of vortex generators from 20 to 70 percent span, the fixed portion of the Mod-2 rotor, resulted in a projected increase in annual energy capture of about half this. This improved performance came at the cost of a small increase in cyclic blade loads in below rated power conditions. Cyclic blade loads were found to correlate well with the change in wind speed during one rotor revolution.
Reduced sediment transport in the Chinese Loess Plateau due to climate change and human activities.
Yang, Xiaonan; Sun, Wenyi; Li, Pengfei; Mu, Xingmin; Gao, Peng; Zhao, Guangju
2018-06-14
The sediment load on the Chinese Loess Plateau has sharply decreased in recent years. However, the contribution of terrace construction and vegetation restoration projects to sediment discharge reduction remains uncertain. In this paper, eight catchments located in the Loess Plateau were chosen to explore the effects of different driving factors on sediment discharge changes during the period from the 1960s to 2012. Attribution approaches were applied to evaluate the effects of climate, terrace, and vegetation coverage changes on sediment discharge. The results showed that the annual sediment discharge decreased significantly in all catchments ranging from -0.007 to -0.039 Gt·yr -1 . Sediment discharge in most tributaries has shown abrupt changes since 1996, and the total sediment discharge was reduced by 60.1% during 1997-2012. We determined that increasing vegetation coverage was the primary factor driving the reductions in sediment loads since 1996 and accounted for 47.7% of the total reduction. Climate variability and terrace construction accounted for 9.1% and 18.6% of sediment discharge reductions, respectively. Copyright © 2018. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Walters, Allison M.
2009-01-01
Four-year colleges and universities submit faculty teaching load and instructional cost data annually to the Delaware Study of Instructional Costs and Productivity. While the Delaware Study currently adjusts the calculation of annual FTE students to account for the difference in annual student credit hours (SCH) earned by students at semester and…
Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun
2014-09-15
Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings. Copyright © 2014 Elsevier B.V. All rights reserved.
Loads of nitrate, phosphorus, and total suspended solids from Indiana watersheds
Bunch, Aubrey R.
2016-01-01
Transport of excess nutrients and total suspended solids (TSS) such as sediment by freshwater systems has led to degradation of aquatic ecosystems around the world. Nutrient and TSS loads from Midwestern states to the Mississippi River are a major contributor to the Gulf of Mexico Hypoxic Zone, an area of very low dissolved oxygen concentration in the Gulf of Mexico. To better understand Indiana’s contribution of nutrients and TSS to the Mississippi River, annual loads of nitrate plus nitrite as nitrogen, total phosphorus, and TSS were calculated for nine selected watersheds in Indiana using the load estimation model, S-LOADEST. Discrete water-quality samples collected monthly by the Indiana Department of Environmental Management’s Fixed Stations Monitoring Program from 2000–2010 and concurrent discharge data from the U. S. Geological Survey streamflow gages were used to create load models. Annual nutrient and TSS loads varied across Indiana by watershed and hydrologic condition. Understanding the loads from large river sites in Indiana is important for assessing contributions of nutrients and TSS to the Mississippi River Basin and in determining the effectiveness of best management practices in the state. Additionally, evaluation of loads from smaller upstream watersheds is important to characterize improvements at the local level and to identify priorities for reduction.
Pamela J. Edwards; Karl W.J. Williard; James N. Kochenderfer
2004-01-01
Five methods for estimating maximum daily and annual nitrate (NO3) and suspended sediment loads using periodic sampling of varying intensities were compared to actual loads calculated from intensive stormflow and baseflow sampling from small, forested watersheds in north central West Virginia to determine if the less intensive sampling methods were accurate and could...
Solar-Energy System for a Commercial Building--Topeka, Kansas
NASA Technical Reports Server (NTRS)
1982-01-01
Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.
ESTIMATING URBAN WET WEATHER POLLUTANT LOADING
This paper presents procedures for estimating pollutant loads emanating from wet-weather flow discharge in urban watersheds. Equations are presented for: annual volume of litter and floatables; the quantity of sand from highway runoff; the quantity of dust-and-dirt accumulation ...
Simulation of tree shade impacts on residential energy use for space conditioning in Sacramento
NASA Astrophysics Data System (ADS)
Simpson, J. R.; McPherson, E. G.
Tree shade reduces summer air conditioning demand and increases winter heating load by intercepting solar energy that would otherwise heat the shaded structure. We evaluate the magnitude of these effects here for 254 residential properties participating in a utility sponsored tree planting program in Sacramento, California. Tree and building characteristics and typical weather data are used to model hourly shading and energy used for space conditioning for each building for a period of one year. There were an average of 3.1 program trees per property which reduced annual and peak (8 h average from 1 to 9 p.m. Pacific Daylight Time) cooling energy use 153 kWh (7.1%) and 0.08 kW (2.3%) per tree, respectively. Annual heating load increased 0.85 GJ (0.80 MBtu, 1.9%) per tree. Changes in cooling load were smaller, but percentage changes larger, for newer buildings. Averaged over all homes, annual cooling savings of 15.25 per tree were reduced by a heating penalty of 5.25 per tree, for net savings of 10.00 per tree from shade. We estimate an annual cooling penalty of 2.80 per tree and heating savings of 6.80 per tree from reduced wind speed, for a net savings of 4.00 per tree, and total annual savings of 14.00 per tree (43.00 per property). Results are found to be consistent with previous simulations and the limited measurements available.
NASA Astrophysics Data System (ADS)
Mutema, M.; Chaplot, V.; Jewitt, G.; Chivenge, P.; Blöschl, G.
2015-11-01
Process controls on water, sediment, nutrient, and organic carbon exports from the landscape through runoff are not fully understood. This paper provides analyses from 446 sites worldwide to evaluate the impact of environmental factors (MAP and MAT: mean annual precipitation and temperature; CLAY and BD: soil clay content and bulk density; S: slope gradient; LU: land use) on annual exports (RC: runoff coefficients; SL: sediment loads; TOCL: organic carbon losses; TNL: nitrogen losses; TPL: phosphorus losses) from different spatial scales. RC was found to increase, on average, from 18% at local scale (in headwaters), 25% at microcatchment and subcatchment scale (midreaches) to 41% at catchment scale (lower reaches of river basins) in response to multiple factors. SL increased from microplots (468 g m-2 yr-1) to plots (901 g m-2 yr-1), accompanied by decreasing TOCL and TNL. Climate was a major control masking the effects of other factors. For example, RC, SL, TOCL, TNL, and TPL tended to increase with MAP at all spatial scales. These variables, however, decreased with MAT. The impact of CLAY, BD, LU, and S on erosion variables was largely confined to the hillslope scale, where RC, SL, and TOCL decreased with CLAY, while TNL and TPL increased. The results contribute to better understanding of water, nutrient, and carbon cycles in terrestrial ecosystems and should inform river basin modeling and ecosystem management. The important role of spatial climate variability points to a need for comparative research in specific environments at nested spatiotemporal scales.
Henneberg, Mark F.
2016-08-10
Dissolved-selenium loading analyses of data collected at 18 water-quality sites in the lower Gunnison River Basin in Colorado were completed through water year (WY) 2014. A WY is defined as October 1–September 30. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents information on the dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for WYs 2011–2014. Annual dissolved-selenium loads were calculated at 5 sites with continuous U.S. Geological Survey (USGS) streamflow gages, whereas instantaneous dissolved-selenium loads were calculated for the remaining 13 sites using water-quality samples that had been collected periodically during WYs 2011–2014. Annual dissolved-selenium loads for WY 2014 ranged from 336 pounds (lb) at Uncompahgre River at Colona to 13,300 lb at Gunnison River near Grand Junction (Whitewater). Most sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb per day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream.The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected water-quality sites. Annual 85th percentiles for dissolved selenium were calculated for the five core USGS sites having streamflow gages using estimated dissolved-selenium concentrations from linear regression models. These annual 85th percentiles in WY 2014 ranged from 0.97 µg/L at Uncompahgre River at Colona to 16.7 µg/L at Uncompahgre River at Delta. Uncompahgre River at Delta and Whitewater were the only core sites where water samples exceeded the State of Colorado water-quality standard for dissolved selenium of 4.6 µg/L.Instantaneous 85th percentiles for dissolved selenium were calculated for sites with sufficient data using water-quality samples collected during WYs 2011–2014. The instantaneous 85th percentiles for samples for WY 2014 ranged from 1.1 µg/L at Uncompahgre River at Colona to 125 µg/L at Loutzenhizer Arroyo at North River Road.A trend analysis was completed for Whitewater to determine if dissolved-selenium loads are increasing or decreasing. The trend analysis indicates a decrease of 8,000 lb from WY 1986 to WY 2014, a 34.8 percent reduction during the time period, and an additional 6.2 percent reduction from a reported 28.6 percent reduction during WYs 1986–2008. The trend analysis for WY 1992 to WY 2014 indicates a decrease of 5,800 lb per year, or 27.9 percent.
2006 Pacific Northwest Loads and Resources Study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration.
2006-03-01
The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determiningmore » BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of both the Federal system and the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This surplus energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These energy deficits will be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. This study incorporates information on Pacific Northwest (PNW) regional retail loads, contract obligations, and contract resources. This loads and resources analysis simulates the operation of the power system in the PNW. The simulated hydro operation incorporates plant characteristics, streamflows, and non-power requirements from the current Pacific Northwest Coordination Agreement (PNCA). Additional resource capability estimates were provided by BPA, PNW Federal agency, public agency, cooperative, U.S. Bureau of Reclamation (USBR), and investor-owned utility (IOU) customers furnished through annual PNUCC data submittals for 2005 and/or direct submittals to BPA. The 2006 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2006 White Book analysis updates the 2004 White Book. This analysis shows projections of the Federal system and region's yearly average annual energy consumption and resource availability for the study period, OY 2007-2016. The study also presents projections of Federal system and region expected 1-hour monthly peak demand, monthly energy demand, monthly 1-hour peak generating capability, and monthly energy generation for OY 2007, 2011, and 2016. BPA is investigating a new approach in capacity planning depicting the monthly Federal system 120-hour peak generating capability and 120-hour peak surplus/deficit for OY 2007, 2011, and 2016. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger PNW regional power system loads and resources that include the Federal system as well other PNW entities.« less
Kalkhoff, Stephen J.; Hubbard, Laura E.; Tomer, Mark D.; James, D.E.
2016-01-01
Precipitation patterns and nutrient inputs affect transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Iowa, were evaluated during 1996–2007 to document relative differences in timings and amounts of nutrients transported. Both watersheds are located in the prairie pothole region, but the SFIR exhibits a longer growing season and more livestock production. The SFIR yielded significantly more NO3-N than the LCR watershed (31.2 versus 21.3 kg NO3-N ha− 1 y− 1). The SFIR watershed also yielded more TP than the LCR watershed (1.13 versus 0.51 kg TP ha− 1 yr− 1), despite greater TP concentrations in the LCR. About 65% of NO3-N and 50% of TP loads were transported during April–June, and < 20% of the annual loads were transported later in the growing season from July–September. Monthly NO3-N and TP loads peaked in April from the LCR but peaked in June from the SFIR; this difference was attributed to greater snowmelt runoff in the LCR. The annual NO3-N yield increased with increasing annual runoff at a similar rate in both watersheds, but the LCR watershed yielded less annual NO3-N than the SFIR for a similar annual runoff. These two watersheds are within 150 km of one another and have similar dominant agricultural systems, but differences in climate and cropping inputs affected amounts and timing of nutrient transport.
Fast correlation method for passive-solar design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wray, W.O.; Biehl, F.A.; Kosiewicz, C.E.
1982-01-01
A passive-solar design manual for single-family detached residences and dormitory-type buildings is being developed. The design procedure employed in the manual is a simplification of the original monthly solar load ratio (SLR) method. The new SLR correlations involve a single constant for each system. The correlation constant appears as a scale factor permitting the use of a universal performance curve for all passive systems. Furthermore, by providing location-dependent correlations between the annual solar heating fraction (SHF) and the minimum monthly SHF, we have eliminated the need to perform an SLR calculation for each month of the heating season.
A passive-solar design manual for the United States Navy
NASA Astrophysics Data System (ADS)
Wray, W. O.; Biehl, F. A.; Kosiewicz, C. E.; Miles, C. E.; Durlak, E. R.
1982-06-01
A passive solar design manual for single-family detached residences and dormitory-type buildings is developed. The design procedure employed in the manual is a simplification of the original monthly solar load ratio (SLR) method. The new SLR correlations involve a single constant for each system. The correlation constant appears as a scale factor permitting the use of a universal performance curve for all passive systems. Furthermore, by providing location-dependent correlations between the annual solar heating fraction (SHF) and the minimum monthly SHF, the need to perform an SLR calculation for each month of the heating season is eliminated.
Passive-solar design manual for the United States Navy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wray, W.O.; Biehl, F.A.; Kosiewicz, C.R.
1982-01-01
A passive solar design manual for single-family detached residences and dormitory-type buildings is being developed. The design procedure employed in the manual is a simplification of the original monthly solar load ratio (SLR) method. The new SLR correlations involve a single constant for each system. The correlation constant appears as a scale factor permitting the use of a universal performance curve for all passive systems. Furthermore, by providing location-dependent correlations between the annual solar heating fraction (SHF)* and the minimum monthly SHF, we have eliminated the need to perform an SLR calculation for each month of the heating season.
DCERP Annual Technical Report III: March 2009-February 2010. Executive Summary
2010-04-01
groundwater passing though marshes to the estuary. Loading estimates may vary considerably depending on inter-annual hydrologic (storm versus drought ...climatic events (i.e., hurricanes and droughts ); and integrate results with the other DCERP modules. The benefits of the Aquatic/Estuarine Module...inter-annual hydrologic (storm versus drought years) variability. ▪ Several large phytoplankton blooms in mid-estuary to upper estuary locations
1995 Pacific Northwest Loads and Resources Study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration.
1995-12-01
The study establishes the planning basis for supplying electricity to customers. The study presents projections of regional and Federal system load and resource capabilities, and serves as a benchmark for annual BPA determinations made pursuant to the 1981 regional power sales contracts.
NASA Astrophysics Data System (ADS)
Gu, Chaojun; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Sun, Wenyi; Yu, Qiang
2018-03-01
Accelerated soil erosion exerts adverse effects on water and soil resources. Rainfall erosivity reflects soil erosion potential driven by rainfall, which is essential for soil erosive risk assessment. This study investigated the spatiotemporal variation of rainfall erosivity and its impacts on sediment load over the largest freshwater lake basin of China (the Poyang Lake Basin, abbreviate to PYLB). The spatiotemporal variations of rainfall erosivity from 1961 to 2014 based on 57 meteorological stations were detected using the Mann-Kendall test, linear regression, and kriging interpolation method. The sequential t test analysis of regime shift (STARS) was employed to identify the abrupt changes of sediment load, and the modified double mass curve was used to assess the impacts of rainfall erosivity variability on sediment load. It was found that there was significant increase (P < 0.05) in rainfall erosivity in winter due to the significant increase in January over the last 54 years, whereas no trend in year and other seasons. Annual sediment load into the Poyang Lake (PYL) decreased significantly (P < 0.01) between 1961 and 2014, and the change-points were identified in both 1985 and 2003. It was found that take annual rainfall erosivity as the explanatory variables of the double mass curves is more reasonable than annual rainfall and erosive rainfall. The estimation via the modified double mass curve demonstrated that compared with the period before change-point (1961-1984), the changes of rainfall erosivity increased 8.0 and 2.1% of sediment load during 1985-2002 and 2003-2014, respectively. Human activities decreased 50.2 and 69.7% of sediment load during the last two periods, which indicated effects of human activities on sediment load change was much larger than that of rainfall erosivity variability in the PYLB.
Estimation of historic flows and sediment loads to San Francisco Bay,1849–2011
Moftakhari, H.R.; Jay, D.A.; Talke, S.A.; Schoellhamer, David H.
2015-01-01
River flow and sediment transport in estuaries influence morphological development over decadal and century time scales, but hydrological and sedimentological records are typically too short to adequately characterize long-term trends. In this study, we recover archival records and apply a rating curve approach to develop the first instrumental estimates of daily delta inflow and sediment loads to San Francisco Bay (1849–1929). The total sediment load is constrained using sedimentation/erosion estimated from bathymetric survey data to produce continuous daily sediment transport estimates from 1849 to 1955, the time period prior to sediment load measurements. We estimate that ∼55% (45–75%) of the ∼1500 ± 400 million tons (Mt) of sediment delivered to the estuary between 1849 and 2011 was the result of anthropogenic alteration in the watershed that increased sediment supply. Also, the seasonal timing of sediment flux events has shifted because significant spring-melt floods have decreased, causing estimated springtime transport (April 1st to June 30th) to decrease from ∼25% to ∼15% of the annual total. By contrast, wintertime sediment loads (December 1st to March 31st) have increased from ∼70% to ∼80%. A ∼35% reduction of annual flow since the 19th century along with decreased sediment supply has resulted in a ∼50% reduction in annual sediment delivery. The methods developed in this study can be applied to other systems for which unanalyzed historic data exist.
NASA Astrophysics Data System (ADS)
Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz
2018-03-01
We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.
NASA Astrophysics Data System (ADS)
Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz
2018-05-01
We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.
Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentile-Polese, L.; Frank, S.; Sheppy, M.
2014-02-01
Buildings account for 40% of primary energy consumption in the United States (residential 22%; commercial 18%). Most (70% residential and 79% commercial) is used as electricity. Thus, almost 30% of U.S. primary energy is used to provide electricity to buildings. Plug loads play an increasingly critical role in reducing energy use in new buildings (because of their increased efficiency requirements), and in existing buildings (as a significant energy savings opportunity). If all installed commercial building miscellaneous electrical loads (CMELs) were replaced with energy-efficient equipment, a potential annual energy saving of 175 TWh, or 35% of the 504 TWh annual energymore » use devoted to MELs, could be achieved. This energy saving is equivalent to the annual energy production of 14 average-sized nuclear power plants. To meet DOE's long-term goals of reducing commercial building energy use and carbon emissions, the energy efficiency community must better understand the components and drivers of CMEL energy use, and develop effective reduction strategies. These goals can be facilitated through improved data collection and monitoring methodologies, and evaluation of CMELs energy-saving techniques.« less
NASA Astrophysics Data System (ADS)
Aleksandrov, Sergei; Gorbunova, Julia; Rudinskaya, Lilia
2015-04-01
Coastal lagoons are most vulnerable to impacts of natural environmental and anthropogenic factors. The Curonian Lagoon and Vistula Lagoon are the largest coastal lagoons of the Baltic Sea, relating to the most highly productive water bodies of Europe. The Curonian Lagoon is choke mostly freshwater lagoon, while the Vistula Lagoon is restricted brackish water lagoon. In the last decades the nutrients loading changes, warming trend and biological invasions are observed. The researches (chlorophyll, primary production, nutrients, phytoplankton, benthos, etc) were carried out monthly since 1991 to 2014. The database includes 1600 stations in the Curonian Lagoon, 1650 stations in the Vistula Lagoon. Eutrophication and algae blooms are most important problems. Multiple reductions of nutrients loading from the watershed area in 1990s did not result in considerable improvement of the ecological situation in the lagoons. The Curonian Lagoon may be characterized as hypertrophic water body with "poor" water quality. Climate change in 1990s-2000s combined with other factors (freshwater, slow-flow exchange, high nutrients concentrations) creates conditions for Cyanobacteria "hyperblooms". Hyperbloom of Cyanophyta (average for the growing season Chl > 100 μg/l) were observed during 4 years in 1990s and 7 years in 2000s. The summer water temperature is the key environmental factor determining the seasonal and long-term variability of the primary production and algae blooms. Mean annual primary production in 2010-2014 (600 gC·m-2·year-1) is considerable higher, than in the middle of 1970s (300 gC·m-2·year-1). The local climate warming in the Baltic region caused ongoing eutrophication and harmful algae blooms in the Curonian Lagoon despite of significant reduction of nutrients loading in 1990s-2000s. Harmful algal blooms in July-October (chlorophyll to 700-3400 μg/l) result in deterioration of the water chemical parameters, death of fish in the coastal zone and pollution with toxins, symptoms of exposure are observed at different trophic levels (zooplankton, fish). "Hyperblooms" of Cyanobacteria is the most dangerous for coastal towns (Polessk, Zelenogradsk) and tourist resorts (UNESCO National Park "Curonian Spit"). Also, unfavorable effects of eutrophication have been observed in restricted Vistula Lagoon. Mean annual temperature increased by 1.4°С for 40 years, and water warming combined with other factors created conditions for phytoplankton "hyperblooms" (70-80 μg Chl/l) in 1995-2010. Mean annual primary production in 2000s (430 gC·m-2·year-1) is considerable higher, than in the middle of 1970s (300 gC·m-2·year-1). The climate warming was cause ongoing eutrophication and harmful algal blooms in summer in 1990-2010 despite of significant reduction of nutrients loading in the lagoon. After the invasion of the North American filter-feeding bivalve Rangia cuneata the benthic biomass increased by 8 times (360 g/m2), and chlorophyll decreased by 3.5 times (10 μg/l) in 2011. Water quality is significantly improved from "poor" to "satisfactory" level in 2011-2014, e.g., transparency increased by 2 times. The phytoplankton assimilation numbers increased to maximum (300-400 mgC·mgChl-1·day-1), which are discover in aquatic ecosystems, and primary production remained at previous level. Therefore mollusc invasion improved water quality, but Vistula lagoon ecosystem remained at eutrophic-hypertrophic level. This allowed the function to other trophic groups (zooplankton, fish) at a stable long-term level.
Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004
Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.
2007-01-01
The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.
Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River
NASA Astrophysics Data System (ADS)
Chi, Kaige; Gang, Zhao; Pang, Bo; Huang, Ziqian
2018-06-01
Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR) (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station) from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mann-Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1) the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2) The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3) According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme.
Hutchinson, Kasey J.; Christiansen, Daniel E.
2013-01-01
The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, used the Soil and Water Assessment Tool to simulate streamflow and nitrate loads within the Cedar River Basin, Iowa. The goal was to assess the ability of the Soil and Water Assessment Tool to estimate streamflow and nitrate loads in gaged and ungaged basins in Iowa. The Cedar River Basin model uses measured streamflow data from 12 U.S. Geological Survey streamflow-gaging stations for hydrology calibration. The U.S. Geological Survey software program, Load Estimator, was used to estimate annual and monthly nitrate loads based on measured nitrate concentrations and streamflow data from three Iowa Department of Natural Resources Storage and Retrieval/Water Quality Exchange stations, located throughout the basin, for nitrate load calibration. The hydrology of the model was calibrated for the period of January 1, 2000, to December 31, 2004, and validated for the period of January 1, 2005, to December 31, 2010. Simulated daily, monthly, and annual streamflow resulted in Nash-Sutcliffe coefficient of model efficiency (ENS) values ranging from 0.44 to 0.83, 0.72 to 0.93, and 0.56 to 0.97, respectively, and coefficient of determination (R2) values ranging from 0.55 to 0.87, 0.74 to 0.94, and 0.65 to 0.99, respectively, for the calibration period. The percent bias ranged from -19 to 10, -16 to 10, and -19 to 10 for daily, monthly, and annual simulation, respectively. The validation period resulted in daily, monthly, and annual ENS values ranging from 0.49 to 0.77, 0.69 to 0.91, and -0.22 to 0.95, respectively; R2 values ranging from 0.59 to 0.84, 0.74 to 0.92, and 0.36 to 0.92, respectively; and percent bias ranging from -16 for all time steps to percent bias of 14, 15, and 15, respectively. The nitrate calibration was based on a small subset of the locations used in the hydrology calibration with limited measured data. Model performance ranges from unsatisfactory to very good for the calibration period (January 1, 2000, to December 31, 2004). Results for the validation period (January 1, 2005, to December 31, 2010) indicate a need for an increase of measured data as well as more refined documented management practices at a higher resolution. Simulated nitrate loads resulted in monthly and annual ENS values ranging from 0.28 to 0.82 and 0.61 to 0.86, respectively, and monthly and annual R2 values ranging from 0.65 to 0.81 and 0.65 to 0.88, respectively, for the calibration period. The monthly and annual calibration percent bias ranged from 4 to 7 and 5 to 7, respectively. The validation period resulted in all but two ENS values less than zero. Monthly and annual validation R2 values ranged from 0.5 to 0.67 and 0.25 to 0.48, respectively. Monthly and annual validation percent bias ranged from 46 to 68 for both time steps. A daily calibration and validation for nitrate loads was not performed because of the poor monthly and annual results; measured daily nitrate data are available for intervals of time in 2009 and 2010 during which a successful monthly and annual calibration could not be achieved. The Cedar River Basin is densely gaged relative to other basins in Iowa; therefore, an alternative hydrology scenario was created to assess the predictive capabilities of the Soil and Water Assessment Tool using fewer locations of measured data for model hydrology calibration. Although the ability of the model to reproduce measured values improves with the number of calibration locations, results indicate that the Soil and Water Assessment Tool can be used to adequately estimate streamflow in less densely gaged basins throughout the State, especially at the monthly time step. However, results also indicate that caution should be used when calibrating a subbasin that consists of physically distinct regions based on only one streamflow-gaging station.
Aulenbach, Brent T.
2006-01-01
Annual stream-water loads were calculated near the outlet of four of the larger river basins (Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia) in the United States for dissolved nitrite plus nitrate (NO2 + NO3) and total phosphorus using LOADEST load estimation software. Loads were estimated for the period 1968-2004; although loads estimated for individual river basins and chemical constituent combinations typically were for shorter time periods due to limitations in data availability. Stream discharge and water-quality data for load estimates were obtained from the U.S. Geological Survey (USGS) with additional stream discharge data for the Mississippi-Atchafalaya River Basin from the U.S. Army Corps of Engineers. The loads were estimated to support national assessments of changes in stream nutrient loads that are periodically conducted by Federal agencies (for example, U.S. Environmental Protection Agency) and other water- and land-resource organizations. Data, methods, and results of load estimates are summarized herein; including World Wide Web links to electronic ASCII text files containing the raw data. The load estimates are compared to dissolved NO2 + NO3 loads for three of the large river basins from 1971 to 1998 that the USGS provided during 2001 to The H. John Heinz III Center for Science, Economics and the Environment (The Heinz Center) for a report The Heinz Center published during 2002. Differences in the load estimates are the result of using the most up-to-date monitoring data since the 2001 analysis, differences in how concentrations less than the reporting limit were handled by the load estimation models, and some errors and exclusions in the 2001 analysis datasets (which resulted in some inaccurate load estimates).
Suspended-sediment loads in the lower Stillaguamish River, Snohomish County, Washington, 2014–15
Anderson, Scott A.; Curran, Christopher A.; Grossman, Eric E.
2017-08-03
Continuous records of discharge and turbidity at a U.S. Geological Survey (USGS) streamgage in the lower Stillaguamish River were paired with discrete measurements of suspended-sediment concentration (SSC) in order to estimate suspended-sediment loads over the water years 2014 and 2015. First, relations between turbidity and SSC were developed and used to translate the continuous turbidity record into a continuous estimate of SSC. Those concentrations were then used to predict suspended-sediment loads based on the current discharge record, reported at daily intervals. Alternative methods were used to in-fill a small number of days with either missing periods of turbidity or discharge records. Uncertainties in our predictions at daily and annual time scales were estimated based on the parameter uncertainties in our turbidity-SSC regressions. Daily loads ranged from as high as 121,000 tons during a large autumn storm to as low as –56 tons, when tidal return flow moved more sediment upstream than river discharge did downstream. Annual suspended-sediment loads for both water years were close to 1.4 ± 0.2 million tons.
Analysis of continuous GPS measurements from southern Victoria Land, Antarctica
Willis, Michael J.
2007-01-01
Several years of continuous data have been collected at remote bedrock Global Positioning System (GPS) sites in southern Victoria Land, Antarctica. Annual to sub-annual variations are observed in the position time-series. An atmospheric pressure loading (APL) effect is calculated from pressure field anomalies supplied by the European Centre for Medium-Range Weather Forecasts (ECMWF) model loading an elastic Earth model. The predicted APL signal has a moderate correlation with the vertical position time-series at McMurdo, Ross Island (International Global Navigation Satellite System Service (IGS) station MCM4), produced using a global solution. In contrast, a local solution in which MCM4 is the fiducial site generates a vertical time series for a remote site in Victoria Land (Cape Roberts, ROB4) which exhibits a low, inverse correlation with the predicted atmospheric pressure loading signal. If, in the future, known and well modeled geophysical loads can be separated from the time-series, then local hydrological loading, of interest for glaciological and climate applications, can potentially be extracted from the GPS time-series.
Beck, H J; Birch, G F
2013-06-01
Stormwater contaminant loading estimates using event mean concentration (EMC), rainfall/runoff relationship calculations and computer modelling (Model of Urban Stormwater Infrastructure Conceptualisation--MUSIC) demonstrated high variability in common methods of water quality assessment. Predictions of metal, nutrient and total suspended solid loadings for three highly urbanised catchments in Sydney estuary, Australia, varied greatly within and amongst methods tested. EMC and rainfall/runoff relationship calculations produced similar estimates (within 1 SD) in a statistically significant number of trials; however, considerable variability within estimates (∼50 and ∼25 % relative standard deviation, respectively) questions the reliability of these methods. Likewise, upper and lower default inputs in a commonly used loading model (MUSIC) produced an extensive range of loading estimates (3.8-8.3 times above and 2.6-4.1 times below typical default inputs, respectively). Default and calibrated MUSIC simulations produced loading estimates that agreed with EMC and rainfall/runoff calculations in some trials (4-10 from 18); however, they were not frequent enough to statistically infer that these methods produced the same results. Great variance within and amongst mean annual loads estimated by common methods of water quality assessment has important ramifications for water quality managers requiring accurate estimates of the quantities and nature of contaminants requiring treatment.
Mondal, Nandita; Sukumar, Raman
2016-01-01
The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.
Mondal, Nandita; Sukumar, Raman
2016-01-01
The “varying constraints hypothesis” of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels—the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)—using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied—early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia. PMID:27441689
Wilber, William G.; Crawford, Charles G.; Peters, J.G.; Girardi, F.P.
1979-01-01
A digital model calibrated to conditions in Clear Creek, Monroe County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The Winston Thomas wastewater-treatment facility is the only point-source waste load affecting the modeled reach of Clear Creek. A new waste-water-treatment facility under construction at Dillman Road (river mile 13.78) will replace the Winston Thomas wastewater-treatment facility (river mile 16.96) in 1980. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. The model indicates that ammonia-nitrogen toxicity is the most significant factor affecting the stream water quality during summer and winter low flows. The ammonia-nitrogen concentration of the wastewater effluent exceeds the maximum total ammonia-nitrogen concentration of 2.5 milligrams per liter for summer months (June through August) and 4.0 milligrams per liter for winter months (November through March) required for Indiana streams. Nitrification, benthic-oxygen demand, and algal respiration were the most significant factors affecting the dissolved-oxygen concentration in Clear Creek during the model calibration. Nitrification should not significantly affect the dissolved-oxygen concentration in Clear Creek during summer low flows when the ammonia-nitrogen toxicity standards are met. (USGS)
Manny, Bruce A.; Johnson, W.C.; Wetzel, R.G.
1994-01-01
Lakes and reservoirs provide water for human needs and habitat for aquatic birds. Managers of such waters may ask whether nutrients added by waterfowl degrade water quality. For lakes and reservoirs where primary productivity is limited by phosphorus (P), we developed a procedure that integrates annual P loads from waterfowl and other external sources, applies a nutrient load-response model, and determines whether waterfowl that used the lake or reservoir degraded water quality. Annual P loading by waterfowl can be derived from a figure in this report, using the days per year that each kind spent on any lake or reservoir. In our example, over 6500 Canada geese (Branta canadensis) and 4200 ducks (mostly mallards, Anas platyrhynchos) added 4462 kg of carbon (C), 280 kg of nitrogen (N), and 88 kg of P y-1 to Wintergreen Lake in southwestern Michigan, mostly during their migration. These amounts were 69% of all C, 27% of all N, and 70% of all P that entered the lake from external sources. Loads from all external sources totaled 840 mg P m-2 y-1. Application of a nutrient load-response model to this concentration, the hydraulic load (0.25 m y-1), and the water residence time (9.7 y) of Wintergreen Lake yielded an average annual concentration of total P in the lake of 818 mg m-3 that classified the lake as hypertrophic. This trophic classification agreed with independent measures of primary productivity, chlorophyll-a, total P, total N, and Secchi disk transparency made in Wintergreen Lake. Our procedure showed that waterfowl caused low water quality in Wintergreen Lake.
Alvarez, Nancy L.; Seiler, Ralph L.
2004-01-01
Discharge of treated municipal-sewage effluent to the Carson River in western Nevada and eastern California ceased by 1987 and resulted in a substantial decrease in phosphorus concentrations in the Carson River. Nonetheless, concentrations of total phosphorus and suspended sediment still commonly exceed beneficial-use criteria established for the Carson River by the Nevada Division of Environmental Protection. Potential sources of phosphorus in the study area include natural inputs from undisturbed soils, erosion of soils and streambanks, construction of low-head dams and their destruction during floods, manure production and grazing by cattle along streambanks, drainage from fields irrigated with streamwater and treated municipal-sewage effluent, ground-water seepage, and urban runoff including inputs from golf courses. In 2000, the U.S. Geological Survey (USGS), in cooperation with Carson Water Subconservancy District, began an investigation with the overall purpose of providing managers and regulators with information necessary to develop and implement total maximum daily loads for the Carson River. Two specific goals of the investigation were (1) to identify those reaches of the Carson River upstream from Lahontan Reservoir where the greatest increases in phosphorus and suspended-sediment concentrations and loading occur, and (2) to identify the most important sources of phosphorus within the reaches of the Carson River where the greatest increases in concentration and loading occur. Total-phosphorus concentrations in surface-water samples collected by USGS in the study area during water years 2001-02 ranged from <0.01 to 1.78 mg/L and dissolved-orthophosphate concentrations ranged from <0.01 to 1.81 mg/L as phosphorus. In streamflow entering Carson Valley from headwater areas in the East Fork Carson River, the majority of samples exceeding the total phosphorus water-quality standard of 0.1 mg/L occur during spring runoff (March, April, and May) when suspended-sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the
Saad, David A.; Schwarz, Gregory E.; Robertson, Dale M.; Booth, Nathaniel
2011-01-01
Stream-loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long-term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water-quality model, the flow-bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water-quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases.
Stamer, J.K.; Cherry, R.N.; Faye, R.E.; Kleckner, R.L.
1978-01-01
On an average annual basis and during the storm period of March 12-15, 1976, nonpoint-source loads for most constituents were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 miles downstream from Atlanta, GA. Most of the nonpoint-source constituent loads in the Atlanta to Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads and about 70 percent of the dissolved phosphorus loads at Whitesburg. During a low-flow period, June 1-2, 1977, five municipal point-sources contributed 63 percent of the ultimate biochemical oxygen demand, and 97 percent of the ammonium nitrogen loads at the Franklin station, at the upstream end of West Point Lake. Dissolved-oxygen concentrations of 4.1 to 5.0 milligrams per liter occurred in a 22-mile reach of the river downstream from Atlanta due about equally to nitrogenous and carbonaceous oxygen demands. The heat load from two thermoelectric powerplants caused a decrease in dissolved-oxygen concentration of about 0.2 milligrams per liter. Phytoplankton concentrations in West Point Lake, about 70 miles downstream from Atlanta, could exceed three million cells per millimeter during extended low-flow periods in the summer with present point-source phosphorus loads. (Woodard-USGS)
Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.
2014-01-01
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.
Hancock, Leanne G; Walker, Sally E; Pérez-Huerta, Alberto; Bowser, Samuel S
2015-01-01
We studied the population dynamics and parasite load of the foraminifer Cibicides antarcticus on its host the Antarctic scallop Adamussium colbecki from three localities differing by sea ice cover within western McMurdo Sound, Ross Sea, Antarctica: Explorers Cove, Bay of Sails and Herbertson Glacier. We also estimated CaCO3 biomass and annual production for both species. Cibicides populations varied by locality, valve type, and depth. Explorers Cove with multiannual sea ice had larger populations than the two annual sea ice localities, likely related to differences in nutrients. Populations were higher on Adamussium top valves, a surface that is elevated above the sediment. Depth did not affect Cibicides distributions except at Bay of Sails. Cibicides parasite load (the number of complete boreholes in Adamussium valves) varied by locality between 2% and 50%. For most localities the parasite load was < 20%, contrary to a previous report that ~50% of Cibicides were parasitic. The highest and lowest parasite load occurred at annual sea ice localities, suggesting that sea ice condition is not important. Rather, the number of adults that are parasitic could account for these differences. Cibicides bioerosion traces were categorized into four ontogenetic stages, ranging from newly attached recruits to parasitic adults. These traces provide an excellent proxy for population structure, revealing that Explorers Cove had a younger population than Bay of Sails. Both species are important producers of CaCO3. Cibicides CaCO3 biomass averaged 47-73 kg ha(-1) and Adamussium averaged 4987-6806 kg ha(-1) by locality. Annual production rates were much higher. Moreover, Cibicides represents 1.0-2.3% of the total host-parasite CaCO3 biomass. Despite living in the coldest waters on Earth, these species can contribute a substantial amount of CaCO3 to the Ross Sea and need to be incorporated into food webs, ecosystem models, and carbonate budgets for Antarctica.
Pérez-Huerta, Alberto; Bowser, Samuel S.
2015-01-01
We studied the population dynamics and parasite load of the foraminifer Cibicides antarcticus on its host the Antarctic scallop Adamussium colbecki from three localities differing by sea ice cover within western McMurdo Sound, Ross Sea, Antarctica: Explorers Cove, Bay of Sails and Herbertson Glacier. We also estimated CaCO3 biomass and annual production for both species. Cibicides populations varied by locality, valve type, and depth. Explorers Cove with multiannual sea ice had larger populations than the two annual sea ice localities, likely related to differences in nutrients. Populations were higher on Adamussium top valves, a surface that is elevated above the sediment. Depth did not affect Cibicides distributions except at Bay of Sails. Cibicides parasite load (the number of complete boreholes in Adamussium valves) varied by locality between 2% and 50%. For most localities the parasite load was < 20%, contrary to a previous report that ~50% of Cibicides were parasitic. The highest and lowest parasite load occurred at annual sea ice localities, suggesting that sea ice condition is not important. Rather, the number of adults that are parasitic could account for these differences. Cibicides bioerosion traces were categorized into four ontogenetic stages, ranging from newly attached recruits to parasitic adults. These traces provide an excellent proxy for population structure, revealing that Explorers Cove had a younger population than Bay of Sails. Both species are important producers of CaCO3. Cibicides CaCO3 biomass averaged 47-73 kg ha-1 and Adamussium averaged 4987-6806 kg ha-1 by locality. Annual production rates were much higher. Moreover, Cibicides represents 1.0-2.3% of the total host-parasite CaCO3 biomass. Despite living in the coldest waters on Earth, these species can contribute a substantial amount of CaCO3 to the Ross Sea and need to be incorporated into food webs, ecosystem models, and carbonate budgets for Antarctica. PMID:26186724
Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; ,
1992-01-01
The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be <2% of the annual application of each herbicide in the Midwest.
Henneberg, Mark F.
2018-04-23
The Gunnison Basin Selenium Management Program implemented a water-quality monitoring network in 2011 in the lower Gunnison River Basin in Colorado. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents the percentile values of selenium because regulatory agencies in Colorado make decisions based on the U.S. Environmental Protection Agency (EPA) Clean Water Act Section 303(d) that uses percentile values of concentration. Also presented are dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for water years (WYs) 2011–2016 (October 1, 2010, through September 30, 2016). Annual dissolved-selenium loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations. Annual dissolved-selenium loads for WY 2011 through WY 2016 ranged from 179 and 391 pounds (lb) at Uncompahgre River at Colona to 11,100 and 17,300 lb at Gunnison River near Grand Junction (herein called Whitewater), respectively. Instantaneous loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations and 13 ancillary sites where discrete water-quality sampling also took place, using discrete water-quality samples and the associated discharge measurements collected during the period. Median instantaneous loads ranged from 0.01 pound per day (lb/d) at Smith Fork near Lazear to 33.0 lb/d at Whitewater. Mean instantaneous loads ranged from 0.06 lb/d at Smith Fork near Lazear to 36.2 lb/d at Whitewater. Most tributary sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb/day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream. The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected sites. Annual 85th percentiles for dissolved selenium were calculated for the five core sites having USGS streamflow-gaging stations using estimated dissolved-selenium concentrations from linear regression models. The 85th-percentile concentrations for WYs 2011–2016 based on this method ranged from 0.62 µg/L and 1.1µg/L at Uncompahgre River at Colona to 12.1 µg/L and 18.7 µg/L at Uncompahgre River at Delta. The 85th percentiles for dissolved selenium also were calculated for sites with sufficient data using water-quality samples collected during WYs 2011–2016. The annual 85th-percentile concentrations based on the discrete samples ranged from 0.16 µg/L and 0.17 µg/L at Gunnison River below Gunnison Tunnel to 62.2 µg/L and 170 µg/L at Loutzenhizer Arroyo at North River Road. A trend analysis was completed for Whitewater to determine if dissolved-selenium loads are increasing or decreasing. The trend analysis indicates a decrease of 9,100 lb from WY 1986 to WY 2016, a 40.8 percent reduction during the time period. The trend analysis for the annual dissolved-selenium load for WY 1994 to WY 2016 indicates a decrease of 6,300 lb per year, or 33.3 percent.
Tanner, Chris C; Sukias, James P S
2011-01-01
Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.
NASA Astrophysics Data System (ADS)
Allison, M. A.; Biedenharn, D. S.; Dahl, T. A.; Kleiss, B.; Little, C. D.
2017-12-01
Annual suspended sediment loads and water discharges were calculated in the Mississippi River mainstem channel, and at the most downstream gaging station for major tributaries, from below the Missouri confluence near St. Louis, MO to Belle Chasse, LA, as well as down the Atchafalaya distributary for water years 1990 to 2013. The purpose of the present study was to assess changes in the Mississippi River sediment budget over the past half century, and to examine the continuing role that anthropogenic (e.g., dams, river control works, soil conservation practices) and natural (e.g., rainfall and denudation rates) factors have in controlling these changes. Sixteen of the 17 measured Mississippi River tributaries decreased in total suspended sediment load) from 1970-1978 to 1990-2013. The largest decreases occurred in the 2nd (Ohio River, 41% of 1970-1978) and 4th (Arkansas River, 45% of 1970-1978) largest water sources to the Mississippi. The Missouri River remains the largest Mississippi River tributary in terms of average annual suspended sediment flux; its relative contribution increased from 38% to 51% of the total flux from the 17 measured tributaries, even as its total suspended flux declined by 13%. Averaged over the period of study (WY 1990-2013), water flux increased by 468% and sediment flux increased by 37,418% downstream from the Gavin's Point Dam to the confluence with the Mississippi. Possible reasons for this disproportional increase in suspended sediment load downstream include sediment-rich contributions from 2nd order rivers below the dams and channel incision. Suggested station improvements to the system include improved monitoring of the Upper Mississippi and Arkansas River tributaries, establishing additional mainstem stations in the reach between Thebes, IL and Arkansas City, AR, and standardization of laboratory and field methodologies to eliminate a major source of station-to-station and time-series variability in the sediment budgeting.
Dissolved Solids in Streams of the Conterminous United States
NASA Astrophysics Data System (ADS)
Anning, D. W.; Flynn, M.
2014-12-01
Studies have shown that excessive dissolved-solids concentrations in water can have adverse effects on the environment and on agricultural, municipal, and industrial water users. Such effects motivated the U.S. Geological Survey's National Water-Quality Assessment Program to develop a SPAtially-Referenced Regression on Watershed Attributes (SPARROW) model to improve the understanding of dissolved solids in streams of the United States. Using the SPARROW model, annual dissolved-solids loads from 2,560 water-quality monitoring stations were statistically related to several spatial datasets serving as surrogates for dissolved-solids sources and transport processes. Sources investigated in the model included geologic materials, road de-icers, urban lands, cultivated lands, and pasture lands. Factors affecting transport from these sources to streams in the model included climate, soil, vegetation, terrain, population, irrigation, and artificial-drainage characteristics. The SPARROW model was used to predict long-term mean annual conditions for dissolved-solids sources, loads, yields, and concentrations in about 66,000 stream reaches and corresponding incremental catchments nationwide. The estimated total amount of dissolved solids delivered to the Nation's streams is 272 million metric tons (Mt) annually, of which 194 million Mt (71%) are from geologic sources, 38 million Mt (14%) are from road de-icers, 18 million Mt (7%) are from pasture lands, 14 million Mt (5 %) are from urban lands, and 8 million Mt (3%) are from cultivated lands. The median incremental-catchment yield delivered to local streams is 26 metric tons per year per square kilometer [(Mt/yr)/km2]. Ten percent of the incremental catchments yield less than 4 (Mt/yr)/km2, and 10 percent yield more than 90 (Mt/yr)/km2. In 13% of the reaches, predicted flow-weighted concentrations exceed 500 mg/L—the U.S. Environmental Protection Agency secondary non-enforceable drinking-water standard.
Watershed-scale drivers of air-water CO2 exchanges in two lagoonal, North Carolina (USA) estuaries
NASA Astrophysics Data System (ADS)
Van Dam, B.; Crosswell, J.; Anderson, I. C.; Paerl, H. W.
2017-12-01
Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology, but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m2 d-1 in the NeuseRE and NewRE, respectively. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Large-scale pCO2 variations were driven by changes in freshwater age (akin to residence time), which modulate nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 under-saturation was observed at intermediate freshwater ages, between 2-3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence overall ecosystem health and response to future perturbation.
Watershed-Scale Drivers of Air-Water CO2 Exchanges in Two Lagoonal North Carolina (USA) Estuaries
NASA Astrophysics Data System (ADS)
Van Dam, Bryce R.; Crosswell, Joseph R.; Anderson, Iris C.; Paerl, Hans W.
2018-01-01
Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m-2 d-1 in the NeuseRE and NewRE, respectively. Large-scale pCO2 variations were driven by changes in freshwater age, which modulates nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 undersaturation was observed at intermediate freshwater ages, between 2 and 3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence ecosystem biogeochemical cycling, trophic state, and response to future perturbations.
Solar-heated and cooled savings and loan building-1-Leavenworth, Kanasas
NASA Technical Reports Server (NTRS)
1981-01-01
Report describes heating and cooling system which furnishes 90 percent of annual heating load, 70 percent of cooling load, and all hot water for two-story building. Roof-mounted flat-plate collectors allow three distinct flow rates and are oriented south for optimum energy collection. Building contains fully automated temperature controls is divided into five temperature-load zones, each with independent heat pump.
NASA Astrophysics Data System (ADS)
Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun
2013-03-01
Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.
Crustal displacements due to continental water loading
Van Dam, T.; Wahr, J.; Milly, P.C.D.; Shmakin, A.B.; Blewitt, G.; Lavallee, D.; Larson, K.M.
2001-01-01
The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (??rM) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm, with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare ??rM with observed Global Positioning System (GPS) heights (??rO) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the ??rO time series are adjusted by ??rM, their variances are reduced, on average, by an amount equal to the variance of the ??rM. Of the ??rO time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the ??rM. The ??rM time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.
Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington
Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.
2009-01-01
Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.
NASA Astrophysics Data System (ADS)
Saleh, D.; Domagalski, J. L.; Smith, R. A.
2016-12-01
The SPARROW (SPAtially-Referenced Regression On Watershed Attributes) model, developed by the U.S. Geological Survey, has been used to identify and quantify the sources of nitrogen and phosphorus in watersheds and to predict their fluxes and concentration at specified locations downstream. Existing SPARROW models use a hybrid statistical approach to describe an annual average ("steady-state") relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. Although these annual models are useful for some management purposes, many water quality issues stem from intra- and inter-annual changes in constituent sources, hydrologic forcing, or other environmental conditions, which cause a lag between watershed inputs and stream water quality. We are developing a seasonal dynamic SPARROW model of sources, fluxes, and yields of phosphorus for the watershed (approximately 9,700 square kilometers) draining to Upper Klamath Lake, Oregon. The lake is hyper-eutrophic and various options are being considered for water quality improvement. The model was calibrated with 11 years of water quality data (2000 to 2010) and simulates seasonal loads and yields for a total of 44 seasons. Phosphorus sources to the watershed include animal manure, farm fertilizer, discharges of treated wastewater, and natural sources (soil and streambed sediment). The model predicts that phosphorus delivery to the lake is strongly affected by intra- and inter-annual changes in precipitation and by temporary seasonal storage of phosphorus in the watershed. The model can be used to predict how different management actions for mitigating phosphorus sources might affect phosphorus loading to the lake as well as the time required for any changes in loading to occur following implementation of the action.
Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15
Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.
2017-02-23
The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.
Daylighting performance and thermal implications of skylights vs. south-facing roof monitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, M.; Coldham, B.
1997-12-31
This paper reports the results of a comparison of skylights vs. south-facing roof monitors for daylighting the north wall zone of a 10,000 ft{sup 2} office building near Manchester, NH. A physical model was constructed and tested. Simultaneously, the building`s annual thermal performance was modeled with Energy-10 hourly simulation software, and its peak heating and cooling load performance was modeled with the Carrier Corp. Hourly Analysis Program (HAP). Apertures were built into the roof of the model, and several skylight and south-facing roof monitor configurations were tested in both clear and overcast conditions. A design goal was to have themore » building be daylit on overcast as well as clear days. This goal was based more on enhancement of the working environment than it was on electrical energy savings. Monitors with overhangs performed poorly in the overcast conditions--it was determined that 2.4 times as much monitor aperture was needed to yield equivalent light levels in overcast conditions. The thermal models showed that the annual heating and cooling energy cost for the building was the same for either strategy, but that peak cooling loads and peak heating loads were lower with the skylit version. The authors concluded that skylights were preferred over monitors in this application, due to similar annual energy costs, lower peak loads, and lower construction cost.« less
NASA Astrophysics Data System (ADS)
Qazi, N. U. Q.; Bruijnzeel, S., Sr.; Rai, S. P., Sr.
2015-12-01
Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bedload) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and streamflow and showed a 10-63 fold range between wet and dry years. Of the annual load, some 93% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 1.9-fold (suspended sediment) to 5.9-fold (bedload) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.6 times and 4.6 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.69 and 1.04 mm per 1000 years, respectively.
Lambing, John H.; Sando, Steven K.
2009-01-01
This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112 percent of the long-term mean annual peak flow (15,600 ft3/s). About 81 percent of the annual flow volume was discharged during the post-breach period. Daily loads of suspended sediment were estimated directly by using high-frequency sampling of the daily sediment monitoring. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to either streamflow or suspended-sediment discharge. Regression equations for estimating trace-element discharge in water year 2008 were developed from instantaneous streamflow and concentration data for periodic water-quality samples collected during all or part of water years 2004-08. The equations were applied to records of daily mean streamflow or daily suspended-sediment loads to produce estimated daily trace-element loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. Relatively small to moderately large daily net losses from the project area were common during the pre-breach period when low-flow conditions were prevalent. Outflow loads from the project area sharply increased immediately after the breaching of Milltown Dam and during the rising limb and peak flow of the annual hydrograph. Net losses of suspended sediment and trace elements from the project area decreased as streamflow decreased during the summer, eventually becoming small or reaching an approximate net balance between inflow and outflow. Estimated daily loads of suspended sediment and trace elements for all three stations were summed to determine cumulative inflow and outflow loads for the pre-breach and post-breach periods, as well as for the entire water year 2008. Overall, the mass balance between the combined inflow loads from two upstream source areas (upper Clark Fork and Blackfoot River basins) and the outflow loads at Clark Fork above Missoula indicates net losses
Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-05-28
Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wilkinson, S N; Dougall, C; Kinsey-Henderson, A E; Searle, R D; Ellis, R J; Bartley, R
2014-01-15
The use of river basin modelling to guide mitigation of non-point source pollution of wetlands, estuaries and coastal waters has become widespread. To assess and simulate the impacts of alternate land use or climate scenarios on river washload requires modelling techniques that represent sediment sources and transport at the time scales of system response. Building on the mean-annual SedNet model, we propose a new D-SedNet model which constructs daily budgets of fine sediment sources, transport and deposition for each link in a river network. Erosion rates (hillslope, gully and streambank erosion) and fine sediment sinks (floodplains and reservoirs) are disaggregated from mean annual rates based on daily rainfall and runoff. The model is evaluated in the Burdekin basin in tropical Australia, where policy targets have been set for reducing sediment and nutrient loads to the Great Barrier Reef (GBR) lagoon from grazing and cropping land. D-SedNet predicted annual loads with similar performance to that of a sediment rating curve calibrated to monitored suspended sediment concentrations. Relative to a 22-year reference load time series at the basin outlet derived from a dynamic general additive model based on monitoring data, D-SedNet had a median absolute error of 68% compared with 112% for the rating curve. RMS error was slightly higher for D-SedNet than for the rating curve due to large relative errors on small loads in several drought years. This accuracy is similar to existing agricultural system models used in arable or humid environments. Predicted river loads were sensitive to ground vegetation cover. We conclude that the river network sediment budget model provides some capacity for predicting load time-series independent of monitoring data in ungauged basins, and for evaluating the impact of land management on river sediment load time-series, which is challenging across large regions in data-poor environments. © 2013. Published by Elsevier B.V. All rights reserved.
We describe results obtained with a simple model that uses loading rates of total nitrogen (TN), defined as dissolved inorganic nitrogen plus dissolved and particulate organic nitrogen, to calculate annually and spatially averaged concentrations of TN in coastal embayments. We al...
A MODEL OF ESTUARY RESPONSE TO NITROGEN LOADING AND FRESHWATER RESIDENCE TIME
We have developed a deterministic model that relates average annual nitrogen loading rate and water residence time in an estuary to in-estuary nitrogen concentrations and loss rates (e.g. denitrification and incorporation in sediments), and to rates of nitrogen export across the ...
Ki, Seo Jin; Ray, Chittaranjan; Hantush, Mohamed M
2015-06-15
A large-scale leaching assessment tool not only illustrates soil (or groundwater) vulnerability in unmonitored areas, but also can identify areas of potential concern for agrochemical contamination. This study describes the methodology of how the statewide leaching tool in Hawaii modified recently for use with pesticides and volatile organic compounds can be extended to the national assessment of soil vulnerability ratings. For this study, the tool was updated by extending the soil and recharge maps to cover the lower 48 states in the United States (US). In addition, digital maps of annual pesticide use (at a national scale) as well as detailed soil properties and monthly recharge rates (at high spatial and temporal resolutions) were used to examine variations in the leaching (loads) of pesticides for the upper soil horizons. Results showed that the extended tool successfully delineated areas of high to low vulnerability to selected pesticides. The leaching potential was high for picloram, medium for simazine, and low to negligible for 2,4-D and glyphosate. The mass loadings of picloram moving below 0.5 m depth increased greatly in northwestern and central US that recorded its extensive use in agricultural crops. However, in addition to the amount of pesticide used, annual leaching load of atrazine was also affected by other factors that determined the intrinsic aquifer vulnerability such as soil and recharge properties. Spatial and temporal resolutions of digital maps had a great effect on the leaching potential of pesticides, requiring a trade-off between data availability and accuracy. Potential applications of this tool include the rapid, large-scale vulnerability assessments for emerging contaminants which are hard to quantify directly through vadose zone models due to lack of full environmental data. Copyright © 2015 Elsevier Ltd. All rights reserved.
Miller, Matthew P.; Tesoriero, Anthony J.; Capel, Paul D.; Pellerin, Brian A.; Hyer, Kenneth E.; Burns, Douglas A.
2016-01-01
We describe a new approach that couples hydrograph separation with high-frequency nitrate data to quantify time-variable groundwater and runoff loading of nitrate to streams, and the net in-stream fate of nitrate at the watershed-scale. The approach was applied at three sites spanning gradients in watershed size and land use in the Chesapeake Bay watershed. Results indicate that 58-73% of the annual nitrate load to the streams was groundwater-discharged nitrate. Average annual first order nitrate loss rate constants (k) were similar to those reported in both modelling and in-stream process-based studies, and were greater at the small streams (0.06 and 0.22 d-1) than at the large river (0.05 d-1), but 11% of the annual loads were retained/lost in the small streams, compared with 23% in the large river. Larger streambed area to water volume ratios in small streams result in greater loss rates, but shorter residence times in small streams result in a smaller fraction of nitrate loads being removed than in larger streams. A seasonal evaluation of k values suggests that nitrate was retained/lost at varying rates during the growing season. Consistent with previous studies, streamflow and nitrate concentration were inversely related to k. This new approach for interpreting high-frequency nitrate data and the associated findings furthers our ability to understand, predict, and mitigate nitrate impacts on streams and receiving waters by providing insights into temporal nitrate dynamics that would be difficult to obtain using traditional field-based studies.
Ide, Jun'ichiro; Chiwa, Masaaki; Higashi, Naoko; Maruno, Ryoko; Mori, Yasushi; Otsuki, Kyoichi
2012-08-01
This study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (∑L) and cumulative stream discharge (∑Q). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (∑L-∑Q) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ∑L and ∑Q. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ∑L-∑Q equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.
Mouri, Goro
2015-11-15
For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity appears to vary exponentially, this phenomenon has an impact on the management of social capital, such as drinking water services. Prediction of the impacts of future climate change on fluvial wash-load sediment is crucial for effective environmental planning and the management of social capital to adapt to the next century. We demonstrate that simulations comprise an ensemble of factors, including multiple physical configurations, associated with the wash-load component for the whole of Japan. Copyright © 2015 Elsevier B.V. All rights reserved.
Lu, Xiaotian; Song, Shuai; Lu, Yonglong; Wang, Tieyu; Liu, Zhaoyang; Li, Qifeng; Zhang, Meng; Suriyanarayanan, Sarvajayakesavalu; Jenkins, Alan
2017-10-18
Eutrophication has become one of the most serious threats to aquatic ecosystems in the world. With the combined drivers of climate change and human activities, eutrophication has expanded from warm shallow lakes to cold-water lakes in relatively high latitude regions and has raised greater concerns over lake aquatic ecosystem health. A two-year field study was carried out to investigate water quality, phytoplankton characteristics and eutrophication status in a typical alpine glacial lake of Tianchi, a scenic area and an important drinking water source in the Xinjiang Autonomous Region of China, in 2014 and 2015. Clear seasonal and annual variations of nutrients and organic pollutants were found especially during rainy seasons. For the phytoplankton community, Bacillariophyta held the dominant position in terms of both species and biomass throughout the year, suggesting the dominant characteristics of diatoms in the phytoplankton structure in such a high-altitude cold-water lake. This was quite different from plain and warm lakes troubled with cyanobacterial blooming. Moreover, the dominant abundance of Cyclotella sp. in Tianchi might suggest regional warming caused by climate change, which might have profound effects on the local ecosystems and hydrological cycle. Based on water quality parameters, a comprehensive trophic level index TLI (Σ) was calculated to estimate the current status of eutrophication, and the results inferred emerging eutrophication in Tianchi. Results from Canonical Correspondence Analysis (CCA) and correlation analysis of phytoplankton genera and physico-chemical variables of water indicated that abiotic factors significantly influenced the phytoplankton community and its succession in Tianchi Lake. These abiotic factors could explain 77.82% of the total variance, and ammonium was identified as the most discriminant variable, which could explain 41% of the total variance followed by TP (29%). An estimation of annual nutrient loadings to Tianchi was made, and the results indicated that about 212.97 t of total nitrogen and 32.14 t of total phosphorus were transported into Tianchi Lake annually. Human socio-economic activities (runoff caused by historical overgrazing and increasing tourism) were identified as the most important contributors to Tianchi nutrient loadings.
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.
2010-10-01
In this study the frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone values and their influence on mean values and trends are analyzed for the world's longest total ozone record (Arosa, Switzerland). The results show (i) an increase in ELOs and (ii) a decrease in EHOs during the last decades and (iii) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading of ozone depleting substances leads to a continuous modification of column ozone in the Northern Hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). Application of extreme value theory allows the identification of many more such "fingerprints" than conventional time series analysis of annual and seasonal mean values. The analysis shows in particular the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone. Overall the approach to extremal modelling provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values.
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.
2010-05-01
In this study the frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone values and their influence on mean values and trends are analyzed for the world's longest total ozone record (Arosa, Switzerland). The results show (a) an increase in ELOs and (b) a decrease in EHOs during the last decades and (c) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading of ozone depleting substances leads to a continuous modification of column ozone in the Northern Hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). Application of extreme value theory allows the identification of many more such "fingerprints" than conventional time series analysis of annual and seasonal mean values. The analysis shows in particular the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone. Overall the approach to extremal modelling provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values.
Rasmussen, Teresa J.; Ziegler, Andrew C.; Rasmussen, Patrick P.
2005-01-01
The lower Kansas River is an important source of drinking water for hundreds of thousands of people in northeast Kansas. Constituents of concern identified by the Kansas Department of Health and Environment (KDHE) for streams in the lower Kansas River Basin include sulfate, chloride, nutrients, atrazine, bacteria, and sediment. Real-time continuous water-quality monitors were operated at three locations along the lower Kansas River from July 1999 through September 2004 to provide in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen and to estimate concentrations for constituents of concern. Estimates of concentration and densities were combined with streamflow to calculate constituent loads and yields from January 2000 through December 2003. The Wamego monitoring site is located 44 river miles upstream from the Topeka monitoring site, which is 65 river miles upstream from the DeSoto monitoring site, which is 18 river miles upstream from where the Kansas River flows into the Missouri River. Land use in the Kansas River Basin is dominated by grassland and cropland, and streamflow is affected substantially by reservoirs. Water quality at the three monitoring sites varied with hydrologic conditions, season, and proximity to constituent sources. Nutrient and sediment concentrations and bacteria densities were substantially larger during periods of increased streamflow, indicating important contributions from nonpoint sources in the drainage basin. During the study period, pH remained well above the KDHE lower criterion of 6.5 standard units at all sites in all years, but exceeded the upper criterion of 8.5 standard units annually between 2 percent of the time (Wamego in 2001) and 65 percent of the time (DeSoto in 2003). The dissolved oxygen concentration was less than the minimum aquatic-life-support criterion of 5.0 milligrams per liter less than 1 percent of the time at all sites. Dissolved solids, a measure of the dissolved material in water, exceeded 500 milligrams per liter about one-half of the time at the three Kansas River sites. Larger dissolved-solids concentrations upstream likely were a result of water inflow from the highly mineralized Smoky Hill River that is diluted by tributary flow as it moves downstream. Concentrations of total nitrogen and total phosphorus at the three monitoring sites exceeded the ecoregion water-quality criteria suggested by the U.S. Environmental Protection Agency during the entire study period. Median nitrogen and phosphorus concentrations were similar at all three sites, and nutrient load increased moving from the upstream to downstream sites. Total nitrogen and total phosphorus yields were nearly the same from site to site indicating that nutrient sources were evenly distributed throughout the lower Kansas River Basin. About 11 percent of the total nitrogen load and 12 percent of the total phosphorus load at DeSoto during 2000-03 originated from wastewater-treatment facilities. Escherichia coli bacteria densities were largest at the middle site, Topeka. On average, 83 percent of the annual bacteria load at DeSoto during 2000-03 occurred during 10 percent of the time, primarily in conjunction with runoff. The average annual sediment loads at the middle and downstream monitoring sites (Topeka and DeSoto) were nearly double those at the upstream site (Wamego). The average annual sediment yield was largest at Topeka. On average, 64 percent of the annual suspended-sediment load at DeSoto during 2000-03 occurred during 10 percent of the time. Trapping of sediment by reservoirs located on contributing tributaries decreases transport of sediment and sediment-related constituents. The average annual suspended-sediment load in the Kansas River at DeSoto during 2000-03 was estimated at 1.66 million tons. An estimated 13 percent of this load consisted of sand-size particles, so approximately 216,000 tons of sand were transported
Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.
2006-01-01
Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day.The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 72 to 241 tons per day with a mean of 110 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 40,200 tons. Of this 40,200 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley.The variation of δ87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the δ87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the δ87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos Shale. The boron concentration and δ11B value for the water sample from Antelope Wash, being distinctly different from water samples from other sites, is evidence that water in Antelope Wash may contain a substantial component of regional ground-water flow.
NASA Astrophysics Data System (ADS)
Kumar, Saurav; Godrej, Adil N.; Grizzard, Thomas J.
2016-09-01
Pre-development conditions are an easily understood state to which watershed nonpoint nutrient reduction targets may be referenced. Using the pre-development baseline, a "developed-excess" measure may be computed for changes due to anthropogenic development. Developed-excess is independent of many geographical, physical, and hydrological characteristics of the region and after normalization by area may be used for comparison among various sub-sets of the watershed, such as jurisdictions or land use types. We have demonstrated this method by computing pre-development nitrogen and phosphorus loads entering the Occoquan Reservoir from its tributary watershed in Northern Virginia. The pre-development loads in this study were computed using the calibrated water quality models for the period 2002-2007. Current forest land was used as a surrogate for pre-development land use conditions for the watershed and developed-excess was estimated for fluvial loads of Total Inorganic Nitrogen (TIN) and Orthophosphate-Phosphorus (OP) by subtracting simulated predevelopment loads from observed loads. It was observed that within the study period (2002-2007), the average annual developed-excess represented about 30% of the TIN and OP average annual loads exported to the reservoir. Comparison of the two disturbed land use types, urban and agricultural, showed that urban land uses exported significantly more excess nonpoint nutrient load per unit area than agricultural land uses.
Savoie, Jennifer G.; DeSimone, Leslie A.; Mullaney, John R.; Zimmerman, Marc J.; Waldron, Marcus C.
2016-10-24
Treated effluent discharged from municipal wastewater-treatment plants to the Assabet River in central Massachusetts includes phosphorus, which leads to increased growth of nuisance aquatic plants that decrease the river’s water quality and aesthetics in impounded reaches during the growing season. To improve the river’s water quality and aesthetics, the U.S. Environmental Protection Agency approved a total maximum daily load for phosphorus in 2004 that directed the wastewater-treatment plants to reduce the amount of total phosphorus discharged to the river by 2012. The permitted total phosphorus monthly average of 0.75 milligrams per liter during the aquatic plant growing season (April 1 through October 31) was reduced by the total maximum daily load to a target of 0.1 milligrams per liter by 2012, and the nongrowing-season limit was unchanged at 1.0 milligrams per liter.From October 2008 through April 2014, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, measured streamflow and collected weekly flow-proportional, composite samples of water from the Assabet River for analysis of concentrations of total phosphorus and orthophosphate. Streamflow and concentration data were used to estimate total phosphorus and orthophosphate loads in the river. The purpose of this monitoring effort was to evaluate phosphorus concentrations and loads in the river before, during, and after the wastewater-treatment-plant upgrades and to assess the effects of seasonal differences in permitted discharges. The locations of water-quality-monitoring stations, with respect to the Hudson and Ben Smith impoundments, enabled examination of effects of phosphorus entering and leaving the impoundments.Annual median concentrations of total phosphorus in wastewater-treatment plants were reduced by more than 80 percent with the plant upgrades. Measured instream annual median concentrations of total phosphorus in the Assabet River decreased by about 38 to 50 percent at three of the four monitoring stations following the wastewater-treatment-plant upgrades. At the station farthest upstream, the median total phosphorus concentration remained unchanged throughout the study; this may be attributed to the site location and potential resuspension of particulate organic matter during periods of increased streamflow. Annual median loads from the wastewater-treatment plants were reduced by up to 91 percent following the upgrades, instream annual median total phosphorus loads at the three downstream stations decreased by 71 to 76 percent, and instream orthophosphate loads at the three downstream stations decreased by 79 to 87 percent.Seasonal fluctuations (growing versus nongrowing) of total phosphorus and orthophosphate were observed instream before the upgrades. However, after the upgrades, fluctuations in phosphorus released from the treatment plants were slight and seasonal changes were typically not observed instream.Annual loads entering and leaving the two impoundments were inconclusive in determining whether the impoundments were sources or sinks of total phosphorus during the study. Total phosphorus loads entering the Hudson impoundment were consistently greater than those leaving; however, there was uncertainty about the loads at the monitoring station upstream from this impoundment. At the Ben Smith impoundment, total phosphorus and orthophosphate loads downstream were slightly greater than those upstream from the impoundment, but the differences may reflect additions from tributaries and overland runoff.Estimated instream total phosphorus concentrations and loads indicated that the decreases in total phosphorus in wastewater-treatment-plant discharges were accompanied by reductions measured in the Assabet River. A statistical analysis which incorporates the effect of varying flow conditions demonstrated significant reductions in total phosphorus concentrations after the wastewater-treatment-plant upgrades at three of the four instream monitoring stations. No significant change was observed at the most upstream location, the Assabet River at Port Street at Hudson, Massachusetts (station number 01096835), which may have been affected by flow-related resuspension of particulate phosphorus.
Study of fuel cell on-site, integrated energy systems in residential/commercial applications
NASA Technical Reports Server (NTRS)
Wakefield, R. A.; Karamchetty, S.; Rand, R. H.; Ku, W. S.; Tekumalla, V.
1980-01-01
Three building applications were selected for a detailed study: a low rise apartment building; a retail store, and a hospital. Building design data were then specified for each application, based on the design and construction of typical, actual buildings. Finally, a computerized building loads analysis program was used to estimate hourly end use load profiles for each building. Conventional and fuel cell based energy systems were designed and simulated for each building in each location. Based on the results of a computer simulation of each energy system, levelized annual costs and annual energy consumptions were calculated for all systems.
Combined sewer overflows: an environmental source of hormones and wastewater micropollutants
Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.
Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536
Expansion of the MANAGE database with forest and drainage studies
USDA-ARS?s Scientific Manuscript database
The “Measured Annual Nutrient loads from AGricultural Environments” (MANAGE) database was published in 2006 to expand an early 1980’s compilation of nutrient export (load) data from agricultural land uses at the field or farm spatial scale. Then in 2008, MANAGE was updated with 15 additional studie...
Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads
We describe a model called Regional Hydrologic Modeling for Environmental Evaluation 16 (RHyME2) for quantifying annual nutrient loads in stream networks and watersheds. RHyME2 is 17 a cross-scale statistical and process-based water-quality model. The model ...
Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty
Annual total suspended solid (TSS) loads in the Mae Sa Catchment in northern Thailand, determined with an automated, turbidity-based monitoring approach, were approximately 62,000, 33,000, and 14,000 Mg during the three years of observation. These loads were equivalent to basin y...
Generalized sediment budgets of the Lower Missouri River, 1968–2014
Heimann, David C.
2016-09-13
Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and determine a suspended-sediment budget for selected annual, monthly, and daily time increments. The temporal changes in the cumulative annual budget residuals were poorly correlated with the comparatively steady 1968–2011 annual stage trends at the Missouri River at Nebraska City, Nebr., station. An accurate total sediment budget is developed by having concurrent data available for all primary suspended and bedload components for a reach of interest throughout a period. Such a complete budget, with concurrent record for suspended-sediment load and bedload components, is unavailable for any reach and period in the Lower Missouri River. The primary data gaps are in bedload data, and also in suspended-sediment gains and losses including ungaged tributary inputs and sediment storage. Bedload data gaps in the Missouri River Basin are much more prevalent than suspended-sediment data gaps, and the first step in the development of reach bedload budgets is the establishment of a standardized bedload monitoring program at main-stem stations.The temporal changes in flow-adjusted suspended-sediment concentrations analyzed at main-stem Missouri River stations indicated an overall downward change in concentrations between 1968 and 2014. Temporary declines in flow-adjusted suspended-sediment concentrations during and following large floods were evident but generally returned to near pre-flood values within about 6 months.Data uncertainties associated with the development of a sediment budget include uncertainties associated with the collection of suspended-sediment and bedload data and the computation of suspended-sediment loads. These uncertainties vary depending on the frequency of data collection, the variability of conditions being represented by the discrete samples, and the statistical approach to suspended-sediment load computations. The coefficients of variation of suspended-sediment loads of Missouri River tributary stations for 1968–2014 were greater, 75.0 percent, than the main-stem stations, 47.1 percent. The lower coefficient of variation at main-stem stations compared to tributaries, primarily is the result of the lower variability in streamflow and sediment discharge identified at main-stem stations. To obtain similar accuracy between suspended-sediment loads at main-stem and tributary stations, a longer period of record is required of the tributary stations. During 1968–2014, however, the Missouri River main-stem station record was much more complete (87 percent) than the tributary station record (28 percent).
Pollution loads in urban runoff and sanitary wastewater.
Taebi, Amir; Droste, Ronald L
2004-07-05
While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.
Volk, J.A.; Scudlark, J.R.; Savidge, K.B.; Andres, A.S.; Stenger, R.J.; Ullman, W.J.
2012-01-01
Monthly phosphorus loads from uplands, atmospheric deposition, and wastewater to Rehoboth Bay (Delaware) were determined from October 1998 to April 2002 to evaluate the relative importance of these three sources of P to the Bay. Loads from a representative subwatershed were determined and used in an areal extrapolation to estimate the upland load from the entire watershed. Soluble reactive phosphorus (SRP) and dissolved organic P (DOP) are the predominant forms of P in baseflow and P loads from the watershed are highest during the summer months. Particulate phosphorus (PP) becomes more significant in stormflow and during periods with more frequent or larger storms. Atmospheric deposition of P is only a minor source of P to Rehoboth Bay. During the period of 1998-2002, wastewater was the dominant external source of P to Rehoboth Bay, often exceeding all other P sources combined. Since 2002, however, due to technical improvements to the sole wastewater plant discharging directly to the Bay, the wastewater contribution of P has been significantly reduced and upland waters are now the principal source of P on an annualized basis. Based on comparison of N and P loads, primary productivity and biomass carrying capacity in Rehoboth Bay should be limited by P availability. However, due to the contrasting spatial and temporal patterns of N and P loading and perhaps internal cycling within the ecosystem, spatial and temporal variations in N and P-limitation within Rehoboth Bay are likely. ?? 2011 Elsevier Ltd.
Thiros, Susan A.
2017-03-23
The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.The flow-normalized dissolved-solids loads estimated at Duchesne River near Randlett, UT, and White River near Watson, UT, decreased by 68,000 and 55,300 tons, or 27.8 and 20.8 percent respectively, when comparing 1989 to 2013. The drainage basins for both rivers have undergone salinity-control projects since the early 1980s to reduce the dissolved-solids load entering the Colorado River. Approximately 19 percent of the net change in flow-normalized load at Green River at Green River, UT, is from changes in load modeled at Duchesne River near Randlett, UT, and 16 percent from changes in load modeled at White River near Watson, UT. The net change in flow-normalized load estimated at Green River near Greendale, UT, for WY 1989–2013 accounts for about 45 percent of the net change estimated at Green River at Green River, UT.Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites in the Duchesne River Basin show that 75,400 tons or 44 percent of the load at the Duchesne River near Randlett, UT, gaging station was not accounted for at any of the upstream gages. Most of this unmonitored load is derived from tributary inflow, groundwater discharge, unconsumed irrigation water, and irrigation tail water.A mass balance of WY 1989–2013 flow-normalized loads estimated at sites in the Duchesne River Basin indicates that the flow-normalized load of unmonitored inflow to the Duchesne River between the Myton and Randlett gaging stations decreased by 38 percent. The total net decrease in flow-normalized load calculated for unmonitored inflow in the drainage basin accounts for 94 percent of the decrease in WY 1989–2013 flow-normalized load modeled at the Duchesne River near Randlett, UT, gaging station. Irrigation improvements in the drainage basin have likely contributed to the decrease in flow-normalized load.Reductions in dissolved-solids load estimated by the Natural Resources Conservation Service (NRCS) and the Bureau of Reclamation (Reclamation) from on- and off-farm improvements in the Uinta Basin totaled about 135,000 tons in 2013 (81,900 tons from on-farm improvements and 53,300 tons from off-farm improvements). The reduction in dissolved-solids load resulting from on- and off-farm improvements facilitated by the NRCS and Reclamation in the Price River Basin from 1989 to 2013 was estimated to be 64,800 tons.The amount of sprinkler-irrigated land mapped in the drainage area or subbasin area for a gaging station was used to estimate the reduction in load resulting from the conversion from flood to sprinkler irrigation. Sprinkler-irrigated land mapped in the Uinta Basin totaled 109,630 acres in 2012. Assuming conversion to wheel-line sprinklers, a reduction in dissolved-solids load in the Uinta Basin of 95,800 tons in 2012 was calculated using the sprinkler-irrigation acreage and a pre-salinity-control project dissolved-solids yield of 1.04 tons per acre.A reduction of 72,800 tons in dissolved-solids load from irrigation improvements was determined from sprinkler-irrigated lands in the Ashley Valley and Jensen, Pelican Lake, and Pleasant Valley areas (mapped in 2012); and in the Price River Basin (mapped in 2011). This decrease in dissolved-solids load is 8,800 tons more than the decrease in unmonitored flow-normalized dissolved-solids load (-64,000 tons) determined for the Green River between the Jensen and Green River gaging stations.The net WY 1989–2013 change in flow-normalized dissolved-solids load at the Duchesne River near Randlett, UT, and the Green River between the Jensen and Green River, UT, gaging stations determined from mass-balance calculations was compared to reported reductions in dissolved-solids load from on- and off-farm improvements and estimated reductions in load determined from mapped sprinkler-irrigated areas in the Duchesne River Basin and the area draining to the Green River between the Jensen and Green River gaging stations. The combined NRCS and Reclamation estimates of reduction in dissolved-solids load from on- and off-farm improvements in the study area (200,000 tons) is more than the reduction in load estimated using the acreage with sprinkler improvements (136,000 tons) or the mass-balance of flow-normalized load (132,000 tons).
Long-term changes in the phosphorus loading to and trophic state of the Salton Sea, California
Robertson, Dale M.; Schladow, S.G.; Holdren, G.C.
2008-01-01
The Salton Sea (Sea) is a eutrophic to hypereutrophic lake characterized by high nutrient concentrations, low water clarity, and high biological productivity. Based on dissolved phosphorus (P) and nitrogen (N) concentrations and N:P ratios, P is typically the limiting nutrient in the Sea and, therefore, should be the primary nutrient of concern when considering management efforts. Flows in the major tributaries to the Sea have been measured since 1965, whereas total P (TP) concentrations were only measured intermittently by various agencies since 1968. These data were used to estimate annual P loading from 1965 to 2002. Annual loads have increased steadily from ???940,000 kg around 1968 to ???1,450,000 kg in 2002 (???55% increase), primarily a result of increased TP concentrations and loads in the New River. Although the eutrophic condition of the Salton Sea is of great concern, only limited nutrient data are available for the Sea. It is difficult to determine whether the eutrophic state of the Sea has degraded or possibly even improved slightly in response to the change in P loading because of variability in the data and changes in the sampling and analytical methodologies. ?? 2008 Springer Science+Business Media B.V.
40 CFR 63.11224 - What are my monitoring, installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... include a daily calibration drift assessment, a quarterly performance audit, and an annual zero alignment... performance audit, or an annual zero alignment audit. (7) You must calculate and record 6-minute averages from... absolute particulate matter loadings. (5) The bag leak detection system must be equipped with a device to...
40 CFR 63.11224 - What are my monitoring, installation, operation, and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... include a daily calibration drift assessment, a quarterly performance audit, and an annual zero alignment... performance audit, or an annual zero alignment audit. (7) You must calculate and record 6-minute averages from... absolute particulate matter loadings. (5) The bag leak detection system must be equipped with a device to...
A simple model of annual average response of an estuary to mean nitrogen loading rate and freshwater residence time was developed and tested. It uses nitrogen inputs from land, deposition from the atmosphere, and first-order calculations of internal loss rate and export to perfor...
Thiros, Susan A.; Gerner, Steven J.
2015-01-01
Irrigation improvements began to be implemented in 2007 to reduce dissolved-solids loads discharged from the MWSP area. The theoretical annual net dissolved-solids load where the cumulative NRCS calculated dissolved-solids load reduction is added to the net MWSP dissolved-solids load is what would be expected if there was no irrigation improvement in the area associated with the MWSP. The theoretical data points lie very near the baseline representing the pre-MWSP dissolved-solids load to canal streamflow relation. The proximity of the theoretical data points to the baseline shows that the NRCS calculations of reduction in dissolved-solids load are generally supported by the data collected during this study.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5724-N-02] Annual Factors for... Web site of the annual factors for determining the on-going administrative fee for housing agencies... Relay Service during business hours at 1-800-877-8337. SUPPLEMENTARY INFORMATION: The annual factors for...
NASA Astrophysics Data System (ADS)
Minaudo, C.; Moatar, F.; Abbott, B. W.; Dupas, R.; Gascuel-Odoux, C.; Pinay, G.; Roubeix, V.; Danis, P. A.
2017-12-01
Many lakes and reservoirs in Europe suffer from severe eutrophication. Accurate quantification of nutrient loads are critical for effective mitigation measures, but this information is often unknown. For example, in France, only 50 out of 481 lakes and reservoirs have national monitoring allowing estimation of interannual nitrogen and phosphorus loads, and even these loads are computed from low-frequency data. To address this lack of data, we developed a straightforward method to predict seasonal loads in lake tributaries. First, we analyzed concentration-discharge (C-Q) curves in monitored catchments and identified slopes, intercepts, and coefficient of variation of the log(C)-log(Q) regressions determined for both low and high flows, separated by the median daily flow [Moatar et al., 2017]. Then, we used stepwise multiple linear regression models to empirically link the characteristics of C-Q curves with a set of catchment descriptors such as land use, lithology, morphology indices, climate, and hydrological indicators. Modeled C-Q relationships were then used to estimate annual and seasonal nutrient loads in nearby and similar unmonitored catchments. We implemented this approach on a large dataset from France where stream flow was surveyed daily and water quality (suspended solids, nitrate, total phosphorus, and orthophosphate concentrations) was measured on a monthly basis at 233 stations over the past 20 years in catchments from 10 to 3000 km². The concentration at the median daily flow (seen here as a metric of the general level of contamination in a catchment) was predicted with uncertainty ranging between 30 and 100 %, depending on the variable. C-Q slopes were predicted with large errors, but a sensitivity analysis was conducted to determine the impact of C-Q slopes uncertainties on computed annual and seasonal loads. This approach allows estimation of seasonal and annual nutrient loads and could be potentially implemented to improve protection and restoration of aquatic ecosystems. Moatar, F., B. W. Abbott, C. Minaudo, F. Curie, and G. Pinay. 2017. Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resources Research 53:1270-1287.
Hicks, Matthew B.; Murphy, Jennifer C.; Stocks, Shane J.
2017-06-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers-Vicksburg District, monitored streamflow, water quality, and sediment at two stations on the Steele Bayou in northwestern Mississippi from October 2010 through September 2014 to characterize nutrient and sediment concentrations and loads in areas where substantial implementation of conservation efforts have been implemented. The motivation for this effort was to quantify improvements, or lack thereof, in water quality in the Steele Bayou watershed as a result of implementing large- and small-scale best-management practices aimed at reducing nutrient and sediment concentrations and loads. The results of this study document the hydrologic, water-quality, and sedimentation status of these basins following over two decades of ongoing implementation of conservation practices.Results from this study indicate the two Steele Bayou stations have comparable loads and yields of total nitrogen, phosphorus, and suspended sediment when compared to other agricultural basins in the southeastern and central United States. However, nitrate plus nitrite yields from basins in the Mississippi River alluvial plain, including the Steele Bayou Basin, are generally lower than other agricultural basins in the southeastern and central United States.Seasonal variation in nutrient and sediment loads was observed at both stations and for most constituents. About 50 percent of the total annual nutrient and sediment load was observed during the spring (February through May) and between 25 and 50 percent was observed during late fall and winter (October through January). These seasonal patterns probably reflect a combination of seasonal patterns in precipitation, runoff, streamflow, and in the timing of fertilizer application.Median concentrations of total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and suspended sediment were slightly higher at the upstream station, Steele Bayou near Glen Allan, than at the downstream station, Steele Bayou at Grace Road at Hopedale, MS, although the differences typically were not statistically significant. Mean annual loads of nitrate plus nitrite and suspended sediment were also larger at the upstream station, although the annual loads at both stations were generally within the 95-percent confidence intervals of each other.
1995 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration.
1995-12-01
The Pacific Northwest Loads and Resources Study (WhiteBook), is published annually by BPA, and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to the 1981 regional power sales contracts. Specifically, BPA uses the, information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. Aside frommore » these purposes, the White Book is used for input to BPA`s resource planning process. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC).« less
Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.
2011-01-01
The average annual TSS yields ranged from 111 tons/mi2 in Apple Creek to 45 tons/mi2 in Duck Creek. All five watersheds yielded more TSS than the median value (32.4 tons/mi2) from previous studies in the Southeastern Wisconsin Till Plains (SWTP) ecoregion. The average annual TP yields ranged from 663 lbs/mi2 in Baird Creek to 382 lbs/mi2 in Duck Creek. All five watersheds yielded more TP than the median value from previous studies in the SWTP ecoregion, and the Baird Creek watershed yielded more TP than the statewide median of 650 lbs/mi2 from previous studies.Overall, Duck Creek had the lowest median and volumetric weighted concentrations and mean yield of TSS and TP. The same pattern was true for dissolved phosphorus (DP), except the volumetrically weighted concentration was lowest in the East River. In contrast, Ashwaubenon, Baird, and Apple Creeks had greater median and volumetrically weighted concentrations and mean yields of TSS, TP, DP than Duck Creek and the East River. Water quality in Duck Creek and East River were distinctly different from Ashwaubenon, Baird, and Apple Creeks. Loads from individual runoff events for all of these streams were important to the total annual mass transport of the constituents. On average, about 20 percent of the annual TSS loads and about 17 percent of the TP loads were transported in 1-day events in each stream.
2008-03-06
oped based on previous observational studies in the MRP . Our annual variations in hypoxic zone size and resulted in suggestions model was developed by...nitrate loading. The nitrogen- based model consisted of nine compartments (nitrate, ammonium, labile dissolved organic nitrogen, bacteria, small...independent dataset of primary production measurements for different riverine N03 loads. Based on simulations over the range of observed springtime N03
Monti, Jack; Scorca, Michael P.
2003-01-01
The 13 major south-shore streams in Nassau and Suffolk Counties, Long Island, New York with adequate long-term (1971-97) water-quality records, and 192 south-shore wells with sufficient water-quality data, were selected for analysis of geographic, seasonal, and long-term trends in nitrogen concentration. Annual total nitrogen loads transported to the South Shore Estuary Reserve (SSER) from 11 of these streams were calculated using long-term discharge records. Nitrogen loads from shallow and deep ground water also were calculated using simulated ground-water discharge of 1968-83 hydrologic conditions.Long-term declines in stream discharge occurred in East Meadow Brook, Bellmore Creek and Massapequa Creek in response to extensive sewering in Nassau County. The smallest longterm annual discharge to the SSER was from the westernmost stream, Pines Brook, which is in an area in which the water table has been lowered by sewers since 1952. The three largest average annual discharges to the SSER were from the Connetquot River, Carlls River, and Carmans River in Suffolk County; the discharges from each of these streams were at least twice those of the other streams considered in this study.Total nitrogen concentrations in streams show a geographic trend with a general eastward increase in median total nitrogen concentration in Nassau County and a decreasing trend from Massapequa Creek eastward into Suffolk County. Total nitrogen concentrations in streams generally are lowest during summer and highest in winter as a result of seasonal fluctuations in chemical reactions and biological activity. The greatest seasonal difference in median total nitrogen concentration was at Carlls River with values of 3.4 and 4.2 mg/L (milligrams per liter) as N during summer (April through September) and winter (October through March), respectively. Streams affected by the completion of sewer districts show long-term (1971-97) trends of decreasing total nitrogen concentration and streams showing an increase in total nitrogen concentration are in unsewered areas with increased urbanization.Discharges from shallow ground water (upper glacial aquifer) and deep ground water (upper part of Magothy aquifer) were simulated from a ground-water-flow model calibrated to steadystate (1968-83) conditions. Simulated discharges from shallow-ground-water system in Nassau County were 10,700 Mgal/yr (million gallons per year) or 40,500,000 m3/yr (cubic meters per year), and those from Suffolk County were 52,300 Mgal/yr or 198,000,000 m3/yr. Discharges from deep-ground-water system in Nassau County were 4,900 Mgal/yr or 18,500,000 m3/yr, and those in Suffolk County were 12,700 Mgal/yr or 48,200,000 m3/yr.Ground-water concentrations of nitrogen decrease with depth and from west to east. The shallow ground water median nitrogen concentration for each county was determined using 1,155 samples collected at 167 shallow wells (125 feet deep or less) within 1 mile of the shore. The deep ground water median nitrate concentration (nitrate represented almost all of the total nitrogen) for each county was determined using 112 samples collected at 25 deep wells (greater than 125 feet deep) within 1 mile of the shore. The median nitrogen concentration for the shallow and median nitrate concentration for the deep ground water in Nassau County were 3.85 and 0.15 mg/L as N, during 1952–97; the corresponding concentrations for Suffolk County were 1.74 and <0.10 (less than 0.10) mg/L as N, during 1952–97.Nitrogen loads discharged from streams to the SSER for each year during 1972–97 were calculated as the annual total nitrogen concentration multiplied by the annual discharge. These values were calculated only for the seven streams for which sufficient data were available. The largest long-term (1972–97) average annual nitrogen load from Carlls River was 104 ton/yr or 94,300 kg/yr—about twice that of Connetquot River (54 ton/yr or 48,900 kg/yr) and over three times that of Carmans River (33 ton/yr or 29,900 kg/yr). The smallest annual mean nitrogen load was from Pines Brook, which has the lowest annual mean discharge of all streams analyzed.The nitrogen load carried to the SSER by ground-water discharge in shallow-ground-water system in Nassau and Suffolk Counties was calculated as the simulated discharge for each county multiplied by the respective median nitrogen concentration, and loads from deep-ground-water system were calculated as the simulated discharge for each county multiplied by the respective median nitrate concentration. All discharges were obtained from the U.S. Geological Survey's Long Island ground-water-flow model. The resultant nitrogen loads discharged to the SSER from shallow ground water were 172 ton/yr (156,000 kg/yr) from Nassau County and 380 ton/yr (345,000 kg/yr) from Suffolk County; equaling 552 ton/yr entering the SSER. Those from deep ground water were 3 ton/yr (2,700 kg/yr) from Nassau County and <0.5 ton/yr (480 kg/yr) from Suffolk County; equaling about 3.5 ton/yr entering the SSER.The sum of both stream loads and groundwater loads results in the total load to the SSER. The largest calculated total nitrogen load entering the SSER from both streams and ground water occurred in 1979 with a total load of 1,260 ton/yr (1,140,000 kg/yr). The smallest calculated nitrogen load entering the SSER occurred in 1995 with a total load of 725 ton/yr (658,000 kg/yr).
14 CFR 27.337 - Limit maneuvering load factor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 27.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...
14 CFR 29.337 - Limit maneuvering load factor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 29.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...
Tortorelli, Robert L.; Pickup, Barbara E.
2006-01-01
The Illinois River and tributaries, Flint Creek and Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus levels in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30-day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to summarize phosphorus concentrations and provide estimates of phosphorus loads, yields, and flow-weighted concentrations in the Illinois River and tributaries from January 2000 through December 2004. Data from water-quality samples collected from 2000 to 2004 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and mean flow-weighted concentrations in the Illinois River basin for three 3-year periods - 2000-2002, 2001-2003, and 2002-2004, to update a previous report that used data from water-quality samples from 1997 to 2001. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Phosphorus concentrations in the Illinois River basin were significantly greater in runoff samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and decreased in the downstream direction in the Illinois River from the Watts to Tahlequah stations. Phosphorus concentrations generally increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and Baron Fork. Annual total loads in the Illinois River from Watts to Tahlequah, increased slightly for the period 2000-2002 and decreased slightly for the periods 2001-2003 and 2002-2004. Estimated mean annual base-flow loads at stations on the Illinois River were about 11 to 20 times greater than base-flow loads at the station on Baron Fork and 4 to 10 times greater than base-flow loads at the station on Flint Creek. Estimated mean annual runoff loads ranged from 68 to 96 percent of the estimated mean annual total phosphorus loads from 2000-2004. Estimated mean seasonal base-flow loads were generally greatest in spring (March through May) and were least in fall (September through November). Estimated mean seasonal runoff loads generally were greatest in summer (June through August) for the period 2000-2002, but were greatest in winter (December through February) for the period 2001-2003, and greatest in spring for the period 2002-2004. Estimated mean total yields of phosphorus ranged from 192 to 811 pounds per year per square mile, with greatest yields being reported for Illinois River near Watts (576 to 811 pounds per year per square mile), and the least yields being reported for Baron Fork at Eldon for the periods 2000-2002 and 2001-2003 (501 and 192 pounds per year per square mile) and for Illinois River near Tahlequah for the period 2002-2004 (370 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median (0.022 milligram per liter) and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.037 milligram per liter). In addition, flow-weighted phosphorus concentrations in 2000-2002 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment Program station
Tortorelli, Robert L.
2006-01-01
The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency over time. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, conducted an investigation to summarize nitrogen and phosphorus concentrations and provide estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than in base-flow samples at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma. Nitrogen concentrations in base-flow samples significantly increased in the downstream direction in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations. Nitrogen in base-flow samples from Beaty Creek was significantly less than in those from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek, probably due to a point source between those stations, then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base-flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek, and not significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads from 2002-2004 were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that of Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 percent, whereas, at the Spavinaw Creek stations, the range in the runoff component was 60 to 66 percent. Estimated mean annual phosphorus total loads from 2002-2004 were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2.5 times that of Maysville station. Estimated mean annual phosphorus base-flow loads at the Spavinaw Creek stations were about 2.5 to 19 times greater than at Beaty Creek. Phosphorus base-flow loads increased about 8 times from Maysville to Cherokee in Spavinaw Creek; the base-flow loads were about the same at the three downstream stations. The runoff component
NASA Astrophysics Data System (ADS)
Diodato, Nazzareno; Mao, Luca; Borrelli, Pasquale; Panagos, Panos; Fiorillo, Francesco; Bellocchi, Gianni
2018-05-01
Pulsing storms and prolonged rainfall can drive hydrological damaging events in mountain regions with soil erosion and debris flow in river catchments. The paper presents a parsimonious model for estimating climate forcing on sediment loads in an Alpine catchment (Rio Cordon, northeastern Italian Alps). Hydroclimatic forcing was interpreted by the novel CliSMSSL (Climate-Scale Modelling of Suspended Sediment Load) model to estimate annual sediment loads. We used annual data on suspended-solid loads monitored at an experimental station from 1987 to 2001 and on monthly precipitation data. The quality of sediment load data was critically examined, and one outlying year was identified and removed from further analyses. This outlier revealed that our model underestimates exceptionally high sediment loads in years characterized by a severe flood event. For all other years, the CliSMSSL performed well, with a determination coefficient (R2) equal to 0.67 and a mean absolute error (MAE) of 129 Mg y-1. The calibrated model for the period 1986-2010 was used to reconstruct sediment loads in the river catchment for historical times when detailed precipitation records are not available. For the period 1810-2010, the model results indicate that the past centuries have been characterized by large interannual to interdecadal fluctuations in the conditions affecting sediment loads. This paper argues that climate-induced erosion processes in Alpine areas and their impact on environment should be given more attention in discussions about climate-driven strategies. Future work should focus on delineating the extents of these findings (e.g., at other catchments of the European Alpine belt) as well as investigating the dynamics for the formation of sediment loads.
NASA Astrophysics Data System (ADS)
Jose, L.; Bennett, R. A.; Harig, C.
2017-12-01
Currently, cGPS data is well suited to track vertical changes in the Earth's surface. However, there are annual, semi-annual, and interannual signals within cGPS time series that are not well constrained. We hypothesize that these signals are primarily due to water loading. If this is the case, the conventional method of modeling cGPS data as an annual or semiannual sinusoid falls short, as such models cannot accurately capture all variations in surface displacement, especially those due to extreme hydrologic events. We believe that we can better correct the cGPS time series with another method we are developing wherein we use a time series of surface displacement derived from the GRACE geopotential field instead of a sinusoidal model to correct the data. Currently, our analysis is constrained to the Amazon Basin, where the signal due to water loading is large enough to appear in both the GRACE and cGPS measurements. The vertical signal from cGPS stations across the Amazon Basin show an apparent spatial correlation, which further supports our idea that these signals are due to a regional water loading signal. In our preliminary research, we used tsview for Matlab to find that the WRMS of the corrected cGPS time series can be reduced as much as 30% from the model corrected data to the GRACE corrected data. The Amazon, like many places around the world, has experienced extreme drought, in 2005, 2010, and recently in 2015. In addition to making the cGPS vertical signal more robust, the method we are developing has the potential to help us understand the effects of these weather events and track trends in water loading.
Potential contributions of mature prairie and turfgrass to phosphorus in urban runoff.
Steinke, K; Kussow, W R; Stier, J C
2013-07-01
Urban vegetative plantings are considered desirable to mitigate and filter stormwater runoff and nonpoint-source pollution. Phosphorus fertilization of turfgrass may enhance P in urban runoff; however, the amount of P from nonfertilized, native vegetation that could potentially replace some turf is not known. This study was conducted to measure the relative contributions of nonfertilized, native prairie vegetation and fertilized turfgrass to runoff water and P loads. Six replicates of side-by-side mature urban prairie and turfgrass were monitored for mean annual runoff volumes and P loads, biomass production, vegetative nutrient composition, and changes in soil moisture. Vegetation type did not significantly affect seasonal or annual runoff volumes or P loads. The mean annual total P loads of 0.46 kg ha for prairie and 0.28 kg ha for turfgrass were significant and comparable to those reported by other researchers when studied separately. Total P concentrations in runoff water from prairie and turf vegetation were above USEPA limits, averaging 1.86 and 1.63 mg L, respectively, over 2 yr. Averaged across 2 yr, 78% of runoff P was collected when the soil was frozen. Biomass P reductions over the period of November to April were strongly related to quantities of runoff total P from frozen soil ( = 0.874). Phosphorus losses from urban areas appeared to be primarily correlated with runoff depth, not vegetation type, because correlation coefficients revealed 86 and 45% of the Year 1 and Year 2 total P loads were directly accounted for by runoff volumes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Crustal Displacements Due to Continental Water Loading
NASA Technical Reports Server (NTRS)
vanDam, T.; Wahr, J.; Milly, P. C. D.; Shmakin, A. B.; Blewitt, G.; Lavallee, D.; Larson, K. M.
2001-01-01
The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (delta-r(sub M)) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare delta-r(sub M) with observed Global Positioning System (GPS) heights (delta-r(sub O)) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the delta-r(sub O) time series are adjusted by delta-r(sub M), their variances are reduced, on average, by an amount equal to the variance of the delta-r(sub M). Of the delta-r(sub O) time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the delta-r(sub M). The delta-r(sub M) time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.
Missouri | Solar Research | NREL
previous calendar year, 1% of utility's single-hour peak load (annually) and 5% of utility's single-hour peak load Credit: Net excess generation is credited at avoided-cost rate RECs: Renewable energy size limit: 100 kW Liability insurance: There are no requirements for systems <10 kW; systems >10
Computation of major solute concentrations and loads in German rivers using regression analysis.
Steele, T.D.
1980-01-01
Regression functions between concentrations of several inorganic solutes and specific conductance and between specific conductance and stream discharge were derived from intermittent samples collected for 2 rivers in West Germany. These functions, in conjunction with daily records of streamflow, were used to determine monthly and annual solute loadings. -from Author
NASA Astrophysics Data System (ADS)
Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.
2007-03-01
Defining the control that hydrology exerts on organic carbon (OC) export at the watershed scale is important for understanding how the source and quantity of OC in streams and rivers is influenced by climate change or by landscape drainage. To this end, molecular (lignin phenol), stable carbon isotope, and dissolved organic carbon (DOC) data were collected over a range of flow conditions to examine the influence of hydrology on annual OC export from an 850 km 2 Midwestern United States agricultural watershed located in west central Indiana. In years 2002 and 2003, modeled annual DOC loads were 19.5 and 14.1 kg ha -1yr -1, while 71% and 85%, respectively, of the total annual OC was exported in flow events occurring during less than 20% of that time. These results highlight the importance of short-duration, high-discharge events (common in smaller watersheds) in controlling annual OC export. Based on reported increases in annual stream discharge coupled with current estimates of DOC export, annual DOC loads in this watershed may have increased by up to 40% over the past 50 years. Molecular (lignin phenol) characterization of quantity and relative degradation state of terrestrial OC shows as much temporal variability of lignin parameters (in high molecular weight dissolved organic carbon) in this one watershed as that demonstrated in previously published studies of dissolved organic matter in the Mississippi and Amazon Rivers. These results suggest that hydrologic variability is at least as important in determining the nature and extent of OC export as geographic variability. Moreover, molecular and bulk stable carbon isotope data from high molecular weight dissolved organic carbon and colloidal organic carbon showed that increased stream flow from the study watershed was responsible for increased export of agriculturally derived OC. When considered in the context of results from other studies that show the importance of flood events and in-stream processing of terrestrial organic carbon, our results show how hydrologic variability in smaller watersheds can reflect landscape-scale carbon dynamics in ways that cannot necessarily be measured at the outlets of large rivers due to multiple source signals and attenuated hydrology.
Liu, Tong; Huang, He Qing; Shao, Mingan; Yao, Wenyi; Gu, Jing; Yu, Guoan
2015-01-01
Soil erosion and land desertification are the most serious environmental problems globally. This study investigated the changes in streamflow and sediment load from 1964 to 2012 in the Ten Great Gullies area of the Upper Yellow River. Tests for gradual trends (Mann-Kendall test) and abrupt changes (Pettitt test) identify that significant declines in streamflow and sediment load occurred in 1997-1998 in two typical gullies. A comparison of climatic variability before and after the change points shows no statistically significant trends in annual precipitation and potential evapotranspiration. Human activities have been very active in the region and during 1990-2010, 146.01 and 197.62 km2 of land were converted, respectively, to forests and grassland, with corresponding increases of 87.56 and 77.05%. In addition, a large number of check dams have been built up in the upper reaches of the ten gullies. These measures were likely responsible for the significant decline in the annual streamflow and sediment load over the last 49 years.
Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun
2013-03-01
Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a(-1) and 5254.4 tons P a(-1), and annual area-specific nutrient loads were 1.94 tons N km(-2) and 0.31 tons P km(-2). Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.
Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads.
Qi, Weixiao; Müller, Beat; Pernet-Coudrier, Benoit; Singer, Heinz; Liu, Huijuan; Qu, Jiuhui; Berg, Michael
2014-02-15
Twenty percent of the water run-off from China's land surface drains into the Yangtze River and carries the sewage of approximately 400 million people out to sea. The lower stretch of the Yangtze therefore offers the opportunity to assess the pollutant discharge of a huge population. To establish a comprehensive assessment of micropollutants, river water samples were collected monthly from May 2009 to June 2010 along a cross-section at the lowermost hydrological station of the Yangtze River not influenced by the tide (Datong Station, Anhui province). Following a prescreening of 268 target compounds, we examined the occurrence, seasonal variation, and annual loads of 117 organic micropollutants, including 51 pesticides, 43 pharmaceuticals, 7 household and industrial chemicals, and 16 polycyclic aromatic hydrocarbons (PAHs). During the 14-month study, the maximum concentrations of particulate PAHs (1-5 μg/g), pesticides (11-284 ng/L), pharmaceuticals (5-224 ng/L), and household and industrial chemicals (4-430 ng/L) were generally lower than in other Chinese rivers due to the dilution caused of the Yangtze River's average water discharge of approximately 30,000 m(3)/s. The loads of most pesticides, anti-infectives, and PAHs were higher in the wet season compared to the dry season, which was attributed to the increased agricultural application of chemicals in the summer, an elevated water discharge through the sewer systems and wastewater treatment plants (WWTP) as a result of high hydraulic loads and the related lower treatment efficiency, and seasonally increased deposition from the atmosphere and runoff from the catchment. The estimated annual load of PAHs in the river accounted for some 4% of the total emission of PAHs in the whole Yangtze Basin. Furthermore, by using sucralose as a tracer for domestic wastewater, we estimate a daily disposal of approximately 47 million m(3) of sewage into the river, corresponding to 1.8% of its average hydraulic load. In summary, the annual amounts flushed by the Yangtze River into the East China Sea were 2.9×10(6)tons of dissolved and particulate organic carbon (DOC and POC), 369 tons of PAHs, 98 tons of pesticides, 152 tons of pharmaceuticals, and 273 tons of household and industrial chemicals. While the concentrations seem comparably moderate, the pollutant loads are considerable and pose an increasing burden to the health of the marine coastal ecosystem. Copyright © 2013 Elsevier B.V. All rights reserved.
14 CFR 23.337 - Limit maneuvering load factors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factors. 23.337... Flight Loads § 23.337 Limit maneuvering load factors. (a) The positive limit maneuvering load factor n... airplanes; or (3) 6.0 for acrobatic category airplanes. (b) The negative limit maneuvering load factor may...
NASA Astrophysics Data System (ADS)
Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Bogusz, Janusz
2017-04-01
Seasonal oscillations in the GPS position time series can arise from real geophysical effects and numerical artefacts. According to Dong et al. (2002) environmental loading effects can account for approximately 40% of the total variance of the annual signals in GPS time series, however using generally acknowledged methods (e.g. Least Squares Estimation, Wavelet Decomposition, Singular Spectrum Analysis) to model seasonal signals we are not able to separate real from spurious signals (effects of mismodelling aliased into annual period as well as draconitic). Therefore, we propose to use Multichannel Singular Spectrum Analysis (MSSA) to determine seasonal oscillations (with annual and semi-annual periods) from GPS position time series and environmental loading displacement models. The MSSA approach is an extension of the classical Karhunen-Loève method and it is a special case of SSA for multivariate time series. The main advantage of MSSA is the possibility to extract common seasonal signals for stations from selected area and to investigate the causality between a set of time series as well. In this research, we explored the ability of MSSA application to separate real geophysical effects from spurious effects in GPS time series. For this purpose, we used GPS position changes and environmental loading models. We analysed the topocentric time series from 250 selected stations located worldwide, delivered from Network Solution obtained by the International GNSS Service (IGS) as a contribution to the latest realization of the International Terrestrial Reference System (namely ITRF2014, Rebishung et al., 2016). We also researched atmospheric, hydrological and non-tidal oceanic loading models provided by the EOST/IPGS Loading Service in the Centre-of-Figure (CF) reference frame. The analysed displacements were estimated from ERA-Interim (surface pressure), MERRA-land (soil moisture and snow) as well as ECCO2 ocean bottom pressure. We used Multichannel Singular Spectrum Analysis to determine common seasonal signals in two case studies with adopted a 3-years lag-window as the optimal window size. We also inferred the statistical significance of oscillations through the Monte Carlo MSSA method (Allen and Robertson, 1996). In the first case study, we investigated the common spatio-temporal seasonal signals for all stations. For this purpose, we divided selected stations with respect to the continents. For instance, for stations located in Europe, seasonal oscillations accounts for approximately 45% of the GPS-derived data variance. Much higher variance of seasonal signals is explained by hydrological loadings of about 92%, while the non-tidal oceanic loading accounted for 31% of total variance. In the second case study, we analysed the capability of the MSSA method to establish a causality between several time series. Each of estimated Principal Component represents pattern of the common signal for all analysed data. For ZIMM station (Zimmerwald, Switzerland), the 1st, 2nd and 9th, 10th Principal Components, which accounts for 35% of the variance, corresponds to the annual and semi-annual signals. In this part, we applied the non-parametric MSSA approach to extract the common seasonal signals for GPS time series and environmental loadings for each of the 250 stations with clear statement, that some part of seasonal signal reflects the real geophysical effects. REFERENCES: 1. Allen, M. and Robertson, A.: 1996, Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dynamics, 12, No. 11, 775-784. DOI: 10.1007/s003820050142. 2. Dong, D., Fang, P., Bock, Y., Cheng, M.K. and Miyazaki, S.: 2002, Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research, 107, No. B4, 2075. DOI: 10.1029/2001JB000573. 3. Rebischung, P., Altamimi, Z., Ray, J. and Garayt, B.: 2016, The IGS contribution to ITRF2014. Journal of Geodesy, 90, No. 7, 611-630. DOI:10.1007/s00190-016-0897-6.
NASA Astrophysics Data System (ADS)
Zeiger, S. J.; Hubbart, J. A.
2016-12-01
A nested-scale watershed study design was used to monitor water quantity and quality of an impaired 3rd order stream in a rapidly urbanizing mixed-land-use watershed of the central USA. Grab samples were collected at each gauging site (n=836 samples x 5 gauging sites) and analyzed for suspended sediment, total phosphorus, and inorganic nitrogen species during the four year study period (2010 - 2013). Observed data were used to quantify relationships between climate, land use and pollutant loading. Additionally, Soil and Water Assessment Tool (SWAT) estimates of monthly stream flow, suspended sediment, total phosphorus, nitrate, nitrite, and ammonium were validated. Total annual precipitation ranged from approximately 650 mm during 2012 (extreme drought year) to 1350 mm during 2010 (record setting wet year) which caused significant (p<0.05) differences in annual pollutant yields (i.e. loads per unit area) that ranged from 115 to 174%. Multiple linear regression analyses showed significant (p<0.05) relationships between pollutant loading, annual total precipitation (positive correlate), urban land use (positive correlate), forested land use (negative correlate), and wetland land use (negative correlate). Results from SWAT model performance assessment indicated calibration was necessary to achieve Nash-Sutcliff Efficiency (NSE) values greater than 0.05 for monthly pollutant loads. Calibrating the SWAT model to multiple gauging sites within the watershed improved estimates of monthly stream flow (NSE=0.83), and pollutant loads (NSE>0.78). However, nitrite and ammonium loads were underestimated by more than four orders of magnitude (NSE<-0.16) indicating a critical need for improved nutrient cycling and routing routines. Results highlight the need for sampling regimens that capture the variability of climate and flow mediated pollutant transport, and the benefits of calibrating the SWAT model to multiple gauging sites in mixed-land-use watersheds.
Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.
2012-01-01
Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total nitrogen loading was from stormflows. The stormflow load accounted for 76.6 percent of the total load for the 2010 water year and 80.6 percent of the total load for the 2011 water year. The estimated monthly total nitrogen loads were higher during the winter and spring (December through May) than during the summer (June through August). For the Bakersville station, the estimated suspended-sediment load (SSL) was 17,700 tons for 11 months of the 2010 water year (November 2009 to September 2010). The storm beginning January 24, 2010, provided 34.4 percent of the annual SSL, and the storm beginning March 10, 2010, provided 31.9 percent of the annual SSL. Together, these two winter storms provided 66 percent of the annual SSL for the 2010 water year. For the 2011 water year, the estimated annual SSL was 13,500 tons. For the 2011 water year, the SSLs were more evenly divided among storms than for the 2010 water year. Seven of 37 storms with the highest SSLs provided a total of 65.7 percent of the annual SSL for the 2011 water year; each storm provided from 4.6 to 12.3 percent of the annual SSL. The highest cumulative SSL for the 2010 and 2011 water years generally occurred during the late winter. Stormflows with the highest peak discharges generally carried the highest SSL. The sediment-fingerprinting approach was used to quantify sources of fine-grained suspended sediment in the watershed draining to the Laurel Hill Creek near Bakersville streamflow-gaging station. Sediment source samples were collected from five source types: 20 from cropland, 9 from pasture, 18 from forested areas, 20 from unpaved roads, and 23 from streambanks. At the Bakersville station, 10 suspended-sediment samples were collected during 6 storms for sediment-source analysis. Thirty-five tracers from elemental analysis and 4 tracers from stable isotope analysis were used to fingerprint the source of sediment for the 10 storm samples. Statistical analysis determined that cropland and pasture could not be discriminated by the set of tracers and were combined into one source group—agriculture. Stepwise discriminant function analysis determined that 11 tracers best described the 4 sources. An "unmixing" model applied to the 11 tracers showed that agricultural land (cropland and pasture) was the major source of sediment, contributing an average of 53 percent of the sediment for the 10 storm samples. Streambanks, unpaved roads, and forest contributions for the 10 storm samples averaged 30, 17, and 0 percent, respectively. Agriculture was the major contributor of sediment during the highest sampled stormflows. The highest stormflows also produced the highest total nitrogen and suspended-sediment loads.
Willoughby, Timothy C.
2000-01-01
The Grand Calumet River, in northwestern Indiana, drains a heavily industrialized area along the southern shore of Lake Michigan. Steel production and petroleum refining are two of the area?s predominant industries. High-temperature processes, such as fossilfuel combustion and steel production, release contaminants to the atmosphere that may result in wet deposition being a major contributor to major-ion and trace-metal loadings in northwestern Indiana and Lake Michigan. A wet-deposition collection site was established at the Gary (Indiana) Regional Airport to monitor the quantity and chemical quality of wet deposition. During a first phase of sampling, 48 wet-deposition samples were collected weekly between June 30, 1992, and August 31, 1993. During a second phase of sampling, 40 wet-deposition samples were collected between October 17, 1995, and November 12, 1996. Forty-two wet-deposition samples were collected during a third phase of sampling, which began April 29, 1997, and was completed April 28, 1998. Wetdeposition samples were analyzed for pH, specific conductance, and selected major ions and trace metals. This report describes the quantity and quality of wet-deposition samples collected during the third sampling phase and compares these findings to the results of the first and second sampling phases. All of the samples collected during the third phase of sampling were of sufficient volumes for at least some of the analyses to be performed. Constituent concentrations from the third sampling phase were not significantly different (at the 5-percent significance level) from those for the second sampling phase. Significant increases, however, were observed in the concentrations of potassium, iron, lead, and zinc when compared to the concentrations observed in the first sampling phase. Weekly loadings were estimated for each constituent measured during the third sampling phase. If constituent concentrations were reported less than the method reporting limit, a range for the weekly loading was computed. The estimated annual loadings of chloride, silica, bromide, copper, and zinc during the third sampling phase were greater than those estimated for the first two sampling phases. The only estimated annual loading in the third sampling phase that was less than the estimated annual loadings observed during the first two sampling phases was sulfate. The estimated annual loadings of calcium, magnesium, nitrate, potassium, barium, lead, iron, and manganese observed during the third sampling phase were greater than the loadings observed during the first sampling phase but less than those observed during the second sampling phase. No significant differences were observed between the quantity of wet deposition collected during the three sampling phases.
Gebert, Warren A.; Rose, William J.; Garn, Herbert S.
2012-01-01
Few long-term data sets are available for evaluating the effects of urban stormwater-management practices. Over 30 years of data are available for evaluating the effectiveness of such practices by the city of Middleton, Wis. Analysis of streamflow and water-quality data collected on Pheasant Branch, demonstrates the relation between the changes in the watershed to the structural and nonstructural best management practices put in place during 1975-2008. A comparison of the data from Pheasant Branch with streamflow and water-quality data (suspended sediment and total phosphorus) collected at other nearby streams was made to assist in the determination of the possible causes of the changes in Pheasant Branch. Based on 34 years of streamflow data collected at the Pheasant Branch at Middleton streamflow-gaging station, flood peak discharges increased 37 percent for the 2-year flood and 83 percent for the 100-year flood. A comparison of data for the same period from an adjacent rural stream, Black Earth at Black Earth had a 43 percent increase in the 2-year flood peak discharge and a 140-percent increase in the 100-year flood peak discharge. Because the flood peak discharges on Pheasant Branch have not increased as much as Black Earth Creek it appears that the stormwater management practices have been successful in mitigating the effects of urbanization. Generally urbanization results in increased flood peak discharges. The overall increase in flood peak discharges seen in both streams probably is the result of the substantial increase in precipitation during the study period. Average annual runoff in Pheasant Branch has also been increasing due to increasing average annual precipitation and urbanization. The stormwater-management practices in Middleton have been successful in decreasing the suspended-sediment and total phosphorus loads to Lake Mendota from the Pheasant Branch watershed. These loads decreased in spite of increased annual runoff and flood peaks, which are often expected to produce higher sediment and phosphorus loads. The biggest decreases in sediment and phosphorus loads occurred after 2001 when a large detention pond, the Confluence Pond, began operation. Since 2001, the annual suspended-sediment load has decreased from 2,650 tons per year to 1,450 tons per year for a 45-percent decrease. The annual total phosphorus load has decreased from 12,200 pounds per year to 6,300 pounds per year for a 48-percent decrease. A comparison of Pheasant Branch at Middleton with two other streams, Spring Harbor Storm Sewer and Yahara River at Windsor, that drain into Lake Mendota shows that suspended-sediment and total phosphorus load decreases were greatest at Pheasant Branch at Middleton. Prior to the construction of the Confluence Pond, annual suspended-sediment yield and total phosphorus yield from Pheasant Branch watershed was the largest of the three watersheds. After 2001, suspended-sediment yield was greatest at Spring Harbor Storm Sewer, and lowest at Yahara at Windsor; annual total phosphorus yield was greater at Yahara River at Windsor than that of Pheasant Branch. The stormwater-quality plan for Middleton shows that the city has met the present State of Wisconsin Administrative Code chap. NR216/NR151 requirements of reducing total suspended solids by 20 percent for the developed area in Middleton. In addition, the city already has met the 40-percent reduction in total suspended solids required by 2013. Snow and ice melt runoff from road surfaces and parking lots following winter storms can effect water quality because the runoff contains varying amounts of road salt. To evaluate the effect of road deicing on stream water quality in Pheasant Branch, specific conductance and chloride were monitored during two winter seasons. The maximum estimated concentration of chloride during the monitoring period was 931 milligrams per liter, which exceeded the U.S. Environmental Protection Agency acute criterion of 860 milligrams per liter. Chloride concentrations exceeded the U.S. Environmental Protection Agency chronic criterion of 230 milligrams per liter for at least 10 days during February and March 2007 and for 45 days during the 2007-8 winter seasons. The total sodium chloride load for the monitoring period was 1,720 tons and the largest sodium chloride load occurred in March and April of each year.
Tanner, C C; Nguyen, M L; Sukias, J P S
2005-01-01
Nitrogen removal performance is reported for constructed wetlands treating subsurface drainage from irrigated and rain-fed dairy pastures in North Island, New Zealand. Flow-proportional sampling of inflow and outflow concentrations were combined with continuous flow records to calculate mass balances for the wetlands. Drainage flows from the irrigated catchment were 2.5-4 fold higher and N exports up to 5 fold higher per unit area than for the rain-fed catchment. Hydraulic and associated N loadings to the wetlands were highly pulsed, associated with rainfall, soil water status, and irrigation events. Transient pulses of organic nitrogen were an important form of N loss from the rain-fed landscape in the first year, and were very effectively removed in the wetland (> 90%). Median nitrate concentrations of approximately 10 g m(-3) in the drainage inflows were reduced by 15-67% during passage through the wetlands and annual nitrate-N loads by 16-61% (38-31 7 g N m(-2)y(-1)). Generation in the wetlands of net ammoniacal-N and organic-N (irrigated site) partially negated reduction in nitrate-N loads. The results show that constructed wetlands comprising 1-2% of catchment area can provide moderate reductions in TN export via pastoral drainage, but performance is markedly influenced by variations in seasonal loading and establishment/maturation factors.
Towing Tank and Flume Testing of Passively Adaptive Composite Tidal Turbine Blades: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Robynne; Ordonez-Sanchez, Stephanie; Porter, Kate E.
Composite tidal turbine blades with bend-twist (BT) coupled layups allow the blade to self-adapt to local site conditions by passively twisting. Passive feathering has the potential to increase annual energy production and shed thrust loads and power under extreme tidal flows. Decreased hydrodynamic thrust and power during extreme conditions meann that the turbine support structure, generator, and other components can be sized more appropriately, resulting in a higher utilization factor and increased cost effectiveness. This paper presents new experimental data for a small-scale turbine with BT composite blades. The research team tested the turbine in the Kelvin Hydrodynamics Laboratory towingmore » tank at the University of Strathclyde in Glasgow, United Kingdom, and in the recirculating current flume at the l Institut Francais de Recherche pour l Exploitation de la Mer Centre in Boulogne-sur-Mer, France. Tests were also performed on rigid aluminum blades with identical geometry, which yielded baseline test sets for comparison. The results from both facilities agreed closely, supporting the hypothesis that increased blade flexibility can induce load reductions. Under the most extreme conditions tested the turbine with BT blades had up to 11 percent lower peak thrust loads and a 15 percent reduction in peak power compared to the turbine with rigid blades. The load reductions varied as a function of turbine rotational velocity and ambient flow velocity.« less
Hong, Haoyuan; Tsangaratos, Paraskevas; Ilia, Ioanna; Liu, Junzhi; Zhu, A-Xing; Xu, Chong
2018-07-15
The main objective of the present study was to utilize Genetic Algorithms (GA) in order to obtain the optimal combination of forest fire related variables and apply data mining methods for constructing a forest fire susceptibility map. In the proposed approach, a Random Forest (RF) and a Support Vector Machine (SVM) was used to produce a forest fire susceptibility map for the Dayu County which is located in southwest of Jiangxi Province, China. For this purpose, historic forest fires and thirteen forest fire related variables were analyzed, namely: elevation, slope angle, aspect, curvature, land use, soil cover, heat load index, normalized difference vegetation index, mean annual temperature, mean annual wind speed, mean annual rainfall, distance to river network and distance to road network. The Natural Break and the Certainty Factor method were used to classify and weight the thirteen variables, while a multicollinearity analysis was performed to determine the correlation among the variables and decide about their usability. The optimal set of variables, determined by the GA limited the number of variables into eight excluding from the analysis, aspect, land use, heat load index, distance to river network and mean annual rainfall. The performance of the forest fire models was evaluated by using the area under the Receiver Operating Characteristic curve (ROC-AUC) based on the validation dataset. Overall, the RF models gave higher AUC values. Also the results showed that the proposed optimized models outperform the original models. Specifically, the optimized RF model gave the best results (0.8495), followed by the original RF (0.8169), while the optimized SVM gave lower values (0.7456) than the RF, however higher than the original SVM (0.7148) model. The study highlights the significance of feature selection techniques in forest fire susceptibility, whereas data mining methods could be considered as a valid approach for forest fire susceptibility modeling. Copyright © 2018 Elsevier B.V. All rights reserved.
Elliott, J.G.; DeFeyter, K.L.
1986-01-01
Sources of sediment data collected by several government agencies through water year 1984 are summarized for Colorado. The U.S. Geological Survey has collected suspended-sediment data at 243 sites; these data are stored in the U.S. Geological Survey 's water data storage and retrieval system. The U.S. Forest Service has collected suspended-sediment and bedload data at an additional 225 sites, and most of these data are stored in the U.S. Environmental Protection Agency 's water-quality-control information system. Additional unpublished sediment data are in the possession of the collecting entities. Annual suspended-sediment loads were computed for 133 U.S. Geological Survey sediment-data-collection sites using the daily mean water-discharge/sediment-transport-curve method. Sediment-transport curves were derived for each site by one of three techniques: (1) Least-squares linear regression of all pairs of suspended-sediment and corresponding water-discharge data, (2) least-squares linear regression of data sets subdivided on the basis of hydrograph season; and (3) graphical fit to a logarithm-logarithm plot of data. The curve-fitting technique used for each site depended on site-specific characteristics. Sediment-data sources and estimates of annual loads of suspended, bed, and total sediment from several other reports also are summarized. (USGS)
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-09-02
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.
2003 Pacific Northwest Loads and Resources Study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration.
2003-12-01
The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determiningmore » BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared to an expected level of total retail electricity consumption. The forecasted annual energy electricity retail load plus contract obligations are subtracted from the sum of the projected annual energy capability of existing resources and contract purchases to determine whether BPA and/or the region will be surplus or deficit. Surplus energy is available when resources are greater than loads. This energy could be marketed to increase revenues. Deficits occur when resources are less than loads. Energy deficits could be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of a load (i.e., due to economic conditions or closures), additional contract purchases, and/or new generating resources. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA). The PNCA defines the planning and operation of seventeen U.S. Pacific Northwest utilities and other parties with generating facilities within the region's hydroelectric (hydro) system. The hydroregulation study used for the 2003 White Book incorporates measures from the National Oceanographic and Atmospheric Administration Fisheries (NOAA Fisheries) Biological Opinion dated December 2000, and the U.S. Fish and Wildlife Service's 2000 Biological Opinion (2000 FCRPS BiOps) for the Snake River and Columbia River projects. These measures include: (1) Increased flow augmentation for juvenile fish migrations in the Snake and Columbia rivers in the spring and summer; (2) Mandatory spill requirements at the Lower Snake and Columbia dams to provide for non-turbine passage routes for juvenile fish migrants; and (3) Additional flows for Kootenai River white sturgeon in the spring. The hydroregulation criteria for this analysis includes: an updated Detailed Operation Plan for Treaty reservoirs for Operating Year (OY) 2004, updated PNCA planning criteria for OY 2003, and revised juvenile fish bypass spill levels for 2000 FCRPS BiOps implementation. The 2003 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information regarding marketer contracts is not detailed due to confidentiality agreements. The 2003 White Book analysis updates the December 2002 White Book. This analysis projects the yearly average energy consumption and resource availability for the study period, OY 2005 through 2014. The study shows the Federal system's and the region's expected monthly peak demand, monthly energy demand, monthly peak generating capability, and monthly energy generation for OY 2005, 2009, and 2014. The Federal system and regional monthly capacity surplus/deficit projections are summarized for the 10 operating years of the study period. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger PNW regional power system loads and resources that include the Federal system as well other PNW entities.« less
Yang, Libiao; Lei, Kun; Meng, Wei; Fu, Guo; Yan, Weijin
2013-06-01
Temporal and spatial changes of total nitrogen (TN), total phosphorus (TP) and chlorophyll-a (Chl-a) in a shallow lake, Lake Chaohu, China, were investigated using monthly monitoring data from 2001 through 2011. The results showed that the annual mean concentration ranges of TN, TP, and Chl-a were 0.08-14.60 mg/L, 0.02-1.08 mg/L, and 0.10-465.90 microg/L, respectively. Our data showed that Lake Chaohu was highly eutrophic and that water quality showed no substantial improvement during 2001 through 2011. The mean concentrations of TP, TN and Chl-a in the western lake were significantly higher than in the eastern lake, which indicates a spatial distribution of the three water parameters. The annual mean ratio of TN:TP by weight ranged from 10 to 20, indicating that phosphorus was the limiting nutrient in this lake. A similar seasonality variation for TP and Chl-a was observed. Riverine TP and NH4+ loading from eight major tributaries were in the range of 1.56 x 10(4)-5.47 x 10(4) and 0.19 x 10(4)-0.51 x 10(4) tons/yr over 2002-2011, respectively, and exceeded the water environmental capability of the two nutrients in the lake by a factor of 3-6. Thus reduction of nutrient loading in the sub-watershed and tributaries would be essential for the restoration of Lake Chaohu.
Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climatesmore » and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.« less
ERIC Educational Resources Information Center
Texas Coll. and Univ. System, Austin. Coordinating Board.
Comprehensive statistical data on Texas higher education is presented. Data and formulas relating to student enrollments and faculty headcounts, program development and productivity, faculty salaries and teaching loads, campus development, funding, and the state student load program are included. Student headcount enrollment data are presented by…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... employers to post warning signs or notices during underground construction; these paragraphs are (b)(3), (i... Standard requires employers to inspect and load test hoists when they install them, and at least annually thereafter; they must also inspect and load test a hoist after making any repairs or alterations to it that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, D.W.; Tompkins, T.A.; Pratapas, J.M.
The Coal Quality Impact Model (CQIM{trademark}) was used to evaluate the economic and performance impacts of gas co-firing at Mississippi Power Company`s Plant Watson. One of the most important benefits of gas co-firing considered was the ability to burn lower quality, less expensive fuels. Four coals and petroleum coke were evaluated at 0, 5, 10, 20, and 30 percent gas co-firing. These fuels vary widely in their geographic source, heating value, moisture, volatile matter, and sulfur contents. Performance and economic evaluations were conducted at individual load points of 100, 75, 50, 40, 30, and 20 percent of full load. Additionalmore » analyses were made for seasonal load-demand curves and for an average annual load-demand curve. Operating cost in $/MWh, net plant heat rate in Btu/kWh, and break-even gas price in $/MBtu are presented as a function of load and percent gas co-firing. Results illustrate that with the Illinois Basin Coal currently burned at Plant Watson, gas co-firing can be economically justified over a range of gas market prices on either an annual or seasonal basis. Other findings indicate that petroleum coke and South American coal co-fired with natural gas offer significant fuel cost savings and are attractive candidate fuels for combustion verification testing.« less
14 CFR 25.1531 - Maneuvering flight load factors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maneuvering flight load factors. 25.1531... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the positive limit load factors determined from the maneuvering diagram in § 25.333(b), must be established. ...
Nitrogen saturation in the Rocky Mountains
Mark W. Williams; Jill S. Baron; Nel Caine; Richard Sommerfeld; Robert Sanford
1996-01-01
Nitrogen saturation is occurring throughout high-elevation catchments of the Colorado Front Range. Annual inorganic N loading in wet deposition to the Front Range of ~4 kg ha-1 yr-1 is about twice that of the Pacific States and similar to many sites in the northeastern United States. In the last ten years at Niwot Ridge/Green Lakes Valley and Glacier Lakes, annual...
Seasonal sulfate deposition and export patterns for a small Appalachian watershed
Pamela J. Edwards; James D. Gregory; H. Lee Allen
1999-01-01
Sulfate deposition and exports from 1988â92 were analyzed for a small headwater catchment in north-centralWest Virginia.Annual sulfate inputs, estimated by applying throughfall-adjusted ratios to bulk deposition values, and outputs were approximately equal for the five years. Annual mean throughfall-adjusted deposition and export loads were 55.78 and 55.48 kg ha
NASA Astrophysics Data System (ADS)
Huang, Ping; Zhang, Jiabao; Ma, Donghao; Wen, Zhaofei; Wu, Shengjun; Garland, Gina; Pereira, Engil Isadora Pujol; Zhu, Anning; Xin, Xiuli; Zhang, Congzhi
2016-03-01
Atmospheric nitrogen (N) deposition, an important N source to agro-ecosystems, has increased intensively in China during recent decades. However, knowledge on temporal variations of total N deposition and their influencing factors is limited due to lack of systematic monitoring data. In this study, total N deposition, including dry and wet components, was monitored using the water surrogate surface method for a typical agro-ecosystem with a winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system in the Huang-Huai-Hai Plain from May 2008 to April 2012. The results indicated that annual total N deposition ranged from 23.8 kg N ha-1 (2009-2010) to 40.3 kg N ha-1 (2008-2009) and averaged 31.8 kg N ha-1. Great inter-annual variations were observed during the sampling period, due to differences in annual rainfall and gaseous N losses from farmlands. Monthly total N deposition varied greatly, from less than 0.6 kg N ha-1 (January, 2010) to over 8.0 kg N ha-1 (August, 2008), with a mean value of 2.6 kg N ha-1. In contrast to wet deposition, dry portions generally contributed more to the total, except in the precipitation-intensive months, accounting for 65% in average. NH4+ -N was the dominant species in N deposition and its contribution to total deposition varied from 6% (December, 2009) to 79% (July, 2008), averaging 53%. The role of organic N (O-N) in both dry and wet deposition was equal to or even greater than that of NO3- -N. Influencing factors such as precipitation and its seasonal distribution, reactive N sources, vegetation status, field management practices, and weather conditions were responsible for the temporal variations of atmospheric N deposition and its components. These results are helpful for reducing the knowledge gaps in the temporal variations of atmospheric N deposition and their influencing factors in different ecosystems, to improve the understandings on N budget in the typical agro-ecosystem, and to provide references and recommendations for field nutrient management in this region.
Atmospheric pressure loading effects on Global Positioning System coordinate determinations
NASA Technical Reports Server (NTRS)
Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.
1994-01-01
Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
14 CFR 23.473 - Ground load conditions and assumptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... vertical inertia load factor at the center of gravity of the airplane for the ground load conditions... through the center of gravity. The ground reaction load factor may be equal to the inertia load factor..., these tests must be made under § 23.723(a). (g) No inertia load factor used for design purposes may be...
Sediment transport by streams in the Palouse River basin, Washington and Idaho, July 1961-June 1965
Boucher, P.R.
1970-01-01
The Palouse River basin covers about 3,300 square miles in southeastern Washington and northwestern Idaho. The eastern part of the basin is composed of steptoes and foothills which are generally above an altitude of 2,600 feet; the central part is of moderate local relief and is mantled chiefly by thick loess deposits; and the western part is characterized by low relief and scabland topography and is underlain mostly by basalt. Precipitation increases eastward across the study area. It ranges annually from 12 to 18 inches in the western part and from 14 to 23 inches in the central part, and it exceeds 40 inches in the eastern part. Surface runoff from the basin for the 4-year period of study (July 1961-June 1965) averaged 408,000 acre-feet per year, compared with 445,200 acre-feet per year for the 27-year period of record. The eastern part of the basin contributed about 55 percent of the total, whereas the central and western parts contributed 37 percent and 8 percent, respectively. Most sediment transport from the Palouse River basin and the highest sediment concentrations in streams occurred in the winter. Of the several storms during the study period, those of February 3-9, 1963, December 22-27, 1964, and January 27-February 4, 1965, accounted for 81 percent of the total 4-year suspended-sediment load; the storm of February 3-9, 1963, accounted for nearly one-half the total load. The discharge-weighted mean concentration of suspended sediment carried in the Palouse River past Hooper during the study period was 2,970 milligrams per liter. The average annual sediment discharge of the Palouse River at its mouth was about 1,580,000 tons per year, and the estimated average annual sediment yield was 480 tons per square mile. The yield ranged from 5 tons per square mile from the western part of the basin to 2,100 tons per square mile from the central part. The high yield from the central part is attributed to a scarcity of vegetal cover, to the fine-grained loess soils, and to rapid runoff during winter storms. Sediment yield from the eastern part of the basin ranged from 460 to more than 1,000 tons per square mile. During high flow, silt particles make up the largest part of the suspended-sediment load, whereas during low flow, clay particles represent the greatest part. On the average, the suspended sediment transported by the Palouse River past Hooper contained 3 percent sand, 68 percent silt, and 29 percent clay. Unmeasured sediment discharge was estimated to have been 5 percent of the total sediment discharge. Data collected during the 4-year period of study show that sediment loads were higher than those recorded by V. G. Kaiser during the longer period 1939-65. Whereas Kaiser's study showed an average annual soil loss of 9.6 million tons, the average annual loss during the recent study was 14.2 million tons. The factor that has had the greatest effect on the increase of sediment yields is land use. Lands once covered and protected by natural vegetation have been extensively, cultivated, and much of the soil has become susceptible to erosion, particularly in areas mantled by loessal soils.
Reed, Lloyd A.; Koerkle, Edward H.; Takita, Charles S.
1997-01-01
Water samples were collected from four streams in Lancaster County from 1992 through 1995 and analyzed for selected herbicides. Samples were collected from the Little Conestoga Creek near Churchtown, Mill Creek (a tributary to the Conestoga River) at Elshelman Mill Road near Lyndon, the Conestoga River at Conestoga, and Pequea Creek at Martic Forge. Most samples were collected from stormflow that occurred during the growing season. Samples were analyzed for alachlor, aldrin, atrazine, chlordane, cyanazine, dieldrin, malathion, metolachlor, propazine, simazine, and toxaphene. Most samples had detectable concentrations of alachlor, atrazine, metolachlor, and simazine, and the loads of these constituents that were transported during each of the 4 years were computed.Of the samples collected from each of the streams—Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—10, 12, 15, and 18 percent, respectively, had atrazine concentrations greater than 3.0 micrograms per liter, the U.S. Environmental Protection Agency maximum contaminant level. Loads of atrazine, metolochlor, and simazine were greater than loads of any other herbicides. The largest loads were transported during 1994. Loads of atrazine transported by the four streams during periods of storm- flow from May to September 1994 totaled 3.46, 28.3, 263, and 46.8 pounds, respectively. The total loads of atrazine transported by the four streams?Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—during calendar year 1994 were 6.48, 54.1, 498, and 102 pounds, respectively. A little less than half the atrazine load transported by each stream—45, 39, 42, and 42 percent, respectively—was transported during storms that occurred from May through September.Average annual yields of atrazine for the period 1992-95 were 0.59, 0.64, 0.68, and 0.51 pounds per square mile from the Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek, respectively. Average annual yields of simazine were 0.36, 1.2, 0.54, and 0.48 pounds per square mile, respectively, and average annual yields of metolachlor were 0.46, 0.49, 0.54, and 0.31 pounds per square mile, respectively. Less than 1 percent of both the atrazine and metolachlor that was applied to all basins was transported by streamflow.
Electricity by intermittent sources: An analysis based on the German situation 2012
NASA Astrophysics Data System (ADS)
Wagner, Friedrich
2014-02-01
The 2012 data of the German load, the on- and offshore and the photo-voltaic energy production are used and scaled to the limit of supplying the annual demand (100% case). The reference mix of the renewable energy (RE) forms is selected such that the remaining back-up energy is minimised. For the 100% case, the RE power installation has to be about 3 times the present peak load. The back-up system can be reduced by 12% in this case. The surplus energy corresponds to 26% of the demand. The back-up system and more so the grid must be able to cope with large power excursions. All components of the electricity supply system operate at low capacity factors. Large-scale storage can hardly be motivated by the effort to further reduce CO2 emission. Demand-side management will intensify the present periods of high economic activities. Its rigorous implementation will expand the economic activities into the weekends. On the basis of a simple criterion, the increase of periods with negative electricity prices in Germany is assessed. It will be difficult with RE to meet the low CO2 emission factors which characterise those European Countries which produce electricity mostly by nuclear and hydro power.
Geirsdottir, Asbjorg; Jonsson, Oskar; Thorisdottir, Sigridur; Helgadottir, Gudleif; Jonasson, Fridbert; Stefansson, Einar; Sigurdsson, Haraldur
2012-03-01
The use of intravitreal vascular endothelial growth factor antibodies for exudative age-related macular degeneration (AMD) has stressed ophthalmology services and drug budgets throughout the world. The authors study the population-based incidence of exudative AMD in Iceland and the use of intravitreal ranibizumab in a defined population. This is a prospective study of 439 consecutive patients aged 60 years and older with exudative AMD starting intravitreal ranibizumab for exudative AMD in Iceland from March 2007 to December 2009. All patients initially received three consecutive ranibizumab injections, with regular follow-up visits and re-treatment as needed. In total, 517 eyes from 439 patients received treatment for exudative AMD (mean age 79 years). The annual incidence of exudative AMD in the population 60 years and older is 0.29%. The incidence increased with advancing age, double for patients 85 years and older compared with those 75-79 years. Approximately 2400 ranibizumab injections per 100,000 persons aged 60 years and older were given each year for exudative AMD. These data allow an estimation of the incidence of exudative AMD in a Caucasian population and the treatment load with ranibizumab, which may help plan anti-vascular endothelial growth factor treatment programmes and estimate costs.
14 CFR 23.527 - Hull and main float load factors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float load factors. 23.527... Water Loads § 23.527 Hull and main float load factors. (a) Water reaction load factors nw must be...=seaplane landing weight in pounds. (6) K1=empirical hull station weighing factor, in accordance with figure...
14 CFR 23.527 - Hull and main float load factors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Water Loads § 23.527 Hull and main float load factors. (a) Water reaction load factors nw must be... landing cases EC28SE91.005 (b) The following values are used: (1) nw=water reaction load factor (that is, the water reaction divided by seaplane weight). (2) C1=empirical seaplane operations factor equal to 0...
Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.
2014-01-01
Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.
Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone.
Rabotyagov, Sergey; Campbell, Todd; Jha, Manoj; Gassman, Philip W; Arnold, Jeffrey; Kurkalova, Lyubov; Secchi, Silvia; Feng, Hongli; Kling, Catherine L
2010-09-01
In 2008, the hypoxic zone in the Gulf of Mexico, measuring 20 720 km2, was one of the two largest reported since measurement of the zone began in 1985. The extent of the hypoxic zone is related to nitrogen and phosphorous loadings originating on agricultural fields in the upper Midwest. This study combines the tools of evolutionary computation with a water quality model and cost data to develop a trade-off frontier for the Upper Mississippi River Basin specifying the least cost of achieving nutrient reductions and the location of the agricultural conservation practices needed. The frontier allows policymakers and stakeholders to explicitly see the trade-offs between cost and nutrient reductions. For example, the cost of reducing annual nitrate-N loadings by 30% is estimated to be US$1.4 billion/year, with a concomitant 36% reduction in P and the cost of reducing annual P loadings by 30% is estimated to be US$370 million/year, with a concomitant 9% reduction in nitrate-N.
The nutrient load from food waste generated onboard ships in the Baltic Sea.
Wilewska-Bien, Magda; Granhag, Lena; Andersson, Karin
2016-04-15
The combination of the sensitive characteristics of the Baltic Sea and the intense maritime traffic makes the marine environment vulnerable to anthropogenic influences. The theoretical scenario calculated in this study shows that the annually generated food waste onboard ships in traffic in the Baltic Sea contains about 182tonnes of nitrogen and 34tonnes of phosphorus. Today, all food waste generated onboard can be legally discharged into the marine environment at a distance of 12NM from the nearest land. The annual load of nitrogen contained in the food waste corresponds to 52% of load of nitrogen from the ship-generated sewage. Future regulations for sewage discharge in the Baltic Sea will require significant reduction of total nitrogen and phosphorus released. The contribution of nutrients from food waste compared to sewage will therefore be relatively larger in the future, if food waste still can be legally discharged. Copyright © 2015 Elsevier Ltd. All rights reserved.
Snow load effect on earth's rotation and gravitational field, 1979-1985
NASA Technical Reports Server (NTRS)
Chao, B. Fong; O'Connor, William P.; Chang, Alfred T. C.; Hall, Dorothy K.; Foster, James L.
1987-01-01
A global, monthly snow depth data set has been generated from the Nimbus 7 satellite observations using passive microwave remote-sensing techniques. Seven years of data, 1979-1985, are analyzed to compute the snow load effects on the earth's rotation and low-degree zonal gravitational field. The resultant time series show dominant seasonal cycles. The annual peak-to-peak variation in J2 is found to be 2.3 x 10 to the -10th, that in J3 to be 1.1 x 10 to the -10th, and believed to decrease rapidly for higher degrees. The corresponding change in the length of day is 41 micro-s. The annual wobble excitation is (4.9 marc sec, -109 deg) for the prograde motion component and (4.8 marc sec, -28 deg) for the retrograde motion component. The excitation power of the Chandler wobble due to the snow load is estimated to be about 25 dB less than the power needed to maintain the observed Chandler wobble.
14 CFR 31.23 - Flight load factor.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...
14 CFR 31.23 - Flight load factor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...
14 CFR 31.23 - Flight load factor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...
Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.
Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf
2016-11-10
The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.
Tsukamoto, Taiji; Tanaka, Shigeru
2015-08-01
We conducted a questionnaire survey of hospitals with robot-assisted surgical equipment to study changes of the surgical case loads after its installation and the managerial strategies for its purchase. The study included 154 hospitals (as of April 2014) that were queried about their radical prostatectomy case loads from January 2009 to December 2013, strategies for installation of the equipment in their hospitals, and other topics related to the study purpose. The overall response rate of hospitals was 63%, though it marginally varied according to type and area. The annual case load was determined based on the results of the questionnaire and other modalities. It increased from 3,518 in 2009 to 6,425 in 2013. The case load seemed to be concentrated in hospitals with robot equipment since the increase of their number was very minimal over the 5 years. The hospitals with the robot treated a larger number of newly diagnosed patients with the disease than before. Most of the patients were those having localized cancer that was indicated for radical surgery, suggesting again the concentration of the surgical case loads in the hospitals with robots. While most hospitals believed that installation of a robot was necessary as an option for treatment procedures, the future strategy of the hospital, and other reasons, the action of the hospital to gain prestige may be involved in the process of purchasing the equipment. In conclusion, robot-assisted laparoscopic radical prostatectomy has become popular as a surgical procedure for prostate cancer in our society. This may lead to a concentration of the surgical case load in a limited number of hospitals with robots. We also discuss the typical action of an acute-care hospital when it purchases expensive clinical medical equipment.
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)
Environmental impact of irrigation in la violada district (Spain): I. Salt export patterns.
Isidoro, D; Quílez, D; Aragüés, R
2006-01-01
Salt loading in irrigation return flows contributes to the salinization of the receiving water bodies, particularly when originated in salt-affected areas as frequently found in the middle Ebro River basin (Spain). We determined the salt loading in La Violada Gully from the total dissolved solids (TDS) and flows (Q) during the 1995 to 1998 hydrological years. Since this gully collects flows from various sources, an end-member mixing analysis (EMMA) was performed to quantify the drainage flow from La Violada Irrigation District (VID). Three flow components were identified in La Violada Gully: drainage waters from VID (Qd); tail-waters from irrigation ditches, spill-over, and seepage from the Monegros Canal (Qo); and ground water inflows (Qg) originating in the dryland watershed. Gypsum in the soils of VID was the main source for salts in La Violada Gully (flow-weighted mean TDS=1720 mg L-1, dominated by sulfate and calcium). The contribution of Qg to the total gully flow during the 1996 irrigation season was low (6.5% of the total flow). The 1995 to 1998 annual salt load average in La Violada Gully was 78 628 Mg, 71% of which was exported during the irrigation season. The 1995 to 1998 irrigation season salt load average in Qd was 43 015 Mg (77% of the total load). Thus, irrigated agriculture in VID was the main source of salt loading in this gully, with a yield of 11.1 Mg of salts per hectare of irrigated land for the irrigation season. Efficient irrigation systems and irrigation management practices that reduce Qd are key factors for controlling off-site salt pollution of these gypsum-rich irrigated areas.
Raymond M. Rice; Robert R. Ziemer; Jack Lewis
2004-01-01
The effects of multiple logging disturbances on peak flows and suspended sediment loads from second-growth redwood watersheds were approximately additive. Downstream increases were no greater than would be expected from the proportion of the area disturbed. Annual sediment load increases of from 123 to 269% were measured in tributary watersheds but were not detected at...
Raymond M. Rice; Robert R. Ziemer; Jack Lewis
2001-01-01
Abstract - The effects of multiple logging disturbances on peak flows and suspended sediment loads from second-growth redwood watersheds were approximately additive. Downstream increases were no greater than would be expected from the proportion of the area disturbed. Annual sediment load increases of from 123 to 269% were measured in tributary watersheds but were...
E.B. Allen; L.E. Rao; G. Tonnesen; R.F. Johnson; M.E. Fenn; A. Bytnerowicz
2014-01-01
Southern California deserts and coastal sage scrub (CSS) are undergoing vegetation-type conversion to exotic annual grassland, especially in regions downwind of urban areas that receive high nitrogen (N), primarily as dry deposition. To determine critical loads (CLs) of N that cause negative impacts, we measured plant and soil responses along N deposition gradients,...
Kammerer, Phil A.; Sherrill, Marvin G.
1979-01-01
Mean annual suspended-sediment loads during 1968-74 range from 13 to 60 tons per square mile, with 74 to 86 percent of the total transported during periods when surface water contributes to streamflow. These sediment loads are at the low end of the range previously reported for streams in the "Driftless Area".
Jerrold E. Winandy; Michael Grambsch; Cherilyn Hatfield
2005-01-01
Temperature histories for various types of roof shingles, wood roof sheathing, roof rafters, and non-ventilated attics are being monitored in outdoor attic structures using simulated North American light-framed construction. This report presents 2-year data histories for annual thermal loads for western redcedar, woodâthermoplastic composite, and fiberglass shingles...
Baseflow contribution to nitrate-nitrogen export from a large, agricultural watershed, USA
Schilling, K.; Zhang, Y.-K.
2004-01-01
Nitrate-nitrogen export from the Raccoon River watershed in west-central Iowa is among the highest in the United State and contributes to impairment of downstream water quality. We examined a rare long-term record of streamflow and nitrate concentration data (1972-2000) to evaluate annual and seasonal patterns of nitrate losses in streamflow and baseflow from the Raccoon River. Combining hydrograph separation with a load estimation program, we estimated that baseflow contributes approximately two-thirds (17.3 kg/ha) of the mean annual nitrate export (26.1 kg/ha). Baseflow transport was greatest in spring and late fall when baseflow contributed more than 80% of the total export. Herein we propose a 'baseflow enrichment ratio' (BER) to describe the relation of baseflow water with baseflow nitrate loads. The long-term ratio of 1.23 for the Raccoon River suggests preferential leaching of nitrate to baseflow. Seasonal patterns of the BER identified the strong link between the baseflow nitrate loads and seasonal crop nitrogen requirements. Study results demonstrate the utility of assessing the baseflow contribution to nitrate loads to identify appropriate control strategies for reducing baseflow delivery of nitrate. ?? 2004 Elsevier B.V. All rights reserved.
Estimation of salt loads for the Dolores River in the Paradox Valley, Colorado, 1980–2015
Mast, M. Alisa
2017-07-13
Regression models that relate total dissolved solids (TDS) concentrations to specific conductance were used to estimate salt loads for two sites on the Dolores River in the Paradox Valley in western Colorado. The salt-load estimates will be used by the Bureau of Reclamation to evaluate salt loading to the river coming from the Paradox Valley and the effect of the Paradox Valley Unit (PVU), a project designed to reduce the salinity of the Colorado River. A second-order polynomial provided the best fit of the discrete data for both sites on the river. The largest bias occurred in samples with elevated sulfate concentrations (greater than 500 milligrams per liter), which were associated with short-duration runoff events in late summer and fall. Comparison of regression models from a period of time before operation began at the PVU and three periods after operation began suggests the relation between TDS and specific conductance has not changed over time. Net salt gain through the Paradox Valley was estimated as the TDS load at the downstream site minus the load at the upstream site. The mean annual salt gain was 137,900 tons per year prior to operation of the PVU (1980–1993) and 43,300 tons per year after the PVU began operation (1997–2015). The difference in annual salt gain in the river between the pre-PVU and post-PVU periods was 94,600 tons per year, which represents a nearly 70 percent reduction in salt loading to the river.
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.
2014-12-01
Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.
Verhoeven, Marjolein; Sawyer, Michael G; Spence, Susan H
2013-02-01
This study examined the factorial invariance of the Center for Epidemiologic Studies of Depression Scale (CES-D) across gender and time during adolescence. The factor structure of the CES-D was compared at four annual measurement waves in a community sample of 2650 Australian adolescents. Confirmatory factor analyses showed that the factor structure of the CES-D was generally invariant across gender and time. However, gender differences were found on three items: for all waves the item 'I had crying spells' was a stronger indicator for depressive affect in females than males. On the final three waves the item 'people were unfriendly' loaded significantly higher on the factor 'Interpersonal Relations' for males than females. On Wave 2 and 3 males interpreted the item 'everything I did was an effort' with a positive connotation, whereas females interpret it with a negative association. These gender-differences are discussed from both a theoretical and a methodological perspective. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Langland, Michael J.; Hainly, Robert A.
1997-01-01
The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.
Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA
Vogel, J.R.; Linard, J.I.
2011-01-01
The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.
Niemistö, Juha P; Horppila, Jukka
2007-01-01
The effect of ice cover on sediment resuspension and internal total P (Tot-P) loading was studied in the northern temperate Kirkkojärvi basin in Finland. The gross sedimentation and resuspension rates were estimated with sediment traps during ice-cover and ice-free periods. After ice break, the average gross sedimentation rate increased from 1.4 to 30.0 g dw m(-2) d(-1). Resuspension calculations showed clearly higher values after ice break as well. Under ice cover, resuspension ranged from 50 to 78% of the gross sedimentation while during the ice-free period it constituted from 87 to 97% of the gross sedimentation. Consequently, the average resuspension rate increased from 1.0 g dw m(-2) d(-1) under ice-cover to 27.0 g dw m(-2) d(-1) after thaw, indicating the strong effect of ice cover on sediment resuspension. To estimate the potential effect of climate change on internal P loading caused by resuspension we compared the Tot-P loading calculations between the present climate and the climate with doubled atmospheric CO2 concentration relative to the present day values (ice cover reduced from current 165 to 105 d). The annual load increased from 7.4 to 9.4 g m(-2). In conclusion, the annual internal Tot-P loading caused by resuspension will increase by 28% in the Kirkkojärvi basin if the 2xCO2 climate scenario comes true.
NASA Astrophysics Data System (ADS)
Reisinger, A. J.; Woytowitz, E.; Majcher, E.; Rosi, E. J.; Groffman, P.
2017-12-01
Urban streams receive a myriad of chemical inputs from the surrounding landscape due to altered lithology (asphalt, concrete), leaky sewage infrastructure, and other human activities (road salt, fertilizer, industrial wastes, wastewater effluent), potentially leading to multiple chemical stressors occurring simultaneously. To evaluate potential drivers of water chemistry change, we used approximately 20 years of weekly water chemistry monitoring data from streams in the Baltimore Ecosystem Study (BES) to quantify trends of annual loads and flow-weighted concentrations for multiple solutes of interest, including nitrate (NO3-), phosphate (PO43-), total nitrogen (TN), total phosphorus (TP), chloride (Cl-), and sulfate (SO42-) and subsequently examined various gray and green infrastructure characteristics at the watershed scale. For example, we quantified annual volume and duration of reported sanitary sewer overflows (SSO) and cumulative storage volume and area of various best management practices (BMPs). Site- and solute-specific trends differed, but across our monitoring network we found evidence for decreasing annual export for multiple solutes. Additionally, we found that changes in gray- and green-infrastructure characteristics were related to changes in water quality at our most downstream (most urban) monitoring site. For example, annual NO3- loads increased with longer cumulative SSO duration, whereas annual PO43- and TP loads decreased with a cumulative BMP area in the watershed. Further, we used same long-term water chemistry data and multivariate analyses to investigate whether urban streams have unique water chemistry fingerprints representing the multiple chemical stressors at a given site, which could provide insight into sources and impacts of water-quality impairment. These analyses and results illustrate the major role gray and green infrastructure play in influencing water quality in urban environments, and illustrate that focusing on a variety of chemical stressors is necessary to gain a broader understanding of the issues affecting urban water quality.
NASA Astrophysics Data System (ADS)
Syvitski, J. P.; Hutton, E. W.
2001-12-01
A new numerical approach (HydroTrend, v.2) allows the daily flux of sediment to be estimated for any river, whether gauged or not. The model can be driven by actual climate measurements (precipitation, temperature) or with statistical estimates of climate (modeled climate, remotely-sensed climate). In both cases, the character (e.g. soil depth, relief, vegetation index) of the drainage terrain is needed to complete the model domain. The HydroTrend approach allows us to examine the effects of climate on the supply of sediment to continental margins, and the nature of supply variability. A new relationship is defined as: $Qs = f (Psi) Qs-bar (Q/Q-bar)c+-σ where Qs-bar is the long-term sediment load, Q-bar is the long-term discharge, c and sigma are mean and standard deviation of the inter-annual variability of the rating coefficient, and Psi captures the measurement errors associated with Q and Qs, and the annual transients, affecting the supply of sediment including sediment and water source, and river (flood wave) dynamics. F = F(Psi, s). Smaller-discharge rivers have larger values of s, and s asymptotes to a small but consistent value for larger-discharge rivers. The coefficient c is directly proportional to the long-term suspended load (Qs-bar) and basin relief (R), and inversely proportional to mean annual temperature (T). sigma is directly proportional to the mean annual discharge. The long-term sediment load is given by: Qs-bar = a R1.5 A0.5 TT $ where a is a global constant, A is basin area; and TT is a function of mean annual temperature. This new approach provides estimates of sediment flux at the dynamic (daily) level and provides us a means to experiment on the sensitivity of marine sedimentary deposits in recording a paleoclimate signal. In addition the method provides us with spatial estimates for the flux of sediment to the coastal zone at the global scale.
Phosphorus and suspended sediment load estimates for the Lower Boise River, Idaho, 1994-2002
Donato, Mary M.; MacCoy, Dorene E.
2004-01-01
The U.S. Geological Survey used LOADEST, newly developed load estimation software, to develop regression equations and estimate loads of total phosphorus (TP), dissolved orthophosphorus (OP), and suspended sediment (SS) from January 1994 through September 2002 at four sites on the lower Boise River: Boise River below Diversion Dam near Boise, Boise River at Glenwood Bridge at Boise, Boise River near Middleton, and Boise River near Parma. The objective was to help the Idaho Department of Environmental Quality develop and implement total maximum daily loads (TMDLs) by providing spatial and temporal resolution for phosphorus and sediment loads and enabling load estimates made by mass balance calculations to be refined and validated. Regression models for TP and OP generally were well fit on the basis of regression coefficients of determination (R2), but results varied in quality from site to site. The TP and OP results for Glenwood probably were affected by the upstream wastewater-treatment plant outlet, which provides a variable phosphorus input that is unrelated to river discharge. Regression models for SS generally were statistically well fit. Regression models for Middleton for all constituents, although statistically acceptable, were of limited usefulness because sparse and intermittent discharge data at that site caused many gaps in the resulting estimates. Although the models successfully simulated measured loads under predominant flow conditions, errors in TP and SS estimates at Middleton and in TP estimates at Parma were larger during high- and low-flow conditions. This shortcoming might be improved if additional concentration data for a wider range of flow conditions were available for calibrating the model. The average estimated daily TP load ranged from less than 250 pounds per day (lb/d) at Diversion to nearly 2,200 lb/d at Parma. Estimated TP loads at all four sites displayed cyclical variations coinciding with seasonal fluctuations in discharge. Estimated annual loads of TP ranged from less than 8 tons at Diversion to 570 tons at Parma. Annual loads of dissolved OP peaked in 1997 at all sites and were consistently higher at Parma than at the other sites. The ratio of OP to TP varied considerably throughout the year at all sites. Peaks in the OP:TP ratio occurred primarily when flows were at their lowest annual stages; estimated seasonal OP:TP ratios were highest in autumn at all sites. Conversely, when flows were high, the ratio was low, reflecting increased TP associated with particulate matter during high flows. Parma exhibited the highest OP:TP ratio during all seasons, at least 0.60 in spring and nearly 0.90 in autumn. Similar OP:TP ratios were estimated at Glenwood. Whereas the OP:TP ratio for Parma and Glenwood peaked in November or December, decreased from January through May, and increased again after June, estimates for Diversion showed nearly the opposite pattern ? ratios were highest in July and lowest in January and February. This difference might reflect complex biological and geochemical processes involving nutrient cycling in Lucky Peak Lake, but further data are needed to substantiate this hypothesis. Estimated monthly average SS loads were highest at Diversion, about 400 tons per day (ton/d). Average annual loads from 1994 through 2002 were 144,000 tons at Diversion, 33,000 tons at Glenwood, and 88,000 tons at Parma. Estimated SS loads peaked in the spring at all sites, coinciding with high flows. Increases in TP in the reach from Diversion to Glenwood ranged from 200 to 350 lb/d. Decreases in TP were small in this reach only during high flows in January and February 1997. Decreases in SS, were large during high-flow conditions indicating sediment deposition in the reach. Intermittent data at Middleton indicated that increases and decreases in TP in the reach from Glenwood to Middleton were during low- and high-flow conditions, respectively. All constituents increased in the r
Kosonen, Heta; Heinonen, Mari; Mikola, Anna; Haimi, Henri; Mulas, Michela; Corona, Francesco; Vahala, Riku
2016-06-07
The nitrous oxide emissions of the Viikinmäki wastewater treatment plant were measured in a 12 month online monitoring campaign. The measurements, which were conducted with a continuous gas analyzer, covered all of the unit operations of the advanced wastewater-treatment process. The relation between the nitrous oxide emissions and certain process parameters, such as the wastewater temperature, influent biological oxygen demand, and ammonium nitrogen load, was investigated by applying online data obtained from the process-control system at 1 min intervals. Although seasonal variations in the measured nitrous oxide emissions were remarkable, the measurement data indicated no clear relationship between these emissions and seasonal changes in the wastewater temperature. The diurnal variations of the nitrous oxide emissions did, however, strongly correlate with the alternation of the influent biological oxygen demand and ammonium nitrogen load to the aerated zones of the activated sludge process. Overall, the annual nitrous oxide emissions of 168 g/PE/year and the emission factor of 1.9% of the influent nitrogen load are in the high range of values reported in the literature but in very good agreement with the results of other long-term online monitoring campaigns implemented at full-scale wastewater-treatment plants.
Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.
Huang, Hong; Zhang, Baifa; Lu, Jun
2014-01-01
We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.
14 CFR 25.527 - Hull and main float load factors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... float load factors. (a) Water reaction load factors n W must be computed in the following manner: (1... following values are used: (1) n W=water reaction load factor (that is, the water reaction divided by...
Zhang, Ming-Kui; Wang, Yang; Huang, Chao
2011-12-01
By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss of dissolved organic N was related not only to N application rate, but also to soil total N and organic carbon. The runoff loss of NH4(+)-N was mainly related to soil available NH4(+)-N, but not related to N application rate. The runoff losses of total P and particulate P were related to both P application rate and soil available P, while the runoff loss of water dissolved P was less related to P application rate but had relations to soil total P and available P.
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-01-01
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds. PMID:26364642
Zidon, Royi; Tsueda, Hirotsugu; Morin, Efrat; Morin, Shai
2016-06-01
The typical short generation length of insects makes their population dynamics highly sensitive not only to mean annual temperatures but also to their intra-annual variations. To consider the combined effect of both thermal factors under global warming, we propose a modeling framework that links general circulation models (GCMs) with a stochastic weather generator and population dynamics models to predict species population responses to inter- and intra-annual temperature changes. This framework was utilized to explore future changes in populations of Bemisia tabaci, an invasive insect pest-species that affects multiple agricultural systems in the Mediterranean region. We considered three locations representing different pest status and climatic conditions: Montpellier (France), Seville (Spain), and Beit-Jamal (Israel). We produced ensembles of local daily temperature realizations representing current and future (mid-21st century) climatic conditions under two emission scenarios for the three locations. Our simulations predicted a significant increase in the average number of annual generations and in population size, and a significant lengthening of the growing season in all three locations. A negative effect was found only in Seville for the summer season, where future temperatures lead to a reduction in population size. High variability in population size was observed between years with similar annual mean temperatures, suggesting a strong effect of intra-annual temperature variation. Critical periods were from late spring to late summer in Montpellier and from late winter to early summer in Seville and Beit-Jamal. Although our analysis suggested that earlier seasonal activity does not necessarily lead to increased populations load unless an additional generation is produced, it is highly likely that the insect will become a significant pest of open-fields at Mediterranean latitudes above 40° during the next 50 years. Our simulations also implied that current predictions based on mean temperature anomalies are relatively conservative and it is better to apply stochastic tools to resolve complex responses to climate change while taking natural variability into account. In summary, we propose a modeling framework capable of determining distinct intra-annual temperature patterns leading to large or small population sizes, for pest risk assessment and management planning of both natural and agricultural ecosystems.
14 CFR 23.341 - Gust loads factors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Gust loads factors. 23.341 Section 23.341... loads factors. (a) Each airplane must be designed to withstand loads on each lifting surface resulting... criteria of § 23.333(c). (c) In the absence of a more rational analysis, the gust load factors must be...
Land use change impacts on water quality in three lake winnipeg watersheds.
Yang, Qi; Leon, Luis F; Booty, William G; Wong, Isaac W; McCrimmon, Craig; Fong, Phil; Michiels, Patsy; Vanrobaeys, Jason; Benoy, Glenn
2014-09-01
Lake Winnipeg eutrophication results from excess nutrient loading due to agricultural activities across the watershed. Estimating nonpoint-source pollution and the mitigation effects of beneficial management practices (BMPs) is an important step in protecting the water quality of streams and receiving waters. The use of computer models to systematically compare different landscapes and agricultural systems across the Red-Assiniboine basin has not been attempted at watersheds of this size in Manitoba. In this study, the Soil and Water Assessment Tool was applied and calibrated for three pilot watersheds of the Lake Winnipeg basin. Monthly flow calibration yielded overall satisfactory Nash-Sutcliffe efficiency (NSE), with values above 0.7 for all simulations. Total phosphorus (TP) calibration NSE ranged from 0.64 to 0.76, total N (TN) ranged from 0.22 to 0.75, and total suspended solids (TSS) ranged from 0.29 to 0.68. Based on the assessment of the TP exceedance levels from 1993 to 2007, annual loads were above proposed objectives for the three watersheds more than half of the time. Four BMP scenarios based on land use changes were studied in the watersheds: annual cropland to hay land (ACHL), wetland restoration (WR), marginal annual cropland conversion to hay land (MACHL), and wetland restoration on marginal cropland (WRMAC). Of these land use change scenarios, ACHL had the greatest impact: TSS loads were reduced by 33 to 65%, TN by 58 to 82%, and TP by 38 to 72% over the simulation period. By analyzing unit area and percentage of load reduction, the results indicate that the WR and WRMAC scenarios had a significant impact on water quality in high loading zones in the three watersheds. Such reductions of sediment, N, and P are possible through land use change scenarios, suggesting that land conservation should be a key component of any Lake Winnipeg restoration strategy. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Seiler, Ralph L.; Wood, James L.
2009-01-01
Some reaches of Clear Creek above U.S. Highway 395 have experienced severe erosion as a result of fires, extreme precipitation events, and past and current human activities in the basin. Previous evaluations of erosion in the basin have concluded that most of the sediment produced and transported in the basin was associated with U.S. Highway 50, a four-lane highway that roughly parallels Clear Creek through much of the basin. During this study (water years 2004-07), construction of roads and a large residential area and golf course in the area began and are likely to affect water quality and sediment transport in the basin. Sediment data were collected between October 2003 and September 2007 (water years 2004-07) from three sites along Clear Creek. Annual suspended-sediment load was estimated to range from 1,456 tons in water year 2006 to only 100 tons in water year 2004, which corresponds to suspended-sediment yields of 93.9 tons per square mile per year in 2006 to 6.4 tons per square mile per year in 2004. In water year 2006, the suspended-sediment load on December 31, 2005, alone exceeded the combined annual load for water years 2004, 2005, and 2007. Bedload sediment was estimated to comprise 73 percent of total sediment load in the creek. Mean annual suspended-sediment yield in Clear Creek basin was much greater than yields in the Logan House, Edgewood, and Glenbrook Creek basins in the adjacent Lake Tahoe basin. Comparison of data collected during this study with data collected by university researchers in the 1970s is inconclusive as to whether fundamental changes in basin sediment characteristics have occurred during the 30-year period because different methods and sampling locations were used in the earlier studies.
NASA Astrophysics Data System (ADS)
Wellen, Christopher; Arhonditsis, George B.; Labencki, Tanya; Boyd, Duncan
2012-10-01
Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow) have assumed a prominent role in efforts to estimate the sources and transport of nutrient pollution at river basin scales. However, almost no attempts have been made to explicitly accommodate interannual nutrient loading variability in their structure, despite empirical and theoretical evidence indicating that the associated source/sink processes are quite variable at annual timescales. In this study, we present two methodological approaches to accommodate interannual variability with the Spatially Referenced Regressions on Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses the SPARROW model to estimate a static baseline load and climatic variables (e.g., precipitation) to drive the interannual variability. The second approach allows the source/sink processes within the SPARROW model to vary at annual timescales using dynamic parameter estimation techniques akin to those used in dynamic linear models. Model parameterization is founded upon Bayesian inference techniques that explicitly consider calibration data and model uncertainty. Our case study is the Hamilton Harbor watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more parsimonious of the two strategies tested and can offer insights into the temporal structural changes associated with watershed functioning. Consistent with empirical and theoretical work, model estimated annual in-stream attenuation rates varied inversely with annual discharge. Estimated phosphorus source areas were concentrated near the receiving water body during years of high in-stream attenuation and dispersed along the main stems of the streams during years of low attenuation, suggesting that nutrient source areas are subject to interannual variability.
Rafiee, Mahshid; Kariminia, Azar; Wright, Stephen; Mills, Graham; Woolley, Ian; Smith, Don; Templeton, David J.; Law, Matthew G.; Petoumenos, Kathy
2015-01-01
Reducing viral-load measurements to annual testing in virologically suppressed patients increases the estimated mean time those patients remain on a failing regimen by 6 months. This translates to an increase in the proportion of patients with at least one Thymidine Analogue Mutation from 10% to 32% over one year. PMID:26618053
FY07 NRL DoD High Performance Computing Modernization Program Annual Reports
2008-09-05
performed. Implicit and explicit solutions methods are used as appropriate. The primary finite element codes used are ABAQUS and ANSYS. User subroutines ...geometric complexities, loading path dependence, rate dependence, and interaction between loading types (electrical, thermal and mechanical). Work is not...are used for specialized material constitutive response. Coupled material responses, such as electrical- thermal for capacitor materials or electrical
Liu, Yaoze; Theller, Lawrence O; Pijanowski, Bryan C; Engel, Bernard A
2016-05-15
The adverse impacts of urbanization and climate change on hydrology and water quality can be mitigated by applying green infrastructure practices. In this study, the impacts of land use change and climate change on hydrology and water quality in the 153.2 km(2) Trail Creek watershed located in northwest Indiana were estimated using the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for the following environmental concerns: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). Using a recent 2001 land use map and 2050 land use forecasts, we found that land use change resulted in increased runoff volume and pollutant loads (8.0% to 17.9% increase). Climate change reduced runoff and nonpoint source pollutant loads (5.6% to 10.2% reduction). The 2050 forecasted land use with current rainfall resulted in the largest runoff volume and pollutant loads. The optimal selection and placement of green infrastructure practices using L-THIA-LID 2.1 model were conducted. Costs of applying green infrastructure were estimated using the L-THIA-LID 2.1 model considering construction, maintenance, and opportunity costs. To attain the same runoff volume and pollutant loads as in 2001 land uses for 2050 land uses, the runoff volume, TSS, TP, TKN, and NOx for 2050 needed to be reduced by 10.8%, 14.4%, 13.1%, 15.2%, and 9.0%, respectively. The corresponding annual costs of implementing green infrastructure to achieve the goals were $2.1, $0.8, $1.6, $1.9, and $0.8 million, respectively. Annual costs of reducing 2050 runoff volume/pollutant loads were estimated, and results show green infrastructure annual cost greatly increased for larger reductions in runoff volume and pollutant loads. During optimization, the most cost-efficient green infrastructure practices were selected and implementation levels increased for greater reductions of runoff and nonpoint source pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.
Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.
2007-01-01
Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices that would reduce the loading of nutrients and soil erosion from that land use.
Fisher, Donald W.
1967-01-01
A 2-year study of precipitation composition over eastern North Carolina and southeastern Virginia has been completed. Chemical analyses were made of the major ions in monthly rainfall samples from each of 12 sampling locations. Areal and seasonal distributions were determined for chloride, calcium, magnesium, sodium, potassium, sulfate, and nitrate. Annual changes in loads and in geographical distribution of sulfate and of nitrate are small. Yearly rainfall sulfate loads amount to approximately 7 tons per square mile, whereas deposition of nitrate is about 2 tons per square mile per year in the interior of the network and less near the coast. Areal patterns of chloride content are consistent with the assumption that the ocean is the only major source of rainfall chloride in the area. Chloride loads were 2.1 and 1.8 tons per square mile per year; the difference can be attributed to meteorological conditions. Cation concentrations in network precipitation appear to depend on localized sources, probably soil dust. Annual loads of the major cations are approximately 2 tons per square mile of calcium, 1.8 tons per square mile of sodium, 0.5 ton per square mile of magnesium, and 0.3 ton per square mile of potassium; considerable year-to-year differences were noted in these values. Bicarbonate and hydrogen ion in network rainfall are closely related to the relative concentrations of sulfate and calcium. Apparently, reaction of an acidic sulfur-containing aerosol with an alkaline calcium source is one of the principal controls on precipitation alkalinity and pH. Ions in precipitation contribute substantially to the quality of surface water in the network area. Comparisons between precipitation input and stream export of ions for four North Carolina rivers show that rainfall sulfate is equal to sulfate discharged, whereas nitrate in rain slightly exceeds stream nitrate. Contributions of cations to the streams by way of precipitation range from about 20 percent for potassium to almost 50 percent for calcium. Chloride deposited by precipitation amounts to about one-fourth of the stream load. Additions of manufactured salt may account for much of the remainder of the surface-water load.
Calibration of LRFR live load factors using weigh-in-motion data.
DOT National Transportation Integrated Search
2006-06-01
The Load and Resistance Factor Rating (LRFR) code for load rating bridges is based on factors calibrated from structural : load and resistance statistics to achieve a more uniform level of reliability for all bridges. The liveload factors in the : LR...
Phosphorus and nitrogen in runoff after phosphorus- or nitrogen-based manure applications.
Miller, Jim J; Chanasyk, David S; Curtis, Tony W; Olson, Barry M
2011-01-01
Application of beef cattle () manure based on nitrogen (N) requirements of crops has resulted in elevated concentrations of soil test phosphorus (P) in surface soils, and runoff from this cropland can contribute to eutrophication of surface waters. We conducted a 3-yr field study (2005-2007) on a Lethbridge loam soil cropped to dryland barley () in southern Alberta, Canada to evaluate the effect of annual and triennial P-based and annual N-based feedlot manure on P and N in runoff. The manure was spring applied and incorporated. There was one unamended control plot. A portable rainfall simulator was used to generate runoff in the spring of each year after recent manure incorporation, and the runoff was analyzed for total P, total dissolved P, total particulate P, dissolved reactive P, total N, total dissolved N, total particulate N, NO-N, and NH-N. Annual or triennial P-based application resulted in significantly ( ≤ 0.05) lower (by 50 to 94%) concentrations or loads of mainly dissolved P fractions in runoff for some years compared with annual N-based application, and this was related to lower rates of annual manure P applied. For example, mean dissolved reactive P concentrations in 2006 and 2007 were significantly lower for the annual P-based (0.12-0.20 mg L) than for the annual N-based application (0.24-0.48 mg L), and mean values were significantly lower for the triennial P-based (0.06-0.13 mg L) than for the annual N-based application. In contrast, other P fractions in runoff were unaffected by annual P-based application. Our findings suggested no environmental benefit of annual P-based application over triennial P-based application with respect to P and N in runoff. Similar concentrations and loads of N fractions in runoff for the P- and N-based applications indicated that shifting to a P-based application would not significantly influence N in runoff. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Developing and applying metamodels of high resolution ...
As defined by Wikipedia (https://en.wikipedia.org/wiki/Metamodeling), “(a) metamodel or surrogate model is a model of a model, and metamodeling is the process of generating such metamodels.” The goals of metamodeling include, but are not limited to (1) developing functional or statistical relationships between a model’s input and output variables for model analysis, interpretation, or information consumption by users’ clients; (2) quantifying a model’s sensitivity to alternative or uncertain forcing functions, initial conditions, or parameters; and (3) characterizing the model’s response or state space. Using five existing models developed by US Environmental Protection Agency, we generate a metamodeling database of the expected environmental and biological concentrations of 644 organic chemicals released into nine US rivers from wastewater treatment works (WTWs) assuming multiple loading rates and sizes of populations serviced. The chemicals of interest have log n-octanol/water partition coefficients ( ) ranging from 3 to 14, and the rivers of concern have mean annual discharges ranging from 1.09 to 3240 m3/s. Log linear regression models are derived to predict mean annual dissolved and total water concentrations and total sediment concentrations of chemicals of concern based on their , Henry’s Law Constant, and WTW loading rate and on the mean annual discharges of the receiving rivers. Metamodels are also derived to predict mean annual chemical
Periodicity and Multi-scale Analysis of Runoff and Sediment Load in the Wulanghe River, Jinsha River
NASA Astrophysics Data System (ADS)
Chen, Yiming
2018-01-01
Based on the annual runoff and sediment data (1959-2014 ) of Zongguantian hydrological station, time-frequency wavelet transform characteristics and their periodic rules of high and low flow alternating change were analyzed in multi-time scales by the Morlet continue wavelet transformation (CWT). It is concluded that the primary periods of runoff and sediment load time series of the high and low annual flow in the different time scales were 12-year, 3-year and 26-year, 18-year, 13-year, 5-year, respectively, and predicted that the major variant trend of the two time series would been gradually decreasing and been in the high flow period around 8-year (from 2014 to 2022) and 10-year (from 2014 to 2020).
Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.
2010-01-01
The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological phosphorus removal process was not optimized until after the study was completed. Total nitrogen and phosphorus from the wastewater treatment facility contributed a relatively small percentage (14 to 15 percent) to the annual nutrient load in the upper Blue River, but contributed substantially (as much as 75 percent) to monthly loads during seasonal low-flows in winter and summer. During 2007 and 2008, annual discharge from the wastewater treatment facility was about one-half maximum capacity, and estimated potential maximum annual loads were 1.6 to 2.4 times greater than annual loads before capacity upgrades. Even when target nutrient concentrations are met, annual nutrient loads will increase when the wastewater treatment facility is operated at full capacity. Regardless of changes in annual nutrient loads, the reduction of nutrient concentrations in the Blue River Main wastewater effluent will help prevent further degradation of the upper Blue River. The Blue River Main Wastewater Treatment Facility wastewater effluent caused changes in concentrations of several water-quality constituents that may affect biological community structure and function including larger concentrations of bioavailable nutrients (nitrate and orthophosphorus) and smaller turbidities. Streambed-sediment conditions were similar along the upstream-downstream gradient and measured constituents did not exceed probable effect concentrations. Habitat conditions declined along the upstream-downstream gradient, largely because of decreased canopy cover and riparian buffer width and increased riffle-substrate fouling. Algal biomass, primary production, and the abundance of nutrient-tolerant diatoms substantially increased downstream from the wastewater treatment facility. Likewise, the abundance of intolerant macroinvertebrate taxa and Kansas Department of Health and Environment aquatic-life-support scores, derived from macroinvertebrate data, significantly decreased downstream from the wastewater
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5484-N-26] Notice of Proposed Information Collection: Comment Request; Annual Adjustment Factors (AAF) Rent Increase Requirement AGENCY... also lists the following information: Title of Proposal: Annual Adjustment Factors (AAF) Rent Increase...
Tillman, Fred D.; Anning, David W.
2014-01-01
The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.
Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M
2018-08-01
Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.
14 CFR 25.1531 - Maneuvering flight load factors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maneuvering flight load factors. 25.1531 Section 25.1531 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the...
14 CFR 25.1531 - Maneuvering flight load factors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maneuvering flight load factors. 25.1531 Section 25.1531 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the...
The Custom Search allows users to search for and generate customized data downloads of pollutant loadings information. Users can select varying levels of detail for outputs: annual, monitoring period, and facility level.
Global seasonal strain and stress models derived from GRACE loading, and their impact on seismicity
NASA Astrophysics Data System (ADS)
Chanard, K.; Fleitout, L.; Calais, E.; Craig, T. J.; Rebischung, P.; Avouac, J. P.
2017-12-01
Loading by continental water, atmosphere and oceans deforms the Earth at various spatio-temporal scales, inducing crustal and mantelic stress perturbations that may play a role in earthquake triggering.Deformation of the Earth by this surface loading is observed in GNSS position time series. While various models predict well vertical observations, explaining horizontal displacements remains challenging. We model the elastic deformation induced by loading derived from GRACE for coefficients 2 and higher. We estimate the degree-1 deformation field by comparison between predictions of our model and IGS-repro2 solutions at a globally distributed network of 700 GNSS sites, separating the horizontal and vertical components to avoid biases between components. The misfit between model and data is reduced compared to previous studies, particularly on the horizontal component. The associated geocenter motion time series are consistent with results derived from other datasets. We also discuss the impact on our results of systematic errors in GNSS geodetic products, in particular of the draconitic error.We then compute stress tensors time series induced by GRACE loads and discuss the potential link between large scale seasonal mass redistributions and seismicity. Within the crust, we estimate hydrologically induced stresses in the intraplate New Madrid Seismic Zone, where secular stressing rates are unmeasurably low. We show that a significant variation in the rate of micro-earthquakes at annual and multi-annual timescales coincides with stresses induced by hydrological loading in the upper Mississippi embayment, with no significant phase-lag, directly modulating regional seismicity. We also investigate pressure variations in the mantle transition zone and discuss potential correlations between the statistically significant observed seasonality of deep-focus earthquakes, most likely due to mineralogical transformations, and surface hydrological loading.
Cannon, M.R.
1985-01-01
Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)
Yang, Xiaoying; Warren, Rachel; He, Yi; Ye, Jinyin; Li, Qiaoling; Wang, Guoqing
2018-02-15
It is increasingly recognized that climate change could affect the quality of water through complex natural and anthropogenic mechanisms. Previous studies on climate change and water quality have mostly focused on assessing its impact on pollutant loads from agricultural runoff. A sub-daily SWAT model was developed to simulate the discharge, transport, and transformation of nitrogen from all known anthropogenic sources including industries, municipal sewage treatment plants, concentrated and scattered feedlot operations, rural households, and crop production in the Upper Huai River Basin. This is a highly polluted basin with total nitrogen (TN) concentrations frequently exceeding Class V of the Chinese Surface Water Quality Standard (GB3838-2002). Climate change projections produced by 16 Global Circulation Models (GCMs) under the RCP 4.5 and RCP 8.5 scenarios in the mid (2040-2060) and late (2070-2090) century were used to drive the SWAT model to evaluate the impacts of climate change on both the TN loads and the effectiveness of three water pollution control measures (reducing fertilizer use, constructing vegetative filter strips, and improving septic tank performance) in the basin. SWAT simulation results have indicated that climate change is likely to cause an increase in both monthly average and extreme TN loads in February, May, and November. The projected impact of climate change on TN loads in August is more varied between GCMs. In addition, climate change is projected to have a negative impact on the effectiveness of septic tanks in reducing TN loads, while its impacts on the other two measures are more uncertain. Despite the uncertainty, reducing fertilizer use remains the most effective measure for reducing TN loads under different climate change scenarios. Meanwhile, improving septic tank performance is relatively more effective in reducing annual TN loads, while constructing vegetative filter strips is more effective in reducing annual maximum monthly TN loads. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Walve, Jakob; Sandberg, Maria; Larsson, Ulf; Lännergren, Christer
2018-05-01
Internal phosphorus (P) loading from sediments, controlled by hypoxia, is often assumed to hamper the recovery of lakes and coastal areas from eutrophication. In the early 1970s, the external P load to the inner archipelago of Stockholm, Sweden (Baltic Sea), was drastically reduced by improved sewage treatment, but the internal P loading and its controlling factors have been poorly quantified. We use two slightly different four-layer box models to calculate the area's seasonal and annual P balance (input-export) and the internal P exchange with sediments in 1968-2015. For 10-20 years after the main P load reduction, there was a negative P balance, small in comparison to the external load, and probably due to release from legacy sediment P storage. Later, the stabilized, near-neutral P balance indicates no remaining internal loading from legacy P, but P retention is low, despite improved oxygen conditions. Seasonally, sediments are a P sink in spring and a P source in summer and autumn. Most of the deep-water P release from sediments in summer-autumn appears to be derived from the settled spring bloom and is exported to outer areas during winter. Oxygen consumption and P release in the deep water are generally tightly coupled, indicating limited iron control of P release. However, enhanced P release in years of deep-water hypoxia suggests some contribution from redox-sensitive P pools. Increasing deep-water temperatures that stimulate oxygen consumption rates in early summer have counteracted the effect of lowered organic matter sedimentation on oxygen concentrations. Since the P turnover time is short and legacy P small, measures to bind P in Stockholm inner archipelago sediments would primarily accumulate recent P inputs, imported from the Baltic Sea and from Lake Mälaren.
14 CFR 398.9 - Load factor standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Load factor standards. 398.9 Section 398.9... STATEMENTS GUIDELINES FOR INDIVIDUAL DETERMINATIONS OF BASIC ESSENTIAL AIR SERVICE § 398.9 Load factor standards. The load factor standards used in this part may be raised for individual eligible places under...
14 CFR 25.337 - Limit maneuvering load factors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factors. 25.337... Conditions § 25.337 Limit maneuvering load factors. (a) Except where limited by maximum (static) lift... maneuvering load factors prescribed in this section. Pitching velocities appropriate to the corresponding pull...
76 FR 71559 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9494-6] Acid Rain Program: Notice of Annual Adjustment... annual adjustment factors for excess emissions penalty. SUMMARY: The Acid Rain Program under title IV of... emissions for sources that do not meet their annual Acid Rain emissions limitations. This notice states the...
78 FR 64496 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9902-14-OAR] Acid Rain Program: Notice of Annual Adjustment... annual adjustment factors for excess emissions penalty. SUMMARY: The Acid Rain Program under title IV of... emissions for sources that do not meet their annual Acid Rain emissions limitations. This notice states the...
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2017-12-01
In this study, a simple coupled framework established in Part I is utilized to investigate inter-model diversity in simulating the equatorial Pacific SST annual cycle (SSTAC). It demonstrates that the simulated amplitude and phase characteristics of SSTAC in models are controlled by two internal dynamical factors (the damping rate and phase speed) and two external forcing factors (the strength of the annual and semi-annual harmonic forcing). These four diagnostic factors are further condensed into a dynamical response factor and a forcing factor to derive theoretical solutions of amplitude and phase of SSTAC. The theoretical solutions are in remarkable agreement with observations and CMIP5 simulations. The great diversity in the simulated SSTACs is related to the spreads in these dynamic and forcing factors. Most models tend to simulate a weak SSTAC, due to their weak damping rate and annual harmonic forcing. The latter is due to bias in the meridional asymmetry of the annual mean state of the tropical Pacific, represented by the weak cross-equatorial winds in the cold tongue region.
Hubbard, L.; Kolpin, D.W.; Kalkhoff, S.J.; Robertson, Dale M.
2011-01-01
A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.
Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model
Granato, Gregory; Jones, Susan Cheung
2017-01-01
The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.
Hubbard, L; Kolpin, D W; Kalkhoff, S J; Robertson, D M
2011-01-01
A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.
Bed material transport in the Virgin River, Utah
Andrews, E.D.
2000-01-01
Detailed information concerning the rate and particle size distribution of bed material transport by streamflows can be very difficult and expensive to obtain, especially where peak streamflows are brief and bed material is poorly sorted, including some very large boulders. Such streams, however, are common in steep, arid watersheds. Any computational approach must consider that (1) only the smaller particle sizes present on the streambed move even during large floods and (2) the largest bed particles exert a significant form drag on the flow. Conventional methods that rely on a single particle size to estimate the skin friction shear stress acting on the mobile fraction of the bed material perform poorly. Instead, for this study, the skin friction shear stress was calculated for the observed range of streamflows by calculating the form drag exerted on the reach‐averaged flow field by all particle sizes. Suspended and bed load transported rates computed from reach‐averaged skin friction shear stress are in excellent agreement with measured transport rates. The computed mean annual bed material load, including both bed load and suspended load, of the East Fork Virgin River for the water years 1992‐1996 was approximately 1.3×10 5 t. A large portion of the bed material load consists of sand‐sized particles, 0.062–1.0 mm in diameter, that are transported in suspension. Such particles, however, constituted only 10% of the surface bed material and less than 25% of the subsurface bed material. The mean annual quantity of bed load transported was 1060 t/yr with a median size of 15 mm.
Disentangling nutrient concentrations trends in transfer pathways of agricultural watersheds
NASA Astrophysics Data System (ADS)
Mellander, P. E.; Jordan, P.
2017-12-01
Targeted schemes designed to attenuate agricultural pollution to water are needed to reach goals of sustainable food production. Such approaches require insight into temporal and spatial variability in the most representative flows and active pollution transfer pathways. Interpreting changes in total stream flow can be misleading since some changes may only be apparent in specific pathways. The aim of this study was to investigate changing land use pressures on water quality. The objectives were to assess intra-annual and inter-annual changes in phosphorus (P) and nitrogen (N) concentrations and loads in apportioned pathways. Pathways were separated using hydrograph and loadograph separation techniques on a seven-year dataset of sub-hourly river discharge and concentrations of NO3-N, reactive P and total P in two intensively managed agricultural watersheds of contrasting hydrology in Ireland. Active transfer pathways were dictated by soil drainage. There were intra-annual variability in both P and N concentrations in different pathways and loads, and these had the largest influence of all-year baseflow (BF) concentrations and summer quickflow (QF) concentrations. Nutrient loss responded to seasonality in the river discharge in all pathways in both watersheds and was mostly transport limited. In both watersheds there were inter-annual trends in P concentration in some pathways and seasons that did not correspond to the trend of total river P concentration. The response in stream water quality to management, mitigation measures and changes in weather may be hidden by counteracting responses in different pathways. The hydrology had a major impact on seasonal changes in N and P loss. By apportioning different transfer pathways more information on the temporal and site-specific nature of nutrient transfer was provided. BF and QF pathways largely contributed to the river P concentrations in summer while all pathways contributed to the P and N loads in wintertime. The data indicated that increasing trends in river P concentrations were mostly linked to trends in BF concentration in both catchment types. This may be explained by increased point source influence, increased vertical transfer through increased soil P loading, or decreased stream bed attenuation. Each will require different policy considerations.
Early Critical Care Decisions and Outcomes after SCI: Track-SCI
2017-09-01
Integrated Machine Learning Algorithms Can Predict Neurologic Impairment in Acute Spinal Cord Injury. American Roentgen Ray Society Annual Meeting...related to AIS at discharge. MCC, MSCC, and TLICS also loaded positively on PC2 (22.7% of variance), while variables concerning cord signal abnormality ...loaded negatively on PC2. PC2 was highly related to the patient undergoing surgical decompression. Variables of signal abnormality were all negatively
Lenz, Bernard N.; Robertson, Dale M.; Fallon, James D.; Ferrin, Randy
2001-01-01
Benthic invertebrates were sampled and indices of water quality were calculated at 16 tributaries in fall 1999. Benthic invertebrate indices indicated excellent to good water quality at all tributaries except Valley Creek, Willow River, and Kettle River. No relations were found between benthic invertebrate indices and the calculated and estimated 1999 annual tributary loads and yields.
Babiarz, Christopher; Hoffmann, Stephen; Wieben, Ann; Hurley, James; Andren, Anders; Shafer, Martin; Armstrong, David
2012-02-01
Knowledge of the partitioning and sources of mercury are important to understanding the human impact on mercury levels in Lake Superior wildlife. Fluvial fluxes of total mercury (Hg(T)) and methylmercury (MeHg) were compared to discharge and partitioning trends in 20 sub-basins having contrasting land uses and geological substrates. The annual tributary yield was correlated with watershed characteristics and scaled up to estimate the basin-wide loading. Tributaries with clay sediments and agricultural land use had the largest daily yields with maxima observed near the peak in water discharge. Roughly 42% of Hg(T) and 57% of MeHg was delivered in the colloidal phase. Tributary inputs, which are confined to near-shore zones of the lake, may be more important to the food-web than atmospheric sources. The annual basin-wide loading from tributaries was estimated to be 277 kg yr(-1) Hg(T) and 3.4 kg yr(-1) MeHg (5.5 and 0.07 mg km(-2) d(-1), respectively). Copyright © 2011 Elsevier Ltd. All rights reserved.
Pereira, W.E.; Rostad, C.E.; Leiker, T.J.
1992-01-01
The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2′,6′-diethylacetanilide 2-hydroxy-2′,6′-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987–1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.
Sloto, Ronald A.; Olson, Leif E.
2011-01-01
Turbidity and suspended-sediment concentration data were collected by the U.S. Geological Survey (USGS) at four stream stations--French Creek near Phoenixville, West Branch Brandywine Creek near Honey Brook, West Branch Brandywine Creek at Modena, and East Branch Brandywine Creek below Downingtown--in Chester County, Pa. Sedimentation and siltation is the leading cause of stream impairment in Chester County, and these data are critical for quantifying sediment transport. This study was conducted by the USGS in cooperation with the Chester County Water Resources Authority and the Chester County Health Department. Data from optical turbidity sensors deployed at the four stations were recorded at 15- or 30-minute intervals by a data logger and uploaded every 1 to 4 hours to the USGS database. Most of the suspended-sediment samples were collected using automated samplers. The use of optical sensors to continuously monitor turbidity provided an accurate estimate of sediment fluctuations without the collection and analysis costs associated with intensive sampling during storms. Turbidity was used as a surrogate for suspended-sediment concentration (SSC), which is a measure of sedimentation and siltation. Regression models were developed between SSC and turbidity for each of the monitoring stations using SSC data collected from the automated samplers and turbidity data collected at each station. Instantaneous suspended-sediment loads (SSL) were computed from time-series turbidity and discharge data for the 2008 and 2009 water years using the regression equations. The instantaneous computations of SSL were summed to provide daily, storm, and water year annual loads. The annual SSL contributed from each basin was divided by the upstream drainage area to estimate the annual sediment yield. For all four basins, storms provided more than 96 percent of the annual SSL. In each basin, four storms generally provided over half the annual SSL each water year. Stormflows with the highest peak discharges generally carried the highest SSLs. For all stations, the greatest SSLs occurred during the late winter in February and March during the 2008 water year. During the 2009 water year, the greatest SSLs occurred during December and August. For French Creek near Phoenixville, the estimated annual SSL was 3,500 tons, and the estimated yield was 59.1 tons per square mile (ton/mi2) for the 2008 water year. For the 2009 water year, the annual SSL was 4,390 tons, and the yield was 74.3 ton/mi2. For West Branch Brandywine Creek near Honey Brook, the estimated annual SSL was 4,580 tons, and the estimated yield was 245 ton/mi2 for the 2008 water year. For the 2009 water year, the annual SSL was 2,300 tons, and the yield was 123 ton/mi2. For West Branch Brandywine Creek at Modena, the estimated annual SSL was 7,480 tons, and the estimated yield was 136 ton/mi2 for the 2008 water year. For the 2009 water year, the annual SSL was 4,930 tons, and the yield was 90 ton/mi2. For East Branch Brandywine Creek below Downingtown, the estimated annual SSL was 8,900 tons, and the estimated yield was 100 ton/mi2 for the 2008 water year. For the 2009 water year, the annual SSL was 7,590 tons, and the yield was 84 ton/mi2.
Emissions from miombo woodland and dambo grassland savanna fires
NASA Astrophysics Data System (ADS)
Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.
2004-06-01
Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May-October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia.
Emissions from Miombo Woodland and Dambo Grassland Savanna Fires
NASA Technical Reports Server (NTRS)
Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.
2004-01-01
Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May-October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia.
Byrne, Michael J.; Wood, Molly S.
2011-01-01
Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic nitrogen plus ammonia ranged from 1.27 to 2.96 mg/L at the 16 tributaries during 2004–2008. Mean concentrations were highest at Fisheating Creek at Lake Placid (a non-priority site), and lowest at Wolff Creek, Taylor Creek near Grassy Island, and Otter Creek (three priority basin sites), and at Arbuckle Creek (a non-priority basin site). Mean concentrations of nitrite plus nitrate ranged from 0.01 to 0.55 mg/L at the 16 tributaries during 2004–2008. Mean concentrations measured in priority basins were significantly higher than those measured in non-priority basins. Nutrient concentrations were substantially lower in the non-priority basins; however, total loads were substantially higher due to discharge that was 5 to 6 times greater than from the priority basins. Total phosphorus, organic nitrogen plus ammonia, and nitrite plus nitrate loads from the non-priority basins were 1.5, 4.5, and 3.5 times greater, respectively, than were loads from the priority basins. In the non-priority basins, total phosphorus loads ranged from 35 metric tons (MT) in 2007 to 247 MT in 2005. In the priority basins, the loads ranged from 18 MT in 2007 to 136 MT in 2005. In the non-priority basins, organic nitrogen plus ammonia loads ranged from 337 MT in 2007 to 2,817 MT in 2005. In the priority basins, organic nitrogen plus ammonia loads ranged from 85 MT in 2007 to 503 MT in 2005. In the non-priority basins, nitrite plus nitrate loads ranged from 34 MT in 2007 to 143 MT in 2005. In the priority basins, nitrite plus nitrate loads ranged from 4 MT in 2007 to 27 MT in 2005.
NASA Astrophysics Data System (ADS)
Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong
2009-04-01
Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords: groundwater pollution, early warning, aquifer vulnerability, pollution load, pollution risk, ComGIS
Rimondi, V.; Costagliola, P.; Gray, J.E.; Lattanzi, P.; Nannucci, M.; Paolieri, M.; Salvadori, A.
2014-01-01
Total dissolved and particulate mercury (Hg), arsenic (As), and antimony (Sb) mass loads were estimated in different seasons (March and September 2011 and March 2012) in the Paglia River basin (PRB) (central Italy). The Paglia River drains the Mt. Amiata Hg district, one of the largest Hg-rich regions worldwide. Quantification of Hg, As, and Sb mass loads in this watershed allowed (1) identification of the contamination sources, (2) evaluation of the effects of Hg on the environment, and (3) determination of processes affecting Hg transport. The dominant source of Hg in the Paglia River is runoff from Hg mines in the Mt. Amiata region. The maximum Hg mass load was found to be related to runoff from the inactive Abbadia San Salvatore Mine (ASSM), and up to 30 g day−1 of Hg, dominantly in the particulate form, was transported both in high and low flow conditions in 2011. In addition, enrichment factors (EFs) calculated for suspended particulate matter (SPM) were similar in different seasons indicating that water discharge controls the quantities of Hg transported in the PRB, and considerable Hg was transported in all seasons studied. Overall, as much as 11 kg of Hg are discharged annually in the PRB and this Hg is transported downstream to the Tiber River, and eventually to the Mediterranean Sea. Similar to Hg, maximum mass loads for As and Sb were found in March 2011, when as much as 190 g day−1 each of As and Sb were measured from sites downstream from the ASSM. Therefore, the Paglia River represents a significant source of Hg, Sb, and As to the Mediterranean Sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.
1979-06-01
The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption in buildings. There are three major subprograms: (1) the space load predicting subprogram, which computes hourly space loads in a building or zone based on user input and hourly weather data; (2) the air distribution system simulation subprogram, which uses the computed space load and user inputs describing the building air-handling system to calculate hot water or steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solarmore » energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost.« less
Rasmussen, Teresa; Gatotho, Jackline
2014-01-01
The population of Johnson County, Kansas increased by about 24 percent between 2000 and 2012, making it one of the most rapidly developing areas of Kansas. The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, began a comprehensive study of Johnson County streams in 2002 to evaluate and monitor changes in stream quality. The purpose of this report is to describe water-quality variability and constituent transport for streams representing the five largest watersheds in Johnson County, Kansas during 2003 through 2011. The watersheds ranged in urban development from 98.3 percent urban (Indian Creek) to 16.7 percent urban (Kill Creek). Water-quality conditions are quantified among the watersheds of similar size (50.1 square miles to 65.7 square miles) using continuous, in-stream measurements, and using regression models developed from continuous and discrete data. These data are used to quantify variability in concentrations and loads during changing streamflow and seasonal conditions, describe differences among sites, and assess water quality relative to water-quality standards and stream management goals. Water quality varied relative to streamflow conditions, urbanization in the upstream watershed, and contributions from wastewater treatment facilities and storm runoff. Generally, as percent impervious surface (a measure of urbanization) increased, streamflow yield increased. Water temperature of Indian Creek, the most urban site which is also downstream from wastewater facility discharges, was higher than the other sites about 50 percent of the time, particularly during winter months. Dissolved oxygen concentrations were less than the Kansas Department of Health and Environment minimum criterion of 5 milligrams per liter about 15 percent of the time at the Indian Creek site. Dissolved oxygen concentrations were less than the criterion about 10 percent of the time at the rural Blue River and Kill Creek sites, and less than 5 percent of the time at the other sites. Low dissolved oxygen at all sites generally coincided with lowest streamflow and warmer water temperatures. Hourly dissolved oxygen concentrations less than 5 milligrams per liter were measured at all sites every year, indicating that even under normal climate conditions in non-urban watersheds such as Kill Creek, dissolved oxygen concentrations may not meet State aquatic-life criterion. Specific conductance was nearly always highest in Indian and Mill Creeks, which were the most urban streams with the largest upstream discharges from wastewater treatment facilities. The largest chloride concentrations and variability were recorded at urban sites and during winter. Each winter during the study period, chloride concentrations in the most urban site, Indian Creek, exceeded the U.S. Environmental Protection Agency-recommended criterion of 230 milligrams per liter for at least 10 consecutive days. The U.S. Environmental Protection Agency-recommended ecoregion criterion for turbidity was exceeded 30 (Indian Creek) to 50 (Blue River) percent of the time. The highest average annual streamflow-weighted suspendedsediment concentration during the study period was in Mill Creek, which has undergone rapid development that likely contributed to higher sediment concentrations. One of the largest suspended-sediment load events in Indian Creek was recorded in early May 2007 when about 25 percent of the total annual sediment load was transported during a period of about 2.25 days. A simultaneous load event was recorded in Kill Creek, when about 75 percent of the total annual sediment load was transported. Sediment yields generally increased as percent impervious surface increased. Computed hourly total nitrogen and total phosphorus concentrations and yields and streamflow-weighted concentrations generally were largest in Indian and Mill Creeks. Annual percent contribution of total nitrogen in the Blue River from wastewater treatment facility discharges ranged from 19 percent in 2010 to 60 percent in 2006. Annual percent contribution of total nitrogen in Indian Creek from wastewater treatment facility discharges ranged from 35 percent in 2010 to 93 percent in 2006. The largest percent nutrient contributions from wastewater discharges coincided with the smallest annual precipitation and streamflow volume, resulting in less contribution originating from runoff. Fecal indicator bacteria Escherichia coli density at the urban Indian Creek site was usually the largest of the five monitoring sites, with an annual median density that consistently exceeded the State primary contact criterion value but was less than the secondary contact criterion. Less than 1 percent of the total annual bacteria load in the Blue River and Indian Creek originated from wastewater discharges, except during 2006 when about 6 percent of the Indian Creek load originated from wastewater. Continuous water-quality monitoring provides a foundation for comprehensive evaluation and understanding of variability and loading characteristics in streams in Johnson County. Because several directly measured parameters are strongly correlated with particular constituents of interest, regression models provide a valuable tool for evaluating variability and loading on the basis of computed continuous data. Continuous data are particularly useful for characterizing nonpoint-source contributions from stormwater runoff. Transmission of continuous data in real-time makes it possible to rapidly detect and respond to potential environmental concerns. As monitoring technologies continue to improve, so does the ability to monitor additional constituents of interest, with smaller measurement error, and at lower operational cost. Continuous water-quality data including model information and computed concentrations and loads during the study period are available at http://nrtwq.usgs.gov/ks/.
Estimating the water budget for a peat filter treating septic tank effluent in the field
NASA Astrophysics Data System (ADS)
Van Geel, Paul J.; Parker, Wayne J.
2003-02-01
The use of peat as a filter medium for the treatment of a variety of liquid and gas waste streams has increased over the past decade. Peat has been used as an alternate treatment medium to treat septic tank effluent (STE) from domestic and small communal systems. Very little research has been completed to study the hydraulics and water budget of a peat filter operating in the field. This study evaluated the water budget of a peat filter operating at an elementary school near Ottawa, Canada. The peat filter was instrumented with tensiometers to measure the pore water pressures within the filter and a weather station to collect weather data required to estimate potential evapotranspiration. A one-dimensional unsaturated flow model, SoilCover, was calibrated using the pressure data and weather data collected in the field. The calibrated model was use to estimate the water budget for the filter operating with and without STE loading. The calibrated model predicted that the annual precipitation exceeded evapotranspiration for both scenarios. For the filter treating 50 mm/day of STE, there was a slight dilution due to the infiltration resulting in a net dilution factor of 0.97 (loading divided by the loading plus infiltration). The largest rainfall event of 49.9 mm resulted in a dilution factor of approximately 0.87, which corresponded to an approximate decrease in the hydraulic retention time (HRT) of between 12 and 33% depending on the calculation used to determine the HRT. When the filter does not receive STE, the precipitation exceeds evapotranspiration and hence the filter should not dry out when the filter is not in use.
Assessment of an improved hydrological loading model from space geodesy: case study in South America
NASA Astrophysics Data System (ADS)
Nicolas, Joëlle; Boy, Jean-Paul; Durand, Frédéric; Mémin, Anthony
2017-04-01
Loading effects are crustal deformations induced by ocean, atmosphere and continental water mass redistributions. In this study we focus on hydrological loading effect monitored by space geodesy and in particular by GNSS and GRACE. Classically, hydrological loading models take into account snow and soil-moisture but don't consider surface waters (rivers, lakes…). As a result, huge discrepancies between GPS observations and those models arise around large rivers such as the Amazon where nearly half of the vertical signal cannot be explained by the combination of atmospheric, oceanic and hydrological loading models. To better resolve the hydrological signal, we improve the continental water storage models computed from soil-moisture and snow GLDAS/Noah or MERRA data sets by including surface water runoff. We investigate how continental water storage model improvements are supported by GNSS and GRACE observations in South America main river basins: Amazon, Orinoco and Parana. In this area the hydrological effects are among the largest in the world mainly due to the river level variations. We present the results of time series analyses with spectral and principal component analysis (PCA) methods. We extract the dominant spatio-temporal annual mode. We also identify and characterize the spatio-temporal changes in the annual hydrology signal, which is the key to a better understanding of the water cycle variations of those major rivers. We demonstrate that it is crucial to take into account the river contribution in fluid signatures before investigating high-frequency variability and episodic events.
Saniewski, Michał; Zalewska, Tamara
2016-01-01
In the period 2005-2011 total atmospheric fallout and the riverine input to the Gulf of Gdańsk was 1168.8 GBq of (90)Sr and 424.1 GBq (137)Cs. The major source of both radionuclides to the Gulf of Gdańsk is the Vistula river; its contribution reached 99.7% in the case of (90)Sr and 95.8% regarding (137)Cs. The atmospheric load of (137)Cs, 18.1 GBq, was nearly 4 times bigger than in the case of (90)Sr (3.75 GBq). In the period 2005-2010, the average annual atmospheric load were at the levels 2-3 GBq for (137)Cs and 0.4-0.6 GBq for (90)Sr, while in 2011, due to the Fukuchima Dai-ichi power plant break down, an increase of annual atmospheric loads was noted to 5.3 GBq of (137)Cs and to 0.87 GBq of (90)Sr. The additional loads did not have an increasing effect on the activity concentrations of (137)Cs and (90)Sr in seawater of the Gulf of Gdańsk, where mean activity concentrations in seawater were equal to 31.1 Bq m(-3) and 7.6 Bq m(-3) in the case of (137)Cs and (90)Sr respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modified APEX model for Simulating Macropore Phosphorus Contributions to Tile Drains.
Ford, William I; King, Kevin W; Williams, Mark R; Confesor, Remegio B
2017-11-01
The contribution of macropore flow to phosphorus (P) loadings in tile-drained agricultural landscapes remains poorly understood at the field scale, despite the recognized deleterious impacts of contaminant transport via macropore pathways. A new subroutine that couples existing matrix-excess and matrix-desiccation macropore flow theory and a modified P routine is implemented in the Agricultural Policy Environmental eXtender (APEX) model. The original and modified formulation were applied and evaluated for a case study in a poorly drained field in Western Ohio with 31 months of surface and subsurface monitoring data. Results highlighted that a macropore subroutine in APEX improved edge-of-field discharge calibration and validation for both tile and total discharge from satisfactory and good, respectively, to very good and improved dissolved reactive P load calibration and validation statistics for tile P loads from unsatisfactory to very good. Output from the calibrated macropore simulations suggested median annual matrix-desiccation macropore flow contributions of 48% and P load contributions of 43%, with the majority of loading occurring in winter and spring. While somewhat counterintuitive, the prominence of matrix-desiccation macropore flow during seasons with less cracking reflects the importance of coupled development of macropore pathways and adequate supply of the macropore flow source. The innovative features of the model allow for assessments of annual macropore P contributions to tile drainage and has the potential to inform P site assessment tools. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Rose, W.J.
1992-01-01
Average annual total-sediment load and the percentage transported as bedload were determined for a 10-year period (water years 1974-83)(October 1,1973-September 30, 1982). These loads and percentages were, respectively, 123,000 tons and 35 percent at Chippewa River near Caryville; 1,073,000 tons and 61 percent at Chippewa River at Durand; 940,000 tons and 44 percent at Chippewa River near Pepin; 277,000 tons and 43 percent at Black River near Galesville; and 558,000 tons and 49 percent at Wisconsin River at Muscoda.
Ivahnenko, Tamara I.
2017-12-07
Changes in municipal and industrial point-source discharges over time have been an important factor affecting nutrient trends in many of the Nation’s streams and rivers. This report documents how three U.S. Environmental Protection Agency (EPA) national datasets—the Permit Compliance System, the Integrated Compliance Information System, and the Clean Watersheds Needs Survey—were evaluated for use in the U.S. Geological Survey National Water-Quality Assessment project to assess the causes of nutrient trends. This report also describes how a database of total nitrogen load and total phosphorous load was generated for select wastewater treatment facilities in the United States based on information reported in the EPA Clean Watersheds Needs Survey. Nutrient loads were calculated for the years 1978, 1980, 1982, 1984, 1986, 1988, 1990, 1992, 1996, 2000, 2004, 2008, and 2012 based on average nitrogen and phosphorous concentrations for reported treatment levels and on annual reported flow values.The EPA Permit Compliance System (PCS) and Integrated Compliance Information System (ICIS), which monitor point-source facility discharges, together are the Nation’s most spatially comprehensive dataset for nutrients released to surface waters. However, datasets for many individual facilities are incomplete, the PCS/ICIS historical data date back only to 1989, and historical data are available for only a limited number of facilities. Additionally, inconsistencies in facility reporting make it difficult to track or identify changes in nutrient discharges over time. Previous efforts made by the U.S. Geological Survey to “fill in” gaps in the PCS/ICIS data were based on statistical methods—missing data were filled in through the use of a statistical model based on the Standard Industrial Classification code, size, and flow class of the facility and on seasonal nutrient discharges of similar facilities. This approach was used to estimate point-source loads for a single point in time; it was not evaluated for use in generating a consistent data series over time.Another national EPA dataset that is available is the Clean Watersheds Needs Survey (CWNS), conducted every 4 years beginning 1973. The CWNS is an assessment of the capital needs of wastewater facilities to meet the water-quality goals set in the Clean Water Act. Data collected about these facilities include location and contact information for the facilities; population served; flow and treatment level of the facility; estimated capital needs to upgrade, repair, or improve facilities for water quality; and nonpoint-source best management practices.Total nitrogen and total phosphorous load calculations for each of the CWNS years were based on treatment level information and average annual outflow (in million gallons per day) from each of the facilities that had reported it. Treatment levels categories (such as Primary, Secondary, or Advanced) were substituted with average total nitrogen and total phosphorous concentrations for each treatment level based on those reported in literature. The CWNS dataset, like the PCS/ICIS dataset, has years where facilities did not report either a treatment level or an annual average outflow, or both. To fill in the data gaps, simple linear assumptions were made based on each facility’s responses to the survey in years bracketing the data gap or immediately before or after the data gap if open ended. Treatment level and flow data unique to each facility were used to complete the CWNS dataset for that facility.
Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation
NASA Astrophysics Data System (ADS)
Leisenring, Marc; Moradkhani, Hamid
2012-10-01
SummaryA first step in understanding the impacts of sediment and controlling the sources of sediment is to quantify the mass loading. Since mass loading is the product of flow and concentration, the quantification of loads first requires the quantification of runoff volume. Using the National Weather Service's SNOW-17 and the Sacramento Soil Moisture Accounting (SAC-SMA) models, this study employed particle filter based Bayesian data assimilation methods to predict seasonal snow water equivalent (SWE) and runoff within a small watershed in the Lake Tahoe Basin located in California, USA. A procedure was developed to scale the variance multipliers (a.k.a hyperparameters) for model parameters and predictions based on the accuracy of the mean predictions relative to the ensemble spread. In addition, an online bias correction algorithm based on the lagged average bias was implemented to detect and correct for systematic bias in model forecasts prior to updating with the particle filter. Both of these methods significantly improved the performance of the particle filter without requiring excessively wide prediction bounds. The flow ensemble was linked to a non-linear regression model that was used to predict suspended sediment concentrations (SSCs) based on runoff rate and time of year. Runoff volumes and SSC were then combined to produce an ensemble of suspended sediment load estimates. Annual suspended sediment loads for the 5 years of simulation were finally computed along with 95% prediction intervals that account for uncertainty in both the SSC regression model and flow rate estimates. Understanding the uncertainty associated with annual suspended sediment load predictions is critical for making sound watershed management decisions aimed at maintaining the exceptional clarity of Lake Tahoe. The computational methods developed and applied in this research could assist with similar studies where it is important to quantify the predictive uncertainty of pollutant load estimates.
Ximénez, Carmen
2016-01-01
This article extends previous research on the recovery of weak factor loadings in confirmatory factor analysis (CFA) by exploring the effects of adding the mean structure. This issue has not been examined in previous research. This study is based on the framework of Yung and Bentler (1999) and aims to examine the conditions that affect the recovery of weak factor loadings when the model includes the mean structure, compared to analyzing the covariance structure alone. A simulation study was conducted in which several constraints were defined for one-, two-, and three-factor models. Results show that adding the mean structure improves the recovery of weak factor loadings and reduces the asymptotic variances for the factor loadings, particularly for the models with a smaller number of factors and a small sample size. Therefore, under certain circumstances, modeling the means should be seriously considered for covariance models containing weak factor loadings. PMID:26779071
Comfort air temperature influence on heating and cooling loads of a residential building
NASA Astrophysics Data System (ADS)
Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.
2016-08-01
The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.
Disposal of Vessel Wastes: Shipboard and Shoreside Facilities. Phase 2. Graywater
1979-07-01
Increase in Concentration Resulting from Daily Loadings and Vessel-Induced Mixing 45 3-7 Annual Loadings to Presque Isle - Marquette Harbor from...in port for 24 hours (Upper Lakes Reference Group, 1977a). Two harbors were considered for case studies. The first harbor, Presque Isle -Marquette...harbor. Presque Isle -Marquette The existing conditions of the harbor are considered to be of high quality with respect to coastal waters, the open waters
Smith, Kirk P.
2013-01-01
The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of ongoing development in the drinking-water source area, the Cambridge water supply has the potential to be affected by a wide variety of contaminants. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Hobbs Brook and Stony Brook Basins, which compose the drinking-water source area, since 1997 (water year 1997) through continuous monitoring and discrete sample collection and, since 2004, through systematic collection of streamwater samples during base-flow and stormflow conditions at five primary sampling stations in the drinking-water source area. Four primary sampling stations are on small tributaries in the Hobbs Brook and Stony Brook Basins; the fifth primary sampling station is on the main stem of Stony Brook and drains about 93 percent of the Cambridge drinking-water source area. Water samples also were collected at six secondary sampling stations, including Fresh Pond Reservoir, the final storage reservoir for the raw water supply. Storm runoff and base-flow concentrations of calcium (Ca), chloride (Cl), sodium (Na), and sulfate (SO4) were estimated from continuous records of streamflow and specific conductance for six monitoring stations, which include the five primary sampling stations. These data were used to characterize current water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Hobbs Brook and Stony Brook Basins. These data also were used to describe how streamwater quality is affected by various watershed characteristics and provide information to guide future watershed management. Water samples were analyzed for physical properties and concentrations of Ca, Cl, Na, and SO4, total nitrogen (TN), total phosphorus (TP), caffeine, and a suite of 59 polar pesticides. Values of physical properties and constituent concentrations varied widely, particularly in samples from tributaries. Median concentrations of Ca, Cl, Na, and SO4 in samples collected in the Hobbs Brook Basin (39.8, 392, 207, and 21.7 milligrams per liter (mg/L), respectively) were higher than those for the Stony Brook Basin (17.8, 87.7, 49.7, and 14.7 mg/L, respectively). These differences in major ion concentrations are likely related to the low percentages of developed land and impervious area in the Stony Brook Basin. Concentrations of dissolved Cl and Na in samples, and those estimated from continuous records of specific conductance (particularly during base flow), often were greater than the U.S. Environmental Protection Agency (USEPA) secondary drinking-water guideline for Cl (250 mg/L), the chronic aquatic-life guideline for Cl (230 mg/L), and the Commonwealth of Massachusetts, Executive Office of Energy and Environmental Affairs drinking-water guideline for Na (20 mg/L). Mean annual flow-weighted concentrations of Ca, Cl, and Na were generally positively correlated with the area of roadway land use in the subbasins. Correlations between mean annual concentrations of Ca and SO4 in base flow and total roadway, total impervious, and commercial-industrial land uses were statistically significant. Concentrations of TN (range of 0.42 to 5.13 mg/L in all subbasins) and TP (range of 0.006 to 0.80 mg/L in all subbasins) in tributary samples did not differ substantially between the Hobbs Brook and Stony Brook Basins. Concentrations of TN and TP in samples collected during water years 2004–07 exceeded proposed reference concentrations of 0.57 and 0.024 mg/L, in 94 and 56 percent of the samples, respectively. Correlations between annual flow-weighted concentrations of TN and percentages of recreational land use and water-body area were statistically significant; however, no significant relation was found between TP and available land-use information. The volume of streamflow affected water-quality conditions at the primary sampling stations. Turbidity and concentrations of TP were positively correlated with streamflow. In contrast, concentrations of major ions were negatively correlated with streamflow, indicating that these constituents were diluted during stormflows. Concentrations of TN were not correlated with streamflow. Twenty-five pesticides and caffeine were detected in water samples collected in the drinking-water source area and in raw water collected from the Cambridge water-treatment facility intake at the Fresh Pond Reservoir. Imidacloprid, norflurazon, and siduron were the most frequently detected pesticides with the frequency of detections ranging from about 24 to 41 percent. Caffeine was detected in about 37 percent of water samples at concentrations ranging from 0.003 to 1.82 micrograms per liter (μg/L). Although some of the detected pesticides degrade rapidly, norflurazon and siduron are relatively stable and are able to immigrate though the serial reservoir system. Concentrations of 2,4-D, carbaryl, imazaquin, MCPA (2-methyl-4-chlorophenoxyacetic acid), metsulfuron-methyl, norflurazon, siduron, and caffeine were detected more frequently in stormflow samples than in base-flow samples. Concentrations of pesticides did not exceed USEPA drinking-water guidelines or other health standards and were several orders of magnitude less than the lethal exposure level established for several fish species common to the drinking-water source area. Imidacloprid, an insecticide, was the only pesticide with a concentration exceeding available long-term aquatic-life guidelines. Several pesticides correlated significantly with the amount of recreational, residential, and commercial area in the tributary subbasins. Mean annual base-flow concentrations of caffeine correlated significantly with parking-lot land use. For most tributaries, about 70 percent of the annual loads of Ca, Cl, Na, and SO4 were associated with base flow. Upward temporal trends in annual loads of Cl and Na were identified on the basis of data for water years 1998 to 2008 for the outlet of the Cambridge Reservoir in the Hobbs Brook Basin; however, similar trends were not identified for the main stem of Stony Brook downstream from the reservoir. The proportions of the TN load attributed to base flow and stormflow were similar in each tributary. In contrast, more than 83 percent of the TP loads in the tributaries and about 73 percent of the TP load in main stem of Stony Brook were associated with stormflow. Mean annual yields of Ca, Cl, Na, and SO4 in the Stony Brook Reservoir watershed, which represents most of the drinking-water source area, were 14, 85, 46, and 9 metric tons per square kilometer, respectively. Mean annual yields among the individual tributary subbasins varied extensively. Mean annual yields for the respective constituents increased with an increase in roadway and parking-lot area in the tributary subbasins. Mean annual yields of TN in the tributary subbasins ranged from about 740 to more than 1,200 kilograms per square kilometer and exceeded the yield for the main stem of Stony Brook at USGS station 01104460 upstream from the Stony Brook Reservoir. Mean annual yields estimated for the herbicides 2,4-D and imidacloprid ranged from 34 to 310 grams per square kilometer (g/km2) and 3 to 170 g/km2, respectively. Annual loads for 2,4-D were entirely associated with stormflow. The largest annual load for imidacloprid was estimated for the main stem of Stony Brook; however, the highest annual yield for this pesticide, as well as for benomyl, carbaryl, metalaxyl, and propiconazole, was estimated for a tributary to the Stony Brook Reservoir that drains largely residential and recreational areas. Mean annual yields for the herbicide siduron ranged from 6.9 to 35 g/km2 with most of the loads associated with stormflow. Mean annual yields for the insecticide diuron ranged from 2.1 to 4.4 g/km2. Annual yields of caffeine ranged from 11 to 410 g/km2.
NASA Astrophysics Data System (ADS)
Taguas, E. V.; Burguet, M.; Pérez, R.; Ayuso, J. L.; Gómez, J. A.
2012-04-01
The microcatchment is a spatial scale which allows to evaluate and to quantify the erosive processes under conditions close to those perceived by farmers. In this work, soil erosion and runoff over six hydrological years (2005 and 2011) were monitored in an olive orchard microcatchment of 6.4 ha, where different management types were applied. The aim was to evaluate the impact of the management and the rainfall regime variability. Non-tillage was applied during the years 2005-2007, tillage operations were carried in April in the period 2007-2010 while in the year 2010-2011, the tillage was applied in January and mulches (olives leaves and branches) were established for reducing the soil losses, mainly generated from rills. At the annual scale, the variation ranges of the cumulative rainfall depth and of the erosivity were between 600 and 1000 mm and between 600 and 1500 MJ mm ha-1 h-1, respectively. Although there are some gaps in the data series, the annual runoff coefficients calculated were smaller than 5% and the total sediment load range was between less than 1 t ha-1 year-1and more than 20 t ha-1 year-1. During these years olive yield also showed a high degree of variability, between 5000 kg ha-1 year-1and 10000 kg ha-1 year-1, typical of the alternate bearing of this crop, without correlation with annual rainfall. The annual rainfall depth explained significantly the sediment load and the runoff in spite of the different managements applied. At the event scale, rainfall depth was correlated with runoff, however, sediment load was very sensible to management. The high variability of the hydrological regime (inter and intra-annual) and the importance of the precedent hydrological years determine complex interpretations of the impact of the management on the soil losses and the olive yield by the farmers, so the continuity of the data analysis is essential for supporting the suitable taking decisions about the overall farm management.
An alternative method for centrifugal compressor loading factor modelling
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Drozdov, A.; Rekstin, A.; Soldatova, K.
2017-08-01
The loading factor at design point is calculated by one or other empirical formula in classical design methods. Performance modelling as a whole is out of consideration. Test data of compressor stages demonstrates that loading factor versus flow coefficient at the impeller exit has a linear character independent of compressibility. Known Universal Modelling Method exploits this fact. Two points define the function - loading factor at design point and at zero flow rate. The proper formulae include empirical coefficients. A good modelling result is possible if the choice of coefficients is based on experience and close analogs. Earlier Y. Galerkin and K. Soldatova had proposed to define loading factor performance by the angle of its inclination to the ordinate axis and by the loading factor at zero flow rate. Simple and definite equations with four geometry parameters were proposed for loading factor performance calculated for inviscid flow. The authors of this publication have studied the test performance of thirteen stages of different types. The equations are proposed with universal empirical coefficients. The calculation error lies in the range of plus to minus 1,5%. The alternative model of a loading factor performance modelling is included in new versions of the Universal Modelling Method.
Nutrient Loading and Algal Response in West Thompson Lake, Thompson, Connecticut, 2003-2005
Morrison, Jonathan; Colombo, Michael J.
2008-01-01
Water quality and nutrient loads were characterized for parts of the Quinebaug River and West Thompson Lake in northeastern Connecticut during 2003 to 2005. The West Thompson Lake watershed is a mainly forested watershed that receives treated municipal wastewater from several point sources in Massachusetts. The lake is a flood-control reservoir formed in 1966 by impoundment of the Quinebaug River. Median concentrations of total phosphorus in two inflow (upstream) and one outflow (downstream) sampling stations on the Quinebaug River were higher than the nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) for rivers and streams in aggregate Ecoregion XIV. In general, concentrations of total phosphorus in West Thompson Lake also were above the nutrient criteria recommended by USEPA for lakes and impoundments in aggregate Ecoregion XIV. The trophic status of West Thompson Lake has changed since 1995 from a hypereutrophic lake to a eutrophic lake; however, the lake still has large algal blooms. These blooms are predominated by blue-green algae, with chlorophyll-a concentrations of more than 30 micrograms per liter and algal cell counts as high as 73,000 cells/mL. Water samples collected during the summer of 2005 identified phosphorus as the primary limiting nutrient early in the season, but algal growth is probably co-limited by phosphorus and nitrogen later in the season. Lake-bottom sediments were collected from several areas throughout the lake and ranged in thickness from less than 1 foot (ft) to more than 3 ft. Concentrations of phosphorus in sediments differed throughout the lake; the highest values were found in the middle of the lake. Concentrations of total phosphorus also increased from an average 1,800 milligrams per kilogram (mg/kg) in the upper layers of sediment to more than 6,000 mg/kg at depth in the sediment. Annual, seasonal, and monthly loads and yields of nutrients were calculated for the three sampling locations on the Quinebaug River to develop a nutrient mass-balance model (budget) for West Thompson Lake. The average annual yields of total phosphorus during 2000 to 2005 were 115 pounds per square mile per year (lb/mi2/yr) at Quinebaug (inflow station), 116 lb/mi2/yr at Red Bridge Road (inflow station), and 97.9 lb/mi2/yr at West Thompson (outflow station). The 18-percent decrease in the average annual yield of total phosphorus between the inflow station at Red Bridge Road and the outlet of West Thompson Lake at West Thompson indicates that a significant part of the phosphorus load is retained in the lake. Annual yields of total phosphorus at Quinebaug have decreased significantly since the 1980s, from 362 lb/mi2/yr (for 1981-1990) to 115 lb/mi2/yr (1996-2005). The annual net export of phosphorus in West Thompson Lake during water years 2000 to 2005 ranged from -36 percent (2005) to 1 percent (2002) of the incoming load. Seasonal mass-balance data for total phosphorus during the summers of 2000 to 2003, when streamflow was at or lower than normal, indicated a net export of phosphorus that ranged from 3.4 percent (2003) to 30.7 percent (2002) of the incoming load. During the summer of 2004, however, streamflows were much higher than normal, and there was a negative export of phosphorus in West Thompson Lake of -3.9 percent. The annual net export of nitrogen in West Thompson Lake during water years 2000 to 2005 ranged from -5 percent (2002) to 4 percent (2001) of the incoming load. No clear pattern was evident to relate total nitrogen export to seasonal variables or runoff. Removal of phosphorus during the summer by wastewater-treatment plants (WWTPs) in Massachusetts reduces the concentration and load of total phosphorus entering West Thompson Lake in the summer; however, the large amount of phosphorus retained in the lake during the other seasons, in addition to the phosphorus stored in the lake-bottom sediments, may become available to fuel algal blooms in the lake
NASA Astrophysics Data System (ADS)
Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G. R.; Lenzi, M. A.
2017-08-01
This paper investigates nearly 30 years of monitoring of sediment fluxes in an instrumented Alpine basin (Rio Cordon, Italy). The collected bedload and suspended sediment transport data allows sediment dynamics to be analyzed at different time scales, ranging from short- (single event) to long-term (three decades). The Rio Cordon monitoring station has been operating since 1986, continuously recording water discharge, bedload and suspended load. At the flood event scale, a good relationship was found between peak discharges (Qpeak) and sediment load (bedload and suspended load). The inter-annual sediment yields were analyzed, also assessing the contribution of the single floods to the total sediment budget. The annual suspended load ranges from 10 to 2524 t yr- 1, while the bedload varies from 0 to 1543 t yr- 1. The higher annual yields were recorded in the years when large floods occurred, highlighting that the sediment budget in the Rio Cordon is strongly controlled by the occurrence of high magnitude events. Investigation of the seasonal suspended load contribution demonstrated that from 1986 to 1993 most fine sediments were transported during the snowmelt/summer seasons, while autumn and snowmelt were the dominant seasons contributing to sediment yield in the periods 1994-2002 and 2003-2014, respectively. The mean annual sediment yield from 1986 to 2014 is equal to 103 t km- 2 yr- 1, and overall, bedload accounts for 21% of the total sediment yield. The ratio between the sediment transport and the effective runoff of the events allowed the temporal trends of transport efficiency to be inferred, highlighting the existence of periods characterized by different sediment availability. In particular, despite no significant changes in the hydrological variables (i.e. rainfall), nearly a decade (1994-2002) with high transport efficiency appears to have occurred after an exceptional event (recurrence interval > 100 years). This event affected the sediment availability at the basin and channel bed scales, and provided a legacy influencing the sediment dynamics in the basin over the long-term by increasing the transport efficiency for approximately a decade. This work benefits from the long-lasting monitoring program undertaken in the Rio Cordon and is the product of long-term data series. The quasi-unique dataset has provided detailed evidence of sediment dynamics over about three decades in a small Alpine basin, also enabling the effects triggered by an exceptional event to be analyzed.
Fossum, Kenneth D.; O'Day, Christie M.; Wilson, Barbara J.; Monical, Jim E.
2001-01-01
Stormwater and streamflow in Maricopa County were monitored to (1) describe the physical, chemical, and toxicity characteristics of stormwater from areas having different land uses, (2) describe the physical, chemical, and toxicity characteristics of streamflow from areas that receive urban stormwater, and (3) estimate constituent loads in stormwater. Urban stormwater and streamflow had similar ranges in most constituent concentrations. The mean concentration of dissolved solids in urban stormwater was lower than in streamflow from the Salt River and Indian Bend Wash. Urban stormwater, however, had a greater chemical oxygen demand and higher concentrations of most nutrients. Mean seasonal loads and mean annual loads of 11 constituents and volumes of runoff were estimated for municipalities in the metropolitan Phoenix area, Arizona, by adjusting regional regression equations of loads. This adjustment procedure uses the original regional regression equation and additional explanatory variables that were not included in the original equation. The adjusted equations had standard errors that ranged from 161 to 196 percent. The large standard errors of the prediction result from the large variability of the constituent concentration data used in the regression analysis. Adjustment procedures produced unsatisfactory results for nine of the regressions?suspended solids, dissolved solids, total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, total recoverable zinc, and storm runoff. These equations had no consistent direction of bias and no other additional explanatory variables correlated with the observed loads. A stepwise-multiple regression or a three-variable regression (total storm rainfall, drainage area, and impervious area) and local data were used to develop local regression equations for these nine constituents. These equations had standard errors from 15 to 183 percent.
Estimating Critical Nitrogen Loads for a California Grassland
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2007-12-01
Rigorously established critical nitrogen loads to protect biodiversity can be effective policy tools for addressing the insidious impacts of atmospheric N-deposition on ecosystems. This presentation describes methods for determining critical N-loads to a California grassland ecosystem by careful examination of the continuum from emissions, transport, atmospheric chemistry, deposition, ecosystem response, and impacts on biodiversity. Nutrient-poor soils derived from serpentinite bedrock support diverse native grasslands with dazzling wildflower displays and numerous threatened and endangered species, including the Bay checkerspot butterfly. Under moderate atmospheric N-deposition, these sites are rapidly invaded by introduced nitrophilous annual grasses in the absence of appropriate grazing or other management. Critical loads to this ecosystem have been approached by measurements of atmospheric concentrations of reactive N gases using Ogawa passive samplers and seasonally averaged deposition velocities. A regional-scale pollution gradient was complemented by a very local-scale pollution gradient extending a few hundred meters downwind of a heavily traveled road in a relatively unpolluted area. The local gradient suggests a critical load of 5 kg-N ha-1 a-1 or less. The passive monitor calculations largely agree with deposition calculated with the CMAQ model at 4 km scale. Emissions of NH3 from catalytic converters are the dominant N-source at the roadway site, and are a function of traffic volume and speed. Plant tissue N-content and 15N gradients support the existence of N-deposition gradients. The complexities of more detailed calculations and measurements specific to this ecosystem include seasonal changes in LAI, temporal coincidence of traffic emissions and stomatal conductance, surface moisture, changes in oxidized versus reduced N sources, and annual weather variation. The concept of a "critical cumulative load" may be appropriate over decadal time scales in this ecosystem and other semi-arid systems where N-export is minimal.
Domagalski, Joseph L.; Ator, S.; Coupe, R.; McCarthy, K.; Lampe, D.; Sandstrom, M.; Baker, N.
2008-01-01
Agricultural chemical transport to surface water and the linkage to other hydrological compartments, principally ground water, was investigated at five watersheds in semiarid to humid climatic settings. Chemical transport was affected by storm water runoff, soil drainage, irrigation, and how streams were linked to shallow ground water systems. Irrigation practices and timing of chemical use greatly affected nutrient and pesticide transport in the semiarid basins. Irrigation with imported water tended to increase ground water and chemical transport, whereas the use of locally pumped irrigation water may eliminate connections between streams and ground water, resulting in lower annual loads. Drainage pathways in humid environments are important because the loads may be transported in tile drains, or through varying combinations of ground water discharge, and overland flow. In most cases, overland flow contributed the greatest loads, but a significant portion of the annual load of nitrate and some pesticide degradates can be transported under base-flow conditions. The highest basin yields for nitrate were measured in a semiarid irrigated system that used imported water and in a stream dominated by tile drainage in a humid environment. Pesticide loads, as a percent of actual use (LAPU), showed the effects of climate and geohydrologic conditions. The LAPU values in the semiarid study basin in Washington were generally low because most of the load was transported in ground water discharge to the stream. When herbicides are applied during the rainy season in a semiarid setting, such as simazine in the California basin, LAPU values are similar to those in the Midwest basins. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Soltani, Maryam; Kerachian, Reza
2018-04-15
In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cruzan, Mitchell B; Barrett, Spencer C H
2016-03-01
Variation in the mating system of hermaphroditic plant populations is determined by interactions between genetic and environmental factors operating via both pre- and postmating processes. Models predicting the maintenance of intermediate outcrossing rates in animal-pollinated plants often assume that the mating system is primarily controlled by floral morphology and pollinator availability, but rarely has the influence of postpollination processes on variation in outcrossing been examined. We investigated the influence of stylar discrimination between illegitimate and legitimate pollen-tube growth and the pollen-load capacity of stigmas on mating-system variation in the annual, tristylous species Eichhornia paniculata using controlled crosses and genetic markers. This species exhibits an exceptionally broad range of outcrossing rates in natural populations. There was significant variation among populations in the pollen-load capacity of stigmas and the ability of styles to discriminate between illegitimate vs. legitimate pollen. There was strong correspondence between stylar-discrimination ability and variation in outcrossing rate among populations and style morphs. The combination of stigmatic pollen-load capacity and stylar discrimination explained more than 80% of the variation in outcrossing rates among populations. The finding that stigmatic pollen-load capacity and stylar-discrimination ability contributed significantly to explaining the wide range of outcrossing rates in E. paniculata suggests that postpollination mechanisms play an important role in governing mating patterns in this species. The difference in levels of stylar discrimination between outcrossing and selfing populations may reflect a trade-off between selection for increased outcrossing and greater reproductive assurance. © 2016 Botanical Society of America.
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Silver Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Effluents from the Sellersburg and Clarksville-North wastewater-treatment facilities are the only point-source waste loads that significantly affect the water quality in the modeled segment of Silver Creek. Model simulations indicate that nitrification is the most significant factor affecting the dissolved-oxygen concentration in Silver Creek during summer and winter low flows. Natural streamflow in Silver Creek during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. Present ammonia-nitrogen and dissolved-oxygen concentrations of effluent from the Sellersburg and Clarksville-North wastewater-treatment facilities will violate current Indiana water-quality standards for ammonia toxicity and dissolved oxygen during summer and winter low flows. The current biochemical-oxygen demand limits for the Sellersburg and Clarksville-North wastewater-treatment facilities are not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams. Calculations of the stream 's assimilative capacity indicate that Silver Creek cannot assimilate additional waste loadings and meet current Indiana water-quality standards. (Kosco-USGS)
Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine
Hodgkins, Glenn A.
2001-01-01
The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that would represent all gaged and ungaged tributaries to Sebago Lake. Outside the PWD tributary-monitoring program, the largest ungaged tributary to Sebago Lake contains 1.5 percent of the area draining to the lake. In the absence of unique point or nonpoint sources of phosphorus, ungaged tributaries are unlikely to have total phosphorus concentrations that differ significantly from those in the small tributaries that have concentration data. The regression method, also known as the rating-curve method, was used to estimate the annual total phosphorus load for Crooked River, Northwest River, and Rich Mill Pond Outlet for water years 1996-98. The MOVE.1 method was used to estimate daily streamflows for the regression method at Northwest River and Rich Mill Pond Outlet, where streamflows were not continuously monitored. An averaging method also was used to compute annual loads at the three sites. The difference between the regression estimate and the averaging estimate for each of the three tributaries was consistent with what was expected from previous studies.
Load-based approaches for modelling visual clarity in streams at regional scale.
Elliott, A H; Davies-Colley, R J; Parshotam, A; Ballantine, D
2013-01-01
Reduction of visual clarity in streams by diffuse sources of fine sediment is a cause of water quality impairment in New Zealand and internationally. In this paper we introduce the concept of a load of optical cross section (LOCS), which can be used for load-based management of light-attenuating substances and for water quality models that are based on mass accounting. In this approach, the beam attenuation coefficient (units of m(-1)) is estimated from the inverse of the visual clarity (units of m) measured with a black disc. This beam attenuation coefficient can also be considered as an optical cross section (OCS) per volume of water, analogous to a concentration. The instantaneous 'flux' of cross section is obtained from the attenuation coefficient multiplied by the water discharge, and this can be accumulated over time to give an accumulated 'load' of cross section (LOCS). Moreover, OCS is a conservative quantity, in the sense that the OCS of two combined water volumes is the sum of the OCS of the individual water volumes (barring effects such as coagulation, settling, or sorption). The LOCS can be calculated for a water quality station using rating curve methods applied to measured time series of visual clarity and flow. This approach was applied to the sites in New Zealand's National Rivers Water Quality Network (NRWQN). Although the attenuation coefficient follows roughly a power relation with flow at some sites, more flexible loess rating curves are required at other sites. The hybrid mechanistic-statistical catchment model SPARROW (SPAtially Referenced Regressions On Watershed attributes), which is based on a mass balance for mean annual load, was then applied to the NRWQN dataset. Preliminary results from this model are presented, highlighting the importance of factors related to erosion, such as rainfall, slope, hardness of catchment rock types, and the influence of pastoral development on the load of optical cross section.
Reconciling Consumer and Utility Objectives in the Residential Solar PV Market
NASA Astrophysics Data System (ADS)
Arnold, Michael R.
Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.
Steels with controlled hardenability for induction hardening
NASA Astrophysics Data System (ADS)
Shepelyakovskii, K. Z.
1980-07-01
Steels of the CH and LH type developed in the Soviet Union permit the use of a new method of induction hardening — bulk-surface hardening — and efficient utilization of the high-strength conditions (σb = 230-250 kgf/mm2). These steels make it possible to improve the structural strength, operating characteristics, service life, and reliability of critical heavily loaded machine parts. At the same time, CH steels make it possible to reduce by a factor of 2-3 the quantity of alloying elements, reduce the electrical energy for heat treatment, and completely exclude the cost of quenching oil for heat treatment in automatic equipment with high labor productivity, while retaining good working conditions. All this leads to substantial savings in production and operation. For example, when transmission gears (cylindrical and conical) are manufactured from LH steels the annual savings amount to more than 700,000 rubles at two automobile plants. Machine parts of CH steels — half axles and bearings in railway cars —have saved respectively six and four million rubles annually. The introduction of controlled-hardenability steels for induction hardening is a necessary condition for technological progress in machine construction and metallurgy.
Management case study: Tampa Bay, Florida
Morrison, Gerold; Greening, Holly; Yates, Kimberly K.; Wolanski, Eric; McLusky, Donald S.
2011-01-01
Tampa Bay, Florida, USA, is a shallow, subtropical estuary that experienced severe cultural eutrophication between the 1940s and 1980s, a period when the human population of its watershed quadrupled. In response, citizen action led to the formation of a public- and private-sector partnership (the Tampa Bay Estuary Program), which adopted a number of management objectives to support the restoration and protection of the bay’s living resources. These included numeric chlorophyll a and water-clarity targets, as well as long-term goals addressing the spatial extent of seagrasses and other selected habitat types, to support estuarine-dependent faunal guilds. Over the past three decades, nitrogen controls involving sources such as wastewater treatment plants, stormwater conveyance systems, fertilizer manufacturing and shipping operations, and power plants have been undertaken to meet these and other management objectives. Cumulatively, these controls have resulted in a 60% reduction in annual total nitrogen (TN) loads relative to earlier worse-case (latter 1970s) conditions. As a result, annual water-clarity and chlorophyll a targets are currently met in most years, and seagrass cover measured in 2008 was the highest recorded since 1950. Factors that have contributed to the observed improvements in Tampa Bay over the past several decades include the following: (1) Development of numeric, science-based water-quality targets to meet a long-term goal of restoring seagrass acreage to 1950s levels. Empirical and mechanistic models found that annual average chlorophyll a concentrations were a primary manageable factor affecting light attenuation. The models also quantified relationships between TN loads, chlorophyll a concentrations, light attenuation, and fluctuations in seagrass cover. The availability of long-term monitoring data, and a systematic process for using the data to evaluate the effectiveness of management actions, has allowed managers to track progress and make adaptive changes when needed. (2) Citizen involvement, that is, the initial reductions in TN loads, which occurred in the late 1970s and early 1980s, was a result of state regulations that were developed in response to citizens’ call for action. Improved water clarity and better fishing and swimming conditions were identified as primary goals by citizens again in the early 1990s, and led to development of numeric water-quality targets and seagrass restoration goals. More recent citizen actions, from pet waste campaigns to support of reductions in residential fertilizer use, are important elements of the nitrogen management strategy. (3) Collaborative actions, that is, in addition to numerous other collaborative ventures that have benefitted Tampa Bay, the public/private Nitrogen Management Consortium, which includes more than 40 participating organizations, has implemented over 250 nutrient-reduction projects. These projects have addressed stormwater treatment, fertilizer manufacturing and shipping, agricultural practices, reclaimed water use, and atmospheric emissions from local power stations, providing more than 300 tons of TN load reductions since 1995. (4) State and federal regulatory programs, that is, regulatory requirements, such as state statutes and rules requiring compliance with advanced wastewater treatment standards by municipal sewerage works, have played a key role in Tampa Bay management efforts. The technical basis and implementation plan of the Tampa Bay nitrogen management strategy have been developed in cooperation with state and federal regulatory agencies, and the strategy has been recognized by them as an appropriate tool for meeting water-quality standards, including federally mandated total maximum daily loads. Subsequent management efforts have focused on maintaining and extending those improvements in Tampa Bay’s environmental resources by addressing water and sediment quality and habitat protection and restoration. Implementation of a collaborative, watershed-based management process, driven by an integrated science approach, has played a central role in supporting progress toward the achievement of science-based estuary management goals.
Warner, David M.; Lesht, Barry M.
2015-01-01
1. Lakes Michigan and Huron, which are undergoing oligotrophication after reduction of phosphorus loading, invasion by dreissenid mussels and variation in climate, provide an opportunity to conduct large-scale evaluation of the relative importance of these changes for lake productivity. We used remote sensing, field data and an information-theoretic approach to identify factors that showed statistical relationships with observed changes in chlorophyll a (chla) and primary production (PP). 2. Spring phosphorus (TP), annual mean chla and PP have all declined significantly in both lakes since the late 1990s. Additionally, monthly mean values of chla have decreased in many but not all months, indicating altered seasonal patterns. The most striking change has been the decrease in chla concentration during the spring bloom. 3. Mean chlorophyll a concentration was 17% higher in Lake Michigan than in Lake Huron, and total production for 2008 in Lake Michigan (9.5 tg year 1 ) was 10% greater than in Lake Huron (7.8 tg year 1 ), even though Lake Michigan is slightly smaller (by 3%) than Lake Huron. Differences between the lakes in the early 1970s evidently persisted to 2008. 4. Invasive mussels influenced temporal trends in spring chla and annual primary production. However, TP had a greater effect on chla and primary production than did the mussels, and TP varied independently from them. Two climatic variables (precipitation and air temperature in the basins) influenced annual chla and annual PP, while the extent of ice cover influenced TP but not chla or primary production. Our results demonstrate that observed temporal patterns in chla and PP are the result of complex interactions of P, climate and invasive mussels.
Wang, L; Stuart, M E; Lewis, M A; Ward, R S; Skirvin, D; Naden, P S; Collins, A L; Ascott, M J
2016-01-15
Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Brumbaugh, William J.; May, Thomas W.
2008-01-01
A small number of mud, road bed soil, and snow samples were collected in 2005 and 2006 to assess metal concentrations and loadings to areas adjacent to the DeLong Mountain Regional Transportation System (DMTS) road in northwest Alaska. The DMTS road is used by large trucks to transport lead and zinc concentrates from Red Dog Mine to the shipping facility at Red Dog Port; it traverses 32 kilometers of land in Cape Krusenstern National Monument (CAKR). Mud collected in the summer of 2005 from wheel-wells of two passenger vehicles used for transport between Red Dog Mine and the port facility were enriched in cadmium, lead, and zinc by factors of about 200 to 800 as compared with mud collected from a vehicle stationed in Kotzebue, Alaska, whereas DMTS road bed soil samples were enriched by factors of 6 to 12. Thus, as of 2005, dispersal of mine ore wastes or concentrates by vehicles appeared to remain a potential source of metals along the DMTS road. Compared to snow samples obtained near a gravel road located near Kotzebue, Alaska, metal loadings estimated from individual snow samples collected in CAKR in April 2006 near three creeks, 13 to 50 meters from the road, were greater by factors of 13 to 316 for cadmium, 28 to 589 for lead, and 8 to 195 for zinc. When averaged for all three creek locations, mean loadings of cadmium, lead, and zinc calculated from snow samples collected at a nominal distance of 15 meters to the north of the road were 0.63, 34, and 89 milligrams of metal per square meter, respectively. Variability of particulate and metal loadings between individual samples and the three creek locations probably was affected by localized meteorological conditions and micro-topography on the snow drift and scour patterns, but road orientation on attainable truck speeds also might have been a factor. Results indicated that the ?port effect?, previously attributed to fugitive metal-enriched dusts stemming from concentrate transfer operations at the port facility, was not necessarily an important factor affecting spatial differences of metals deposition in snow along the road in CAKR during winter 2005?06. The average metal content of particulates in 2005?06 snow samples was slightly less than that of snow samples collected by the U.S. Geological Survey in CAKR at three near-road locations in April 2003. Mean metals concentrations in 2006 snow particulates were about three times greater than in the road bed soils that were sampled in 2005; however, the fraction of annual metals loadings occurring in winter as compared to the remainder of the year was not readily determined by these data. Although procedures have been implemented in recent years to reduce the quantities of metal-enriched fugitive dusts, particulates dispersed near the road during the winter of 2005?06 were enriched in metals and these particulates contributed considerable metal loadings to the nearby terrain.
A 'two-tank' seasonal storage concept for solar space heating of buildings
NASA Astrophysics Data System (ADS)
Cha, B. K.; Connor, D. W.; Mueller, R. O.
This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.
Perceptual load in different regions of the visual scene and its relevance for driving.
Marciano, Hadas; Yeshurun, Yaffa
2015-06-01
The aim of this study was to better understand the role played by perceptual load, at both central and peripheral regions of the visual scene, in driving safety. Attention is a crucial factor in driving safety, and previous laboratory studies suggest that perceptual load is an important factor determining the efficiency of attentional selectivity. Yet, the effects of perceptual load on driving were never studied systematically. Using a driving simulator, we orthogonally manipulated the load levels at the road (central load) and its sides (peripheral load), while occasionally introducing critical events at one of these regions. Perceptual load affected driving performance at both regions of the visual scene. Critically, the effect was different for central versus peripheral load: Whereas load levels on the road mainly affected driving speed, load levels on its sides mainly affected the ability to detect critical events initiating from the roadsides. Moreover, higher levels of peripheral load impaired performance but mainly with low levels of central load, replicating findings with simple letter stimuli. Perceptual load has a considerable effect on driving, but the nature of this effect depends on the region of the visual scene at which the load is introduced. Given the observed importance of perceptual load, authors of future studies of driving safety should take it into account. Specifically, these findings suggest that our understanding of factors that may be relevant for driving safety would benefit from studying these factors under different levels of load at different regions of the visual scene. © 2014, Human Factors and Ergonomics Society.
Suspended sediment in the St. Francis River at St. Francis, Arkansas, 1986-95
Green, W. Reed; Barks, C. Shane; Hall, Alan P.
2000-01-01
Daily suspended-sediment concentrations were analyzed from the St. Francis River at St. Francis, Arkansas during 1986 through 1995. Suspended-sediment particle size distribution was measured in selected samples from 1978 through 1998. These data are used to assess changes in suspended-sediment concentrations and loads through time. Suspended-sediment concentrations were positively related to discharge. At higher flows, percent silt-clay was negatively related to discharge. Nonparametric trend analysis (Mann-Kendall test) of suspended-sediment concentration over the period of record indicated a slight decrease in concentration. Flow-adjusted residuals of suspended-sediment concentration also decreased slightly through the same period. No change was identified in annual suspended-sediment load or annual flow-weighted concentration. Continued monitorig of daily-suspended-sediment concentrations at this site and others, and similar data analysis at other sites where data are available will provide a better understanding of sediment transport withint the St. Francis River.
2015-05-01
annuals are able to spread into the areas between the shrubs by employing population strategies that sharply contrast with those of native species. This...greatly increases the fuel load in the matrix, which has historically produced a natural firebreak between shrubs . Our particular aims were to: (1... shrubs with respect to key interactions and the development of spatial pattern that may influence fire risk. It also provides insights into the
Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.; Raju, Ivatury S.
2016-01-01
Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.
Measuring cognitive load during procedural skills training with colonoscopy as an exemplar.
Sewell, Justin L; Boscardin, Christy K; Young, John Q; Ten Cate, Olle; O'Sullivan, Patricia S
2016-06-01
Few studies have investigated cognitive factors affecting learning of procedural skills in medical education. Cognitive load theory, which focuses on working memory, is highly relevant, but methods for measuring cognitive load during procedural training are not well understood. Using colonoscopy as an exemplar, we used cognitive load theory to develop a self-report instrument to measure three types of cognitive load (intrinsic, extraneous and germane load) and to provide evidence for instrument validity. We developed the instrument (the Cognitive Load Inventory for Colonoscopy [CLIC]) using a multi-step process. It included 19 items measuring three types of cognitive load, three global rating items and demographics. We then conducted a cross-sectional survey that was administered electronically to 1061 gastroenterology trainees in the USA. Participants completed the CLIC following a colonoscopy. The two study phases (exploratory and confirmatory) each lasted for 10 weeks during the 2014-2015 academic year. Exploratory factor analysis determined the most parsimonious factor structure; confirmatory factor analysis assessed model fit. Composite measures of intrinsic, extraneous and germane load were compared across years of training and with global rating items. A total of 477 (45.0%) invitees participated (116 in the exploratory study and 361 in the confirmatory study) in 154 (95.1%) training programmes. Demographics were similar to national data from the USA. The most parsimonious factor structure included three factors reflecting the three types of cognitive load. Confirmatory factor analysis verified that a three-factor model was the best fit. Intrinsic, extraneous and germane load items had high internal consistency (Cronbach's alpha 0.90, 0.87 and 0.96, respectively) and correlated as expected with year in training and global assessment of cognitive load. The CLIC measures three types of cognitive load during colonoscopy training. Evidence of validity is provided. Although CLIC items relate to colonoscopy, the development process we detail can be used to adapt the instrument for use in other learning settings in medical education. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Flores, Robert Joseph
Distributed generation can provide many benefits over traditional central generation such as increased reliability and efficiency while reducing emissions. Despite these potential benefits, distributed generation is generally not purchased unless it reduces energy costs. Economic dispatch strategies can be designed such that distributed generation technologies reduce overall facility energy costs. In this thesis, a microturbine generator is dispatched using different economic control strategies, reducing the cost of energy to the facility. Several industrial and commercial facilities are simulated using acquired electrical, heating, and cooling load data. Industrial and commercial utility rate structures are modeled after Southern California Edison and Southern California Gas Company tariffs and used to find energy costs for the simulated buildings and corresponding microturbine dispatch. Using these control strategies, building models, and utility rate models, a parametric study examining various generator characteristics is performed. An economic assessment of the distributed generation is then performed for both the microturbine generator and parametric study. Without the ability to export electricity to the grid, the economic value of distributed generation is limited to reducing the individual costs that make up the cost of energy for a building. Any economic dispatch strategy must be built to reduce these individual costs. While the ability of distributed generation to reduce cost depends of factors such as electrical efficiency and operations and maintenance cost, the building energy demand being serviced has a strong effect on cost reduction. Buildings with low load factors can accept distributed generation with higher operating costs (low electrical efficiency and/or high operations and maintenance cost) due to the value of demand reduction. As load factor increases, lower operating cost generators are desired due to a larger portion of the building load being met in an effort to reduce demand. In addition, buildings with large thermal demand have access to the least expensive natural gas, lowering the cost of operating distributed generation. Recovery of exhaust heat from DG reduces cost only if the buildings thermal demand coincides with the electrical demand. Capacity limits exist where annual savings from operation of distributed generation decrease if further generation is installed. For low operating cost generators, the approximate limit is the average building load. This limit decreases as operating costs increase. In addition, a high capital cost of distributed generation can be accepted if generator operating costs are low. As generator operating costs increase, capital cost must decrease if a positive economic performance is desired.
DOT National Transportation Integrated Search
2016-06-01
Load and Resistance Factor Rating (LRFR) is a reliability-based rating procedure complementary to Load and Resistance Factor Design (LRFD). The intent of LRFR is to provide consistent reliability for all bridges regardless of in-situ condition. The p...
Effect of tornado loads on transmission lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishac, M.F.; White, H.B.
Of all the populated areas in Canada, southwestern Ontario has experienced the highest tornado incidence and faces the greatest tornado damage. About 1 or 2 tornadoes per 10,000 km{sup 2} can be expected there annually. The probability of a tornado strike at a given point is very small but the probability of a transmission line being crossed by a tornado is significant. The purpose of this paper is to review the literature related to tornadoes in Ontario and to investigate the effect of tornado loads on transmission lines. Based on this investigation a design basis tornado loading for transmission towersmore » is proposed.« less
Effect of tornado loads on transmission lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishac, M.F.; White, H.B.
1994-12-31
Of all the populated areas in Canada, southwestern Ontario has experienced the highest tornado incidence and faces the greatest tornado damage. About 1 or 2 tornadoes per 10,000 km{sup 2} can be expected there annually. The probability of a tornado strike at a given point is very small but the probability of a transmission line being crossed by a tornado is significant. The purpose of this paper is to review the literature related to tornadoes in Ontario and to investigate the effect of tornado loads on transmission lines. Based on this investigation a design basis tornado loading for transmission towersmore » is proposed.« less
14 CFR 23.525 - Application of loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the loads corresponding to the load factors specified in § 23.527. (b) In applying the loads resulting from the load factors prescribed in § 23.527, the loads may be distributed over the hull or main float... on the seaplane during the impact is assumed to be 2/3 of the weight of the seaplane. [Doc. No. 26269...
14 CFR 23.525 - Application of loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the loads corresponding to the load factors specified in § 23.527. (b) In applying the loads resulting from the load factors prescribed in § 23.527, the loads may be distributed over the hull or main float... on the seaplane during the impact is assumed to be 2/3 of the weight of the seaplane. [Doc. No. 26269...
14 CFR 23.525 - Application of loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the loads corresponding to the load factors specified in § 23.527. (b) In applying the loads resulting from the load factors prescribed in § 23.527, the loads may be distributed over the hull or main float... on the seaplane during the impact is assumed to be 2/3 of the weight of the seaplane. [Doc. No. 26269...
14 CFR 23.525 - Application of loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the loads corresponding to the load factors specified in § 23.527. (b) In applying the loads resulting from the load factors prescribed in § 23.527, the loads may be distributed over the hull or main float... on the seaplane during the impact is assumed to be 2/3 of the weight of the seaplane. [Doc. No. 26269...
Approach to developing numeric water quality criteria for ...
Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and potentially cause harmful ecological effects. States can adopt numeric water quality criteria into their water quality standards to protect the designated uses of their coastal waters from eutrophication impacts. The first objective of this study was to provide an approach for developing numeric water quality criteria for coastal waters based on archived SeaWiFS ocean color satellite data. The second objective was to develop an approach for transferring water quality criteria assessments to newer ocean color satellites such as MODIS and MERIS. Spatial and temporal measures of SeaWiFS, MODIS, and MERIS chlorophyll-a (ChlRS-a, mg m-3) were resolved across Florida’s coastal waters between 1998 and 2009. Annual geometric means of SeaWiFS ChlRS-a were evaluated to determine a quantitative reference baseline from the 90th percentile of the annual geometric means. A method for transferring to multiple ocean color sensors was implemented with SeaWiFS as the reference instrument. The ChlRS-a annual geometric means for each coastal segment from MODIS and MERIS were regressed against SeaWiFS to provide a similar response among all three satellites. Standardization factors for each coastal segment were calculated based on differences between 90th percentiles from SeaWiFS to MODIS and SeaWiFS to MERIS. This transfer approach allowed for futu
Historic change in catchment land use and metal loading to Sydney estuary, Australia (1788-2010).
Birch, G F; Lean, J; Gunns, T
2015-09-01
Sydney estuary has a long history of environmental degradation and is one of the most modified water ways in Australia due to a highly urbanised catchment (~77 %) and a high population (4.6 million). The objectives of the present study were to map historical land use change from European settlement (1788) to 2010 to determine catchment evolutionary pathways and to estimate catchment loading (total suspended solids, Cu, Pb and Zn) to the estuary over this period. Land use distribution in Sydney catchment, determined for seven time horizons over this period, indicated that a substantial increase in residential land use through subdivision of large estates and an increase in road area resulted in a marked increase in metal loading to Sydney estuary between 1892 and 1936. The decline in industrial activity from a maximum in 1978 (3.9 %) to 1.8 % in 2010 and the introduction of unleaded fuel during this time was accompanied by reduction in metal loading to the estuary. Land use time horizon maps enabled the creation of novel, ternary diagrams to represent temporal evolution in catchment land use. The 15 sub-catchments of Sydney estuary were combined into three major catchment categories, i.e., urban, dense urban and commercial. Present-day annual discharge of stormwater from the Sydney catchment was calculated to be 466,000 ML and annual loadings of total suspended sediment (TSS), Cu, Pb and Zn in tonnes were 49,239, 27, 37 and 57, respectively. Stormwater has superseded industry as the main source of anthropogenic metals to this estuary in recent times.
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
14 CFR 23.507 - Jacking loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...
Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong
2011-02-01
Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural vegetation showed the strongest correlation with drought index. There existed definite correlations among the climatic factors. If the correlations among the climatic factors were ignored, the significant level of the correlations between NDVI and climatic factors would be somewhat reduced.
Bonin, Jennifer L.
2010-01-01
Samples of surface water and suspended sediment were collected from the two branches that make up the Elizabeth River in New Jersey - the West Branch and the Main Stem - from October to November 2008 to determine the concentrations of selected chlorinated organic and inorganic constituents. The sampling and analyses were conducted as part of Phase II of the New York-New Jersey Harbor Estuary Plan-Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted by the U.S. Geological Survey to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. This portion of the Phase II study was conducted on the two branches of the Elizabeth River, which were previously sampled during July and August of 2003 at low-flow conditions. Samples were collected during 2008 from the West Branch and Main Stem of the Elizabeth River just upstream from their confluence at Hillside, N.J. Both tributaries were sampled once during low-flow discharge conditions and once during high-flow discharge conditions using the protocols and analytical methods that were used in the initial part of Phase II of the Workplan. Grab samples of streamwater also were collected at each site and were analyzed for cadmium, suspended sediment, and particulate organic carbon. The measured concentrations, along with available historical suspended-sediment and stream-discharge data were used to estimate average annual loads of suspended sediment and organic compounds in the two branches of the Elizabeth River. Total suspended-sediment loads for 1975 to 2000 were estimated using rating curves developed from historical U.S. Geological Survey suspended-sediment and discharge data, where available. Concentrations of suspended-sediment-bound polychlorinated biphenyls (PCBs) in the Main Stem and the West Branch of the Elizabeth River during low-flow conditions were 534 ng/g (nanograms per gram) and 1,120 ng/g, respectively, representing loads of 27 g/yr (grams per year) and 416 g/yr, respectively. These loads were estimated using contaminant concentrations during low flow, and the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound PCBs in the Main Stem and the West Branch of the Elizabeth River during high-flow conditions were 3,530 ng/g and 623 ng/g, respectively, representing loads of 176 g/yr and 231 g/yr, respectively. These loads were estimated using contaminant concentrations during high-flow conditions, the assumed 25-year average discharge, and 25-year average suspended-sediment concentration. Concentrations of suspended-sediment-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-difuran compounds (PCDD/PCDFs) during low-flow conditions were 2,880 pg/g (picograms per gram) and 5,910 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 0.14 g/yr and 2.2 g/yr, respectively. Concentrations of suspended-sediment-bound PCDD/PCDFs during high-flow conditions were 40,900 pg/g and 12,400 pg/g in the Main Stem and West Branch, respectively, representing average annual loads of 2.05 g/yr and 4.6 g/yr, respectively. Total toxic equivalency (TEQ) loads (sum of PCDD/PCDF and PCB TEQs) were 3.1 mg/yr (milligrams per year) (as 2, 3, 7, 8-TCDD) in the Main Stem and 28 mg/yr in the West Branch during low-flow conditions. Total TEQ loads (sum of PCDD/PCDFs and PCBs) were 27 mg/yr (as 2, 3, 7, 8-TCDD) in the Main Stem and 32 mg/yr in the West Branch during high-flow conditions. All of these load estimates, however, are directly related to the assumed annual discharge for the two branches. Long-term measurement of stream discharge and suspended-sediment concentrations would be needed to verify these loads. On the basis of the loads cal
NASA Astrophysics Data System (ADS)
Gao, Yang; Zhu, Bo; Wang, Tao; Wang, Yafeng
2012-02-01
SummaryBioavailable phosphorus (P) losses due to agriculture activity in a purple soil watershed in the Sichuan Basin of Southwestern China were monitored to define the hydrological controls of P transport. Our results indicate that the proportion of P that was transported in particulate form increased in the rainy season, and that the mass of total bioavailable P (BAP) loads exhibited seasonal fluctuations, wherein the majority (over 90%) was observed to have been exported between June and September. The proportion of bioavailable dissolved P (BDP) in the BAP discharge budget in the watershed varied between 11% and 15% during the monitoring period. The bioavailable particulate P (BPP) and BDP concentrations of stream water under rainstorm events increased by over 40% in comparison to their annual mean concentrations, and the annual BAP load was primarily dominated by the loads that occurred during rainstorm events in the study year. BAP concentration in groundwater significantly fluctuated with the seasons, and the ratio of total BAP in groundwater to that in surface water gradually increased during the rainy season. Thus, the impact of agriculture on the water quality of this watershed becomes clearly evident.
Global scale modeling of riverine sediment loads: tropical rivers in a global context
NASA Astrophysics Data System (ADS)
Cohen, Sagy; Syvitski, James; Kettner, Albert
2015-04-01
A global scale riverine sediment flux model (termed WBMsed) is introduced. The model predicts spatially and temporally explicit water, suspended sediment and nutrients flux in relatively high resolutions (6 arc-min and daily). Modeled riverine suspended sediment flux through global catchments is used in conjunction with observational data for 35 tropical basins to highlight key basin scaling relationships. A 50 year, daily model simulation illuminates how precipitation, relief, lithology and drainage basin area affect sediment load, yield and concentration. Tropical river systems, wherein much of a drainage basin experiences tropical climate are strongly influenced by the annual and inter-annual variations of the Inter-tropical Convergence Zone (ITCZ) and its derivative monsoonal winds, have comparatively low inter-annual variation in sediment yield. Rivers draining rainforests and those subjected to tropical monsoons typically demonstrate high runoff, but with notable exceptions. High rainfall intensities from burst weather events are common in the tropics. The release of rain-forming aerosols also appears to uniquely increase regional rainfall, but its geomorphic manifestation is hard to detect. Compared to other more temperate river systems, climate-driven tropical rivers do not appear to transport a disproportionate amount of particulate load to the world's oceans, and their warmer, less viscous waters are less competent. Multiple-year hydrographs reveal that seasonality is a dominant feature of most tropical rivers, but the rivers of Papua New Guinea are somewhat unique being less seasonally modulated. Local sediment yield within the Amazon is highest near the Andes, but decreases towards the ocean as the river's discharge is diluted by water influxes from sediment-deprived rainforest tributaries
O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom
2012-03-01
Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.
NASA Astrophysics Data System (ADS)
Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei
2017-03-01
We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.
Snowmelt Timing as a Determinant of Lake Inflow Mixing
NASA Astrophysics Data System (ADS)
Roberts, D. C.; Forrest, A. L.; Sahoo, G. B.; Hook, S. J.; Schladow, S. G.
2018-02-01
Snowmelt is a significant source of carbon, nutrient, and sediment loads to many mountain lakes. The mixing conditions of snowmelt inflows, which are heavily dependent on the interplay between snowmelt and lake thermal regime, dictate the fate of these loads within lakes and their ultimate impact on lake ecosystems. We use five decades of data from Lake Tahoe, a 600 year residence-time lake where snowmelt has little influence on lake temperature, to characterize the snowmelt mixing response to a range of climate conditions. Using stream discharge and lake profile data (1968-2017), we find that the proportion of annual snowmelt entering the lake prior to the onset of stratification increases as annual snowpack decreases, ranging from about 50% in heavy-snow years to close to 90% in warm, dry years. Accordingly, in 8 recent years (2010-2017) where hourly inflow buoyancy and discharge could be quantified, we find that decreased snowpack similarly increases the proportion of annual snowmelt entering the lake at weak to positive buoyancy. These responses are due to the stronger effect of winter precipitation conditions on streamflow timing and temperature than on lake stratification, and point toward increased nearshore and near-surface mixing of inflows in low-snowpack years. The response of inflow mixing conditions to snowpack is apparent when isolating temperature effects on snowpack. Snowpack levels are decreasing due to warming temperatures during winter precipitation. Thus, our findings suggest that climate change may lead to increased deposition of inflow loads in the ecologically dynamic littoral zone of high-residence time, snowmelt-fed lakes.
Zhang, Zhenzhen; O'Neill, Marie S; Sánchez, Brisa N
2016-04-01
Factor analysis is a commonly used method of modelling correlated multivariate exposure data. Typically, the measurement model is assumed to have constant factor loadings. However, from our preliminary analyses of the Environmental Protection Agency's (EPA's) PM 2.5 fine speciation data, we have observed that the factor loadings for four constituents change considerably in stratified analyses. Since invariance of factor loadings is a prerequisite for valid comparison of the underlying latent variables, we propose a factor model that includes non-constant factor loadings that change over time and space using P-spline penalized with the generalized cross-validation (GCV) criterion. The model is implemented using the Expectation-Maximization (EM) algorithm and we select the multiple spline smoothing parameters by minimizing the GCV criterion with Newton's method during each iteration of the EM algorithm. The algorithm is applied to a one-factor model that includes four constituents. Through bootstrap confidence bands, we find that the factor loading for total nitrate changes across seasons and geographic regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjarlais, Andre Omer; Kriner, Scott; Miller, William A
An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool wasmore » then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.« less
Parameter Accuracy in Meta-Analyses of Factor Structures
ERIC Educational Resources Information Center
Gnambs, Timo; Staufenbiel, Thomas
2016-01-01
Two new methods for the meta-analysis of factor loadings are introduced and evaluated by Monte Carlo simulations. The direct method pools each factor loading individually, whereas the indirect method synthesizes correlation matrices reproduced from factor loadings. The results of the two simulations demonstrated that the accuracy of…
An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling.
Greene, S; Taylor, D; McElarney, Y R; Foy, R H; Jordan, P
2011-05-01
Functional relationships between phosphorus (P) discharge and concentration mechanisms were explored using a load apportionment model (LAM) developed for use in a freshwater catchment in Ireland with fourteen years of data (1995-2008). The aim of model conceptualisation was to infer changes in point and diffuse sources from catchment P loading during P mitigation, based upon a dataset comprising geospatial and water quality data from a 256km(2) lake catchment in an intensively farmed drumlin region of the midlands of Ireland. The model was calibrated using river total P (TP), molybdate reactive P (MRP) and runoff data from seven subcatchments. Temporal and spatial heterogeneity of P sources existed within and between subcatchments; these were attributed to differences in agricultural intensity, soil type and anthropogenically-sourced effluent P loading. Catchment rivers were sensitive to flow regime, which can result in eutrophication of rivers during summer and lake enrichment from frequent flood events. For one sewage impacted river, the LAM estimated that point sourced P contributed up to of 90% of annual MRP load delivered during a hydrological year and in this river point P sources dominated flows up to 92% of days. In the other rivers, despite diffuse P forming a majority of the annual P exports, point sources of P dominated flows for up to 64% of a hydrological year. The calibrated model demonstrated that lower P export rates followed specific P mitigation measures. The LAM estimated up to 80% decreases in point MRP load after enhanced P removal at waste water treatments plants in urban subcatchments and the implementation of septic tank and agricultural bye-laws in rural subcatchments. The LAM approach provides a way to assess the long-term effectiveness of further measures to reduce P loadings in EU (International) River Basin Districts and subcatchments. Copyright © 2011 Elsevier B.V. All rights reserved.
Use of fiber reinforced concrete in bridge approach slabs.
DOT National Transportation Integrated Search
2008-12-01
Bridge approach slabs are deteriorating at a much faster rate than expected resulting in a massive need for repairs and premature replacement : costing millions of dollars annually. Both environmental and traffic loading causes the concrete to worsen...
Röhling, Steffi; Dunger, Karsten; Kändler, Gerald; Klatt, Susann; Riedel, Thomas; Stümer, Wolfgang; Brötz, Johannes
2016-12-01
The German greenhouse gas inventory in the land use change sector strongly depends on national forest inventory data. As these data were collected periodically 1987, 2002, 2008 and 2012, the time series on emissions show several "jumps" due to biomass stock change, especially between 2001 and 2002 and between 2007 and 2008 while within the periods the emissions seem to be constant due to the application of periodical average emission factors. This does not reflect inter-annual variability in the time series, which would be assumed as the drivers for the carbon stock changes fluctuate between the years. Therefore additional data, which is available on annual basis, should be introduced into the calculations of the emissions inventories in order to get more plausible time series. This article explores the possibility of introducing an annual rather than periodical approach to calculating emission factors with the given data and thus smoothing the trajectory of time series for emissions from forest biomass. Two approaches are introduced to estimate annual changes derived from periodic data: the so-called logging factor method and the growth factor method. The logging factor method incorporates annual logging data to project annual values from periodic values. This is less complex to implement than the growth factor method, which additionally adds growth data into the calculations. Calculation of the input variables is based on sound statistical methodologies and periodically collected data that cannot be altered. Thus a discontinuous trajectory of the emissions over time remains, even after the adjustments. It is intended to adopt this approach in the German greenhouse gas reporting in order to meet the request for annually adjusted values.
Shang, Lunyu; Zhang, Yu; Lyu, Shihua; Wang, Shaoying
2016-01-01
This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photosynthetic activity is also responsible for the variation of daily ecosystem respiration other than environmental factors. No clear correlation between net ecosystem exchange and environmental factors was observed at daily scale. Temperature sensitive coefficient was observed to increase with larger soil water content. High values of temperature sensitive coefficient occurred during the periods when soil water content was high and grass was active. Annual integrated net ecosystem exchange, gross primary production and ecosystem respiration were -191, 1145 and 954 g C m-2 for 2010, and -250, 975 and 725 g C m-2 for 2011, respectively. Thus, this alpine grassland was a moderate carbon sink in both of the two years. Compared to alpine grasslands on the Qinghai-Tibetan Plateau, this alpine grassland demonstrated a much greater potential for carbon sequestration than others. Annual precipitation is a dominant factor controlling the variation of annual net ecosystem exchange over this grassland. The difference in gross primary production between the two years was not caused by the variation in annual precipitation. Instead, air temperature and the length of growing season had an important impact on annual gross primary production. Variation of annual ecosystem respiration was closely related to annual gross primary production and soil water content during the growing season.
Shang, Lunyu; Zhang, Yu; Lyu, Shihua; Wang, Shaoying
2016-01-01
This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photosynthetic activity is also responsible for the variation of daily ecosystem respiration other than environmental factors. No clear correlation between net ecosystem exchange and environmental factors was observed at daily scale. Temperature sensitive coefficient was observed to increase with larger soil water content. High values of temperature sensitive coefficient occurred during the periods when soil water content was high and grass was active. Annual integrated net ecosystem exchange, gross primary production and ecosystem respiration were -191, 1145 and 954 g C m-2 for 2010, and -250, 975 and 725 g C m-2 for 2011, respectively. Thus, this alpine grassland was a moderate carbon sink in both of the two years. Compared to alpine grasslands on the Qinghai-Tibetan Plateau, this alpine grassland demonstrated a much greater potential for carbon sequestration than others. Annual precipitation is a dominant factor controlling the variation of annual net ecosystem exchange over this grassland. The difference in gross primary production between the two years was not caused by the variation in annual precipitation. Instead, air temperature and the length of growing season had an important impact on annual gross primary production. Variation of annual ecosystem respiration was closely related to annual gross primary production and soil water content during the growing season. PMID:27861616
Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.
2013-01-01
Microbes have been identified as a major contaminant of water resources. Escherichia coli (E. coli) is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various models to predict E. coli loads in streams, but they tend to be system or site specific or overly complex without enhancing our understanding of these factors. Hence, based on available data, a Bayesian Neural Network (BNN) is presented for estimating E. coli loads based on physical, chemical, and biological factors in streams. The BNN has the dual advantage of overcoming the absence of quality data (with regards to consistency in data) and determination of mechanistic model parameters by employing a probabilistic framework. This study evaluates whether the BNN model can be an effective alternative tool to mechanistic models for E. coli loads estimation in streams. For this purpose, a comparison with a traditional model (LOADEST, USGS) is conducted. The models are compared for estimated E. coli loads based on available water quality data in Plum Creek, Texas. All the model efficiency measures suggest that overall E. coli loads estimations by the BNN model are better than the E. coli loads estimations by the LOADEST model on all the three occasions (three-fold cross validation). Thirteen factors were used for estimating E. coli loads with the exhaustive feature selection technique, which indicated that six of thirteen factors are important for estimating E. coli loads. Physical factors included temperature and dissolved oxygen; chemical factors include phosphate and ammonia; biological factors include suspended solids and chlorophyll. The results highlight that the LOADEST model estimates E. coli loads better in the smaller ranges, whereas the BNN model estimates E. coli loads better in the higher ranges. Hence, the BNN model can be used to design targeted monitoring programs and implement regulatory standards through TMDL programs. PMID:24511166
2012-01-01
Background Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November’08 to October’11. Results Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Conclusion Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system. PMID:23083531
Chaudhuri, Kaberi; Manna, Suman; Sarma, Kakoli Sen; Naskar, Pankaj; Bhattacharyya, Somenath; Bhattacharyya, Maitree
2012-10-19
Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November'08 to October'11. Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system.
Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.
1995-01-01
The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to isolate contamination in the sample bottle, the automatic sampler and splitter, and the filtration system. Significant contamination caused excessive concentrations of dissolved chloride, alkalinity, and biochemical oxygen demand. The level of contamination may be large enough to affect data for water samples in which these analytes are present at low concentration. Further investigation is being done to determine the source of contamination and take measures to minimize its effect on the sampling. A preliminary regression analysis was done for the rural sites using data collected during water years 1989-93. Loads of suspended solids and total phosphorus in stormflow were regressed against various precipitation-related measures. The results indicate that, for most sites, changes in constituent load on the order of 40 to 50 percent could be detected with a statistical test. For two sites, the change would have to be 60 to 70 percent to be detected. A detailed comparison of snowmelt runoff and rainfall stormflow in urban and rural areas was done using data collected during water years 1985-93. For the rural sites where statistically significant differences were found between constituent loads in snowmelt and storm runoff, the loads of suspended solids and total phosphorus in snowmelt runoff were greater than those in storm runoff. For the urban sites where statistically significant differences were found between snowmelt and storm runoff, the loads of suspended solids and total phosphorus in storm runoff were greater than those in snowmelt runoff. The importance of including snowmelt runoff in designing and analyzing the effects of BMP's on streamwater quality, particularly in rural areas, is emphasized by these results.
Trace metals in the living and nonliving components of scleractinian corals.
Reichelt-Brushett, A J; McOrist, G
2003-12-01
Trace metals in coral tissue and skeleton have been investigated in various ways since the early seventies. More recently it has been suggested that the symbiotic zooxanthellae may play an important role in the accumulation and regulation of trace metals. Furthermore gamete development and mucus production may influence the metal accumulation and loss in corals. Many studies have attempted to use the annual growth bands in coral skeletons to investigate historical pollution events. However the relationship between the metal concentrations in the surrounding environment and the incorporation of this into coral skeleton is not well understood. This paper explains a method for investigating metal loads in coral tissue, zooxanthellae and skeleton. Furthermore, it presents new information suggesting that zooxanthellae accumulate most metals (Al, Fe, As, Mn, Ni, Cu, Zn, Cd, Pb) in greater concentrations than the coral tissue. Coral skeletons had consistently lower metal concentration than the zooxanthellae, tissue and gametes. The loss of zooxanthellae during stress events may have a significant contribution to the total metal loads in corals. The use of corals as biomonitors should carefully factor in zooxanthellae densities and gamete development before conclusions are drawn.
NASA Technical Reports Server (NTRS)
Edwards, D. P.; Petron, G.; Novelli, P. C.; Emmons, L. K.; Gille, J. C.; Drummond, J. R.
2010-01-01
Biomass burning is an annual occurrence in the tropical southern hemisphere (SH) and represents a major source of regional pollution. Vegetation fires emit carbon monoxide (CO), which due to its medium lifetime is an excellent tracer of tropospheric transport. CO is also one of the few tropospheric trace gases currently observed from satellite and this provides long-term global measurements. In this paper, we use the 5 year CO data record from the Measurement Of Pollution In The Troposphere (MOPITT) instrument to examine the inter-annual variability of the SH CO loading and show how this relates to climate conditions which determine the intensity of fire sources. The MOPITT observations show an annual austral springtime peak in the SH zonal CO loading each year with dry-season biomass burning emissions in S. America, southern Africa, the Maritime Continent, and northwestern Australia. Although fires in southern Africa and S. America typically produce the greatest amount of CO, the most significant inter-annual variation is due to varying fire activity and emissions from the Maritime Continent and northern Australia. We find that this variation in turn correlates well with the El Nino Southern Oscillation precipitation index. Between 2000 and 2005, emissions were greatest in late 2002 and an inverse modeling of the MOPITT data using the MOZART chemical transport model estimates the southeast Asia regional fire source for the year August 2002 to September 2003 to be 52 Tg CO. Comparison of the MOPITT retrievals and NOAA surface network measurements indicate that the latter do not fully capture the inter-annual variability or the seasonal range of the CO zonal average concentration due to biases associated with atmospheric and geographic sampling.
NASA Astrophysics Data System (ADS)
Xu, J.; Martin, R.; Morrow, A.; Sharma, S.; Huang, L.; Leaitch, W. R.; Burkart, J.; Schulz, H.; Zanatta, M.; Willis, M. D.; Henze, D. K.; Lee, C. J.; Herber, A. B.; Abbatt, J.
2017-12-01
The contribution of Asian sources to Arctic black carbon (BC) remains uncertain. We interpret a series of recent airborne (NETCARE 2015, PAMARCMiP 2009 and 2011 campaigns) and ground-based measurements (at Alert, Barrow and Ny-Ålesund) from multiple methods (thermal, laser incandescence and light absorption) with the GEOS-Chem global chemical transport model and its adjoint to attribute the sources of Arctic BC. Our simulations with the addition of seasonally varying domestic heating and of gas flaring emissions are consistent with ground-based measurements of BC concentrations at Alert and Barrow to within 13% in winter and spring, and with airborne measurements to within 17 % except for an underestimation in the middle troposphere (500-700 hPa). Sensitivity simulations suggest that anthropogenic emissions from eastern and southern Asia have the largest impact on the Arctic BC column burden both in spring (56 %) and annually (37 %), with the largest contribution in the middle troposphere (400-700 hPa). Anthropogenic emissions from northern Asia are the primary source of the Arctic surface BC ( 40% annually). Our adjoint simulations indicate noteworthy contributions from emissions in eastern China (15 %) and western Siberia (6.5 %) to the Arctic BC loadings on an annual average. Emissions from as south as the Indo-Gangetic Plain have a substantial impact (6.3 % annually) on Arctic BC as well. The Tarim oilfield in western China stands out as the second most influential grid cell with an annual contribution of 2.6 %. Gas flaring emissions from oilfields in western Siberia have a striking impact (13 %) on Arctic BC loadings in January, comparable to the total influence of continental Europe and North America (6.5 % each in January).
Suspended-sediment data in the Salt River basin, Missouri
Berkas, Wayne R.
1983-01-01
Suspended-sediment data collected at six stations in the Salt River basin during 1980-82 are presented. The estimated average annual suspended-sediment load is 1,390,000 tons per year from a geomorphic examination, and 1,330,000 tons per year from periodic sampling at Salt River near Monroe City, Mo. The suspended-sediment load from the major tributaries of the Salt River during 1981 was 1,610,000 tons, which is larger than the estimated values due to above-normal rainfall and runoff. (USGS)
2015-03-01
Presentations 18 6. High-Rate Loading of Piezoelectric Ceramics 19 6.1 Objective 19 6.2 Quarterly Deliverables 19 6.3 Research Summary 19 6.4...the mechanical properties and to control the failure, with the emphasis on those properties and processes that are unique to BCC materials . The...application to molybdenum. 19 6. High-Rate Loading of Piezoelectric Ceramics Core Faculty: KT Ramesh ARL Collaborators: George Gazonas, Jim McCauley
2014 Gulf of Mexico Hypoxia Forecast
Scavia, Donald; Evans, Mary Anne; Obenour, Dan
2014-01-01
The Gulf of Mexico annual summer hypoxia forecasts are based on average May total nitrogen loads from the Mississippi River basin for that year. The load estimate, recently released by USGS, is 4,761 metric tons per day. Based on that estimate, we predict the area of this summer’s hypoxic zone to be 14,000 square kilometers (95% credible interval, 8,000 to 20,000) – an “average year”. Our forecast hypoxic volume is 50 km3 (95% credible interval, 20 to 77).
Nitrogen and salt loads in the irrigation return flows of the Ebro River Basin (Spain)
NASA Astrophysics Data System (ADS)
Isidoro, Daniel; Balcells, Maria; Clavería, Ignacio; Dechmi, Farida; Quílez, Dolores; Aragüés, Ramón
2013-04-01
The conservation of the quality of surface waters demanded by the European Water Framework Directive requires, among others, an assessment of the irrigation-induced pollution. The contribution of the irrigation return flows (IRF) to the pollution of the receiving water bodies is given by its pollutant load, since this load determines the quality status or pollutant concentration in these water bodies. The aim of this work was to quantify the annual nitrogen and salt loads in the IRF of four irrigated catchments within the Ebro River Basin: Violada (2006-10), Alcanadre (2008-10), Valcuerna (2010), and Clamor Amarga (2010). The daily flow (Q), salt (EC) and nitrate concentration (NO3) were measured in the drainage outlets of each basin. The net irrigation-induced salt and nitrogen loads were obtained from these measurements after discounting the salt and nitrogen inputs from outside the catchments and the non-irrigated areas. The N-fertilizer applications were obtained from farmer surveys and animal farming statistical sources. Irrigation water salinity was very low in all catchments (EC < 0.4 dS/m), but IRF salinity was very high in Valcuerna (7.9 dS/m) with underlain saline lutites, high to moderate in Clamor (2.6 dS/m) and Violada (2.1 dS/m) with gypsum-rich soils, and low in Alcanadre (1.0 dS/m) due to dilution in the inefficient traditional flood-irrigation system. Annual salt loads were highest in Valcuerna (11.9 Mg/ha) and lowest in Alcanadre (3.6 Mg/ha) and Clamor (3.3 Mg/ha). Salt load was also high in flood-irrigated Violada (10.3 Mg/ha), but dropped to 2.6 Mg/ha after its modernization to sprinkler irrigation (in 2008-09). N-fertilizer applications ranged from 221 kg/ha in the corn-dominated Valcuerna in 2010 to 63 kg/ha in 2008 in Violada, when farmers barely applied fertilizers due to the irrigation modernization works in progress that year. The highest N applications derived from pig slurry applications by farmers that used their lands as disposal sites for their farm residues. The highest NO3 concentrations (mean of 113 mg/L) and annual N loads (mean of 38 kg/ha) were found in Valcuerna, the most intense corn sprinkler-irrigated catchment. The lowest NO3 concentrations (21 mg/L; 5 times lower than Valcuerna) were measured in the Alcanadre flood-irrigated catchment. In contrast, Alcanadre N loads (21 kg/ha) were only about two times lower than in Valcuerna, due to the higher IRF volumes in Alcanadre (353 mm versus 132 mm in Valcuerna). Irrigation modernization in Violada decreased N loads from 20 to 5 kg N/ha (four times lower) due to the sharp reduction of IRF while maintaining NO3 concentration around 20 mg/L. The only significant contribution of ammonium (17% to the total N load of 13 hg/ha) was found in Clamor, the catchment with highest agro-industrial development. Overall, IRF salt and nitrate concentrations tended to increase and salt and nitrate loads tended to decrease in modernized sprinkler irrigation catchments, but the presence of soluble minerals, the applied inorganic and especially organic N, and the cropping patterns also played a significant role in this behaviour.
Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment.
Buendia, C; Bussi, G; Tuset, J; Vericat, D; Sabater, S; Palau, A; Batalla, R J
2016-01-01
This paper assesses annual and seasonal trends in runoff and sediment load resulting from climate variability and afforestation in an upland Mediterranean basin, the Ribera Salada (NE Iberian Peninsula). We implemented a hydrological and sediment transport distributed model (TETIS) with a daily time-step, using continuous discharge and sediment transport data collected at a monitoring station during the period 2009-2013. Once calibrated and validated, the model was used to simulate the hydrosedimentary response of the basin for the period 1971-2014 using historical climate and land use data. Simulated series were further used to (i) detect sediment transport and hydrologic trends at different temporal scales (annual, seasonal); (ii) assess changes in the contribution of extreme events (i.e. low and high flows) and (ii) assess the relative effect of forest expansion and climate variability on trends observed by applying a scenario of constant land use. The non-parametric Mann-Kendall test indicated upward trends for temperature and decreasing trends (although non-significant) for precipitation. Downward trends occurred for annual runoff, and less significantly for sediment yield. Reductions in runoff were less intense when afforestation was not considered in the model, while trends in sediment yield were reversed. Results also indicated that an increase in the river's torrential behaviour may have occurred throughout the studied period, with low and high flow events gaining importance with respect to the annual contribution, although its magnitude was reduced over time. Copyright © 2015 Elsevier B.V. All rights reserved.
Calibration of the live load factor in LRFD design guidelines.
DOT National Transportation Integrated Search
2010-09-01
The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is : more rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD : Specification ...
Calibration of the live load factor in LRFD design guidelines : [revised].
DOT National Transportation Integrated Search
2011-07-01
The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is : more rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD : Specification ...
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2008-01-01
Atlanta, Georgia (City of Atlanta, COA), is one of the most rapidly growing urban areas in the US. Beginning in 2003, the US Geological Survey established a long-term water-quantity/quality monitoring network for the COA. The results obtained during the first 2 years have provided insights into the requirements needed to determine the extent of urban impacts on water quality, especially in terms of estimating the annual fluxes of suspended sediment, trace/major elements, and nutrients. During 2004/2005, suspended sediment fluxes from the City of Atlanta (COA) amounted to about 150 000 t year-1; ??? 94% of the transport occurred in conjunction with storm-flow, which also accounted for ??? 65% of the annual discharge. Typically, storm-flow averaged ??? 20% of theyear. Normally, annual suspended sediment fluxes are determined by summing daily loads based on a single calculation step using mean-daily discharge and a single rating curve-derived suspended sediment concentration. Due to the small and 'flashy' nature of the COAs streams, this approach could produce underestimates ranging from 25% to 64%. Accurate estimates (?? 15%) require calculation time-steps as short as every 2-3 h. Based on annual median base-flow/storm-flow chemical concentrations, the annual fluxes of ??? 75% of trace elements (e.g. Cu, Pb, Zn), major elements (e.g. Fe, Al), and total P occur in association with suspended sediment; in turn, ??? 90% of the transport of these constituents occur in conjunction with storm-flow. As such, base-flow sediment-associated and dissolved contributions represent relatively insignificant portions of the total annual load. An exception is total N, whose sediment-associated fluxes range from 50% to 60%; even so, storm-related transport typically exceeds 80%. Hence, in urban environments, non-point-source appear to be the dominant contributors to the fluxes of these constituents.
Research notes : customized live-load factors for bridge load rating.
DOT National Transportation Integrated Search
2007-03-01
The state-of-the-art approach to load rating bridges is the Load and Resistance Factor Rating (LRFR) method, supported by the Federal Highway Administration and the American Association of State Highway and Transportation Officials. This approach ens...
NASA Technical Reports Server (NTRS)
Kussner, H G; Thalau, Karl
1933-01-01
Load factors and loading conditions are presented for German aircraft. Loading conditions under various stress factors are presented along with a breakdown of individual aircraft components such as landing gear, wings, etc.
Public perceptions of key performance indicators of healthcare in Alberta, Canada.
Northcott, Herbert C; Harvey, Michael D
2012-06-01
To examine the relationship between public perceptions of key performance indicators assessing various aspects of the health-care system. Cross-sequential survey research. Annual telephone surveys of random samples of adult Albertans selected by random digit dialing and stratified according to age, sex and region (n = 4000 for each survey year). The survey questionnaires included single-item measures of key performance indicators to assess public perceptions of availability, accessibility, quality, outcome and satisfaction with healthcare. Cronbach's α and factor analysis were used to assess the relationship between key performance indicators focusing on the health-care system overall and on a recent interaction with the health-care system. The province of Alberta, Canada during the years 1996-2004. Four thousand adults randomly selected each survey year. Survey questions measuring public perceptions of healthcare availability, accessibility, quality, outcome and satisfaction with healthcare. Factor analysis identified two principal components with key performance indicators focusing on the health system overall loading most strongly on the first component and key performance indicators focusing on the most recent health-care encounter loading most strongly on the second component. Assessments of the quality of care most recently received, accessibility of that care and perceived outcome of care tended to be higher than the more general assessments of overall health system quality and accessibility. Assessments of specific health-care encounters and more general assessments of the overall health-care system, while related, nevertheless comprise separate dimensions for health-care evaluation.
Exploratory factor analysis of the functional movement screen in elite athletes.
Li, Yongming; Wang, Xiong; Chen, Xiaoping; Dai, Boyi
2015-01-01
The functional movement screen is developed to examine individuals' movement patterns through 7 functional tasks. The purpose of this study was to identify the internal consistency and factor structure of the 7 tasks of the functional movement screen in elite athletes; 290 elite athletes from a variety of Chinese national teams were assessed using the functional movement screen. Cronbach's alpha was calculated for the scores of the 7 tasks. Exploratory factor analysis was performed to explore the factor structure of the functional movement screen. The mean and standard deviation of the sum score were 15.2 ± 3.0. A low Cronbach's alpha (0.58) was found for the scores of the 7 tasks. Exploratory factor analysis extracted 2 factors with eigenvalues greater than 1, and these 2 factors explained 47.3% of the total variance. The first factor had a high loading on the rotatory stability (loading = 0.99) and low loadings on the other 6 tasks (loading range: 0.04-0.34). The second factor had high loadings on the deep squat, hurdle step and inline lunge (loading range: 0.46-0.61) and low loadings on the other 3 tasks (loading range: 0.12-0.32). The 7 tasks of the functional movement screen had low internal consistency and were not indicators of a single factor. Evidence for unidimensionality was not found for the functional movement screen in elite athletes. More attention should be paid to the score of each task rather than the sum score when we interpret the functional movement screen scores.
Wang, Jinliang; Shao, Jing'an; Wang, Dan; Ni, Jiupai; Xie, Deti
2015-11-01
Nonpoint source pollution is one of the primary causes of eutrophication of water bodies. The concentrations and loads of dissolved pollutants have a direct bearing on the environmental quality of receiving water bodies. Based on the Johnes export coefficient model, a pollutant production coefficient was established by introducing the topographical index and measurements of annual rainfall. A pollutant interception coefficient was constructed by considering the width and slope of present vegetation. These two coefficients were then used as the weighting factors to modify the existing export coefficients of various land uses. A modified export coefficient model was created to estimate the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region (TGRR) in 1990, 1995, 2000, 2005, and 2010. The results show that the new land use export coefficient was established by the modification of the production pollution coefficient and interception pollution coefficient. This modification changed the single numerical structure of the original land use export coefficient and takes into consideration temporal and spatial differentiation features. The modified export coefficient retained the change structure of the original single land use export coefficient, and also demonstrated that the land use export coefficient was not only impacted by the change of land use itself, but was also influenced by other objective conditions, such as the characteristics of the underlying surface, amount of rainfall, and the overall presence of vegetation. In the five analyzed years, the simulation values of the dissolved nitrogen and phosphorus loads in paddy fields increased after applying the modification in calculation. The dissolved nitrogen and phosphorus loads in dry land comprised the largest proportions of the TGRR's totals. After modification, the dry land values showed an initial increase and then a decrease over time, but the increments were much smaller than those of the paddy field. The dissolved nitrogen and phosphorus loads in the woodland and meadow decreased after modification. The dissolved nitrogen and phosphorus loads in the building lot were the lowest but showed an increase with the progression of time. These results demonstrate that the modified export coefficient model significantly improves the accuracy of dissolved pollutant load simulation for different land uses in the TGRR, especially the accuracy of dissolved nitrogen load simulation.
Proceedings, 13th Annual Conference on Manual Control
NASA Technical Reports Server (NTRS)
1977-01-01
Theoretical aspects of manual control theory are discussed. Specific topics covered include: tracking; performance, attention allocation, and mental load; surface vehicle control; monitoring behavior and supervisory control; manipulators and prosthetics; aerospace vehicle control; motion and visual cues; and displays and controls.
Sensory Load Incurs Conceptual Processing Costs
ERIC Educational Resources Information Center
Vermeulen, Nicolas; Corneille, Olivier; Niedenthal, Paula M.
2008-01-01
Theories of grounded cognition propose that modal simulations underlie cognitive representation of concepts [Barsalou, L. W. (1999). "Perceptual symbol systems." "Behavioral and Brain Sciences, 22"(4), 577-660; Barsalou, L. W. (2008). "Grounded cognition." "Annual Review of Psychology, 59", 617-645]. Based…
Wu, Rong Jun; Xing, Xiao Yong
2016-06-01
The actual evapotranspiration was modelled utilizing the boreal ecosystem productivity simulator (BEPS) in Huaihe River Basin from 2001 to 2012. In the meantime, the quantitative analyses of the spatial-temporal variations of actual evapotranspiration characteristics and its influencing factors under different vegetation types were conducted. The results showed that annual evapotranspiration gradually decreased from southeast to northwest, tended to increase annually, and the monthly change for the average annual evapotranspiration was double-peak curve. The differences of evapotranspiration among vegetation types showed that the farmland was the largest contributor for the evapotranspiration of Huaihe Basin. The annual actual evapotranspiration of the mixed forest per unit area was the largest, and that of the bare ground per unit area was the smallest. The changed average annual evapotranspiration per unit area for various vegetation types indicated an increased tendency other than the bare ground, with a most significant increase trend for the evergreen broadleaf forest. The thermodynamic factors (such as average temperature) were the dominant factors affecting the actual evapotranspiration in the Huaihe Basin, followed by radiation and moisture factors.
NASA Astrophysics Data System (ADS)
Zhang, Li; Jabbari, Faryar; Brown, Tim; Samuelsen, Scott
2014-12-01
Plug-in electric vehicles (PEVs) shift energy consumption from petroleum to electricity for the personal transportation sector. This work proposes a decentralized charging protocol for PEVs with grid operators updating the cost signal. Each PEV calculates its own optimal charging profile only once based on the cost signal, after it is plugged in, and sends the result back to the grid operators. Grid operators only need to aggregate charging profiles and update the load and cost. The existing PEV characteristics, national household travel survey (NHTS), California Independent System Operator (CAISO) demand, and estimates for future renewable generation in California are used to simulate PEV operation, PEV charging profiles, grid demand, and grid net load (demand minus renewable). Results show the proposed protocol has good performance for overnight net load valley filling if the costs to be minimized are proportional to the net load. Annual results are shown in terms of overnight load variation and comparisons are made with grid level valley filling results. Further, a target load can be approached in the same manner by using the gap between current load and the target load as the cost. The communication effort involved is quite modest.
Weigh-in-motion (WIM) data for site-specific LRFR bridge load rating.
DOT National Transportation Integrated Search
2011-08-12
The live load factors in the Load and Resistant Factor Rating (LRFR) Manual are based on load data from Ontario : thought to be representative of traffic volumes nationwide. However, in accordance with the methodology for : developing site-specific l...
Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean
2017-01-01
Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e.g., rye and early planting), due to warmer temperatures. According to simulation results, WCCs were effective to mitigate nitrate loads accelerated by FCCs and therefore the role of WCCs in mitigating nitrate loads is even more important in the given FCCs.
NASA Astrophysics Data System (ADS)
Shih, Yu-Ting; Lee, Tsung-Yu; Huang, -Chuan, Jr.
2015-04-01
This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and DIN per capita loading. A total of 16 sub-catchments, with different land-use compositions on the Danshui River of Taiwan, were used in this study. Observed riverine DIN concentrations and yields varied from 20 - 450 μM and 400 - 10,000 kg-N km-2 yr-1 corresponding to the increase of urbanization gradient (e.g. building and population). Meanwhile, the transport behaviors changed from hydrological enhancement to dilution with increasing urbanization as well. Our method shows that the DIN yield factors, independent of discharge, are 12.7, 63.9, and 1381.0 μM, for forest, agriculture, and building, respectively, which equals to 444.5, 2236.5, 48,335 kg-N km-2 yr-1 at the given annual runoff of 2,500 mm. The agriculture DIN yield only accounts for 10% of fertilizer application indicating the complicated N cascade and possible over fertilization. The DIN per capita loading (~0.49 kg-N Capita-1 yr-1) which is lower than the documented human N emission (1.6 - 5.5 kg-N Capita-1 yr-1) can be regarded as an effective export coefficient after treatment or retention. A conducted scenario experiment supports the observations demonstrating the capability for assessment. We therefore, can extrapolate all possible combinations of land-use, discharge, and population density for evaluation. This can provide a strong basis for watershed management and supplementary estimation for regional to global study.
NASA Astrophysics Data System (ADS)
Shih, Y.-T.; Lee, T.-Y.; Huang, J.-C.; Kao, S.-J.; Liu, K.-K.; Chang, F.-J.
2015-01-01
This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and DIN per capita loading. A total of 16 sub-catchments, with different land-use compositions on the Danshui River of Taiwan, were used in this study. Observed riverine DIN concentrations and yields varied from 20-450 μM and 400-10 000 kg N km-2 yr-1 corresponding to the increase of urbanization gradient (e.g. building and population). Meanwhile, the transport behaviors changed from hydrological enhancement to dilution with increasing urbanization as well. Our method shows that the DIN yield factors, independent of discharge, are 12.7, 63.9, and 1381.0 μM, for forest, agriculture, and building, respectively, which equals to 444.5, 2236.5, 48 335 kg N km-2 yr-1 at the given annual runoff of 2500 mm. The agriculture DIN yield only accounts for 10% of fertilizer application indicating the complicated N cascade and possible over fertilization. The DIN per capita loading (~0.49 kg N capita-1 yr-1) which is lower than the documented human N emission (1.6-5.5 kg N capita-1 yr-1) can be regarded as an effective export coefficient after treatment or retention. A conducted scenario experiment supports the observations demonstrating the capability for assessment. We therefore, can extrapolate all possible combinations of land-use, discharge, and population density for evaluation. This can provide a strong basis for watershed management and supplementary estimation for regional to global study.
Quality factor concept in piezoceramic transformer performance description.
Mezheritsky, Alex V
2006-02-01
A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.
Studying apple bruise using a finite element method analysis
NASA Astrophysics Data System (ADS)
Pascoal-Faria, P.; Alves, N.
2017-07-01
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in a loss of profits for the entire fruit industry. Bruising is defined as damage and discoloration of fruit flesh, usually with no breach of the skin. The three factors which can physically cause fruit bruising are vibration, compression load and impact. The last one is the main source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important task. To address these problems a finite element analysis has been developed for studying Portuguese Royal Gala apple bruise. The results obtained will be suitable to apple distributors and sellers and will allow a reduction of the impact caused by bruise damage in apple annual production.
Schubert, Christopher E.
2010-01-01
Fire Island National Seashore (FIIS) occupies 42 kilometers of the barrier island for which it is named that lies off the southern shore of Suffolk County, N.Y. Freshwater in the highly permeable, sandy aquifer underlying Fire Island is bounded laterally by marine surface waters and at depth by saline groundwater. Interspersed throughout FIIS are 17 pre-existing residential communities that in summer months greatly increase in population through the arrival of summer residents and vacationers; in addition, the National Park Service (NPS) has established several facilities on the island to accommodate visitors to FIIS. The 2.2 million people estimated by the NPS to visit Fire Island annually impact groundwater quality through the release of waste-derived contaminants, such as nutrients, pathogens, and organic compounds, into the environment. Waste-contaminated groundwater can move through the aquifer and threaten the ecological health of the adjacent back-barrier estuaries to which much of the groundwater ultimately discharges. In 2004, the U.S. Geological Survey (USGS), in cooperation with the NPS, began a 3-year investigation to (1) collect groundwater levels and water-quality (nutrient) samples, (2) develop a three-dimensional model of the shallow (water-table) aquifer system and adjacent marine surface waters, and (3) calculate nitrogen loads in simulated groundwater discharges from the aquifer to back-barrier estuaries and the ocean. The hydrogeology of the shallow aquifer system was characterized from the results of exploratory drilling, geophysical surveying, water-level monitoring, and water-quality sampling. The investigation focused on four areas-the communities of Kismet and Robbins Rest, the NPS Visitor Center at Watch Hill, and the undeveloped Otis Pike Fire Island High Dune Wilderness. Thirty-five observation wells were installed within FIIS to characterize subsurface hydrogeology and establish a water-table monitoring network in the four study areas. A variable-density model of the shallow aquifer system and adjacent marine surface waters was developed to simulate groundwater flow patterns and rates. Nitrogen loads from the shallow aquifer system were calculated from representative total nitrogen (TN) concentrations and simulated groundwater discharges to back-barrier estuaries and the ocean. The model simulates groundwater directions, velocities, and discharge rates under 2005 mean annual conditions. Groundwater budgets were developed for recharge areas of similar land use that contribute freshwater to back-barrier estuaries, the ocean, and subsea-discharge zones. Total freshwater discharge from the shallow aquifer system is about 43,500 cubic meters per day (m3/d) (79.8 percent) to back-barrier estuaries and about 10,200 m3/d (18.7 percent) to the ocean; about 836 m3/d (1.5 percent) may exit the system as subsea underflow. The total contribution of fresh groundwater to shoreline discharge zones amounts to about 53,700 m3/d (98.5 percent). The median age of freshwater discharged to back-barrier estuaries and the ocean was 3.4 years, and the 95th-percentile age was 20 years. The TN concentrations and loads under 2005 mean annual conditions for areas that contribute fresh groundwater to back-barrier estuaries and the ocean were calculated for the principal land uses on Fire Island. The overall TN load from the shallow aquifer system to shoreline discharge zones is about 16,200 kilograms per year (kg/yr) (82.2 percent) to back-barrier estuaries and about 3,500 kg/yr (17.8 percent) to the ocean. The overall TN load to marine surface waters amounts to about 19,700 kg/yr-roughly 6 percent of the annual TN load from shallow groundwater entering the South Shore Estuary Reserve (SSER) from the Suffolk County mainland, which is about 345,000 kg/yr. In contrast to the TN load from shallow groundwater for the SSER watershed, which annually yields about 353 kilograms per square kilometer (kg/km2), the overall TN loa
Tropical Cyclones as a Driver of Global Sediment Flux
NASA Astrophysics Data System (ADS)
Leyland, J.; Darby, S. E.; Cohen, S.
2017-12-01
The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually. The sediment supplied to the coastal zone is of significant importance for a variety of reasons, for example in acting as a vector for nutrients as well as in supplying sediment to coastal landforms such as deltas and beaches that can buffer those landforms from erosion and flooding. A greater understanding of the factors governing sediment flux to the oceans is therefore a key research gap. The non-linear relationship between river discharge and sediment flux implies that the global sediment flux may be disproportionately driven by large floods. Indeed, in our recent empirical research we have demonstrated that changes in the track locations, frequency and intensity of tropical storms in recent decades exert a significant control on the sediment flux emanating from the Mekong River. Since other large rivers potentially affected by tropical storms are known to make a significant contribution to the global sediment flux, this raises the question of the extent to which such storms play a significant role in controlling sediment loads at the global scale. In this paper we address that question by employing a global hydrological model (WBMsed) in order to predict runoff and sediment load forced by recent historical climate scenarios `with' and `without' tropical cyclones. We compare the two scenarios to (i) make the first estimate of the global contribution of sediment load forced by tropical storms; (ii) evaluate how that contribution has varied in recent decades and to (iii) explore variations in tropical-storm driven sediment loads in selected major river basins that are significantly affected by such storms.
Lerch, R N; Baffaut, C; Kitchen, N R; Sadler, E J
2015-01-01
Long-term monitoring data from agricultural watersheds are needed to determine if efforts to reduce nutrient transport from crop and pasture land have been effective. Goodwater Creek Experimental Watershed (GCEW), located in northeastern Missouri, is a high-runoff-potential watershed dominated by claypan soils. The objectives of this study were to: (i) summarize dissolved NH-N, NO-N, and PO-P flow-weighted concentrations (FWC), daily loads, and yields (unit area loads) in GCEW from 1992 to 2010; (ii) assess time trends and relationships between precipitation, land use, and fertilizer inputs and nutrient transport; and (iii) provide context to the GCEW data by comparisons with other Corn Belt watersheds. Significant declines in annual and quarterly FWCs and yields occurred for all three nutrient species during the study, and the decreases were most evident for NO-N. Substantial decreases in first- and fourth-quarter NO-N FWCs and daily loads and modest decreases in first-quarter PO-P daily loads were observed. Declines in NO-N and PO-P transport were attributed to decreased winter wheat ( L.) and increased corn ( L.) production that shifted fertilizer application from fall to spring as well as to improved management, such as increased use of incorporation. Regression models and correlation analyses indicated that precipitation, land use, and fertilizer inputs were critical factors controlling transport. Within the Mississippi River Basin, NO-N yields in GCEW were much lower than in tile-drained areas, but PO-P yields were among the highest in the basin. Overall, results demonstrated that reductions in fall-applied fertilizer and improved fertilizer management reduced N and P transport in GCEW. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Annual modulation of seismicity along the San Andreas Fault near Parkfield, CA
Christiansen, L.B.; Hurwitz, S.; Ingebritsen, S.E.
2007-01-01
We analyze seismic data from the San Andreas Fault (SAF) near Parkfield, California, to test for annual modulation in seismicity rates. We use statistical analyses to show that seismicity is modulated with an annual period in the creeping section of the fault and a semiannual period in the locked section of the fault. Although the exact mechanism for seasonal triggering is undetermined, it appears that stresses associated with the hydrologic cycle are sufficient to fracture critically stressed rocks either through pore-pressure diffusion or crustal loading/ unloading. These results shed additional light on the state of stress along the SAF, indicating that hydrologically induced stress perturbations of ???2 kPa may be sufficient to trigger earthquakes.
Waggoner, Jesse J; Gresh, Lionel; Mohamed-Hadley, Alisha; Balmaseda, Angel; Soda, K James; Abeynayake, Janaki; Sahoo, Malaya K; Liu, Yuanyuan; Kuan, Guillermina; Harris, Eva; Pinsky, Benjamin A
2017-06-15
We sought to characterize dengue virus (DENV) infections among febrile children enrolled in a pediatric cohort study who were clinically diagnosed with a non-dengue illness ("C cases"). DENV infections were detected and viral load quantitated by real-time reverse transcription-polymerase chain reaction in C cases presenting between January 2007 and January 2013. One hundred forty-one of 2892 C cases (4.88%) tested positive for DENV. Of all febrile cases in the study, DENV-positive C cases accounted for an estimated 52.0% of patients with DENV viremia at presentation. Compared with previously detected, symptomatic dengue cases, DENV-positive C cases were significantly less likely to develop long-lasting humoral immune responses to DENV, as measured in healthy annual serum samples (79.7% vs 47.8%; P < .001). Humoral immunity was associated with viral load at presentation: 40 of 43 patients (93.0%) with a viral load ≥7.0 log10 copies/mL serum developed the expected rise in anti-DENV antibodies in annual samples versus 13 of 68 (19.1%) patients with a viral load below this level (P < .001). Antibody responses to DENV-positive C cases differ from responses to classic symptomatic dengue. These findings have important implications for DENV transmission modeling, immunology, and epidemiologic surveillance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.