Science.gov

Sample records for annular superposition integral

  1. Annular flow optimization: A new integrated approach

    SciTech Connect

    Maglione, R.; Robotti, G.; Romagnoli, R.

    1997-07-01

    During the drilling stage of an oil and gas well the hydraulic circuit of the mud assumes great importance with respect to most of the numerous and various constituting parts (mostly in the annular sections). Each of them has some points to be satisfied in order to guarantee both the safety of the operations and the performance optimization of each of the single elements of the circuit. The most important tasks for the annular part of the drilling hydraulic circuit are the following: (1) Maximum available pressure to the last casing shoe; (2) avoid borehole wall erosions; and (3) guarantee the hole cleaning. A new integrated system considering all the elements of the annular part of the drilling hydraulic circuit and the constraints imposed from each of them has been realized. In this way the family of the flow parameters (mud rheology and pump rate) satisfying simultaneously all the variables of the annular section has been found. Finally two examples regarding a standard and narrow annular section (slim hole) will be reported, showing briefly all the steps of the calculations until reaching the optimum flow parameters family (for that operational condition of drilling) that satisfies simultaneous all the flow parameters limitations imposed by the elements of the annular section circuit.

  2. Photoacoustic tomography with integrating fiber-based annular detectors

    NASA Astrophysics Data System (ADS)

    Grün, H.; Altmisdört, H.; Berer, T.; Paltauf, G.; Zangerl, G.; Haltmeier, M.; Burgholzer, P.

    2011-03-01

    Photoacoustic tomography is an emerging technology combining the advantages of optical imaging (high contrast) and ultrasonic imaging (high spatial resolution). Applications for photoacoustic tomography are mainly in imaging soft tissue. For photoacoustic imaging the sample is illuminated by a short pulse of electromagnetic energy. Depending on the specific absorption rate (SAR) the electromagnetic radiation is absorbed and the subsequent thermoelastic expansion launches broadband ultrasonic waves. Usually point like piezo-electric detectors are used. Our group introduced integrating detectors a few years ago. This type of detector integrates the pressure at least along one dimension. Integrating line detectors, which integrate the pressure along one dimension, can be realized by using either free-beam or fiber-based interferometers. The latter approach also allows other detector shapes than a line. In this paper we use a fiber-based annular detector for tomography. Thereby the sample is rotated inside the annular detector on a position different from the symmetry axis of the annular detector. Hence the sample is enclosed by the detector and all data from one plane are collected at once. By moving the detector parallel to the symmetrie axis of the ring one can acquire data for a 3D image reconstruction. Therfore, tomography can be performed with only one rotation axis and one translation axis. For image reconstruction a novel algorithm is necessary which was tested on simulated data. Here we present an imaging setup using such a fiber-based annular detector. First measurements of simple structures and subsequent image reconstruction from these real data are shown in this paper.

  3. Transient Response of Shells of Revolution by Direct Integration and Modal Superposition Methods

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Adelman, H. M.

    1974-01-01

    The results of an analytical effort to obtain and evaluate transient response data for a cylindrical and a conical shell by use of two different approaches: direct integration and modal superposition are described. The inclusion of nonlinear terms is more important than the inclusion of secondary linear effects (transverse shear deformation and rotary inertia) although there are thin-shell structures where these secondary effects are important. The advantages of the direct integration approach are that geometric nonlinear and secondary effects are easy to include and high-frequency response may be calculated. In comparison to the modal superposition technique the computer storage requirements are smaller. The advantages of the modal superposition approach are that the solution is independent of the previous time history and that once the modal data are obtained, the response for repeated cases may be efficiently computed. Also, any admissible set of initial conditions can be applied.

  4. Imaging performance of annular apertures. IV - Apodization and point spread functions. V - Total and partial energy integral functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1983-01-01

    Reference is made to a study by Tschunko (1979) in which it was discussed how apodization modifies the modulation transfer function for various central obstruction ratios. It is shown here how apodization, together with the central obstruction ratio, modifies the point spread function, which is the basic element for the comparison of imaging performance and for the derivation of energy integrals and other functions. At high apodization levels and lower central obstruction (less than 0.1), new extended radial zones are formed in the outer part of the central ring groups. These transmutation of the image functions are of more than theoretical interest, especially if the irradiance levels in the outer ring zones are to be compared to the background irradiance levels. Attention is then given to the energy distribution in point images generated by annular apertures apodized by various transmission functions. The total energy functions are derived; partial energy integrals are determined; and background irradiance functions are discussed.

  5. Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection

    NASA Astrophysics Data System (ADS)

    Zeng, Lvming; Liu, Guodong; Yang, Diwu; Ren, Zhong; Huang, Zhen

    2008-12-01

    A near-infrared photoacoustic glucose monitoring system, which is integrated dual-wavelength pulsed laser diode excitation with eight-element planar annular array detection technique, is designed and fabricated during this study. It has the characteristics of nonivasive, inexpensive, portable, accurate location, and high signal-to-noise ratio. In the system, the exciting source is based on two laser diodes with wavelengths of 905 nm and 1550 nm, respectively, with optical pulse energy of 20 μJ and 6 μJ. The laser beam is optically focused and jointly projected to a confocal point with a diameter of 0.7 mm approximately. A 7.5 MHz 8-element annular array transducer with a hollow structure is machined to capture photoacoustic signal in backward mode. The captured signals excitated from blood glucose are processed with a synthetic focusing algorithm to obtain high signal-to-noise ratio and accurate location over a range of axial detection depth. The custom-made transducer with equal area elements is coaxially collimated with the laser source to improve the photoacoustic excite/receive efficiency. In the paper, we introduce the photoacoustic theory, receive/process technique, and design method of the portable noninvasive photoacoustic glucose monitoring system, which can potentially be developed as a powerful diagnosis and treatment tool for diabetes mellitus.

  6. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    SciTech Connect

    PIEPHO, M.G.

    2000-01-10

    Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  7. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    SciTech Connect

    RITTMANN, P.D.

    1999-10-07

    Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  8. Multipartite entanglement of superpositions

    SciTech Connect

    Cavalcanti, D.; Terra Cunha, M. O.; Acin, A.

    2007-10-15

    The entanglement of superpositions [Linden et al., Phys. Rev. Lett. 97, 100502 (2006)]is generalized to the multipartite scenario: an upper bound to the multipartite entanglement of a superposition is given in terms of the entanglement of the superposed states and the superposition coefficients. This bound is proven to be tight for a class of states composed of an arbitrary number of qubits. We also extend the result to a large family of quantifiers, which includes the negativity, the robustness of entanglement, and the best separable approximation measure.

  9. [Granuloma annulare].

    PubMed

    Butsch, F; Weidenthaler-Barth, B; von Stebut, E

    2015-11-01

    Granuloma annulare is a benign, chronic inflammatory skin disease. Its pathogenesis is still unclear, but reports on infections as a trigger can be found. In addition, some authors reported an association with other systemic disease, e.g., cancer, trauma, and diabetes mellitus; however, these have not been verified. The clinical picture of granuloma annulare ranges from the localized form predominantly at the extremities to disseminated, subcutaneous, or perforating forms. Diagnosis is based on the typical clinical presentation which may be confirmed by a biopsy. Histologically, necrobiotic areas within granulomatous inflammation are typical. The prognosis of the disease is good with spontaneous resolution being frequently observed, especially in localized forms. Disseminated manifestations tend to persist longer, and recurrences are reported. When choosing between different therapeutic options, the benign disease character versus the individual degree of suffering and the potential therapy side effects must be considered. For local treatment, topical application of corticosteroids is most common. Disseminated forms can be treated systemically with corticosteroids for several weeks; alternatively, dapsone, hydroxychloroquine, retinoids, fumaric acid, cyclosporine, and anti-TNFα appear to be effective. PMID:26487494

  10. Supercement for Annular Seal and Long-Term Integrity in Deep, Hot Wells "Deep Trek"

    SciTech Connect

    Kevin D. Edgley; Fred L. Sabins; Larry T. Watters

    2005-08-31

    The purpose of this project is to formulate a ''Supercement'' designed for improving the long-term sealing integrity in HPHT wells. Phase I concentrated on chemistry studies and screening tests to design and evaluate Portland-based, hybrid Portland, and non-Portland-based cement systems suitable for further scale-up testing. Phase II work concentrated on additional lab and field testing to reduce the candidate materials list to two systems, as well as scale up activities aimed at verifying performance at the field scale. Phase II was extended thorough a proposal to develop additional testing capabilities aimed at quantifying cementing material properties and performance that were previously not possible. Two materials are being taken into Phase III for field testing and commercialization: {lg_bullet} Highly-expansive cement (Portland-based), patent pending as ''Pre-Stressed Cement'' {lg_bullet} Epoxy Resin (non-Portland-based), patent pending In Phase II, significant effort was expended on scaling up the processes for handling resin in the field, as it is quite different than conventional Portland-based cements in mixing, personnel protection, and cleanup. Through this effort, over fifty (50) field jobs were done at a variety of temperatures and depths, most with excellent results. Large-scale field testing was less relevant with Pre-stressed Cement, because the materials and surface processes do not vary from those that have been developed for conventional Portland materials over the last eighty (80) years. The formulation is quite unique, however, and performs very differently than conventional Portland cements downhole.

  11. Supercement for Annular Seal and Long-Term Integrity in Deep, Hot Wells "DeepTrek"

    SciTech Connect

    CSI Technologies

    2007-08-31

    The purpose of this project is to formulate a 'Supercement' designed for improving the long-term sealing integrity in HPHT wells. Phase I concentrated on chemistry studies and screening tests to design and evaluate Portland-based, hybrid Portland, and non-Portland-based cement systems suitable for further scale-up testing. Phase II work concentrated on additional lab and field testing to reduce the candidate materials list to two systems, as well as scaleup activities aimed at verifying performance at the field scale. Phase II was extended thorough a proposal to develop additional testing capabilities aimed at quantifying cementing material properties and performance that were previously not possible. Phase III focused on bringing the material(s) developed in previous Phases to commercialization, through Field Trials, Cost/Benefit Analysis, and Technology Transfer. Extensive development and testing work throughout the project led to Phase III commercialization of two very different materials: (1) Highly-expansive cement (Portland-based), patent pending as 'PRESTRESSED CEMENT'; and (2) Epoxy Resin (non-Portland-based), patent pending. Trade name is Ultra Seal-R. In Phase III, work concentrated on application of the Supercement materials in various increasingly-challenging wells. Previous testing revealed that PRESTRESSED CEMENT, when applied in weak or unconsolidated formations, tends to expand away from the central pipe, restricting the applicability of this material to competent formations. Tests were devised to quantify this effect so the material could be applied in appropriate wells. Additionally, the testing was needed because of industry resistance to expansive cements, due to previous marketing attempts with other materials that were less than successful. Field trials with the Epoxy Resin currently numbers in the hundreds of jobs at up to 295 deg F, with a large percentage being completely successful. Both the PRESTRESSED CEMENT as well as the Ultra Seal

  12. Robust mesoscopic superposition of strongly correlated ultracold atoms

    SciTech Connect

    Hallwood, David W.; Ernst, Thomas; Brand, Joachim

    2010-12-15

    We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.

  13. Annular beam with segmented phase gradients

    NASA Astrophysics Data System (ADS)

    Cheng, Shubo; Wu, Liang; Tao, Shaohua

    2016-08-01

    An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  14. Superposition Enhanced Nested Sampling

    NASA Astrophysics Data System (ADS)

    Martiniani, Stefano; Stevenson, Jacob D.; Wales, David J.; Frenkel, Daan

    2014-07-01

    The theoretical analysis of many problems in physics, astronomy, and applied mathematics requires an efficient numerical exploration of multimodal parameter spaces that exhibit broken ergodicity. Monte Carlo methods are widely used to deal with these classes of problems, but such simulations suffer from a ubiquitous sampling problem: The probability of sampling a particular state is proportional to its entropic weight. Devising an algorithm capable of sampling efficiently the full phase space is a long-standing problem. Here, we report a new hybrid method for the exploration of multimodal parameter spaces exhibiting broken ergodicity. Superposition enhanced nested sampling combines the strengths of global optimization with the unbiased or athermal sampling of nested sampling, greatly enhancing its efficiency with no additional parameters. We report extensive tests of this new approach for atomic clusters that are known to have energy landscapes for which conventional sampling schemes suffer from broken ergodicity. We also introduce a novel parallelization algorithm for nested sampling.

  15. Network Class Superposition Analyses

    PubMed Central

    Pearson, Carl A. B.; Zeng, Chen; Simha, Rahul

    2013-01-01

    Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., for the yeast cell cycle process [1]), considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix , which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for derived from Boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with . We show how to generate Derrida plots based on . We show that -based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on . We motivate all of these results in terms of a popular molecular biology Boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for , for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses. PMID:23565141

  16. Network class superposition analyses.

    PubMed

    Pearson, Carl A B; Zeng, Chen; Simha, Rahul

    2013-01-01

    Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30) for the yeast cell cycle process), considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses. PMID:23565141

  17. Annular pancreas (image)

    MedlinePlus

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  18. Mechanically expandable annular seal

    DOEpatents

    Gilmore, Richard F.

    1983-01-01

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluidtight barrier. A counterrotation removes the barrier.

  19. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  20. Partial annular pancreas

    PubMed Central

    Jindal, Gunjan; Mittal, Amit; Singal, Rikki; Singal, Samita

    2016-01-01

    Annular pancreas is a developmental anomaly that can be associated with other conditions such as Down syndrome, duodenal atresia, and Hirschsprung disease. A band of pancreatic tissue, in continuity with the pancreatic head, completely or incompletely encircles the descending duodenum, sometimes assuming a “crocodile jaw” configuration. We present the case of an adult who presented with epigastric pain and vomiting and was found to have annular pancreas. PMID:27695176

  1. Partial annular pancreas

    PubMed Central

    Jindal, Gunjan; Mittal, Amit; Singal, Rikki; Singal, Samita

    2016-01-01

    Annular pancreas is a developmental anomaly that can be associated with other conditions such as Down syndrome, duodenal atresia, and Hirschsprung disease. A band of pancreatic tissue, in continuity with the pancreatic head, completely or incompletely encircles the descending duodenum, sometimes assuming a “crocodile jaw” configuration. We present the case of an adult who presented with epigastric pain and vomiting and was found to have annular pancreas.

  2. Eccentric annular crack under general nonuniform internal pressure

    NASA Astrophysics Data System (ADS)

    Moeini-Ardakani, S.; Kamali, M. T.; Shodja, H. M.

    2016-08-01

    For a better approximation of ring-shaped and toroidal cracks, a new eccentric annular crack model is proposed and an analytical approach for determination of the corresponding stress intensity factors is given. The crack is subjected to arbitrary mode I loading. A rigorous solution is provided by mapping the eccentric annular crack to a concentric annular crack. The analysis leads to two decoupled Fredholm integral equations of the second kind. For the sake of verification, the problem of a conventional annular crack is examined. Furthermore, for various crack configurations of an eccentric annular crack under uniform tension, the stress intensity factors pertaining to the inner and outer crack edges are delineated in dimensionless plots.

  3. Linear superposition in nonlinear equations.

    PubMed

    Khare, Avinash; Sukhatme, Uday

    2002-06-17

    Several nonlinear systems such as the Korteweg-de Vries (KdV) and modified KdV equations and lambda phi(4) theory possess periodic traveling wave solutions involving Jacobi elliptic functions. We show that suitable linear combinations of these known periodic solutions yield many additional solutions with different periods and velocities. This linear superposition procedure works by virtue of some remarkable new identities involving elliptic functions. PMID:12059300

  4. Superposition of super-integrable pseudo-Euclidean potentials in N = 2 with a fundamental constant of motion of arbitrary order in the momenta

    SciTech Connect

    Campoamor-Stursberg, R.

    2014-04-15

    It is shown that for any α,β∈R and k∈Z, the Hamiltonian H{sub k}=p{sub 1}p{sub 2}−αq{sub 2}{sup (2k+1)}q{sub 1}{sup (−2k−3)}−(β)/2 q{sub 2}{sup k}q{sub 1}{sup (−k−2)} is super-integrable, possessing fundamental constants of motion of degrees 2 and 2k + 2 in the momenta.

  5. On the superposition principle in interference experiments.

    PubMed

    Sinha, Aninda; H Vijay, Aravind; Sinha, Urbasi

    2015-01-01

    The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrödinger equation. PMID:25973948

  6. On the superposition principle in interference experiments

    PubMed Central

    Sinha, Aninda; H. Vijay, Aravind; Sinha, Urbasi

    2015-01-01

    The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrödinger equation. PMID:25973948

  7. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  8. Annular recuperator design

    DOEpatents

    Kang, Yungmo

    2005-10-04

    An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.

  9. Linear superposition solutions to nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2012-11-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.

  10. Creating a Superposition of Unknown Quantum States

    NASA Astrophysics Data System (ADS)

    Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni

    2016-03-01

    The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.

  11. Time-Strain Superposition in Polymer Glasses

    NASA Astrophysics Data System (ADS)

    O'Connell, Paul A.; McKenna, Gregory B.

    1997-03-01

    Time-strain superposition is often used in constitutive modeling to describe the nonlinear viscoelastic reponse of solid-like polymers. While it is true that time-strain superposition does not always work, a more fundamental question arises when it appears to work. Is the master curve obtained by time-strain superposition the same as that obtained in time-temperature superposition? Here we show work from torsional measurements on polycarbonate in the temperature range from 30 to 130 ^oC. We find that at each temperature time-strain superposition can be performed, but that the strain reductions do not give the same master curves as does the temperature reduction. Such behavior suggests that time-strain superposition cannot be used to represent polymeric material behavior and that its utility for estimating long time performance is very limited.

  12. Creating a Superposition of Unknown Quantum States.

    PubMed

    Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni

    2016-03-18

    The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.

  13. Mesoscopic Superposition States in Relativistic Landau Levels

    SciTech Connect

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-09-21

    We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.

  14. Portal Annular Pancreas

    PubMed Central

    Harnoss, Jonathan M.; Harnoss, Julian C.; Diener, Markus K.; Contin, Pietro; Ulrich, Alexis B.; Büchler, Markus W.; Schmitz-Winnenthal, Friedrich H.

    2014-01-01

    Abstract Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF). On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered. In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery). Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option. PMID:25207658

  15. The M&M Superposition Principle.

    ERIC Educational Resources Information Center

    Miller, John B.

    2000-01-01

    Describes a physical system for demonstrating operators, eigenvalues, and superposition of states for a set of unusual wave functions. Uses candy to provide students with a visual and concrete picture of a superposition of states rather than an abstract plot of several overlaid mathematical states. (WRM)

  16. Axisymmetric annular curtain stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian

    2012-06-01

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect.

  17. Verifying quantum superpositions at metre scales

    NASA Astrophysics Data System (ADS)

    Stamper-Kurn, D. M.; Marti, G. E.; Müller, H.

    2016-09-01

    While the existence of quantum superpositions of massive particles over microscopic separations has been established since the birth of quantum mechanics, the maintenance of superposition states over macroscopic separations is a subject of modern experimental tests. In Ref. [1], T. Kovachy et al. report on applying optical pulses to place a freely falling Bose-Einstein condensate into a superposition of two trajectories that separate by an impressive distance of 54 cm before being redirected toward one another. When the trajectories overlap, a final optical pulse produces interference with high contrast, but with random phase, between the two wave packets. Contrary to claims made in Ref. [1], we argue that the observed interference is consistent with, but does not prove, that the spatially separated atomic ensembles were in a quantum superposition state. Therefore, the persistence of such superposition states remains experimentally unestablished.

  18. Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves

    NASA Astrophysics Data System (ADS)

    Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2011-02-01

    Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.

  19. Mixed superposition rules and the Riccati hierarchy

    NASA Astrophysics Data System (ADS)

    Grabowski, Janusz; de Lucas, Javier

    Mixed superposition rules, i.e., functions describing the general solution of a system of first-order differential equations in terms of a generic family of particular solutions of first-order systems and some constants, are studied. The main achievement is a generalization of the celebrated Lie-Scheffers Theorem, characterizing systems admitting a mixed superposition rule. This somehow unexpected result says that such systems are exactly Lie systems, i.e., they admit a standard superposition rule. This provides a new and powerful tool for finding Lie systems, which is applied here to studying the Riccati hierarchy and to retrieving some known results in a more efficient and simpler way.

  20. Manufacture of annular cermet articles

    DOEpatents

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  1. Annular Eclipse as Seen by Hinode

    NASA Video Gallery

    This timelapse shows an annular eclipse as seen by JAXA's Hinode satellite on Jan. 4, 2011. An annular eclipse occurs when the moon, slightly more distant from Earth than on average, moves directly...

  2. a Logical Account of Quantum Superpositions

    NASA Astrophysics Data System (ADS)

    Krause, Décio Arenhart, Jonas R. Becker

    In this paper we consider the phenomenon of superpositions in quantum mechanics and suggest a way to deal with the idea in a logical setting from a syntactical point of view, that is, as subsumed in the language of the formalism, and not semantically. We restrict the discussion to the propositional level only. Then, after presenting the motivations and a possible world semantics, the formalism is outlined and we also consider within this scheme the claim that superpositions may involve contradictions, as in the case of the Schrödinger's cat, which (it is usually said) is both alive and dead. We argue that this claim is a misreading of the quantum case. Finally, we sketch a new form of quantum logic that involves three kinds of negations and present the relationships among them. The paper is a first approach to the subject, introducing some main guidelines to be developed by a `syntactical' logical approach to quantum superpositions.

  3. An approximate CPHD filter for superpositional sensors

    NASA Astrophysics Data System (ADS)

    Mahler, Ronald; El-Fallah, Adel

    2012-06-01

    Most multitarget tracking algorithms, such as JPDA, MHT, and the PHD and CPHD filters, presume the following measurement model: (a) targets are point targets, (b) every target generates at most a single measurement, and (c) any measurement is generated by at most a single target. However, the most familiar sensors, such as surveillance and imaging radars, violate assumption (c). This is because they are actually superpositional-that is, any measurement is a sum of signals generated by all of the targets in the scene. At this conference in 2009, the first author derived exact formulas for PHD and CPHD filters that presume general superpositional measurement models. Unfortunately, these formulas are computationally intractable. In this paper, we modify and generalize a Gaussian approximation technique due to Thouin, Nannuru, and Coates to derive a computationally tractable superpositional-CPHD filter. Implementation requires sequential Monte Carlo (particle filter) techniques.

  4. Real-time dose computation: GPU-accelerated source modeling and superposition/convolution

    SciTech Connect

    Jacques, Robert; Wong, John; Taylor, Russell; McNutt, Todd

    2011-01-15

    Purpose: To accelerate dose calculation to interactive rates using highly parallel graphics processing units (GPUs). Methods: The authors have extended their prior work in GPU-accelerated superposition/convolution with a modern dual-source model and have enhanced performance. The primary source algorithm supports both focused leaf ends and asymmetric rounded leaf ends. The extra-focal algorithm uses a discretized, isotropic area source and models multileaf collimator leaf height effects. The spectral and attenuation effects of static beam modifiers were integrated into each source's spectral function. The authors introduce the concepts of arc superposition and delta superposition. Arc superposition utilizes separate angular sampling for the total energy released per unit mass (TERMA) and superposition computations to increase accuracy and performance. Delta superposition allows single beamlet changes to be computed efficiently. The authors extended their concept of multi-resolution superposition to include kernel tilting. Multi-resolution superposition approximates solid angle ray-tracing, improving performance and scalability with a minor loss in accuracy. Superposition/convolution was implemented using the inverse cumulative-cumulative kernel and exact radiological path ray-tracing. The accuracy analyses were performed using multiple kernel ray samplings, both with and without kernel tilting and multi-resolution superposition. Results: Source model performance was <9 ms (data dependent) for a high resolution (400{sup 2}) field using an NVIDIA (Santa Clara, CA) GeForce GTX 280. Computation of the physically correct multispectral TERMA attenuation was improved by a material centric approach, which increased performance by over 80%. Superposition performance was improved by {approx}24% to 0.058 and 0.94 s for 64{sup 3} and 128{sup 3} water phantoms; a speed-up of 101-144x over the highly optimized Pinnacle{sup 3} (Philips, Madison, WI) implementation. Pinnacle{sup 3

  5. Eosinophilic annular erythema in childhood - Case report*

    PubMed Central

    Abarzúa, Alvaro; Giesen, Laura; Silva, Sergio; González, Sergio

    2016-01-01

    Eosinophilic annular erythema is a rare, benign, recurrent disease, clinically characterized by persistent, annular, erythematous lesions, revealing histopathologically perivascular infiltrates with abundant eosinophils. This report describes an unusual case of eosinophilic annular erythema in a 3-year-old female, requiring sustained doses of hydroxychloroquine to be adequately controlled. PMID:27579748

  6. Eosinophilic annular erythema in childhood - Case report.

    PubMed

    Abarzúa, Alvaro; Giesen, Laura; Silva, Sergio; González, Sergio

    2016-01-01

    Eosinophilic annular erythema is a rare, benign, recurrent disease, clinically characterized by persistent, annular, erythematous lesions, revealing histopathologically perivascular infiltrates with abundant eosinophils. This report describes an unusual case of eosinophilic annular erythema in a 3-year-old female, requiring sustained doses of hydroxychloroquine to be adequately controlled. PMID:27579748

  7. Psoriatic Arthritis with Annular Pustular Psoriasis.

    PubMed

    Nagafuchi, Hiroko; Watanabe, Kyoko; Mikage, Hidenori; Ozaki, Shoichi

    2016-01-01

    We herein present the case of a 56-year-old woman who presented with symptoms of psoriatic arthritis (PsA) with erythema that progressed to annular pustular psoriasis. The patient had a 15-year history of polyarthritis. Annular pustular psoriasis is not typically observed in cases of arthritis. This is the first reported case of PsA with annular pustular psoriasis.

  8. Large energy superpositions via Rydberg dressing

    NASA Astrophysics Data System (ADS)

    Khazali, Mohammadsadegh; Lau, Hon Wai; Humeniuk, Adam; Simon, Christoph

    2016-08-01

    We propose to create superposition states of over 100 strontium atoms in a ground state or metastable optical clock state using the Kerr-type interaction due to Rydberg state dressing in an optical lattice. The two components of the superposition can differ by an order of 300 eV in energy, allowing tests of energy decoherence models with greatly improved sensitivity. We take into account the effects of higher-order nonlinearities, spatial inhomogeneity of the interaction, decay from the Rydberg state, collective many-body decoherence, atomic motion, molecular formation, and diminishing Rydberg level separation for increasing principal number.

  9. The evolution and development of neural superposition.

    PubMed

    Agi, Egemen; Langen, Marion; Altschuler, Steven J; Wu, Lani F; Zimmermann, Timo; Hiesinger, Peter Robin

    2014-01-01

    Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically "hard-wired" synaptic connectivity in the brain.

  10. Comments on episodic superposition of memory States.

    PubMed

    Lambert-Mogiliansky, Ariane

    2014-01-01

    This article develops a commentary to Charles Brainerd, Zheng Wang and Valerie F. Reyna's article entitled "Superposition of episodic memories: Overdistribution and quantum models" published in a special number of topiCS 2013 devoted to quantum modelling in cognitive sciences. PMID:24259305

  11. The Evolution and Development of Neural Superposition

    PubMed Central

    Agi, Egemen; Langen, Marion; Altschuler, Steven J.; Wu, Lani F.; Zimmermann, Timo

    2014-01-01

    Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically “hard-wired” synaptic connectivity in the brain. PMID:24912630

  12. The principle of superposition in human prehension.

    PubMed

    Zatsiorsky, Vladimir M; Latash, Mark L; Gao, Fan; Shim, Jae Kun

    2004-03-01

    The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: "Grasp the object stronger/weaker to prevent slipping" and "Maintain the rotational equilibrium of the object". The effects of the two commands are summed up.

  13. The principle of superposition in human prehension

    PubMed Central

    Zatsiorsky, Vladimir M.; Latash, Mark L.; Gao, Fan; Shim, Jae Kun

    2010-01-01

    SUMMARY The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: “Grasp the object stronger/weaker to prevent slipping” and “Maintain the rotational equilibrium of the object”. The effects of the two commands are summed up. PMID:20186284

  14. Liquid Annular Seal Research

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Venkataraman, Balaji; Padavala, Sathya S.; Ryan, Steve; Vallely, Pat; Funston, Kerry

    1996-01-01

    This paper highlights the accomplishments on a joint effort between NASA - Marshall Space Flight Center and Texas A and M University to develop accurate seal analysis software for use in rocket turbopump design, design audits and trouble shooting. Results for arbitrary clearance profile, transient simulation, thermal effects solution and flexible seal wall model are presented. A new solution for eccentric seals based on cubic spline interpolation and ordinary differential equation integration is also presented.

  15. An experimental investigation of straight and curved annular wall jets

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Wood, N. J.; Roberts, L.

    1987-01-01

    Accurate turbulence measurements taken in wall jet flows are difficult to obtain, due to high intensity turbulence and problems in achieving two-dimensionality. The problem is compounded when streamwise curvature of the flow is introduced, since the jet entrainment and turbulence levels are greatly increased over the equivalent planar values. In this experiment, two-dimensional straight and curved incompressible wall jet flows are simulated by having a jet blow axially over a cylinder. Hot wire measurements and some Laser Doppler Velocimetry measurements are presented for straight and curved wall jet flows. The results for the straight wall showed good agreement between the annular flow data and the rectangular data taken by previous researchers. For the jets with streamwise curvature, there was agreement between the annular and corresponding rectangular jets for the flow region closest to the slot exit. An integral analysis was used as a simple technique to interpret the experimental results. Integral momentum calculations were performed for both straight and curved annular and two dimensional wall jets. The results of the calculation were used to identify transverse curvature parameters and to predict the values of those parameters which would delineate the region where the annular flow can satisfactorily simulate two dimensional flow.

  16. Theory of low voltage annular beam free-electron lasers

    SciTech Connect

    Blank, M.; Freund, H.P.; Jackson, R.H.

    1995-12-31

    An nonlinear analysis of an annular beam propagating through a cylindrical waveguide in the presence of a helical wiggler and an axial guide field is presented. The analysis is based upon the ARACHNE simulation which is a non-wiggler-averaged slow-time-scale simulation code in which the electromagnetic field is represented as a superposition of the TE and TM modes in a vacuum waveguide, and the beam space-charge waves are represented as a superposition of Gould-Trivelpiece modes. The DC self-electric and self-magnetic fields are also included in the model. ARACHNE has been extensively benchmarked against experiments at MIT and NRL in the past with good agreement, but all of these experiments have dealt with solid electron beams and beam voltages in excess of 200 kV. In seeking to reduce the beam voltage requirements we now consider the effect of operation with an annular beam. One advantage to be obtained by using an annular beam is that, for a fixed beam current, the effect of the DC selffields (i.e., the space-charge depression in beam voltage) will be reduced relative to that of a solid beam. This facilitates beam transport in short period wigglers in which the transverse dimensions are also small. A specific example is under study which makes use of 55 kV/5A electron beam with inner and outer radii of 0.27 cm and 0.33 cm respectively. The wiggler amplitude is 250 G with a period of 0.9 cm. and guide fields up to 3 kG corresponding to Group I trajectories. The waveguide radius is chosen to correspond to grazing incidence for the fundamental mode in Ku-Band (12-18 GHz). Preliminary results indicate that efficiencies upwards of 10% are possible with no wiggler taper. In addition, the energy spread must be held below 0.1%, and the instantaneous bandwidth is found to be greater than 20%.

  17. Inverted annular flow experimental study

    SciTech Connect

    De Jarlais, G.; Ishii, M.

    1985-04-01

    Steady-state inverted annular flow of Freon 113 in up flow was established in a transparent test section. Using a special inlet configuration consisting of long aspect-ratio liquid nozzles coaxially centered within a heated quartz tube, idealized inverted annular flow initial geometry (cylindrical liquid core surrounded by coaxial annulus of gas) could be established. Inlet liquid and gas flowrates, liquid subcooling, and gas density (using various gas species) were measured and varied systematically. The hydrodynamic behavior of the liquid core, and the subsequent downstream break-up of this core into slugs, ligaments and/or droplets of various sizes, was observed. In general, for low inlet liquid velocities it was observed that after the initial formation of roll waves on the liquid core surface, an agitated region of high surface area, with attendant high momentum and energy transfers, occurs. This agitated region appears to propagate downsteam in a quasi-periodic pattern. Increased inlet liquid flow rates, and high gas annulus flow rates tend to diminish the significance of this agitated region. Observed inverted annular flow (and subsequent downstream flow pattern) hydrodynamic behavior is reported, and comparisons are drawn to data generated by previous experimenters studying post-CHF flow.

  18. Energy Focusability of Annular Beams

    NASA Astrophysics Data System (ADS)

    Astadjov, Dimo N.

    2010-01-01

    A simulation of coherent annular flat two-level beams by two-dimensional Fast Fourier Transform is presented. After parameterization of the source beam (the `input') we examined the influence of its parameters on the shape and proportions of the output beam profile. The output pattern has a prominent central peak and faint rings concentrically surrounding it. The fraction of the central peak energy to the whole energy of beam, PF0 gives a notion of energy spread within the focal spot: PF0 is a function of beam annularity, k (i.e. `inside diameter/outside diameter' ratio) and the intensity dip, Idip of annulus central area (i.e. ring intensity minus central-bottom intensity, normalized). Up to k = 0.8 and Idip = 0.75, PF0 does not change too much—it is ⩾0.7 which is ⩾90% of PF0 maximum (0.778 at k = 0 and Idip = 0). Simulations revealed that even great changes in the shape of input beam annulus lead to small variations in the energy spread of output beam profile in the range of practical use of coherent annular beams.

  19. Simulation of cryogenic turbopump annular seals

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1992-01-01

    The goal of the current work is to develop software that can accurately predict the dynamic coefficients, forces, leakage and horsepower loss for annular seals which have a potential for affecting the rotordynamic behavior of the pumps. The fruit of last year's research was the computer code SEALPAL which included capabilities for linear tapered geometry, Moody friction factor and inlet pre-swirl. This code produced results which in most cases compared very well with check cases presented in the literature. TAMUSEAL Icode, which was written to improve SEALPAL by correcting a bug and by adding more accurate integration algorithms and additional capabilities, was then used to predict dynamic coefficients and leakage for the NASA/Pratt and Whitney Alternate Turbopump Development (ATD) LOX Pump's seal.

  20. Macroscopic Quantum Superposition in Cavity Optomechanics

    NASA Astrophysics Data System (ADS)

    Liao, Jie-Qiao; Tian, Lin

    Quantum superposition in mechanical systems is not only a key evidence of macroscopic quantum coherence, but can also be utilized in modern quantum technology. Here we propose an efficient approach for creating macroscopically distinct mechanical superposition states in a two-mode optomechanical system. Photon hopping between the two cavity-modes is modulated sinusoidally. The modulated photon tunneling enables an ultrastrong radiation-pressure force acting on the mechanical resonator, and hence significantly increases the mechanical displacement induced by a single photon. We present systematic studies on the generation of the Yurke-Stoler-like states in the presence of system dissipations. The state generation method is general and it can be implemented with either optomechanical or electromechanical systems. The authors are supported by the National Science Foundation under Award No. NSF-DMR-0956064 and the DARPA ORCHID program through AFOSR.

  1. Annular beam shaping and optical trepanning

    NASA Astrophysics Data System (ADS)

    Zeng, Danyong

    surfaces of the annulus, respectively, and full Gaussian with maximum intensity within the annulus. Two refractive arrangements have been presented in this study. Geometric optics, or ray optics, describes light propagation in terms of rays. However, it is a simplification of optics, and fails to account for many important optical effects such as diffraction and polarization. The diffractive behaviors of this optical trepanning system are stimulated and analyzed based on the Fresnel diffraction integral. Diffraction patterns of the resulting optical system are measured using a laser beam analyzer and compared with the theoretical results. Based on the theoretical and experimental results, the effects of experimental parameters are discussed. We have designed the annular beam shaping optical elements and the gas delivery system to construct an optical trepanning system. Laser drilling experiments are performed on the Stainless Steel-316 (SS 316) plate and the Inconel 718 (IN 718) plate. The geometry of the trepanning holes with different sizes is presented in this study.

  2. Optimal Superpositioning of Flexible Molecule Ensembles

    PubMed Central

    Gapsys, Vytautas; de Groot, Bert L.

    2013-01-01

    Analysis of the internal dynamics of a biological molecule requires the successful removal of overall translation and rotation. Particularly for flexible or intrinsically disordered peptides, this is a challenging task due to the absence of a well-defined reference structure that could be used for superpositioning. In this work, we started the analysis with a widely known formulation of an objective for the problem of superimposing a set of multiple molecules as variance minimization over an ensemble. A negative effect of this superpositioning method is the introduction of ambiguous rotations, where different rotation matrices may be applied to structurally similar molecules. We developed two algorithms to resolve the suboptimal rotations. The first approach minimizes the variance together with the distance of a structure to a preceding molecule in the ensemble. The second algorithm seeks for minimal variance together with the distance to the nearest neighbors of each structure. The newly developed methods were applied to molecular-dynamics trajectories and normal-mode ensembles of the Aβ peptide, RS peptide, and lysozyme. These new (to our knowledge) superpositioning methods combine the benefits of variance and distance between nearest-neighbor(s) minimization, providing a solution for the analysis of intrinsic motions of flexible molecules and resolving ambiguous rotations. PMID:23332072

  3. Annular Solar Eclipse of 10 May 1994

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1993-01-01

    An annular eclipse of the Sun will be widely visible from the Western Hemisphere on 10 May 1994. The path of the Moon's shadow passes through Mexico, the United States of America, maritime Canada, the North Atlantic, the Azores and Morocco. Detailed predictions for this event are presented and include tables of geographic coordinates of the annular path, local circumstances for hundreds of cities, maps of the path of annular and partial eclipse, weather prospects, and the lunar limb profile.

  4. Psoriatic Arthritis with Annular Pustular Psoriasis.

    PubMed

    Nagafuchi, Hiroko; Watanabe, Kyoko; Mikage, Hidenori; Ozaki, Shoichi

    2016-01-01

    We herein present the case of a 56-year-old woman who presented with symptoms of psoriatic arthritis (PsA) with erythema that progressed to annular pustular psoriasis. The patient had a 15-year history of polyarthritis. Annular pustular psoriasis is not typically observed in cases of arthritis. This is the first reported case of PsA with annular pustular psoriasis. PMID:26935375

  5. Toward quantum superposition of living organisms

    NASA Astrophysics Data System (ADS)

    Romero-Isart, Oriol; Juan, Mathieu L.; Quidant, Romain; Cirac, J. Ignacio

    2010-03-01

    The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been previously tested with small objects, such as atoms, ions, electrons and photons (Zoller et al 2005 Eur. Phys. J. D 36 203-28), and even with molecules (Arndt et al 1999 Nature 401 680-2). More recently, it has been shown that it is possible to create superpositions of collections of photons (Deléglise et al 2008 Nature 455 510-14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs (Friedman et al 2000 Nature 406 43-6). Very recent progress in optomechanical systems may soon allow us to create superpositions of even larger objects, such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett. 91 130401; Kippenberg and Vahala 2008 Science 321 1172-6 Marquardt and Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201-5), and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low-vacuum pressures (Rothschild and Mancinelli 2001 Nature 406 1092-101) and optically behave as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517-20). This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schrödinger's cat 'gedanken' paradigm (Schrödinger 1935 Naturwissenschaften 23 807-12, 823-8, 844-9). We anticipate that our paper will be a starting point for experimentally addressing fundamental questions, such as the role of life and consciousness in quantum mechanics.

  6. Time-Temperature Superposition Applied to PBX Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Thompson, Darla; Deluca, Racci

    2011-06-01

    The use of plastic-bonded explosives (PBXs) in weapon applications requires a certain level of structural/mechanical integrity. Uniaxial tension and compression experiments characterize the mechanical response of materials over a wide range of temperatures and strain rates, providing the basis for predictive modeling in more complex geometries. After years of data collection on a wide variety of PBX formulations, we have applied time-temperature superposition principles to a mechanical properties database which includes PBX 9501, PBX 9502, PBXN-110, PBXN-9, and HPP (propellant). The results of quasi-static tension and compression, SHPB compression, and cantilever DMA are compared. Time-temperature relationships of maximum stress and corresponding strain values are analyzed in addition to the more conventional analysis of modulus. Our analysis shows adherence to the principles of time-temperature superposition and correlations of mechanical response to the binder glass transition and specimen density. Direct ties relate time-temperature analysis to the underlying basis of existing PBX mechanical models (ViscoSCRAM). Results suggest that, within limits, mechanical response can be predicted at conditions not explicitly measured. LA-UR 11-01096.

  7. Time-temperature superposition applied to PBX mechanical properties

    NASA Astrophysics Data System (ADS)

    Thompson, Darla; DeLuca, Racci; Wright, Walter J.

    2012-03-01

    The use of plastic-bonded explosives (PBXs) in weapon applications requires that they possess and maintain a level of structural/mechanical integrity. Uniaxial tension and compression experiments are typically used to characterize the mechanical response of materials over a wide range of temperatures and strain rates, providing the basis for predictive modeling in more complex geometries. After many years of data collection on a variety of PBX formulations, we have here applied the principles of time-temperature superposition to a mechanical properties database which includes PBX 9501, PBX 9502, PBXN-110, PBXN-9, and HPP (propellant). Consistencies are demonstrated between the results of quasi-static tension and compression, dynamic Split-Hopkinson Pressure Bar (SHPB) compression, and cantilever Dynamic Mechanical Analysis (DMA). Timetemperature relationships of maximum stress and corresponding strain values are analyzed, in addition to the more conventional analysis of modulus. The extensive analysis shows adherence to the principles of time-temperature superposition and correlations of mechanical response to binder glasstransition temperature (Tg) and specimen density. Direct ties exist between the time-temperature analysis and the underlying basis of a useful existing PBX mechanical model (ViscoSCRAM). Results give confidence that, with some limitations, mechanical response can be predicted at conditions not explicitly measured.

  8. X-ray optics simulation using Gaussian superposition technique

    SciTech Connect

    Idir, M.; Cywiak, M.; Morales, A. and Modi, M.H.

    2011-09-15

    We present an efficient method to perform x-ray optics simulation with high or partially coherent x-ray sources using Gaussian superposition technique. In a previous paper, we have demonstrated that full characterization of optical systems, diffractive and geometric, is possible by using the Fresnel Gaussian Shape Invariant (FGSI) previously reported in the literature. The complex amplitude distribution in the object plane is represented by a linear superposition of complex Gaussians wavelets and then propagated through the optical system by means of the referred Gaussian invariant. This allows ray tracing through the optical system and at the same time allows calculating with high precision the complex wave-amplitude distribution at any plane of observation. This technique can be applied in a wide spectral range where the Fresnel diffraction integral applies including visible, x-rays, acoustic waves, etc. We describe the technique and include some computer simulations as illustrative examples for x-ray optical component. We show also that this method can be used to study partial or total coherence illumination problem.

  9. Entrainment measurements in annular flow

    SciTech Connect

    Assad, A.; Jan, C.; Bertodano, M. de; Beus, S.G.

    1997-07-01

    Air/water and vapor/freon were utilized to scale and simulate annular two-phase flow for high pressure steam/water conditions. A unique vapor/liquid Freon loop was built to obtain the high pressure data. The results were compared with two correlations available in the open literature. The Ishii and Mishima dimensionless group was able to scale the data remarkably well even for vapor/liquid Freon. However, the correlation needs to be adjusted for high Weber numbers of the gas phase.

  10. Annular MHD Physics for Turbojet Energy Bypass

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  11. Confocal Annular Josephson Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  12. On Kolmogorov's superpositions and Boolean functions

    SciTech Connect

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  13. Maximum predictive power and the superposition principle

    NASA Technical Reports Server (NTRS)

    Summhammer, Johann

    1994-01-01

    In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.

  14. Design of artificial spherical superposition compound eye

    NASA Astrophysics Data System (ADS)

    Cao, Zhaolou; Zhai, Chunjie; Wang, Keyi

    2015-12-01

    In this research, design of artificial spherical superposition compound eye is presented. The imaging system consists of three layers of lens arrays. In each channel, two lenses are designed to control the angular magnification and a field lens is added to improve the image quality and extend the field of view. Aspherical surfaces are introduced to improve the image quality. Ray tracing results demonstrate that the light from the same object point is focused at the same imaging point through different channels. Therefore the system has much higher energy efficiency than conventional spherical apposition compound eye.

  15. Atom Microscopy via Dual Resonant Superposition

    NASA Astrophysics Data System (ADS)

    Abdul Jabar, M. S.; Bakht, Amin Bacha; Jalaluddin, M.; Iftikhar, Ahmad

    2015-12-01

    An M-type Rb87 atomic system is proposed for one-dimensional atom microscopy under the condition of Electromagnetically Induced Transparency. Super-localization of the atom in the absorption spectrum while its delocalization in the dispersion spectrum is observed due to the dual superposition effect of the resonant fields. The observed minimum uncertainty peaks will find important applications in Laser cooling, creating focused atom beams, atom nanolithography, and in measurement of the center-of-mass wave function of moving atoms.

  16. Bistability and hysteresis of annular impinging jets

    NASA Astrophysics Data System (ADS)

    Tisovsky, Tomas

    2016-06-01

    In present study, the bistability and hysteresis of annular impinging jets is investigated. Annular impinging jets are simulated using open source CFD code - OpenFOAM. Both flow field patterns of interest are obtained and hysteresis is found by means of dynamic mesh simulation. Effect of nozzle exit velocity on resulting hysteresis loop is also illustrated.

  17. [Generalized granuloma annulare or diffuse dermal histiocytosis?].

    PubMed

    Kretzschmar, L; Biel, K; Luger, T A; Goerdt, S

    1995-08-01

    Generalized granuloma annulare is a rare variant of granuloma annulare affecting the trunk and extremities with a multitude of lesions. In contrast to localized granuloma annulare, generalized granuloma annulare occurs in older patients, shows a stronger association with diabetes, and is characteristically chronic. Like our 55-year-old patient, most patients present with papules and annular plaques; less often, macular or non-annular lesions may be encountered. Histology often fails to show necrobiotic or necrotic connective tissue changes demarcated by a palisading granuloma. Instead, there are diffuse dermal, band-like or nodular aggregations of histiocytes intermingled with some multinucleated giant cells and a predominantly lymphocytic infiltrate in the periphery. Because of its special characteristics, it has been suggested that generalized granuloma annulare might constitute a separate disease entity and that it should be classed among the primary cutaneous histiocytoses as a diffuse dermal histiocytosis. Using immunohistochemistry to determine the macrophage phenotype of the lesional histiocytes, we have shown that generalized granuloma annulare is not a cutaneous histiocytosis. Neither MS-1 high-molecular-weight protein, a new specific marker for cutaneous non-Langerhans cell histiocytoses, nor CD1a, the well-known marker for Langerhans cells and Langerhans cell histiocytoses, is expressed by the lesional histiocytes of our patient. In contrast, the antigen expression pattern was diagnostic for non-infectious granulomas and was highly similar to that in localized granuloma annulare. In contrast to the successful treatment of localized granuloma annulare reported with intralesional interferon beta-1, systemic treatment with interferon alpha-2b (9 x 10(6) units three times a week) was ineffective.

  18. IBEX - annular beam propagation experiment

    SciTech Connect

    Mazarakis, M G; Miller, R B; Shope, S L; Poukey, J W; Ramirez, J J; Ekdahl, C A; Adler, R J

    1983-01-01

    IBEX is a 4-MV, 100-kA, 20-ns cylindrical isolated Blumlein accelerator. In the experiments reported here, the accelerator is fitted with a specially designed foilless diode which is completely immersed in a uniform magnetic field. Several diode geometries have been studied as a function of magnetic field strength. The beam propagates a distance of 50 cm (approx. 10 cyclotron wavelengths) in vacuum before either striking a beam stop or being extracted through a thin foil. The extracted beam was successfully transported 60 cm downstream into a drift pipe filled either with 80 or 640 torr air. The main objectives of this experiment were to establish the proper parameters for the most quiescent 4 MV, 20 to 40 kA annular beam, and to compare the results with available theory and numerical code simulations.

  19. Means of manufacturing annular arrays

    DOEpatents

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  20. Authentication Protocol using Quantum Superposition States

    SciTech Connect

    Kanamori, Yoshito; Yoo, Seong-Moo; Gregory, Don A.; Sheldon, Frederick T

    2009-01-01

    When it became known that quantum computers could break the RSA (named for its creators - Rivest, Shamir, and Adleman) encryption algorithm within a polynomial-time, quantum cryptography began to be actively studied. Other classical cryptographic algorithms are only secure when malicious users do not have sufficient computational power to break security within a practical amount of time. Recently, many quantum authentication protocols sharing quantum entangled particles between communicators have been proposed, providing unconditional security. An issue caused by sharing quantum entangled particles is that it may not be simple to apply these protocols to authenticate a specific user in a group of many users. An authentication protocol using quantum superposition states instead of quantum entangled particles is proposed. The random number shared between a sender and a receiver can be used for classical encryption after the authentication has succeeded. The proposed protocol can be implemented with the current technologies we introduce in this paper.

  1. Optically multiplexed imaging with superposition space tracking.

    PubMed

    Uttam, Shikhar; Goodman, Nathan A; Neifeld, Mark A; Kim, Changsoon; John, Renu; Kim, Jungsang; Brady, David

    2009-02-01

    We describe a novel method to track targets in a large field of view. This method simultaneously images multiple, encoded sub-fields of view onto a common focal plane. Sub-field encoding enables target tracking by creating a unique connection between target characteristics in superposition space and the target's true position in real space. This is accomplished without reconstructing a conventional image of the large field of view. Potential encoding schemes include spatial shift, rotation, and magnification. We discuss each of these encoding schemes, but the main emphasis of the paper and all examples are based on one-dimensional spatial shift encoding. System performance is evaluated in terms of two criteria: average decoding time and probability of decoding error. We study these performance criteria as a function of resolution in the encoding scheme and signal-to-noise ratio. Finally, we include simulation and experimental results demonstrating our novel tracking method. PMID:19189000

  2. Multipartite cellular automata and the superposition principle

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2016-05-01

    Cellular automata (CA) can show well known features of quantum mechanics (QM), such as a linear updating rule that resembles a discretized form of the Schrödinger equation together with its conservation laws. Surprisingly, a whole class of “natural” Hamiltonian CA, which are based entirely on integer-valued variables and couplings and derived from an action principle, can be mapped reversibly to continuum models with the help of sampling theory. This results in “deformed” quantum mechanical models with a finite discreteness scale l, which for l→0 reproduce the familiar continuum limit. Presently, we show, in particular, how such automata can form “multipartite” systems consistently with the tensor product structures of non-relativistic many-body QM, while maintaining the linearity of dynamics. Consequently, the superposition principle is fully operative already on the level of these primordial discrete deterministic automata, including the essential quantum effects of interference and entanglement.

  3. Superposition and alignment of labeled point clouds.

    PubMed

    Fober, Thomas; Glinca, Serghei; Klebe, Gerhard; Hüllermeier, Eyke

    2011-01-01

    Geometric objects are often represented approximately in terms of a finite set of points in three-dimensional euclidean space. In this paper, we extend this representation to what we call labeled point clouds. A labeled point cloud is a finite set of points, where each point is not only associated with a position in three-dimensional space, but also with a discrete class label that represents a specific property. This type of model is especially suitable for modeling biomolecules such as proteins and protein binding sites, where a label may represent an atom type or a physico-chemical property. Proceeding from this representation, we address the question of how to compare two labeled points clouds in terms of their similarity. Using fuzzy modeling techniques, we develop a suitable similarity measure as well as an efficient evolutionary algorithm to compute it. Moreover, we consider the problem of establishing an alignment of the structures in the sense of a one-to-one correspondence between their basic constituents. From a biological point of view, alignments of this kind are of great interest, since mutually corresponding molecular constituents offer important information about evolution and heredity, and can also serve as a means to explain a degree of similarity. In this paper, we therefore develop a method for computing pairwise or multiple alignments of labeled point clouds. To this end, we proceed from an optimal superposition of the corresponding point clouds and construct an alignment which is as much as possible in agreement with the neighborhood structure established by this superposition. We apply our methods to the structural analysis of protein binding sites.

  4. Adaptive optics scanning ophthalmoscopy with annular pupils.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  5. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  6. Annular gel reactor for chemical pattern formation

    DOEpatents

    Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  7. Stress localisation in annular sheets

    NASA Astrophysics Data System (ADS)

    van der Heijden, Gert; Starostin, Eugene

    2015-03-01

    For very thin sheets stretching is much more costly in terms of energy than bending. The limiting behaviour of thin sheets is therefore governed by geometry only and thus applies to a wide range of materials at vastly different scales: it is equally valid for a microscopic graphene sheet and a macroscopic solar sail. We derive new geometrically-exact equations for the deformation of annular strips. We use a formulation in which the inextensibility constraint is used to reduce the problem to a suitably-chosen reference curve (here the circular centreline). The equations are therefore ODEs, which allow for a detailed bifurcation analysis. Closed conical solutions are found for centreline lengths L less than Lc = 2 πκg , where κg is the geodesic curvature of the strip. For such `short' strips we find in addition a second branch of stable solutions easily reproduced in a paper strip. For `long' strips (L >Lc) we find modes of undulating solutions. All non-conical solutions turn out to feature points of stress localisation on the edge of the annulus, the outer edge for short solutions and the inner edge of long solutions. Our theory may be used to investigate singularities of constrained or loaded sheets more general than conical ones.

  8. Decoherence of quantum superpositions through coupling to engineered reservoirs

    PubMed

    Myatt; King; Turchette; Sackett; Kielpinski; Itano; Monroe; Wineland

    2000-01-20

    The theory of quantum mechanics applies to closed systems. In such ideal situations, a single atom can, for example, exist simultaneously in a superposition of two different spatial locations. In contrast, real systems always interact with their environment, with the consequence that macroscopic quantum superpositions (as illustrated by the 'Schrodinger's cat' thought-experiment) are not observed. Moreover, macroscopic superpositions decay so quickly that even the dynamics of decoherence cannot be observed. However, mesoscopic systems offer the possibility of observing the decoherence of such quantum superpositions. Here we present measurements of the decoherence of superposed motional states of a single trapped atom. Decoherence is induced by coupling the atom to engineered reservoirs, in which the coupling and state of the environment are controllable. We perform three experiments, finding that the decoherence rate scales with the square of a quantity describing the amplitude of the superposition state.

  9. Superposition properties of interacting ion channels.

    PubMed Central

    Keleshian, A M; Yeo, G F; Edeson, R O; Madsen, B W

    1994-01-01

    Quantitative analysis of patch clamp data is widely based on stochastic models of single-channel kinetics. Membrane patches often contain more than one active channel of a given type, and it is usually assumed that these behave independently in order to interpret the record and infer individual channel properties. However, recent studies suggest there are significant channel interactions in some systems. We examine a model of dependence in a system of two identical channels, each modeled by a continuous-time Markov chain in which specified transition rates are dependent on the conductance state of the other channel, changing instantaneously when the other channel opens or closes. Each channel then has, e.g., a closed time density that is conditional on the other channel being open or closed, these being identical under independence. We relate the two densities by a convolution function that embodies information about, and serves to quantify, dependence in the closed class. Distributions of observable (superposition) sojourn times are given in terms of these conditional densities. The behavior of two channel systems based on two- and three-state Markov models is examined by simulation. Optimized fitting of simulated data using reasonable parameters values and sample size indicates that both positive and negative cooperativity can be distinguished from independence. PMID:7524711

  10. Superposition rules for higher order systems and their applications

    NASA Astrophysics Data System (ADS)

    Cariñena, J. F.; Grabowski, J.; de Lucas, J.

    2012-05-01

    Superposition rules form a class of functions that describe general solutions of systems of first-order ordinary differential equations in terms of generic families of particular solutions and certain constants. In this work, we extend this notion and other related ones to systems of higher order differential equations and analyse their properties. Several results concerning the existence of various types of superposition rules for higher order systems are proved and illustrated with examples extracted from the physics and mathematics literature. In particular, two new superposition rules for the second- and third-order Kummer-Schwarz equations are derived.

  11. Many-Body Basis Set Superposition Effect.

    PubMed

    Ouyang, John F; Bettens, Ryan P A

    2015-11-10

    The basis set superposition effect (BSSE) arises in electronic structure calculations of molecular clusters when questions relating to interactions between monomers within the larger cluster are asked. The binding energy, or total energy, of the cluster may be broken down into many smaller subcluster calculations and the energies of these subsystems linearly combined to, hopefully, produce the desired quantity of interest. Unfortunately, BSSE can plague these smaller fragment calculations. In this work, we carefully examine the major sources of error associated with reproducing the binding energy and total energy of a molecular cluster. In order to do so, we decompose these energies in terms of a many-body expansion (MBE), where a "body" here refers to the monomers that make up the cluster. In our analysis, we found it necessary to introduce something we designate here as a many-ghost many-body expansion (MGMBE). The work presented here produces some surprising results, but perhaps the most significant of all is that BSSE effects up to the order of truncation in a MBE of the total energy cancel exactly. In the case of the binding energy, the only BSSE correction terms remaining arise from the removal of the one-body monomer total energies. Nevertheless, our earlier work indicated that BSSE effects continued to remain in the total energy of the cluster up to very high truncation order in the MBE. We show in this work that the vast majority of these high-order many-body effects arise from BSSE associated with the one-body monomer total energies. Also, we found that, remarkably, the complete basis set limit values for the three-body and four-body interactions differed very little from that at the MP2/aug-cc-pVDZ level for the respective subclusters embedded within a larger cluster. PMID:26574311

  12. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  13. Active annular-beam laser autocollimator system.

    PubMed

    Yoder, P R; Schlesinger, E R; Chickvary, J L

    1975-08-01

    An autocollimator using an axicon and a beam expander telescope to generate a 12.5-cm. o.d. annular beam of helium-neon laser light with high (25:1) diameter-to-width ratio has been developed. It is used with a two-axis, electromagnetically actuated mirror assembly to acquire automatically and maintain dynamically autocollimation from a nearby but separately mounted annular mirror. The servo system controls beam alignment even though angular vibratory motions of the annular mirror make it appear to tilt relative to the autocollimator as much as 7 mrad at frequencies below 300 Hz. This paper describes the optical system and the alignment sensing and control system.

  14. Annular bilayer magnetoelectric composites: theoretical analysis.

    PubMed

    Guo, Mingsen; Dong, Shuxiang

    2010-01-01

    The laminated bilayer magnetoelectric (ME) composites consist of magnetostrictive and piezoelectric layers are known to have giant ME coefficient due to the high coupling efficiency in bending mode. In our previous report, the bar-shaped bilayer composite has been investigated by using a magnetoelectric-coupling equivalent circuit. Here, we propose an annular bilayer ME composite, which consists of magnetostrictive and piezoelectric rings. This composite has a much lower resonance frequency of bending mode compared with its radial mode. In addition, the annular bilayer ME composite is expected to respond to vortex magnetic field as well as unidirectional magnetic field. In this paper, we investigate the annular bilayer ME composite by using impedance-matrix method and predict the ME coefficients as a function of geometric parameters of the composites. PMID:20178914

  15. Fast convolution-superposition dose calculation on graphics hardware.

    PubMed

    Hissoiny, Sami; Ozell, Benoît; Després, Philippe

    2009-06-01

    The numerical calculation of dose is central to treatment planning in radiation therapy and is at the core of optimization strategies for modern delivery techniques. In a clinical environment, dose calculation algorithms are required to be accurate and fast. The accuracy is typically achieved through the integration of patient-specific data and extensive beam modeling, which generally results in slower algorithms. In order to alleviate execution speed problems, the authors have implemented a modern dose calculation algorithm on a massively parallel hardware architecture. More specifically, they have implemented a convolution-superposition photon beam dose calculation algorithm on a commodity graphics processing unit (GPU). They have investigated a simple porting scenario as well as slightly more complex GPU optimization strategies. They have achieved speed improvement factors ranging from 10 to 20 times with GPU implementations compared to central processing unit (CPU) implementations, with higher values corresponding to larger kernel and calculation grid sizes. In all cases, they preserved the numerical accuracy of the GPU calculations with respect to the CPU calculations. These results show that streaming architectures such as GPUs can significantly accelerate dose calculation algorithms and let envision benefits for numerically intensive processes such as optimizing strategies, in particular, for complex delivery techniques such as IMRT and are therapy.

  16. Nonclassical properties and quantum resources of hierarchical photonic superposition states

    SciTech Connect

    Volkoff, T. J.

    2015-11-15

    We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.

  17. Nonclassical properties and quantum resources of hierarchical photonic superposition states

    NASA Astrophysics Data System (ADS)

    Volkoff, T. J.

    2015-11-01

    We motivate and introduce a class of "hierarchical" quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.

  18. Has Macroscopic Superposition in Superconducting Qubits Really Been Demonstrated?

    NASA Astrophysics Data System (ADS)

    Kadin, Alan M.; Kaplan, Steven B.

    Quantum computing depends on many qubits coupled via quantum entanglement, where each qubit must be a simultaneous superposition of two quantum states of different energies, rather than one state or the other as in classical bits. It is widely believed that observations of energy quantization and Rabi oscillations in macroscopic superconducting circuits prove that these are proper qubits with quantum superposition. But is this really the only interpretration? We propose a novel paradigm for macroscopic quantum systems, in which energies are quantized (with photon-mediated transitions), but the quantized states are realistic objects without superposition. For example, a circuit could make a transition from one quantized value of flux to another, but would never have both at the same time. We further suggest a superconducting circuit that can put this proposal to a test. Without quantum superposition, most of the potential benefit of quantum computing would be lost.

  19. Annular subaperture stitching method based on autocollimation

    NASA Astrophysics Data System (ADS)

    Yiwei, Chen; Erlong, Miao; Yongxin, Sui; Huaijiang, Yang

    2014-11-01

    In this paper, we propose an annular subaperture stitching method based on an autocollimation method to relax the requirements on mechanical location accuracy. In this approach, we move a ball instead of the interferometer and the aspheric surface so that testing results for adjacent annular subapertures are registered. Thus, the stitching algorithm can easily stitch the subaperture testing results together when large mechanical location errors exist. To verify this new method, we perform a simulation experiment. The simulation results demonstrate that this method can stitch together the subaperture testing results under large mechanical location errors.

  20. Annular-gap washer including electrode means

    SciTech Connect

    Hegemann, K.; Kautz, J.W.; Weissert, H.

    1982-02-23

    An annular-gap washer especially for scrubbing of industrial gases, comprises a central body which is axially shiftable in a housing defining an all-around clearance with the body. The clearance forms an annular gap through which the gas stream and water droplets from a spray nozzle axially spaced from the gap, are accelerated and brought into intimate contact. According to the invention at least over part of the gap, the mixture is subjected to an electrostatic field having generally radial field lines.

  1. Optical threshold secret sharing scheme based on basic vector operations and coherence superposition

    NASA Astrophysics Data System (ADS)

    Deng, Xiaopeng; Wen, Wei; Mi, Xianwu; Long, Xuewen

    2015-04-01

    We propose, to our knowledge for the first time, a simple optical algorithm for secret image sharing with the (2,n) threshold scheme based on basic vector operations and coherence superposition. The secret image to be shared is firstly divided into n shadow images by use of basic vector operations. In the reconstruction stage, the secret image can be retrieved by recording the intensity of the coherence superposition of any two shadow images. Compared with the published encryption techniques which focus narrowly on information encryption, the proposed method can realize information encryption as well as secret sharing, which further ensures the safety and integrality of the secret information and prevents power from being kept centralized and abused. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.

  2. 75 FR 23582 - Annular Casing Pressure Management for Offshore Wells

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... published the proposed rule Annular Casing Pressure Management for Offshore Wells (74 FR 38147). The comment... the published proposed rule 1010-AD47 Annular Casing Pressure Management for Offshore Wells (74 FR... Minerals Management Service 30 CFR Part 250 RIN 1010-AD47 Annular Casing Pressure Management for...

  3. Azimuthally forced flames in an annular combustor

    NASA Astrophysics Data System (ADS)

    Worth, Nicholas; Dawson, James; Mastorakos, Epaminondas

    2015-11-01

    Thermoacoustic instabilities are more likely to occur in lean burn combustion systems, making their adoption both difficult and costly. At present, our knowledge of such phenomena is insufficient to produce an inherently stable combustor by design, and therefore an improved understanding of these instabilities has become the focus of a significant research effort. Recent experimental and numerical studies have demonstrated that the symmetry of annular chambers permit a range of self-excited azimuthal modes to be generated in annular geometry, which can make the study of isolated modes difficult. While acoustic forcing is common in single flame experiments, no equivalent for forced azimuthal modes in an annular chamber have been demonstrated. The present investigation focuses on the novel application of acoustic forcing to a laboratory scale annular combustor, in order to generate azimuthal standing wave modes at a prescribed frequency and amplitude. The results focus on the ability of the method to isolate the mode of oscillation using experimental pressure and high speed OH* measurements. The successful excitation of azimuthal modes demonstrated represents an important step towards improving our fundamental understanding of this phenomena in practically relevant geometry.

  4. Quantum superposition at the half-metre scale.

    PubMed

    Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A

    2015-12-24

    The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity. PMID:26701053

  5. Quantum superposition at the half-metre scale.

    PubMed

    Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A

    2015-12-24

    The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity.

  6. Quantum superposition at the half-metre scale

    NASA Astrophysics Data System (ADS)

    Kovachy, T.; Asenbaum, P.; Overstreet, C.; Donnelly, C. A.; Dickerson, S. M.; Sugarbaker, A.; Hogan, J. M.; Kasevich, M. A.

    2015-12-01

    The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger’s cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity.

  7. [Superposition impact character of air pollution from decentralization docks in a freshwater port].

    PubMed

    Liu, Jian-chang; Li, Xing-hua; Xu, Hong-lei; Cheng, Jin-xiang; Wang, Zhong-dai; Xiao, Yang

    2013-05-01

    Air pollution from freshwater port is mainly caused by dust pollution, including material loading and unloading dust, road dust, and wind erosion dust from stockpile, bare soil. The dust pollution from a single dock characterized in obvious difference with air pollution from multiple scattered docks. Jining Port of Shandong Province was selected as a case study to get superposition impact contribution of air pollution for regional air environment from multiple scattered docks and to provide technical support for system evaluation of port air pollution. The results indicate that (1) the air pollution from freshwater port occupies a low proportion of pollution impact on regional environmental quality because the port is consisted of serveral small scattered docks; (2) however, the geometric center of the region distributed by docks is severely affected with the most superposition of the air pollution; and (3) the ADMS model is helpful to attain an effective and integrated assessment to predict a superposition impact of multiple non-point pollution sources when the differences of high-altitude weather conditions was not considered on a large scale.

  8. Observing a coherent superposition of an atom and a molecule

    SciTech Connect

    Dowling, Mark R.; Bartlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W.

    2006-11-15

    We demonstrate that it is possible, in principle, to perform a Ramsey-type interference experiment to exhibit a coherent superposition of a single atom and a diatomic molecule. This gedanken experiment, based on the techniques of Aharonov and Susskind [Phys. Rev. 155, 1428 (1967)], explicitly violates the commonly accepted superselection rule that forbids coherent superpositions of eigenstates of differing atom number. A Bose-Einstein condensate plays the role of a reference frame that allows for coherent operations analogous to Ramsey pulses. We also investigate an analogous gedanken experiment to exhibit a coherent superposition of a single boson and a fermion, violating the commonly accepted superselection rule forbidding coherent superpositions of states of differing particle statistics. In this case, the reference frame is realized by a multimode state of many fermions. This latter case reproduces all of the relevant features of Ramsey interferometry, including Ramsey fringes over many repetitions of the experiment. However, the apparent inability of this proposed experiment to produce well-defined relative phases between two distinct systems each described by a coherent superposition of a boson and a fermion demonstrates that there are additional, outstanding requirements to fully 'lift' the univalence superselection rule.

  9. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States.

    PubMed

    Abdi, M; Degenfeld-Schonburg, P; Sameti, M; Navarrete-Benlloch, C; Hartmann, M J

    2016-06-10

    The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition. PMID:27341233

  10. Experimental creation of superposition of unknown photonic quantum states

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Min; Hu, Meng-Jun; Chen, Jiang-Shan; Liu, Bi-Heng; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Yong-Sheng

    2016-09-01

    As one of the most intriguing intrinsic properties of the quantum world, quantum superposition provokes great interest in its own generation. Though a universal quantum machine that creates superposition of two arbitrary unknown states has been shown to be physically impossible, a probabilistic protocol exists given that two input states have nonzero overlaps with the referential state. Here we report a probabilistic quantum machine realizing superposition of two arbitrary unknown photonic qubits as long as they have nonzero overlaps with the horizontal polarization state |H > . A total of 11 different qubit pairs are chosen to test this protocol and we obtain the average fidelity as high as 0.99, which shows the excellent reliability of our realization. This realization may have significant applications in quantum information and quantum computation, e.g., generating nonclassical states and realizing information compression in a quantum computation.

  11. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States

    NASA Astrophysics Data System (ADS)

    Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.

    2016-06-01

    The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.

  12. Seeing lens imaging as a superposition of multiple views

    NASA Astrophysics Data System (ADS)

    Grusche, Sascha

    2016-01-01

    In the conventional approach to lens imaging, rays are used to map object points to image points. However, many students want to think of the image as a whole. To answer this need, Kepler’s ray drawing is reinterpreted in terms of shifted camera obscura images. These images are uncovered by covering the lens with pinholes. Thus, lens imaging is seen as a superposition of sharp images from different viewpoints, so-called elemental images. This superposition is simulated with projectors, and with transparencies. Lens ray diagrams are constructed based on elemental images; the conventional construction method is included as a special case.

  13. Development of an Advanced Annular Combustor

    NASA Technical Reports Server (NTRS)

    Rusnak, J. P.; Shadowen, J. H.

    1969-01-01

    The objective of the effort described in this report was to determine the structural durability of a full-scale advanced annular turbojet combustor using ASTM A-1 type fuel and operating at conditions typical of advanced supersonic aircraft. A full-scale annular combustor of the ram-induction type was fabricated and subjected to a 325-hour cyclic endurance test at conditions representative of operation in a Mach 3.0 aircraft. The combustor exhibited extensive cracking and scoop burning at the end of the test program. But these defects had no appreciable effect on combustor performance, as performance remained at a high level throughout the endurance program. Most performance goals were achieved with pressure loss values near 6% and 8%, and temperature rise variation ratio (deltaTVR) values near 1.25 and l.22 at takeoff and cruise conditions, respectively. Combustion efficiencies approached l004 and the exit radial temperature profiles were approximately as desired.

  14. LDV Measurements in an Annular Combustor Model

    NASA Technical Reports Server (NTRS)

    Barron, Dean A.

    1996-01-01

    This thesis covers the design and setup of a laser doppler velocimeter (LDV) system used to take velocity measurements in an annular combustor model. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.

  15. Performance of annular high frequency thermoacoustic engines

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  16. Annular and Total Solar Eclipses of 2003

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    2002-01-01

    On Saturday, 2003 May 31, an annular eclipse of the Sun will be visible from a broad corridor that traverses the North Atlantic. The path of the Moon's antumbral shadow begins in northern Scotland, crosses Iceland and central Greenland, and ends at sunrise in Baffin Bay (Canada). A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes most of Europe, the Middle East, central and northern Asia, and northwestern North America. The trajectory of the Moon's shadow is quite unusual during this event. The shadow axis passes to the far north where it barely grazes Earth's surface. In fact, the northern edge of the antumbra actually misses Earth so that one path limit is defined by the day/night terminator rather than by the shadow's upper edge. As a result, the track of annularity has a peculiar "D" shape that is nearly 1200 kilometers wide. Since the eclipse occurs just three weeks prior to the northern summer solstice, Earth's northern axis is pointed sunwards by 22.8 deg. As seen from the Sun, the antumbral shadow actually passes between the North Pole and the terminator. As a consequence of this extraordinary geometry, the path of annularity runs from east to west rather than the more typical west to east. The event transpires near the Moon's ascending node in Taurus five degrees north of Aldebaran. Since apogee occurs three days earlier (May 28 at 13 UT), the Moon's apparent diameter (29.6 arc-minutes) is still too small to completely cover the Sun (31.6 arc-minutes) resulting in an annular eclipse.

  17. Neoclassical transport in an annular penning trap

    SciTech Connect

    Robertson, S.

    1997-07-01

    A modified Penning trap is described with an annular confinement region and a toroidal magnetic field. A non-neutral electron plasma is confined axially by an electrostatic field and, in the radial direction, particles are constrained to lie within a small drift distance of a cylindrical flux surface. Drift orbits of all particles are banana-shaped and collisions cause neoclassical transport. {copyright} {ital 1997 American Institute of Physics.}

  18. The Annular Suspension and Pointing System /ASPS/

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Woolley, C. T.

    1978-01-01

    The Annular Suspension and Pointing System (ASPS) may be attached to a carrier vehicle for orientation, mechanical isolation, and fine pointing purposes applicable to space experiments. It has subassemblies for both coarse and vernier pointing. A fourteen-degree-of-freedom simulation of the ASPS mounted on a Space Shuttle has yielded initial performance data. The simulation describes: the magnetic actuators, payload sensors, coarse gimbal assemblies, control algorithms, rigid body dynamic models of the payload and Shuttle, and a control system firing model.

  19. Endoscopic measurements using a panoramic annular lens

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Matthys, Donald R.

    1992-01-01

    The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software.

  20. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  1. Vibration analysis of annular-like plates

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Li, Y. Y.; Yam, L. H.

    2003-05-01

    The existence of eccentricity of the central hole for an annular plate results in a significant change in the natural frequencies and mode shapes of the structure. In this paper, the vibration analysis of annular-like plates is presented based on numerical and experimental approaches. Using the finite element analysis code Nastran, the effects of the eccentricity, hole size and boundary condition on vibration modes are investigated systematically through both global and local analyses. The results show that analyses for perfect symmetric conditions can still roughly predict the mode shapes of "recessive" modes of the plate with a slightly eccentric hole. They will, however, lead to erroneous results for "dominant" modes. In addition, the residual displacement mode shape is verified as an effective parameter for identifying damage occurring in plate-like structures. Experimental modal analysis on a clamped-free annular-like plate is performed, and the results obtained reveal good agreement with those obtained by numerical analysis. This study provides guidance on modal analysis, vibration measurement and damage detection of plate-like structures.

  2. Study of spiral flow generated through an annular slit

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hun; Matsuo, Shigeru; Setoguchi, Toshiaki; Kim, Heuy-Dong

    2005-06-01

    The effect of pressurized air inlets in the reservoir upstream of the annular slit on characteristics of the axial and tangential velocity components is investigated numerically, and the mechanism of occurrence of spiral nozzle flow is clarified. In simulations, Unified Platform for Aerospace Computational Simulation (UPACS) is used. The governing equations under consideration are the unsteady compressible Navier - Stokes. A second-order finite volume scheme with MUSCL (Roe scheme) is used to discretize the spatial derivatives, and a second order-central difference scheme for the viscous terms, and a MFGS (Matrix Free Gauss Seidel) is employed for time integration. Spalart-Allmaras model was used as a turbulence model. The results obtained are compared with velocity distributions in the experiment measured by the two-component fiber optic laser Doppler velocimeter system. The existence of discrete pressurized air inlets that leads to the occurrence of asymmetrical characteristics is a very important factor for the formation of spiral flow.

  3. Fluctuations of doublet splittings using the annular billiard

    SciTech Connect

    Egydio de Carvalho, R.; Mijolaro, A.P.

    2004-11-01

    We study the statistical distribution of quantum energy splittings due to a dynamical tunneling. The system, the annular billiard, has whispering quasimodes due to a discrete symmetry that exists even when chaos is present in the underlying classical dynamics. Symmetric and antisymmetric combinations of these quasimodes correspond to quantum doublet states whose degeneracies decrease as the circles become more eccentric. We construct numerical ensembles composed of splittings for two distinct regimes, one which we call semiclassical for high quantum numbers and high energies where the whispering regions are connected by chaos, and other which we call quantal for low quantum numbers, low energies, and near integrable where dynamical tunneling is not a dominant mechanism. In both cases we observe a variation on the fluctuation amplitudes, but their mean behaviors follow the formula of Leyvraz and Ullmo [J. Phys. A 29, 2529 (1996)]. A description of a three-level collision involving a doublet and a singlet is also provided through a numerical example.

  4. Liquid Annular Seal CFD Analysis for Rotordynamic Force Prediction

    NASA Technical Reports Server (NTRS)

    Moore, Jeff; Palazzolo, Alan

    2006-01-01

    A commercially available code is utilized to analyze a plain and grooved liquid annular seal. These type seals are commonly used in modern turbopumps and have a pronounced effect on the rotordynamic behavior of these systems. Accurate prediction of both leakage and dynamic reaction forces is vital to ensure good performance and sound mechanical operation. The code SCISEAL developed by CFDRC is a generic 3-D, finite volume based CFD code solving the 3-D Reynolds averaged Navier Stokes equations. The code allows body-fitted, multi-blocked structured grids, turbulence modeling, rotating coordinate frames, as well as integration of dynamic pressure and shear forces on the rotating journal. The code may be used with the commercially available pre-and post-processing codes from CFDRC as well.

  5. Generation of macroscopic superposition states with small nonlinearity

    SciTech Connect

    Jeong, H.; Ralph, T.C.; Kim, M. S.; Ham, B.S.

    2004-12-01

    We suggest a scheme to generate a macroscopic superposition state ('Schroedinger cat state') of a free-propagating optical field using a beam splitter, homodyne measurement, and a very small Kerr nonlinear effect. Our scheme makes it possible to reduce considerably the required nonlinear effect to generate an optical cat state using simple and efficient optical elements.

  6. Film cooling research on the endwall of a turbine nozzle guide vane in a short duration annular cascade. II - Analysis and correlation of results

    NASA Astrophysics Data System (ADS)

    Harasgama, S. P.; Burton, C. D.

    1991-06-01

    Measurements of the heat transfer characteristics of the film cooled endwall (platform) of a turbine nozzle guide vane in an annular cascade at engine representative conditions are analyzed. The experimental results are well represented by the superposition theory of film cooling. It is shown that high cooling effectiveness can be achieved when the data are corrected for axial pressure gradients. The data are correlated against both the slot-wall jet parameter and the discrete hole injection function for flat-plate, zero pressure gradient cases. The pressure gradient correction brings the data to within +/- 11 percent of the discrete hole correlation.

  7. Functional specifications of the annular suspension pointing system, appendix A

    NASA Technical Reports Server (NTRS)

    Edwards, B.

    1980-01-01

    The Annular Suspension Pointing System is described. The Design Realization, Evaluation and Modelling (DREAM) system, and its design description technique, the DREAM Design Notation (DDN) is employed.

  8. Wave turbulence in annular wave tank

    NASA Astrophysics Data System (ADS)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  9. Seeing double: annular diaper rash in twins.

    PubMed

    Sommer, Lacy L; Manders, Steven M

    2015-01-01

    We report a case of dichorionic, diamniotic twins who developed similar erythematous, annular, erosive plaques in the inguinal folds in the first few weeks of life that were refractory to topical antifungals and oral antibiotics. The twins were found to have high transaminase levels, antinuclear antibody positivity, and anti-SSS/Ro) and anti-SSB/La autoantibodies. The rash resolved without scarring by 7 months of age with the use of low-potency topical corticosteroids. We suggest that physicians consider neonatal lupus erythematosus in neonates with atypical eruptions occurring in sun-protected skin.

  10. Annular lupus vulgaris mimicking tinea cruris.

    PubMed

    Heo, Young Soo; Shin, Won Woong; Kim, Yong Ju; Song, Hae Jun; Oh, Chil Hwan

    2010-05-01

    Cutaneous tuberculosis is an infrequent form of extrapulmonary tuberculosis. It is often clinically and histopathologically confused with various cutaneous disorders. A 36-year-old man attended our clinic with slowly progressive, asymptomatic, annular skin lesions on both the thighs and buttocks for 10 years. He consulted with many physicians and was improperly treated with an oral antifungal agent for several months under the diagnosis of tinea cruris, but no resolution of his condition was observed. A diagnosis of lupus vulgaris was made based on the histopathologic examination and the polymerase chain reaction assay. Anti-tuberculosis therapy was administered and the lesions started to regress.

  11. Finite stretching of an annular plate.

    NASA Technical Reports Server (NTRS)

    Biricikoglu, V.; Kalnins, A.

    1971-01-01

    The problem of the finite stretching of an annular plate which is bonded to a rigid inclusion at its inner edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive law. It is shown that the inclusion of the effect of the transverse normal strain leads to a rapid variation in thickness which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the behavior of the plate near the edges, are presented.

  12. Mass transport in annular spherical system

    NASA Astrophysics Data System (ADS)

    Bauer, Helmut F.

    The mass transport between two concentric spheres with inlet and outlet at the poles was determined for ideal liquid flow (plug flow) and laminar flow for constant concentration at the spherical walls and constant concentration at the inlet. Velocity distribution and local concentration profiles were determined analytically for various widths of the annular spherical conduit and various diffusive flow parameters. It is found that with the increase of this parameter, the decay becomes quite rapid and that the same effect occurs for increasing diameter ratio of the spheres. This configuration may possibly be used as a basic element of an artificial kidney.

  13. Duration test of an annular colloid thruster.

    NASA Technical Reports Server (NTRS)

    Perel, J.; Mahoney, J. F.; Daley, H. L.

    1972-01-01

    An annular colloid thruster was continuously operated for 1023 hours. Performance was stable with no sparking and negligible drain currents observed. An average thrust of 25.1 micropounds and an average specific impulse of 1160 seconds were obtained at an accelerating voltage of 15 k he thruster exhaust beam was continuously neutralized using electrons and electrostatic vectoring was demonstrated periodically. The only clear trend with time was an increase in specific impulse during the last third of the test period. From these results the thruster lifetime was estimated to be over an order of magnitude greater than the test duration.

  14. Optical manipulation using optimal annular vortices.

    PubMed

    Paez-Lopez, Rafael; Ruiz, Ulises; Arrizon, Victor; Ramos-Garcia, Ruben

    2016-09-01

    We discuss a simple method to generate a configurable annular vortex beam (AVB) with the maximum possible peak intensity, employing a phase hologram whose transmittance is the phase of a Bessel beam. Due to its maximum intensity, the AVB provides the optimal density of the orbital angular moment. Another attribute of the generated AVB is the relatively high invariance of the intensity profile when the topological charge is changed. We demonstrate the advantages and flexibility of these AVBs for optical trapping applications. PMID:27607992

  15. The Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J.

    1975-01-01

    An annular momentum control device consisting principally of a spinning rim, a set of noncontacting magnetic bearings for supporting the rim, a noncontacting electric motor for driving the rim, and, for some applications, one or more gimbals is described. The device is intended for applications where requirements for control torque and momentum storage exist. Hardware requirements and potential unit configurations are discussed. Theoretical considerations for the passive use of the device are discussed. Potential applications of the device in other than passive configurations for the attitude control, stabilization, and maneuvering of spacecraft are reported.

  16. Endoscopic inspection using a panoramic annular lens

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Matthys, Donald R.

    1991-01-01

    The objective of this one year study was to design, build, and demonstrate a prototype system for cavity inspection. A cylindrical view of the cavity interior was captured in real time through a compound lens system consisting of a unique panoramic annular lens and a collector lens. Images, acquired with a digitizing camera and stored in a desktop computer, were manipulated using image processing software to aid in visual inspection and qualitative analysis. A detailed description of the lens and its applications is given.

  17. Uncertainty methodology for the strongly coupled physical phenomena associated with annular flow

    SciTech Connect

    Lane, J. W.; Aumiller Jr, D. L.

    2012-07-01

    Best-Estimate plus Uncertainty (BEPU) methods are slowly supplanting the use of deterministic analysis methods for thermal-hydraulic analyses. As the uncertainty methodologies evolve it is expected that, where both experimental techniques allow and data are available, there will be a shift to quantifying the uncertainty in increasingly more fundamental parameters. For example, for annular flow in a three-field analysis environment (vapor, liquid film, droplet), the driving parameters would be: a) film interfacial shear stress, b) droplet drag, c) droplet entrainment rate and d) droplet deposition rate. An improved annular flow modeling package was recently developed and implemented in an in-house version of the COBRA-TF best-estimate subchannel analysis tool (Lane, 2009). Significant improvement was observed in the code-to-data predictions of several steam-water annular flow tests following the implementation of this modeling package; however, to apply this model set in formal BEPU analysis requires uncertainty distributions to be determined. The unique aspect of annular flow, and the topic of the present work, is the strong coupling between the interfacial drag, entrainment and deposition phenomena. Ideally the uncertainty in each phenomenon would be isolated; however, the situation is further complicated by an inability to experimentally isolate and measure the individual rate processes (particularly entrainment rate), which results in available experimental data that are inherently integral in nature. This paper presents a methodology for isolating the individual physical phenomena of interest, to the extent that the currently available experimental data allow, and developing the corresponding uncertainty distributions for annular flow. (authors)

  18. Modeling the reversible decoherence of mesoscopic superpositions in dissipative environments

    NASA Astrophysics Data System (ADS)

    Mokarzel, S. G.; Salgueiro, A. N.; Nemes, M. C.

    2002-04-01

    A model is presented to describe the recently proposed experiment [J. Raimond, M. Brune, and S. Haroche, Phys. Rev. Lett 79, 1964 (1997)] in which a mesoscopic superposition of radiation states is prepared in a high-Q cavity that is coupled to a similar resonator. The dynamical coherence loss of such a state in the absence of dissipation is reversible and can be observed in principle. We show how this picture is modified due to the presence of the environmental couplings. Analytical expressions for the experimental conditional probabilities and the linear entropy are given. We conclude that the phenomenon can still be observed provided the ratio between the damping constant and the intercavities coupling does not exceed about a few percent. This observation is favored for superpositions of states with a large overlap.

  19. Tailoring quantum superpositions with linearly polarized amplitude-modulated light

    SciTech Connect

    Pustelny, S.; Koczwara, M.; Cincio, L.; Gawlik, W.

    2011-04-15

    Amplitude-modulated nonlinear magneto-optical rotation is a powerful technique that offers a possibility of controllable generation of given quantum states. In this paper, we demonstrate creation and detection of specific ground-state magnetic-sublevel superpositions in {sup 87}Rb. By appropriate tuning of the modulation frequency and magnetic-field induction the efficiency of a given coherence generation is controlled. The processes are analyzed versus different experimental parameters.

  20. Harmonic superposition method for grand-canonical ensembles

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Wales, D. J.

    2015-03-01

    The harmonic superposition method provides a unified framework to the equilibrium and relaxation kinetics on complex potential energy landscapes. Here we extend it to grand-canonical statistical ensembles governed by chemical potentials or chemical potential differences, by sampling energy minima corresponding to the various relevant sizes or compositions. The method is applied and validated against conventional Monte Carlo simulations for the problems of chemical equilibrium in nanoalloys and hydrogen absorption in bulk and nanoscale palladium.

  1. Quantum Superposition, Collapse, and the Default Specification Principle

    NASA Astrophysics Data System (ADS)

    Nikkhah Shirazi, Armin

    2014-03-01

    Quantum Superposition and collapse lie at the heart of the difficulty in understanding what quantum mechanics is exactly telling us about reality. We present here a principle which permits one to formulate a simple and general mathematical model that abstracts these features out of quantum theory. A precise formulation of this principle in terms of a set-theoretic axiom added to standard set theory may directly connect the foundations of physics to the foundations of mathematics.

  2. Macroscopic superposition of ultracold atoms with orbital degrees of freedom

    SciTech Connect

    Garcia-March, M. A.; Carr, L. D.; Dounas-Frazer, D. R.

    2011-04-15

    We introduce higher dimensions into the problem of Bose-Einstein condensates in a double-well potential, taking into account orbital angular momentum. We completely characterize the eigenstates of this system, delineating new regimes via both analytical high-order perturbation theory and numerical exact diagonalization. Among these regimes are mixed Josephson- and Fock-like behavior, crossings in both excited and ground states, and shadows of macroscopic superposition states.

  3. Sensing Super-position: Visual Instrument Sensor Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2006-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an

  4. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics

    NASA Astrophysics Data System (ADS)

    Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2016-09-01

    A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.

  5. Annular and Total Solar Eclipses of 2010

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, J.

    2008-01-01

    While most NASA eclipse bulletins cover a single eclipse, this publication presents predictions for two solar eclipses during 2010. This has required a different organization of the material into the following sections. Section 1 -- Eclipse Predictions: The section consists of a general discussion about the eclipse path maps, Besselian elements, shadow contacts, eclipse path tables, local circumstances tables, and the lunar limb profile. Section 2 -- Annular Solar Eclipse of 2010 Ja n 15: The section covers predictions and weather prospects for the annular eclipse. Section 3 -- Total Solar Eclipse of 2010 Jul 11: The se ction covers predictions and weather prospects for the total eclipse. Section 4 -- Observing Eclipses: The section provides information on eye safety, solar filters, eclipse photography, and making contact timings from the path limits. Section 5 -- Eclipse Resources: The final section contains a number of resources including information on the IAU Working Group on Eclipses, the Solar Eclipse Mailing List, the NASA eclipse bulletins on the Internet, Web sites for the two 2010 eclipses, and a summary identifying the algorithms, ephemerides, and paramete rs used in the eclipse predictions.

  6. Detonation diffraction from an annular channel

    NASA Astrophysics Data System (ADS)

    Meredith, James; Ng, Hoi Dick; Lee, John H. S.

    2010-12-01

    In this study, gaseous detonation diffraction from an annular channel was investigated with a streak camera and the critical pressure for transmission of the detonation wave was obtained. The annular channel was used to approximate an infinite slot resulting in cylindrically expanding detonation waves. Two mixtures, stoichiometric acetylene-oxygen and stoichiometric acetylene-oxygen with 70% Ar dilution, were tested in a 4.3 and 14.3 mm channel width ( W). The undiluted and diluted mixtures were found to have values of the critical channel width over the cell size around 3 and 12 respectively. Comparing these results to values of the critical diameter ( d c ), in which a spherical detonation occurs, a value of critical d c / W c near 2 is observed for the highly diluted mixture. This value corresponds to the geometrical factor of the curvature term between a spherical and cylindrical diverging wave. Hence, the result is in support of Lee's proposed mechanism [Lee in Dynamics of Exothermicity, pp. 321, Gordon and Breach, Amsterdam, 1996] for failure due to diffraction based on curvature in stable mixtures such as those highly argon diluted with very regular detonation cellular patterns.

  7. Exact analytical solution for the vector electromagnetic field of Gaussian, flattened Gaussian, and annular Gaussian laser modes.

    PubMed

    Sepke, Scott M; Umstadter, Donald P

    2006-05-15

    The exact vector integral solution for all the electromagnetic field components of a general flattened Gaussian laser mode is derived by using the angular spectrum method. This solution includes the pure and annular Gaussian modes as special cases. The integrals are of the form of Gegenbauer's finite integral and are computed analytically for each case, yielding fields satisfying the Maxwell equations exactly in the form of quickly converging Fourier-Gegenbauer series. PMID:16642134

  8. Single-Atom Gating of Quantum State Superpositions

    SciTech Connect

    Moon, Christopher

    2010-04-28

    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.

  9. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2011-01-18

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  10. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-06-21

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  11. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2010-06-29

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  12. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2008-10-28

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  13. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-05-31

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  14. Virtual cathode microwave generator having annular anode slit

    SciTech Connect

    Kwan, T.J.T.; Snell, C.M.

    1988-03-08

    A microwave generator using an oscillating virtual cathode is described comprising: a cathode for emitting electrons; an anode for accelerating emitted electrons from the cathode, the anode having an annular slit therethrough effective for forming the virtual cathode and having at least one range thickness relative to electrons reflected from the virtual cathode; and magnet means for producing a magnetic field having a field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit and to enable the electrons reflected from the virtual cathode to axially diverge from the annular beam. The reflected electrons return toward the cathode diverge from the annular beam and are absorbed by the anode to substantially eliminate electrons reflexing between the cathode and the virtual cathode.

  15. Reconstruction of nonstationary sound fields based on the time domain plane wave superposition method.

    PubMed

    Zhang, Xiao-Zheng; Thomas, Jean-Hugh; Bi, Chuan-Xing; Pascal, Jean-Claude

    2012-10-01

    A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform that is generally used in time domain holography and real-time near-field acoustic holography, and therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform in theory and makes possible to use an irregular microphone array. The feasibility of the proposed method is demonstrated by numerical simulations and an experiment with two speakers.

  16. Effects study on the thermal stresses in a LEU metal foil annular target.

    PubMed

    Govindarajan, Srisharan G; Solbrekken, Gary L

    2015-09-01

    The effects of fission gas pressure, uranium swelling and thermal contact conductance on the thermal-mechanical behavior of an annular target containing a low-enriched uranium foil (LEU) encapsulated in a nickel foil have been presented in this paper. The draw-plug assembly method is simulated to obtain the residual stresses, which are applied to the irradiation model as initial inputs, and the integrated assembly-irradiation process is simulated as an axisymmetric problem using the commercial finite element code Abaqus FEA. Parametric studies were performed on the LEU heat generation rate and the results indicate satisfactory irradiation performance of the annular target. The temperature and stress margins have been provided along with a discussion of the results. PMID:26036440

  17. Annular array and method of manufacturing same

    DOEpatents

    Day, Robert A.

    1989-01-01

    A method for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90.degree.. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings, hold the transducer together until it can be mounted on a lens.

  18. Electron diffusion in the annular Penning trap

    NASA Astrophysics Data System (ADS)

    Robertson, Scott; Quraishi, Qudsia; Walch, Bob

    2002-11-01

    Transport by cross-field diffusion has been studied in the annular Penning trap in which a nonneutral plasma of electrons is contained between concentric cylinders. At densities sufficiently low (<10^5 cm-3) to suppress mobility transport arising from the space charge electric field, the dominant sources of transport are diffusion from collisions of electrons with added helium gas and asymmetry transport from stray fields. The collisional diffusivity is shown to scale linearly with collision frequency and inversely with the square of the axial magnetic field. The measured mean energy is initially 0.3 eV and the least energetic electrons are lost more slowly as a consequence of the energy dependence of the diffusivity. Decay constants are about a factor of four higher than calculated from the electron-helium momentum transfer collision frequency. Both the asymmetry transport and the collisional transport are shown to depend upon the cleanliness of the trap surfaces.

  19. Electron diffusion in the annular Penning trap

    NASA Astrophysics Data System (ADS)

    Quraishi, Qudsia; Robertson, Scott; Walch, Bob

    2002-08-01

    Transport by cross-field diffusion has been studied in the annular Penning trap in which a nonneutral plasma of electrons is contained between concentric cylinders. At densities sufficiently low (<105 cm-3) to suppress mobility transport arising from the space charge electric field, the dominant sources of transport are diffusion from collisions of electrons with added helium gas and asymmetry transport from stray fields. The collisional diffusivity is shown to scale linearly with collision frequency and inversely with the square of the axial magnetic field. The measured mean energy is initially 0.3 eV and the least energetic electrons are lost more slowly as a consequence of the energy dependence of the diffusivity. Decay constants are about a factor of four higher than calculated from the electron-helium momentum transfer collision frequency. Both the asymmetry transport and the collisional transport are shown to depend upon the cleanliness of the trap surfaces.

  20. The liquid annular reactor system (LARS) propulsion

    SciTech Connect

    Maise, G.; Lazareth, O.W.; Horn, F.; Powell, J.R.; Ludewig, H. ); Lenard, R.X. )

    1991-01-05

    A new concept for very high specific impulse ({gt}2000 seconds) direct nuclear propulsion is described. The concept, termed LARS (Liquid Annular Reactor System) uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures ({similar to}6000 K). Operating pressure is moderate ({similar to}10 atm), with the result that the outlet hydrogen is virtually 100% dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use 7 rotating fuel elements, are beryllium moderated and have critical radii of {similar to}100 cm (core L/D{approx}1.5).

  1. The Liquid Annular Reactor System (LARS) propulsion

    NASA Technical Reports Server (NTRS)

    Powell, James; Ludewig, Hans; Horn, Frederick; Lenard, Roger

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5).

  2. Recurrent Annular Peripheral Choroidal Detachment after Trabeculectomy

    PubMed Central

    Liu, Shaohui; Sun, Lisa L.; Kavanaugh, A. Scott; Langford, Marlyn P.; Liang, Chanping

    2013-01-01

    We report a challenging case of recurrent flat anterior chamber without hypotony after trabeculectomy in a 54-year-old Black male with a remote history of steroid-treated polymyositis, cataract surgery, and uncontrolled open angle glaucoma. The patient presented with a flat chamber on postoperative day 11, but had a normal fundus exam and intraocular pressure (IOP). Flat chamber persisted despite treatment with cycloplegics, steroids, and a Healon injection into the anterior chamber. A transverse B-scan of the peripheral fundus revealed a shallow annular peripheral choroidal detachment. The suprachoroidal fluid was drained. The patient presented 3 days later with a recurrent flat chamber and an annular peripheral choroidal effusion. The fluid was removed and reinforcement of the scleral flap was performed with the resolution of the flat anterior chamber. A large corneal epithelial defect developed after the second drainage. The oral prednisone was tapered quickly and the topical steroid was decreased. One week later, his vision decreased to count fingers with severe corneal stromal edema and Descemet's membrane folds that improved to 20/50 within 24 h of resumption of the oral steroid and frequent topical steroid. The patient's visual acuity improved to 20/20 following a slow withdrawal of the oral and topical steroid. Eight months after surgery, the IOP was 15 mm Hg without glaucoma medication. The detection of a shallow anterior choroidal detachment by transverse B-scan is critical to making the correct diagnosis. Severe cornea edema can occur if the steroid is withdrawn too quickly. Thus, steroids should be tapered cautiously in steroid-dependent patients. PMID:24348402

  3. Disseminated granuloma annulare: study on eight cases.

    PubMed

    Pătraşcu, V; Giurcă, Claudia; Ciurea, Raluca Niculina; Georgescu, Claudia Valentina

    2013-01-01

    Granuloma annulare (GA) is classified as localized, generalized/disseminated, subcutaneous, and perforating types. The studies show connection with diabetes mellitus, lipidic metabolic disorders, malignant diseases, thyroid disorders, infections (HBV, HCV, HIV). We performed a retrospective study between 2010-2011, regarding disseminated GA (GAD), and the relationship between GAD and other comorbidities. We clinically and histologically diagnosed eight cases of GAD. The patients were also investigated for the diagnosis of associated diseases. The treatment included topical corticosteroids, antihistamines, Calcipotriol/Betamethasone, Tacrolimus 0.03%, Pentoxifylline, Hydroxychloroquine. Therapeutic response was assessed one month and three months after hospitalization. Our patients were five women and three men, aged 46-68 years, mean age 57.25 years, with a disease history of one year and a half (between three months and four years). The lesions occurred in the upper extremities (eight cases), distal extremities (three cases), cervical area (two cases), and trunk (five cases). In seven cases, we found annular appearance and one patient had disseminated small papules eruption. Associated pathology was diabetes mellitus type II (five cases), overweight and obesity (five cases), dyslipidemia (three cases), hypothyroidism (one case), rheumatoid arthritis (one case), external ear canal basal carcinoma (one case). Although there is controversy regarding the relationship between GAD and associated diseases, it is accepted that it is significantly associated with diabetes mellitus, also found in our study in five out of eight cases. We noticed obvious improvements after local and general treatment. It is confirmed that GAD is prevalent in women, over 40-year-old. GAD is often associated with diabetes and dyslipidemia, therefore it is necessary to investigate patients in this direction. The histopathological exam is essential for an accurate confirmation of GA. PMID

  4. Improved scatter correction using adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Sun, M.; Star-Lack, J. M.

    2010-11-01

    Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.

  5. Planar Pressure Field Determination in the Initial Merging Zone of an Annular Swirling Jet Based on Stereo-PIV Measurements

    PubMed Central

    Vanierschot, Maarten; Van den Bulck, Eric

    2008-01-01

    In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.

  6. Entanglement of mixed macroscopic superpositions: An entangling-power study

    SciTech Connect

    Paternostro, M.; Kim, M. S.; Jeong, H.

    2006-01-15

    We investigate entanglement properties of a recently introduced class of macroscopic quantum superpositions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables. We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modification of the protocol which makes our proposal realizable within the current experimental capabilities.

  7. Accelerated Superposition State Molecular Dynamics for Condensed Phase Systems.

    PubMed

    Ceotto, Michele; Ayton, Gary S; Voth, Gregory A

    2008-04-01

    An extension of superposition state molecular dynamics (SSMD) [Venkatnathan and Voth J. Chem. Theory Comput. 2005, 1, 36] is presented with the goal to accelerate timescales and enable the study of "long-time" phenomena for condensed phase systems. It does not require any a priori knowledge about final and transition state configurations, or specific topologies. The system is induced to explore new configurations by virtue of a fictitious (free-particle-like) accelerating potential. The acceleration method can be applied to all degrees of freedom in the system and can be applied to condensed phases and fluids. PMID:26620930

  8. A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons

    NASA Astrophysics Data System (ADS)

    Hibberd, K. E.; Dunning, C.; Links, J.

    2006-08-01

    We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrödinger operators. For the solution we derive here the potential of the Schrödinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane.

  9. Lie-Hamilton systems on the plane: applications and superposition rules

    NASA Astrophysics Data System (ADS)

    Blasco, Alfonso; Herranz, Francisco J.; de Lucas, Javier; Sardón, Cristina

    2015-08-01

    A Lie-Hamilton (LH) system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of Hamiltonian vector fields with respect to a Poisson structure. We provide new algebraic/geometric techniques to easily determine the properties of such Lie algebras on the plane, e.g., their associated Poisson bivectors. We study new and known LH systems on {{{R}}}2 with physical, biological and mathematical applications. New results cover Cayley-Klein Riccati equations, the here defined planar diffusion Riccati systems, complex Bernoulli differential equations and projective Schrödinger equations. Constants of motion for planar LH systems are explicitly obtained which, in turn, allow us to derive superposition rules through a coalgebra approach.

  10. Superposition states for quantum nanoelectronic circuits and their nonclassical properties

    NASA Astrophysics Data System (ADS)

    Choi, Jeong Ryeol

    2016-09-01

    Quantum properties of a superposition state for a series RLC nanoelectronic circuit are investigated. Two displaced number states of the same amplitude but with opposite phases are considered as components of the superposition state. We have assumed that the capacitance of the system varies with time and a time-dependent power source is exerted on the system. The effects of displacement and a sinusoidal power source on the characteristics of the state are addressed in detail. Depending on the magnitude of the sinusoidal power source, the wave packets that propagate in charge(q)-space are more or less distorted. Provided that the displacement is sufficiently high, distinct interference structures appear in the plot of the time behavior of the probability density whenever the two components of the wave packet meet together. This is strong evidence for the advent of nonclassical properties in the system, that cannot be interpretable by the classical theory. Nonclassicality of a quantum system is not only a beneficial topic for academic interest in itself, but its results can be useful resources for quantum information and computation as well.

  11. Experiments testing macroscopic quantum superpositions must be slow

    PubMed Central

    Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio

    2016-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation. PMID:26959656

  12. Superposition of Stochastic Processes and the Resulting Particle Distributions

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Dayeh, M. A.; Desai, M.; Fahr, H.; Jokipii, J. R.; Lee, M. A.

    2010-04-01

    Many observations of suprathermal and energetic particles in the solar wind and the inner heliosheath show that distribution functions scale approximately with the inverse of particle speed (v) to the fifth power. Although there are exceptions to this behavior, there is a growing need to understand why this type of distribution function appears so frequently. This paper develops the concept that a superposition of exponential and Gaussian distributions with different characteristic speeds and temperatures show power-law tails. The particular type of distribution function, f vprop v -5, appears in a number of different ways: (1) a series of Poisson-like processes where entropy is maximized with the rates of individual processes inversely proportional to the characteristic exponential speed, (2) a series of Gaussian distributions where the entropy is maximized with the rates of individual processes inversely proportional to temperature and the density of individual Gaussian distributions proportional to temperature, and (3) a series of different diffusively accelerated energetic particle spectra with individual spectra derived from observations (1997-2002) of a multiplicity of different shocks. Thus, we develop a proof-of-concept for the superposition of stochastic processes that give rise to power-law distribution functions.

  13. Evolution of superpositions of quantum states through a level crossing

    SciTech Connect

    Torosov, B. T.; Vitanov, N. V.

    2011-12-15

    The Landau-Zener-Stueckelberg-Majorana (LZSM) model is widely used for estimating transition probabilities in the presence of crossing energy levels in quantum physics. This model, however, makes the unphysical assumption of an infinitely long constant interaction, which introduces a divergent phase in the propagator. This divergence remains hidden when estimating output probabilities for a single input state insofar as the divergent phase cancels out. In this paper we show that, because of this divergent phase, the LZSM model is inadequate to describe the evolution of pure or mixed superposition states across a level crossing. The LZSM model can be used only if the system is initially in a single state or in a completely mixed superposition state. To this end, we show that the more realistic Demkov-Kunike model, which assumes a hyperbolic-tangent level crossing and a hyperbolic-secant interaction envelope, is free of divergences and is a much more adequate tool for describing the evolution through a level crossing for an arbitrary input state. For multiple crossing energies which are reducible to one or more effective two-state systems (e.g., by the Majorana and Morris-Shore decompositions), similar conclusions apply: the LZSM model does not produce definite values of the populations and the coherences, and one should use the Demkov-Kunike model instead.

  14. Experiments testing macroscopic quantum superpositions must be slow.

    PubMed

    Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio

    2016-03-09

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.

  15. Experiments testing macroscopic quantum superpositions must be slow

    NASA Astrophysics Data System (ADS)

    Mari, Andrea; de Palma, Giacomo; Giovannetti, Vittorio

    2016-03-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.

  16. Modeling scattering from azimuthally symmetric bathymetric features using wavefield superposition.

    PubMed

    Fawcett, John A

    2007-12-01

    In this paper, an approach for modeling the scattering from azimuthally symmetric bathymetric features is described. These features are useful models for small mounds and indentations on the seafloor at high frequencies and seamounts, shoals, and basins at low frequencies. A bathymetric feature can be considered as a compact closed region, with the same sound speed and density as one of the surrounding media. Using this approach, a number of numerical methods appropriate for a partially buried target or facet problem can be applied. This paper considers the use of wavefield superposition and because of the azimuthal symmetry, the three-dimensional solution to the scattering problem can be expressed as a Fourier sum of solutions to a set of two-dimensional scattering problems. In the case where the surrounding two half spaces have only a density contrast, a semianalytic coupled mode solution is derived. This provides a benchmark solution to scattering from a class of penetrable hemispherical bosses or indentations. The details and problems of the numerical implementation of the wavefield superposition method are described. Example computations using the method for a simple scattering feature on a seabed are presented for a wide band of frequencies.

  17. Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions

    NASA Astrophysics Data System (ADS)

    Wan, C.; Scala, M.; Morley, G. W.; Rahman, ATM. A.; Ulbricht, H.; Bateman, J.; Barker, P. F.; Bose, S.; Kim, M. S.

    2016-09-01

    We propose an interferometric scheme based on an untrapped nano-object subjected to gravity. The motion of the center of mass (c.m.) of the free object is coupled to its internal spin system magnetically, and a free flight scheme is developed based on coherent spin control. The wave packet of the test object, under a spin-dependent force, may then be delocalized to a macroscopic scale. A gravity induced dynamical phase (accrued solely on the spin state, and measured through a Ramsey scheme) is used to reveal the above spatially delocalized superposition of the spin-nano-object composite system that arises during our scheme. We find a remarkable immunity to the motional noise in the c.m. (initially in a thermal state with moderate cooling), and also a dynamical decoupling nature of the scheme itself. Together they secure a high visibility of the resulting Ramsey fringes. The mass independence of our scheme makes it viable for a nano-object selected from an ensemble with a high mass variability. Given these advantages, a quantum superposition with a 100 nm spatial separation for a massive object of 1 09 amu is achievable experimentally, providing a route to test postulated modifications of quantum theory such as continuous spontaneous localization.

  18. Experiments testing macroscopic quantum superpositions must be slow.

    PubMed

    Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio

    2016-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation. PMID:26959656

  19. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    SciTech Connect

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  20. HAMLET forms annular oligomers when deposited with phospholipid monolayers.

    PubMed

    Baumann, Anne; Gjerde, Anja Underhaug; Ying, Ming; Svanborg, Catharina; Holmsen, Holm; Glomm, Wilhelm R; Martinez, Aurora; Halskau, Oyvind

    2012-04-20

    Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET.

  1. Pollution technology program, can-annular combustor engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  2. Virtual cathode microwave generator having annular anode slit

    DOEpatents

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  3. Principle of radial transport in low temperature annular plasmas

    SciTech Connect

    Zhang, Yunchao Charles, Christine; Boswell, Rod

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.

  4. Experimental Results for an Annular Aerospike with Differential Throttling

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.

    2005-01-01

    A) MSFC funded an internal study on Altitude Compensating Nozzles: 1) Develop an ACN design and performance prediction tool. 2) Design, build and test cold flow ACN nozzles. 3) An annular aerospike nozzle was designed and tested. 4) Incorporated differential throttling to assess Thrust Vector Control. B) Objective of the test hardware: 1) Provide design tool verification. 2) Provide benchmark data for CFD calculations. 3) Experimentally measure side force, or TVC, for a differentially throttled annular aerospike.

  5. The Experimental Thermal Behavior of AN Annular Structure

    NASA Astrophysics Data System (ADS)

    Hwang, Jeong-Ki; Suh, Chang-Min; Kim, Chae-Ho

    A half-scaled large structural model for an annular structure was built, and its behaviors were tested and obtained by thermal cyclic loads. The model design and test conditions were determined to take into consideration the thermal and mechanical loads acting on the annular structure by numerical methods. Temperature profiles and strains of the flexure were measured during the test. After completion of the thermal cyclic tests, no evidence of crack initiation and propagation were identified by a dye penetration test.

  6. Elastic-plastic analysis of annular plate problems using NASTRAN

    NASA Technical Reports Server (NTRS)

    Chen, P. C. T.

    1983-01-01

    The plate elements of the NASTRAN code are used to analyze two annular plate problems loaded beyond the elastic limit. The first problem is an elastic-plastic annular plate loaded externally by two concentrated forces. The second problem is stressed radially by uniform internal pressure for which an exact analytical solution is available. A comparison of the two approaches together with an assessment of the NASTRAN code is given.

  7. Student ability to distinguish between superposition states and mixed states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-12-01

    Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the experimental implications of a superposition state. In particular, they fail to recognize how a superposition state and a mixed state (sometimes called a "lack of knowledge" state) can produce different experimental results. We present data that suggest that superposition in quantum mechanics is a difficult concept for students enrolled in sophomore-, junior-, and graduate-level quantum mechanics courses. We illustrate how an interactive lecture tutorial can improve student understanding of quantum mechanical superposition. A longitudinal study suggests that the impact persists after an additional quarter of quantum mechanics instruction that does not specifically address these ideas.

  8. New mitral annular force transducer optimized to distinguish annular segments and multi-plane forces.

    PubMed

    Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard

    2016-03-21

    Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices.

  9. Solar cycle modulation of Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Kuroda, Yuhji

    2016-04-01

    Climate is known to be affected by various factors, including oceanic changes and volcanic eruptions. 11-year solar cycle change is one of such important factors. Observational analysis shows that the winter-mean North Atlantic Oscillation (NAO) and late-winter/spring Southern Annular Mode (SAM) show structural modulation associated with 11-year solar cycle. In fact, these signals tend to extend from surface to upper stratosphere and persistent longer period only in the High Solar (HS) years. In the present study, we used 35-year record of ERA-Interim reanalysis data and performed wave-energy and momentum analysis on the solar-cycle modulation of the SAM to examine key factors to create such solar-SAM relationship. It is found that enhanced wave-mean flow interaction tends to take place in the middle stratosphere in association with enhanced energy input from diabatic heating on September only in HS years. The result suggests atmospheric and solar conditions on September are keys to create solar-SAM relationship.

  10. Fluxon Dynamics in Elliptic Annular Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto; Mygind, Jesper

    2016-04-01

    We analyze the dynamics of a magnetic flux quantum (current vortex) trapped in a current-biased long planar elliptic annular Josephson tunnel junction. The system is modeled by a perturbed sine-Gordon equation that determines the spatial and temporal behavior of the phase difference across the tunnel barrier separating the two superconducting electrodes. In the absence of an external magnetic field, the fluxon dynamics in an elliptic annulus does not differ from that of a circular annulus where the stationary fluxon speed merely is determined by the system losses. The interaction between the vortex magnetic moment and a spatially homogeneous in-plane magnetic field gives rise to a tunable periodic non-sinusoidal potential which is strongly dependent on the annulus aspect ratio. We study the escape of the vortex from a well in the tilted potential when the bias current exceeds the depinning current. The smallest depinning current as well as the lowest sensitivity of the annulus to the external field is achieved when the axes ratio is equal to √{2}. The presented extensive numerical results are in good agreement with the findings of the perturbative approach. We also probe the rectifying properties of an asymmetric potential implemented with an egg-shaped annulus formed by two semi-elliptic arcs.

  11. Role of the superposition principle for enhancing the efficiency of the quantum-mechanical Carnot engine.

    PubMed

    Abe, Sumiyoshi; Okuyama, Shinji

    2012-01-01

    The role of the superposition principle is discussed for the quantum-mechanical Carnot engine introduced by Bender, Brody, and Meister [J. Phys. A 33, 4427 (2000)]. It is shown that the efficiency of the engine can be enhanced by the superposition of quantum states. A finite-time process is also discussed and the condition of the maximum power output is presented. Interestingly, the efficiency at the maximum power is lower than that without superposition.

  12. The origin of non-classical effects in a one-dimensional superposition of coherent states

    NASA Technical Reports Server (NTRS)

    Buzek, V.; Knight, P. L.; Barranco, A. Vidiella

    1992-01-01

    We investigate the nature of the quantum fluctuations in a light field created by the superposition of coherent fields. We give a physical explanation (in terms of Wigner functions and phase-space interference) why the 1-D superposition of coherent states in the direction of the x-quadrature leads to the squeezing of fluctuations in the y-direction, and show that such a superposition can generate the squeezed vacuum and squeezed coherent states.

  13. The number of terms in the superpositions upper bounds the amount of the coherence change

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Fei

    2016-07-01

    For the l1 norm of coherence, what is the relation between the coherence of a state and the individual terms that by superposition yield the state? We find upper bounds on the coherence change before and after the superposition. When every term comes from one Hilbert subspace, the upper bound is the number of terms in the superpositions minus one. However, when the terms have support on orthogonal subspaces, the coherence of the superposition cannot be more the double of the above upper bound than the average of the coherence of the all terms being superposed.

  14. The number of terms in the superpositions upper bounds the amount of the coherence change

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Fei

    2016-10-01

    For the l1 norm of coherence, what is the relation between the coherence of a state and the individual terms that by superposition yield the state? We find upper bounds on the coherence change before and after the superposition. When every term comes from one Hilbert subspace, the upper bound is the number of terms in the superpositions minus one. However, when the terms have support on orthogonal subspaces, the coherence of the superposition cannot be more the double of the above upper bound than the average of the coherence of the all terms being superposed.

  15. Robustness of superposition states evolving under the influence of a thermal reservoir

    SciTech Connect

    Sales, J. S.; Almeida, N. G. de

    2011-06-15

    We study the evolution of superposition states under the influence of a reservoir at zero and finite temperatures in cavity quantum electrodynamics aiming to know how their purity is lost over time. The superpositions studied here are composed of coherent states, orthogonal coherent states, squeezed coherent states, and orthogonal squeezed coherent states, which we introduce to generalize the orthogonal coherent states. For comparison, we also show how the robustness of the superpositions studied here differs from that of a qubit given by a superposition of zero- and one-photon states.

  16. Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space

    NASA Astrophysics Data System (ADS)

    Volkoff, T. J.; Whaley, K. B.

    2014-12-01

    We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.

  17. Solving modal equations of motion with initial conditions using MSC/NASTRAN DMAP. Part 1: Implementing exact mode superposition

    NASA Technical Reports Server (NTRS)

    Abdallah, Ayman A.; Barnett, Alan R.; Ibrahim, Omar M.; Manella, Richard T.

    1993-01-01

    Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center.

  18. Superposition method for analysis of free-edge stresses

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.; Raju, I. S.

    1983-01-01

    Superposition techniques were used to transform the edge stress problem for composite laminates into a more lucid form. By eliminating loads and stresses not contributing to interlaminar stresses, the essential aspects of the edge stress problem are easily recognized. Transformed problem statements were developed for both mechanical and thermal loads. Also, a technique for approximate analysis using a two dimensional plane strain analysis was developed. Conventional quasi-three dimensional analysis was used to evaluate the accuracy of the transformed problems and the approximate two dimensional analysis. The transformed problems were shown to be exactly equivalent to the original problems. The approximate two dimensional analysis was found to predict the interlaminar normal and shear stresses reasonably well.

  19. Sensing Super-Position: Human Sensing Beyond the Visual Spectrum

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2007-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This paper addresses the technical feasibility of augmenting human vision through Sensing Super-position by mixing natural Human sensing. The current implementation of the device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of Lie human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system. The

  20. Adiabatic rotation, quantum search, and preparation of superposition states

    NASA Astrophysics Data System (ADS)

    Siu, M. Stewart

    2007-06-01

    We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied “straight line” adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev’s toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm.

  1. Predicting jet radius in electrospinning by superpositioning exponential functions

    NASA Astrophysics Data System (ADS)

    Widartiningsih, P. M.; Iskandar, F.; Munir, M. M.; Viridi, S.

    2016-08-01

    This paper presents an analytical study of the correlation between viscosity and fiber diameter in electrospinning. Control over fiber diameter in electrospinning process was important since it will determine the performance of resulting nanofiber. Theoretically, fiber diameter was determined by surface tension, solution concentration, flow rate, and electric current. But experimentally it had been proven that significantly viscosity had an influence to fiber diameter. Jet radius equation in electrospinning process was divided into three areas: near the nozzle, far from the nozzle, and at jet terminal. There was no correlation between these equations. Superposition of exponential series model provides the equations combined into one, thus the entire of working parameters on electrospinning take a contribution to fiber diameter. This method yields the value of solution viscosity has a linear relation to jet radius. However, this method works only for low viscosity.

  2. X-ray diffraction from bone employing annular and semi-annular beams.

    PubMed

    Dicken, A J; Evans, J P O; Rogers, K D; Stone, N; Greenwood, C; Godber, S X; Prokopiou, D; Clement, J G; Lyburn, I D; Martin, R M; Zioupos, P

    2015-08-01

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as 'bone quality' need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of 'bone quality'. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.

  3. A note on superposition of two unknown states using Deutsch CTC model

    NASA Astrophysics Data System (ADS)

    Sami, Sasha; Chakrabarty, Indranil

    2016-08-01

    In a recent work, authors prove a yet another no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. In this short note, we show that in the presence of closed time-like curves (CTCs), one can indeed create superposition of unknown quantum states and evade the no-go result.

  4. Student Ability to Distinguish between Superposition States and Mixed States in Quantum Mechanics

    ERIC Educational Resources Information Center

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-01-01

    Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the…

  5. Non-axisymmetric annular curtain stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian

    2013-08-01

    A stability analysis of non-axisymmetric annular curtain is carried out for an axially moving viscous jet subject in surrounding viscous gas media. The effect of inertia, surface tension, gas-to-liquid density ratio, inner-to-outer radius ratio, and gas-to-liquid viscosity ratio on the stability of the jet is studied. In general, the axisymmetric disturbance is found to be the dominant mode. However, for small wavenumber, the non-axisymmetric mode is the most unstable mode and the one likely observed in reality. Inertia and the viscosity ratio for non-axisymmetric disturbances show a similar stability influence as observed for axisymmetric disturbances. The maximum growth rate in non-axisymmetric flow, interestingly, appears at very small wavenumber for all inertia levels. The dominant wavenumber increases (decreases) with inertia for non-axisymmetric (axisymmetric) flow. Gas-to-liquid density ratio, curvature effect, and surface tension, however, exhibit an opposite influence on growth rate compared to axisymmetric disturbances. Surface tension tends to stabilize the flow with reductions of the unstable wavenumber range and the maximum growth rate as well as the dominant wavenumber. The dominant wavenumber remains independent of viscosity ratio indicating the viscosity ratio increases the breakup length of the sheet with very little influence on the size of the drops. The range of unstable wavenumbers is affected only by curvature in axisymmetric flow, whereas all the stability parameters control the range of unstable wavenumbers in non-axisymmetric flow. Inertia and gas density increase the unstable wavenumber range, whereas the radius ratio, surface tension, and the viscosity ratio decrease the unstable wavenumber range. Neutral curves are plotted to separate the stable and unstable domains. Critical radius ratio decreases linearly and nonlinearly with the wavenumber for axisymmetric and non-axisymmetric disturbances, respectively. At smaller Weber numbers, a

  6. Granuloma Annulare Mimicking Sarcoidosis: Report of Patient With Localized Granuloma Annulare Whose Skin Lesions Show 3 Clinical Morphologies and 2 Histology Patterns.

    PubMed

    Cohen, Philip R; Carlos, Casey A

    2015-07-01

    Granuloma annulare, a benign dermatosis of undetermined etiology, typically presents in a localized or generalized form. It has 3 distinctive histologic patterns: an infiltrative (interstitial) pattern, a palisading granuloma pattern, and an epithelioid nodule (sarcoidal granuloma) pattern. A man whose granuloma annulare skin lesions mimicked sarcoidosis is described. His localized granuloma annulare presented with a total of 3 lesions that each had a distinctive clinical morphology: an annular lesion of individual papules, a dermal nodule, and a linear arrangement of 3 papules. Two of his lesions showed a palisading granuloma histology pattern of granuloma annulare; however, the linear papules on his posterior neck lesion demonstrated noncaseating granulomas consistent with either the epithelioid nodule histology pattern of granuloma annulare or sarcoidal granuloma compatible with sarcoidosis. A comprehensive evaluation excluded the diagnosis of systemic sarcoidosis. Using the PubMed database, an extensive literature search was performed on granuloma annulare, epithelioid nodule, sarcoidal granuloma, and sarcoidosis. The histology patterns of granuloma annulare-emphasizing the history and differentiating features of the epithelioid nodule pattern from cutaneous sarcoidosis-were reviewed. The epithelioid nodule (sarcoidal granuloma) histology pattern of granuloma annulare is uncommon and may mimic the histology changes observed in sarcoidosis skin lesions; the absence of asteroid or other giant cell inclusions and an increase in mucin deposition between the collagen bundles favor the diagnosis of granuloma annulare. In addition, the epithelioid nodule pattern of granuloma annulare can rarely also show other histologic patterns of granuloma annulare in the same biopsy specimen or concurrently present with other clinical lesions of granuloma annulare that demonstrate a palisading granuloma, or possibly an infiltrative, histology pattern. However, the presence of an

  7. Granuloma Annulare Mimicking Sarcoidosis: Report of Patient With Localized Granuloma Annulare Whose Skin Lesions Show 3 Clinical Morphologies and 2 Histology Patterns.

    PubMed

    Cohen, Philip R; Carlos, Casey A

    2015-07-01

    Granuloma annulare, a benign dermatosis of undetermined etiology, typically presents in a localized or generalized form. It has 3 distinctive histologic patterns: an infiltrative (interstitial) pattern, a palisading granuloma pattern, and an epithelioid nodule (sarcoidal granuloma) pattern. A man whose granuloma annulare skin lesions mimicked sarcoidosis is described. His localized granuloma annulare presented with a total of 3 lesions that each had a distinctive clinical morphology: an annular lesion of individual papules, a dermal nodule, and a linear arrangement of 3 papules. Two of his lesions showed a palisading granuloma histology pattern of granuloma annulare; however, the linear papules on his posterior neck lesion demonstrated noncaseating granulomas consistent with either the epithelioid nodule histology pattern of granuloma annulare or sarcoidal granuloma compatible with sarcoidosis. A comprehensive evaluation excluded the diagnosis of systemic sarcoidosis. Using the PubMed database, an extensive literature search was performed on granuloma annulare, epithelioid nodule, sarcoidal granuloma, and sarcoidosis. The histology patterns of granuloma annulare-emphasizing the history and differentiating features of the epithelioid nodule pattern from cutaneous sarcoidosis-were reviewed. The epithelioid nodule (sarcoidal granuloma) histology pattern of granuloma annulare is uncommon and may mimic the histology changes observed in sarcoidosis skin lesions; the absence of asteroid or other giant cell inclusions and an increase in mucin deposition between the collagen bundles favor the diagnosis of granuloma annulare. In addition, the epithelioid nodule pattern of granuloma annulare can rarely also show other histologic patterns of granuloma annulare in the same biopsy specimen or concurrently present with other clinical lesions of granuloma annulare that demonstrate a palisading granuloma, or possibly an infiltrative, histology pattern. However, the presence of an

  8. Annular lupus vulgaris: an unusual case undiagnosed for five years.

    PubMed

    Gönül, Müzeyyen; Kiliç, Arzu; Külcü Cakmak, Seray; Gül, Ulker; Koçak, Oğuzhan; Demiriz, Murat

    2007-01-01

    Tuberculosis is still a serious problem in both developing and developed countries. It is often confused with various cutaneous disorders both clinically and histopathologically.A 46-year-old woman attended our clinic with progressive, asymptomatic, annular skin lesions on her right upper extremity for 5 years. She had received many different therapies for these lesions at other institutions previously but these medications were not effective and the lesions deteriorated. On dermatological examination, well-demarcated, irregular bordered, violaceous colored, elevated and crusted annular lesions on her right hand dorsum and forearm were observed. She was diagnosed as having lupus vulgaris clinically and histopathologically. Antituberculosis therapy was administered and regression of the lesions started in the second week of medication.We report a case of long-standing, undiagnosed and uncommon, annular form of lupus vulgaris. We want to stress that clinical and histopathological findings are still important for the diagnosis of cutaneous tuberculosis.

  9. Imaging performance of annular apertures. II - Line spread functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1978-01-01

    Line images formed by aberration-free optical systems with annular apertures are investigated in the whole range of central obstruction ratios. Annular apertures form lines images with central and side line groups. The number of lines in each line group is given by the ratio of the outer diameter of the annular aperture divided by the width of the annulus. The theoretical energy fraction of 0.889 in the central line of the image formed by an unobstructed aperture increases for centrally obstructed apertures to 0.932 for the central line group. Energy fractions for the central and side line groups are practically constant for all obstruction ratios and for each line group. The illumination of rectangular secondary apertures of various length/width ratios by apertures of various obstruction ratios is discussed.

  10. High-Power, Annular-Beam Klystron Amplifiers

    NASA Astrophysics Data System (ADS)

    Pasour, John; Smithe, David; Ludeking, Larry; Friedman, Moshe

    2002-08-01

    Annular beam klystron amplifiers are being developed at L-band and at X-band. These devices are designed to operate at power levels of hundreds of MW to approx1 GW, with pulse durations up to 800 nsec. The L-band amplifier uses an 11-cm-diameter, 3-mm-thick annular beam (450 kV, 4.5 kA) inside an open beam tube with large-gap cavities. The X-band amplifier employs a 12-cm-diameter annular beam that propagates between inner and outer grounded cylinders and cavity structures. At higher frequencies or power levels, this so-called triaxial configuration provides a significant advantage over the open-cylinder configuration. In effect, it is a sheet-beam klystron bent into a full circle, thereby avoiding the edge effects. Alternatively, it can be thought of as the continuum limit of the multi-beam klystron.

  11. The Annular Gap: Gamma-Ray & Radio Emission of Pulsars

    NASA Astrophysics Data System (ADS)

    Qiao, G. J.; Du, Y. J.; Han, J. L.; Xu, R. X.

    2013-01-01

    Pulsars have been found more than 40 years. Observations from radio to gamma-rays present abundant information. However, the radiation mechanism is still an open question. It is found that the annular gap could be formed in the magnetosphere of pulsars (neutron stars or quark stars), which combines the advantages of the polar cap, slot gap and outer gap models. It is emphasized that observations of some radio pulsars, normal and millisecond gamma-ray pulsars (MSGPs) show that the annular gap would play a very important role. Here we show some observational and theoretical evidences about the annular gap. For example, bi-drifting sub-pulses; radio and gamma-ray millisecond pulsars and so on.

  12. Large quantum superpositions of a nanoparticle immersed in superfluid helium

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, O.

    2016-06-01

    Preparing and detecting spatially extended quantum superpositions of a massive object comprises an important fundamental test of quantum theory. These quantum states are extremely fragile and tend to quickly decay into incoherent mixtures due to the environmental decoherence. Experimental setups considered up to date address this threat in a conceptually straightforward way—by eliminating the environment, i.e., by isolating an object in a sufficiently high vacuum. We show that another option exists: decoherence is suppressed in the presence of a strongly interacting environment if this environment is superfluid. Indeed, as long as an object immersed in a pure superfluid at zero temperature moves with a velocity below the critical one, it does not create, absorb, or scatter any excitations of the superfluid. Hence, in this idealized situation the decoherence is absent. In reality the decoherence will be present due to thermal excitations of the superfluid and impurities contaminating the superfluid. We examine various decoherence channels in the superfluid

  13. Superposition, Transition Probabilities and Primitive Observables in Infinite Quantum Systems

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Størmer, Erling

    2015-10-01

    The concepts of superposition and of transition probability, familiar from pure states in quantum physics, are extended to locally normal states on funnels of type I∞ factors. Such funnels are used in the description of infinite systems, appearing for example in quantum field theory or in quantum statistical mechanics; their respective constituents are interpreted as algebras of observables localized in an increasing family of nested spacetime regions. Given a generic reference state (expectation functional) on a funnel, e.g. a ground state or a thermal equilibrium state, it is shown that irrespective of the global type of this state all of its excitations, generated by the adjoint action of elements of the funnel, can coherently be superimposed in a meaningful manner. Moreover, these states are the extreme points of their convex hull and as such are analogues of pure states. As further support of this analogy, transition probabilities are defined, complete families of orthogonal states are exhibited and a one-to-one correspondence between the states and families of minimal projections on a Hilbert space is established. The physical interpretation of these quantities relies on a concept of primitive observables. It extends the familiar framework of observable algebras and avoids some counter intuitive features of that setting. Primitive observables admit a consistent statistical interpretation of corresponding measurements and their impact on states is described by a variant of the von Neumann-Lüders projection postulate.

  14. Solar Supergranulation Revealed as a Superposition of Traveling Waves

    NASA Technical Reports Server (NTRS)

    Gizon, L.; Duvall, T. L., Jr.; Schou, J.; Oegerle, William (Technical Monitor)

    2002-01-01

    40 years ago two new solar phenomena were described: supergranulation and the five-minute solar oscillations. While the oscillations have since been explained and exploited to determine the properties of the solar interior, the supergranulation has remained unexplained. The supergranules, appearing as convective-like cellular patterns of horizontal outward flow with a characteristic diameter of 30 Mm and an apparent lifetime of 1 day, have puzzling properties, including their apparent superrotation and the minute temperature variations over the cells. Using a 60-day sequence of data from the MDI (Michelson-Doppler Imager) instrument onboard the SOHO (Solar and Heliospheric Observatory) spacecraft, we show that the supergranulation pattern is formed by a superposition of traveling waves with periods of 5-10 days. The wave power is anisotropic with excess power in the direction of rotation and toward the equator, leading to spurious rotation rates and north-south flows as derived from correlation analyses. These newly discovered waves could play an important role in maintaining differential rotation in the upper convection zone by transporting angular momentum towards the equator.

  15. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  16. High energy transmission annular beam X-ray diffraction.

    PubMed

    Dicken, Anthony; Shevchuk, Alex; Rogers, Keith; Godber, Simon; Evans, Paul

    2015-03-01

    We demonstrate material phase retrieval by linearly translating extended polycrystalline samples along the symmetry axis of an annular beam of high-energy X-rays. A series of pseudo-monochromatic diffraction images are recorded from the dark region encompassed by the beam. We measure Bragg maxima from different annular gauge volumes in the form of bright spots in the X-ray diffraction intensity. We present the experiment data from three materials with different crystallographic structural properties i.e. near ideal, large grain size and preferred orientation. This technique shows great promise for analytical inspection tasks requiring highly penetrating radiation such as security screening, medicine and non-destructive testing.

  17. Portal annular pancreas: the pancreatic duct ring sign on MRCP

    PubMed Central

    Lath, Chinar O.; Agrawal, Dilpesh S.; Timins, Michael E.; Wein, Melissa M.

    2015-01-01

    Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance) of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature. PMID:26649117

  18. Topological suppression of optical tunneling in a twisted annular fiber

    SciTech Connect

    Ornigotti, M.; Valle, G. Della; Gatti, D.; Longhi, S.

    2007-08-15

    A classical wave-optics analog of topological (Aharonov-Bohm) suppression of tunneling in a double-well potential on a ring threaded by a magnetic flux is proposed. The optical system consists of a uniformly twisted optical fiber with a structured annular core, in which the fiber twist mimics the role of the magnetic flux in the corresponding quantum-mechanical problem. Light waves trapped in the annular core of the fiber experience an additional topological (Aharonov-Bohm) phase, which may lead to the destruction of optical tunneling at certain values of the twist rate.

  19. A reciprocal space approach for locating symmetry elements in Patterson superposition maps

    SciTech Connect

    Hendrixson, T.

    1990-09-21

    A method for determining the location and possible existence of symmetry elements in Patterson superposition maps has been developed. A comparison of the original superposition map and a superposition map operated on by the symmetry element gives possible translations to the location of the symmetry element. A reciprocal space approach using structure factor-like quantities obtained from the Fourier transform of the superposition function is then used to determine the best'' location of the symmetry element. Constraints based upon the space group requirements are also used as a check on the locations. The locations of the symmetry elements are used to modify the Fourier transform coefficients of the superposition function to give an approximation of the structure factors, which are then refined using the EG relation. The analysis of several compounds using this method is presented. Reciprocal space techniques for locating multiple images in the superposition function are also presented, along with methods to remove the effect of multiple images in the Fourier transform coefficients of the superposition map. In addition, crystallographic studies of the extended chain structure of (NHC{sub 5}H{sub 5})SbI{sub 4} and of the twinning method of the orthorhombic form of the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} are presented. 54 refs.

  20. Multi-functional annular fairing for coupling launch abort motor to space vehicle

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)

    2011-01-01

    An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.

  1. Generating superposition of up-to three photons for continuous variable quantum information processing.

    PubMed

    Yukawa, Mitsuyoshi; Miyata, Kazunori; Mizuta, Takahiro; Yonezawa, Hidehiro; Marek, Petr; Filip, Radim; Furusawa, Akira

    2013-03-11

    We develop an experimental scheme based on a continuous-wave (cw) laser for generating arbitrary superpositions of photon number states. In this experiment, we successfully generate superposition states of zero to three photons, namely advanced versions of superpositions of two and three coherent states. They are fully compatible with developed quantum teleportation and measurement-based quantum operations with cw lasers. Due to achieved high detection efficiency, we observe, without any loss correction, multiple areas of negativity of Wigner function, which confirm strongly nonclassical nature of the generated states. PMID:23482124

  2. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, T.E.; Franke, O.L.; Bennett, G.D.

    1984-01-01

    The principle of superposition, a powerful methematical technique for analyzing certain types of complex problems in many areas of science and technology, has important application in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that solutions to individual problems can be added together to obtain solutions to complex problems. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to groundwater hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader. (USGS)

  3. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1987-01-01

    The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.

  4. A convolution-superposition dose calculation engine for GPUs

    SciTech Connect

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe

    2010-03-15

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  5. Digital controller design: Analysis of the annular suspension pointing system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The annular suspension and pointing system (ASPS) a payload auxiliary pointing device of the space shuttle is briefly described along with the function of the digital controller. The equations of motion of a simplified plan planar model of the ASPS are derived. Results of computer simulations are discussed.

  6. Design curves for circular and annular duct silencers

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Ramakrishnan, R.

    1989-01-01

    Conventional models of sound propagation between porous walls (Scott, 1946) are adapted in order to calculate design curves for the lined circular and annular-duct silencers used in HVAC systems. The derivation of the governing equations is outlined, and results for two typical cases are presented graphically. Good agreement with published experimental data is demonstrated.

  7. Annular linear induction pump with an externally supported duct

    DOEpatents

    Craig, Edwin R.; Semken, Robert S.

    1979-01-01

    Several embodiments of an annular linear induction pump for pumping liquid metals are disclosed having the features of generally one pass flow of the liquid metal through the pump and an increased efficiency resulting from the use of thin duct walls to enclose the stator. The stator components of this pump are removable for repair and replacement.

  8. Fabrication and optical measurement of double-overlapped annular apertures

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Jiang, Xiaoxiao; Xia, Liangping; Tang, Linlong; Hu, Sheng; Lv, Jiangtao; Zhao, Hongquan; Si, Guangyuan; Shi, Ruiying

    2016-10-01

    We demonstrate double-overlapped annular aperture (DOAA) arrays fabricated in a gold film via focused ion beam milling. The high order resonance modes of DOAA are investigated both theoretically and experimentally. Polarization dependency is observed for DOAA arrays and lower order resonance modes in the mid-infrared range exhibit extraordinary optical transmission and dependency on geometric parameters.

  9. Global regularity for MHD Sisko fluid in annular pipe

    NASA Astrophysics Data System (ADS)

    Rahman, S.; Hayat, T.; Ahmad, B.

    2016-08-01

    The flow of Sisko fluid in an annular pipe is considered. The governing nonlinear equation of an incompressible Sisko fluid is modelled. The purpose of present paper is to obtain the global classical solutions for unsteady flow of magnetohydrodynamic Sisko fluid in terms of the bounded mean oscillations norm. Uniqueness of solution is also verified.

  10. RESIDENCE TIME DISTRIBUTION OF FLUIDS IN STIRRED ANNULAR PHOTOREACTORS

    EPA Science Inventory

    When gases flow through an annular photoreactor at constant rate, some of the gas spends more or less than the average residence time in the reactor. This spread of residence time can have an important effect on the performance of the reactor. this study tested how the residence...

  11. Subsonic annular wing theory with application to flow about nacelles

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1974-01-01

    A method has recently been developed for calculating the flow over a subsonic nacelle at zero angle of attack. The method makes use of annular wing theory and boundary-layer theory and has shown good agreement with both experimental data and more complex theoretical solutions. The method permits variation of the mass flow by changing the size of a center body.

  12. Design and Evaluation of a Research-Based Teaching Sequence: The Superposition of Electric Field.

    ERIC Educational Resources Information Center

    Viennot, L.; Rainson, S.

    1999-01-01

    Illustrates an approach to research-based teaching strategies and their evaluation. Addresses a teaching sequence on the superposition of electric fields implemented at the college level in an institutional framework subject to severe constraints. Contains 28 references. (DDR)

  13. Superposition states of ultracold bosons in rotating rings with a realistic potential barrier

    SciTech Connect

    Nunnenkamp, Andreas; Rey, Ana Maria; Burnett, Keith

    2011-11-15

    In a recent paper [Phys. Rev. A 82, 063623 (2010)] Hallwood et al. argued that it is feasible to create large superposition states with strongly interacting bosons in rotating rings. Here we investigate in detail how the superposition states in rotating-ring lattices depend on interaction strength and barrier height. With respect to the latter we find a trade-off between energy gap and quality of the superposition state. Most importantly, we go beyond the {delta}-function approximation for the barrier potential and show that the energy gap decreases exponentially with the number of particles for weak barrier potentials of finite width. These are crucial issues in the design of experiments to realize superposition states.

  14. On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis

    SciTech Connect

    Nie, J.; Wei, X.

    2011-07-17

    The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis. This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis.

  15. Consequences of the Superposition of Tidal Components on the Dynamics of the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Ward, W. E.; Das, U.; Du, J.

    2014-12-01

    It is now generally accepted that the superposition of tidal components results in geographic variations in their observed amplitudes in the mesosphere and lower thermosphere (MLT). This superposition also has implications for the dynamical and convective stability of the atmosphere at these heights. Spatial variations in the amplitude of the temperature and vertical displacement also have consequences for chemistry and chemical heating in this region. In this paper, these superposition effects are explored using diagnosed fields from the extended Canadian Middle Atmosphere Model and CMAM30. The nature and distribution of wind and temperature variability, the associated instabilities and chemical heating are discussed. Superposition effects have consequences for tidal dissipation and gravity wave propagation in the MLT. They also may be a cause for some of the inversion layers observed in this region of the atmosphere.

  16. Experimental research on secondary flows in annular turbine cascades at the Von Karman Institute

    NASA Astrophysics Data System (ADS)

    Boletis, E.

    Investigations of secondary flows in isolated annular cascades with collateral inlet boundary layers; in an annular turbine nozzle guide vane followed by a rotating blade row; in isolated annular cascades with skewed inlet boundary layers; and in a turbine stator preceded by a full stage are summarized. Secondary flow patterns in annular configurations, e.g., the mutual interference of the passage vortices and the radial pressure gradient, the radial migration of low momentum material, effects of tip contouring inlet skew are studied. Differences between the flow field in annular and straight cascades can be derived from comparison with other test results.

  17. Can the Hypothesis 'Photon Interferes only with Itself' be Reconciled with Superposition of Light from Multiple Beams or Sources?

    NASA Technical Reports Server (NTRS)

    Roychoudhuri, Chandrasekhar; Prasad, Narasimha S.; Peng, Qing

    2007-01-01

    Any superposition effect as measured (SEM) by us is the summation of simultaneous stimulations experienced by a detector due to the presence of multiple copies of a detectee each carrying different values of the same parameter. We discus the cases with light beams carrying same frequency for both diffraction and multiple beam Fabry-Perot interferometer and also a case where the two superposed light beams carry different frequencies. Our key argument is that if light really consists of indivisible elementary particle, photon, then it cannot by itself create superposition effect since the state vector of an elementary particle cannot carry more than one values of any parameter at the same time. Fortunately, semiclassical model explains all light induced interactions using quantized atoms and classical EM wave packet. Classical physics, with its deeper commitment to Reality Ontology, was better prepared to nurture the emergence of Quantum Mechanics and still can provide guidance to explore nature deeper if we pay careful attention to successful classical formulations like Huygens-Fresnel diffraction integral.

  18. Probe with integrated heater and thermocouple pack

    DOEpatents

    McCulloch, Reginald W.; Dial, Ralph E.; Finnell, Wilber K. R.

    1988-01-01

    A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocouple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

  19. New Baaumlcklund transformations and superposition principle for gravitational fields with symmetries

    SciTech Connect

    Chinea, F.

    1983-01-24

    Vector Baaumlcklund transformations which relate solutions of the vacuum Einstein equations having two commuting Killing fields are introduced. Such transformations generalize those found by Pohlmeyer in connection with the nonlinear sigma model. A simple algebraic superposition principle, which permits the combination of Baaumlcklund transforms in order to get new solutions, is given. The superposition preserves the asymptotic flatness condition, and the whole scheme is manifestly O(2,1) invariant.

  20. Resilience to decoherence of the macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    SciTech Connect

    Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco

    2010-09-15

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  1. Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity

    NASA Astrophysics Data System (ADS)

    Sales, J. S.; da Silva, L. F.; de Almeida, N. G.

    2011-03-01

    We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.

  2. Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity

    SciTech Connect

    Sales, J. S.; Silva, L. F. da; Almeida, N. G. de

    2011-03-15

    We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.

  3. Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities.

    PubMed

    Thijssen, Arthur C T; Cryan, Martin J; Rarity, John G; Oulton, Ruth

    2012-09-24

    We present a method to analyze the suitability of particular photonic cavity designs for information exchange between arbitrary superposition states of a quantum emitter and the near-field photonic cavity mode. As an illustrative example, we consider whether quantum dot emitters embedded in "L3" and "H1" photonic crystal cavities are able to transfer a spin superposition state to a confined photonic superposition state for use in quantum information transfer. Using an established dyadic Green's function (DGF) analysis, we describe methods to calculate coupling to arbitrary quantum emitter positions and orientations using the modified local density of states (LDOS) calculated using numerical finite-difference time-domain (FDTD) simulations. We find that while superposition states are not supported in L3 cavities, the double degeneracy of the H1 cavities supports superposition states of the two orthogonal modes that may be described as states on a Poincaré-like sphere. Methods are developed to comprehensively analyze the confined superposition state generated from an arbitrary emitter position and emitter dipole orientation.

  4. Ultrafast laser parallel microdrilling using multiple annular beams generated by a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Kuang, Zheng; Perrie, Walter; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff

    2014-03-01

    Ultrafast laser parallel microdrilling using diffractive multiple annular beam patterns is demonstrated in this paper. The annular beam was generated by diffractive axicon computer generated holograms (CGHs) using a spatial light modulator. The diameter of the annular beam can be easily adjusted by varying the radius of the smallest ring in the axicon. Multiple annular beams with arbitrary arrangement and multiple annular beam arrays were generated by superimposing an axicon CGH onto a grating and lenses algorithm calculated multi-beam CGH and a binary Dammann grating CGH, respectively. Microholes were drilled through a 0.03 mm thick stainless steel foil using the multiple annular beams. By avoiding huge laser output attenuation and mechanical annular scanning, the processing is ˜200 times faster than the normal single beam processing.

  5. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael; Thomas, Robert; Crofton, Mark; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground-in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  6. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  7. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  8. Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array

    SciTech Connect

    John D. Bess; James D. Cleaver

    2009-06-01

    Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

  9. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    NASA Astrophysics Data System (ADS)

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-07-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter ( S r = r 2 /r 1), dimensionless temperature ratio ( θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  10. Long-Distance Axial Trapping with Focused Annular Laser Beams

    PubMed Central

    Yan, Shaohui; Yao, Baoli; Dan, Dan; Qi, Yujiao; Qian, Jia; Yang, Yanlong; Gao, Peng; Ye, Tong

    2013-01-01

    Focusing an annular laser beam can improve the axial trapping efficiency due to the reduction of the scattering force, which enables the use of a lower numerical aperture (NA) objective lens with a long working distance to trap particles in deeper aqueous medium. In this paper, we present an axicon-to-axicon scheme for producing parallel annular beams with the advantages of higher efficiency compared with the obstructed beam approach. The validity of the scheme is verified by the observation of a stable trapping of silica microspheres with relatively low NA microscope objective lenses (NA = 0.6 and 0.45), and the axial trapping depth of 5 mm is demonstrated in experiment. PMID:23505449

  11. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  12. Mixtures of Bose gases confined in concentrically coupled annular traps

    SciTech Connect

    Malet, F.; Reimann, S. M.; Kavoulakis, G. M.

    2010-01-15

    A two-component Bose-Einstein condensate confined in an axially symmetric potential with two local minima, resembling two concentric annular traps, is investigated. The system shows a number of phase transitions that result from the competition between phase coexistence and radial-azimuthal phase separation. The ground-state phase diagram, as well as the rotational properties, including the (meta)stability of currents in this system, is analyzed.

  13. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  14. System design of the annular suspension and pointing system /ASPS/

    NASA Technical Reports Server (NTRS)

    Cunningham, D. C.; Gismondi, T. P.; Wilson, G. W.

    1978-01-01

    This paper presents the control system design for the Annular Suspension and Pointing System. Actuator sizing and configuration of the system are explained, and the control laws developed for linearizing and compensating the magnetic bearings, roll induction motor and gimbal torquers are given. Decoupling, feedforward and error compensation for the vernier and gimbal controllers is developed. The algorithm for computing the strapdown attitude reference is derived, and the allowable sampling rates, time delays and quantization of control signals are specified.

  15. Persistent currents in Bose gases confined in annular traps

    SciTech Connect

    Bargi, S.; Malet, F.; Reimann, S. M.; Kavoulakis, G. M.

    2010-10-15

    We examine the problem of stability of persistent currents in a mixture of two Bose gases trapped in an annular potential. We evaluate the critical coupling for metastability in the transition from quasi-one- to two-dimensional motion. We also evaluate the critical coupling for metastability in a mixture of two species as a function of the population imbalance. The stability of the currents is shown to be sensitive to the deviation from one-dimensional motion.

  16. Annular Momentum Control Device (AMCD). Volume 1: Laboratory model development

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The annular momentum control device (AMCD) a thin hoop-like wheel with neither shaft nor spokes is described. The wheel floats in a magnetic field and can be rotated by a segmented motor. Potential advantages of such a wheel are low weight, configuration flexibility, a wheel that stiffens with increased speed, vibration isolation, and increased reliability. The analysis, design, fabrication, and testing is described of the laboratory model of the AMCD.

  17. Multifocal Annular Tufted Angioma: An Uncommon Clinical Entity

    PubMed Central

    Bandyopadhyay, Debabrata; Saha, Abanti

    2015-01-01

    Tufted angioma (TA) is a localized benign hamartomatous vascular proliferation usually presenting in the childhood as an erythematous plaque. We report here a rare case of multifocal TA in an 8-year-old boy who presented which two large annular lesions as well as multiple papules and nodules on the back for the duration of 4 years. Histology showed typical well circumscribed poorly canalized vascular lobules with ‘cannon ball’ configuration. PMID:26288441

  18. Critical-current diffraction pattern of annular Josephson junctions

    NASA Astrophysics Data System (ADS)

    Nappi, Ciro

    1997-01-01

    A derivation of the exact analytical expressions for the critical current versus magnetic-field-diffraction pattern of ``electrically'' small annular Josephson junctions is presented. These formulas have been recently used to fit experimental data [N. Martucciello and R. Monaco, Phys. Rev. B 54, 9050 (1996)]. They include, as a special case, the approximate analytical results previously published [N. Martucciello and R. Monaco, Phys. Rev. B 53 3471 (1996)].

  19. Standing wave acoustic levitation on an annular plate

    NASA Astrophysics Data System (ADS)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  20. Annular tautomerism: experimental observations and quantum mechanics calculations.

    PubMed

    Cruz-Cabeza, Aurora J; Schreyer, Adrian; Pitt, William R

    2010-06-01

    The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein-small molecule crystal structures.

  1. The annular flow electrothermal ramjet. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Shaw, B. D.

    1984-01-01

    The annular flow, electrothermal, plug ramjet is examined as a possible means of achieving rapid projectile acceleration to velocities for such applications as direct launch of spacebound payloads. The performance of this ramjet operating with hydrogen propellant is examined for cases where this working fluid is treated: (1) as a perfect gas, and (2) as a gas that is allowed to dissociate and ionize and then recombine with finite reaction rates in the nozzle. Performance results for these cases are compared to the performance of a conventional ramjet operating with perfect gas hydrogen propellant. The performance of the conventional ramjet is superior to that of the annular flow, electrothermal ramjet. However, it is argued that the mechanical complexities associated with conventional ramjet operation are difficult to attain, and for this reason the annular flow, electrothermal ramjet is more desirable as a launch system. Models are presented which describe both electrothermal plug ramjet and conventional ramjet operation, and it is shown that for a given flight velocity there is a rate of heat addition per unit propellant mass for which ramjet operation is optimized.

  2. Slim hole MWD tool accurately measures downhole annular pressure

    SciTech Connect

    Burban, B.; Delahaye, T. )

    1994-02-14

    Measurement-while-drilling of downhole pressure accurately determines annular pressure losses from circulation and drillstring rotation and helps monitor swab and surge pressures during tripping. In early 1993, two slim-hole wells (3.4 in. and 3 in. diameter) were drilled with continuous real-time electromagnetic wave transmission of downhole temperature and annular pressure. The data were obtained during all stages of the drilling operation and proved useful for operations personnel. The use of real-time measurements demonstrated the characteristic hydraulic effects of pressure surges induced by drillstring rotation in the small slim-hole annulus under field conditions. The interest in this information is not restricted to the slim-hole geometry. Monitoring or estimating downhole pressure is a key element for drilling operations. Except in special cases, no real-time measurements of downhole annular pressure during drilling and tripping have been used on an operational basis. The hydraulic effects are significant in conventional-geometry wells (3 1/2-in. drill pipe in a 6-in. hole). This paper describes the tool and the results from the field test.

  3. Treatment of generalized granuloma annulare - a systematic review.

    PubMed

    Lukács, J; Schliemann, S; Elsner, P

    2015-08-01

    Granuloma annulare (GA) is a benign inflammatory skin disease. Localized GA is likely to resolve spontaneously, while generalized GA (GGA) is rare and may persist for decades. GGA usually is resistant to a variety of therapeutic modalities and takes a chronic course. The objective of this study was to summarize all reported treatments of generalized granuloma annulare. This is a systematic review based on MEDLINE, Embase and Cochrane Central Register search of articles in English and German and a manual search, between 1980 and 2013, to summarize the treatment of generalized granuloma annulare. Most medical literature on treatment of GGA is limited to individual case reports and small series of patients treated without a control group. Randomized controlled clinical studies are missing. Multiple treatment modalities for GGA were reported including topical and systemic steroids, PUVA, isotretinoin, dapsone, pentoxifylline, hydroxychloroquine, cyclosporine, IFN-γ, potassium iodide, nicotinamide, niacinamide, salicylic acid, dipyridamole, PDT, fumaric acid ester, etanercept, infliximab, adalimumab. While there are numerous case reports of successful treatments in the literature including surgical, medical and phototherapy options, well-designed, randomized, controlled clinical trials are required for an evidence-based treatment of GGA. PMID:25651003

  4. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    NASA Astrophysics Data System (ADS)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  5. The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects.

    PubMed

    Stollberg, Klemens; Brückner, Andreas; Duparré, Jacques; Dannberg, Peter; Bräuer, Andreas; Tünnermann, Andreas

    2009-08-31

    We present the microoptical adaption of the natural superposition compound eye, which is termed "Gabor superlens". Enabled by state-of-the-art microoptics technology, this well known principle has been adapted for ultra-compact imaging systems for the first time. By numerical ray tracing optimization, and by adding diaphragm layers and a field lens array, the optical performance of the Gabor superlens is potentially comparable to miniaturized conventional lens modules, such as currently integrated in mobile phones. However, in contrast to those, the Gabor superlens is fabricated using a standard microlens array technology with low sag heights and small diameter microlenses. Hence, there is no need for complex diamond turning for the generation of the master structures. This results in a simple and well controllable lens manufacturing process with the potential to high yield.

  6. Effect of Operating Variables on the Performance of a Highly Loaded Annular Combustor

    NASA Astrophysics Data System (ADS)

    Muduli, S. K.; Mishra, R. K.; Satpathy, R. K.; Chandel, S.

    2015-04-01

    A highly loaded full-scale annular combustor is studied in the air-flow facility for the effect of operating variables such as compressor discharge velocity and fuel-air ratio on the performance parameters. The combustor is designed to operate at high pressures and high exit temperatures that impose stringent limitations on its performance such as pressure loss, exit temperature profiles and combustion efficiency. The effect of excess air ratio on performance parameters is found to be marginal over the range tested. Increasing the excess air ratio decreases the pressure loss, exit pattern factors and combustion efficiency. The inlet Mach no. is found to influence the pressure loss strongly and exit temperature patterns marginally. Combustion efficiency is found to deteriorate with increase in Mach number. This will in turn affect the integrity and life of hot end components of the aero engine.

  7. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    SciTech Connect

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  8. Attosecond probing of state-resolved ionization and superpositions of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Leone, Stephen

    2016-05-01

    Isolated attosecond pulses in the extreme ultraviolet are used to probe strong field ionization and to initiate electronic and vibrational superpositions in atoms and small molecules. Few-cycle 800 nm pulses produce strong-field ionization of Xe atoms, and the attosecond probe is used to measure the risetimes of the two spin orbit states of the ion on the 4d inner shell transitions to the 5p vacancies in the valence shell. Step-like features in the risetimes due to the subcycles of the 800 nm pulse are observed and compared with theory to elucidate the instantaneous and effective hole dynamics. Isolated attosecond pulses create massive superpositions of electronic states in Ar and nitrogen as well as vibrational superpositions among electronic states in nitrogen. An 800 nm pulse manipulates the superpositions, and specific subcycle interferences, level shifting, and quantum beats are imprinted onto the attosecond pulse as a function of time delay. Detailed outcomes are compared to theory for measurements of time-dynamic superpositions by attosecond transient absorption. Supported by DOE, NSF, ARO, AFOSR, and DARPA.

  9. Nonadiabatic creation of macroscopic superpositions with strongly correlated one-dimensional bosons in a ring trap

    SciTech Connect

    Schenke, C.; Minguzzi, A.; Hekking, F. W. J.

    2011-11-15

    We consider a strongly interacting quasi-one-dimensional Bose gas on a tight ring trap subjected to a localized barrier potential. We explore the possibility of forming a macroscopic superposition of a rotating and a nonrotating state under nonequilibrium conditions, achieved by a sudden quench of the barrier velocity. Using an exact solution for the dynamical evolution in the impenetrable-boson (Tonks-Girardeau) limit, we find an expression for the many-body wave function corresponding to a superposition state. The superposition is formed when the barrier velocity is tuned close to multiples of an integer or half-integer number of Coriolis flux quanta. As a consequence of the strong interactions, we find that (i) the state of the system can be mapped onto a macroscopic superposition of two Fermi spheres rather than two macroscopically occupied single-particle states as in a weakly interacting gas, and (ii) the barrier velocity should be larger than the sound velocity to better discriminate the two components of the superposition.

  10. Multi-muscle synergies in a dual postural task: evidence for the principle of superposition

    PubMed Central

    Klous, Miriam; Danna-dos-Santos, Alessander

    2010-01-01

    We used the framework of the uncontrolled manifold hypothesis to quantify multi-muscle synergies stabilizing the moment of force about the frontal axis (MY) and the shear force in the anterior–posterior direction (FX) during voluntary body sway performed by standing subjects. We tested a hypothesis whether the controller could stabilize both MY and FX at the same time when the task and the visual feedback was provided only on one of the variables (MY). Healthy young subjects performed voluntary body sway in the anterior–posterior direction while different loads were attached at the ankle level producing horizontal forces acting forward or backwards. Principal component analysis was used to identify three M-modes within the space of integrated indices of muscle activation. Variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect a selected performance variable (MY or FX) and the other that did. Under all loading conditions and for each performance variable, a higher value for the former variance component was found. We interpret these results as reflections of two multi-M-mode synergies stabilizing both FX and MY. The indices of synergies were modulated within the sway cycle; both performance variables were better stabilized when the body moved forward than when it moved backward. The results show that the controller can use a set of three elemental variables (M-modes) to stabilize two performance variables at the same time. No negative interference was seen between the synergy indices computed for the two performance variables supporting the principle of superposition with respect to multi-muscle postural control. PMID:20047089

  11. Experimental implementation of the Deutsch-Jozsa algorithm for three-qubit functions using pure coherent molecular superpositions

    SciTech Connect

    Vala, Jiri; Kosloff, Ronnie; Amitay, Zohar; Zhang Bo; Leone, Stephen R.

    2002-12-01

    The Deutsch-Jozsa algorithm is experimentally demonstrated for three-qubit functions using pure coherent superpositions of Li{sub 2} rovibrational eigenstates. The function's character, either constant or balanced, is evaluated by first imprinting the function, using a phase-shaped femtosecond pulse, on a coherent superposition of the molecular states, and then projecting the superposition onto an ionic final state, using a second femtosecond pulse at a specific time delay.

  12. A Particle Multi-Target Tracker for Superpositional Measurements Using Labeled Random Finite Sets

    NASA Astrophysics Data System (ADS)

    Papi, Francesco; Kim, Du Yong

    2015-08-01

    In this paper we present a general solution for multi-target tracking with superpositional measurements. Measurements that are functions of the sum of the contributions of the targets present in the surveillance area are called superpositional measurements. We base our modelling on Labeled Random Finite Set (RFS) in order to jointly estimate the number of targets and their trajectories. This modelling leads to a labeled version of Mahler's multi-target Bayes filter. However, a straightforward implementation of this tracker using Sequential Monte Carlo (SMC) methods is not feasible due to the difficulties of sampling in high dimensional spaces. We propose an efficient multi-target sampling strategy based on Superpositional Approximate CPHD (SA-CPHD) filter and the recently introduced Labeled Multi-Bernoulli (LMB) and Vo-Vo densities. The applicability of the proposed approach is verified through simulation in a challenging radar application with closely spaced targets and low signal-to-noise ratio.

  13. Oblique superposition of two elliptically polarized lightwaves using geometric algebra: is energy-momentum conserved?

    PubMed

    Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J

    2010-11-01

    In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.

  14. Towards quantum superposition of a levitated nanodiamond with a NV center

    NASA Astrophysics Data System (ADS)

    Li, Tongcang

    2015-05-01

    Creating large Schrödinger's cat states with massive objects is one of the most challenging goals in quantum mechanics. We have previously achieved an important step of this goal by cooling the center-of-mass motion of a levitated microsphere from room temperature to millikelvin temperatures with feedback cooling. To generate spatial quantum superposition states with an optical cavity, however, requires a very strong quadratic coupling that is difficult to achieve. We proposed to optically trap a nanodiamond with a nitrogen-vacancy (NV) center in vacuum, and generate large spatial superposition states using the NV spin-optomechanical coupling in a strong magnetic gradient field. The large spatial superposition states can be used to study objective collapse theories of quantum mechanics. We have optically trapped nanodiamonds in air and are working towards this goal.

  15. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  16. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  17. Pancreaticoduodenectomy for pancreas carcinoma occurring in the annular pancreas: report of a case.

    PubMed

    Kawaida, Hiromichi; Kono, Hiroshi; Watanabe, Mitsuaki; Maki, Akira; Amemiya, Hidetake; Matsuda, Masanori; Fujii, Hideki; Fukasawa, Mitsuharu; Takahashi, Ei; Sano, Katsuhiro; Inoue, Tomohiro

    2015-08-01

    The annular pancreas is a rare congenital anomaly in which a ring of the pancreas parenchyma surrounds the second part of the duodenum. Malignant tumors are extremely rare in patients with an annular pancreas. A 64-year-old man presented with appetite loss and vomiting. Abdominal contrast-enhanced computed tomography (CT) indicated pancreas parenchyma surrounding the second part of the duodenum, and a hypovascular area occupying lesion in the annular pancreas. Subtotal stomach-preserving pancreaticoduodenectomy was performed. Histopathology showed pancreatic carcinoma occurring in the complete annular pancreas.

  18. Snapping annular ligament of the elbow joint in the throwing arms of young brothers.

    PubMed

    Aoki, Mitsuhiro; Okamura, Kenji; Yamashita, Toshihiko

    2003-10-01

    We examined young brothers with symptomatic snapping elbow in the throwing arm. Arthroscopic examination confirmed the mechanism of snapping, in which loose and protruded annular ligament-like tissue covered the volar half of the radial head in elbow extension and uncovered the radial head in deep elbow flexion. Arthroscopic resection of the annular ligament-like tissue was performed in one brother. Histologic examination of the removed tissue showed degenerated ligament tissue. Excision of loose annular ligament abolished snapping. Contralateral elbows of the brothers also showed similar asymptomatic snapping. Researchers suggest that a hereditary factor contributing to loose annular ligament and repetitive microtrauma from throwing is the cause of symptoms.

  19. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Ahl Laamara, R.

    2012-07-01

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl-Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger-Horne-Zeilinger states.

  20. Production of superpositions of coherent states in traveling optical fields with inefficient photon detection

    SciTech Connect

    Jeong, H.; Lund, A.P.; Ralph, T.C.

    2005-07-15

    We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It nondeterministically distills coherent-state superpositions (CSS's) with large amplitudes out of CSS's with small amplitudes using inefficient photon detection. The small CSS's required to produce CSS's with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single-photon sources and boosts negativity of Wigner functions of quantum states.

  1. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces

    SciTech Connect

    Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.

    2010-04-15

    We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.

  2. Mesoscopic superposition and sub-Planck-scale structure in molecular wave packets

    SciTech Connect

    Ghosh, Suranjana; Banerji, J.; Panigrahi, P. K.; Chiruvelli, Aravind

    2006-01-15

    We demonstrate the possibility of realizing sub-Planck-scale structures in the mesoscopic superposition of molecular wave packets involving vibrational levels. The time evolution of the wave packet, taken here as the SU(2) coherent state of the Morse potential describing hydrogen iodide molecules, produces macroscopic-quantum-superposition-like states, responsible for the above phenomenon. We investigate the phase-space dynamics of the coherent state through the Wigner function approach and identify the interference phenomena behind the sub-Planck-scale structures. The optimal parameter ranges are specified for observing these features.

  3. Computational superposition compound eye imaging for extended depth-of-field and field-of-view.

    PubMed

    Nakamura, Tomoya; Horisaki, Ryoichi; Tanida, Jun

    2012-12-01

    This paper describes a superposition compound eye imaging system for extending the depth-of-field (DOF) and the field-of-view (FOV) using a spherical array of erect imaging optics and deconvolution processing. This imaging system had a three-dimensionally space-invariant point spread function generated by the superposition optics. A sharp image with a deep DOF and a wide FOV could be reconstructed by deconvolution processing with a single filter from a single captured image. The properties of the proposed system were confirmed by ray-trace simulations.

  4. Generalization of Abel's mechanical problem: The extended isochronicity condition and the superposition principle

    SciTech Connect

    Kinugawa, Tohru

    2014-02-15

    This paper presents a simple but nontrivial generalization of Abel's mechanical problem, based on the extended isochronicity condition and the superposition principle. There are two primary aims. The first one is to reveal the linear relation between the transit-time T and the travel-length X hidden behind the isochronicity problem that is usually discussed in terms of the nonlinear equation of motion (d{sup 2}X)/(dt{sup 2}) +(dU)/(dX) =0 with U(X) being an unknown potential. Second, the isochronicity condition is extended for the possible Abel-transform approach to designing the isochronous trajectories of charged particles in spectrometers and/or accelerators for time-resolving experiments. Our approach is based on the integral formula for the oscillatory motion by Landau and Lifshitz [Mechanics (Pergamon, Oxford, 1976), pp. 27–29]. The same formula is used to treat the non-periodic motion that is driven by U(X). Specifically, this unknown potential is determined by the (linear) Abel transform X(U) ∝ A[T(E)], where X(U) is the inverse function of U(X), A=(1/√(π))∫{sub 0}{sup E}dU/√(E−U) is the so-called Abel operator, and T(E) is the prescribed transit-time for a particle with energy E to spend in the region of interest. Based on this Abel-transform approach, we have introduced the extended isochronicity condition: typically, τ = T{sub A}(E) + T{sub N}(E) where τ is a constant period, T{sub A}(E) is the transit-time in the Abel type [A-type] region spanning X > 0 and T{sub N}(E) is that in the Non-Abel type [N-type] region covering X < 0. As for the A-type region in X > 0, the unknown inverse function X{sub A}(U) is determined from T{sub A}(E) via the Abel-transform relation X{sub A}(U) ∝ A[T{sub A}(E)]. In contrast, the N-type region in X < 0 does not ensure this linear relation: the region is covered with a predetermined potential U{sub N}(X) of some arbitrary choice, not necessarily obeying the Abel-transform relation. In discussing

  5. Studies on Normal and Microgravity Annular Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.

    1999-01-01

    Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.

  6. Parametric Investigations of Miniaturized Cylindrical and Annular Hall Thrusters

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2001-10-16

    A cylindrical geometry Hall thruster may overcome certain physical and technological limitations in scaling down of Hall thrusters to miniature sizes. The absence of the inner wall and use of the cusp magnetic field can potentially reduce heating of the thruster parts and erosion of the channel. A 2.6 cm miniaturized Hall thruster of a flexible design was built and successfully operated in the power range of 50-300 W. Comparison of preliminary results obtained for cylindrical and annular thruster configurations is presented.

  7. Laser window with annular grooves for thermal isolation

    DOEpatents

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  8. Final Technical Report for the MIT Annular Fuel Research Project

    SciTech Connect

    Mujid S. Kazimi; Pavel Hejzlar

    2008-01-31

    MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research ENergy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in poer density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghuse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited.

  9. Annular Suspension and Pointing System (ASPS) magnetic rotary joint

    NASA Technical Reports Server (NTRS)

    Smith, W. E.; Quach, W.; Thomas, W.

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) is a prototype of flight hardware for a high-accuracy space payload pointing mount. The long term project objective is to perform modifications and implement improvements to the existing ASPS in hopes of recommission. Also, new applications will be investigated for this technology. This report will focus on the first aspect of this overall goal, to establish operation of a single bearing station. Presented is an overview of the system history and bearing operation followed by the processes, results, and status of the single bearing study.

  10. Annular (HSURIA) resonators: some experimental studies including polarization effects.

    PubMed

    Chodzko, R A; Mason, S B; Turner, E B; Plummer, W W

    1980-03-01

    A repetitively pulsed CO(2) laser facility was developed for testing annular resonators. The large-aperture device exhibits generally uniform gain over an annular region of 18-cm o.d. and 10-cm i.d. The half-symmetric unstable resonator with internal axicon (HSURIA) was tested at equivalent Fresnel numbers up to 4.5. This resonator design incorporates a W-axicon mirror beam compactor that transforms a cylindricalmode region into an annular-mode region. Two HSURIA configurations were evaluated: (a) with a conical end mirror and (b) with a flat end mirror in the annular leg. With the conical end mirror, the aligned resonator produced a predominantly higher-order azimuthal mode with an on-axis null in the far field. The output was strongly linearly polarized with the electric-field vector tangential to the optic axis in both the near and far fields. The higher-order tangentially polarized mode appears to be the result of a geometric polarization scrambling effect caused by the conical end mirror. The boundary conitions for the conical or W-axicon mirrors imply that the radial electric field has a 180 degrees phase shift on reflection, whereas the tangential component is unchanged. Thus, a tangentially polarized mode is self-reproducing, but a linearly polarized mode is not. To eliminate the polarization scrambling effect in the HSURIA, the conical end mirror was replaced with a flat end mirror. The HSURIA with a flat end mirror produced a central spot in the far field that indicated an l = 0 mode with no spatial variations in polarization. Beam quality was measured in terms of the ratio n(2) of the theoretical (geometric-mode) power transmitted through an aperture of the central lobe diameter to the observed power; n(2) values as low as 1.2 were obtained. The variation of beam quality with tilt of the flat end mirror indicated a factor of 2 degradation in n(2) for a 20-microrad tilt, which is in good agreement with theory. PMID:20220932

  11. Annular self-similar solutions in ideal magnetogasdynamics

    NASA Astrophysics Data System (ADS)

    Lock, R. M.; Mestel, A. J.

    2008-08-01

    We consider the possibility of self-similar solutions describing the implosion of hollow cylindrical annuli driven by an azimuthal magnetic field, in essence a self-similar imploding liner z-pinch. We construct such solutions for gasdynamics, for ideal ‘β=0’ plasma and for ideal magnetogasdynamics (MGD). In the latter two cases some quantities are singular at the annular boundaries. Numerical solutions of the full ideal MGD initial value problem indicate that the self-similar solutions are not attractive for arbitrary initial conditions, possibly as a result of flux-freezing.

  12. Novel Annular and Subvalvular Enlargement in Congenital Mitral Valve Replacement.

    PubMed

    Carroll, Nels D; Beers, Kevin M; Maldonado, Elaine M; Calhoon, John H; Husain, S Adil

    2016-09-01

    Reparative procedures are not always feasible in congenitally abnormal mitral valves. Mechanical prosthesis has been accepted as the choice for valve replacement in the pediatric population. This report describes a case of congenital mitral valve disease requiring mitral valve replacement. The infant's mitral valve annulus was not amenable to placement of the smallest available mechanical prosthesis. The approach used here for annular and subvalvular enlargement facilitated implantation of a larger prosthesis for congenital mitral valve replacement. Five-year outcomes in a single patient may indicate broader applicability and avoidance of patient-prosthesis mismatch.

  13. Cylindrical plasmas generated by an annular beam of ultraviolet light

    SciTech Connect

    Thomas, D. M.; Allen, J. E.

    2015-07-15

    We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light, taking place only in the cylinder's outer region. In the steady state, both the outer and inner regions contain a plasma, with that in the inner region being uniform and field-free. At the interface between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching zero in the quasi-neutral (λ{sub D} → 0) limit. The system offers the possibility of producing a uniform stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.

  14. Dynamically adjustable annular laser trapping based on axicons

    SciTech Connect

    Shao, Bing; Esener, Sadik C.; Nascimento, Jaclyn M.; Botvinick, Elliot L.; Berns, Michael W

    2006-09-01

    To study the chemotactic response of sperm to an egg and to characterize sperm motility, an annular laser trap based on axicons is designed, simulated with the ray-tracing tool, and implemented. The diameter of the trapping ring can be adjusted dynamically for a range of over 400 {mu}m by simply translating one axicon along the optical axis. Trapping experiments with microspheres and dog sperm demonstrate the feasibility of the system,and the power requirement agrees with theoretical expectation. This new type of laser trapping could provide a prototype of a parallel, objective, and quantitative tool for animal fertility and biotropism study.

  15. Electron-Hose Instability in an Annular Plasma Sheath

    SciTech Connect

    Whittum, David H.

    1999-07-08

    A relativistic electron beam propagating through an annular plasma sheath is subject to a transverse plasma-electron coupled electrostatic instability. From the linearized fluid equations, the beam-sheath interaction is resolved into three coupled equations. The corresponding wakefield is computed and the asymptotic linear evolution is noted. For illustration, numerical examples are given for a plasma accelerator employing such a sheath. While the coasting beam scalings are quite severe at low energy, single-bunch instability growth can in fact be reduced to nil, for a very high-gradient accelerator.

  16. Exhaust emissions of a double annular combustor: Parametric study

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  17. Photoacoustic Imaging of Animals with an Annular Transducer Array

    NASA Astrophysics Data System (ADS)

    Yang, Di-Wu; Zhou, Zhi-Bin; Zeng, Lv-Ming; Zhou, Xin; Chen, Xing-Hui

    2014-07-01

    A photoacoustic system with an annular transducer array is presented for rapid, high-resolution photoacoustic tomography of animals. An eight-channel data acquisition system is applied to capture the photoacoustic signals by using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experiments are performed on a mouse head and a rabbit head and clear photoacoustic images are obtained. The experimental results demonstrate that this imaging system holds the potential for imaging the human brain.

  18. Direct Determination of the Phase Distributions of Semi-VolatilePolycyclic Aromatic Hydrocarbons Using Annular Denuders

    SciTech Connect

    Gundel, L.A.; Lee, V.C.; Mahanama, K.R.R.; Stevens, R.K.; Daisey,J.M.

    1994-06-01

    An annular denuder-based sampler, here called the integrated organic vapor/particle sampler (IOVPS), has been developed for direct determination of both gas and particulate semi-volatile organic species. The IOVPS uses a cyclone inlet for removal of particles greater than 2.5 micrometers from the airstream, followed by two or three sandblasted glass annular denuders coated with ground particles of an adsorbent resin. The denuders trap the gas phase species of interest before the airstream passes through a filter and a backup denuder. Extracts of the denuders and filters are analyzed for the semi-volatile species of interest. The IOVPS has been tested and validated for sampling semi-volatile polycyclic aromatic hydrocarbons (PAH) in indoor laboratory room air and environmental tobacco smoke (ETS). Ground XAD-4 was the adsorbent for these initial studies. Gas- and particulate-phase concentrations of semi-volatile PAH are presented for these two environments. The new sampler provides the means for directly determining phase distributions of PAH and other classes of semi-volatile organic species, rather than by difference or by techniques that are subject to large positive and negative artifacts. For example, the results obtained with the IOVPS indicate that the volatilization artifact ('blow-off') from particulate PAH collected in indoor laboratory room air with a conventional filter-sorbent bed sampler at face velocity of 33 cm sec-1 led to three-fold underestimation of the particulate fractions of phenanthrene, pyrene and chrysene. Phase distributions for PAH in ETS are also reported here.

  19. Using musical intervals to demonstrate superposition of waves and Fourier analysis

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2013-09-01

    What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.

  20. Using Musical Intervals to Demonstrate Superposition of Waves and Fourier Analysis

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2013-01-01

    What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.

  1. Application of time-temperature-stress superposition on creep of wood-plastic composites

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Cheng; Lam, Frank; Kadla, John F.

    2013-08-01

    Time-temperature-stress superposition principle (TTSSP) was widely applied in studies of viscoelastic properties of materials. It involves shifting curves at various conditions to construct master curves. To extend the application of this principle, a temperature-stress hybrid shift factor and a modified Williams-Landel-Ferry (WLF) equation that incorporated variables of stress and temperature for the shift factor fitting were studied. A wood-plastic composite (WPC) was selected as the test subject to conduct a series of short-term creep tests. The results indicate that the WPC were rheologically simple materials and merely a horizontal shift was needed for the time-temperature superposition, whereas vertical shifting would be needed for time-stress superposition. The shift factor was independent of the stress for horizontal shifts in time-temperature superposition. In addition, the temperature- and stress-shift factors used to construct master curves were well fitted with the WLF equation. Furthermore, the parameters of the modified WLF equation were also successfully calibrated. The application of this method and equation can be extended to curve shifting that involves the effects of both temperature and stress simultaneously.

  2. Transient vibration analysis of a completely free plate using modes obtained by Gorman's superposition method

    NASA Astrophysics Data System (ADS)

    Mochida, Y.; Ilanko, S.

    2010-05-01

    This paper shows that the transient response of a plate undergoing flexural vibration can be calculated accurately and efficiently using the natural frequencies and modes obtained from the superposition method. The response of a completely free plate is used to demonstrate this. The case considered is one where all supports of a simply supported thin rectangular plate under self weight are suddenly removed. The resulting motion consists of a combination of the natural modes of a completely free plate. The modal superposition method is used for determining the transient response, and the natural frequencies and mode shapes of the plates used are obtained by Gorman's superposition method. These are compared with corresponding results based on the modes using the Rayleigh-Ritz method using the ordinary and degenerated free-free beam functions. There is an excellent agreement between the results from both approaches but the superposition method has shown faster convergence and the results may serve as benchmarks for the transient response of completely free plates.

  3. Drawings and Ideas of Physics Teacher Candidates Relating to the Superposition Principle on a Continuous Rope

    ERIC Educational Resources Information Center

    Sengoren, Serap Kaya; Tanel, Rabia; Kavcar, Nevzat

    2006-01-01

    The superposition principle is used to explain many phenomena in physics. Incomplete knowledge about this topic at a basic level leads to physics students having problems in the future. As long as prospective physics teachers have difficulties in the subject, it is inevitable that high school students will have the same difficulties. The aim of…

  4. On sufficient statistics of least-squares superposition of vector sets.

    PubMed

    Konagurthu, Arun S; Kasarapu, Parthan; Allison, Lloyd; Collier, James H; Lesk, Arthur M

    2015-06-01

    The problem of superposition of two corresponding vector sets by minimizing their sum-of-squares error under orthogonal transformation is a fundamental task in many areas of science, notably structural molecular biology. This problem can be solved exactly using an algorithm whose time complexity grows linearly with the number of correspondences. This efficient solution has facilitated the widespread use of the superposition task, particularly in studies involving macromolecular structures. This article formally derives a set of sufficient statistics for the least-squares superposition problem. These statistics are additive. This permits a highly efficient (constant time) computation of superpositions (and sufficient statistics) of vector sets that are composed from its constituent vector sets under addition or deletion operation, where the sufficient statistics of the constituent sets are already known (that is, the constituent vector sets have been previously superposed). This results in a drastic improvement in the run time of the methods that commonly superpose vector sets under addition or deletion operations, where previously these operations were carried out ab initio (ignoring the sufficient statistics). We experimentally demonstrate the improvement our work offers in the context of protein structural alignment programs that assemble a reliable structural alignment from well-fitting (substructural) fragment pairs. A C++ library for this task is available online under an open-source license.

  5. Chaos and Complexities Theories. Superposition and Standardized Testing: Are We Coming or Going?

    ERIC Educational Resources Information Center

    Erwin, Susan

    2005-01-01

    The purpose of this paper is to explore the possibility of using the principle of "superposition of states" (commonly illustrated by Schrodinger's Cat experiment) to understand the process of using standardized testing to measure a student's learning. Comparisons from literature, neuroscience, and Schema Theory will be used to expound upon the…

  6. The Effect of Nonuniform Inlet Conditions on Annular Diffusers

    NASA Astrophysics Data System (ADS)

    Padilla, Angelina; Elkins, Chris; Eaton, John

    2010-11-01

    Most practical diffusers have complex 3D geometries and may have highly disturbed inlet flows. The performance of diffusers designed for optimum pressure recovery is governed by flow separation which can be very sensitive to inlet perturbations. We are examining the effect of upstream disturbances on the performance of practical annular diffusers. Experiments are conducted in an annular diffuser sector containing a single NACA 0015 airfoil shaped support strut. Three component, time averaged velocities are measured using magnetic resonance velocimetry and static pressure data are measured with conventional wall taps. We are testing four inlet conditions: a uniform velocity profile with thin boundary layers and relatively low turbulence intensity, a similar case with higher turbulence levels, a mean profile with uniform velocity except for a high velocity wall jet at the outer radius, and a nonuniform profile in which the mean velocity decreases with increasing radius. Generally, the results show that the diffuser acts to increase flow distortion. For the case with the radial velocity gradient, passing through the diffuser strongly increases the velocity gradient. The wall jet on the outer (diffusing) wall eliminates flow separation resulting in higher pressure recovery and thicker wall boundary layers on the other three walls. Interestingly, the separated wake of the support strut closes more rapidly for the case with the radial velocity gradient.

  7. Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool

    NASA Astrophysics Data System (ADS)

    Duan, Li; Kang, Qi; Zhang, Di

    2016-07-01

    Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.

  8. Coupled counterrotating polariton condensates in optically defined annular potentials.

    PubMed

    Dreismann, Alexander; Cristofolini, Peter; Balili, Ryan; Christmann, Gabriel; Pinsker, Florian; Berloff, Natasha G; Hatzopoulos, Zacharias; Savvidis, Pavlos G; Baumberg, Jeremy J

    2014-06-17

    Polariton condensates are macroscopic quantum states formed by half-matter half-light quasiparticles, thus connecting the phenomena of atomic Bose-Einstein condensation, superfluidity, and photon lasing. Here we report the spontaneous formation of such condensates in programmable potential landscapes generated by two concentric circles of light. The imposed geometry supports the emergence of annular states that extend up to 100 μm, yet are fully coherent and exhibit a spatial structure that remains stable for minutes at a time. These states exhibit a petal-like intensity distribution arising due to the interaction of two superfluids counterpropagating in the circular waveguide defined by the optical potential. In stark contrast to annular modes in conventional lasing systems, the resulting standing wave patterns exhibit only minimal overlap with the pump laser itself. We theoretically describe the system using a complex Ginzburg-Landau equation, which indicates why the condensate wants to rotate. Experimentally, we demonstrate the ability to precisely control the structure of the petal condensates both by carefully modifying the excitation geometry as well as perturbing the system on ultrafast timescales to reveal unexpected superfluid dynamics. PMID:24889642

  9. Non-null annular subaperture stitching interferometry for aspheric test

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.

  10. Coupled counterrotating polariton condensates in optically defined annular potentials

    PubMed Central

    Dreismann, Alexander; Cristofolini, Peter; Balili, Ryan; Christmann, Gabriel; Pinsker, Florian; Berloff, Natasha G.; Hatzopoulos, Zacharias; Savvidis, Pavlos G.; Baumberg, Jeremy J.

    2014-01-01

    Polariton condensates are macroscopic quantum states formed by half-matter half-light quasiparticles, thus connecting the phenomena of atomic Bose–Einstein condensation, superfluidity, and photon lasing. Here we report the spontaneous formation of such condensates in programmable potential landscapes generated by two concentric circles of light. The imposed geometry supports the emergence of annular states that extend up to 100 μm, yet are fully coherent and exhibit a spatial structure that remains stable for minutes at a time. These states exhibit a petal-like intensity distribution arising due to the interaction of two superfluids counterpropagating in the circular waveguide defined by the optical potential. In stark contrast to annular modes in conventional lasing systems, the resulting standing wave patterns exhibit only minimal overlap with the pump laser itself. We theoretically describe the system using a complex Ginzburg–Landau equation, which indicates why the condensate wants to rotate. Experimentally, we demonstrate the ability to precisely control the structure of the petal condensates both by carefully modifying the excitation geometry as well as perturbing the system on ultrafast timescales to reveal unexpected superfluid dynamics. PMID:24889642

  11. The annular hematoma of the shrew yolk-sac placenta.

    PubMed

    King, B F; Enders, A C; Wimsatt, W A

    1978-05-01

    The annular hematoma of the shrew, Blarina brevicauda, is a specialized portion of the yolk-sac wall. In this study, we have examined the fine structure of the different cellular components of the anular hematoma. Small pieces of the gestation sacs from seven pregnant shrews were fixed in glutaraldehyde and osmium tetroxide and processed for transmission electron microscopy. In the area of the trophoblastic curtain, the maternal capillary endothelial cells were hypertrophied and syncytial trophoblast surrounded the capillaries. Cellular trophoblast covered part of the luminal surface of the curtain region, whereas masses of apparently degenerating syncytium were present on other areas of the surface. Maternal erythrocytes, released into the uterine lumen from the curtain region, were phagocytized and degraded by the columnar cells of the trophoblastic annulus. No evidence of iron or pigment accumulation was evident in the parietal endodermal cells underlying the annular trophoblast. Parietal endodermal cells were characterized by cuboidal shape, widely dilated intercellular spaces, and cytoplasm containing granular endoplasmic reticulum. Endodermal cells of the visceral yolk-sac accumulated large numbers of electron-dense granules as well as glycogen in their cytoplasm. Hemopoietic areas and vitelline capillaries were found subjacent to the visceral endoderm. The various portions of the yolk-sac wall of Blarina appear to perform complementary functions which are probably important in maternal-fetal iron transfer. PMID:677046

  12. Portal annular pancreas: a systematic review of a clinical challenge.

    PubMed

    Harnoss, Jonathan M; Harnoss, Julian C; Diener, Markus K; Contin, Pietro; Ulrich, Alexis B; Büchler, Markus W; Schmitz-Winnenthal, Friedrich H

    2014-10-01

    Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF).On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered.In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery).Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option.

  13. Effects of Gravity on Bubble Formation in an Annular Jet

    NASA Technical Reports Server (NTRS)

    Koepp, R. A.; Parthasarathy, R. N.; Gollahalli, S. R.

    2004-01-01

    The effects of gravity on the bubble formation in an annular jet were studied. The experiments were conducted in the 2.2-second drop tower at the NASA Glenn Research Center. Terrestrial gravity experiments were conducted at the Fluid Dynamics Research Laboratory at the University of Oklahoma. Stainless steel tubing with inner diameters of 1/8" (gas inner annulus) and 5/16" (liquid outer annulus) served as the injector. A rectangular test section, 6" x 6" x 14" tall, made out of half-inch thick Lexan was used. Images of the annular jet were acquired using a high-speed camera. The effects of gravity and varying liquid and gas flow rates on bubble size, wavelength, and breakup length were documented. In general, the bubble diameter was found to be larger in terrestrial gravity than in microgravity for varying Weber numbers (0.05 - 0.16 and 5 - 11) and liquid flow rates (1.5 ft/s - 3.0 ft/s). The wavelength was found to be larger in terrestrial gravity than in microgravity, but remained constant for varying Weber numbers. For low Weber numbers (0.05 - 0.16), the breakup length in microgravity was significantly higher than in terrestrial gravity. Comparison with linear stability analysis showed estimated bubble sizes within 9% of experimental bubble sizes. Bubble size compared to other terrestrial gravity experiments with same flow conditions showed distinct differences in bubble size, which displayed the importance of injector geometry on bubble formation.

  14. Annular bullous lesions with atypical erythema multiforme in leprosy.

    PubMed

    Shah, Aishani; Mahajan, Rashmi; Ninama, Kishan; Bilimoria, Freny

    2014-09-01

    Erythema nodosum leprosum (ENL) is an immune complex-mediated reaction that may complicate the course of multibacillary leprosy. Bullous lesions in Type II reaction, though reported, are exceedingly rare. We report the case of a 32 year old female patient who presented initially at our OPD with erythema nodosum. Cutaneous examination revealed impaired sensation over dorsum of right foot and thickened right lateral popliteal nerve. Slit skin smear (SSS) from ear lobes revealed AFB with a bacteriological index of 2+. She was started on MDT, tablet ofloxacin 200 mg twice a day, and 30 mg oral prednisolone. Two months later, she presented with generalised pruritus, large target lesions over the back, and hemorrhagic bullae over lower extremities and annular pattern of bullae, over both arms. A SSS was repeated which was positive for AFB. Histopathology from bullous lesions was consistent with ENL. Direct Immunofluorescence (DIF) study was negative. Our patient improved rapidly after she was started on thalidomide 100 mg twice daily, with withdrawal of ofloxacin. Erythema Multiforme (EMF) and annular bullous lesions have been reported in patients on treatment with ofloxacin. This case is being presented due to the unusual and varied manifestation of Type II lepra reaction in a 34 year old female patient. PMID:25509721

  15. Annular beam-driven high-gradient accelerators

    SciTech Connect

    Keinigs, R.; Jones, M.E.

    1988-01-01

    During the past several years there has been an increasing interest in using wakefield acceleration techniques as a means for achieving TeV energies with the next generation of linear colliders. The principal design goals for a wakefield accelerator that is to be sued in this context are high accelerating gradients and large transformer ratios. Fundamentally any slow wave structure can function as a wakefield accelerator, and several interesting concepts have been proposed. In this paper we consider for the slow wave structure a dielectrically loaded waveguide. The Dielectric Wakefield Accelerator is a very simple device. The geometry consists of a gapless cavity filled with a dielectric. The dielectric may fill all or just part of the cavity. Here we investigate driving the system with an intense annular beam, so the dielectric is separated from the wall by a vacuum region in which this beam is propagated. The primary advantage of driving with an annular beam is that larger currents can be achieved, and thus larger accelerating gradients can be generated. The drive beam is stabilized by a strong, axial magnetic field. The wall is coated with a dielectric liner to provide for better coupling. A small hole is drilled in the center of the dielectric to allow for the passage of a low current, witness beam.

  16. A Compact Annular Ring Microstrip Antenna for WSN Applications

    PubMed Central

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels. PMID:23012510

  17. A compact annular ring microstrip antenna for WSN applications.

    PubMed

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  18. Design Attributes and Scale Up Testing of Annular Centrifugal Contactors

    SciTech Connect

    David H. Meikrantz; Jack D. Law

    2005-04-01

    Annular centrifugal contactors are being used for rapid yet efficient liquid- liquid processing in numerous industrial and government applications. Commercialization of this technology began eleven years ago and now units with throughputs ranging from 0.25 to 700 liters per minute are readily available. Separation, washing, and extraction processes all benefit from the use of this relatively new commercial tool. Processing advantages of this technology include: low in-process volume per stage, rapid mixing and separation in a single unit, connection-in-series for multi-stage use, and a wide operating range of input flow rates and phase ratios without adjustment. Recent design enhancements have been added to simplify maintenance, improve inspection ability, and provide increased reliability. Cartridge-style bearing and mechanical rotary seal assemblies that can include liquid-leak sensors are employed to enhance remote operations, minimize maintenance downtime, prevent equipment damage, and extend service life. Clean-in-place capability eliminates the need for disassembly, facilitates the use of contactors for feed clarification, and can be automated for continuous operation. In nuclear fuel cycle studies, aqueous based separations are being developed that efficiently partition uranium, actinides, and fission products via liquid-liquid solvent extraction. Thus, annular centrifugal contactors are destined to play a significant role in the design of such new processes. Laboratory scale studies using mini-contactors have demonstrated feasibility for many such separation processes but validation at an engineering scale is needed to support actual process design.

  19. A compact annular ring microstrip antenna for WSN applications.

    PubMed

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels. PMID:23012510

  20. The Growth of Instabilities in Annular Liquid Sheets

    SciTech Connect

    Duke, Daniel J.; Honnery, Damon R; Soria, Julio

    2015-11-01

    An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed image correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.

  1. Java application for the superposition T-matrix code to study the optical properties of cosmic dust aggregates

    NASA Astrophysics Data System (ADS)

    Halder, P.; Chakraborty, A.; Deb Roy, P.; Das, H. S.

    2014-09-01

    In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with a plan to create a large database in future. This application also has an option where users can compile and run the scattering code directly for aggregates in GUI environment. The JaSTA aims to provide convenient and quicker data analysis of the optical properties which can be used in different fields like planetary science, atmospheric science, nano science, etc. The current version of this software is developed for the Linux and Windows platform to study the light scattering properties of small aggregates which will be extended for larger aggregates using parallel codes in future. Catalogue identifier: AETB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571570 No. of bytes in distributed program

  2. Analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1979-01-01

    An analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator with permanent magnet fluxbiasing is presented. An AMCD consists of a spinning annular rim which is suspended by a noncontacting linear electromagnetic spin motor. The actuator is treated as a lumped-parameter electromechanical system in the development of the model.

  3. Subcutaneous granuloma annulare of the scalp in childhood: a case report and review of the literature.

    PubMed

    Sabuncuoğlu, Hakan; Oge, Kamil; Söylemezoğlu, Figen; Sağlam, Arzu

    2007-01-01

    Granuloma annulare is a benign inflammatory skin lesion of unknown etiology that is usually seen in adults and children and subtypes of it includes localized granuloma annulare, generalized granuloma annulare, subcutaneous granuloma annulare and arcuate dermal erythema. Etiology and pathogenesis of granuloma annulare are obscure, although there is much evidence for an immunologic mechanism. Precipitating factors are insect bites, sunburn, photochemotherapy, drugs, physical trauma, acute phlebitis and sepsis after surgery. Some investigators were suggested a relationship of granuloma annulare to a latent or clinically manifest diabetes or rheumatoid arthritis. In contrast, an association of subcutaneous granuloma annulare with these diseases in childhood has not been reported in the literature. Subcutaneous granuloma annulare of the scalp is rare lesion in childhood and nodules on the scalp are usually non-, or slightly mobile, whereas lesions on the extremities are freely mobile. For definitive diagnosis, a biopsy should be performed but wide surgical intervention or medical treatment is not indicated. In case of recurrence, no additional diagnostic studies are necessary. PMID:17918673

  4. Erythema annulare centrifugum as presenting sign of activation of breast cancer*

    PubMed Central

    Topal, Ilteris Oguz; Topal, Yunus; Sargan, Aytul; Duman, Hatice; Gungor, Sule; Goncu, Ozgur Emek Kocaturk; Ozekinci, Selver

    2015-01-01

    Erythema annulare centrifugum is a figurate erythema of unknown etiology. It has been associated with many different entities, including infections, food allergy, drug reactions and malignant neoplasms. Herein, we report a case of erythema annulare centrifugum as presenting sign of activation of breastcancer. PMID:26734884

  5. Erythema annulare centrifugum as presenting sign of activation of breast cancer.

    PubMed

    Topal, Ilteris Oguz; Topal, Yunus; Sargan, Aytul; Duman, Hatice; Gungor, Sule; Goncu, Ozgur Emek Kocaturk; Ozekinci, Selver

    2015-01-01

    Erythema annulare centrifugum is a figurate erythema of unknown etiology. It has been associated with many different entities, including infections, food allergy, drug reactions and malignant neoplasms. Herein, we report a case of erythema annulare centrifugum as presenting sign of activation of breastcancer.

  6. Probe with integrated heater and thermocouple pack

    SciTech Connect

    McCulloch, R.W.; Dial, R.E.; Finnell, W.R.

    1988-02-16

    A gamma thermometer probe for detecting heat produced within the thermometer probe is described comprising: an outer elongate thermometer sheath having a cylindrical cross-section, a length, an outer end and an inner end; an elongate rod having a cylindrical cross-section fitted within the elongate thermometer sheath, the rod being constructed of material that absorbs radiation and produces heat; annular recesses formed between the rod, and sheath and being spaced apart along the length of the rod, the recesses forming annular chambers that are resistive to heat flow; a longitudinal bore extending axially into the rod and being positioned to extend through the cylinders defined by the annular chambers; and an integrated thermocouple pack dimensioned to fit within the longitudinal bore and extending through the cylinders defined by the annular chambers.

  7. Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Elrod, David Alan

    1988-01-01

    The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.

  8. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOEpatents

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  9. Method of superposition of dislocations for finding stress-strain state around fan-shaped structure in a brittle rock

    NASA Astrophysics Data System (ADS)

    Sadovskii, V. M.; Sadovskaya, O. V.

    2016-10-01

    The Tarasov fan-shaped mechanism, simulating the formation of shear ruptures in a brittle rock at stress conditions corresponding to seismogenic depths, is analyzed. For computation of the stress-strain state of a rock near the equilibrium fan-structure the original method is constructed. The fault is modeled as a narrow elongated layer, filled with the domino-blocks, between two elastic half-spaces. Displacements and stresses around the fan are represented in the integral form as a superposition of edge dislocations with an unknown function of distribution of the Burgers vector. To take into account the stresses of lateral thrust, the solution of plane problem of the elasticity is used for a tensile crack, on the surfaces of which the previously unknown normal stresses are distributed. The exact formulation of the problem leads to a system of two nonlinear singular integral equations, which is solved numerically by the method of successive approximations. The obtained solution is used, when setting the initial data in computations of the dynamics of the Tarasov fan-shaped mechanism. With the help of this solution the discontinuous nature of shear ruptures, observed in natural and laboratory experiments, is explained.

  10. Enhanced simulation software for rocket turbopump, turbulent, annular liquid seals

    NASA Technical Reports Server (NTRS)

    Padavala, Satya; Palazzolo, Alan

    1994-01-01

    One of the main objectives of this work is to develop a new dynamic analysis for liquid annular seals with arbitrary profile and to analyze a general distorted interstage seal of the space shuttle main engine high pressure oxygen turbopump (SSME-ATD-HPOTP). The dynamic analysis developed is based on a method originally proposed by Nelson and Nguyen. A simpler scheme based on cubic splines is found to be computationally more efficient and has better convergence properties at higher eccentricities. The first order solution of the original analysis is modified by including a more exact solution that takes into account the variation of perturbed variables along the circumference. A new set of equations for dynamic analysis are derived based on this more general model. A unified solution procedure that is valid for both Moody's and Hirs' friction models is presented. Dynamic analysis is developed for three different models: constant properties, variable properties, and thermal effects with variable properties. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. An example case of an elliptical seal with varying degrees of axial curvature is analyzed in detail. A case study based on predicted clearances of an interstage seal of the SSME-ATD-HPOTP is presented. Dynamic coefficients based on external specified load are introduced to analyze seals that support a preload. The other objective of this work is to study the effect of large rotor displacements of SSME-ATD-HPOTP on the dynamics of the annular seal and the resulting transient motion. One task is to identify the magnitude of motion of the rotor about the centered position and establish limits of effectiveness of using current linear models. This task is accomplished by solving the bulk flow model seal governing equations directly for transient seal forces for any given type of motion, including motion with large eccentricities. Based on the above study, an equivalence is

  11. Discrete annular regions of texture contribute independently to the analysis of shape from texture.

    PubMed

    Tan, Ken W S; Dickinson, J Edwin; Badcock, David R

    2016-09-01

    Radial frequency (RF) textures (created by applying a sinusoidal modulation of orientation to an otherwise circular texture) have been shown to be globally processed. RF textures differ from RF patterns (paths deformed from circular by a sinusoidal modulation in radius) in that the elements need not be constrained to a specific path. In the natural environment, objects differ from their background in texture, and a bounding contour can mark this textural change. This study examines the extent to which modulation of texture sums across space and whether the inclusion of a boundary between two areas provides a segmentation cue that limits the area over which summation occurs. RF textures were split into two annular regions and signal introduced to inner, outer, or both annuli Thresholds for the detection of RF modulation of orientation were not affected by the presence of a boundary. Further, it was found that the thresholds matched predictions for the independent contribution of the inner and outer areas to performance and that changing the relative phase of the modulation in the inner and outer annuli had no impact on performance, implying independent integration within the two annuli. Finally, integration of modulation information within the annuli was confirmed to ensure these results do apply to textures that are globally processed. PMID:27627734

  12. Vortex signatures in annular Bose-Einstein condensates

    SciTech Connect

    Cozzini, M.; Stringari, S.; Jackson, B.

    2006-01-15

    We consider a Bose-Einstein condensate confined in a 'Mexican hat' or sombrero potential, with a quartic minus quadratic radial dependence. We find conditions under which the ground state is annular in shape, with a hole in the center of the condensate. Rotation leads to the appearance of stable multiply quantized vortices, giving rise to a superfluid flow around the ring. The collective modes of the system are explored both numerically and analytically using the Gross-Pitaevskii and hydrodynamic equations. Potential experimental schemes to detect vorticity are proposed and evaluated, which include measuring the splitting of collective-mode frequencies, observing expansion following release from the trap, and probing the momentum distribution of the condensate.

  13. Digital controller design: Analysis of the annular suspension pointing system

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.

    1979-01-01

    The Annular Suspension and Pointing System (ASPS) is a payload auxiliary pointing device of the Space Shuttle. The ASPS is comprised of two major subassemblies, a vernier and a coarse pointing subsystem. The experiment is attached to a mounting plate/rim combination which is suspended on magnetic bearing/actuators (MBA) strategically located about the rim. Fine pointing is achieved by gimballing the plate/rim within the MBA gaps. Control about the experiment line-of-sight is obtained through the use of a non-contacting rim drive and positioning torquer. All sensors used to close the servo loops on the vernier system are noncontacting elements. Therefore, the experiment is a free-flyer constrained only by the magnetic forces generated by the control loops.

  14. Investigation of a low NOx full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  15. Fuel Injector Design Optimization for an Annular Scramjet Geometry

    NASA Astrophysics Data System (ADS)

    Steffen, Christopher J., Jr.

    2003-01-01

    A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.

  16. Fluxons in long and annular intrinsic Josephson junction stacks

    NASA Astrophysics Data System (ADS)

    Clauss, T.; Oehmichen, V.; Mößle, M.; Müller, A.; Weber, A.; Koelle, D.; Kleiner, R.

    2002-12-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi2Sr2CaCu2O8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  17. Intermittent Flow of Granular Matter in an Annular Geometry

    NASA Astrophysics Data System (ADS)

    Brzinski, Ted; Daniels, Karen E.

    Granular solids can be subjected to a finite stress below which the response is elastic. Above this yield stress, however, the material fails catastrophically, undergoing a rapid plastic deformation. In the case of a monotonically increasing stress the material exhibits a characteristic stick-slip response. We investigate the statistics of this intermittent failure in an annular shear geometry, driven with a linear-ramp torque in order to generate the stick-slip behavior. The apparatus is designed to allow visual access to particle trajectories and inter-particle forces (through the use of photoelastic materials). Additionally, twelve piezoelectric sensors at the outer wall measure acoustic emissions due to the plastic deformation of the material. We vary volume fraction, and use both fixed and deformable boundaries. We measure how the distribution of slip size and duration are related to the bulk properties of the packing, and compare to systems with similar governing statistics.

  18. Annular dark field transmission electron microscopy for protein structure determination.

    PubMed

    Koeck, Philip J B

    2016-02-01

    Recently annular dark field (ADF) transmission electron microscopy (TEM) has been advocated as a means of recording images of biological specimens with better signal to noise ratio (SNR) than regular bright field images. I investigate whether and how such images could be used to determine the three-dimensional structure of proteins given that an ADF aperture with a suitable pass-band can be manufactured and used in practice. I develop an approximate theory of ADF-TEM image formation for weak amplitude and phase objects and test this theory using computer simulations. I also test whether these simulated images can be used to calculate a three-dimensional model of the protein using standard software and discuss problems and possible ways to overcome these. PMID:26656466

  19. Vortex shedding from struts in an annular exhaust diffuser

    SciTech Connect

    Fric, T.F.; Villarreal, R.; Auer, R.O.; James, M.L.; Ozgur, D.; Staley, T.K.

    1998-01-01

    Results from scale-model experiments and industrial gas turbine tests show that strut vortex shedding in an annular exhaust diffuser can effectively be modified by adding tapered chord to the struts. The struts are bluff bodies at full-speed, no-load conditions, when inlet swirl is close to 60 deg. Data from wind tunnel tests show that wake Strouhal number is 0.47, larger than that expected for an isolated cylinder wake. This value of Strouhal number agrees with those measured in full-scale exhaust diffusers. Wind tunnel tests showed that a strut with tapered chord most effectively reduced wake amplitudes and shifted shedding frequency. The tapered strut was also effective in reducing shedding amplitude in a scale-model diffuser. Finally, gas turbine tests employing a tapered strut showed significant reductions in unsteady pressure and noise. A major benefit of strut taper is a reduction of noise by uncoupling of vortex shedding from acoustic resonant response.

  20. Reduction of asymmetry transport in the annular Penning trap

    NASA Astrophysics Data System (ADS)

    Robertson, Scott; Sternovsky, Zoltan; Walch, Bob

    2004-05-01

    In the Penning trap, there is transport of electrons in the limit of zero gas pressure that arises from asymmetric stray electric fields. In an annular version of the Penning trap, this asymmetry transport is shown to be greatly reduced when the plasma-facing surfaces are coated with colloidal graphite. In a separate device, an emissive probe is used to examine the space potential a few millimeters above coated and uncoated surfaces. It is found that the rms potential variation is approximately 250 mV for uncoated surfaces and 15 mV for coated surfaces. The characteristic length scale of the inhomogeneities is ˜1 cm. Glow-discharge cleaning, which is easily renewed, is shown to reduce the potential variation to the same level that is obtained with the colloidal graphite coating.

  1. Simulation study with arbitrary profile liquid annular seals

    SciTech Connect

    Padavala, S.; Palazzolo, A.B.

    1994-10-01

    This paper presents an improved dynamic analysis for liquid annular seals with arbitrary profile based on a method first proposed by Nelson and Nguyen. An improved first-order solution that incorporates a continuous interpolation of perturbed quantities in the circumferential direction is presented. The original method uses an approximation scheme for circumferential gradients of zeroth order solution based on Fast Fourier Transforms (FFT). A simpler scheme based on cubic splines is found to be computationally more efficient, with better convergence at higher eccentricities. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. A procedure for computing dynamic coefficients based on external specific load is discussed. An example case of an elliptical seal with varying degrees of axial curvature is analyzed. A case study based on actual operating clearances (6 axial planes with 68 clearances/plane) of an interstage seal of the Space Shuttle Main Engine High Pressure Oxygen Turbopump (SSME-ATD-HPOTP) is presented.

  2. Two-phase flow instabilities in a vertical annular channel

    SciTech Connect

    Babelli, I.; Nair, S.; Ishii, M.

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  3. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  4. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-11-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  5. Hyperthermia and inhomogeneous tissue effects using an Annular Phased Array

    SciTech Connect

    Turner, P.F.

    1984-08-01

    A regional hyperthermia Annular Phased Array (APA) applicator is described, and examples of its various heating patterns, obtained by scanning the electric fields with a small E-field sensor, are illustrated. Also shown are the effects of different frequencies of an elliptical phantom cylinder having a 1-cm-thick artificial fat wall and the general dimensions of the human trunk. These studies show the APA's ability to achieve uniform heating at lower frequencies (below 70 MHz) or to focus central heating at moderately higher frequencies (above 70 MHz). The influence of human anatomical contours in altering heating patterns is discussed using results obtained with a female mannequin having a thin latex shell filled with tissue-equivalent phantom. Field perturbations caused by internally embedded low-dielectric structures are presented, showing the localized effects of small objects whose surfaces are perpendicular to the electric field.

  6. Buoyancy Driven Flow in an Axisymmetric Spherical Annular Sector

    NASA Astrophysics Data System (ADS)

    Thamire, Chandrasekhar; Wright, Neil T.; von Kerczek, Christian H.

    1996-11-01

    Results from analysis of axisymmetric, laminar buoyancy driven flows in a spherical annular sector with its outer radius equal to 1.5 times the inner radius and a sector angle of .75π are presented. The spherical surfaces of the enclosure are assumed to be heated and cooled isothermally, the radial surface being insulated. A time marching finite differencing scheme is used to solve the governing equations. The effects of Grashof number Gr and Prandtl number Pr on convective motion and heat transfer are examined. Flow patterns, changing from unicellular to multicellular flows with increasing Gr, and heat transfer results are graphically illustrated. Interesting recirculation zones develop at the insulated boundary for Gr = 10^5. The heat transfer calculations indicate that the Nusselt number depends strongly on Gr, and weakly on Pr in the range of parameters studied.

  7. Thermo-electrohydrodynamic internal waves in annular geometry

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Harunori; Meyer, Antoine; Crumeyrolle, Olivier; Mutabazi, Innocent

    2014-11-01

    An electric field applied to a dielectric fluid with a temperature gradient generates a body force on the fluid, which can be regarded as thermal buoyancy associated with an electric effective gravity. We consider the internal waves due to this thermoelectric force in annular geometry, where the force field is centro-symmetric. The Earth's gravity is neglected. This configuration is of relevance to large-scale geophysical flows. The dispersion relation of the waves is determined by a spectral method, with or without taking into account the fluid viscosity. The effects of geometry curvature and of a thermoelectric feedback are discussed. The oscillatory instability of the circular Couette flow under the thermoelectric body force and its relation with the waves will also be discussed. Authors acknowledge the financial support from the CNRS under the program PEPS-PTI OndInterGE.

  8. Annular suspension and pointing system with controlled DC electromagnets

    NASA Technical Reports Server (NTRS)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  9. Interfacial transfer in annular dispersed flow. [PWR; BWR

    SciTech Connect

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, droplet deposition and droplet-size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The onset of droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet-size distribution have been obtained from a simple model in collaboration with a large number of data. Then the rate equations for entrainment and deposition have been developed. The drag correlations relevant to the droplet transfer is also presented. The comparison of the correlations to various data show satisfactory agreement.

  10. Hydrodynamics of annular-dispersed flow. [PWR; BWR

    SciTech Connect

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data.

  11. Annular-beam, 17 GHz free-electron maser experiment

    SciTech Connect

    Earley, L.M.; Carlsten, B.E.; Fazio, M.V.

    1997-06-01

    Experiments have been conducted on a 15-17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. The electron beam source was a 1 {mu}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacted with the TM{sub 02} and TM{sub 03} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. This greatly reduced the kinetic energy loss caused by the beam potential depression associated with the space charge which was a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. The experiment was operated in a single shot mode with a large number of diagnostics to measure power, frequency and energy.

  12. Annular plaques on the tongue: what is your diagnosis?

    PubMed

    Kayhan, Tuba Çelebĺ; Bĺlaç, Cemal; Bĺlaç, Dilek Bayraktar; Ecemĺş, Talat; Ermertcan, Aylin Türel

    2011-11-01

    Geographic tongue is an inflammatory disorder of the tongue characterized by asymptomatic erythematous patches with serpiginous borders. Candidiasis of the tongue may be confused with geographic tongue. A 63-year-old male patient with painful white annular lesions localized to the left side of his tongue is presented. He applied topical corticosteroid and antiinflammatory agents, but his lesions did not respond to those therapies. Using direct mycologic examination and culture, the patient was diagnosed with candidiasis. After systemic and topical antifungal therapy, clinical improvement was observed. With this case, the clinical forms of oral candidiasis were discussed, and it was suggested that the clinical presentation of mucosal candidiasis may vary according to the stage of infection and individual immunity. PMID:22148032

  13. Development of annular targets for {sup 99}MO production.

    SciTech Connect

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-09-30

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of {sup 99}Mo.

  14. Annular billiard dynamics in a circularly polarized strong laser field

    NASA Astrophysics Data System (ADS)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2012-01-01

    We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.

  15. Experimental annular stratified flames characterisation stabilised by weak swirl

    SciTech Connect

    Bonaldo, A.; Kelman, J.B.

    2009-04-15

    A burner for the investigation of lean stratified premixed flames propagating in intense isotropic turbulence has been developed. Lean pre-mixtures of methane at different equivalence ratios were divided between two concentric co-flows to obtain annular stratification. Turbulence generators were used to control the level of turbulence intensity in the oncoming flow. A third annular weakly swirling airflow provided the flame stabilisation mechanism. A fundamental characteristic was that flame stabilisation did not rely on flow recirculation. The flames were maintained at a position where the local mass flux balanced the burning rate, resulting in a freely propagating turbulent flame front. The absence of physical surfaces in the vicinity of the flame provided free access for laser diagnostics. Stereoscopic Planar Image Velocimetry (SPIV) was applied to obtain the three components of the instantaneous velocity vectors on a vertical plane above the burner at the point of flame stabilisation. The instantaneous temperature fields were determined through Laser Induced Rayleigh (LIRay) scattering. Planar Laser Induced Fluorescence (PLIF) of acetone was used to calculate the average equivalence ratio distributions. Instantaneous turbulent burning velocities were extracted from SPIV results, while flame curvature and flame thermal thickness were calculated using the instantaneous temperature fields. The PDFs of these quantities were analysed to consider the separate influence of equivalence ratio stratification and turbulence. Increased levels of turbulence resulted in the expected higher turbulent burning velocities and flame front wrinkling. Flames characterised by higher fuel gradients showed higher turbulent burning velocities. Increased fuel concentration gradients gave rise to increased flame wrinkling, particularly when associated with positive small radius of curvature. (author)

  16. Control of Smokestack Downwash Using a Concentric Annular Synthetic Jet

    NASA Astrophysics Data System (ADS)

    Sigurdson, Lorenz; Diep, John

    2001-11-01

    The objective was to discover and evaluate methods of smokestack downwash reduction using unsteady forcing. The flow was essentially a low momentum jet in a crossflow. After preliminary investigations of several concepts, the final wind-tunnel model applied an annular synthetic jet coaxially to a turbulent or laminar pipe flow at the stack exit. The cross-wind Reynolds number based on stack diameter was on the order of 1000. Primary diagnostics were hot-wire measurements and image processing of smoke flow visualization photographs of the plume gas. For a laminar pipe flow and increasing forcing amplitude, the initially turbulent plume can be made to completely relaminarize and then become turbulent again at higher amplitudes. Therefore an increased forcing does not always increase mixing. An abrupt transition of vortex structure appears at a particular amplitude. An inverse indication of downwash was obtained by measuring the plume height at a fixed downstream location. For a turbulent pipe flow, the synthetic jet causes an increase in plume height of up to 1.8 stack diameters. The increase using a synthetic jet is greater than using steady annular blowing of similar velocity, and can be almost 100cross-wind velocity ratios. Synthetic jet momentum dominates the forced plume at high forcing amplitudes. A simple model based on this idea collapses the measured synthetic jet-forced plume height data as a function of a scaled forcing velocity, for various plume to cross-stream velocity ratios. This data compares well with reference unforced plumes using the same scaling.

  17. On basis set superposition error corrected stabilization energies for large n-body clusters.

    PubMed

    Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael

    2011-10-01

    In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. PMID:21992293

  18. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication

    NASA Astrophysics Data System (ADS)

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.

  19. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication.

    PubMed

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.

  20. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication.

    PubMed

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability. PMID:27636460

  1. Conditional production of superpositions of coherent states with inefficient photon detection

    SciTech Connect

    Lund, A.P.; Jeong, H.; Ralph, T.C.; Kim, M.S.

    2004-08-01

    It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude ({alpha}>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.

  2. Robot Behavior Acquisition Superposition and Composting of Behaviors Learned through Teleoperation

    NASA Technical Reports Server (NTRS)

    Peters, Richard Alan, II

    2004-01-01

    Superposition of a small set of behaviors, learned via teleoperation, can lead to robust completion of a simple articulated reach-and-grasp task. Results support the hypothesis that a set of learned behaviors can be combined to generate new behaviors of a similar type. This supports the hypothesis that a robot can learn to interact purposefully with its environment through a developmental acquisition of sensory-motor coordination. Teleoperation bootstraps the process by enabling the robot to observe its own sensory responses to actions that lead to specific outcomes. A reach-and-grasp task, learned by an articulated robot through a small number of teleoperated trials, can be performed autonomously with success in the face of significant variations in the environment and perturbations of the goal. Superpositioning was performed using the Verbs and Adverbs algorithm that was developed originally for the graphical animation of articulated characters. Work was performed on Robonaut at NASA-JSC.

  3. Superposition and detection of two helical beams for optical orbital angular momentum communication

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Dong; Gao, Chunqing; Gao, Mingwei; Qi, Xiaoqing; Weber, Horst

    2008-07-01

    A loop-like system with a Dove prism is used to generate a collinear superposition of two helical beams with different azimuthal quantum numbers in this manuscript. After the generation of the helical beams distributed on the circle centered at the optical axis by using a binary amplitude grating, the diffractive field is separated into two polarized ones with the same distribution. Rotated by the Dove prism in the loop-like system in counter directions and combined together, the two fields will generate the collinear superposition of two helical beams in certain direction. The experiment shows consistency with the theoretical analysis. This method has potential applications in optical communication by using orbital angular momentum of laser beams (optical vortices).

  4. Brain-wave representation of words by superposition of a few sine waves

    PubMed Central

    Suppes, Patrick; Han, Bing

    2000-01-01

    Data from three previous experiments were analyzed to test the hypothesis that brain waves of spoken or written words can be represented by the superposition of a few sine waves. First, we averaged the data over trials and a set of subjects, and, in one case, over experimental conditions as well. Next we applied a Fourier transform to the averaged data and selected those frequencies with high energy, in no case more than nine in number. The superpositions of these selected sine waves were taken as prototypes. The averaged unfiltered data were the test samples. The prototypes were used to classify the test samples according to a least-squares criterion of fit. The results were seven of seven correct classifications for the first experiment using only three frequencies, six of eight for the second experiment using nine frequencies, and eight of eight for the third experiment using five frequencies. PMID:10890906

  5. Performance of a two-state quantum engine improved by the superposition effect

    NASA Astrophysics Data System (ADS)

    Ou, CongJie; Huang, ZhiFu; Lin, BiHong; Chen, JinCan

    2013-10-01

    The performance of a two-state quantum engine under different conditions is analyzed. It is shown that the efficiency of the quantum engine can be enhanced by superposing the eigenstates at the beginning of the cycle. By employing the finite-time movement of the potential wall, the power output of the quantum engine as well as the efficiency at the maximum power output (EMP) can be obtained. A generalized potential is adopted to describe a class of two-level quantum engines in a unified way. The results obtained show clearly that the performances of these engines depend on the external potential, the geometric configuration of the quantum engines, and the superposition effect. Moreover, it is found that the superposition effect will enlarge the optimally operating region of quantum engines.

  6. From constants of motion to superposition rules for Lie-Hamilton systems

    NASA Astrophysics Data System (ADS)

    Ballesteros, A.; Cariñena, J. F.; Herranz, F. J.; de Lucas, J.; Sardón, C.

    2013-07-01

    A Lie system is a non-autonomous system of first-order differential equations possessing a superposition rule, i.e. a map expressing its general solution in terms of a generic finite family of particular solutions and some constants. Lie-Hamilton systems form a subclass of Lie systems whose dynamics is governed by a curve in a finite-dimensional real Lie algebra of functions on a Poisson manifold. It is shown that Lie-Hamilton systems are naturally endowed with a Poisson coalgebra structure. This allows us to devise methods for deriving in an algebraic way their constants of motion and superposition rules. We illustrate our methods by studying Kummer-Schwarz equations, Riccati equations, Ermakov systems and Smorodinsky-Winternitz systems with time-dependent frequency.

  7. Superposition-model analysis of rare-earth doped BaY2F8

    NASA Astrophysics Data System (ADS)

    Magnani, N.; Amoretti, G.; Baraldi, A.; Capelletti, R.

    The energy level schemes of four rare-earth dopants (Ce3+ , Nd3+ , Dy3+ , and Er3+) in BaY2 F-8 , as determined by optical absorption spectra, were fitted with a single-ion Hamiltonian and analysed within Newman's Superposition Model for the crystal field. A unified picture for the four dopants was obtained, by assuming a distortion of the F- ligand cage around the RE site; within the framework of the Superposition Model, this distortion is found to have a marked anisotropic behaviour for heavy rare earths, while it turns into an isotropic expansion of the nearest-neighbours polyhedron for light rare earths. It is also inferred that the substituting ion may occupy an off-center position with respect to the original Y3+ site in the crystal.

  8. Influence of thermal deformations of resonators on propagation properties of laser annular beams through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Peng, Yufeng; Peng, Fang; Han, Junpeng

    2013-02-01

    Based on the laser field from a positive confocal unstable resonator, considering the influence of thermal distortion of the internal resonator mirror on the annular beam, the propagation characteristics of the annular beam through turbulent atmosphere are investigated by means of the fast Fourier transform algorithm (FFT). The intensity distributions of the output laser far-field are obtained to analyze the propagation characteristics of laser annular beam through the turbulent atmosphere, which is a function about different propagation distances. The results show that the peak intensity of the laser pattern becomes depressed and the spread of the far field diagram patterns is broadened under the increasing of the transmission distance and the thermal distortion of the laser resonator. β-parameter and strehl ratio are introduced to estimate the annular beam quality characteristics. It is found that the annular beam through strong turbulence influences much less obviously than the annular beam through weak turbulence on the quality characteristics with thermal distortion. In the same atmospheric conditions with a certain distance, the greater the mirror thermal distortion is, the worse the annular beam quality characteristics is.

  9. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters

    NASA Astrophysics Data System (ADS)

    Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud

    2015-10-01

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and 18F, 99mTc, 131I and 177Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the 99mTc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.

  10. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters.

    PubMed

    Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud

    2015-10-21

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and (18)F, (99m)Tc, (131)I and (177)Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the (99m)Tc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity. PMID:26406778

  11. Correlation of transverse momentum and multiplicity in a superposition model of nucleus-nucleus collisions

    SciTech Connect

    Mrowczynski, Stanislaw

    2006-04-15

    In p-p collisions the average transverse momentum is known to be correlated with the multiplicity of produced particles. The correlation is shown to survive in a superposition model of nucleus-nucleus collisions. When properly parametrized, the correlation strength appears to be independent of the collision centrality--it is the same in p-p and central A-A collisions. However, the correlation is strongly suppressed by the centrality fluctuations.

  12. Note: An explicit solution of the optimal superposition and Eckart frame problems.

    PubMed

    Cioslowski, Jerzy

    2016-07-14

    Attention is called to an explicit solution of both the optimal superposition and Eckart frame problems that requires neither matrix diagonalization nor quaternion algebra. A simple change in one variable that enters the expression for the solution matrix T allows for selection of T representing either a proper rotation or a more general orthogonal transformation. The issues concerning the use of these alternative selections and the equivalence of the two problems are addressed. PMID:27421427

  13. Stability of a superposition of shock waves with contact discontinuities for systems of viscous conservation laws

    NASA Astrophysics Data System (ADS)

    Zeng, Huihui

    In this paper, we show the large time asymptotic nonlinear stability of a superposition of viscous shock waves with viscous contact waves for systems of viscous conservation laws with small initial perturbations, provided that the strengths of these viscous waves are small with the same order. The results are obtained by elementary weighted energy estimates based on the underlying wave structure and a new estimate on the heat equation.

  14. Note: An explicit solution of the optimal superposition and Eckart frame problems

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy

    2016-07-01

    Attention is called to an explicit solution of both the optimal superposition and Eckart frame problems that requires neither matrix diagonalization nor quaternion algebra. A simple change in one variable that enters the expression for the solution matrix T allows for selection of T representing either a proper rotation or a more general orthogonal transformation. The issues concerning the use of these alternative selections and the equivalence of the two problems are addressed.

  15. Analysis of a teleportation scheme involving cavity field states in a linear superposition of Fock states

    NASA Astrophysics Data System (ADS)

    Carvalho, C. R.; Guerra, E. S.; Jalbert, Ginette

    2008-04-01

    We analyse a teleportation scheme of cavity field states. The experimental sketch discussed makes use of cavity quantum electrodynamics involving the interaction of Rydberg atoms with superconducting (micromaser) cavities as well as with classical microwave (Ramsey) cavities. In our scheme the Ramsey cavities and the atoms play the role of auxiliary systems used to teleport a field state, which is formed by a linear superposition of vacuum |∅> and the one-photon state |1>, from a micromaser cavity to another.

  16. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters.

    PubMed

    Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud

    2015-10-21

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and (18)F, (99m)Tc, (131)I and (177)Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the (99m)Tc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.

  17. Coherent superpositions of states in coupled Hilbert-space using step by step Morris-Shore transformation

    NASA Astrophysics Data System (ADS)

    Saadati-Niari, Maghsoud

    2016-09-01

    Creation of coherent superpositions in quantum systems with Na states in the lower set and Nb states in the upper set is presented. The solution is drived by using the Morris-Shore transformation, which step by step reduces the fully coupled system to a three-state Λ-like system and a set of decoupled states. It is shown that, for properly timed pulse, robust population transfer from an initial ground state (or superposition of M ground states) to an arbitrary coherent superposition of the ground states can be achieved by coincident pulses and/or STIRAP techniques.

  18. A Superposition Technique for Deriving Photon Scattering Statistics in Plane-Parallel Cloudy Atmospheres

    NASA Technical Reports Server (NTRS)

    Platnick, S.

    1999-01-01

    Photon transport in a multiple scattering medium is critically dependent on scattering statistics, in particular the average number of scatterings. A superposition technique is derived to accurately determine the average number of scatterings encountered by reflected and transmitted photons within arbitrary layers in plane-parallel, vertically inhomogeneous clouds. As expected, the resulting scattering number profiles are highly dependent on cloud particle absorption and solar/viewing geometry. The technique uses efficient adding and doubling radiative transfer procedures, avoiding traditional time-intensive Monte Carlo methods. Derived superposition formulae are applied to a variety of geometries and cloud models, and selected results are compared with Monte Carlo calculations. Cloud remote sensing techniques that use solar reflectance or transmittance measurements generally assume a homogeneous plane-parallel cloud structure. The scales over which this assumption is relevant, in both the vertical and horizontal, can be obtained from the superposition calculations. Though the emphasis is on photon transport in clouds, the derived technique is applicable to any scattering plane-parallel radiative transfer problem, including arbitrary combinations of cloud, aerosol, and gas layers in the atmosphere.

  19. A cute and highly contrast-sensitive superposition eye - the diurnal owlfly Libelloides macaronius.

    PubMed

    Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G

    2013-06-01

    The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination microscopy, the interommatidial angle in the central part of the dorsofrontal eye was determined to be Δϕ=1.1 deg. Eye shine measurements with an epi-illumination microscope yielded an effective superposition pupil size of about 300 facets. Intracellular recordings confirmed that all photoreceptors were UV-receptors (λmax=350 nm). The average photoreceptor acceptance angle was 1.8 deg, with a minimum of 1.4 deg. The receptor dynamic range was two log units, and the Hill coefficient of the intensity-response function was n=1.2. The signal-to-noise ratio of the receptor potential was remarkably high and constant across the whole dynamic range (root mean square r.m.s. noise=0.5% Vmax). Quantum bumps could not be observed at any light intensity, indicating low voltage gain. Presumably, the combination of large aperture superposition optics feeding an achromatic array of relatively insensitive receptors with a steep intensity-response function creates a low-noise, high spatial acuity instrument. The sensitivity shift to the UV range reduces the clutter created by clouds within the sky image. These properties of the visual system are optimal for detecting small insect prey as contrasting spots against both clear and cloudy skies.

  20. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim

    2016-05-01

    We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.

  1. Annular and Cylindrical Phased Array Geometries for Transrectal High-Intensity Focused Ultrasound (HIFU) using PZT and Piezocomposite Materials

    NASA Astrophysics Data System (ADS)

    Seip, Ralf; Chen, Wohsing; Carlson, Roy; Frizzell, Leon; Warren, Gary; Smith, Nadine; Saleh, Khaldon; Gerber, Gene; Shung, Kirk; Guo, Hongkai; Sanghvi, Narendra T.

    2005-03-01

    This paper presents engineering progress and the latest in-vitro and in-vivo results obtained with a 4.0 MHz, 20 element, PZT annular transrectal HIFU array and several 4.0 MHz, 211 element, PZT and piezocomposite cylindrical transrectal HIFU arrays for the treatment of prostate cancer. The geometries of both arrays were designed and analyzed to steer the HIFU beams to the desired sites in the prostate volume using multi-channel electronic drivers, with the intent to increase treatment efficiency and reliability for the next generation of HIFU systems. The annular array is able to focus in depth from 25 mm to 50 mm, generate total acoustic powers in excess of 60W, and has been integrated into a modified Sonablate®500 HIFU system capable of controlling such an applicator through custom treatment planning and execution software. Both PZT- and piezocomposite cylindrical arrays were constructed and their characteristics were compared for the transrectal applications. These arrays have been installed into appropriate transducer housings, and have undergone characterization tests to determine their total acoustic power output, focusing range (in depth and laterally), focus quality, efficiency, and comparison tests to determine the material and technology of choice (PZT or piezocomposite) for intra-cavity HIFU applications. Array descriptions, characterization results, in-vitro and in-vivo results, and an overview of their intended use through the application software is shown.

  2. Low-to-moderate Reynolds number swirling flow in an annular channel with a rotating end wall.

    PubMed

    Davoust, Laurent; Achard, Jean-Luc; Drazek, Laurent

    2015-02-01

    This paper presents a new method for solving analytically the axisymmetric swirling flow generated in a finite annular channel from a rotating end wall, with no-slip boundary conditions along stationary side walls and a slip condition along the free surface opposite the rotating floor. In this case, the end-driven swirling flow can be described from the coupling between an azimuthal shear flow and a two-dimensional meridional flow driven by the centrifugal force along the rotating floor. A regular asymptotic expansion based on a small but finite Reynolds number is used to calculate centrifugation-induced first-order correction to the azimuthal Stokes flow obtained as the solution at leading order. For solving the first-order problem, the use of an integral boundary condition for the vorticity is found to be a convenient way to attribute boundary conditions in excess for the stream function to the vorticity. The annular geometry is characterized by both vertical and horizontal aspect ratios, whose respective influences on flow patterns are investigated. The vertical aspect ratio is found to involve nontrivial changes in flow patterns essentially due to the role of corner eddies located on the left and right sides of the rotating floor. The present analytical method can be ultimately extended to cylindrical geometries, irrespective of the surface opposite the rotating floor: a wall or a free surface. It can also serve as an analytical tool for monitoring confined rotating flows in applications related to surface viscosimetry or crystal growth from the melt.

  3. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  4. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.

    2002-01-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  5. Transverse Vibration Of Annular Circular And Elliptic Plates Using The Characteristic Orthogonal Polynomials In Two Dimensions

    NASA Astrophysics Data System (ADS)

    Singh, B.; Chakraverty, S.

    1993-04-01

    Characteristic orthogonal polynomials in two variables have been generated over the annular region occupied by a circular or elliptic plate satisfying the essential boundary conditions. These are used to express the displacement in the transverse vibration of the plate. The Rayleigh-Ritz method is then applied to study the fundamental mode of vibration. Comparison has been made with the known results for circular annular plates in some cases. The results for the elliptic annular plate are entirely new and are not available elsewhere. All the results are summarized in tables covering various combinations of the boundary conditions.

  6. Lava flow superposition: the reactivation of flow units in compound flow fields

    NASA Astrophysics Data System (ADS)

    Applegarth, Jane; Pinkerton, Harry; James, Mike; Calvari, Sonia

    2010-05-01

    Long-lived basaltic eruptions often produce compound `a`ā lava flow fields that are constructed of many juxtaposed and superposed flow units. We have examined the processes that result from superposition when the underlying flows are sufficiently young to have immature crusts and deformable cores. It has previously been recognised that the time elapsed between the emplacement of two units determines the fate of the underlying flow[1], because it controls the rheological contrast between the units. If the time interval is long, the underlying flow is able to cool, degas and develop a rigid crust, so that it shows no significant response to loading, and the two units are easily discernable stratigraphically. If the interval is short, the underlying flow has little time to cool, so the two units may merge and cool as a single unit, forming a ‘multiple' flow[1]. In this case, the individual units are more difficult to distinguish post-eruption. The effects of superposition in intermediate cases, when underlying flows have immature roofs, are less well understood, and have received relatively little attention in the literature, possibly due to the scarcity of observations. However, the lateral and vertical coalescence of lava tubes has been described on Mt. Etna, Sicily[2], suggesting that earlier tubes can be reactivated and lengthened as a result of superposition. Through our recent analysis of images taken by INGV Catania during the 2001 eruption of Mt. Etna (Sicily), we have observed that the emplacement of new surface flows can reactivate underlying units by squeezing the still-hot flow core away from the site of loading. We have identified three different styles of reactivation that took place during that eruption, which depend on the time interval separating the emplacement of the two flows, and hence the rheological contrast between them. For relatively long time intervals (> 2 days), hence high rheological contrasts, superposition can cause an overpressure

  7. A Bäcklund Transformation and Nonlinear Superposition Formula of the Caudrey-Dodd-Gibbon-Kotera-Sawada Hierarchy

    NASA Astrophysics Data System (ADS)

    Hu, Xing-Biao; Bullough, Robin

    1998-03-01

    In this paper, the Caudrey-Dodd-Gibbon-Kotera-Sawada hierarchy in bilinear form is considered. A Bäcklund transformation for the CDGKS hierarchy is presented. Under certain conditions, the corresponding nonlinear superposition formula is proved.

  8. A deployable, annular, 30m telescope, space-based observatory

    NASA Astrophysics Data System (ADS)

    Rey, Justin J.; Wirth, Allan; Jankevics, Andrew; Landers, Franklin; Rohweller, David; Chen, C. Bill; Bronowicki, Allen

    2014-08-01

    High resolution imaging from space requires very large apertures, such as NASA's current mission the James Webb Space Telescope (JWST) which uses a deployable 6.5m segmented primary. Future missions requiring even larger apertures (>>10m) will present a great challenge relative to the size, weight and power constraints of launch vehicles as well as the cost and schedule required to fabricate the full aperture. Alternatively, a highly obscured annular primary can be considered. For example, a 93.3% obscured 30m aperture having the same total mirror area (91m2) as a 10.7m unobscured telescope, can achieve ~3X higher limiting resolution performance. Substantial cost and schedule savings can be realized with this approach compared to fully filled apertures of equivalent resolution. A conceptual design for a ring-shaped 30m telescope is presented and the engineering challenges of its various subsystems analyzed. The optical design consists of a 20X annular Mersenne form beam compactor feeding a classical 1.5m TMA telescope. Ray trace analysis indicates the design can achieve near diffraction limited images over a 200μrad FOV. The primary mirror consists of 70 identical rectangular 1.34x1.0m segments with a prescription well within the demonstrated capabilities of the replicated nanolaminate on SiC substrate technology developed by AOA Xinetics. A concept is presented for the deployable structure that supports the primary mirror segments. A wavefront control architecture consisting of an optical metrology subsystem for coarse alignment and an image based fine alignment and phasing subsystem is presented. The metrology subsystem is image based, using the background starfields for distortion and pointing calibration and fiducials on the segments for measurement. The fine wavefront control employs a hill climbing algorithm operating on images from the science camera. The final key technology required is the image restoration algorithm that will compensate for the highly

  9. Microstructures in CoPtC magnetic thin films studied by superpositioning of micro-electron diffraction

    PubMed

    Tomita; Sugiyama; Sato; Delaunay; Hayashi

    2000-01-01

    Cross-sectional transmission electron microscopy observation of CoPtC thin films showed that 10 nm sized ultrafine particles of CoPt typically were elongated along the substrate normal. Analysis of the superposition of 40 micro-electron diffraction patterns showed that there was no preferred crystal orientation of CoPt particles. This superpositioning technique can be applied to thin films, whose X-ray diffraction analysis is difficult due to the small size of the crystals. PMID:10791426

  10. Design and fabrication of sub-wavelength annular apertures for femtosecond laser machining

    NASA Astrophysics Data System (ADS)

    Hsu, Kuan-Yu; Tung, Yen-Chun; Chung, Ming-Han; Lee, Chih-Kung

    2015-03-01

    Many research teams have begun pursuing optical micromachining technology in recent years due to its associated noncontact and fast speed characteristics. However, the focal spot sizes and the depth of focus (DOF) strongly influenced the design requirements of the micromachining system. The focal spot size determines the minimum features can be fabricated, which is inversely proportional to the DOF. That is, smaller focal spot size led to shorter DOF. However, the DOF of the emitted visible or near-infrared light beam is typically limited to tens of nanometers for traditional optic system. The disadvantages of using nanosecond laser for micromachining such as burrs formation and surface roughness were found to further influence the accuracy of machined surfaces. To alleviate all of the above-mentioned problems, sub-wavelength annular aperture (SAA) illuminated with 780 nm femtosecond laser were integrated to develop the new laser micromachining system presented in this paper. We first optimized the parameters for high transmittance associated with the SAA structure for the 780 nm femtosecond laser used by adopting the finite difference time domain simulations method. A lateral microscope was modified from a traditional microscope to facilitate the measurement of the emitted light beam optical energy distribution. To verify the newly developed system performance the femtosecond laser was used to illuminate the SAA fabricated on the metallic film to produce the Bessel light beam so as to perform micromachining and process on silicon, PCB board and glass. Experimental results were found to match the original system design goals reasonably well.

  11. Fracture Mechanics Analysis of an Annular Crack in a Three-concentric-cylinder Composite Model

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife H.; Binienda, Wieslaw K.; Roberts, Gary D.

    2004-01-01

    A boundary-value problem governing a three-phase concentric-cylinder model was analytically modeled to analyze annular interfacial crack problems with Love s strain functions in order to find the stress intensity factors (SIFs) and strain energy release rates (SERRs) at the tips of an interface crack in a nonhomogeneous medium. The complex form of a singular integral equation (SIE) of the second kind was formulated using Bessel s functions in the Fourier domain, and the SIF and total SERR were calculated using Jacoby polynomials. For the validity of the SIF equations to be established, the SIE of the three-concentric-cylinder model was reduced to the SIE for a two-concentric-cylinder model, and the results were compared with the previous results of Erdogan. A preliminary set of parametric studies was carried out to show the effect of interphase properties on the SERR. The method presented here provides insight about the effect of interphase properties on the crack driving force.

  12. Solar cycle modulation of the Southern Annular mode -Simulation with the MRI-chemistry-climate model-

    NASA Astrophysics Data System (ADS)

    Kuroda, Y.; Shibata, K.

    2005-12-01

    Observation indicates that the 11-year solar cycle modulates the characteristics of the October/November mean Southern Annular Mode (SAM) [Kuroda and Kodera, 2005]. In fact, signal of the SAM tends to extend toward the upper stratosphere during late winter and the activity below lower stratosphere lasts until following summer in the high solar (HS) years. However accumulation and accuracy of observation is not good enough to examine the mechanism. To overcome this difficulty, we had examined this effect through simulation of the Meteorological-Research-Institute (MRI) chemistry climate model. 20-year integrations of the model was performed for an enhanced ultraviolet (UV) radiation corresponding to the HS years and moderate UV corresponding to the low solar (LS) years, respectively. Larger extension of the signal toward the upper stratosphere and longer duration of the signal was found in a HS experiment, whereas there was not in LS one. Analysis shows that the longer duration of signal in HS run was originated from lower stratospheric ozone which was transported from upper stratosphere through higher-extended wave driving toward the upper stratosphere. These results were almost consistent with that observed.

  13. Analysis of Annular Thermoelectric Couples with Nonuniform Temperature Distribution by Means of 3-D Multiphysics Simulation

    NASA Astrophysics Data System (ADS)

    Bauknecht, Andreas; Steinert, Torsten; Spengler, Carsten; Suck, Gerrit

    2013-07-01

    Thermoelectric (TE) modules with annular geometry are very attractive for waste heat recovery within the automotive world, especially when integrated as stacks into tubular heat exchangers. The required temperature difference is built up between the coolant, which flows inside an inner tube, and the exhaust gas, which flows around an outer tube. The flow pattern of the exhaust gas can be axial or circumferential, which can lead to higher heat transfer coefficients on the outer surface of the tube. However, this multidimensional construction in combination with a complex flow pattern can lead to a nonuniform heat flux. Additionally, the system experiences a nonuniform temperature distribution which consequently leads to complex conditions regarding the electrical potential. The relevant effects are investigated using a three-dimensional (3-D) numerical model implemented in the computational fluid dynamics (CFD) simulation environment Star-CCM+. The model supports temperature-dependent characteristics of the materials, contact resistances, and parasitic effects in the TE module. Furthermore, it involves techniques to quickly find the exact maximum power point of the TE module with the given boundary conditions. Using the validated model the influence of the nonuniform temperature distribution is investigated with emphasis on the electrical output and TE efficiency.

  14. Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang

    2016-10-01

    Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  15. Predicting multidimensional annular flows with a locally based two-fluid model

    SciTech Connect

    Antal, S.P. Edwards, D.P.; Strayer, T.D.

    1998-06-01

    Annular flows are a well utilized flow regime in many industrial applications, such as, heat exchangers, chemical reactors and industrial process equipment. These flows are characterized by a droplet laden vapor core with a thin, wavy liquid film wetting the walls. The prediction of annular flows has been largely confined to one-dimensional modeling which typically correlates the film thickness, droplet loading, and phase velocities by considering the average flow conditions and global mass and momentum balances to infer the flow topology. In this paper, a methodology to predict annular flows using a locally based two-fluid model of multiphase flow is presented. The purpose of this paper is to demonstrate a modeling approach for annular flows using a multifield, multidimensional two-fluid model and discuss the need for further work in this area.

  16. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    SciTech Connect

    Myers, N.J.

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  17. Method of improving image sharpness for annular-illumination scanning electron microscopes

    NASA Astrophysics Data System (ADS)

    Enyama, Momoyo; Hamada, Koichi; Fukuda, Muneyuki; Kazumi, Hideyuki

    2016-06-01

    Annular illumination is effective in enhancing the depth of focus for scanning electron microscopes (SEMs). However, owing to high side lobes of the point-spread function (PSF), annular illumination results in poor image sharpness. The conventional deconvolution method, which converts the PSF to a delta function, can improve image sharpness, but results in artifacts due to noise amplification. In this paper, we propose an image processing method that can reduce the deterioration of image sharpness. With this method, the PSF under annular illumination is converted to that under standard illumination. Through simulations, we verified that the image sharpness of SEM images under annular illumination with the proposed method can be improved without noise amplification.

  18. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    EPA Science Inventory

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  19. The influence of the equivalent hydraulic diameter on the pressure drop prediction of annular test section

    NASA Astrophysics Data System (ADS)

    Al-Kayiem, A. H. H.; Ibrahim, M. A.

    2015-12-01

    The flow behaviour and the pressure drop throughout an annular flow test section was investigated in order to evaluate and justify the reliability of experimental flow loop for wax deposition studies. The specific objective of the present paper is to assess and highlight the influence of the equivalent diameter method on the analysis of the hydrodynamic behaviour of the flow and the pressure drop throughout the annular test section. The test section has annular shape of 3 m length with three flow passages, namely; outer thermal control jacket, oil annular flow and inner pipe flow of a coolant. The oil annular flow has internal and external diameters of 0.0422 m and 0.0801 m, respectively. Oil was re-circulated in the annular passage while a cold water-glycol mixture was re-circulated in the inner pipe counter currently to the oil flow. The experiments were carried out at oil Reynolds number range of 2000 to 17000, covering laminar, transition and turbulent flow regimes. Four different methods of equivalent diameter of the annulus have been considered in this hydraulic analysis. The correction factor model for frictional pressure drop was also considered in the investigations. All methods addressed the high deviation of the prediction from the experimental data, which justified the need of a suitable pressure prediction correlation for the annular test section. The conventional hydraulic diameter method is a convenient substitute for characterizing physical dimension of a non-circular duct, and it leads to fairly good correlation between turbulent fluid flow and heat transfer characteristic of annular ducts.

  20. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    NASA Astrophysics Data System (ADS)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Qi, Zumin

    2015-11-01

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  1. Phase reconstruction in annular bright-field scanning transmission electron microscopy.

    PubMed

    Ishida, Takafumi; Kawasaki, Tadahiro; Tanji, Takayoshi; Kodama, Tetsuji; Matsutani, Takaomi; Ogai, Keiko; Ikuta, Takashi

    2015-04-01

    A novel technique for reconstructing the phase shifts of electron waves was applied to Cs-corrected scanning transmission electron microscopy (STEM). To realize this method, a new STEM system equipped with an annular aperture, annularly arrayed detectors and an arrayed image processor has been developed and evaluated in experiments. We show a reconstructed phase image of graphite particles and demonstrate that this new method works effectively for high-resolution phase imaging. PMID:25387907

  2. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    SciTech Connect

    Zhu, Danni; Zhang, Jun Zhong, Huihuang; Qi, Zumin

    2015-11-15

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  3. Vibration Analysis of Annular Plates with Concentric Supports Using a Variant of Rayleigh-Ritz Method

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Thevendran, V.

    1993-05-01

    A variant of the Rayleigh-Ritz method is presented for solving the free vibration problem of annular plates with internal axisymmetric supports. The method is simple, accurate and may be readily programmed and run on a microcomputer. A comprehensive tabulation of the fundamental frequencies is presented for isotropic annular plates with an internal concentric support. Results for full circular plates with concentric supports are also obtained by making the inner radial edge free and permitting the inner radius to become very small.

  4. Phase reconstruction in annular bright-field scanning transmission electron microscopy.

    PubMed

    Ishida, Takafumi; Kawasaki, Tadahiro; Tanji, Takayoshi; Kodama, Tetsuji; Matsutani, Takaomi; Ogai, Keiko; Ikuta, Takashi

    2015-04-01

    A novel technique for reconstructing the phase shifts of electron waves was applied to Cs-corrected scanning transmission electron microscopy (STEM). To realize this method, a new STEM system equipped with an annular aperture, annularly arrayed detectors and an arrayed image processor has been developed and evaluated in experiments. We show a reconstructed phase image of graphite particles and demonstrate that this new method works effectively for high-resolution phase imaging.

  5. Capacitive micromachined ultrasonic transducers based on annular cell geometry for air-coupled applications.

    PubMed

    Na, Shuai; Chen, Albert I H; Wong, Lawrence L P; Li, Zhenhao; Macecek, Mirek; Yeow, John T W

    2016-09-01

    A novel design of an air-coupled capacitive micromachined ultrasonic transducer (CMUT) with annular cell geometry (annular CMUT) is proposed. Finite element analysis shows that an annular cell has a ratio of average-to-maximum displacement (RAMD) of 0.52-0.58 which is 58-76% higher than that of a conventional circular cell. The increased RAMD leads to a larger volume displacement which results in a 48.4% improved transmit sensitivity and 127.3% improved power intensity. Single-cell annular CMUTs were fabricated with 20-μm silicon plates on 13.7-μm deep and 1.35-mm wide annular cavities using the wafer bonding technique. The measured RAMD of the fabricated CMUTs is 0.54. The resonance frequency was measured to be 94.5kHz at 170-V DC bias. The transmit sensitivity was measured to be 33.83Pa/V and 25.85Pa/V when the CMUT was excited by a continuous wave and a 20-cycle burst, respectively. The receive sensitivity at 170-V DC bias was measured to be 7.7mV/Pa for a 20-cycle burst, and 15.0mV/Pa for a continuous incident wave. The proposed annular CMUT design demonstrates a significant improvement in transmit efficiency, which is an important parameter for air-coupled ultrasonic transducers. PMID:27352025

  6. Jet mixing and emission characteristics of transverse jets in annular and cylindrical confined crossflow

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1995-01-01

    Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio (J) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter (C = (S/H) square root of J) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.

  7. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  8. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    SciTech Connect

    John D. Bess

    2009-11-01

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  9. Flow Pressure Loss through Straight Annular Corrugated Pipes

    NASA Technical Reports Server (NTRS)

    Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy

    2016-01-01

    Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.

  10. Experimental investigation of the low NOx vortex airblast annular combustor

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Biaglow, J. A.; Smith, J. M.

    1984-01-01

    A low oxides of nitrogen vortex airblast annular combustor was evaluated which has attained the goal of 1 gm NO2/kg fuel or less during operation. The experimental combustor test conditions were a nominal inlet-air temperature of 703 K, inlet total pressures between 0.52 to 0.83 MPa, and a constant inlet Mach number of 0.26. Exit temperature pattern factors for all test points were between 0.16 and 0.20 and exit swirl flow angles were 47 degrees at isothermal conditions and 23 degrees during combustion. Oxides of nitrogen did not exceed 1.05 gm NO2/kg fuel at the highest inlet pressure and exhaust temperature tested. Previous correlations have related NOx proportionally to the combustor inlet pressure raised to some exponent. In this experiment, a band of exponents between 0.5 and 1.0 resulted for fuel-air ratios from 0.023 to 0.027 and inlet pressures from 0.52 to 0.83 MPa. Previously announced in STAR as N84-22567

  11. Adaptive control system for large annular momentum control device

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Johnson, C. R., Jr.

    1981-01-01

    A dual momentum vector control concept, consisting of two counterrotating rings (each designated as an annular momentum control device), was studied for pointing and slewing control of large spacecraft. In a disturbance free space environment, the concept provides for three axis pointing and slewing capabilities while requiring no expendables. The approach utilizes two large diameter counterrotating rings or wheels suspended magnetically in many race supports distributed around the antenna structure. When the magnets are energized, attracting the two wheels, the resulting gyroscopic torque produces a rate along the appropriate axis. Roll control is provided by alternating the radiative rotational velocity of the two wheels. Wheels with diameters of 500 to 800 m and with sufficient momentum storage capability require rims only a few centimeters thick. The wheels are extremely flexible; therefore, it is necessary to account for the distributed nature of the rings in the design of the bearing controllers. Also, ring behavior is unpredictably sensitive to ring temperature, spin rate, manufacturing imperfections, and other variables. An adaptive control system designed to handle these problems is described.

  12. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  13. Annular beam shaping system for advanced 3D laser brazing

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  14. Annular flow entrainment rate experiment in a vertical pipe

    SciTech Connect

    Lopez de Bertodano, M.A.; Jan, C.-S.; Beus, S.G.

    1996-06-01

    An air-water experiment has been performed to measure the entrainment rate in a small pipe. The current data extend the available database in the literature to higher gas and liquid flows and also to higher pressures. The ranges covered are 8.1 {times} 10{sup 2} kg/m{sup 2}s {lt} (gas flux rate) {lt} 4.5 {times} 10{sup 4} kg/m{sup 2}s, 5.5 kg/m{sup 2}s {lt} (liquid flux rate) {lt} 2.9 {times} 10{sup 2}s and 140 CPU {lt} PP {lt} 660 CPU. The test section has an internal diameter of 9.5 mm and an L/D ratio of 440. The measurements were made by extracting the liquid film at two locations establishing fully developed annular flow. The data were validated by visual observation and comparisons with the data of Cousins and Hewitt. A mechanism for the entrainment rate in terms of Taylor`s ripple instability is proposed. The theory is modified to include the effect of the inertia of the droplets in the gas stream. The model results in a dimensionless group that includes the Weber number based on the droplet concentration and the liquid film Reynolds number. Kataoka and Ishii`s correlation (1982) is modified in light of this model and the new correlation scales the present data and Cousins and Hewitt`s data very well. 19 refs., 8 figs., 3 tabs.

  15. Design and fabrication of a 40-MHz annular array transducer

    PubMed Central

    Ketterling, Jeffrey A.; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.

    2006-01-01

    This paper investigates the feasibility of fabricating a 5-ring, focused annular array transducer operating at 40 MHz. The active piezoelectric material of the transducer was a 9-μm thick polyvinylidene fluoride (PVDF) film. One side of the PVDF was metallized with gold and forms the ground plane of the transducer. The array pattern of the transducer and electrical traces to each annulus were formed on a copper-clad polyimide film. The PVDF and polyimide were bonded with a thin layer of epoxy, pressed into a spherically curved shape, and then back filled with epoxy. A 5-ring transducer with equal area elements and 100 μm kerfs between annuli was fabricated and tested. The transducer had a total aperture of 6 mm and a geometric focus of 12 mm. The pulse/echo response from a quartz plate located at the geometric focus, two-way insertion loss (IL), complex impedance, electrical cross-talk, and lateral beamwidth were all measured for each annulus. The complex impedance data from each element were used to perform electrical matching and the measurements were repeated. After impedance matching, fc ≈ 36 MHz and BWs ranged from 31 to 39%. The ILs for the matched annuli ranged from −28 to −38 dB. PMID:16060516

  16. Predicting Activation of Experiments Inside the Annular Core Research Reactor

    SciTech Connect

    Greenberg, Joseph Isaac

    2015-11-01

    The objective of this thesis is to create a program to quickly estimate the radioactivity and decay of experiments conducted inside of the Annular Core Research Reactor at Sandia National Laboratories and eliminate the need for users to write code. This is achieved by model the neutron fluxes in the reactor’s central cavity where experiments are conducted for 4 different neutron spectra using MCNP. The desired neutron spectrum, experiment material composition, and reactor power level are then input into CINDER2008 burnup code to obtain activation and decay information for every isotope generated. DREAD creates all of the files required for CINDER2008 through user selected inputs in a graphical user interface and executes the program for the user and displays the resulting estimation for dose rate at various distances. The DREAD program was validated by weighing and measuring various experiments in the different spectra and then collecting dose rate information after they were irradiated and comparing it to the dose rates that DREAD predicted. The program provides results with an average of 17% higher estimates than the actual values and takes seconds to execute.

  17. Reactor pulse repeatability studies at the annular core research reactor

    SciTech Connect

    DePriest, K.R.; Trinh, T.Q.; Luker, S. M.

    2011-07-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories is a water-moderated pool-type reactor designed for testing many types of objects in the pulse and steady-state mode of operations. Personnel at Sandia began working to improve the repeatability of pulse operations for experimenters in the facility. The ACRR has a unique UO{sub 2}-BeO fuel that makes the task of producing repeatable pulses difficult with the current operating procedure. The ACRR produces a significant quantity of photoneutrons through the {sup 9}Be({gamma}, n){sup 8}Be reaction in the fuel elements. The photoneutrons are the result of the gammas produced during fission and in fission product decay, so their production is very much dependent on the reactor power history and changes throughout the day/week of experiments in the facility. Because the photoneutrons interfere with the delayed-critical measurements required for accurate pulse reactivity prediction, a new operating procedure was created. The photoneutron effects at delayed critical are minimized when using the modified procedure. In addition, the pulse element removal time is standardized for all pulse operations with the modified procedure, and this produces less variation in reactivity removal times. (authors)

  18. Modeling and analysis of thermoacoustic instabilities in an annular combustor

    NASA Astrophysics Data System (ADS)

    Murthy, Sandeep; Sayadi, Taraneh; Le Chenadec, Vincent; Schmid, Peter

    2015-11-01

    A simplified model is introduced to study thermo-acoustic instabilities in axisymmetric combustion chambers. Such instabilities can be triggered when correlations between heat-release and pressure oscillations exist, leading to undesirable effects. Gas turbine designs typically consist of a periodic assembly of N identical units; as evidenced by documented studies, the coupling across sectors may give rise to unstable modes, which are the highlight of this study. In the proposed model, the governing equations are linearized in the acoustic limit, with each burner modeled as a one-dimensional system, featuring acoustic damping and a compact heat source. The coupling between the burners is accounted for by solving the two-dimensional wave equation over an annular region, perpendicular to the burners, representing the chamber's geometry. The discretization of these equations results in a set of coupled delay-differential equations, that depends on a finite set of parameters. The system's periodicity is leveraged using a recently developed root-of-unity formalism (Schmid et al., 2015). This results in a linear system, which is then subjected to modal and non-modal analysis to explore the influence of the coupled behavior of the burners on the system's stability and receptivity.

  19. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  20. DEP thermal convection in annular geometry under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Harunori; Crumeyrolle, Olivier; Mutabazi, Innocent

    2012-11-01

    Thermal convection driven by the dielectrophoretic force is investigated in annular geometry in microgravity environments. A radial heating and a radial alternating electric field are imposed on a dielectric fluid layer filling the gap of two concentric infinite-length cylinders. The resulting dielectric force field is regarded as spatially varying radial gravity that can develop thermal convection. The linear stability problem of a purely conductive basic state is solved by a spectral-collocation method for both axisymmetric and non-axisymmetric disturbances. A stationary non-axisymmetric mode becomes first unstable at a critical Rayleigh number to develop convection. The stability boundary shows asymmetry with respect to heating direction. For an outward heating the critical value approaches that of the Rayleigh-Bénard problem (1708) as the gap size decreases, while it converges to larger values in the narrow gap limit. For an inward heating the instability occurs only when the gap is narrower than a certain value. The critical number diverges with increasing the gap size. Instability mechanism is examined from energetic viewpoints. The feedback of electric field to temperature disturbances is found to stabilize the conductive state for narrow gaps. This work has been partly supported by the CNES, the CNRS and the FEDER.

  1. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  2. Casimir effect for a semitransparent wedge and an annular piston

    SciTech Connect

    Milton, Kimball A.; Wagner, Jef; Kirsten, Klaus

    2009-12-15

    We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed by a Dirichlet circular cylinder, where the wedge is formed by {delta}-function potentials, so-called semitransparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions. Numerical results are obtained which are closely analogous to those recently found for a magnetodielectric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods are developed for annular regions with radial semitransparent potentials, based on reduced Green's functions for the angular dependence, which allows calculations using the multiple-scattering formalism. Numerical results corresponding to the torque on the radial plates are likewise computed, which generalize those for the wedge geometry. Generally useful formulas for calculating Casimir energies in separable geometries are derived.

  3. Casimir effect for a semitransparent wedge and an annular piston

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.; Wagner, Jef; Kirsten, Klaus

    2009-12-01

    We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed by a Dirichlet circular cylinder, where the wedge is formed by δ-function potentials, so-called semitransparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions. Numerical results are obtained which are closely analogous to those recently found for a magnetodielectric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods are developed for annular regions with radial semitransparent potentials, based on reduced Green’s functions for the angular dependence, which allows calculations using the multiple-scattering formalism. Numerical results corresponding to the torque on the radial plates are likewise computed, which generalize those for the wedge geometry. Generally useful formulas for calculating Casimir energies in separable geometries are derived.

  4. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  5. Prediction in cases with superposition of different hydrological phenomena, such as from weather "cold drops

    NASA Astrophysics Data System (ADS)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Andina, D.; Sanchez, M. E.

    2012-04-01

    The authors have been involved in Model Codes for Construction prior to Eurocodes now Euronorms, and in a Drainage Instruction for Roads for Spain that adopted a prediction model from BPR (Bureau of Public Roads) of USA to take account of evident regional differences in Iberian Peninsula and Spanish Isles, and in some related studies. They used Extreme Value Type I (Gumbell law) models, with independent actions in superposition; this law was also adopted then to obtain maps of extreme rains by CEDEX. These methods could be extrapolated somehow with other extreme values distributions, but the first step was useful to set valid superposition schemas for actions in norms. As real case, in East of Spain rain comes usually extensively from normal weather perturbations, but in other cases from "cold drop" local high rains of about 400mm in a day occur, causing inundations and in cases local disasters. The city of Valencia in East of Spain was inundated at 1,5m high from a cold drop in 1957, and the river Turia formerly through that city was just later diverted some kilometers to South in a wider canal. With Gumbell law the expected intensity grows with time for occurrence, indicating a value for each given "return period", but the increasing speed grows with the "annual dispersion" of the Gumbell law, and some rare dangerous events may become really very possible in periods of many years. That can be proved with relatively simple models, e.g. with Extreme Law type I, and they could be made more precise or discussed. Such effects were used for superposition of actions on a structure for Model Codes, and may be combined with hydraulic effects, e.g. for bridges on rivers. These different Gumbell laws, or other extreme laws, with different dispersion may occur for marine actions of waves, earthquakes, tsunamis, and maybe for human perturbations, that could include industrial catastrophes, or civilization wars if considering historical periods.

  6. Coherent atom-molecule superpositions and other weird stuff in Rb 85 BEC

    NASA Astrophysics Data System (ADS)

    Wieman, Carl

    2002-05-01

    The Feshbach resonance in rubidium 85 has opened up a new area of BEC physics involving adjustable interactions and novel methods of manipulation. We have used this to study the collapse behavior ("Bosenova") as the interactions are made negative, and a variety of curious effects when the interactions are made large and repulsive. By using rapid magnetic field pulse sequences we have recently created coherent superpositions of atomic and molecular BECs ('molatoms"). These are observed as oscillations in the existence of the condensate as a function of time. The oscillation frequency exactly matches the molecular bound state energy. I will discuss these and other interesting behaviors observed in Rb 85 condensates.

  7. Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states

    SciTech Connect

    Parashar, Preeti; Rana, Swapan

    2011-03-15

    We calculate the analytic expression for geometric measure of entanglement for arbitrary superposition of two N-qubit canonical orthonormal Greenberger-Horne-Zeilinger (GHZ) states and the same for two W states. In the course of characterizing all kinds of nonclassical correlations, an explicit formula for quantum discord (via relative entropy) for the former class of states has been presented. Contrary to the GHZ state, the closest separable state to the W state is not classical. Therefore, in this case, the discord is different from the relative entropy of entanglement. We conjecture that the discord for the N-qubit W state is log{sub 2}N.

  8. Superposition of Solitons with Arbitrary Parameters for Higher-order Equations

    NASA Astrophysics Data System (ADS)

    Ankiewicz, A.; Chowdury, A.

    2016-07-01

    The way in which solitons propagate and collide is an important theme in various areas of physics. We present a systematic study of the superposition of solitons in systems governed by higher-order equations related to the nonlinear Schrödinger family. We allow for arbitrary amplitudes and relative velocities and include an infinite number of equations in our analysis of collisions and superposed solitons. The formulae we obtain can be useful in determining the influence of subtle effects like higher-order dispersion in optical fibres and small delays in the material responses to imposed impulses.

  9. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere

    NASA Astrophysics Data System (ADS)

    Kim, Junsu; Reichler, Thomas

    2016-07-01

    The proper simulation of the annular mode time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that this time scale is systematically overestimated by climate models. As suggested by the fluctuation-dissipation theorem, this may imply that climate models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the annular mode time scale. Here, we use long control simulations with the coupled and uncoupled version of the GFDL climate model, CM2.1 and AM2.1, respectively, to study the effects of internal atmospheric variability and forcing from the lower boundary on the stability of the annular mode time scale. In particular, we ask whether a model's annular mode time scale and dynamical sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the annular mode time scale when diagnosed from decadal records. Even under the fixed forcing conditions of our long control run at least 100 years of data are required in order to keep the uncertainty in the annular mode time scale of the Northern Hemisphere to 10 %; over the Southern Hemisphere, the required length increases to 200 years. If nature's annular mode time scale over the Northern Hemisphere is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. Over the Southern Hemisphere, however, the discrepancies between model and reanalysis are sufficiently large to conclude that the model is unable to reproduce the observed time scale structure correctly. The effects of ocean coupling lead to a considerable increase in time scale and uncertainty in time scale, effects which

  10. Heating deep seated eccentrically located tumors with an annular phased array system: a comparative clinical study using two annular array operating configurations.

    PubMed

    Samulski, T V; Kapp, D S; Fessenden, P; Lohrbach, A

    1987-01-01

    Regional heating administered with an annular array to 12 patients with deep-seated advanced malignant disease eccentrically located in the lower abdomen and pelvis is compared based on the annular array operating configuration. One configuration (4 quadrants active) delivers radiofrequency power with relative uniformity throughout the patient cross-section. The other (2 quadrants active) allows the radiofrequency power deposition to be shifted preferentially into the eccentrically located treatment volume. Phantom measurements have been made to demonstrate the redistribution of radiofrequency power that results when the annular array is operated in these respective configurations. Systemic responses (i.e. oral temperature rise, changes in blood pressure, and heart rate) to these regional hyperthermia applications are compared and are not significantly different with respect to these heating configurations. Temperature data obtained during treatment sessions using these two annular array operating configurations are analyzed based on the fraction of measured tumor and normal tissue temperatures exceeding or equal to a given index temperature. Although the two quadrant configuration is more efficient in delivering power to the treatment volume, this analysis does not indicate a significant gain in therapeutic heating as a result of this preferential power deposition. Treatment tolerance and heterogeneity with respect to tissue type and blood flow remained the dominant limiting factors with regard to temperatures achieved.

  11. Rotating annular chromatograph for continuous metal separations and recovery

    SciTech Connect

    Begovich, J.M.; Sisson, W.G.

    1981-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. By continuously introducing the feed material to be separated at a stationary point at the top of the bed and eluent everywhere else around the annulus, elution chromatography occurs. The rotation of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence, the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6-m-long device with a 12.7-mm-wide annulus. The effect of annulus width and diameter has recently been studied using the same device with a 50.8-mm-wide annulus and another 0.6-m-long chromatograph with an 89-mm diameter and annulus widths of 6.4, 12.7, and 22.2 mm. These columns have been constructed of Plexiglas and typically operate at a gauge pressure of 175 kPa. To further study the effect of size and pressure, a new 445-mm-diam by 1-m-long column with a 31.8-mm-wide annulus has been fabricated. Its metal construction allows preparative-scale operation with a wide variety of liquids at pressures to 1.3 MPa. Three metal recovery systems have been explored: (1) separation of iron and aluminum in ammonium sulfate-sulfuric acid solutions; (2) separation of hafnium from zirconium in sulfuric acid solutions; and (3) the separation of copper, nickel, and cobalt in ammonium carbonate solutions. This last system simulates the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. It has been studied, using similar conditions, on each of the chromatographs, and the results demonstrate the effect of column dimensions on the quality and quantity of the separation. 8 figures, 1 table.

  12. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    SciTech Connect

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  13. On the Uncertainty of the Annular Mode Time Scale

    NASA Astrophysics Data System (ADS)

    Kim, Junsu; Reichler, Thomas

    2015-04-01

    The proper simulation of the annular mode (AM) time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that climate models systematically overestimate this time scale. As suggested by the fluctuation-dissipation theorem, this may imply that models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the AM time scale. Here, we use a 4000-year-long control simulation with the GFDL climate model CM2.1 to study the effects of internal atmospheric variability on the stability of the AM time scale. In particular, we ask whether a model's AM time scale and climate sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the AM time scale when diagnosed from decadal records. Even under fixed forcing conditions, at least 100 years of data are required in order to keep the uncertainty in the AM time scale of the Northern Hemisphere to 10%; over the Southern Hemisphere the required length increases to 200 years. If nature's AM time scale is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. We further use the model simulation to investigate the dynamical coupling between the stratosphere and the troposphere from the perspective of the AM time scale. Over the Northern Hemisphere we find only weak indication for influences from stratosphere-troposphere coupling on the AM time scale. The situation is very different over the Southern Hemisphere, where we find robust connections between the AM time scale in the stratosphere and that in the troposphere, confirming and extending earlier results of influences of stratospheric

  14. Three-dimensional numerical simulation of a continuously rotating detonation in the annular combustion chamber with a wide gap and separate delivery of fuel and oxidizer

    NASA Astrophysics Data System (ADS)

    Frolov, S. M.; Dubrovskii, A. V.; Ivanov, V. S.

    2016-07-01

    The possibility of integrating the Continuous Detonation Chamber (CDC) in a gas turbine engine (GTE) is demonstrated by means of three-dimensional (3D) numerical simulations, i. e., the feasibility of the operation process in the annular combustion chamber with a wide gap and with separate feeding of fuel (hydrogen) and oxidizer (air) is proved computationally. The CDC with an upstream isolator damping pressure disturbances propagating towards the compressor is shown to exhibit a gain in the total pressure of 15% as compared with the same combustion chamber operating in the deflagration mode.

  15. SAS-Pro: simultaneous residue assignment and structure superposition for protein structure alignment.

    PubMed

    Shah, Shweta B; Sahinidis, Nikolaos V

    2012-01-01

    Protein structure alignment is the problem of determining an assignment between the amino-acid residues of two given proteins in a way that maximizes a measure of similarity between the two superimposed protein structures. By identifying geometric similarities, structure alignment algorithms provide critical insights into protein functional similarities. Existing structure alignment tools adopt a two-stage approach to structure alignment by decoupling and iterating between the assignment evaluation and structure superposition problems. We introduce a novel approach, SAS-Pro, which addresses the assignment evaluation and structure superposition simultaneously by formulating the alignment problem as a single bilevel optimization problem. The new formulation does not require the sequentiality constraints, thus generalizing the scope of the alignment methodology to include non-sequential protein alignments. We employ derivative-free optimization methodologies for searching for the global optimum of the highly nonlinear and non-differentiable RMSD function encountered in the proposed model. Alignments obtained with SAS-Pro have better RMSD values and larger lengths than those obtained from other alignment tools. For non-sequential alignment problems, SAS-Pro leads to alignments with high degree of similarity with known reference alignments. The source code of SAS-Pro is available for download at http://eudoxus.cheme.cmu.edu/saspro/SAS-Pro.html.

  16. SAS-Pro: Simultaneous Residue Assignment and Structure Superposition for Protein Structure Alignment

    PubMed Central

    Shah, Shweta B.; Sahinidis, Nikolaos V.

    2012-01-01

    Protein structure alignment is the problem of determining an assignment between the amino-acid residues of two given proteins in a way that maximizes a measure of similarity between the two superimposed protein structures. By identifying geometric similarities, structure alignment algorithms provide critical insights into protein functional similarities. Existing structure alignment tools adopt a two-stage approach to structure alignment by decoupling and iterating between the assignment evaluation and structure superposition problems. We introduce a novel approach, SAS-Pro, which addresses the assignment evaluation and structure superposition simultaneously by formulating the alignment problem as a single bilevel optimization problem. The new formulation does not require the sequentiality constraints, thus generalizing the scope of the alignment methodology to include non-sequential protein alignments. We employ derivative-free optimization methodologies for searching for the global optimum of the highly nonlinear and non-differentiable RMSD function encountered in the proposed model. Alignments obtained with SAS-Pro have better RMSD values and larger lengths than those obtained from other alignment tools. For non-sequential alignment problems, SAS-Pro leads to alignments with high degree of similarity with known reference alignments. The source code of SAS-Pro is available for download at http://eudoxus.cheme.cmu.edu/saspro/SAS-Pro.html. PMID:22662161

  17. Prediction Procedure of Creep Rupture of Polypropylene Resin based on Time-temperature Superposition Principle

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Ikeda, Masayuki; Shimbo, Minoru; Miyano, Yasushi

    In this paper, the effects of intensity of electron beam, detergent and colorant on creep rupture of polypropylene resin (PP), which is widely used in medicine containers, were investigated and the evaluation method of the long-term forecast of creep rupture was examined. Concretely, first, PP resins including colorant or not were prepared and samples that variously changed intensity of the electron beam irradiation were made. Creep rupture test of those samples was carried in detergent having various consistencies. The effects of those factors on creep rupture were considered and long-term forecast was tried by using time-temperature superposition principle about creep deformation. The following results were obtained. (1) Although creep rupture of PP resin receives the effects of the presence of colorant, intensity of electron beam irradiation and detergent, the time-temperature dependence of creep rupture of PP resin including those affecting factors can be estimated by using the time-temperature superposition principle for creep deformation of the original PP resin. Based on this equivalency, it is possible to predict the long-term forecast of creep rupture of PP resin. (2) Creep rupture is affected by the presence of colorant, intensity of electron beam irradiation and detergent and it happens earlier when the intensity of electron beam irradiation and consistency of detergent are increased.

  18. Strain-Rate Frequency Superposition (SRFS) - A rheological probe of structural relaxation in soft materials

    NASA Astrophysics Data System (ADS)

    Wyss, Hans M.

    2007-03-01

    The rheological properties of soft materials such as concentrated suspensions, emulsions, or foams often exhibit surprisingly universal linear and nonlinear features. Here we show that their linear and nonlinear viscoelastic responses can be unified in a single picture by considering the effect of the strain-rate amplitude on the structural relaxation of the material. We present a new approach to oscillatory rheology, which keeps the strain rate amplitude fixed as the oscillation frequency is varied. This allows for a detailed study of the effects of strain rate on the structural relaxation of soft materials. Our data exhibits a characteristic scaling, which isolates the response due to structural relaxation, even when it occurs at frequencies too low to be accessible with standard techniques. Our approach is reminiscent of a technique called time-temperature superposition (TTS), where rheological curves measured at different temperatures are shifted onto a single master curve that reflects the viscoelastic behavior in a dramatically extended range of frequencies. By analogy, we call our approach strain-rate frequency superposition (SRFS). Our experimental results show that nonlinear viscoelastic measurements contain useful information on the slow relaxation dynamics of soft materials. The data indicates that the yielding behavior of soft materials directly probes the structural relaxation process itself, shifted towards higher frequencies by an applied strain rate. This suggests that SRFS will provide new insight into the physical mechanisms that govern the viscoelastic response of a wide range of soft materials.

  19. Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation.

    PubMed

    Lebyodkin, M A; Shashkov, I V; Lebedkina, T A; Mathis, K; Dobron, P; Chmelik, F

    2013-10-01

    Various dynamical systems with many degrees of freedom display avalanche dynamics, which is characterized by scale invariance reflected in power-law statistics. The superposition of avalanche processes in real systems driven at a finite velocity may influence the experimental determination of the underlying power law. The present paper reports results of an investigation of this effect using the example of acoustic emission (AE) accompanying plastic deformation of crystals. Indeed, recent studies of AE did not only prove that the dynamics of crystal defects obeys power-law statistics, but also led to a hypothesis of universality of the scaling law. We examine the sensitivity of the apparent statistics of AE to the parameters applied to individualize AE events. Two different alloys, MgZr and AlMg, both displaying strong AE but characterized by different plasticity mechanisms, are investigated. It is shown that the power-law indices display a good robustness in wide ranges of parameters even in the conditions leading to very strong superposition of AE events, although some deviations from the persistent values are also detected. The totality of the results confirms the scale-invariant character of deformation processes on the scale relevant to AE, but uncovers essential differences between the power-law exponents found for two kinds of alloys.

  20. Three-dimensional air flow model for soil venting: Superposition of analytical functions

    SciTech Connect

    Cho, J.S.

    1993-01-01

    A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate transforms allowed the adoption of the superposition of analytical functions to satisfy the differential equations and boundary conditions. A venting well was represented with a line source of a finite length in a infinite homogeneous medium. The boundary conditions at the soil surface and the water table were approximated by the superposition of a large number of mirror image wells on the opposite sides of boundaries. The numerical accuracy of the model was checked by the evaluation of one of the boundary conditions and the comparison of a simulation result with an available analytical solution from the literature. Simulations of various layouts of operating systems with multiple wells required minimal computational expenses. The model was very flexible and easy to use, and its numerical results proved to be sufficiently accurate.

  1. Macroscopic superposition states of cold bosons in an asymmetric double well with Orbital Degrees of freedom

    NASA Astrophysics Data System (ADS)

    Garcia-March, Miguel-Angel; Carr, Lincoln D.

    2011-03-01

    We study the dynamics of ultracold bosons in three-dimensional double wells when they are allowed either to condense in single-particle ground states or to occupy excited states. On the one hand, the introduction of second level single-particle states opens a range of new dynamical regimes. On the other, since the second level eigenstates can carry angular momentum, NOON-like macroscopic superposition (MS) states of atoms with non-zero angular momentum can be obtained. This leads to the study of the dynamics of atoms carrying vorticity while tunneling between wells. We obtain new tunneling processes, like vortex hopping and vortex-antivortex pair superposition along with the sloshing of atoms between both wells. The resulting vortex MS states are much more robust against decoherence than the usual NOON states, as all atoms in the vortex core region must be resolved, not just a single atom. L.D.C acknowledges support from the National Science Foundation under Grant PHY-0547845 as part of the NSF CAREER program. M.A.G.M acknowledges support by the Fulbright Commission, MEC, and FECYT.

  2. Phase sensitivity in deformed-state superposition considering nonlinear phase shifts

    NASA Astrophysics Data System (ADS)

    Berrada, K.

    2016-07-01

    We study the problem of the phase estimation for the deformation-state superposition (DSS) under perfect and lossy (due to a dissipative interaction of DSS with their environment) regimes. The study is also devoted to the phase enhancement of the quantum states resulting from a generalized non-linearity of the phase shifts, both without and with losses. We find that such a kind of superposition can give the smallest variance in the phase parameter in comparison with usual Schrödinger cat states in different order of non-linearity even if for a larger average number of photons. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement between the DSS and its environment is investigated during the dissipation. We show that partial entanglement trapping occurs during the dynamics depending on the kind of deformation and mean photon number. These features make the DSS with a larger average number of photons a good candidate for implementation of schemes of quantum optics and information with high precision.

  3. Transverse bed slope effects in an annular flume

    NASA Astrophysics Data System (ADS)

    Baar, Anne; Kleinhans, Maarten; de Smit, Jaco; Uijttewaal, Wim

    2016-04-01

    Large scale morphology, in particular bar dimensions and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by helical flows. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and do not account for the presence of bedforms. In morphological modelling the deflection angle is therefore often calibrated on measured morphology. Our objective is to experimentally quantify the transverse slope effect for a large range of near-bed flow conditions and sediment sizes (0.17 - 4 mm) to test existing predictors, in order to improve morphological modelling of rivers and estuaries. We have conducted about 400 experiments in an annular flume, which functions as an infinitely long bended flume and therefore avoids boundary effects. Flow is generated by rotating the lid of the flume, while the intensity of the helical flow can be decreased by counterrotating the bottom of the flume. The equilibrium transverse slope that develops during the experiments is a balance between the transverse bed slope effect and the bed shear stress caused by the helical flow. We obtained sediment mobilities from no motion to sheet flow, ranging across bedload and suspended load. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and helical flow intensities that deviate from typical power relations with Shields number. As an end member we found transversely horizontal beds by counterrotation that partially cancelled the helical flow near the bed, which allows us to quantify helical flow. The large range in sediment mobilities caused different bed states from ripples and dunes to sheet flow that affect near-bed flow, which cause novel nonlinear relations between transverse slope and Shields number. In conclusion, our results show for a wide range of conditions and sediments that transverse

  4. Beyond the Cosmological: Numerical Scenarios underneath Ancient Annular Architectural Structures

    NASA Astrophysics Data System (ADS)

    Ranieri, M.

    2009-08-01

    ``Cecì est la regle du carré et du cercle. Pour toutes choses, la circonférence (tcheou) est en usage, et les figures circulaire et carrée sont employées. L'officier dit ta-tsiang (grand charpentier, titre du Tcheou-li) prend ses mesures. Le compass et le règle sont apprêtés. Tantot on rompt le carré et on fait un cercle. Tantot on brise le cercle et on fait un carré. Au milieu d'un carré, quand on fait un cercle, on appelle cette figure cercle-carré. Au milieu d'un cercle, quand on fait un carré, on appelle cette figure carré-cercle.'' (Tcheou-Pei-Souan-King, book one, trad. E.Biot, Journal Asiatique, Juin 1841 p. 614 Circles and squares, as geometrical representations of the cosmos, are frequent in ancient cultures, mainly with the earth represented by the square and the sky by the circle. Quite many are the circular or circle-and-square architectures of the past that are to be interpreted as related to the cosmologies of the cultures to which they belong. In this paper we focus on those relevant annular geometries (CQC) where the square inscribable into the external circumference in turn perfectly circumscribes the internal one. Beyond the possible cosmological significances, a CQC geometry bears underneath a strict numerical structure that can be put in relation to the length-units used by the builders. Results are presented of CAD (Computer Aided Drawing) analyses performed on the plans of ancient structures where the CQC geometry was suspected to exist. A large repertory of such structures has been found, from Nuragic Sardinia to Mesoamerica including Minoans, Greeks, Romans and others. In many cases the found length-units coincide with known ancient units. The large variety presented at CAC 2000 cannot be shown in this paper for reasons of space and only a smaller but significant selection is presented.

  5. A computational investigation of impulsive and pulsed starting annular jets

    NASA Astrophysics Data System (ADS)

    Abdel-Raouf, Emad Mohamed Refaat

    2011-12-01

    A computational study is carried out on low Reynolds number impulsive and pulsating annular jets. This work is inspired by the biological flow of marine life that uses jet propulsion for self maneuver. Marine life such as squids and jellyfish propel themselves by discharging a water jet followed by a refilling phase. The discharging portion is a starting jet, i.e. the releasing of a moving fluid into a quiescent fluid, while the refilling phase can be viewed as an inflow jet. The combined jets will be called fully oscillating jets. Although fully oscillating jets have been indirectly examined experimentally, they have never been studied computationally. This dissertation is divided into three investigations that examine the starting jet, inflow jet, and fully oscillating jet based on the resultant force (i.e. either thrust or suction force) at the annulus exit plane, jet efficiency, and vortex dynamics. Furthermore, each of the following three performance criterion is examined under various velocity imposed boundaries (i.e. impulsive, unit pulsed, and sinusoidal pulsed jets), ambient pressure, and blocking ratios. An axisymmetric, incompressible and unsteady Navier Stokes numerical model was used to implement the analysis. The model was validated against theoretical and experimental results, where both result types bounded the computational results of this endeavor. In addition, numerical verification was carried out on each of the three investigations ensuring grid and time independent results. Several substantial outcomes were drawn from the results of the three investigations. The numerical results confirmed previously published experimental data regarding the universal dimensionless time scale (i.e. vortex formation number) of optimal vortex ring development triggered by starting jets. Moreover, the computational results showed evidence that the vortex formation number was not affected by ambient pressure nor blocking ratio. The computational results also

  6. Adaptive superposition of finite element meshes in linear and nonlinear dynamic analysis

    NASA Astrophysics Data System (ADS)

    Yue, Zhihua

    2005-11-01

    The numerical analysis of transient phenomena in solids, for instance, wave propagation and structural dynamics, is a very important and active area of study in engineering. Despite the current evolutionary state of modern computer hardware, practical analysis of large scale, nonlinear transient problems requires the use of adaptive methods where computational resources are locally allocated according to the interpolation requirements of the solution form. Adaptive analysis of transient problems involves obtaining solutions at many different time steps, each of which requires a sequence of adaptive meshes. Therefore, the execution speed of the adaptive algorithm is of paramount importance. In addition, transient problems require that the solution must be passed from one adaptive mesh to the next adaptive mesh with a bare minimum of solution-transfer error since this form of error compromises the initial conditions used for the next time step. A new adaptive finite element procedure (s-adaptive) is developed in this study for modeling transient phenomena in both linear elastic solids and nonlinear elastic solids caused by progressive damage. The adaptive procedure automatically updates the time step size and the spatial mesh discretization in transient analysis, achieving the accuracy and the efficiency requirements simultaneously. The novel feature of the s-adaptive procedure is the original use of finite element mesh superposition to produce spatial refinement in transient problems. The use of mesh superposition enables the s-adaptive procedure to completely avoid the need for cumbersome multipoint constraint algorithms and mesh generators, which makes the s-adaptive procedure extremely fast. Moreover, the use of mesh superposition enables the s-adaptive procedure to minimize the solution-transfer error. In a series of different solid mechanics problem types including 2-D and 3-D linear elastic quasi-static problems, 2-D material nonlinear quasi-static problems

  7. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  8. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-02-01

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  9. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.

  10. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging

    PubMed Central

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2013-01-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature. PMID:23742556

  11. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging.

    PubMed

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V; Aristizábal, Orlando; Ketterling, Jeffrey A

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature. PMID:23742556

  12. Probe with integrated heater and thermocouple pack

    SciTech Connect

    McCulloch, R.W.; Dial, R.E.; Finnell, W.F.R.

    1988-02-16

    This patent describes a gamma thermometer probe for detecting heat produced within the thermometer probe. It comprises: an outer elongate thermometer sheath; an elongate rod; annular recesses; a longitudinal bore; and an integrated thermocouple pack. The thermocouple pack comprises: a first type wire, and second type wires. The second type wires comprises: an outer section; and an inner segment.

  13. Overview of magnetic bearing control and linearization approaches for annular magnetically suspended devices

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1984-01-01

    An overview of magnetic bearing control and linearization approaches which have been considered for annular magnetically suspended devices is presented. These devices include the Annular Momentum Control Device and the Annular Suspension and Pointing System. Two approaches were investigated for controlling the magnetic actuator. One approach involves controlling the upper and lower electromagnets differentially about a bias flux. The bias flux can either be supplied by permanent magnets in the magnetic circuit or by bias currents. In the other approach, either the upper electromagnet or the lower electromagnet is controlled depending on the direction of force required. One advantage of the bias flux is that for small gap perturbations about a fixed operating point, the force-current characteristic is linear. Linearization approaches investigated for individual element control include an analog solution of the nonlinear electromagnet force equation and a microprocessor-based table lookup method.

  14. Analytic wave solution with helicon and Trivelpiece-Gould modes in an annular plasma

    NASA Astrophysics Data System (ADS)

    Carlsson, Johan; Pavarin, Daniele; Walker, Mitchell

    2009-11-01

    Helicon sources in an annular configuration have applications for plasma thrusters. The theory of Klozenberg et al. [J. P. Klozenberg B. McNamara and P. C. Thonemann, J. Fluid Mech. 21 (1965) 545-563] for the propagation and absorption of helicon and Trivelpiece-Gould modes in a cylindrical plasma has been generalized for annular plasmas. Analytic solutions are found also in the annular case, but in the presence of both helicon and Trivelpiece-Gould modes, a heterogeneous linear system of equations must be solved to match the plasma and inner and outer vacuum solutions. The linear system can be ill-conditioned or even exactly singular, leading to a dispersion relation with a discrete set of discontinuities. The coefficients for the analytic solution are calculated by solving the linear system with singular-value decomposition.

  15. Analytic wave solution with helicon and Trivelpiece-Gould modes in an annular plasma

    SciTech Connect

    Carlsson, Johan; Pavarin, Daniele; Walker, Mitchell

    2009-11-26

    Helicon sources in an annular configuration have applications for plasma thrusters. The theory of Klozenberg et al.[J. P. Klozenberg B. McNamara and P. C. Thonemann, J. Fluid Mech. 21(1965) 545-563] for the propagation and absorption of helicon and Trivelpiece-Gould modes in a cylindrical plasma has been generalized for annular plasmas. Analytic solutions are found also in the annular case, but in the presence of both helicon and Trivelpiece-Gould modes, a heterogeneous linear system of equations must be solved to match the plasma and inner and outer vacuum solutions. The linear system can be ill-conditioned or even exactly singular, leading to a dispersion relation with a discrete set of discontinuities. The coefficients for the analytic solution are calculated by solving the linear system with singular-value decomposition.

  16. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    SciTech Connect

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  17. The Annular Suspension and Pointing (ASP) system for space experiments and predicted pointing accuracies

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Joshi, S. M.

    1975-01-01

    An annular suspension and pointing system consisting of pointing assemblies for coarse and vernier pointing is described. The first assembly is attached to a carrier spacecraft (e.g., the space shuttle) and consists of an azimuth gimbal and an elevation gimbal which provide 'coarse' pointing. The second or vernier pointing assembly is made up of magnetic actuators of suspension and fine pointing, roll motor segments, and an instrument or experiment mounting plate around which is attached a continuous annular rim similar to that used in the annular momentum control device. The rim provides appropriate magnetic circuits for the actuators and the roll motor segments for any instrument roll position. The results of a study to determine the pointing accuracy of the system in the presence of crew motion disturbances are presented. Typical 3 sigma worst-case errors are found to be of the order of 0.001 arc-second.

  18. An experimental technique for performing 3-D LDA measurements inside whirling annular seals

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III.; Wiedner, Brian G.

    1992-01-01

    During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.

  19. In-line type micropulse lidar with an annular beam: theoretical approach.

    PubMed

    Shiina, Tatsuo; Yoshida, Kei; Ito, Masafumi; Okamura, Yasuyuki

    2005-12-01

    An in-line type micropulse lidar (MPL) with an annular beam was designed and the transmitting and receiving characteristics were analyzed. Because the in-line MPL utilizes a common telescope for a transmitter and a receiver and the annular beam always overlaps with the receiver's field of view (FOV), it can measure near-range lidar echoes with a narrow FOV. The transmitting annular beam changes its shape to a nearly nondiffractive beam through propagation. It improves the spatial resolution of the lidar observation. The receiving characteristics showed the ideal lidar echo variation, which was inversely proportional to the square of the distance the beam propagated, even if it was in the near range. PMID:16353820

  20. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  1. Eosinophilic annular erythema: a subset of Wells' syndrome or a distinct entity?

    PubMed

    Howes, Renae; Girgis, Laila; Kossard, Steven

    2008-08-01

    A 52-year-old woman with a 6-year history of a persistent non-pruritic cutaneous annular eruption, forming polycyclic and arcuate plaques that commenced as erythematous papules and nodules, is presented. Lethargy and arthralgia were associated symptoms. We have followed this patient for the last 3 years, and during this period she has continued to have a florid annular eruption of unknown cause. Laboratory tests, including an eosinophil count, examination of stool samples for parasites, and a computed tomography scan of the chest, abdomen and pelvis, failed to detect any abnormalities. Skin biopsies demonstrated a superficial to deep cellular infiltrate consisting of numerous eosinophils, with lymphocytes and isolated neutrophils. Eosinophilic dust, flame figures and granulomatous inflammation were not seen. In addition, strands of mucin were present through the dermis, and prominent basal vacuolar change was evident at the dermoepidermal junction; these features may represent new findings that help define a distinct form of eosinophilic annular erythema. PMID:18638225

  2. Decoherence-free evolution of time-dependent superposition states of two-level systems and thermal effects

    SciTech Connect

    Prado, F. O.; Duzzioni, E. I.; Almeida, N. G. de; Moussa, M. H. Y.; Villas-Boas, C. J.

    2011-07-15

    In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.

  3. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  4. The external magnetic field created by the superposition of identical parallel finite solenoids

    NASA Astrophysics Data System (ADS)

    Lim, Melody Xuan; Greenside, Henry

    2016-08-01

    We use superposition and numerical methods to show that the external magnetic field generated by parallel identical solenoids can be nearly uniform and substantial, even when the solenoids have lengths that are large compared to their radii. We examine both a ring of solenoids and a large hexagonal array of solenoids. In both cases, we discuss how the magnitude and uniformity of the external field depend on the length of and the spacing between the solenoids. We also discuss some novel properties of a single solenoid, e.g., that even for short solenoids the energy stored in the internal magnetic field exceeds the energy stored in the spatially infinite external magnetic field. These results should be broadly interesting to undergraduates learning about electricity and magnetism.

  5. Nonlocal quantum macroscopic superposition in a high-thermal low-purity state.

    PubMed

    Brezinski, Mark E; Liu, Bin

    2008-12-16

    Quantum state exchange between light and matter is an important ingredient for future quantum information networks as well as other applications. Photons are the fastest and simplest carriers of information for transmission but in general, it is difficult to localize and store photons, so usually one prefers choosing matter as quantum memory elements. Macroscopic superposition and nonlocal quantum interactions have received considerable interest for this purpose over recent years in fields ranging from quantum computers to cryptography, in addition to providing major insights into physical laws. However, these experiments are generally performed either with equipment or under conditions that are unrealistic for practical applications. Ideally, the two can be combined using conventional equipment and conditions to generate a "quantum teleportation"-like state, particularly with a very small amount of purity existing in an overall highly mixed thermal state (relatively low decoherence at high temperatures). In this study we used an experimental design to demonstrate these principles. We performed optical coherence tomography (OCT) using a thermal source at room temperatures of a specifically designed target in the sample arm. Here, position uncertainty (i.e., dispersion) was induced in the reference arm. In the sample arm (target) we placed two glass plates separated by a different medium while altering position uncertainty in the reference arm. This resulted in a chirped signal between the glass plate reflective surfaces in the combined interferogram. The chirping frequency, as measured by the fast Fourier transform (FFT), varies with the medium between the plates, which is a nonclassical phenomenon. These results are statistically significant and occur from a superposition between the glass surface and the medium with increasing position uncertainty, a true quantum-mechanical phenomenon produced by photon pressure from two-photon interference. The differences in

  6. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    PubMed

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case. PMID:26466295

  7. Numerical model for macroscopic quantum superpositions based on phase-covariant quantum cloning

    NASA Astrophysics Data System (ADS)

    Buraczewski, A.; Stobińska, M.

    2012-10-01

    Macroscopically populated quantum superpositions pose a question to what extent the macroscopic world obeys quantum mechanical laws. Recently, such superpositions for light, generated by an optimal quantum cloner, have been demonstrated. They are of fundamental and technological interest. We present numerical methods useful for modeling of these states. Their properties are governed by a Gaussian hypergeometric function, which cannot be reduced to either elementary or easily tractable functions. We discuss the method of efficient computation of this function for half-integer parameters and a moderate value of its argument. We show how to dynamically estimate a cutoff for infinite sums involving this function performed over its parameters. Our algorithm exceeds double precision and is parallelizable. Depending on the experimental parameters it chooses one of the several ways of summation to achieve the best efficiency. The methods presented here can be adjusted for analysis of similar experimental schemes. Program summary Program title: MQSVIS Catalogue identifier: AEMR_ v1_ 0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1643 No. of bytes in distributed program, including test data, etc.: 13212 Distribution format: tar.gz Programming language: C with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux. Has the code been vectorized or parallelized?: Yes (OpenMP). RAM: 200 MB for single run for 1000×1000 tile Classification: 4.15, 18. External routines: OpenMP Nature of problem: Recently, macroscopically populated quantum superpositions for light, generated by an optimal quantum cloner, have

  8. Superposition and entanglement of mesoscopic squeezed vacuum states in cavity QED

    SciTech Connect

    Chen Changyong; Feng Mang; Gao Kelin

    2006-03-15

    We propose a scheme to generate superposition and entanglement between the mesoscopic squeezed vacuum states by considering the two-photon interaction of N two-level atoms in a cavity with high quality factor, assisted by a strong driving field. By virtue of specific choices of the cavity detuning, a number of multiparty entangled states can be prepared, including the entanglement between the atomic and the squeezed vacuum cavity states and between the squeezed vacuum states and the coherent states of the cavities. We also present how to prepare entangled states and 'Schroedinger cats' states regarding the squeezed vacuum states of the cavity modes. The possible extension and application of our scheme are discussed. Our scheme is close to the reach with current cavity QED techniques.

  9. Practical method using superposition of individual magnetic fields for initial arrangement of undulator magnets

    SciTech Connect

    Tsuchiya, K.; Shioya, T.

    2015-04-15

    We have developed a practical method for determining an excellent initial arrangement of magnetic arrays for a pure-magnet Halbach-type undulator. In this method, the longitudinal magnetic field distribution of each magnet is measured using a moving Hall probe system along the beam axis with a high positional resolution. The initial arrangement of magnetic arrays is optimized and selected by analyzing the superposition of all distribution data in order to achieve adequate spectral quality for the undulator. We applied this method to two elliptically polarizing undulators (EPUs), called U#16-2 and U#02-2, at the Photon Factory storage ring (PF ring) in the High Energy Accelerator Research Organization (KEK). The measured field distribution of the undulator was demonstrated to be excellent for the initial arrangement of the magnet array, and this method saved a great deal of effort in adjusting the magnetic fields of EPUs.

  10. Color changes in wood during heating: kinetic analysis by applying a time-temperature superposition method

    NASA Astrophysics Data System (ADS)

    Matsuo, Miyuki; Yokoyama, Misao; Umemura, Kenji; Gril, Joseph; Yano, Ken'ichiro; Kawai, Shuichi

    2010-04-01

    This paper deals with the kinetics of the color properties of hinoki ( Chamaecyparis obtusa Endl.) wood. Specimens cut from the wood were heated at 90-180°C as accelerated aging treatment. The specimens completely dried and heated in the presence of oxygen allowed us to evaluate the effects of thermal oxidation on wood color change. Color properties measured by a spectrophotometer showed similar behavior irrespective of the treatment temperature with each time scale. Kinetic analysis using the time-temperature superposition principle, which uses the whole data set, was successfully applied to the color changes. The calculated values of the apparent activation energy in terms of L *, a *, b *, and Δ E^{*}_{ab} were 117, 95, 114, and 113 kJ/mol, respectively, which are similar to the values of the literature obtained for other properties such as the physical and mechanical properties of wood.

  11. Nonlocal quantum macroscopic superposition in a high-thermal low-purity state.

    PubMed

    Brezinski, Mark E; Liu, Bin

    2008-12-16

    Quantum state exchange between light and matter is an important ingredient for future quantum information networks as well as other applications. Photons are the fastest and simplest carriers of information for transmission but in general, it is difficult to localize and store photons, so usually one prefers choosing matter as quantum memory elements. Macroscopic superposition and nonlocal quantum interactions have received considerable interest for this purpose over recent years in fields ranging from quantum computers to cryptography, in addition to providing major insights into physical laws. However, these experiments are generally performed either with equipment or under conditions that are unrealistic for practical applications. Ideally, the two can be combined using conventional equipment and conditions to generate a "quantum teleportation"-like state, particularly with a very small amount of purity existing in an overall highly mixed thermal state (relatively low decoherence at high temperatures). In this study we used an experimental design to demonstrate these principles. We performed optical coherence tomography (OCT) using a thermal source at room temperatures of a specifically designed target in the sample arm. Here, position uncertainty (i.e., dispersion) was induced in the reference arm. In the sample arm (target) we placed two glass plates separated by a different medium while altering position uncertainty in the reference arm. This resulted in a chirped signal between the glass plate reflective surfaces in the combined interferogram. The chirping frequency, as measured by the fast Fourier transform (FFT), varies with the medium between the plates, which is a nonclassical phenomenon. These results are statistically significant and occur from a superposition between the glass surface and the medium with increasing position uncertainty, a true quantum-mechanical phenomenon produced by photon pressure from two-photon interference. The differences in

  12. Limitations to the validity of single wake superposition in wind farm yield assessment

    NASA Astrophysics Data System (ADS)

    Gunn, K.; Stock-Williams, C.; Burke, M.; Willden, R.; Vogel, C.; Hunter, W.; Stallard, T.; Robinson, N.; Schmidt, S. R.

    2016-09-01

    Commercially available wind yield assessment models rely on superposition of wakes calculated for isolated single turbines. These methods of wake simulation fail to account for emergent flow physics that may affect the behaviour of multiple turbines and their wakes and therefore wind farm yield predictions. In this paper wake-wake interaction is modelled computationally (CFD) and physically (in a hydraulic flume) to investigate physical causes of discrepancies between analytical modelling and simulations or measurements. Three effects, currently neglected in commercial models, are identified as being of importance: 1) when turbines are directly aligned, the combined wake is shortened relative to the single turbine wake; 2) when wakes are adjacent, each will be lengthened due to reduced mixing; and 3) the pressure field of downstream turbines can move and modify wakes flowing close to them.

  13. Nonlocal quantum macroscopic superposition in a high-thermal low-purity state

    NASA Astrophysics Data System (ADS)

    Brezinski, Mark E.; Liu, Bin

    2008-12-01

    Quantum state exchange between light and matter is an important ingredient for future quantum information networks as well as other applications. Photons are the fastest and simplest carriers of information for transmission but in general, it is difficult to localize and store photons, so usually one prefers choosing matter as quantum memory elements. Macroscopic superposition and nonlocal quantum interactions have received considerable interest for this purpose over recent years in fields ranging from quantum computers to cryptography, in addition to providing major insights into physical laws. However, these experiments are generally performed either with equipment or under conditions that are unrealistic for practical applications. Ideally, the two can be combined using conventional equipment and conditions to generate a “quantum teleportation”-like state, particularly with a very small amount of purity existing in an overall highly mixed thermal state (relatively low decoherence at high temperatures). In this study we used an experimental design to demonstrate these principles. We performed optical coherence tomography (OCT) using a thermal source at room temperatures of a specifically designed target in the sample arm. Here, position uncertainty (i.e., dispersion) was induced in the reference arm. In the sample arm (target) we placed two glass plates separated by a different medium while altering position uncertainty in the reference arm. This resulted in a chirped signal between the glass plate reflective surfaces in the combined interferogram. The chirping frequency, as measured by the fast Fourier transform (FFT), varies with the medium between the plates, which is a nonclassical phenomenon. These results are statistically significant and occur from a superposition between the glass surface and the medium with increasing position uncertainty, a true quantum-mechanical phenomenon produced by photon pressure from two-photon interference. The differences

  14. Capillary force and torque on spheroidal particles floating at a fluid interface beyond the superposition approximation

    NASA Astrophysics Data System (ADS)

    Galatola, P.

    2016-02-01

    By means of a perturbative scheme, we determine analytically the capillary energy of a spheroidal colloid floating on a deformed fluid interface in terms of the local curvature tensor of the background deformation. We validate our results, that hold for small ellipticity of the particle and small deformations of the surface, by an exact numerical calculation. As an application of our perturbative approach, we determine the asymptotic interaction, for large separations d , between two different spheroidal particles. The dominant contribution is quadrupolar and proportional to d-4. It coincides with the known superposition approximation and is zero if one of the two particles is spherical. The next to leading approximation, proportional to d-8, is always attractive and independent of the orientation of the two colloids. It is the dominant contribution to the interaction between a spheroidal and a spherical colloid.

  15. Free in-plane vibration analysis of rectangular plates by the method of superposition

    NASA Astrophysics Data System (ADS)

    Gorman, D. J.

    2004-05-01

    The superposition method is introduced as a means for obtaining analytical-type solutions for free in-plane vibration of rectangular plates. The governing differential equations and boundary conditions are expressed in dimensionless form. The problem of free in-plane vibration of the completely free rectangular plate is resolved for illustrative purposes. Convergence is found to be rapid and excellent agreement between computed results and those obtained by previous authors utilizing the Rayleigh-Ritz energy method is obtained. It is pointed out that following procedures analogous to those utilized in resolving lateral plate vibration problems, in-plane free vibration problems related to point supported plates, plates with in-plane elastic boundary support, etc., are now amenable to solution by this method.

  16. Superposition of Cohesive Elements to Account for R-Curve Toughening in the Fracture of Composites

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Rose, Cheryl A.; Song, Kyongchan

    2008-01-01

    The relationships between a resistance curve (R-curve), the corresponding fracture process zone length, the shape of the traction/displacement softening law, and the propagation of fracture are examined in the context of the through-the-thickness fracture of composite laminates. A procedure that accounts for R-curve toughening mechanisms by superposing bilinear cohesive elements is proposed. Simple equations are developed for determining the separation of the critical energy release rates and the strengths that define the independent contributions of each bilinear softening law in the superposition. It is shown that the R-curve measured with a Compact Tension specimen test can be reproduced by superposing two bilinear softening laws. It is also shown that an accurate representation of the R-curve is essential for predicting the initiation and propagation of fracture in composite laminates.

  17. Linear Superposition and Prediction of Bacterial Promoter Activity Dynamics in Complex Conditions

    PubMed Central

    Rothschild, Daphna; Dekel, Erez; Hausser, Jean; Bren, Anat; Aidelberg, Guy; Szekely, Pablo; Alon, Uri

    2014-01-01

    Bacteria often face complex environments. We asked how gene expression in complex conditions relates to expression in simpler conditions. To address this, we obtained accurate promoter activity dynamical measurements on 94 genes in E. coli in environments made up of all possible combinations of four nutrients and stresses. We find that the dynamics across conditions is well described by two principal component curves specific to each promoter. As a result, the promoter activity dynamics in a combination of conditions is a weighted average of the dynamics in each condition alone. The weights tend to sum up to approximately one. This weighted-average property, called linear superposition, allows predicting the promoter activity dynamics in a combination of conditions based on measurements of pairs of conditions. If these findings apply more generally, they can vastly reduce the number of experiments needed to understand how E. coli responds to the combinatorially huge space of possible environments. PMID:24809350

  18. Coherent-state linear optical quantum computing gates using simplified diagonal superposition resource states

    SciTech Connect

    Lund, A.P.; Ralph, T.C.

    2005-03-01

    In this paper we explore the possibility of fundamental tests for coherent-state optical quantum computing gates [T. C. Ralph et al., Phys. Rev. A 68, 042319 (2003)] using sophisticated but not unrealistic quantum states. The major resource required in these gates is a state diagonal to the basis states. We use the recent observation that a squeezed single-photon state [S(r) vertical bar 1>] approximates well an odd superposition of coherent states (vertical bar {alpha}>- vertical bar -{alpha}>) to address the diagonal resource problem. The approximation only holds for relatively small {alpha}, and hence these gates cannot be used in a scalable scheme. We explore the effects on fidelities and probabilities in teleportation and a rotated Hadamard gate.

  19. Inferring superposition and entanglement in evolving systems from measurements in a single basis

    SciTech Connect

    Schelpe, Bella; Kent, Adrian; Munro, William; Spiller, Tim

    2003-05-01

    We discuss what can be inferred from measurements on evolving one- and two-qubit systems using a single measurement basis at various times. We show that, given reasonable physical assumptions, carrying out such measurements at quarter-period intervals is enough to demonstrate coherent oscillations of one or two qubits between the relevant measurement basis states. One can thus infer from such measurements alone that an approximately equal superposition of two measurement basis states has been created during a coherent oscillation experiment. Similarly, one can infer that a near-maximally entangled state of two qubits has been created part way through an experiment involving a putative SWAP gate. These results apply even if the relevant quantum systems are only approximate qubits. We discuss applications to fundamental quantum physics experiments and quantum-information processing investigations.

  20. Composite vortex beams by coaxial superposition of Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Huang, Sujuan; Miao, Zhuang; He, Chao; Pang, Fufei; Li, Yingchun; Wang, Tingyun

    2016-03-01

    We propose the generation of novel composite vortex beams by coaxial superposition of Laguerre-Gaussian (LG) beams with common waist position and waist parameter. Computer-generated holography by conjugate-symmetric extension is applied to produce the holograms of several composite vortex beams. Utilizing the holograms, fantastic light modes including optical ring lattice, double dark-ring and double bright-ring composite vortex beams etc. are numerically reconstructed. The generated composite vortex beams show diffraction broadening with some of them showing dynamic rotation around beam centers while propagating. Optical experiments based on a computer-controlled spatial light modulator (SLM) verify the numerical results. These novel composite vortex beams possess more complicated distribution and more controllable parameters for their potential application in comparison to conventional optical ring lattice.

  1. Similarity recognition of molecular structures by optimal atomic matching and rotational superposition.

    PubMed

    Helmich, Benjamin; Sierka, Marek

    2012-01-15

    An algorithm for similarity recognition of molecules and molecular clusters is presented which also establishes the optimum matching among atoms of different structures. In the first step of the algorithm, a set of molecules are coarsely superimposed by transforming them into a common reference coordinate system. The optimum atomic matching among structures is then found with the help of the Hungarian algorithm. For this, pairs of structures are represented as complete bipartite graphs with a weight function that uses intermolecular atomic distances. In the final step, a rotational superposition method is applied using the optimum atomic matching found. This yields the minimum root mean square deviation of intermolecular atomic distances with respect to arbitrary rotation and translation of the molecules. Combined with an effective similarity prescreening method, our algorithm shows robustness and an effective quadratic scaling of computational time with the number of atoms.

  2. Multi-level manual and autonomous control superposition for intelligent telerobot

    NASA Technical Reports Server (NTRS)

    Hirai, Shigeoki; Sato, T.

    1989-01-01

    Space telerobots are recognized to require cooperation with human operators in various ways. Multi-level manual and autonomous control superposition in telerobot task execution is described. The object model, the structured master-slave manipulation system, and the motion understanding system are proposed to realize the concept. The object model offers interfaces for task level and object level human intervention. The structured master-slave manipulation system offers interfaces for motion level human intervention. The motion understanding system maintains the consistency of the knowledge through all the levels which supports the robot autonomy while accepting the human intervention. The superposing execution of the teleoperational task at multi-levels realizes intuitive and robust task execution for wide variety of objects and in changeful environment. The performance of several examples of operating chemical apparatuses is shown.

  3. Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    SciTech Connect

    Lee, Su-Yong; Kim, Ho-Joon; Ji, Se-Wan; Nha, Hyunchul

    2011-07-15

    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.

  4. A test of the equivalence principle(s) for quantum superpositions

    NASA Astrophysics Data System (ADS)

    Orlando, Patrick J.; Mann, Robert B.; Modi, Kavan; Pollock, Felix A.

    2016-10-01

    We propose an experimental test of the quantum equivalence principle introduced by Zych and Brukner (arXiv:1502.00971), which generalises the Einstein equivalence principle to superpositions of internal energy states. We consider a harmonically trapped {spin} - \\tfrac{1}{2} atom in the presence of both gravity and an external magnetic field and show that when the external magnetic field is suddenly switched off, various violations of the equivalence principle would manifest as otherwise forbidden transitions. Performing such an experiment would put bounds on the various phenomenological violating parameters. We further demonstrate that the classical weak equivalence principle can be tested by suddenly putting the apparatus into free fall, effectively ‘switching off’ gravity.

  5. GPU-accelerated Monte Carlo convolution∕superposition implementation for dose calculation

    PubMed Central

    Zhou, Bo; Yu, Cedric X.; Chen, Danny Z.; Hu, X. Sharon

    2010-01-01

    Purpose: Dose calculation is a key component in radiation treatment planning systems. Its performance and accuracy are crucial to the quality of treatment plans as emerging advanced radiation therapy technologies are exerting ever tighter constraints on dose calculation. A common practice is to choose either a deterministic method such as the convolution∕superposition (CS) method for speed or a Monte Carlo (MC) method for accuracy. The goal of this work is to boost the performance of a hybrid Monte Carlo convolution∕superposition (MCCS) method by devising a graphics processing unit (GPU) implementation so as to make the method practical for day-to-day usage. Methods: Although the MCCS algorithm combines the merits of MC fluence generation and CS fluence transport, it is still not fast enough to be used as a day-to-day planning tool. To alleviate the speed issue of MC algorithms, the authors adopted MCCS as their target method and implemented a GPU-based version. In order to fully utilize the GPU computing power, the MCCS algorithm is modified to match the GPU hardware architecture. The performance of the authors’ GPU-based implementation on an Nvidia GTX260 card is compared to a multithreaded software implementation on a quad-core system. Results: A speedup in the range of 6.7–11.4× is observed for the clinical cases used. The less than 2% statistical fluctuation also indicates that the accuracy of the authors’ GPU-based implementation is in good agreement with the results from the quad-core CPU implementation. Conclusions: This work shows that GPU is a feasible and cost-efficient solution compared to other alternatives such as using cluster machines or field-programmable gate arrays for satisfying the increasing demands on computation speed and accuracy of dose calculation. But there are also inherent limitations of using GPU for accelerating MC-type applications, which are also analyzed in detail in this article. PMID:21158271

  6. An Improved Method of Heterogeneity Compensation for the Convolution / Superposition Algorithm

    NASA Astrophysics Data System (ADS)

    Jacques, Robert; McNutt, Todd

    2014-03-01

    Purpose: To improve the accuracy of convolution/superposition (C/S) in heterogeneous material by developing a new algorithm: heterogeneity compensated superposition (HCS). Methods: C/S has proven to be a good estimator of the dose deposited in a homogeneous volume. However, near heterogeneities electron disequilibrium occurs, leading to the faster fall-off and re-buildup of dose. We propose to filter the actual patient density in a position and direction sensitive manner, allowing the dose deposited near interfaces to be increased or decreased relative to C/S. We implemented the effective density function as a multivariate first-order recursive filter and incorporated it into GPU-accelerated, multi-energetic C/S implementation. We compared HCS against C/S using the ICCR 2000 Monte-Carlo accuracy benchmark, 23 similar accuracy benchmarks and 5 patient cases. Results: Multi-energetic HCS increased the dosimetric accuracy for the vast majority of voxels; in many cases near Monte-Carlo results were achieved. We defined the per-voxel error, %|mm, as the minimum of the distance to agreement in mm and the dosimetric percentage error relative to the maximum MC dose. HCS improved the average mean error by 0.79 %|mm for the patient volumes; reducing the average mean error from 1.93 %|mm to 1.14 %|mm. Very low densities (i.e. < 0.1 g / cm3) remained problematic, but may be solvable with a better filter function. Conclusions: HCS improved upon C/S's density scaled heterogeneity correction with a position and direction sensitive density filter. This method significantly improved the accuracy of the GPU based algorithm reaching the accuracy levels of Monte Carlo based methods with performance in a few tenths of seconds per beam. Acknowledgement: Funding for this research was provided by the NSF Cooperative Agreement EEC9731748, Elekta / IMPAC Medical Systems, Inc. and the Johns Hopkins University. James Satterthwaite provided the Monte Carlo benchmark simulations.

  7. Dynamic properties of human tympanic membrane based on frequency-temperature superposition.

    PubMed

    Zhang, Xiangming; Gan, Rong Z

    2013-01-01

    The human tympanic membrane (TM) transfers sound in the ear canal into the mechanical vibration of the ossicles in the middle ear. The dynamic properties of TM directly affect the middle ear transfer function. The static or quasi-static mechanical properties of TM were reported in the literature, but the dynamic properties of TM over the auditory frequency range are very limited. In this paper, a new method was developed to measure the dynamic properties of human TM using the Dynamic-Mechanical Analyzer (DMA). The test was conducted at the frequency range of 1-40 Hz at three different temperatures: 5, 25, and 37 °C. The frequency-temperature superposition was applied to extend the testing frequency range to a much higher level (at least 3800 Hz). The generalized linear solid model was employed to describe the constitutive relation of the TM. The storage modulus E' and the loss modulus E″ were obtained from 11 specimens. The mean storage modulus was 15.1 MPa at 1 Hz and 27.6 MPa at 3800 Hz. The mean loss modulus was 0.28 MPa at 1 Hz and 4.1 MPa at 3800 Hz. The results show that the frequency-temperature superposition is a feasible approach to study the dynamic properties of the ear soft tissues. The dynamic properties of human TM obtained in this study provide a better description of the damping behavior of ear tissues. The properties can be transferred into the finite element model of the human ear to replace the Rayleigh type damping. The data reported here contribute to the biomechanics of the middle ear and improve the accuracy of the FE model for the human ear. PMID:22820983

  8. Histological study of the annular ligament in the rabbitfish eye (Siganus sp.).

    PubMed

    Asli, Marziye; Mansoori, Forooghsadat; Sattari, Amir

    2012-01-01

    Rabbitfish is economically valuable teleost species which lives in shallow coastal waters. Two species of rabbit fish have been recognized in southern sea of Iran (Persian gulf) as namely Siganus sutor and Siganus javus. In the current study, in order to investigate the histology of the annular ligament of the S. javus' eye, the prepared sections of the eyes of twelve healthy specimens were studied under light microscope. The results revealed that annular ligament is a crescent shape structure which is situated between the scleral stroma anteriorly and the iris posteriorly. It contains a vascularized, amorphous and granular matrix with fibers of dense connective tissue; high glycogen content and melanin pigments. PMID:25653773

  9. Numerical model for combined conductive and radiative heat transfer in annular packed beds

    SciTech Connect

    Kamiuto, K.; Saito, S.; Ito, K. . Dept. of Production Systems Engineering)

    1993-06-01

    A numerical model is developed for quantitatively analyzing combined conductive and radiative heat transfer in concentric annular packed beds. A packed bed is considered to be a continuous medium for heat transfer, but the porosity distribution within a packed bed is taken into account. To examine the validity of the proposed model, combined conductive and radiative heat transfer through annular packed beds of cordierite or porcelain beads is analyzed numerically using finite differences under conditions corresponding to heat transfer experiments of these packed beds. The resultant temperature profiles and heat transfer characteristics are compared with the experimental results.

  10. Liquid–Liquid Mixing Studies in Annular Centrifugal Contactors Comparing Stationary Mixing Vane Options

    SciTech Connect

    Wardle, Kent E.

    2015-11-10

    Comparative studies of multiphase operation of annular centrifugal contactors showing the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported with selected measurements in a lab-scale 5 cm contactor and 12.5 cm engineering-scale unit. Fewer straight vanes give greater mixingzone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  11. On the visibility of very thin specimens in annular bright field scanning transmission electron microscopy

    SciTech Connect

    Phillips, P. J.; Klie, R. F.

    2013-07-15

    Annular bright field (ABF) scanning transmission electron microscopy (STEM) is emerging as an important observation mode for its ability to simultaneously image both heavy and light elements. However, recent results have demonstrated that in the limit of a very thin specimen (a few atomic layers), the ABF and high angle annular dark field (HAADF) signals cease to be intuitively related: a phenomenon which is generally irrelevant when imaging 'normal' specimens. ABF/HAADF STEM observations and multislice image simulations of two catalyst samples of differing atomic weights are presented; it is shown that the nature of the ABF signal is specimen dependent.

  12. Production and delivery of a fluid mixture to an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Bland, Ronald Gene; Foley, Ron Lee; Bloys, James B.; Gonzalez, Manuel E.; Daniel, John M.; Robinson, Ian M.; Carpenter, Robert B.

    2012-01-24

    The methods described herein generally relate to preparing and delivering a fluid mixture to a confined volume, specifically an annular volume located between two concentrically oriented casing strings within a hydrocarbon fluid producing well. The fluid mixtures disclosed herein are useful in controlling pressure in localized volumes. The fluid mixtures comprise at least one polymerizable monomer and at least one inhibitor. The processes and methods disclosed herein allow the fluid mixture to be stored, shipped and/or injected into localized volumes, for example, an annular volume defined by concentric well casing strings.

  13. Radially polarized annular beam generated through a second-harmonic-generation process.

    PubMed

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius.

  14. Near-limit propagation of gaseous detonations in narrow annular channels

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2016-03-01

    New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+ 2.5O2 mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2 {+} 2.5O2 {+} 85 % Ar, C2H2 {+} 2.5O2 {+} 70 % Ar, C3H8 {+} 5O2 , and CH4 {+} 2O2 were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5-15 % far from the limits and the velocity rapidly decreases to 0.7V_{CJ} -0.8V_{CJ} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down "zig zag" mode in a two-dimensional, rectangular channel.

  15. Computation of the flow field in an annular gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Cline, Michael C.; Deur, John M.; Micklow, Gerald J.; Harper, Michael R.; Kundu, Krishna P.

    1993-01-01

    The KIVA-II code was modified to calculate the 3D flow field in a typical annular gas turbine combustor. The airblast fuel nozzle, cooling baffle, cooling slots, primary and dilution jets, and effusion cooling (bleed) pads were accounted for in this calculation. The turbulence and combustion were modeled using the k-epsilon model and laminar Arrhenius kinetics, respectively. The fuel was modeled as an evaporating liquid spray. The results illustrate the complicated flow fields present in such combustors. From the results obtained to date it appears that the modified KIVA-II code can be used to study the effects of different annular combustor designs and operating conditions.

  16. Histological study of the annular ligament in the rabbitfish eye (Siganus sp.).

    PubMed

    Asli, Marziye; Mansoori, Forooghsadat; Sattari, Amir

    2012-01-01

    Rabbitfish is economically valuable teleost species which lives in shallow coastal waters. Two species of rabbit fish have been recognized in southern sea of Iran (Persian gulf) as namely Siganus sutor and Siganus javus. In the current study, in order to investigate the histology of the annular ligament of the S. javus' eye, the prepared sections of the eyes of twelve healthy specimens were studied under light microscope. The results revealed that annular ligament is a crescent shape structure which is situated between the scleral stroma anteriorly and the iris posteriorly. It contains a vascularized, amorphous and granular matrix with fibers of dense connective tissue; high glycogen content and melanin pigments.

  17. Histological study of the annular ligament in the rabbitfish eye (Siganus sp.)

    PubMed Central

    Asli, Marziye; Mansoori, Forooghsadat; Sattari, Amir

    2012-01-01

    Rabbitfish is economically valuable teleost species which lives in shallow coastal waters. Two species of rabbit fish have been recognized in southern sea of Iran (Persian gulf) as namely Siganus sutor and Siganus javus. In the current study, in order to investigate the histology of the annular ligament of the S. javus’ eye, the prepared sections of the eyes of twelve healthy specimens were studied under light microscope. The results revealed that annular ligament is a crescent shape structure which is situated between the scleral stroma anteriorly and the iris posteriorly. It contains a vascularized, amorphous and granular matrix with fibers of dense connective tissue; high glycogen content and melanin pigments. PMID:25653773

  18. Annular Lichenoid Dermatitis of Youth: A Report of 2 Cases and a Review of the Literature.

    PubMed

    Vázquez-Osorio, I; González-Sabín, M; Gonzalvo-Rodríguez, P; Rodríguez-Díaz, E

    2016-01-01

    Annular lichenoid dermatitis of youth is a lichenoid dermatosis of unknown etiology. It mostly affects children and adolescents and has well-defined clinical and histological characteristics that permit a diagnosis. We present 2 new cases of annular lichenoid dermatitis of youth with classical clinical features in 2 girls, aged 2 and 4 years. The histologic findings, however, differed from those reported in the literature in that the lichenoid inflammatory infiltrate was located primarily at the top of the dermal papillae and not at the tips of the rete ridges. In both cases, the lesions regressed spontaneously without treatment.

  19. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    SciTech Connect

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  20. The principle of wave superposition applied to the quantum well laser and the motor-bike exhaust system

    NASA Astrophysics Data System (ADS)

    Jakovidis, Greg; McLeod, Ian D.; Morgan, Michael J.

    1990-05-01

    The use of simple ideas applied to 'real-world' situations is of considerable pedagogical value in teaching introductory physics. The principle of wave superposition is applied to understanding the physics of two very different devices: a quantum well laser and a motor-bike exhaust system. Reasonable agreement is found between the predictions of simple models, and the measured parameters of actual devices.