Transient Response of Shells of Revolution by Direct Integration and Modal Superposition Methods
NASA Technical Reports Server (NTRS)
Stephens, W. B.; Adelman, H. M.
1974-01-01
The results of an analytical effort to obtain and evaluate transient response data for a cylindrical and a conical shell by use of two different approaches: direct integration and modal superposition are described. The inclusion of nonlinear terms is more important than the inclusion of secondary linear effects (transverse shear deformation and rotary inertia) although there are thin-shell structures where these secondary effects are important. The advantages of the direct integration approach are that geometric nonlinear and secondary effects are easy to include and high-frequency response may be calculated. In comparison to the modal superposition technique the computer storage requirements are smaller. The advantages of the modal superposition approach are that the solution is independent of the previous time history and that once the modal data are obtained, the response for repeated cases may be efficiently computed. Also, any admissible set of initial conditions can be applied.
NASA Technical Reports Server (NTRS)
Jones, J. E.; Richmond, J. H.
1974-01-01
An integral equation formulation is applied to predict pitch- and roll-plane radiation patterns of a thin VHF/UHF (very high frequency/ultra high frequency) annular slot communications antenna operating at several locations in the nose region of the space shuttle orbiter. Digital computer programs used to compute radiation patterns are given and the use of the programs is illustrated. Experimental verification of computed patterns is given from measurements made on 1/35-scale models of the orbiter.
Superpositions of probability distributions
NASA Astrophysics Data System (ADS)
Jizba, Petr; Kleinert, Hagen
2008-09-01
Probability distributions which can be obtained from superpositions of Gaussian distributions of different variances v=σ2 play a favored role in quantum theory and financial markets. Such superpositions need not necessarily obey the Chapman-Kolmogorov semigroup relation for Markovian processes because they may introduce memory effects. We derive the general form of the smearing distributions in v which do not destroy the semigroup property. The smearing technique has two immediate applications. It permits simplifying the system of Kramers-Moyal equations for smeared and unsmeared conditional probabilities, and can be conveniently implemented in the path integral calculus. In many cases, the superposition of path integrals can be evaluated much easier than the initial path integral. Three simple examples are presented, and it is shown how the technique is extended to quantum mechanics.
NASA Technical Reports Server (NTRS)
Tschunko, H. F. A.
1983-01-01
Reference is made to a study by Tschunko (1979) in which it was discussed how apodization modifies the modulation transfer function for various central obstruction ratios. It is shown here how apodization, together with the central obstruction ratio, modifies the point spread function, which is the basic element for the comparison of imaging performance and for the derivation of energy integrals and other functions. At high apodization levels and lower central obstruction (less than 0.1), new extended radial zones are formed in the outer part of the central ring groups. These transmutation of the image functions are of more than theoretical interest, especially if the irradiance levels in the outer ring zones are to be compared to the background irradiance levels. Attention is then given to the energy distribution in point images generated by annular apertures apodized by various transmission functions. The total energy functions are derived; partial energy integrals are determined; and background irradiance functions are discussed.
NASA Technical Reports Server (NTRS)
Walker, H. J. (Inventor)
1981-01-01
An annular wing particularly suited for use in supporting in flight an aircraft characterized by the absence of directional stabilizing surfaces is described. The wing comprises a rigid annular body of a substantially uniformly symmetrical configuration characterized by an annular positive lifting surface and cord line coincident with the segment of a line radiating along the surface of an inverted truncated cone. A decalage is established for the leading and trailing semicircular portions of the body, relative to instantaneous line of flight, and a dihedral for the laterally opposed semicircular portions of the body, relative to the line of flight. The direction of flight and climb angle or glide slope angle are established by selectively positioning the center of gravity of the wing ahead of the aerodynamic center along the radius coincident with an axis for a selected line of flight.
PIEPHO, M.G.
2000-01-10
Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.
RITTMANN, P.D.
1999-10-07
Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.
Robust mesoscopic superposition of strongly correlated ultracold atoms
Hallwood, David W.; Ernst, Thomas; Brand, Joachim
2010-12-15
We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.
Supercement for Annular Seal and Long-Term Integrity in Deep, Hot Wells "Deep Trek"
Kevin D. Edgley; Fred L. Sabins; Larry T. Watters
2005-08-31
The purpose of this project is to formulate a ''Supercement'' designed for improving the long-term sealing integrity in HPHT wells. Phase I concentrated on chemistry studies and screening tests to design and evaluate Portland-based, hybrid Portland, and non-Portland-based cement systems suitable for further scale-up testing. Phase II work concentrated on additional lab and field testing to reduce the candidate materials list to two systems, as well as scale up activities aimed at verifying performance at the field scale. Phase II was extended thorough a proposal to develop additional testing capabilities aimed at quantifying cementing material properties and performance that were previously not possible. Two materials are being taken into Phase III for field testing and commercialization: {lg_bullet} Highly-expansive cement (Portland-based), patent pending as ''Pre-Stressed Cement'' {lg_bullet} Epoxy Resin (non-Portland-based), patent pending In Phase II, significant effort was expended on scaling up the processes for handling resin in the field, as it is quite different than conventional Portland-based cements in mixing, personnel protection, and cleanup. Through this effort, over fifty (50) field jobs were done at a variety of temperatures and depths, most with excellent results. Large-scale field testing was less relevant with Pre-stressed Cement, because the materials and surface processes do not vary from those that have been developed for conventional Portland materials over the last eighty (80) years. The formulation is quite unique, however, and performs very differently than conventional Portland cements downhole.
Supercement for Annular Seal and Long-Term Integrity in Deep, Hot Wells "DeepTrek"
CSI Technologies
2007-08-31
The purpose of this project is to formulate a 'Supercement' designed for improving the long-term sealing integrity in HPHT wells. Phase I concentrated on chemistry studies and screening tests to design and evaluate Portland-based, hybrid Portland, and non-Portland-based cement systems suitable for further scale-up testing. Phase II work concentrated on additional lab and field testing to reduce the candidate materials list to two systems, as well as scaleup activities aimed at verifying performance at the field scale. Phase II was extended thorough a proposal to develop additional testing capabilities aimed at quantifying cementing material properties and performance that were previously not possible. Phase III focused on bringing the material(s) developed in previous Phases to commercialization, through Field Trials, Cost/Benefit Analysis, and Technology Transfer. Extensive development and testing work throughout the project led to Phase III commercialization of two very different materials: (1) Highly-expansive cement (Portland-based), patent pending as 'PRESTRESSED CEMENT'; and (2) Epoxy Resin (non-Portland-based), patent pending. Trade name is Ultra Seal-R. In Phase III, work concentrated on application of the Supercement materials in various increasingly-challenging wells. Previous testing revealed that PRESTRESSED CEMENT, when applied in weak or unconsolidated formations, tends to expand away from the central pipe, restricting the applicability of this material to competent formations. Tests were devised to quantify this effect so the material could be applied in appropriate wells. Additionally, the testing was needed because of industry resistance to expansive cements, due to previous marketing attempts with other materials that were less than successful. Field trials with the Epoxy Resin currently numbers in the hundreds of jobs at up to 295 deg F, with a large percentage being completely successful. Both the PRESTRESSED CEMENT as well as the Ultra Seal
SUPERPOSITION OF POLYTROPES IN THE INNER HELIOSHEATH
Livadiotis, G.
2016-03-15
This paper presents a possible generalization of the equation of state and Bernoulli's integral when a superposition of polytropic processes applies in space and astrophysical plasmas. The theory of polytropic thermodynamic processes for a fixed polytropic index is extended for a superposition of polytropic indices. In general, the superposition may be described by any distribution of polytropic indices, but emphasis is placed on a Gaussian distribution. The polytropic density–temperature relation has been used in numerous analyses of space plasma data. This linear relation on a log–log scale is now generalized to a concave-downward parabola that is able to describe the observations better. The model of the Gaussian superposition of polytropes is successfully applied in the proton plasma of the inner heliosheath. The estimated mean polytropic index is near zero, indicating the dominance of isobaric thermodynamic processes in the sheath, similar to other previously published analyses. By computing Bernoulli's integral and applying its conservation along the equator of the inner heliosheath, the magnetic field in the inner heliosheath is estimated, B ∼ 2.29 ± 0.16 μG. The constructed normalized histogram of the values of the magnetic field is similar to that derived from a different method that uses the concept of large-scale quantization, bringing incredible insights to this novel theory.
Network Class Superposition Analyses
Pearson, Carl A. B.; Zeng, Chen; Simha, Rahul
2013-01-01
Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., for the yeast cell cycle process [1]), considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix , which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for derived from Boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with . We show how to generate Derrida plots based on . We show that -based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on . We motivate all of these results in terms of a popular molecular biology Boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for , for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses. PMID:23565141
Network class superposition analyses.
Pearson, Carl A B; Zeng, Chen; Simha, Rahul
2013-01-01
Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30) for the yeast cell cycle process), considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.
Quantum superpositions of crystalline structures
Baltrusch, Jens D.; Morigi, Giovanna; Cormick, Cecilia; De Chiara, Gabriele; Calarco, Tommaso
2011-12-15
A procedure is discussed for creating coherent superpositions of motional states of ion strings. The motional states are across the structural transition linear-zigzag, and their coherent superposition is achieved by means of spin-dependent forces, such that a coherent superposition of the electronic states of one ion evolves into an entangled state between the chain's internal and external degrees of freedom. It is shown that the creation of such an entangled state can be revealed by performing Ramsey interferometry with one ion of the chain.
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, R.
2014-04-01
It is shown that for any α,β in {R} and kin {Z}, the Hamiltonian Hk=p1p2 -α q2^{(2k+1)}q1^{(-2k-3)}-β /2 q2kq1^{(-k-2)} is super-integrable, possessing fundamental constants of motion of degrees 2 and 2k + 2 in the momenta.
On the superposition principle in interference experiments
Sinha, Aninda; H. Vijay, Aravind; Sinha, Urbasi
2015-01-01
The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrödinger equation. PMID:25973948
Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...
Mechanically expandable annular seal
Gilmore, R.F.
1983-07-19
A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.
Mechanically expandable annular seal
Gilmore, Richard F.
1983-01-01
A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluidtight barrier. A counterrotation removes the barrier.
Annular nozzle engine technology
NASA Technical Reports Server (NTRS)
Martinez, AL
1992-01-01
The topics covered include: (1) driver rocket subsystem; (2) annular nozzle engine technology; (3) expansion-deflection nozzle; (4) aerospike-nozzled engine background; (5) aerospike testing; (6) linear aerospike; and (7) the combined cycle engine.
Jindal, Gunjan; Mittal, Amit; Singal, Rikki; Singal, Samita
2016-01-01
Annular pancreas is a developmental anomaly that can be associated with other conditions such as Down syndrome, duodenal atresia, and Hirschsprung disease. A band of pancreatic tissue, in continuity with the pancreatic head, completely or incompletely encircles the descending duodenum, sometimes assuming a “crocodile jaw” configuration. We present the case of an adult who presented with epigastric pain and vomiting and was found to have annular pancreas. PMID:27695176
A linear algebraic nonlinear superposition formula
NASA Astrophysics Data System (ADS)
Gordoa, Pilar R.; Conde, Juan M.
2002-04-01
The Darboux transformation provides an iterative approach to the generation of exact solutions for an integrable system. This process can be simplified using the Bäcklund transformation and Bianchi's theorem of permutability; in this way we construct a nonlinear superposition formula, that is, an equation relating a new solution to three previous solutions. In general this equation will be a differential equation; for some examples, such as the Korteweg-de Vries equation, it is a linear algebraic equation. This last is what happens also in the case of the system discussed in this Letter. The linear algebraic nonlinear superposition formula obtained here is a new result. As an example, we use it to construct the two soliton solution, as well as special cases of this last which give rise to solutions exhibiting combinations of fission and fusion. Solutions exhibiting repeated processes of fission and fusion are new phenomena within the area of soliton equations. We also consider obtaining solutions using a symmetry approach; in this way we obtain rational solutions and also the one soliton solution.
Creating a Superposition of Unknown Quantum States.
Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni
2016-03-18
The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.
Mesoscopic Superposition States in Relativistic Landau Levels
Bermudez, A.; Martin-Delgado, M. A.; Solano, E.
2007-09-21
We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.
Communication: Two measures of isochronal superposition
NASA Astrophysics Data System (ADS)
Roed, Lisa Anita; Gundermann, Ditte; Dyre, Jeppe C.; Niss, Kristine
2013-09-01
A liquid obeys isochronal superposition if its dynamics is invariant along the isochrones in the thermodynamic phase diagram (the curves of constant relaxation time). This paper introduces two quantitative measures of isochronal superposition. The measures are used to test the following six liquids for isochronal superposition: 1,2,6 hexanetriol, glycerol, polyphenyl ether, diethyl phthalate, tetramethyl tetraphenyl trisiloxane, and dibutyl phthalate. The latter four van der Waals liquids obey isochronal superposition to a higher degree than the two hydrogen-bonded liquids. This is a prediction of the isomorph theory, and it confirms findings by other groups.
Superposition rendering: Increased realism for interactive walkthroughs
NASA Astrophysics Data System (ADS)
Bastos, Rui M. R. De
1999-11-01
The light transport equation, conventionally known as the rendering equation in a slightly different form, is an implicit integral equation, which represents the interactions of light with matter and the distribution of light in a scene. This research describes a signals-and- systems approach to light transport and casts the light transport equation in terms of convolution. Additionally, the light transport problem is linearly decomposed into simpler problems with simpler solutions, which are then recombined to approximate the full solution. The central goal is to provide interactive photorealistic rendering of virtual environments. We show how the light transport problem can be cast in terms of signals-and-systems. The light is the signal and the materials are the systems. The outgoing light from a light transfer at a surface point is given by convolving the incoming light with the material's impulse response (the material's BRDF/BTDF). Even though the theoretical approach is presented in directional-space, we present an approximation in screen-space, which enables the exploitation of graphics hardware convolution for approximating the light transport equation. The convolution approach to light transport is not enough to fully solve the light transport problem at interactive rates with current machines. We decompose the light transport problem into simpler problems. The decomposition of the light transport problem is based on distinct characteristics of different parts of the problem: the ideally diffuse, the ideally specular, and the glossy transfers. A technique for interactive rendering of each of these components is presented as well a technique for superposing the independent components in a multipass manner in real time. Given the extensive use of the superposition principle in this research, we name our approach superposition rendering to distinguish it from other standard hardware-aided multipass rendering approaches.
Superpositioning of Digital Elevation Data with Analog Imagery for Data Editing,
1984-01-01
The Topographic Developments Laboratory of the U.S. Army Engineer Topographic Laboratories (ETL) has established the Photogrammetric Technology ... Integration (PTI) testbed system for the evaluation of superpositioning techniques utilizing electronically scanned hardcopy imagery with overlayed digital
Reider, Samuel B.
1979-01-01
An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.
Kang, Yungmo
2005-10-04
An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.
Granuloma annulare - close-up (image)
Granuloma annulare is usually a self-limiting disorder characterized by raised lesions arranged in an annular shape. ... This picture shows a close-up of a granuloma annulare that is subcutaneous (deeper). It demonstrates the ...
Multiple annular linear diffractive axicons.
Bialic, Emilie; de la Tocnaye, Jean-Louis de Bougrenet
2011-04-01
We propose a chromatic analysis of multiple annular linear diffractive axicons. Large aperture axicons are optical devices providing achromatic nondiffracting beams, with an extended depth of focus, when illuminated by a white light source, due to chromatic foci superimposition. Annular apertures introduce chromatic foci separation, and because chromatic aberrations result in focal segment axial shifts, polychromatic imaging properties are partially lost. We investigate here various design parameters that can be used to achieve color splitting, filtering, and combining using these properties. In order to improve the low-power efficiency of a single annular axicon, we suggest a spatial multiplexing of concentric annular axicons with different sizes and periods we call multiple annular aperture diffractive axicons (MALDAs). These are chosen to maintain focal depths while enabling color imaging with sufficient diffraction efficiency. Illustrations are given for binary phase diffractive axicons, considering technical aspects such as grating design wavelength and phase dependence due to the grating thickness.
Experimental superposition of orders of quantum gates.
Procopio, Lorenzo M; Moqanaki, Amir; Araújo, Mateus; Costa, Fabio; Alonso Calafell, Irati; Dowd, Emma G; Hamel, Deny R; Rozema, Lee A; Brukner, Časlav; Walther, Philip
2015-08-07
Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to 'superimpose different operations'. Furthermore, it has been shown that using a qubit to coherently control the gate order allows one to accomplish a task--determining if two gates commute or anti-commute--with fewer gate uses than any known quantum algorithm. Here we experimentally demonstrate this advantage, in a photonic context, using a second qubit to control the order in which two gates are applied to a first qubit. We create the required superposition of gate orders by using additional degrees of freedom of the photons encoding our qubits. The new resource we exploit can be interpreted as a superposition of causal orders, and could allow quantum algorithms to be implemented with an efficiency unlikely to be achieved on a fixed-gate-order quantum computer.
Experimental superposition of orders of quantum gates
Procopio, Lorenzo M.; Moqanaki, Amir; Araújo, Mateus; Costa, Fabio; Alonso Calafell, Irati; Dowd, Emma G.; Hamel, Deny R.; Rozema, Lee A.; Brukner, Časlav; Walther, Philip
2015-01-01
Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to ‘superimpose different operations'. Furthermore, it has been shown that using a qubit to coherently control the gate order allows one to accomplish a task—determining if two gates commute or anti-commute—with fewer gate uses than any known quantum algorithm. Here we experimentally demonstrate this advantage, in a photonic context, using a second qubit to control the order in which two gates are applied to a first qubit. We create the required superposition of gate orders by using additional degrees of freedom of the photons encoding our qubits. The new resource we exploit can be interpreted as a superposition of causal orders, and could allow quantum algorithms to be implemented with an efficiency unlikely to be achieved on a fixed-gate-order quantum computer. PMID:26250107
a Logical Account of Quantum Superpositions
NASA Astrophysics Data System (ADS)
Krause, Décio Arenhart, Jonas R. Becker
In this paper we consider the phenomenon of superpositions in quantum mechanics and suggest a way to deal with the idea in a logical setting from a syntactical point of view, that is, as subsumed in the language of the formalism, and not semantically. We restrict the discussion to the propositional level only. Then, after presenting the motivations and a possible world semantics, the formalism is outlined and we also consider within this scheme the claim that superpositions may involve contradictions, as in the case of the Schrödinger's cat, which (it is usually said) is both alive and dead. We argue that this claim is a misreading of the quantum case. Finally, we sketch a new form of quantum logic that involves three kinds of negations and present the relationships among them. The paper is a first approach to the subject, introducing some main guidelines to be developed by a `syntactical' logical approach to quantum superpositions.
Large energy superpositions via Rydberg dressing
NASA Astrophysics Data System (ADS)
Khazali, Mohammadsadegh; Lau, Hon Wai; Humeniuk, Adam; Simon, Christoph
2016-08-01
We propose to create superposition states of over 100 strontium atoms in a ground state or metastable optical clock state using the Kerr-type interaction due to Rydberg state dressing in an optical lattice. The two components of the superposition can differ by an order of 300 eV in energy, allowing tests of energy decoherence models with greatly improved sensitivity. We take into account the effects of higher-order nonlinearities, spatial inhomogeneity of the interaction, decay from the Rydberg state, collective many-body decoherence, atomic motion, molecular formation, and diminishing Rydberg level separation for increasing principal number.
Axisymmetric annular curtain stability
NASA Astrophysics Data System (ADS)
Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian
2012-06-01
A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect.
Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves
NASA Astrophysics Data System (ADS)
Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro
2011-02-01
Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.
Real-time dose computation: GPU-accelerated source modeling and superposition/convolution
Jacques, Robert; Wong, John; Taylor, Russell; McNutt, Todd
2011-01-15
Purpose: To accelerate dose calculation to interactive rates using highly parallel graphics processing units (GPUs). Methods: The authors have extended their prior work in GPU-accelerated superposition/convolution with a modern dual-source model and have enhanced performance. The primary source algorithm supports both focused leaf ends and asymmetric rounded leaf ends. The extra-focal algorithm uses a discretized, isotropic area source and models multileaf collimator leaf height effects. The spectral and attenuation effects of static beam modifiers were integrated into each source's spectral function. The authors introduce the concepts of arc superposition and delta superposition. Arc superposition utilizes separate angular sampling for the total energy released per unit mass (TERMA) and superposition computations to increase accuracy and performance. Delta superposition allows single beamlet changes to be computed efficiently. The authors extended their concept of multi-resolution superposition to include kernel tilting. Multi-resolution superposition approximates solid angle ray-tracing, improving performance and scalability with a minor loss in accuracy. Superposition/convolution was implemented using the inverse cumulative-cumulative kernel and exact radiological path ray-tracing. The accuracy analyses were performed using multiple kernel ray samplings, both with and without kernel tilting and multi-resolution superposition. Results: Source model performance was <9 ms (data dependent) for a high resolution (400{sup 2}) field using an NVIDIA (Santa Clara, CA) GeForce GTX 280. Computation of the physically correct multispectral TERMA attenuation was improved by a material centric approach, which increased performance by over 80%. Superposition performance was improved by {approx}24% to 0.058 and 0.94 s for 64{sup 3} and 128{sup 3} water phantoms; a speed-up of 101-144x over the highly optimized Pinnacle{sup 3} (Philips, Madison, WI) implementation. Pinnacle{sup 3
The Evolution and Development of Neural Superposition
Agi, Egemen; Langen, Marion; Altschuler, Steven J.; Wu, Lani F.; Zimmermann, Timo
2014-01-01
Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically “hard-wired” synaptic connectivity in the brain. PMID:24912630
The principle of superposition in human prehension
Zatsiorsky, Vladimir M.; Latash, Mark L.; Gao, Fan; Shim, Jae Kun
2010-01-01
SUMMARY The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: “Grasp the object stronger/weaker to prevent slipping” and “Maintain the rotational equilibrium of the object”. The effects of the two commands are summed up. PMID:20186284
The principle of superposition in human prehension.
Zatsiorsky, Vladimir M; Latash, Mark L; Gao, Fan; Shim, Jae Kun
2004-03-01
The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: "Grasp the object stronger/weaker to prevent slipping" and "Maintain the rotational equilibrium of the object". The effects of the two commands are summed up.
The evolution and development of neural superposition.
Agi, Egemen; Langen, Marion; Altschuler, Steven J; Wu, Lani F; Zimmermann, Timo; Hiesinger, Peter Robin
2014-01-01
Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically "hard-wired" synaptic connectivity in the brain.
Laser-produced annular plasmas
Veloso, F.; Chuaqui, H.; Aliaga-Rossel, R.; Favre, M.; Mitchell, I. H.; Wyndham, E.
2006-06-15
A new technique is presented for the formation of annular plasmas on a metal surface with a high-power laser using a combination of axicon and converging lenses. The annular plasma formed on a titanium target in a chamber of hydrogen gas was investigated using schlieren imaging and Mach Zehnder interferometry. Expansion of the plasma was shown to be anisotropic with velocities of {approx}10{sup 3}-10{sup 4} m/s. Electron densities of 10{sup 18} cm{sup -3} were measured with radial profiles that confirm the presence of a hollow structure. The interferometric observations also show the presence of an inward shock wave traveling to the center of the annular plasma, which compresses the background neutrals, reaching a density around 18 times initial gas density, at 95 ns after the initial annular plasma is produced.
The Langley Annular Transonic Tunnel
NASA Technical Reports Server (NTRS)
Habel, Louis W; Henderson, James H; Miller, Mason F
1952-01-01
Report describes the development of the Langley annular transonic tunnel, a facility in which test Mach numbers from 0.6 to slightly over 1.0 are achieved by rotating the test model in an annular passage between two concentric cylinders. Data obtained for two-dimensional airfoil models in the Langley annular transonic tunnel at subsonic and sonic speeds are shown to be in reasonable agreement with experimental data from other sources and with theory when comparisons are made for nonlifting conditions or for equal normal-force coefficients rather than for equal angles of attack. The trends of pressure distributions obtained from measurements in the Langley annular transonic tunnel are consistent with distributions calculated for Prandtl-Meyer flow.
Macroscopic Quantum Superposition in Cavity Optomechanics
NASA Astrophysics Data System (ADS)
Liao, Jie-Qiao; Tian, Lin
Quantum superposition in mechanical systems is not only a key evidence of macroscopic quantum coherence, but can also be utilized in modern quantum technology. Here we propose an efficient approach for creating macroscopically distinct mechanical superposition states in a two-mode optomechanical system. Photon hopping between the two cavity-modes is modulated sinusoidally. The modulated photon tunneling enables an ultrastrong radiation-pressure force acting on the mechanical resonator, and hence significantly increases the mechanical displacement induced by a single photon. We present systematic studies on the generation of the Yurke-Stoler-like states in the presence of system dissipations. The state generation method is general and it can be implemented with either optomechanical or electromechanical systems. The authors are supported by the National Science Foundation under Award No. NSF-DMR-0956064 and the DARPA ORCHID program through AFOSR.
Toward quantum superposition of living organisms
NASA Astrophysics Data System (ADS)
Romero-Isart, Oriol; Juan, Mathieu L.; Quidant, Romain; Cirac, J. Ignacio
2010-03-01
The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been previously tested with small objects, such as atoms, ions, electrons and photons (Zoller et al 2005 Eur. Phys. J. D 36 203-28), and even with molecules (Arndt et al 1999 Nature 401 680-2). More recently, it has been shown that it is possible to create superpositions of collections of photons (Deléglise et al 2008 Nature 455 510-14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs (Friedman et al 2000 Nature 406 43-6). Very recent progress in optomechanical systems may soon allow us to create superpositions of even larger objects, such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett. 91 130401; Kippenberg and Vahala 2008 Science 321 1172-6 Marquardt and Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201-5), and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low-vacuum pressures (Rothschild and Mancinelli 2001 Nature 406 1092-101) and optically behave as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517-20). This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schrödinger's cat 'gedanken' paradigm (Schrödinger 1935 Naturwissenschaften 23 807-12, 823-8, 844-9). We anticipate that our paper will be a starting point for experimentally addressing fundamental questions, such as the role of life and consciousness in quantum mechanics.
X-ray optics simulation using Gaussian superposition technique.
Idir, Mourad; Cywiak, Moisés; Morales, Arquímedes; Modi, Mohammed H
2011-09-26
We present an efficient method to perform x-ray optics simulation with high or partially coherent x-ray sources using Gaussian superposition technique. In a previous paper, we have demonstrated that full characterization of optical systems, diffractive and geometric, is possible by using the Fresnel Gaussian Shape Invariant (FGSI) previously reported in the literature. The complex amplitude distribution in the object plane is represented by a linear superposition of complex Gaussians wavelets and then propagated through the optical system by means of the referred Gaussian invariant. This allows ray tracing through the optical system and at the same time allows calculating with high precision the complex wave-amplitude distribution at any plane of observation. This technique can be applied in a wide spectral range where the Fresnel diffraction integral applies including visible, x-rays, acoustic waves, etc. We describe the technique and include some computer simulations as illustrative examples for x-ray optical component. We show also that this method can be used to study partial or total coherence illumination problem.
X-ray optics simulation using Gaussian superposition technique
Idir, M.; Cywiak, M.; Morales, A. and Modi, M.H.
2011-09-15
We present an efficient method to perform x-ray optics simulation with high or partially coherent x-ray sources using Gaussian superposition technique. In a previous paper, we have demonstrated that full characterization of optical systems, diffractive and geometric, is possible by using the Fresnel Gaussian Shape Invariant (FGSI) previously reported in the literature. The complex amplitude distribution in the object plane is represented by a linear superposition of complex Gaussians wavelets and then propagated through the optical system by means of the referred Gaussian invariant. This allows ray tracing through the optical system and at the same time allows calculating with high precision the complex wave-amplitude distribution at any plane of observation. This technique can be applied in a wide spectral range where the Fresnel diffraction integral applies including visible, x-rays, acoustic waves, etc. We describe the technique and include some computer simulations as illustrative examples for x-ray optical component. We show also that this method can be used to study partial or total coherence illumination problem.
Epidermal activity in annular dermatophytosis.
Berk, S H; Penneys, N S; Weinstein, G D
1976-04-01
In five patients with annular tinea corporis, the tritated thymidine labeling indexes were determined in the rim, center, and intermediate areas of the lesion and compared with normal skin. Labeling indexes at the rim were much higher than those of normal skin (mean, 4.2 times). Labeling indexes elsewhere in the lesion were not significantly different from those of normal skin. Histologic examination showed epidermal thickening in all areas of the lesion as compared with normal skin. This study suggests that there is an increased epidermal turnover at the rim of annular dermatophytosis that may be important in the pathophysiology and morphogenesis of such lesions.
Design of wavefront coding optical system with annular aperture
NASA Astrophysics Data System (ADS)
Chen, Xinhua; Zhou, Jiankang; Shen, Weimin
2016-10-01
Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.
Annular Eclipse as Seen by Hinode
This timelapse shows an annular eclipse as seen by JAXA's Hinode satellite on Jan. 4, 2011. An annular eclipse occurs when the moon, slightly more distant from Earth than on average, moves directly...
Laser superposition in multi-pass amplification process
NASA Astrophysics Data System (ADS)
Zhang, Ying; Liu, Lan-Qin; Wang, Wen-Yi; Huang, Wan-Qing; Geng, Yuan-Chao
2015-02-01
Physical model was established to describe the pulse superposition in multi-pass amplification process when the pulse reflected from the cavity mirror and the front and the end of the pulse encountered. Theoretical analysis indicates that pulse superposition will consume more inversion population than that consumed without superposition. The standing wave field will be formed when the front and the end of the pulse is coherent overlapped. The inversion population density is spatial hole-burning by the standing wave field. The pulse gain and pulse are affected by superposition. Based on this physical model, three conditions, without superposition, coherent superposition and incoherent superposition were compared. This study will give instructions for high power solid laser design.
On Kolmogorov's superpositions and Boolean functions
Beiu, V.
1998-12-31
The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.
Maximum predictive power and the superposition principle
NASA Technical Reports Server (NTRS)
Summhammer, Johann
1994-01-01
In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.
Design of artificial spherical superposition compound eye
NASA Astrophysics Data System (ADS)
Cao, Zhaolou; Zhai, Chunjie; Wang, Keyi
2015-12-01
In this research, design of artificial spherical superposition compound eye is presented. The imaging system consists of three layers of lens arrays. In each channel, two lenses are designed to control the angular magnification and a field lens is added to improve the image quality and extend the field of view. Aspherical surfaces are introduced to improve the image quality. Ray tracing results demonstrate that the light from the same object point is focused at the same imaging point through different channels. Therefore the system has much higher energy efficiency than conventional spherical apposition compound eye.
Simulating images captured by superposition lens cameras
NASA Astrophysics Data System (ADS)
Thangarajan, Ashok Samraj; Kakarala, Ramakrishna
2011-03-01
As the demand for reduction in the thickness of cameras rises, so too does the interest in thinner lens designs. One such radical approach toward developing a thin lens is obtained from nature's superposition principle as used in the eyes of many insects. But generally the images obtained from those lenses are fuzzy, and require reconstruction algorithms to complete the imaging process. A hurdle to developing such algorithms is that the existing literature does not provide realistic test images, aside from using commercial ray-tracing software which is costly. A solution for that problem is presented in this paper. Here a Gabor Super Lens (GSL), which is based on the superposition principle, is simulated using the public-domain ray-tracing software POV-Ray. The image obtained is of a grating surface as viewed through an actual GSL, which can be used to test reconstruction algorithms. The large computational time in rendering such images requires further optimization, and methods to do so are discussed.
An experimental investigation of straight and curved annular wall jets
NASA Technical Reports Server (NTRS)
Rodman, L. C.; Wood, N. J.; Roberts, L.
1987-01-01
Accurate turbulence measurements taken in wall jet flows are difficult to obtain, due to high intensity turbulence and problems in achieving two-dimensionality. The problem is compounded when streamwise curvature of the flow is introduced, since the jet entrainment and turbulence levels are greatly increased over the equivalent planar values. In this experiment, two-dimensional straight and curved incompressible wall jet flows are simulated by having a jet blow axially over a cylinder. Hot wire measurements and some Laser Doppler Velocimetry measurements are presented for straight and curved wall jet flows. The results for the straight wall showed good agreement between the annular flow data and the rectangular data taken by previous researchers. For the jets with streamwise curvature, there was agreement between the annular and corresponding rectangular jets for the flow region closest to the slot exit. An integral analysis was used as a simple technique to interpret the experimental results. Integral momentum calculations were performed for both straight and curved annular and two dimensional wall jets. The results of the calculation were used to identify transverse curvature parameters and to predict the values of those parameters which would delineate the region where the annular flow can satisfactorily simulate two dimensional flow.
NASA Technical Reports Server (NTRS)
Palazzolo, Alan B.; Venkataraman, Balaji; Padavala, Sathya S.; Ryan, Steve; Vallely, Pat; Funston, Kerry
1996-01-01
This paper highlights the accomplishments on a joint effort between NASA - Marshall Space Flight Center and Texas A and M University to develop accurate seal analysis software for use in rocket turbopump design, design audits and trouble shooting. Results for arbitrary clearance profile, transient simulation, thermal effects solution and flexible seal wall model are presented. A new solution for eccentric seals based on cubic spline interpolation and ordinary differential equation integration is also presented.
Theory of low voltage annular beam free-electron lasers
Blank, M.; Freund, H.P.; Jackson, R.H.
1995-12-31
An nonlinear analysis of an annular beam propagating through a cylindrical waveguide in the presence of a helical wiggler and an axial guide field is presented. The analysis is based upon the ARACHNE simulation which is a non-wiggler-averaged slow-time-scale simulation code in which the electromagnetic field is represented as a superposition of the TE and TM modes in a vacuum waveguide, and the beam space-charge waves are represented as a superposition of Gould-Trivelpiece modes. The DC self-electric and self-magnetic fields are also included in the model. ARACHNE has been extensively benchmarked against experiments at MIT and NRL in the past with good agreement, but all of these experiments have dealt with solid electron beams and beam voltages in excess of 200 kV. In seeking to reduce the beam voltage requirements we now consider the effect of operation with an annular beam. One advantage to be obtained by using an annular beam is that, for a fixed beam current, the effect of the DC selffields (i.e., the space-charge depression in beam voltage) will be reduced relative to that of a solid beam. This facilitates beam transport in short period wigglers in which the transverse dimensions are also small. A specific example is under study which makes use of 55 kV/5A electron beam with inner and outer radii of 0.27 cm and 0.33 cm respectively. The wiggler amplitude is 250 G with a period of 0.9 cm. and guide fields up to 3 kG corresponding to Group I trajectories. The waveguide radius is chosen to correspond to grazing incidence for the fundamental mode in Ku-Band (12-18 GHz). Preliminary results indicate that efficiencies upwards of 10% are possible with no wiggler taper. In addition, the energy spread must be held below 0.1%, and the instantaneous bandwidth is found to be greater than 20%.
Multipartite cellular automata and the superposition principle
NASA Astrophysics Data System (ADS)
Elze, Hans-Thomas
2016-05-01
Cellular automata (CA) can show well known features of quantum mechanics (QM), such as a linear updating rule that resembles a discretized form of the Schrödinger equation together with its conservation laws. Surprisingly, a whole class of “natural” Hamiltonian CA, which are based entirely on integer-valued variables and couplings and derived from an action principle, can be mapped reversibly to continuum models with the help of sampling theory. This results in “deformed” quantum mechanical models with a finite discreteness scale l, which for l→0 reproduce the familiar continuum limit. Presently, we show, in particular, how such automata can form “multipartite” systems consistently with the tensor product structures of non-relativistic many-body QM, while maintaining the linearity of dynamics. Consequently, the superposition principle is fully operative already on the level of these primordial discrete deterministic automata, including the essential quantum effects of interference and entanglement.
Authentication Protocol using Quantum Superposition States
Kanamori, Yoshito; Yoo, Seong-Moo; Gregory, Don A.; Sheldon, Frederick T
2009-01-01
When it became known that quantum computers could break the RSA (named for its creators - Rivest, Shamir, and Adleman) encryption algorithm within a polynomial-time, quantum cryptography began to be actively studied. Other classical cryptographic algorithms are only secure when malicious users do not have sufficient computational power to break security within a practical amount of time. Recently, many quantum authentication protocols sharing quantum entangled particles between communicators have been proposed, providing unconditional security. An issue caused by sharing quantum entangled particles is that it may not be simple to apply these protocols to authenticate a specific user in a group of many users. An authentication protocol using quantum superposition states instead of quantum entangled particles is proposed. The random number shared between a sender and a receiver can be used for classical encryption after the authentication has succeeded. The proposed protocol can be implemented with the current technologies we introduce in this paper.
Superposition and alignment of labeled point clouds.
Fober, Thomas; Glinca, Serghei; Klebe, Gerhard; Hüllermeier, Eyke
2011-01-01
Geometric objects are often represented approximately in terms of a finite set of points in three-dimensional euclidean space. In this paper, we extend this representation to what we call labeled point clouds. A labeled point cloud is a finite set of points, where each point is not only associated with a position in three-dimensional space, but also with a discrete class label that represents a specific property. This type of model is especially suitable for modeling biomolecules such as proteins and protein binding sites, where a label may represent an atom type or a physico-chemical property. Proceeding from this representation, we address the question of how to compare two labeled points clouds in terms of their similarity. Using fuzzy modeling techniques, we develop a suitable similarity measure as well as an efficient evolutionary algorithm to compute it. Moreover, we consider the problem of establishing an alignment of the structures in the sense of a one-to-one correspondence between their basic constituents. From a biological point of view, alignments of this kind are of great interest, since mutually corresponding molecular constituents offer important information about evolution and heredity, and can also serve as a means to explain a degree of similarity. In this paper, we therefore develop a method for computing pairwise or multiple alignments of labeled point clouds. To this end, we proceed from an optimal superposition of the corresponding point clouds and construct an alignment which is as much as possible in agreement with the neighborhood structure established by this superposition. We apply our methods to the structural analysis of protein binding sites.
Charged annular disks and Reissner-Nordstroem type black holes from extremal dust
Lora-Clavijo, F. D.; Ospina-Henao, P. A.; Pedraza, J. F.
2010-10-15
We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disklike configurations of matter in confomastatic spacetimes by assuming a functional dependence among the metric function, the electric potential, and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin inversion method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstroem black hole can be embedded into the center of the disks by adding a boundary term in the inversion.
Simulation of cryogenic turbopump annular seals
NASA Technical Reports Server (NTRS)
Palazzolo, Alan B.
1992-01-01
The goal of the current work is to develop software that can accurately predict the dynamic coefficients, forces, leakage and horsepower loss for annular seals which have a potential for affecting the rotordynamic behavior of the pumps. The fruit of last year's research was the computer code SEALPAL which included capabilities for linear tapered geometry, Moody friction factor and inlet pre-swirl. This code produced results which in most cases compared very well with check cases presented in the literature. TAMUSEAL Icode, which was written to improve SEALPAL by correcting a bug and by adding more accurate integration algorithms and additional capabilities, was then used to predict dynamic coefficients and leakage for the NASA/Pratt and Whitney Alternate Turbopump Development (ATD) LOX Pump's seal.
Fugacity superposition: a new approach to dynamic multimedia fate modeling.
Hertwich, E G
2001-08-01
The fugacities, concentrations, or inventories of pollutants in environmental compartments as determined by multimedia environmental fate models of the Mackay type can be superimposed on each other. This is true for both steady-state (level III) and dynamic (level IV) models. Any problem in multimedia fate models with linear, time-invariant transfer and transformation coefficients can be solved through a superposition of a set of n independent solutions to a set of coupled, homogeneous first-order differential equations, where n is the number of compartments in the model. For initial condition problems in dynamic models, the initial inventories can be separated, e.g. by a compartment. The solution is obtained by adding the single-compartment solutions. For time-varying emissions, a convolution integral is used to superimpose solutions. The advantage of this approach is that the differential equations have to be solved only once. No numeric integration is required. Alternatively, the dynamic model can be simplified to algebraic equations using the Laplace transform. For time-varying emissions, the Laplace transform of the model equations is simply multiplied with the Laplace transform of the emission profile. It is also shown that the time-integrated inventories of the initial conditions problems are the same as the inventories in the steady-state problem. This implies that important properties of pollutants such as potential dose, persistence, and characteristic travel distance can be derived from the steady state.
Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States.
Yue, Fuyong; Wen, Dandan; Zhang, Chunmei; Gerardot, Brian D; Wang, Wei; Zhang, Shuang; Chen, Xianzhong
2017-04-01
A facile metasurface approach is shown to realize polarization-controllable multichannel superpositions of orbital angular momentum (OAM) states with various topological charges. By manipulating the polarization state of the incident light, four kinds of superpositions of OAM states are realized using a single metasurface consisting of space-variant arrays of gold nanoantennas.
Annular Solar Eclipse of 10 May 1994
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1993-01-01
An annular eclipse of the Sun will be widely visible from the Western Hemisphere on 10 May 1994. The path of the Moon's shadow passes through Mexico, the United States of America, maritime Canada, the North Atlantic, the Azores and Morocco. Detailed predictions for this event are presented and include tables of geographic coordinates of the annular path, local circumstances for hundreds of cities, maps of the path of annular and partial eclipse, weather prospects, and the lunar limb profile.
Superposition properties of interacting ion channels.
Keleshian, A M; Yeo, G F; Edeson, R O; Madsen, B W
1994-01-01
Quantitative analysis of patch clamp data is widely based on stochastic models of single-channel kinetics. Membrane patches often contain more than one active channel of a given type, and it is usually assumed that these behave independently in order to interpret the record and infer individual channel properties. However, recent studies suggest there are significant channel interactions in some systems. We examine a model of dependence in a system of two identical channels, each modeled by a continuous-time Markov chain in which specified transition rates are dependent on the conductance state of the other channel, changing instantaneously when the other channel opens or closes. Each channel then has, e.g., a closed time density that is conditional on the other channel being open or closed, these being identical under independence. We relate the two densities by a convolution function that embodies information about, and serves to quantify, dependence in the closed class. Distributions of observable (superposition) sojourn times are given in terms of these conditional densities. The behavior of two channel systems based on two- and three-state Markov models is examined by simulation. Optimized fitting of simulated data using reasonable parameters values and sample size indicates that both positive and negative cooperativity can be distinguished from independence. PMID:7524711
Macroscopic superpositions and gravimetry with quantum magnetomechanics
NASA Astrophysics Data System (ADS)
Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason
2016-11-01
Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10‑10 Hz‑1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.
Macroscopic superpositions and gravimetry with quantum magnetomechanics
Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason
2016-01-01
Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10−10 Hz−1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters. PMID:27869142
Controlling coherent state superpositions with superconducting circuits
NASA Astrophysics Data System (ADS)
Vlastakis, Brian Michael
Quantum computation requires a large yet controllable Hilbert space. While many implementations use discrete quantum variables such as the energy states of a two-level system to encode quantum information, continuous variables could allow access to a larger computational space while minimizing the amount of re- quired hardware. With a toolset of conditional qubit-photon logic, we encode quantum information into the amplitude and phase of coherent state superpositions in a resonator, also known as Schrddinger cat states. We achieve this using a superconducting transmon qubit with a strong off-resonant coupling to a waveguide cavity. This dispersive interaction is much greater than decoherence rates and higher-order nonlinearites and therefore allows for simultaneous control of over one hundred photons. Furthermore, we combine this experiment with fast, high-fidelity qubit state readout to perform composite qubit-cavity state tomography and detect entanglement between a physical qubit and a cat-state encoded qubit. These results have promising applications for redundant encoding in a cavity state and ultimately quantum error correction with superconducting circuits.
Annular MHD Physics for Turbojet Energy Bypass
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
Fast superposition T-matrix solution for clusters with arbitrarily-shaped constituent particles
NASA Astrophysics Data System (ADS)
Markkanen, Johannes; Yuffa, Alex J.
2017-03-01
A fast superposition T-matrix solution is formulated for electromagnetic scattering by a collection of arbitrarily-shaped inhomogeneous particles. The T-matrices for individual constituents are computed by expanding the Green's dyadic in the spherical vector wave functions and formulating a volume integral equation, where the equivalent electric current is the unknown and the spherical vector wave functions are treated as excitations. Furthermore, the volume integral equation and the superposition T-matrix are accelerated by the precorrected-FFT algorithm and the fast multipole algorithm, respectively. The approach allows for an efficient scattering analysis of the clusters and aggregates consisting of a large number of arbitrarily-shaped inhomogeneous particles.
Nonclassical properties and quantum resources of hierarchical photonic superposition states
Volkoff, T. J.
2015-11-15
We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.
Quantum State Engineering Via Coherent-State Superpositions
NASA Technical Reports Server (NTRS)
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
Means of manufacturing annular arrays
Day, R.A.
1985-10-10
A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.
Optical threshold secret sharing scheme based on basic vector operations and coherence superposition
NASA Astrophysics Data System (ADS)
Deng, Xiaopeng; Wen, Wei; Mi, Xianwu; Long, Xuewen
2015-04-01
We propose, to our knowledge for the first time, a simple optical algorithm for secret image sharing with the (2,n) threshold scheme based on basic vector operations and coherence superposition. The secret image to be shared is firstly divided into n shadow images by use of basic vector operations. In the reconstruction stage, the secret image can be retrieved by recording the intensity of the coherence superposition of any two shadow images. Compared with the published encryption techniques which focus narrowly on information encryption, the proposed method can realize information encryption as well as secret sharing, which further ensures the safety and integrality of the secret information and prevents power from being kept centralized and abused. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.
Quantum superposition at the half-metre scale.
Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A
2015-12-24
The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity.
Higher modes in the coupling cells of coaxial and annular-ring coupled linac structures
Hoffswell, R.A.; Laszewski, R.M.
1983-08-01
Dipole- and quadrupole-like modes in the coupling cells of coaxial and annular-ring coupled structures have been examined up to a frequency of 4 GHz. The quadrupole mode frequencies appear to lie high enough above the frequency of the accelerating mode to make coupling between the two unlikely. In the annular-ring case, however, a dipole mode was found very near the accelerating mode frequency. Evidence is presented which suggests that some power may couple between these two modes in a real cavity.
Method and apparatus for continuous annular electrochromatography
Scott, Charles D.
1987-01-01
Separation of complex mixtures and solutions can be carried out using a method and apparatus for continuous annular electrochromatography. Solutes are diverted radially by an imposed electrical field as they move downward in a rotating chromatographic column.
Multiple Granuloma Annulare in a 2-year-old Child
Siddalingappa, Karjigi; Murthy, Sambasiviah Chidambara; Herakal, Kallappa; Kusuma, Marganahalli Ramachandra
2015-01-01
Granuloma annulare is a benign, self-limiting, inflammatory and granulomatous disease of unknown etiology occurring in both adults and children. An 18-month-old male child had multiple progressive annular plaques over the lower extremities. Clinical and histopathological features were consistent with granuloma annulare. Localized granuloma annulare is the most common form in children. We report a young child with multiple, progressive granuloma annulare over the lower extremities. PMID:26677301
Adaptive optics scanning ophthalmoscopy with annular pupils.
Sulai, Yusufu N; Dubra, Alfredo
2012-07-01
Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.
Annular gel reactor for chemical pattern formation
Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.
1990-01-01
The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.
Annular-Cross-Section CFE Chamber
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Sammons, David W.
1994-01-01
Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.
[Superposition impact character of air pollution from decentralization docks in a freshwater port].
Liu, Jian-chang; Li, Xing-hua; Xu, Hong-lei; Cheng, Jin-xiang; Wang, Zhong-dai; Xiao, Yang
2013-05-01
Air pollution from freshwater port is mainly caused by dust pollution, including material loading and unloading dust, road dust, and wind erosion dust from stockpile, bare soil. The dust pollution from a single dock characterized in obvious difference with air pollution from multiple scattered docks. Jining Port of Shandong Province was selected as a case study to get superposition impact contribution of air pollution for regional air environment from multiple scattered docks and to provide technical support for system evaluation of port air pollution. The results indicate that (1) the air pollution from freshwater port occupies a low proportion of pollution impact on regional environmental quality because the port is consisted of serveral small scattered docks; (2) however, the geometric center of the region distributed by docks is severely affected with the most superposition of the air pollution; and (3) the ADMS model is helpful to attain an effective and integrated assessment to predict a superposition impact of multiple non-point pollution sources when the differences of high-altitude weather conditions was not considered on a large scale.
Optimal control of quantum superpositions in a bosonic Josephson junction
NASA Astrophysics Data System (ADS)
Lapert, M.; Ferrini, G.; Sugny, D.
2012-02-01
We show how to optimally control the creation of quantum superpositions in a bosonic Josephson junction within the two-site Bose-Hubbard-model framework. Both geometric and purely numerical optimal-control approaches are used, the former providing a generalization of the proposal of Micheli [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.67.013607 67, 013607 (2003)]. While this method is shown not to lead to significant improvements in terms of time of formation and fidelity of the superposition, a numerical optimal-control approach appears more promising, as it allows creation of an almost perfect superposition, within a time short compared to other existing protocols. We analyze the robustness of the optimal solution against atom-number variations. Finally, we discuss the extent to which these optimal solutions could be implemented with state-of-the-art technology.
Dimensional limits for arthropod eyes with superposition optics.
Meyer-Rochow, Victor Benno; Gál, József
2004-01-01
An essential feature of the superposition type of compound eye is the presence of a wide zone, which is transparent and devoid of pigment and interposed between the distal array of dioptric elements and the proximally placed photoreceptive layer. Parallel rays, collected by many lenses, must (through reflection or refraction) cross this transparent clear-zone in such a way that they become focused on one receptor. Superposition depends mostly on diameter and curvature of the cornea, size and shape of the crystalline cone, lens cylinder properties of cornea and cone, dimensions of the receptor cells, and width of the clear-zone. We examined the role of the latter by geometrical, geometric-optical, and anatomical measurements and concluded that a minimal size exists, below which effective superposition can no longer occur. For an eye of a given size, it is not possible to increase the width of the clear-zone cz=dcz/R1 and decrease R2 (i.e., the radius of curvature of the distal retinal surface) and/or c=dc/R1 without reaching a limit. In the equations 'cz' is the width of the clear-zone dcz relative to the radius R1 of the eye and c is the length of the cornea-cone unit relative to R1. Our results provide one explanation as to why apposition eyes exist in very small scarabaeid beetles, when generally the taxon Scarabaeoidea is characterized by the presence of superposition eyes. The results may also provide the answer for the puzzle why juveniles or the young of species, in which the adults possess superposition (=clear-zone) eyes, frequently bear eyes that do not contain a clear zone, but resemble apposition eyes. The eyes of the young and immature specimens may simply be too small to permit superposition to occur.
Superposition of helical beams by using a Michelson interferometer.
Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst
2010-01-04
Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.
Measuring orbital angular momentum superpositions of light by mode transformation.
Berkhout, Gregorius C G; Lavery, Martin P J; Padgett, Miles J; Beijersbergen, Marco W
2011-05-15
We recently reported on a method for measuring orbital angular momentum (OAM) states of light based on the transformation of helically phased beams to tilted plane waves [Phys. Rev. Lett.105, 153601 (2010)]. Here we consider the performance of such a system for superpositions of OAM states by measuring the modal content of noninteger OAM states and beams produced by a Heaviside phase plate.
Real-time feedback control of a mesoscopic superposition
Jacobs, Kurt; Finn, Justin; Vinjanampathy, Sai
2011-04-15
We show that continuous real-time feedback can be used to track, control, and protect a mesoscopic superposition of two spatially separated wave packets. The feedback protocol is enabled by an approximate state estimator and requires two continuous measurements, performed simultaneously. For nanomechanical and superconducting resonators, both measurements can be implemented by coupling the resonators to superconducting qubits.
What causes Mars' annular polar vortices?
NASA Astrophysics Data System (ADS)
Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.
2017-01-01
A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.
1996-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Verma, T.; Painuly, N.K.; Mishra, S.P.; Shajahan, M.; Singh, N.; Bhatt, M.L.B.; Jamal, N.; Pant, M.C.
2016-01-01
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery. Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy planning. Materials and Methods: Treatment plans for ten lung cancer patients previously planned on Monte Carlo algorithm were re-planned using same treatment planning indices (gantry angel, rank, power etc.) in other four algorithms. Results: The values of radiotherapy planning parameters such as Mean dose, volume of 95% isodose line, Conformity Index, Homogeneity Index for target, Maximum dose, Mean dose; %Volume receiving 20Gy or more by contralateral lung; % volume receiving 30 Gy or more; % volume receiving 25 Gy or more, Mean dose received by heart; %volume receiving 35Gy or more; %volume receiving 50Gy or more, Mean dose to Easophagous; % Volume receiving 45Gy or more, Maximum dose received by Spinal cord and Total monitor unit, Volume of 50 % isodose lines were recorded for all ten patients. Performance of different algorithms was also evaluated statistically. Conclusion: MC and PB algorithms found better as for tumor coverage, dose distribution homogeneity in Planning Target Volume and minimal dose to organ at risks are concerned. Superposition algorithms found to be better than convolution and fast superposition. In the case of tumors located centrally, it is recommended to use Monte Carlo algorithms for the optimal use of radiotherapy. PMID:27853720
Annular lichenoid syphilis: A rare entity.
Khurana, Ananta; Singal, Archana; Gupta, Seema
2014-01-01
Syphilis is a disease known for centuries, but still continues to be a diagnostic challenge as the myriad manifestations of secondary syphilis can mimic a lot many dermatological disorders. Lichenoid syphilis is an uncommon entity, reported only occasionally in the penicillin era. We present the case of a 32-year-old woman presenting with localized annular lichenoid lesions on the neck.
Annular Pressure Seals and Hydrostatic Bearings
2006-11-01
affecting the rotordynamics of liquid turbopumps, in particular those handling large density fluids. Highlights on the bulk-flow analysis of annular seals... rotordynamic stability. Hydrostatic bearings rely on external fluid pressurization to generate load support and large centering stiffnesses, even in...SEALS IN PUMP APPLICATIONS Seal rotordynamic characteristic have a primary influence on the stability response of high-performance turbomachinery [1
Annular lichenoid syphilis: A rare entity
Khurana, Ananta; Singal, Archana; Gupta, Seema
2014-01-01
Syphilis is a disease known for centuries, but still continues to be a diagnostic challenge as the myriad manifestations of secondary syphilis can mimic a lot many dermatological disorders. Lichenoid syphilis is an uncommon entity, reported only occasionally in the penicillin era. We present the case of a 32-year-old woman presenting with localized annular lichenoid lesions on the neck. PMID:26396452
The Developmental Rules of Neural Superposition in Drosophila.
Langen, Marion; Agi, Egemen; Altschuler, Dylan J; Wu, Lani F; Altschuler, Steven J; Hiesinger, Peter Robin
2015-07-02
Complicated neuronal circuits can be genetically encoded, but the underlying developmental algorithms remain largely unknown. Here, we describe a developmental algorithm for the specification of synaptic partner cells through axonal sorting in the Drosophila visual map. Our approach combines intravital imaging of growth cone dynamics in developing brains of intact pupae and data-driven computational modeling. These analyses suggest that three simple rules are sufficient to generate the seemingly complex neural superposition wiring of the fly visual map without an elaborate molecular matchmaking code. Our computational model explains robust and precise wiring in a crowded brain region despite extensive growth cone overlaps and provides a framework for matching molecular mechanisms with the rules they execute. Finally, ordered geometric axon terminal arrangements that are not required for neural superposition are a side product of the developmental algorithm, thus elucidating neural circuit connectivity that remained unexplained based on adult structure and function alone.
Nonclassicality tests and entanglement witnesses for macroscopic mechanical superposition states
NASA Astrophysics Data System (ADS)
Gittsovich, Oleg; Moroder, Tobias; Asadian, Ali; Gühne, Otfried; Rabl, Peter
2015-02-01
We describe a set of measurement protocols for performing nonclassicality tests and the verification of entangled superposition states of macroscopic continuous variable systems, such as nanomechanical resonators. Following earlier works, we first consider a setup where a two-level system is used to indirectly probe the motion of the mechanical system via Ramsey measurements and discuss the application of this method for detecting nonclassical mechanical states. We then show that the generalization of this technique to multiple resonator modes allows the conditioned preparation and the detection of entangled mechanical superposition states. The proposed measurement protocols can be implemented in various qubit-resonator systems that are currently under experimental investigation and find applications in future tests of quantum mechanics at a macroscopic scale.
Macroscopic superposition of ultracold atoms with orbital degrees of freedom
Garcia-March, M. A.; Carr, L. D.; Dounas-Frazer, D. R.
2011-04-15
We introduce higher dimensions into the problem of Bose-Einstein condensates in a double-well potential, taking into account orbital angular momentum. We completely characterize the eigenstates of this system, delineating new regimes via both analytical high-order perturbation theory and numerical exact diagonalization. Among these regimes are mixed Josephson- and Fock-like behavior, crossings in both excited and ground states, and shadows of macroscopic superposition states.
Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics
NASA Astrophysics Data System (ADS)
Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.
2016-09-01
A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.
Sensing Super-position: Visual Instrument Sensor Replacement
NASA Technical Reports Server (NTRS)
Maluf, David A.; Schipper, John F.
2006-01-01
The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an
Single-Atom Gating of Quantum State Superpositions
Moon, Christopher
2010-04-28
The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.
Management of Periocular Granuloma Annulare Using Topical Dapsone
Patel, Mayha; Shitabata, Paul; Horowitz, David
2015-01-01
Granuloma annulare is a disease characterized by granulomatous inflammation of the dermis. Localized granuloma annulare may resolve spontaneously, while generalized granuloma annulare may persist for decades. The authors present the case of a 41-year-old Hispanic man with a two-week history of periocular granuloma annulare. Due to previously reported success in the use of systemic dapsone for the treatment of granuloma annulare, and the periocular proximity of the patient’s lesion, topical dapsone was used for treatment. Various additional therapies for the management of granuloma annulare have been reported, such as topical and systemic steroids, isotretinoin, pentoxifylline, cyclosporine, Interferon gamma, potassium iodide, nicotinamide, niacinamide, salicylic acid, fumaric acid ester, etanercept, infliximab, and hydroxychloroquine. Additional clinical trials are necessary to further evaluate the effectiveness of topical dapsone in the management of granuloma annulare. PMID:26203321
Zhang, Xiao-Zheng; Thomas, Jean-Hugh; Bi, Chuan-Xing; Pascal, Jean-Claude
2012-10-01
A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform that is generally used in time domain holography and real-time near-field acoustic holography, and therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform in theory and makes possible to use an irregular microphone array. The feasibility of the proposed method is demonstrated by numerical simulations and an experiment with two speakers.
Development of an Advanced Annular Combustor
NASA Technical Reports Server (NTRS)
Rusnak, J. P.; Shadowen, J. H.
1969-01-01
The objective of the effort described in this report was to determine the structural durability of a full-scale advanced annular turbojet combustor using ASTM A-1 type fuel and operating at conditions typical of advanced supersonic aircraft. A full-scale annular combustor of the ram-induction type was fabricated and subjected to a 325-hour cyclic endurance test at conditions representative of operation in a Mach 3.0 aircraft. The combustor exhibited extensive cracking and scoop burning at the end of the test program. But these defects had no appreciable effect on combustor performance, as performance remained at a high level throughout the endurance program. Most performance goals were achieved with pressure loss values near 6% and 8%, and temperature rise variation ratio (deltaTVR) values near 1.25 and l.22 at takeoff and cruise conditions, respectively. Combustion efficiencies approached l004 and the exit radial temperature profiles were approximately as desired.
LDV Measurements in an Annular Combustor Model
NASA Technical Reports Server (NTRS)
Barron, Dean A.
1996-01-01
This thesis covers the design and setup of a laser doppler velocimeter (LDV) system used to take velocity measurements in an annular combustor model. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.
Continuous separation of proteins by annular chromatography
Bloomingburg, G.F.; Bauer, J.S.; Carta, G. ); Byers, C.H. )
1991-05-01
In this paper, the separation of protein mixtures by continuous annular chromatography (CAC) is studied in a preparative-scale apparatus. S-Sepharose, a strong-acid porous cation-exchange resin is used as the separation medium, and mixtures of albumin, hemoglobin and cytochrome c are used as model separation system. Equilibrium and mass-transfer parameters are developed for this system on the basis of fixed-bed chromatograph experiments. A mathematical model is then successfully used in conjunction with these parameters to simulate the performance of the CAC separations. The continuous separation performance of the annular apparatus is found to be essentially the same as the batchwise performance of an equivalent conventional chromatograph, making the unit attractive for preparative and process-scale applications where continuous throughput is desirable.
Endoscopic measurements using a panoramic annular lens
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Matthys, Donald R.
1992-01-01
The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software.
Annular and Total Solar Eclipses of 2003
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2002-01-01
On Saturday, 2003 May 31, an annular eclipse of the Sun will be visible from a broad corridor that traverses the North Atlantic. The path of the Moon's antumbral shadow begins in northern Scotland, crosses Iceland and central Greenland, and ends at sunrise in Baffin Bay (Canada). A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes most of Europe, the Middle East, central and northern Asia, and northwestern North America. The trajectory of the Moon's shadow is quite unusual during this event. The shadow axis passes to the far north where it barely grazes Earth's surface. In fact, the northern edge of the antumbra actually misses Earth so that one path limit is defined by the day/night terminator rather than by the shadow's upper edge. As a result, the track of annularity has a peculiar "D" shape that is nearly 1200 kilometers wide. Since the eclipse occurs just three weeks prior to the northern summer solstice, Earth's northern axis is pointed sunwards by 22.8 deg. As seen from the Sun, the antumbral shadow actually passes between the North Pole and the terminator. As a consequence of this extraordinary geometry, the path of annularity runs from east to west rather than the more typical west to east. The event transpires near the Moon's ascending node in Taurus five degrees north of Aldebaran. Since apogee occurs three days earlier (May 28 at 13 UT), the Moon's apparent diameter (29.6 arc-minutes) is still too small to completely cover the Sun (31.6 arc-minutes) resulting in an annular eclipse.
The Annular Suspension and Pointing System /ASPS/
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Woolley, C. T.
1978-01-01
The Annular Suspension and Pointing System (ASPS) may be attached to a carrier vehicle for orientation, mechanical isolation, and fine pointing purposes applicable to space experiments. It has subassemblies for both coarse and vernier pointing. A fourteen-degree-of-freedom simulation of the ASPS mounted on a Space Shuttle has yielded initial performance data. The simulation describes: the magnetic actuators, payload sensors, coarse gimbal assemblies, control algorithms, rigid body dynamic models of the payload and Shuttle, and a control system firing model.
Annular flow film characteristics in variable gravity.
MacGillivray, Ryan M; Gabriel, Kamiel S
2002-10-01
Annular flow is a frequently occurring flow regime in many industrial applications. The need for a better understanding of this flow regime is driven by the desire to improve the design of many terrestrial and space systems. Annular two-phase flow occurs in the mining and transportation of oil and natural gas, petrochemical processes, and boilers and condensers in heating and refrigeration systems. The flow regime is also anticipated during the refueling of space vehicles, and thermal management systems for space use. Annular flow is mainly inertia driven with little effect of buoyancy. However, the study of this flow regime is still desirable in a microgravity environment. The influence of gravity can create an unstable, chaotic film. The absence of gravity, therefore, allows for a more stable and axisymmetric film. Such conditions allow for the film characteristics to be easily studied at low gas flow rates. Previous studies conducted by the Microgravity Research Group dealt with varying the gas or liquid mass fluxes at a reduced gravitational acceleration.(1,2) The study described here continues this work by examining the effect of changing the gravitational acceleration (hypergravity) on the film characteristics. In particular, the film thickness and the associated pressure drops are examined. The film thickness was measured using a pair of two-wire conductance probes. Experimental data was collected over a range of annular flow set points by changing the liquid and gas mass flow rates, the liquid-to-gas density ratio and the gravitational acceleration. The liquid-to-gas density ratio was varied by collecting data with helium-water and air-water at the same flow rates. The gravitational effect was examined by collecting data during the microgravity and pull-up (hypergravity) portions of the parabolic flights.
Quantum jumps, superpositions, and the continuous evolution of quantum states
NASA Astrophysics Data System (ADS)
Dick, Rainer
2017-02-01
The apparent dichotomy between quantum jumps on the one hand, and continuous time evolution according to wave equations on the other hand, provided a challenge to Bohr's proposal of quantum jumps in atoms. Furthermore, Schrödinger's time-dependent equation also seemed to require a modification of the explanation for the origin of line spectra due to the apparent possibility of superpositions of energy eigenstates for different energy levels. Indeed, Schrödinger himself proposed a quantum beat mechanism for the generation of discrete line spectra from superpositions of eigenstates with different energies. However, these issues between old quantum theory and Schrödinger's wave mechanics were correctly resolved only after the development and full implementation of photon quantization. The second quantized scattering matrix formalism reconciles quantum jumps with continuous time evolution through the identification of quantum jumps with transitions between different sectors of Fock space. The continuous evolution of quantum states is then recognized as a sum over continually evolving jump amplitudes between different sectors in Fock space. In today's terminology, this suggests that linear combinations of scattering matrix elements are epistemic sums over ontic states. Insights from the resolution of the dichotomy between quantum jumps and continuous time evolution therefore hold important lessons for modern research both on interpretations of quantum mechanics and on the foundations of quantum computing. They demonstrate that discussions of interpretations of quantum theory necessarily need to take into account field quantization. They also demonstrate the limitations of the role of wave equations in quantum theory, and caution us that superpositions of quantum states for the formation of qubits may be more limited than usually expected.
Improved scatter correction using adaptive scatter kernel superposition
NASA Astrophysics Data System (ADS)
Sun, M.; Star-Lack, J. M.
2010-11-01
Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.
Labelled Unit Superposition Calculi for Instantiation-Based Reasoning
NASA Astrophysics Data System (ADS)
Korovin, Konstantin; Sticksel, Christoph
The Inst-Gen-Eq method is an instantiation-based calculus which is complete for first-order clause logic modulo equality. Its distinctive feature is that it combines first-order reasoning with efficient ground satisfiability checking which is delegated in a modular way to any state-of-the-art ground SMT solver. The first-order reasoning modulo equality employs a superposition-style calculus which generates the instances needed by the ground solver to refine a model of a ground abstraction or to witness unsatisfiability.
Scaling of macroscopic superpositions close to a quantum phase transition
NASA Astrophysics Data System (ADS)
Abad, Tahereh; Karimipour, Vahid
2016-05-01
It is well known that in a quantum phase transition (QPT), entanglement remains short ranged [Osterloh et al., Nature (London) 416, 608 (2005), 10.1038/416608a]. We ask if there is a quantum property entailing the whole system which diverges near this point. Using the recently proposed measures of quantum macroscopicity, we show that near a quantum critical point, it is the effective size of macroscopic superposition between the two symmetry breaking states which grows to the scale of system size, and its derivative with respect to the coupling shows both singular behavior and scaling properties.
Concentration-temperature superposition of helix folding rates in gelatin.
Gornall, J L; Terentjev, E M
2007-07-13
Using optical rotation as the primary technique, we have characterized the kinetics of helix renaturation in water solutions of gelatin. By covering a wide range of solution concentrations we identify a universal exponential dependence of folding rate on concentration and quench temperature. We demonstrate a new concentration-temperature superposition of data at all temperatures and concentrations, and build the corresponding master curve. The normalized rate constant is consistent with helix lengthening. Nucleation of the triple helix occurs rapidly and contributes less to the helical onset than previously thought.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.; Neutzler, Jay K.
1997-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Experiments testing macroscopic quantum superpositions must be slow
NASA Astrophysics Data System (ADS)
Mari, Andrea; de Palma, Giacomo; Giovannetti, Vittorio
2016-03-01
We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.
Modeling scattering from azimuthally symmetric bathymetric features using wavefield superposition.
Fawcett, John A
2007-12-01
In this paper, an approach for modeling the scattering from azimuthally symmetric bathymetric features is described. These features are useful models for small mounds and indentations on the seafloor at high frequencies and seamounts, shoals, and basins at low frequencies. A bathymetric feature can be considered as a compact closed region, with the same sound speed and density as one of the surrounding media. Using this approach, a number of numerical methods appropriate for a partially buried target or facet problem can be applied. This paper considers the use of wavefield superposition and because of the azimuthal symmetry, the three-dimensional solution to the scattering problem can be expressed as a Fourier sum of solutions to a set of two-dimensional scattering problems. In the case where the surrounding two half spaces have only a density contrast, a semianalytic coupled mode solution is derived. This provides a benchmark solution to scattering from a class of penetrable hemispherical bosses or indentations. The details and problems of the numerical implementation of the wavefield superposition method are described. Example computations using the method for a simple scattering feature on a seabed are presented for a wide band of frequencies.
Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions
NASA Astrophysics Data System (ADS)
Wan, C.; Scala, M.; Morley, G. W.; Rahman, ATM. A.; Ulbricht, H.; Bateman, J.; Barker, P. F.; Bose, S.; Kim, M. S.
2016-09-01
We propose an interferometric scheme based on an untrapped nano-object subjected to gravity. The motion of the center of mass (c.m.) of the free object is coupled to its internal spin system magnetically, and a free flight scheme is developed based on coherent spin control. The wave packet of the test object, under a spin-dependent force, may then be delocalized to a macroscopic scale. A gravity induced dynamical phase (accrued solely on the spin state, and measured through a Ramsey scheme) is used to reveal the above spatially delocalized superposition of the spin-nano-object composite system that arises during our scheme. We find a remarkable immunity to the motional noise in the c.m. (initially in a thermal state with moderate cooling), and also a dynamical decoupling nature of the scheme itself. Together they secure a high visibility of the resulting Ramsey fringes. The mass independence of our scheme makes it viable for a nano-object selected from an ensemble with a high mass variability. Given these advantages, a quantum superposition with a 100 nm spatial separation for a massive object of 1 09 amu is achievable experimentally, providing a route to test postulated modifications of quantum theory such as continuous spontaneous localization.
Runs in superpositions of renewal processes with applications to discrimination
NASA Astrophysics Data System (ADS)
Alsmeyer, Gerold; Irle, Albrecht
2006-02-01
Wald and Wolfowitz [Ann. Math. Statist. 11 (1940) 147-162] introduced the run test for testing whether two samples of i.i.d. random variables follow the same distribution. Here a run means a consecutive subsequence of maximal length from only one of the two samples. In this paper we contribute to the problem of runs and resulting test procedures for the superposition of independent renewal processes which may be interpreted as arrival processes of customers from two different input channels at the same service station. To be more precise, let (Sn)n[greater-or-equal, slanted]1 and (Tn)n[greater-or-equal, slanted]1 be the arrival processes for channel 1 and channel 2, respectively, and (Wn)n[greater-or-equal, slanted]1 their be superposition with counting process . Let further be the number of runs in W1,...,Wn and the number of runs observed up to time t. We study the asymptotic behavior of and Rt, first for the case where (Sn)n[greater-or-equal, slanted]1 and (Tn)n[greater-or-equal, slanted]1 have exponentially distributed increments with parameters [lambda]1 and [lambda]2, and then for the more difficult situation when these increments have an absolutely continuous distribution. These results are used to design asymptotic level [alpha] tests for testing [lambda]1=[lambda]2 against [lambda]1[not equal to][lambda]2 in the first case, and for testing for equal scale parameters in the second.
Experiments testing macroscopic quantum superpositions must be slow
Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio
2016-01-01
We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation. PMID:26959656
Superposition states for quantum nanoelectronic circuits and their nonclassical properties
NASA Astrophysics Data System (ADS)
Choi, Jeong Ryeol
2016-09-01
Quantum properties of a superposition state for a series RLC nanoelectronic circuit are investigated. Two displaced number states of the same amplitude but with opposite phases are considered as components of the superposition state. We have assumed that the capacitance of the system varies with time and a time-dependent power source is exerted on the system. The effects of displacement and a sinusoidal power source on the characteristics of the state are addressed in detail. Depending on the magnitude of the sinusoidal power source, the wave packets that propagate in charge(q)-space are more or less distorted. Provided that the displacement is sufficiently high, distinct interference structures appear in the plot of the time behavior of the probability density whenever the two components of the wave packet meet together. This is strong evidence for the advent of nonclassical properties in the system, that cannot be interpretable by the classical theory. Nonclassicality of a quantum system is not only a beneficial topic for academic interest in itself, but its results can be useful resources for quantum information and computation as well.
Evolution of superpositions of quantum states through a level crossing
Torosov, B. T.; Vitanov, N. V.
2011-12-15
The Landau-Zener-Stueckelberg-Majorana (LZSM) model is widely used for estimating transition probabilities in the presence of crossing energy levels in quantum physics. This model, however, makes the unphysical assumption of an infinitely long constant interaction, which introduces a divergent phase in the propagator. This divergence remains hidden when estimating output probabilities for a single input state insofar as the divergent phase cancels out. In this paper we show that, because of this divergent phase, the LZSM model is inadequate to describe the evolution of pure or mixed superposition states across a level crossing. The LZSM model can be used only if the system is initially in a single state or in a completely mixed superposition state. To this end, we show that the more realistic Demkov-Kunike model, which assumes a hyperbolic-tangent level crossing and a hyperbolic-secant interaction envelope, is free of divergences and is a much more adequate tool for describing the evolution through a level crossing for an arbitrary input state. For multiple crossing energies which are reducible to one or more effective two-state systems (e.g., by the Majorana and Morris-Shore decompositions), similar conclusions apply: the LZSM model does not produce definite values of the populations and the coherences, and one should use the Demkov-Kunike model instead.
Experiments testing macroscopic quantum superpositions must be slow.
Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio
2016-03-09
We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.
Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions.
Wan, C; Scala, M; Morley, G W; Rahman, Atm A; Ulbricht, H; Bateman, J; Barker, P F; Bose, S; Kim, M S
2016-09-30
We propose an interferometric scheme based on an untrapped nano-object subjected to gravity. The motion of the center of mass (c.m.) of the free object is coupled to its internal spin system magnetically, and a free flight scheme is developed based on coherent spin control. The wave packet of the test object, under a spin-dependent force, may then be delocalized to a macroscopic scale. A gravity induced dynamical phase (accrued solely on the spin state, and measured through a Ramsey scheme) is used to reveal the above spatially delocalized superposition of the spin-nano-object composite system that arises during our scheme. We find a remarkable immunity to the motional noise in the c.m. (initially in a thermal state with moderate cooling), and also a dynamical decoupling nature of the scheme itself. Together they secure a high visibility of the resulting Ramsey fringes. The mass independence of our scheme makes it viable for a nano-object selected from an ensemble with a high mass variability. Given these advantages, a quantum superposition with a 100 nm spatial separation for a massive object of 10^{9} amu is achievable experimentally, providing a route to test postulated modifications of quantum theory such as continuous spontaneous localization.
Annular-slot arrays as far-infrared bandpass filters.
Krug, P A; Dawes, D H; McPhedran, R C; Wright, W; Macfarlane, J C; Whitbourn, L B
1989-09-01
Arrays of both annular and square annular slots in a conducting sheet on a dielectric substrate have been fabricated photolithographically. The structures are shown to behave as bandpass filters in the far infrared, with a resonant wavelength slightly larger than the average circumference or perimeter of the slot. The measured far-infrared transmittance of the annular array is approximately 76% of that predicted by theory, while its resonant frequency agrees with theory to within 5%.
Functional specifications of the annular suspension pointing system, appendix A
NASA Technical Reports Server (NTRS)
Edwards, B.
1980-01-01
The Annular Suspension Pointing System is described. The Design Realization, Evaluation and Modelling (DREAM) system, and its design description technique, the DREAM Design Notation (DDN) is employed.
Arcuate, annular, and polycyclic inflammatory and infectious lesions.
Sharma, Amit; Lambert, Phelps J; Maghari, Amin; Lambert, W Clark
2011-01-01
Common shapes encountered in dermatologic diseases include linear, nummular, annular, polycyclic, and arciform. The last three have a relatively restricted differential, which must be entirely explored. It is not uncommon for a single disease to present in annular, arciform or polycyclic configurations; moreover, the lesions may evolve from being arciform to annular and then become polycyclic. Regardless, recognizing the arrangement of the defect will undoubtedly help in making a diagnosis and guiding subsequent management. We explore diseases that often present in annular, arciform, and/or polycyclic forms.
Student ability to distinguish between superposition states and mixed states in quantum mechanics
NASA Astrophysics Data System (ADS)
Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.
2015-12-01
Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the experimental implications of a superposition state. In particular, they fail to recognize how a superposition state and a mixed state (sometimes called a "lack of knowledge" state) can produce different experimental results. We present data that suggest that superposition in quantum mechanics is a difficult concept for students enrolled in sophomore-, junior-, and graduate-level quantum mechanics courses. We illustrate how an interactive lecture tutorial can improve student understanding of quantum mechanical superposition. A longitudinal study suggests that the impact persists after an additional quarter of quantum mechanics instruction that does not specifically address these ideas.
Uncertainty methodology for the strongly coupled physical phenomena associated with annular flow
Lane, J. W.; Aumiller Jr, D. L.
2012-07-01
Best-Estimate plus Uncertainty (BEPU) methods are slowly supplanting the use of deterministic analysis methods for thermal-hydraulic analyses. As the uncertainty methodologies evolve it is expected that, where both experimental techniques allow and data are available, there will be a shift to quantifying the uncertainty in increasingly more fundamental parameters. For example, for annular flow in a three-field analysis environment (vapor, liquid film, droplet), the driving parameters would be: a) film interfacial shear stress, b) droplet drag, c) droplet entrainment rate and d) droplet deposition rate. An improved annular flow modeling package was recently developed and implemented in an in-house version of the COBRA-TF best-estimate subchannel analysis tool (Lane, 2009). Significant improvement was observed in the code-to-data predictions of several steam-water annular flow tests following the implementation of this modeling package; however, to apply this model set in formal BEPU analysis requires uncertainty distributions to be determined. The unique aspect of annular flow, and the topic of the present work, is the strong coupling between the interfacial drag, entrainment and deposition phenomena. Ideally the uncertainty in each phenomenon would be isolated; however, the situation is further complicated by an inability to experimentally isolate and measure the individual rate processes (particularly entrainment rate), which results in available experimental data that are inherently integral in nature. This paper presents a methodology for isolating the individual physical phenomena of interest, to the extent that the currently available experimental data allow, and developing the corresponding uncertainty distributions for annular flow. (authors)
Finite stretching of an annular plate.
NASA Technical Reports Server (NTRS)
Biricikoglu, V.; Kalnins, A.
1971-01-01
The problem of the finite stretching of an annular plate which is bonded to a rigid inclusion at its inner edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive law. It is shown that the inclusion of the effect of the transverse normal strain leads to a rapid variation in thickness which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the behavior of the plate near the edges, are presented.
Endoscopic inspection using a panoramic annular lens
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Matthys, Donald R.
1991-01-01
The objective of this one year study was to design, build, and demonstrate a prototype system for cavity inspection. A cylindrical view of the cavity interior was captured in real time through a compound lens system consisting of a unique panoramic annular lens and a collector lens. Images, acquired with a digitizing camera and stored in a desktop computer, were manipulated using image processing software to aid in visual inspection and qualitative analysis. A detailed description of the lens and its applications is given.
Annular pancreas associated with duodenal carcinoma
Brönnimann, Enrico; Potthast, Silke; Vlajnic, Tatjana; Oertli, Daniel; Heizmann, Oleg
2010-01-01
Annular pancreas (AP) is a rare congenital anomaly. Coexisting malignancy has been reported only in a few cases. We report what is, to the best of our knowledge, the first case in the English literature of duodenal adenocarcinoma in a patient with AP. In a 55-year old woman with duodenal outlet stenosis magnetic resonance cholangiopancreatography showed an aberrant pancreatic duct encircling the duodenum. Duodenojejunostomy was performed. Eight weeks later she presented with painless jaundice. Duodenopancreatectomy revealed a duodenal adenocarcinoma, surrounded by an incomplete AP. Thus, co-existent malignancy with AP can be present without obstructive jaundice and without being visible through preoperative diagnostics. PMID:20593508
Duration test of an annular colloid thruster.
NASA Technical Reports Server (NTRS)
Perel, J.; Mahoney, J. F.; Daley, H. L.
1972-01-01
An annular colloid thruster was continuously operated for 1023 hours. Performance was stable with no sparking and negligible drain currents observed. An average thrust of 25.1 micropounds and an average specific impulse of 1160 seconds were obtained at an accelerating voltage of 15 k he thruster exhaust beam was continuously neutralized using electrons and electrostatic vectoring was demonstrated periodically. The only clear trend with time was an increase in specific impulse during the last third of the test period. From these results the thruster lifetime was estimated to be over an order of magnitude greater than the test duration.
Displacement separations by continuous annular chromatography
DeCarli, J.P. II; Carta, G. ); Byers, C.H. . Chemical Technology Div.)
1988-01-01
Continuous annular chromatography (CAC) has been introduced as an effective means of carrying out chromatographic separations in a truly continuous manner. Process applications have been demonstrated. In this work the authors demonstrate how CAC can be operated for displacement development separations. In this mode of operation of the apparatus separation and concentration of multicomponent mixtures can be obtained simultaneously and continuously. Experimental results and model simulations for this novel separation device are presented along with a comparison of different modes of operation and a discussion of industrial applications.
The Annular Momentum Control Device (AMCD)
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Groom, N. J.
1975-01-01
An annular momentum control device consisting principally of a spinning rim, a set of noncontacting magnetic bearings for supporting the rim, a noncontacting electric motor for driving the rim, and, for some applications, one or more gimbals is described. The device is intended for applications where requirements for control torque and momentum storage exist. Hardware requirements and potential unit configurations are discussed. Theoretical considerations for the passive use of the device are discussed. Potential applications of the device in other than passive configurations for the attitude control, stabilization, and maneuvering of spacecraft are reported.
Seeing double: annular diaper rash in twins.
Sommer, Lacy L; Manders, Steven M
2015-01-01
We report a case of dichorionic, diamniotic twins who developed similar erythematous, annular, erosive plaques in the inguinal folds in the first few weeks of life that were refractory to topical antifungals and oral antibiotics. The twins were found to have high transaminase levels, antinuclear antibody positivity, and anti-SSS/Ro) and anti-SSB/La autoantibodies. The rash resolved without scarring by 7 months of age with the use of low-potency topical corticosteroids. We suggest that physicians consider neonatal lupus erythematosus in neonates with atypical eruptions occurring in sun-protected skin.
Wave turbulence in annular wave tank
NASA Astrophysics Data System (ADS)
Onorato, Miguel; Stramignoni, Ettore
2014-05-01
We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.
Nonlinear features of Northern Annular Mode variability
NASA Astrophysics Data System (ADS)
Fu, Zuntao; Shi, Liu; Xie, Fenghua; Piao, Lin
2016-05-01
Nonlinear features of daily Northern Annular Mode (NAM) variability at 17 pressure levels are quantified by two different measures. One is nonlinear correlation, and the other is time-irreversible symmetry. Both measures show that there are no significant nonlinear features in NAM variability at the higher pressure levels, however as the pressure level decreases, the strength of nonlinear features in NAM variability becomes predominant. This indicates that in order to reach better prediction of NAM variability in the lower pressure levels, nonlinear features must be taken into consideration to build suitable models.
The origin of non-classical effects in a one-dimensional superposition of coherent states
NASA Technical Reports Server (NTRS)
Buzek, V.; Knight, P. L.; Barranco, A. Vidiella
1992-01-01
We investigate the nature of the quantum fluctuations in a light field created by the superposition of coherent fields. We give a physical explanation (in terms of Wigner functions and phase-space interference) why the 1-D superposition of coherent states in the direction of the x-quadrature leads to the squeezing of fluctuations in the y-direction, and show that such a superposition can generate the squeezed vacuum and squeezed coherent states.
Entanglement and Decoherence in Two-Dimensional Coherent State Superpositions
NASA Astrophysics Data System (ADS)
Maleki, Y.
2017-03-01
A detailed investigation of entanglement in the generalized two-dimensional nonorthogonal states, which are expressed in the framework of superposed coherent states, is presented. In addition to quantifying entanglement of the generalized two-dimensional coherent states superposition, necessary and sufficient conditions for maximality of entanglement of these states are found. We show that a large class of maximally entangled coherent states can be constructed, and hence, some new maximally entangled coherent states are explicitly manipulated. The investigation is extended to the mixed system states and entanglement properties of such mixed states are investigated. It is shown that in some cases maximally entangled mixed states can be detected. Furthermore, the effect of decoherence, due to both cavity losses and noisy channel process, on such entangled states are studied and its features are discussed.
slate: A method for the superposition of flexible ligands
NASA Astrophysics Data System (ADS)
Mills, J. E. J.; de Esch, I. J. P.; Perkins, T. D. J.; Dean, P. M.
2001-01-01
A novel program for the superposition of flexible molecules, slate, is presented. It uses simulated annealing to minimise the difference between the distance matrices calculated from the hydrogen-bonding and aromatic-ring properties of two ligands. A method for generating a molecular stack using multiple pairwise matches is illustrated. These stacks are used by the program doh to predict the relative positions of receptor atoms that could form hydrogen bonds to two or more ligands in the dataset. The methodology has been applied to ligands binding to dihydrofolate reductase, thermolysin, H3 histamine receptors, α2 adrenoceptors and 5-HT1D receptors. When there are sufficient numbers and diversity of molecules in the dataset, the prediction of receptor-atom positions is applicable to compound design.
Sensing Super-Position: Human Sensing Beyond the Visual Spectrum
NASA Technical Reports Server (NTRS)
Maluf, David A.; Schipper, John F.
2007-01-01
The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This paper addresses the technical feasibility of augmenting human vision through Sensing Super-position by mixing natural Human sensing. The current implementation of the device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of Lie human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system. The
Predicting jet radius in electrospinning by superpositioning exponential functions
NASA Astrophysics Data System (ADS)
Widartiningsih, P. M.; Iskandar, F.; Munir, M. M.; Viridi, S.
2016-08-01
This paper presents an analytical study of the correlation between viscosity and fiber diameter in electrospinning. Control over fiber diameter in electrospinning process was important since it will determine the performance of resulting nanofiber. Theoretically, fiber diameter was determined by surface tension, solution concentration, flow rate, and electric current. But experimentally it had been proven that significantly viscosity had an influence to fiber diameter. Jet radius equation in electrospinning process was divided into three areas: near the nozzle, far from the nozzle, and at jet terminal. There was no correlation between these equations. Superposition of exponential series model provides the equations combined into one, thus the entire of working parameters on electrospinning take a contribution to fiber diameter. This method yields the value of solution viscosity has a linear relation to jet radius. However, this method works only for low viscosity.
Subfemtosecond steering of hydrocarbon deprotonation through superposition of vibrational modes.
Alnaser, A S; Kübel, M; Siemering, R; Bergues, B; Kling, Nora G; Betsch, K J; Deng, Y; Schmidt, J; Alahmed, Z A; Azzeer, A M; Ullrich, J; Ben-Itzhak, I; Moshammer, R; Kleineberg, U; Krausz, F; de Vivie-Riedle, R; Kling, M F
2014-05-08
Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform.
Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space
NASA Astrophysics Data System (ADS)
Volkoff, T. J.; Whaley, K. B.
2014-12-01
We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.
Robustness of superposition states evolving under the influence of a thermal reservoir
Sales, J. S.; Almeida, N. G. de
2011-06-15
We study the evolution of superposition states under the influence of a reservoir at zero and finite temperatures in cavity quantum electrodynamics aiming to know how their purity is lost over time. The superpositions studied here are composed of coherent states, orthogonal coherent states, squeezed coherent states, and orthogonal squeezed coherent states, which we introduce to generalize the orthogonal coherent states. For comparison, we also show how the robustness of the superpositions studied here differs from that of a qubit given by a superposition of zero- and one-photon states.
Annular and Total Solar Eclipses of 2010
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, J.
2008-01-01
While most NASA eclipse bulletins cover a single eclipse, this publication presents predictions for two solar eclipses during 2010. This has required a different organization of the material into the following sections. Section 1 -- Eclipse Predictions: The section consists of a general discussion about the eclipse path maps, Besselian elements, shadow contacts, eclipse path tables, local circumstances tables, and the lunar limb profile. Section 2 -- Annular Solar Eclipse of 2010 Ja n 15: The section covers predictions and weather prospects for the annular eclipse. Section 3 -- Total Solar Eclipse of 2010 Jul 11: The se ction covers predictions and weather prospects for the total eclipse. Section 4 -- Observing Eclipses: The section provides information on eye safety, solar filters, eclipse photography, and making contact timings from the path limits. Section 5 -- Eclipse Resources: The final section contains a number of resources including information on the IAU Working Group on Eclipses, the Solar Eclipse Mailing List, the NASA eclipse bulletins on the Internet, Web sites for the two 2010 eclipses, and a summary identifying the algorithms, ephemerides, and paramete rs used in the eclipse predictions.
Signatures of an annular Fermi sea
NASA Astrophysics Data System (ADS)
Jo, Insun; Liu, Yang; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.; Winkler, R.
2017-01-01
The concept of a Fermi surface, the constant-energy surface containing all the occupied electron states in momentum, or wave-vector (k ) , space plays a key role in determining electronic properties of conductors. In two-dimensional (2D) carrier systems, the Fermi surface becomes a contour which, in the simplest case, encircles the occupied states. In this case, the area enclosed by the contour, which we refer to as the Fermi sea (FS), is a simple disk. Here we report the observation of an FS with a new topology, namely, an FS in the shape of an annulus. Such an FS is expected in a variety of 2D systems where the energy band dispersion supports a ring of extrema at finite k , but its experimental observation has been elusive. Our study provides (1) theoretical evidence for the presence of an annular FS in 2D hole systems confined to wide GaAs quantum wells and (2) experimental signatures of the onset of its occupation as an abrupt rise in the sample resistance, accompanied by a sudden appearance of Shubnikov-de Haas oscillations at an unexpectedly high frequency whose value does not simply correspond to the (negligible) density of holes contained within the annular FS.
NASA Technical Reports Server (NTRS)
Abdallah, Ayman A.; Barnett, Alan R.; Ibrahim, Omar M.; Manella, Richard T.
1993-01-01
Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center.
Controlling the pressure within an annular volume of a wellbore
Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.
2010-06-29
A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.
Controlling the pressure within an annular volume of a wellbore
Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.
2011-01-18
A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.
Controlling the pressure within an annular volume of a wellbore
Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.
2011-06-21
A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.
Controlling the pressure within an annular volume of a wellbore
Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.
2011-05-31
A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.
Localized interstitial granuloma annulare induced by subcutaneous injections for desensitization.
Spring, Philipp; Vernez, Maxime; Maniu, Christa-Maria; Hohl, Daniel
2013-06-15
We describe a patient with interstitial granuloma annulare associated with subcutaneous injection therapy (SIT) for desensitization to a type I allergy. Asymptomatic, erythematous, violaceous annular patches were located at the injection sites on both her arms. Medical history revealed perennial rhinoconjonctivitis treated with SIT (Phostal Stallergen® cat 100% and D. pteronyssinus/D.farinae 50%:50%).
Vortex beam based more stable annular laser guide star
NASA Astrophysics Data System (ADS)
Luo, Ruiyao; Cui, Wenda; Li, Lei; Sun, Quan; He, Yulong; Wang, Hongyan; Ning, Yu; Xu, Xiaojun
2016-11-01
We present an annular laser guide star (LGS) concept for large ground-based telescopes in this paper. The more stable annular LGS is generated by turbulence-resisted vortex beam. In the uplink, a vortex beam tends to wander more slightly than a Gaussian beam does in atmospheric turbulence. This may enable an annular LGS to wander more slightly than a traditional Gaussian beam generated LGS does, which would ease the burden of uplink tip-tilt mirror and benefit a dynamical closed-loop adaptive optics system. We conducted numerical simulation to validate the feasibility of this concept. And we have gotten 31% reduced variance of spot wandering of annular LGS. Besides, we set up a spatial light modulator based laser guide star simulator for beam propagation in turbulent atmosphere to experimentally test the annular LGS concept. Preliminary experimental results are given. To the best of our knowledge, it is the first time this concept is formulated.
Research of annular polishing asymmetric ZnS plane window
NASA Astrophysics Data System (ADS)
Guo, Weijin; Tong, Yi; Jin, Yuzhu; Lin, Nana
2016-10-01
Due the annular polishing technology for planar optical components do not have the sharp selectivity, annular polishing technology is a very import process to fabricate irregular planar elements which with high precision surface shape and low surface roughness. According to the characteristics of annular polishing, the zns asymmetric plane window annular polishing process and key technical parameters control was researched. In this paper, one pair of asymmetric planar ZnS window parts were machined which diagonal length is 147mm, through technology experiments, obtained process test samples. The surface figures of the plane zns window are measured by a Zygo interferometer and the reflect wavefront P-V value is better than 1.5λ, the reflect wavefront local error rms value is better than 0.05λ (λ=632.8nm). Experiments results demonstrate the effectiveness of annular processing technology was used to manufacture zinc sulfide asymmetric shape plane window.
Vaginal delivery through annular placenta – case report
Živković, Nikica; Krezo, Stipe; Matijević, Ratko; Živković, Krešimir
2013-01-01
Annular placenta is an extremely rare morphological type of human placenta. It is commonly related to placental vessel abnormalities frequently causing antenatal and postnatal hemorrhage and operative delivery. Gravida 4 para 1 had an uneventful course of pregnancy and normal vaginal delivery followed by moderate postpartum hemorrhage. Hemorrhage was found to be local in origin but the placenta was annular in shape and the newborn was delivered through one of the openings. Annular placenta was not recognized before delivery. Its implantation site was in the lower uterine segment but high enough to allow the passage of the fetus through its annular defect and vaginal birth. To our knowledge, this is a first report of annular placenta ending in normal vaginal delivery. PMID:23630149
Effects study on the thermal stresses in a LEU metal foil annular target.
Govindarajan, Srisharan G; Solbrekken, Gary L
2015-09-01
The effects of fission gas pressure, uranium swelling and thermal contact conductance on the thermal-mechanical behavior of an annular target containing a low-enriched uranium foil (LEU) encapsulated in a nickel foil have been presented in this paper. The draw-plug assembly method is simulated to obtain the residual stresses, which are applied to the irradiation model as initial inputs, and the integrated assembly-irradiation process is simulated as an axisymmetric problem using the commercial finite element code Abaqus FEA. Parametric studies were performed on the LEU heat generation rate and the results indicate satisfactory irradiation performance of the annular target. The temperature and stress margins have been provided along with a discussion of the results.
Sound fields in a lined annular flow duct with lined radial splitters
NASA Technical Reports Server (NTRS)
Mungur, P.; Kapur, A.
1974-01-01
High attenuation in the inlet duct of fan-jet engines is limited mainly because of two factors: the duct length is short and the frequency is high giving rise to a large duct width to wavelength ratio. Lined radial splitters may be installed. In this configuration not only is the absorbing surface area increased, the acoustic propagation properties in each of the segmented ducts are different to those in a cylindrical or annular duct without radial splitters. Such differences in properties can be used to advantage for mismatching the acoustic source. A lower order spinning mode must propagate as a higher order (integral or fractional) spinning mode. Cut-off phenomena may also be used to advantage. A theoretical modal analysis is made of the sound inside one segment of the annular duct with lined radial splitters.
Student Ability to Distinguish between Superposition States and Mixed States in Quantum Mechanics
ERIC Educational Resources Information Center
Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.
2015-01-01
Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the…
Vanierschot, Maarten; Van den Bulck, Eric
2008-11-28
In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow. At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.
Annular array and method of manufacturing same
Day, Robert A.
1989-01-01
A method for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90.degree.. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings, hold the transducer together until it can be mounted on a lens.
Dense annular flows of granular media
NASA Astrophysics Data System (ADS)
de Ryck, Alain; Louisnard, Olivier
2013-06-01
Dense granular flows constitute an important topic for geophysics and process engineering. To describe them, a rheology based on the coaxiality between the stress and strain tensors with a Mohr-Coulomb yield criterion has been proposed. We propose here an analytic study of flows in an annular cell, with this rheology. This geometry is relevant for a series of powder rheometers or mixing devices, but the discussion is focused on the split-bottom geometry, for which the internal flow has been investigated by NMR technique. In this case, the full resolution of the velocity and stress fields allow to localize the shear deformations. The theoretical results obtained for the latter are compared with the torque measurements by Dijksman et al. [Phys. Rev. E, 82 (2010) 060301].
Annular Ion Engine Concept and Development Status
NASA Technical Reports Server (NTRS)
Patterson, Michael J.
2016-01-01
The Annular Ion Engine (AIE) concept represents an evolutionary development in gridded ion thruster technology with the potential for delivering revolutionary capabilities. It has this potential because the AIE concept: (a) enables scaling of ion thruster technology to high power at specific impulse (Isp) values of interest for near-term mission applications, 5000 sec; and (b) it enables an increase in both thrust density and thrust-to-power (FP) ratio exceeding conventional ion thrusters and other electric propulsion (EP) technology options, thereby yielding the highest performance over a broad range in Isp. The AIE concept represents a natural progression of gridded ion thruster technology beyond the capabilities embodied by NASAs Evolutionary Xenon Thruster (NEXT) [1]. The AIE would be appropriate for: (a) applications which require power levels exceeding NEXTs capabilities (up to about 14 kW [2]), with scalability potentially to 100s of kW; and/or (b) applications which require FP conditions exceeding NEXTs capabilities.
Separation of sugars by continuous annular chromatography
Howard, A.J.; Carta, G.; Byers, C.H.
1987-08-01
Continuous chromatographic separations of aqueous fructose-glucose-sucrose solutions have been investigated in a laboratory-scale continuous annular chromatograph (CAC) using calcium-exchanged Dowex 50W-X8 resin. Comparative studies have also been conducted using a conventional fixed-bed column packed with the same resin. Complete resolution of fructose-glucose mixtures could be obtained both in a 60-cm-long CAC and in a conventional column of the same length with a sugar feed concentration of up to 200 g/L. Partial resolution of sucrose in three component mixtures was also obtained, and the three sugars were completely separated from added higher-molecular-weight saccharides. Results have been analyzed in terms of approximate linear chromatographic theories and orthogonal collocation of exact mass transfer model equations for fixed and rotating beds. A systematic, comparative evaluation of factors affecting process performance and design procedures is presented.
Annular nanoantenna on fibre micro-axicon.
Grosjean, T; Fahys, A; Suarez, M; Charraut, D; Salut, R; Courjon, D
2008-02-01
In this paper, we propose to extend the concept of loop antenna to the optical domain. The aim is to develop a new generation of optical nanocollectors that are sensitive to specific electric or magnetic vectorial field components. For validating our approach, a preliminary one-micron-diameter gold nanoring is micromachined on the apex of a cone lens obtained from a tapered optical fibre. It is shown that such a nano-object behaves as a nano-antenna able to detect the longitudinal electric field from a Bessel beam in radial polarization and the longitudinal magnetic component from a Bessel beam in azimuthal polarization. In the latter case, the annular nano-antenna exhibits the properties of an optical inductance.
Trauma-related papular granuloma annular.
Hu, Stephanie W; Kaplan, Jennifer; Patel, Rishi R; Kamino, Hideko
2013-12-16
Granuloma annulare (GA) is a benign, granulomatous disease with several clinical manifestations, which include localized, generalized, perforating, subcutaneous, patch, papular, and linear forms. We report a case of papular GA of the dorsal aspects of the hands that arose after repeated, direct trauma to the site of subsequent involvement. Although multiple etiologies for GA have been proposed, which include ultraviolet light, arthropod bites, trauma, tuberculin skin tests, viral infections, and PUVA photochemotherapy, the underlying pathogenesis of the disorder remains unclear. However, owing to the key histopathologic findings of focal collagen and elastic fiber degeneration and mucin deosition in GA, it is not surprising that cutaneous trauma may have played a role in connective tissue injury, subsequent degeneration, and the production of a granulomatous response with increased mucin deposition.
Advanced superposition methods for high speed turbopump vibration analysis
NASA Technical Reports Server (NTRS)
Nielson, C. E.; Campany, A. D.
1981-01-01
The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.
Solar Supergranulation Revealed as a Superposition of Traveling Waves
NASA Technical Reports Server (NTRS)
Gizon, L.; Duvall, T. L., Jr.; Schou, J.; Oegerle, William (Technical Monitor)
2002-01-01
40 years ago two new solar phenomena were described: supergranulation and the five-minute solar oscillations. While the oscillations have since been explained and exploited to determine the properties of the solar interior, the supergranulation has remained unexplained. The supergranules, appearing as convective-like cellular patterns of horizontal outward flow with a characteristic diameter of 30 Mm and an apparent lifetime of 1 day, have puzzling properties, including their apparent superrotation and the minute temperature variations over the cells. Using a 60-day sequence of data from the MDI (Michelson-Doppler Imager) instrument onboard the SOHO (Solar and Heliospheric Observatory) spacecraft, we show that the supergranulation pattern is formed by a superposition of traveling waves with periods of 5-10 days. The wave power is anisotropic with excess power in the direction of rotation and toward the equator, leading to spurious rotation rates and north-south flows as derived from correlation analyses. These newly discovered waves could play an important role in maintaining differential rotation in the upper convection zone by transporting angular momentum towards the equator.
Superposition, Transition Probabilities and Primitive Observables in Infinite Quantum Systems
NASA Astrophysics Data System (ADS)
Buchholz, Detlev; Størmer, Erling
2015-10-01
The concepts of superposition and of transition probability, familiar from pure states in quantum physics, are extended to locally normal states on funnels of type I∞ factors. Such funnels are used in the description of infinite systems, appearing for example in quantum field theory or in quantum statistical mechanics; their respective constituents are interpreted as algebras of observables localized in an increasing family of nested spacetime regions. Given a generic reference state (expectation functional) on a funnel, e.g. a ground state or a thermal equilibrium state, it is shown that irrespective of the global type of this state all of its excitations, generated by the adjoint action of elements of the funnel, can coherently be superimposed in a meaningful manner. Moreover, these states are the extreme points of their convex hull and as such are analogues of pure states. As further support of this analogy, transition probabilities are defined, complete families of orthogonal states are exhibited and a one-to-one correspondence between the states and families of minimal projections on a Hilbert space is established. The physical interpretation of these quantities relies on a concept of primitive observables. It extends the familiar framework of observable algebras and avoids some counter intuitive features of that setting. Primitive observables admit a consistent statistical interpretation of corresponding measurements and their impact on states is described by a variant of the von Neumann-Lüders projection postulate.
Hybrid multi-Bernoulli CPHD filter for superpositional sensors
NASA Astrophysics Data System (ADS)
Nannuru, Santosh; Coates, Mark
2014-06-01
We propose, for the super-positional sensor scenario, a hybrid between the multi-Bernoulli filter and the cardinalized probability hypothesis density (CPHD) filter. We use a multi-Bernoulli random finite set (RFS) to model existing targets and we use an independent and identically distributed cluster (IIDC) RFS to model newborn targets and targets with low probability of existence. Our main contributions are providing the update equations of the hybrid filter and identifying computationally tractable approximations. We achieve this by defining conditional probability hypothesis densities (PHDs), where the conditioning is on one of the targets having a specified state. The filter performs an approximate Bayes update of the conditional PHDs. In parallel, we perform a cardinality update of the IIDC RFS component in order to estimate the number of newborn targets. We provide an auxiliary particle filter based implementation of the proposed filter and compare it with CPHD and multi-Bernoulli filters in a simulated multitarget tracking application
Actinic Granuloma Annulare With Scarring and Open Comedones.
Gavioli, Cfb; Valente, Nys; Sangueza, M; Nico, M M
2017-02-14
Actinic granuloma and annular elastolytic giant cell granuloma are variants of granuloma annulare affecting, respectively, sun-exposed and sun-covered skin sites on where, besides classical findings, abundant elastophagocytosis is observed. Here, we report a case of exuberant actinic granuloma annulare that, in addition to extensive scarring, showed multiple overlying open comedones. Markedly dilated follicular infundibula filled with compact masses of laminated keratinous material were observed in proximity to dermal inflammation composed of many histiocytes and multinucleated giant cells in close association with degenerated elastic fibers and abundant elastophagocytosis.
Wall pressure measurements of flooding in vertical countercurrent annular air–water flow
Choutapalli, I., Vierow, K.
2010-01-01
An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.
Time-efficient flexible superposition of medium-sized molecules
NASA Astrophysics Data System (ADS)
Lemmen, Christian; Lengauer, Thomas
1997-07-01
We present an efficient algorithm for the structural alignment of medium-sized organic molecules. The algorithm has been developed for applications in 3D QSAR and in receptor modeling. The method assumes one of the molecules, the reference ligand, to be presented in the conformation that it adopts inside the receptor pocket. The second molecule, the test ligand, is considered to be flexible, and is assumed to be given in an arbitrary low-energy conformation. Ligand flexibility is modeled by decomposing the test ligand into molecular fragments, such that ring systems are completely contained in a single fragment. Conformations of fragments and torsional angles of single bonds are taken from a small finite set, which depends on the fragment and bond, respectively. The algorithm superimposes a distinguished base fragment of the test ligand onto a suitable region of the reference ligand and then attaches the remaining fragments of the test ligand in a step-by-step fashion. During this process, a scoring function is optimized that encompasses bonding terms and terms accounting for steric overlap as well as for similarity of chemical properties of both ligands. The algorithm has been implemented in the FLEXS system. To validate the quality of the produced results, we have selected a number of examples for which the mutual superposition of two ligands is experimentally given by the comparison of the binding geometries known from the crystal structures of their corresponding protein-ligand complexes. On more than two-thirds of the test examples the algorithm produces rms deviations of the predicted versus the observed conformation of the test ligand below 1.5 Å. The run time of the algorithm on a single problem instance is a few minutes on a common-day workstation. The overall goal of this research is to drastically reduce run times, while limiting the inaccuracies of the model and the computation to a tolerable level.
A reciprocal space approach for locating symmetry elements in Patterson superposition maps
Hendrixson, T.
1990-09-21
A method for determining the location and possible existence of symmetry elements in Patterson superposition maps has been developed. A comparison of the original superposition map and a superposition map operated on by the symmetry element gives possible translations to the location of the symmetry element. A reciprocal space approach using structure factor-like quantities obtained from the Fourier transform of the superposition function is then used to determine the best'' location of the symmetry element. Constraints based upon the space group requirements are also used as a check on the locations. The locations of the symmetry elements are used to modify the Fourier transform coefficients of the superposition function to give an approximation of the structure factors, which are then refined using the EG relation. The analysis of several compounds using this method is presented. Reciprocal space techniques for locating multiple images in the superposition function are also presented, along with methods to remove the effect of multiple images in the Fourier transform coefficients of the superposition map. In addition, crystallographic studies of the extended chain structure of (NHC{sub 5}H{sub 5})SbI{sub 4} and of the twinning method of the orthorhombic form of the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} are presented. 54 refs.
Ni, Haibin; Wang, Ming; Shen, Tianyi; Zhou, Jing
2015-02-24
Surface plasmons that propagate along cylindrical metal/dielectric interfaces in annular apertures in metal films, called cylindrical surface plasmons (CSPs), exhibit attractive optical characteristics. However, it is challenging to fabricate these nanocoaxial structures. Here, we demonstrate a practical low-cost route to manufacture highly ordered, large-area annular cavity arrays (ACAs) that can support CSPs with great tunability. By employing a sol-gel coassembly method, reactive ion etching and metal sputtering techniques, regular, highly ordered ACAs in square-centimeter-scale with a gap width tunable in the range of several to hundreds of nanometers have been produced with good reproducibility. Ag ACAs with a gap width of 12 nm and a gap height of 635 nm are demonstrated. By finite-difference time-domain simulation, we confirm that the pronounced dips in the reflectance spectra of ACAs are attributable to CSP resonances excited in the annular gaps. By adjusting etching time and Ag film thickness, the CSP dips can be tuned to sweep the entire optical range of 360 to 1800 nm without changing sphere size, which makes them a promising candidate for forming integrated plasmonic sensing arrays. The high tunability of the CSP resonant frequencies together with strong electric field enhancement in the cavities make the ACAs promising candidates for surface plasmon sensors and SERS substrates, as, for example, they have been used in liquid refractive index (RI) sensing, demonstrating a sensitivity of 1505 nm/RIU and a figure of merit of 9. One of the CSP dips of ACAs with a certain geometry size is angle- (0-70 degrees) and polarization-independent and can be used as a narrow-band absorber. Furthermore, the nano annular cavity arrays can be used to construct solar cells, nanolasers and nanoparticle plasmonic tweezers.
Pollution technology program, can-annular combustor engines
NASA Technical Reports Server (NTRS)
Roberts, R.; Fiorentino, A. J.; Greene, W.
1976-01-01
A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.
HAMLET forms annular oligomers when deposited with phospholipid monolayers.
Baumann, Anne; Gjerde, Anja Underhaug; Ying, Ming; Svanborg, Catharina; Holmsen, Holm; Glomm, Wilhelm R; Martinez, Aurora; Halskau, Oyvind
2012-04-20
Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET.
Principle of radial transport in low temperature annular plasmas
NASA Astrophysics Data System (ADS)
Zhang, Yunchao; Charles, Christine; Boswell, Rod
2015-07-01
Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.
Principle of radial transport in low temperature annular plasmas
Zhang, Yunchao Charles, Christine; Boswell, Rod
2015-07-15
Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.
Virtual cathode microwave generator having annular anode slit
Kwan, Thomas J. T.; Snell, Charles M.
1988-01-01
A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.
The principle of superposition and its application in ground-water hydraulics
Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.
1987-01-01
The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.
The principle of superposition and its application in ground-water hydraulics
Reilly, T.E.; Franke, O.L.; Bennett, G.D.
1984-01-01
The principle of superposition, a powerful methematical technique for analyzing certain types of complex problems in many areas of science and technology, has important application in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that solutions to individual problems can be added together to obtain solutions to complex problems. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to groundwater hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader. (USGS)
Elastic-plastic analysis of annular plate problems using NASTRAN
NASA Technical Reports Server (NTRS)
Chen, P. C. T.
1983-01-01
The plate elements of the NASTRAN code are used to analyze two annular plate problems loaded beyond the elastic limit. The first problem is an elastic-plastic annular plate loaded externally by two concentrated forces. The second problem is stressed radially by uniform internal pressure for which an exact analytical solution is available. A comparison of the two approaches together with an assessment of the NASTRAN code is given.
Description of a laboratory model Annular Momentum Control Device (AMCD)
NASA Technical Reports Server (NTRS)
Groom, N. J.
1984-01-01
The basic concept of the Annular Momentum Control Device (AMCD) is that of a rotating annular rim suspended by noncontacting magnetic bearings and driven by a noncontacting electromagnetic spin motor. The purpose of this paper is to highlight some of the design requirements for AMCD's in general and describe how these requirements were met in the implementation of laboratory test model AMCD. An AMCD background summary is presented.
Annular elastolytic giant cell granuloma: A report of 10 cases
Arora, Sandeep; Malik, Ajay; Patil, Chetan; Balki, Anil
2015-01-01
Annular elastolytic giant cell granuloma initially described by O’Brien in 1975 is a disorder of uncertain etiopathogenesis presenting with annular erythematous plaques predominantly on the sun-exposed areas. Hisptopathologically, it is characterized by elastin degenration, multinucleate giant cells, and elastophagocytosis. The authors came across 10 such cases, which were managed with hydroxychloroquine resulting in complete resolution in 4–6 months. PMID:26904442
Experimental Results for an Annular Aerospike with Differential Throttling
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; McDaniels, David M.
2005-01-01
A) MSFC funded an internal study on Altitude Compensating Nozzles: 1) Develop an ACN design and performance prediction tool. 2) Design, build and test cold flow ACN nozzles. 3) An annular aerospike nozzle was designed and tested. 4) Incorporated differential throttling to assess Thrust Vector Control. B) Objective of the test hardware: 1) Provide design tool verification. 2) Provide benchmark data for CFD calculations. 3) Experimentally measure side force, or TVC, for a differentially throttled annular aerospike.
Evaluation of a laboratory test model annular momentum control device
NASA Technical Reports Server (NTRS)
Groom, N. J.; Terray, D. E.
1978-01-01
A 4068 Nm Sec laboratory test model annular momentum control device (AMCD) was described and static and dynamic test results were presented. An AMCD is a spinning annular rim suspended by noncontacting magnetic bearings and powered by a noncontacting linear electromagnetic motor. Test results include spin motor torque characteristics and spin motor and magnetic bearing drag losses. Limitations of some of the design approaches taken was also discussed.
Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard
2016-03-21
Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices.
Impulsively started, steady and pulsated annular inflows
NASA Astrophysics Data System (ADS)
Abdel-Raouf, Emad; Sharif, Muhammad A. R.; Baker, John
2017-04-01
A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies.
Solar cycle modulation of Southern Annular Mode
NASA Astrophysics Data System (ADS)
Kuroda, Yuhji
2016-04-01
Climate is known to be affected by various factors, including oceanic changes and volcanic eruptions. 11-year solar cycle change is one of such important factors. Observational analysis shows that the winter-mean North Atlantic Oscillation (NAO) and late-winter/spring Southern Annular Mode (SAM) show structural modulation associated with 11-year solar cycle. In fact, these signals tend to extend from surface to upper stratosphere and persistent longer period only in the High Solar (HS) years. In the present study, we used 35-year record of ERA-Interim reanalysis data and performed wave-energy and momentum analysis on the solar-cycle modulation of the SAM to examine key factors to create such solar-SAM relationship. It is found that enhanced wave-mean flow interaction tends to take place in the middle stratosphere in association with enhanced energy input from diabatic heating on September only in HS years. The result suggests atmospheric and solar conditions on September are keys to create solar-SAM relationship.
Evaluation of axial and lateral modal superposition for general 3D drilling riser analysis
Burgdorf, O. Jr.
1996-12-31
A 3D partially non-linear transient fully-coupled riser analysis method is evaluated which uses modal superposition of independently extracted lateral and axial modes. Many lateral modes are combined with a lesser number axial modes to minimize adverse time step requirements typically induced by axial flexibility in direct time integration of beam-column elements. The reduced computer time option enables much faster parametric analysis of hang-off, as well as other connected drilling environments normally examined. Axial-lateral coupling is explicitly enforced and, resonance fidelity is preserved when excitation is near or coincident with axial natural periods. Reasonable correlation is shown with envelopes of test case dynamic responses published by API. Applicability of the method is limited by linearity assumptions indigenous to modal representation of dynamic deflections relative to a mean deflected shape. Sensitivities of incipient buckling during hang-off to axial damping and stiffness are described for an example 6,000 ft. deep composite drilling riser system.
Collapsing a perfect superposition to a chosen quantum state without measurement.
Younes, Ahmed; Abdel-Aty, Mahmoud
2014-01-01
Given a perfect superposition of [Formula: see text] states on a quantum system of [Formula: see text] qubits. We propose a fast quantum algorithm for collapsing the perfect superposition to a chosen quantum state [Formula: see text] without applying any measurements. The basic idea is to use a phase destruction mechanism. Two operators are used, the first operator applies a phase shift and a temporary entanglement to mark [Formula: see text] in the superposition, and the second operator applies selective phase shifts on the states in the superposition according to their Hamming distance with [Formula: see text]. The generated state can be used as an excellent input state for testing quantum memories and linear optics quantum computers. We make no assumptions about the used operators and applied quantum gates, but our result implies that for this purpose the number of qubits in the quantum register offers no advantage, in principle, over the obvious measurement-based feedback protocol.
On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis
Nie, J.; Wei, X.
2011-07-17
The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis. This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis.
Reproducible mesoscopic superpositions of Bose-Einstein condensates and mean-field chaos
Gertjerenken, Bettina; Arlinghaus, Stephan; Teichmann, Niklas; Weiss, Christoph
2010-08-15
In a parameter regime for which the mean-field (Gross-Pitaevskii) dynamics becomes chaotic, mesoscopic quantum superpositions in phase space can occur in a double-well potential, which is shaken periodically. For experimentally realistic initial states, such as the ground state of some 100 atoms, the emergence of mesoscopic quantum superpositions in phase space is investigated numerically. It is shown to be reproducible, even if the initial conditions change slightly. Although the final state is not a perfect superposition of two distinct phase states, the superposition is reached an order of magnitude faster than in the case of the collapse-and-revival phenomenon. Furthermore, a generator of entanglement is identified.
Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity
Sales, J. S.; Silva, L. F. da; Almeida, N. G. de
2011-03-15
We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.
Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco
2010-09-15
We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.
Strong-Driving-Assisted Preparation of Superpositions of Two-Mode Coherent States in Cavity QED
NASA Astrophysics Data System (ADS)
Su, Wan-Jun; Huang, Jian-Min
2011-09-01
A scheme is proposed for preparing the superposition of two-mode coherent states with controllable weighting factors along a straight line for two-mode cavity field. In this scheme two-level atoms driven by classical field are sent through a two-mode cavity initially in the vacuum state. Then the detection of the atoms make the cavity field be in a two-mode superpositions of coherent states.
X-ray diffraction from bone employing annular and semi-annular beams.
Dicken, A J; Evans, J P O; Rogers, K D; Stone, N; Greenwood, C; Godber, S X; Prokopiou, D; Clement, J G; Lyburn, I D; Martin, R M; Zioupos, P
2015-08-07
There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as 'bone quality' need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of 'bone quality'. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.
X-ray diffraction from bone employing annular and semi-annular beams
NASA Astrophysics Data System (ADS)
Dicken, A. J.; Evans, J. P. O.; Rogers, K. D.; Stone, N.; Greenwood, C.; Godber, S. X.; Prokopiou, D.; Clement, J. G.; Lyburn, I. D.; Martin, R. M.; Zioupos, P.
2015-08-01
There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as ‘bone quality’ need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction. In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of ‘bone quality’. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.
Using least median of squares for structural superposition of flexible proteins
Liu, Yu-Shen; Fang, Yi; Ramani, Karthik
2009-01-01
Background The conventional superposition methods use an ordinary least squares (LS) fit for structural comparison of two different conformations of the same protein. The main problem of the LS fit that it is sensitive to outliers, i.e. large displacements of the original structures superimposed. Results To overcome this problem, we present a new algorithm to overlap two protein conformations by their atomic coordinates using a robust statistics technique: least median of squares (LMS). In order to effectively approximate the LMS optimization, the forward search technique is utilized. Our algorithm can automatically detect and superimpose the rigid core regions of two conformations with small or large displacements. In contrast, most existing superposition techniques strongly depend on the initial LS estimating for the entire atom sets of proteins. They may fail on structural superposition of two conformations with large displacements. The presented LMS fit can be considered as an alternative and complementary tool for structural superposition. Conclusion The proposed algorithm is robust and does not require any prior knowledge of the flexible regions. Furthermore, we show that the LMS fit can be extended to multiple level superposition between two conformations with several rigid domains. Our fit tool has produced successful superpositions when applied to proteins for which two conformations are known. The binary executable program for Windows platform, tested examples, and database are available from . PMID:19159484
Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities.
Thijssen, Arthur C T; Cryan, Martin J; Rarity, John G; Oulton, Ruth
2012-09-24
We present a method to analyze the suitability of particular photonic cavity designs for information exchange between arbitrary superposition states of a quantum emitter and the near-field photonic cavity mode. As an illustrative example, we consider whether quantum dot emitters embedded in "L3" and "H1" photonic crystal cavities are able to transfer a spin superposition state to a confined photonic superposition state for use in quantum information transfer. Using an established dyadic Green's function (DGF) analysis, we describe methods to calculate coupling to arbitrary quantum emitter positions and orientations using the modified local density of states (LDOS) calculated using numerical finite-difference time-domain (FDTD) simulations. We find that while superposition states are not supported in L3 cavities, the double degeneracy of the H1 cavities supports superposition states of the two orthogonal modes that may be described as states on a Poincaré-like sphere. Methods are developed to comprehensively analyze the confined superposition state generated from an arbitrary emitter position and emitter dipole orientation.
NASA Technical Reports Server (NTRS)
Roychoudhuri, Chandrasekhar; Prasad, Narasimha S.; Peng, Qing
2007-01-01
Any superposition effect as measured (SEM) by us is the summation of simultaneous stimulations experienced by a detector due to the presence of multiple copies of a detectee each carrying different values of the same parameter. We discus the cases with light beams carrying same frequency for both diffraction and multiple beam Fabry-Perot interferometer and also a case where the two superposed light beams carry different frequencies. Our key argument is that if light really consists of indivisible elementary particle, photon, then it cannot by itself create superposition effect since the state vector of an elementary particle cannot carry more than one values of any parameter at the same time. Fortunately, semiclassical model explains all light induced interactions using quantized atoms and classical EM wave packet. Classical physics, with its deeper commitment to Reality Ontology, was better prepared to nurture the emergence of Quantum Mechanics and still can provide guidance to explore nature deeper if we pay careful attention to successful classical formulations like Huygens-Fresnel diffraction integral.
Critical heat flux estimation for annular channel geometry
NASA Astrophysics Data System (ADS)
Pagh, Richard T.
Critical Heat Flux (CHF) is an important safety parameter for the design of nuclear reactors. The most commonly used predictive tool for determination of CHF is a look-up table developed using tube data with an average hydraulic test diameter of 8 mm. There exist in the world today nuclear reactors whose geometry is annular, not tubular, and whose hydraulic diameter is significantly smaller than 8 mm. In addition, any sub-channel thermal hydraulic model of fuel assemblies is annular and not tubular. Comparisons were made between this predictive tool and annular correlations developed from test data. These comparisons showed the look-up table over-predicts the CHF values for annular channels, thus questioning its ability to perform correct safety evaluations. Since no better tool exists to predict CHF for annular geometry, an effort was undertaken to produce one. A database of open literature annular CHF values was created as a basis for this new tool. By compiling information from eighteen sources and requiring that the data be inner wall, unilaterally, uniformly heated with no spacers or heat transfer enhancement devices, a database of 1630 experimental values was produced. After a review of the data in the database, a new look-up table was created. A look-up table provides localized control of the prediction to overcome sparseness of data. Using Shepard's Method as the extrapolation technique, a regular mesh look-up table was produced using four main variables: pressure, quality, mass flux, and hydraulic diameter. The root mean square error of this look-up table was found to be 0.8267. However, by fixing the hydraulic diameter locations to the database values, the root mean square error was further reduced to 0.2816. This look-up table can now predict CHF values for annular channels over a wide range of fluid conditions.
On the mixing enhancement in annular flows
NASA Astrophysics Data System (ADS)
Moradi, H. V.; Floryan, J. M.
2017-02-01
The potential for mixing enhancement associated with the use of axisymmetric ribs in annular flows has been analyzed. The enhancement relies on the use of streamwise vortices produced by the centrifugal instability. Conditions leading to the formation of such vortices have been established for a wide range of geometric parameters of interest using linear stability theory. It has been demonstrated that vortices can be formed only in the presence of ribs with O(1) wavelengths. Slopes of the bounding walls in the case of the long wavelength ribs are too small to create centrifugal forces sufficient for flow destabilization. In the case of short wavelength ribs, the slopes become excessively large, resulting in the stream moving away from the wall and becoming rectilinear and, thus, reducing the magnitude of the centrifugal force field. It has been shown that decreasing the annulus' radius reduces the critical Reynolds number when ribs are placed at the inner cylinder but increases when the ribs are placed at the outer cylinder. The onset of the shear-driven instability has been investigated as the resulting travelling waves may interfere with the formation of vortices. It has been shown that the axisymmetric waves play the critical role for annuli with large radii while the spiral waves play the critical role for annuli with small radii. The ribs always reduce the critical Reynolds number for the travelling waves when compared with the onset conditions for smooth annuli. The conduit geometries giving preference to the formation of vortices while avoiding creation of the travelling waves have been identified. It is demonstrated that predictions of flow characteristics determined through the analysis of sinusoidal ribs provide a good approximation of the flow response to ribs of arbitrary shape.
Stratospheric Annular Modes Induced By Stationary Wave Forcing
NASA Astrophysics Data System (ADS)
Körnich, H.; Schmitz, G.
The variability of the winter stratosphere shows distinguishable features in the north- ern and southern hemisphere. Since these differences are based on the different plan- etary waves of the underlying atmosphere, we explore the mechanism how stationary wave forcing in the troposphere can induce a stratospheric Annular Mode using a simple GCM. The model KMCM (Kühlungsborn Mechanistic Circulation Model) extends from the ground up to 60 km height and produces a reasonable winter climate. It takes into account the different large-scale wave forcings in the troposphere as prescribed pro- cesses. This allows us to examine the stratospheric Annular-Mode generation depend- ing on different wave forcings under perpetual January conditions. Principal com- ponent analysis is applied to identify the variability patterns of the geopotential and of the zonally averaged zonal wind. By this way, it is shown that the amplitude and composition of the orographic and thermal eddy forcing determines the stratospheric Annular Mode and the related downward propagation in the temperature field. Further model simplifications are introduced in order to understand the mechanism of the stratospheric AM-generation. Using a linear model version we illuminate the influence of the different wave forcing processes on the Annular Modes. Addition- ally, a constant-troposphere model is used to clarify the importance of transient and stationary waves. Finally, the Annular Mode is interpreted in terms of the dynamical coupling of the troposphere and stratosphere.
Non-axisymmetric annular curtain stability
NASA Astrophysics Data System (ADS)
Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian
2013-08-01
A stability analysis of non-axisymmetric annular curtain is carried out for an axially moving viscous jet subject in surrounding viscous gas media. The effect of inertia, surface tension, gas-to-liquid density ratio, inner-to-outer radius ratio, and gas-to-liquid viscosity ratio on the stability of the jet is studied. In general, the axisymmetric disturbance is found to be the dominant mode. However, for small wavenumber, the non-axisymmetric mode is the most unstable mode and the one likely observed in reality. Inertia and the viscosity ratio for non-axisymmetric disturbances show a similar stability influence as observed for axisymmetric disturbances. The maximum growth rate in non-axisymmetric flow, interestingly, appears at very small wavenumber for all inertia levels. The dominant wavenumber increases (decreases) with inertia for non-axisymmetric (axisymmetric) flow. Gas-to-liquid density ratio, curvature effect, and surface tension, however, exhibit an opposite influence on growth rate compared to axisymmetric disturbances. Surface tension tends to stabilize the flow with reductions of the unstable wavenumber range and the maximum growth rate as well as the dominant wavenumber. The dominant wavenumber remains independent of viscosity ratio indicating the viscosity ratio increases the breakup length of the sheet with very little influence on the size of the drops. The range of unstable wavenumbers is affected only by curvature in axisymmetric flow, whereas all the stability parameters control the range of unstable wavenumbers in non-axisymmetric flow. Inertia and gas density increase the unstable wavenumber range, whereas the radius ratio, surface tension, and the viscosity ratio decrease the unstable wavenumber range. Neutral curves are plotted to separate the stable and unstable domains. Critical radius ratio decreases linearly and nonlinearly with the wavenumber for axisymmetric and non-axisymmetric disturbances, respectively. At smaller Weber numbers, a
Annular lupus vulgaris: an unusual case undiagnosed for five years.
Gönül, Müzeyyen; Kiliç, Arzu; Külcü Cakmak, Seray; Gül, Ulker; Koçak, Oğuzhan; Demiriz, Murat
2007-01-01
Tuberculosis is still a serious problem in both developing and developed countries. It is often confused with various cutaneous disorders both clinically and histopathologically.A 46-year-old woman attended our clinic with progressive, asymptomatic, annular skin lesions on her right upper extremity for 5 years. She had received many different therapies for these lesions at other institutions previously but these medications were not effective and the lesions deteriorated. On dermatological examination, well-demarcated, irregular bordered, violaceous colored, elevated and crusted annular lesions on her right hand dorsum and forearm were observed. She was diagnosed as having lupus vulgaris clinically and histopathologically. Antituberculosis therapy was administered and regression of the lesions started in the second week of medication.We report a case of long-standing, undiagnosed and uncommon, annular form of lupus vulgaris. We want to stress that clinical and histopathological findings are still important for the diagnosis of cutaneous tuberculosis.
Imaging performance of annular apertures. II - Line spread functions
NASA Technical Reports Server (NTRS)
Tschunko, H. F. A.
1978-01-01
Line images formed by aberration-free optical systems with annular apertures are investigated in the whole range of central obstruction ratios. Annular apertures form lines images with central and side line groups. The number of lines in each line group is given by the ratio of the outer diameter of the annular aperture divided by the width of the annulus. The theoretical energy fraction of 0.889 in the central line of the image formed by an unobstructed aperture increases for centrally obstructed apertures to 0.932 for the central line group. Energy fractions for the central and side line groups are practically constant for all obstruction ratios and for each line group. The illumination of rectangular secondary apertures of various length/width ratios by apertures of various obstruction ratios is discussed.
Portal Annular Pancreas: A Rare and Overlooked Anomaly
Mittal, Puneet; Gupta, Ranjana; Mittal, Amit; Ahmed, Arshad
2017-01-01
Summary Background Portal annular pancreas is a rare pancreatic developmental anomaly which is often overlooked at imaging, and often diagnosed retrospectively when it is detected incidentally at the time of surgery. Although the anomaly itself is asymptomatic, it becomes important in cases where pancreatic resection/anastomosis is planned, because of varying ductal anatomy, risk of ductal injury and increased risk of postoperative pancreatic fistula formation. Case Report We present imaging findings in a case of portal annular pancreas in a 45-year-old male patient. Conclusions Portal annular pancreas is a rare and often neglected pancreatic anomaly due to a lack of awareness of this entity. With the advent of MDCT and MRI, accurate preoperative diagnosis of this condition is possible. PMID:28203311
Ezato, K.; Dairaku, M.; Taniguchi, M.; Sato, K.; Suzuki, S.; Akiba, M.; Ibbott, C.; Tivey, R.
2004-12-15
Thermal-hydraulic tests for pressurized water in an annular tube with a twist fin have been performed to examine its applicability to high-heat-flux components of the International Thermonuclear Experimental Reactor (ITER) divertor. The annular swirl tube consists of two concentric tubes: an outer smooth tube and an inner tube with an external twist fin to enhance heat transfer of the cooling water in the annulus section between the outer and the inner tubes. Critical heat flux (CHF) tests under one-sided-heating conditions show that the annular swirl tube has as high removal limitation as the conventional swirl tube, the dimensions of which are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required for 28 MW/m{sup 2}, the ITER design value. Pressure drops in the annulus section and the end return have been measured. The applicability of the existing correlations for heat transfer and CHF to the annular swirl tube has also been examined.
Dubrovsky, V. G.; Topovsky, A. V.
2013-03-15
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.
Schenke, C.; Minguzzi, A.; Hekking, F. W. J.
2011-11-15
We consider a strongly interacting quasi-one-dimensional Bose gas on a tight ring trap subjected to a localized barrier potential. We explore the possibility of forming a macroscopic superposition of a rotating and a nonrotating state under nonequilibrium conditions, achieved by a sudden quench of the barrier velocity. Using an exact solution for the dynamical evolution in the impenetrable-boson (Tonks-Girardeau) limit, we find an expression for the many-body wave function corresponding to a superposition state. The superposition is formed when the barrier velocity is tuned close to multiples of an integer or half-integer number of Coriolis flux quanta. As a consequence of the strong interactions, we find that (i) the state of the system can be mapped onto a macroscopic superposition of two Fermi spheres rather than two macroscopically occupied single-particle states as in a weakly interacting gas, and (ii) the barrier velocity should be larger than the sound velocity to better discriminate the two components of the superposition.
Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis
Hassan, Rishi; Arunprasath, P.; Padmavathy, L.; Srivenkateswaran, K.
2016-01-01
Annular elastolytic giant cell granuloma (AEGCG) is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the classical clinical and histological findings of the disease and its rare co-existence with Hashimoto's thyroiditis. PMID:27057492
Flutter Analysis of Annular Cascades in Counter Rotation
NASA Astrophysics Data System (ADS)
Nishino, Ryohei; Namba, Masanobu
The paper studies the effect of neighboring blade rows on flutter characteristics of cascading blades. For this purpose the computation program to calculate the unsteady blade loading based on the unsteady lifting surface theory for contra-rotating annular cascades was formulated and coded. Then a computation program to solve the coupled bending-torsion flutter equation for the contra-rotating annular cascades was also developed. Some results of the flutter analysis are presented. The presence of the neighboring blade row gives rise to significant change in the critical flutter condition when the main acoustic duct mode is of cut-on state.
Topological suppression of optical tunneling in a twisted annular fiber
Ornigotti, M.; Valle, G. Della; Gatti, D.; Longhi, S.
2007-08-15
A classical wave-optics analog of topological (Aharonov-Bohm) suppression of tunneling in a double-well potential on a ring threaded by a magnetic flux is proposed. The optical system consists of a uniformly twisted optical fiber with a structured annular core, in which the fiber twist mimics the role of the magnetic flux in the corresponding quantum-mechanical problem. Light waves trapped in the annular core of the fiber experience an additional topological (Aharonov-Bohm) phase, which may lead to the destruction of optical tunneling at certain values of the twist rate.
Polarization-independent waveguiding with annular photonic crystals.
Cicek, Ahmet; Ulug, Bulent
2009-09-28
A linear waveguide in an annular photonic crystal composed of a square array of annular dielectric rods in air is demonstrated to guide transverse electric and transverse magnetic modes simultaneously. Overlapping of the guided bands in the full band gap of the photonic crystal is shown to be achieved through an appropriate set of geometric parameters. Results of Finite-Difference Time-Domain simulations to demonstrate polarization-independent waveguiding with low loss and wavelength-order confinement are presented. Transmission through a 90 degrees bend is also demonstrated.
Multi-functional annular fairing for coupling launch abort motor to space vehicle
NASA Technical Reports Server (NTRS)
Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)
2011-01-01
An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.
Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J
2010-11-01
In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.
Space-variant polarization patterns of non-collinear Poincaré superpositions
NASA Astrophysics Data System (ADS)
Galvez, E. J.; Beach, K.; Zeosky, J. J.; Khajavi, B.
2015-03-01
We present analysis and measurements of the polarization patterns produced by non-collinear superpositions of Laguerre-Gauss spatial modes in orthogonal polarization states, which are known as Poincaré modes. Our findings agree with predictions (I. Freund Opt. Lett. 35, 148-150 (2010)), that superpositions containing a C-point lead to a rotation of the polarization ellipse in 3-dimensions. Here we do imaging polarimetry of superpositions of first- and zero-order spatial modes at relative beam angles of 0-4 arcmin. We find Poincaré-type polarization patterns showing fringes in polarization orientation, but which preserve the polarization-singularity index for all three cases of C-points: lemons, stars and monstars.
Vala, Jiri; Kosloff, Ronnie; Amitay, Zohar; Zhang Bo; Leone, Stephen R.
2002-12-01
The Deutsch-Jozsa algorithm is experimentally demonstrated for three-qubit functions using pure coherent superpositions of Li{sub 2} rovibrational eigenstates. The function's character, either constant or balanced, is evaluated by first imprinting the function, using a phase-shaped femtosecond pulse, on a coherent superposition of the molecular states, and then projecting the superposition onto an ionic final state, using a second femtosecond pulse at a specific time delay.
Probe with integrated heater and thermocouple pack
McCulloch, Reginald W.; Dial, Ralph E.; Finnell, Wilber K. R.
1988-01-01
A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocouple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.
Probe with integrated heater and thermocouple pack
McCulloch, Reg W.; Dial, Ralph E.; Finnell, Wilber K. R.
1990-01-01
A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocuple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.
NASA Astrophysics Data System (ADS)
Gao, Yuanmei; Wen, Zengrun; Zheng, Liren; Zhao, Lina
2017-04-01
A method has been proposed to generate complex periodic discrete non-diffracting beams (PDNBs) via superposition of two identical simple PDNBs at a particular angle. As for special cases, we studied the superposition of the two identical squares (;4+4;) and two hexagonal (;6+6;) periodic wave fields at specific angles, respectively, and obtained a series of interesting complex PDNBs. New PDNBs were also obtained by modulating the initial phase difference between adjacent interfering beams. In the experiment, a 4 f Fourier filter system and a phase-only spatial light modulator imprinting synthesis phase patterns of these PDNBs were used to produce desired wave fields.
NASA Astrophysics Data System (ADS)
Daoud, M.; Ahl Laamara, R.
2012-07-01
We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl-Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger-Horne-Zeilinger states.
RESIDENCE TIME DISTRIBUTION OF FLUIDS IN STIRRED ANNULAR PHOTOREACTORS
When gases flow through an annular photoreactor at constant rate, some of the gas spends more or less than the average residence time in the reactor. This spread of residence time can have an important effect on the performance of the reactor. this study tested how the residence...
Dynamic-Receive Focusing with High-Frequency Annular Arrays
NASA Astrophysics Data System (ADS)
Ketterling, J. A.; Mamou, J.; Silverman, R. H.
High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.
Thermal hydraulic analysis of annular fuel-based assemblies
Kyu Hyun Han; Soon Heung Chang
2004-07-01
Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal subchannels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels. (authors)
Digital controller design: Analysis of the annular suspension pointing system
NASA Technical Reports Server (NTRS)
1977-01-01
The annular suspension and pointing system (ASPS) a payload auxiliary pointing device of the space shuttle is briefly described along with the function of the digital controller. The equations of motion of a simplified plan planar model of the ASPS are derived. Results of computer simulations are discussed.
Subsonic annular wing theory with application to flow about nacelles
NASA Technical Reports Server (NTRS)
Mann, M. J.
1974-01-01
A method has recently been developed for calculating the flow over a subsonic nacelle at zero angle of attack. The method makes use of annular wing theory and boundary-layer theory and has shown good agreement with both experimental data and more complex theoretical solutions. The method permits variation of the mass flow by changing the size of a center body.
Annular linear induction pump with an externally supported duct
Craig, Edwin R.; Semken, Robert S.
1979-01-01
Several embodiments of an annular linear induction pump for pumping liquid metals are disclosed having the features of generally one pass flow of the liquid metal through the pump and an increased efficiency resulting from the use of thin duct walls to enclose the stator. The stator components of this pump are removable for repair and replacement.
[Erythema annulare centrifugum-like psoriasis cum pustulatione].
Albert, A; Hein, R; Ring, J; Jakob, T
2007-09-01
Erythema annulare centrifugum-type psoriasis with pustules represents a subtype of psoriasis pustulosa generalisata von Zumbusch. It presents with a typical morphology characterized by a lack of classical erythematosquamous skin lesions during its acute eruption phase. Diagnosis is usually established on the basis of clinical presentation and dermatopathology, which often shows a substrate typical for psoriasis, sometimes with spongiform pustules.
Design curves for circular and annular duct silencers
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Ramakrishnan, R.
1989-01-01
Conventional models of sound propagation between porous walls (Scott, 1946) are adapted in order to calculate design curves for the lined circular and annular-duct silencers used in HVAC systems. The derivation of the governing equations is outlined, and results for two typical cases are presented graphically. Good agreement with published experimental data is demonstrated.
Global regularity for MHD Sisko fluid in annular pipe
NASA Astrophysics Data System (ADS)
Rahman, S.; Hayat, T.; Ahmad, B.
2016-08-01
The flow of Sisko fluid in an annular pipe is considered. The governing nonlinear equation of an incompressible Sisko fluid is modelled. The purpose of present paper is to obtain the global classical solutions for unsteady flow of magnetohydrodynamic Sisko fluid in terms of the bounded mean oscillations norm. Uniqueness of solution is also verified.
Kinugawa, Tohru
2014-02-15
This paper presents a simple but nontrivial generalization of Abel's mechanical problem, based on the extended isochronicity condition and the superposition principle. There are two primary aims. The first one is to reveal the linear relation between the transit-time T and the travel-length X hidden behind the isochronicity problem that is usually discussed in terms of the nonlinear equation of motion (d{sup 2}X)/(dt{sup 2}) +(dU)/(dX) =0 with U(X) being an unknown potential. Second, the isochronicity condition is extended for the possible Abel-transform approach to designing the isochronous trajectories of charged particles in spectrometers and/or accelerators for time-resolving experiments. Our approach is based on the integral formula for the oscillatory motion by Landau and Lifshitz [Mechanics (Pergamon, Oxford, 1976), pp. 27–29]. The same formula is used to treat the non-periodic motion that is driven by U(X). Specifically, this unknown potential is determined by the (linear) Abel transform X(U) ∝ A[T(E)], where X(U) is the inverse function of U(X), A=(1/√(π))∫{sub 0}{sup E}dU/√(E−U) is the so-called Abel operator, and T(E) is the prescribed transit-time for a particle with energy E to spend in the region of interest. Based on this Abel-transform approach, we have introduced the extended isochronicity condition: typically, τ = T{sub A}(E) + T{sub N}(E) where τ is a constant period, T{sub A}(E) is the transit-time in the Abel type [A-type] region spanning X > 0 and T{sub N}(E) is that in the Non-Abel type [N-type] region covering X < 0. As for the A-type region in X > 0, the unknown inverse function X{sub A}(U) is determined from T{sub A}(E) via the Abel-transform relation X{sub A}(U) ∝ A[T{sub A}(E)]. In contrast, the N-type region in X < 0 does not ensure this linear relation: the region is covered with a predetermined potential U{sub N}(X) of some arbitrary choice, not necessarily obeying the Abel-transform relation. In discussing
Fabry-Perot CCD annular-summing spectroscopy: study and implementation for aeronomy applications.
Coakley, M M; Roesler, F L; Reynolds, R J; Nossal, S
1996-11-20
The technique of Fabry-Perot CCD annular-summing spectroscopy, with particular emphasis on applications in aeronomy, is discussed. Parameter choices for optimizing performance by the use of a standard format CCD array are detailed. Spectral calibration methods, techniques for determining the ring pattern center, and effects imposed by limited radial resolution caused by superpixel size, variable by on-chip binning, are demonstrated. The technique is carefully evaluated experimentally relative to the conventional scanning Fabry-Perot that uses a photomultiplier detector. We evaluate three extreme examples typical of aeronomical spectroscopy using calculated signal-to-noise ratios. Predicted sensitivity gains of 10-30 are typical. Of the cases considered, the largest savings in integration time are estimated for the day sky thermospheric O(1)D case, in which the bright sky background dominates the CCD read noise. For profile measurements of faint night sky emission lines, such as exospheric hydrogen Balmer-α, long integration times are required to achieve useful signal-to-noise ratios. In such cases, CCD read noise is largely overcome. Predictions of a factor of 10-15 savings in integration time for night sky Balmer-α observations are supported by field tests. Bright, isolated night sky lines such as thermospheric O(1)D require shorter integration times, and more modest gains dependent on signal level are predicted. For such cases it appears from estimate results that the Fabry-Perot CCD annular-summing technique with a conventional rectangular format may be outperformed by a factor of 2-5 by special CCD formats or by unusual optical coupling configurations that reduce the importance of read noise, based on the ideal transmission for any additional optics used in these configurations.
Brain at work: time, sparseness and superposition principles.
Molotchnikoff, Stephane; Rouat, Jean
2012-01-01
Many studies explored mechanisms through which the brain encodes sensory inputs allowing a coherent behavior. The brain could identify stimuli via a hierarchical stream of activity leading to a cardinal neuron responsive to one particular object. The opportunity to record from numerous neurons offered investigators the capability of examining simultaneously the functioning of many cells. These approaches suggested encoding processes that are parallel rather than serial. Binding the many features of a stimulus may be accomplished through an induced synchronization of cell's action potentials. These interpretations are supported by experimental data and offer many advantages but also several shortcomings. We argue for a coding mechanism based on a sparse synchronization paradigm. We show that synchronization of spikes is a fast and efficient mode to encode the representation of objects based on feature bindings. We introduce the view that sparse synchronization coding presents an interesting venue in probing brain encoding mechanisms as it allows the functional establishment of multi-layered and time-conditioned neuronal networks or multislice networks. We propose a model based on integrate-and-fire spiking neurons.
NASA Astrophysics Data System (ADS)
Chen, Zhonghui; Wang, Chinhua; Xu, Fuyang; Lou, Yimin; Cao, Bing; Li, Xiaofeng
2014-04-01
We propose and present a quarter-wave plate using metal-insulator-metal (MIM) structure with sub-wavelength rectangular annular arrays (RAA) patterned in the upper Au film. It is found that by manipulating asymmetric width of the annular gaps along two orthogonal directions, the reflected amplitude and phase of the two orthogonal components can be well controlled via the RAA metasurface tuned by the MIM cavity effect, in which the localized surface plasmon resonance dip can be flattened with the cavity length. A quarter-wave plate has been realized through an optimized design at 1.55 μm, in which the phase difference variation of less than 2% of the π/2 between the two orthogonal components can be obtained in an ultra-wide wavelength range of about 130 nm, and the reflectivity is up to ˜90% within the whole working wavelength band. It provides a great potential for applications in advanced nanophotonic devices and integrated photonic systems.
Application of time-temperature-stress superposition on creep of wood-plastic composites
NASA Astrophysics Data System (ADS)
Chang, Feng-Cheng; Lam, Frank; Kadla, John F.
2013-08-01
Time-temperature-stress superposition principle (TTSSP) was widely applied in studies of viscoelastic properties of materials. It involves shifting curves at various conditions to construct master curves. To extend the application of this principle, a temperature-stress hybrid shift factor and a modified Williams-Landel-Ferry (WLF) equation that incorporated variables of stress and temperature for the shift factor fitting were studied. A wood-plastic composite (WPC) was selected as the test subject to conduct a series of short-term creep tests. The results indicate that the WPC were rheologically simple materials and merely a horizontal shift was needed for the time-temperature superposition, whereas vertical shifting would be needed for time-stress superposition. The shift factor was independent of the stress for horizontal shifts in time-temperature superposition. In addition, the temperature- and stress-shift factors used to construct master curves were well fitted with the WLF equation. Furthermore, the parameters of the modified WLF equation were also successfully calibrated. The application of this method and equation can be extended to curve shifting that involves the effects of both temperature and stress simultaneously.
Using Musical Intervals to Demonstrate Superposition of Waves and Fourier Analysis
ERIC Educational Resources Information Center
LoPresto, Michael C.
2013-01-01
What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.
NASA Astrophysics Data System (ADS)
Asjad, Muhammad; Vitali, David
2014-02-01
A deterministic scheme for generating a macroscopic superposition state of a nanomechanical resonator is proposed. The nonclassical state is generated through a suitably engineered dissipative dynamics exploiting the optomechanical quadratic interaction with a bichromatically driven optical cavity mode. The resulting driven dissipative dynamics can be employed for monitoring and testing the decoherence processes affecting the nanomechanical resonator under controlled conditions.
ERIC Educational Resources Information Center
Bowen, J. Philip; Sorensen, Jennifer B.; Kirschner, Karl N.
2007-01-01
The analysis explains the basis set superposition error (BSSE) and fragment relaxation involved in calculating the interaction energies using various first principle theories. Interacting the correlated fragment and increasing the size of the basis set can help in decreasing the BSSE to a great extent.
De Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolò
2009-09-04
We show that all macroscopic quantum superpositions (MQS) based on phase-covariant quantum cloning are characterized by an anomalous high resilence to the decoherence processes. The analysis supports the results of recent MQS experiments and leads to conceive a useful conjecture regarding the realization of complex decoherence-free structures for quantum information, such as the quantum computer.
NASA Astrophysics Data System (ADS)
de Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolò
2009-09-01
We show that all macroscopic quantum superpositions (MQS) based on phase-covariant quantum cloning are characterized by an anomalous high resilence to the decoherence processes. The analysis supports the results of recent MQS experiments and leads to conceive a useful conjecture regarding the realization of complex decoherence-free structures for quantum information, such as the quantum computer.
On sufficient statistics of least-squares superposition of vector sets.
Konagurthu, Arun S; Kasarapu, Parthan; Allison, Lloyd; Collier, James H; Lesk, Arthur M
2015-06-01
The problem of superposition of two corresponding vector sets by minimizing their sum-of-squares error under orthogonal transformation is a fundamental task in many areas of science, notably structural molecular biology. This problem can be solved exactly using an algorithm whose time complexity grows linearly with the number of correspondences. This efficient solution has facilitated the widespread use of the superposition task, particularly in studies involving macromolecular structures. This article formally derives a set of sufficient statistics for the least-squares superposition problem. These statistics are additive. This permits a highly efficient (constant time) computation of superpositions (and sufficient statistics) of vector sets that are composed from its constituent vector sets under addition or deletion operation, where the sufficient statistics of the constituent sets are already known (that is, the constituent vector sets have been previously superposed). This results in a drastic improvement in the run time of the methods that commonly superpose vector sets under addition or deletion operations, where previously these operations were carried out ab initio (ignoring the sufficient statistics). We experimentally demonstrate the improvement our work offers in the context of protein structural alignment programs that assemble a reliable structural alignment from well-fitting (substructural) fragment pairs. A C++ library for this task is available online under an open-source license.
Chaos and Complexities Theories. Superposition and Standardized Testing: Are We Coming or Going?
ERIC Educational Resources Information Center
Erwin, Susan
2005-01-01
The purpose of this paper is to explore the possibility of using the principle of "superposition of states" (commonly illustrated by Schrodinger's Cat experiment) to understand the process of using standardized testing to measure a student's learning. Comparisons from literature, neuroscience, and Schema Theory will be used to expound upon the…
GPU-based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.
Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd
2016-11-07
In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92% (CPU) to 96% (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.
NASA Astrophysics Data System (ADS)
Lecamwasam, Ruvindha L.; Hush, Michael R.; James, Matthew R.; Carvalho, André R. R.
2017-01-01
We propose related schemes to generate arbitrarily shaped single photons, i.e., photons with an arbitrary temporal profile, and coherent state superpositions using simple optical elements. The first system consists of two coupled cavities, a memory cavity and a shutter cavity, containing a second-order optical nonlinearity and electro-optic modulator (EOM), respectively. Photodetection events of the shutter cavity output herald preparation of a single photon in the memory cavity, which may be stored by immediately changing the optical length of the shutter cavity with the EOM after detection. On-demand readout of the photon, with arbitrary shaping, can be achieved through modulation of the EOM. The second scheme consists of a memory cavity with two outputs, which are interfered, phase shifted, and measured. States that closely approximate a coherent state superposition can be produced through postselection for sequences of detection events, with more photon detection events leading to a larger superposition. We furthermore demonstrate that no-knowledge feedback can be easily implemented in this system and used to preserve the superposition state, as well as provide an extra control mechanism for state generation.
NASA Astrophysics Data System (ADS)
Kuang, Zheng; Perrie, Walter; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff
2014-03-01
Ultrafast laser parallel microdrilling using diffractive multiple annular beam patterns is demonstrated in this paper. The annular beam was generated by diffractive axicon computer generated holograms (CGHs) using a spatial light modulator. The diameter of the annular beam can be easily adjusted by varying the radius of the smallest ring in the axicon. Multiple annular beams with arbitrary arrangement and multiple annular beam arrays were generated by superimposing an axicon CGH onto a grating and lenses algorithm calculated multi-beam CGH and a binary Dammann grating CGH, respectively. Microholes were drilled through a 0.03 mm thick stainless steel foil using the multiple annular beams. By avoiding huge laser output attenuation and mechanical annular scanning, the processing is ˜200 times faster than the normal single beam processing.
NASA Astrophysics Data System (ADS)
Halder, P.; Chakraborty, A.; Deb Roy, P.; Das, H. S.
2014-09-01
In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with a plan to create a large database in future. This application also has an option where users can compile and run the scattering code directly for aggregates in GUI environment. The JaSTA aims to provide convenient and quicker data analysis of the optical properties which can be used in different fields like planetary science, atmospheric science, nano science, etc. The current version of this software is developed for the Linux and Windows platform to study the light scattering properties of small aggregates which will be extended for larger aggregates using parallel codes in future. Catalogue identifier: AETB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571570 No. of bytes in distributed program
NASA Astrophysics Data System (ADS)
Chen, Gin-Shin; Chang, Hsu; Kuo, Yi-Yuan; Lin, Winli; Chen, Wen-Shiang; Tseng, Wen-Yih
2011-09-01
In HIFU treatment applications, the annular array transducer is a feasible solution for the clinical/engineering requirements which are as follows: ablation of tumors deep inside body, electronic dynamic focusing in the depth direction, simple configuration/operation, and lower cost due to fewer elements/channels of amplifier. A 12 cm-diameter, 12 cm-radius-of-curvature annular array transducer has been developed in this study. The pseudo-inverse method was adopted to calculate the desired phase of each element for focusing, and the Rayleigh-Summerfield integral was used to obtain the ultrasonic pressure field. In the simulation, the operating frequency was 0.9 MHz, and the acoustic medium was water. A piece of 1-3 piezocomposite was fabricated using the dice and fill technique for the pilot test. The dimension of the sample was 4×2 cm, and it was thermally shaped using a spherical mold of 12 cm in radius. The results of the simulation showed that the focus could not be moved electronically in the depth direction until the number of elements (annuli) was equal to or higher than 5, and the dynamic focusing range increased as the number of elements increased. The intensity at the acoustic window or skin was also estimated from the simulated results and was only 0.03% of the intensity at focus. The curved composite sample was tested using an impedance analyser and a radiation force balance. The resonant frequency and electro-acoustic efficiency were measured to be 0.914 MHz and 65%, respectively. The results of the simulation can provide a design guideline for the development of different-size HIFU annular array transducers. A prototype of the HIFU annular array transducer designed is being fabricated in-house.
Dual annular rotating "windowed" nuclear reflector reactor control system
Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.
1994-01-01
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.
Annular fuel and air co-flow premixer
Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David
2013-10-15
Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.
Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.
Laskowski, René; Bart, Hans-Jörg
2015-09-01
An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well.
Droplet deposition and momentum transfer in annular flow
Fore, L.B.; Dukler, A.E.
1995-09-01
Entrainment and deposition in gas-liquid annular upflow are known to account for as much as 20% of the pressure gradient, through droplet accelerations in the core region. Momentum is transferred from the core when droplets decelerate upon impact with the liquid film. It is usually assumed that all of this momentum is transferred to the film, essentially driving the film upward in conjunction with interfacial friction. New data, obtained for annular gas-liquid upflow in a 5.08-cm-ID tube, are used in a momentum balance analysis to determine the mechanism of momentum transfer from depositing droplets. Measurements include the liquid film thickness, wall shear stress, pressure gradient, entrained liquid fraction, droplet deposition rate, droplet centerline axial velocity, and mass-average drop size for two gas-liquid systems. This analysis supports the idea that large droplets displace the film locally and decelerate primarily at the wall, effectively transferring negligible momentum to the liquid film.
Thermo-Elastic Finite Element Analyses of Annular Nuclear Fuels
NASA Astrophysics Data System (ADS)
Kwon, Y. D.; Kwon, S. B.; Rho, K. T.; Kim, M. S.; Song, H. J.
In this study, we tried to examine the pros and cons of the annular type of fuel concerning mainly with the temperatures and stresses of pellet and cladding. The inner and outer gaps between pellet and cladding may play an important role on the temperature distribution and stress distribution of fuel system. Thus, we tested several inner and outer gap cases, and we evaluated the effect of gaps on fuel systems. We conducted thermo-elastic-plastic-creep analyses using an in-house thermo-elastic-plastic-creep finite element program that adopted the 'effective-stress-function' algorithm. Most analyses were conducted until the gaps disappeared; however, certain analyses lasted for 1582 days, after which the fuels were replaced. Further study on the optimal gaps sizes for annular nuclear fuel systems is still required.
Higher order annular Gaussian laser beam propagation in free space
NASA Astrophysics Data System (ADS)
Eyyuboglu, Halil T.; Yenice, Yusuf E.; Baykal, Yahya K.
2006-03-01
Propagation of higher order annular Gaussian (HOAG) laser beams in free space is examined. HOAG beams are defined as the difference of two Hermite-Gaussian (HG) beams; thus, they can be produced by subtracting a smaller beam from a larger beam, that are cocentered and both possess HG mode field distributions. Such beams can be considered as a generalization of the well-known annular Gaussian beams. We formulate the source and receiver plane characteristics and kurtosis parameter of HOAG beams propagating in free space and evaluate them numerically. In comparison to HG beams, HOAG beams have a broader beam size with outer lobes of kidney shape. The amount of received power within the same receiver aperture size, that is, power in bucket, is generally lower for higher order beams. The convergence of the kurtosis parameter to an asymptotic value for higher order beams takes much longer propagation distances compared to zero-order beams.
High Thrust-to-Power Annular Engine Technology
NASA Technical Reports Server (NTRS)
Patterson, Michael; Thomas, Robert; Crofton, Mark; Young, Jason A.; Foster, John E.
2015-01-01
Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground-in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.
High Thrust-to-Power Annular Engine Technology
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.
2015-01-01
Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.
Vortex dynamics in an annular Josephson ratchet ladder
NASA Astrophysics Data System (ADS)
Lee, Ki Ho
2016-11-01
We present numerically the motion of vortices placed in an annular Josephson ladder which has a periodic ratchet potential along the annular direction. The ratchet characteristics are provided by assigning both alternate critical currents and alternate plaquette areas. The vortices are subject to an external current applied uniformly from each superconducting grain in the inner ring to each grain in the outer ring. The current-voltage (I-V) curves show asymmetric features because of the spatially broken symmetry of the potential. When an alternating current is added to the external current, Shapiro steps appear in the I-V curves, showing asymmetric values of the step widths and on-set currents. For a certain range of the alternating currents, vortices rotate to the easy direction, even at zero driving current, that corresponds to the direction away from the steep slope and toward the gentle slope of the ratchet potential.
Simple analysis and design of annular ring microstrip antennas
NASA Astrophysics Data System (ADS)
El-Khamy, S. E.; El-Awadi, R. M.; El-Sharrawy, E.-B. A.
1986-06-01
A simple analysis of thin annular-ring microstrip antennas (AR-MSA), along with a design technique that yields the optimum ring dimensions which maximizes the radiation efficiency and the bandwidth, is presented in this paper. Using the cavity model, exact closed form solutions for the radiation fields are derived. The antenna fields distribution, resonance dimensions, radiation patterns, directivity, radiation conductance, quality factor and bandwidth are investigated for the different TMnm modes. AR-MSAs operated at the high order TMn2 modes are found to have better radiation properties and broader bandwidths than the corresponding disk-MSAs. A design table for the optimum ring dimensions for different types of the dielectric substrate material is also given in the paper.
Axisymmetric buckling of laminated thick annular spherical cap
NASA Astrophysics Data System (ADS)
Dumir, P. C.; Dube, G. P.; Mallick, A.
2005-03-01
Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.
Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array
John D. Bess; James D. Cleaver
2009-06-01
Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.
Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump
NASA Astrophysics Data System (ADS)
Kaushik, S. C.; Manikandan, S.; Hans, Ranjana
2016-07-01
In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter ( S r = r 2 /r 1), dimensionless temperature ratio ( θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.
Piezoelectric annular array for large depth of field photoacoustic imaging
Passler, K.; Nuster, R.; Gratt, S.; Burgholzer, P.; Paltauf, G.
2011-01-01
A piezoelectric detection system consisting of an annular array is investigated for large depth of field photoacoustic imaging. In comparison to a single ring detection system, X-shaped imaging artifacts are suppressed. Sensitivity and image resolution studies are performed in simulations and in experiments and compared to a simulated spherical detector. In experiment an eight ring detection systems offers an extended depth of field over a range of 16 mm with almost constant lateral resolution. PMID:21991555
Hydraulic forces caused by annular pressure seals in centrifugal pumps
NASA Technical Reports Server (NTRS)
Iino, T.; Kaneko, H.
1980-01-01
The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.
Annular Momentum Control Device (AMCD). Volume 1: Laboratory model development
NASA Technical Reports Server (NTRS)
1975-01-01
The annular momentum control device (AMCD) a thin hoop-like wheel with neither shaft nor spokes is described. The wheel floats in a magnetic field and can be rotated by a segmented motor. Potential advantages of such a wheel are low weight, configuration flexibility, a wheel that stiffens with increased speed, vibration isolation, and increased reliability. The analysis, design, fabrication, and testing is described of the laboratory model of the AMCD.
System design of the annular suspension and pointing system /ASPS/
NASA Technical Reports Server (NTRS)
Cunningham, D. C.; Gismondi, T. P.; Wilson, G. W.
1978-01-01
This paper presents the control system design for the Annular Suspension and Pointing System. Actuator sizing and configuration of the system are explained, and the control laws developed for linearizing and compensating the magnetic bearings, roll induction motor and gimbal torquers are given. Decoupling, feedforward and error compensation for the vernier and gimbal controllers is developed. The algorithm for computing the strapdown attitude reference is derived, and the allowable sampling rates, time delays and quantization of control signals are specified.
Closed cycle annular-return gas flow electrical discharge laser
Bletzinger, P.; Garscadden, A.; Hasinger, S.H.; Olson, R.A.; Sarka, B.
1981-06-16
A closed cycle, high repetition pulsed laser is disclosed that has a laser flow channel with an annular flow return surrounding the laser flow channel. Ultra high vacuum components and low out-gassing materials are used in the device. An externally driven axial flow fan is used for gas recirculation. A thyratron-switched lowinductance energy storage capacitor is used to provide a transverse discharge between profiled electrodes in the laser cavity.
The influence of annular seal clearance to the critical speed of the multistage pump
NASA Astrophysics Data System (ADS)
Wang, J.; Shen, H. P.; Y Ye, X.; Hu, J. N.; Feng, Y. N.
2013-12-01
In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest.
Standing wave acoustic levitation on an annular plate
NASA Astrophysics Data System (ADS)
Kandemir, Mehmet Hakan; Çalışkan, Mehmet
2016-11-01
In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.
Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging
NASA Astrophysics Data System (ADS)
Koduru, Jaya Prakash; Rose, Joseph L.
2009-03-01
Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.
Quantitative annular dark field electron microscopy using single electron signals.
Ishikawa, Ryo; Lupini, Andrew R; Findlay, Scott D; Pennycook, Stephen J
2014-02-01
One of the difficulties in analyzing atomic resolution electron microscope images is that the sample thickness is usually unknown or has to be fitted from parameters that are not precisely known. An accurate measure of thickness, ideally on a column-by-column basis, parameter free, and with single atom accuracy, would be of great value for many applications, such as matching to simulations. Here we propose such a quantification method for annular dark field scanning transmission electron microscopy by using the single electron intensity level of the detector. This method has the advantage that we can routinely quantify annular dark field images operating at both low and high beam currents, and under high dynamic range conditions, which is useful for the quantification of ultra-thin or light-element materials. To facilitate atom counting at the atomic scale we use the mean intensity in an annular dark field image averaged over a primitive cell, with no free parameters to be fitted. To illustrate the potential of our method, we demonstrate counting the number of Al (or N) atoms in a wurtzite-type aluminum nitride single crystal at each primitive cell over the range of 3-99 atoms.
Annular tautomerism: experimental observations and quantum mechanics calculations
NASA Astrophysics Data System (ADS)
Cruz-Cabeza, Aurora J.; Schreyer, Adrian; Pitt, William R.
2010-06-01
The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein—small molecule crystal structures.
Free vortex theory for efficiency calculations from annular cascade data
Main, A.J.; Oldfield, M.L.G.; Lock, G.D.; Jones, T.V.
1997-04-01
This paper describes a new three-dimensional theory to calculate the efficiency or loss of nozzle guide vane annular cascades from experimental area traverse measurements of the compressible downstream flow. To calculate such an efficiency, it is necessary to mix out the measured flow computationally to either a uniform state or one that is a function of radius only. When this is done by conserving momentum, mass, and energy flow, there is a remaining degree of freedom in that the radial distribution of circumferential velocity can be chosen. This extra freedom does not arise in two-dimensional cascades. The new method mixes the flow out to a free (i.e., irrotational) vortex. This is preferred to existing methods in that it gives a physically realistic flow and also provides a unique, lossless, isentropic reference flow. The annular cascade efficiency is then uniquely defined as the ratio of the mixed-out experimental kinetic energy flux to the ideal isentropic kinetic energy flux at the same mean radius static pressure. The mathematical derivation of this method is presented. This new theory has been used to process data obtained from a large, transonic, annular cascade in a blowdown tunnel. A four-hole pyramid probe, mounted on a computer-controlled traverse, has been used to map the passage flowfield downstream of the nozzle guide vanes. Losses calculated by the new method are compared with those calculated from the same data using earlier analysis methods.
Droplet sizes, dynamics and deposition in vertical annular flow
Lopes, J C.B.; Dukler, A E
1985-10-01
The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.
The annular flow electrothermal ramjet. M.S. Thesis
NASA Technical Reports Server (NTRS)
Shaw, B. D.
1984-01-01
The annular flow, electrothermal, plug ramjet is examined as a possible means of achieving rapid projectile acceleration to velocities for such applications as direct launch of spacebound payloads. The performance of this ramjet operating with hydrogen propellant is examined for cases where this working fluid is treated: (1) as a perfect gas, and (2) as a gas that is allowed to dissociate and ionize and then recombine with finite reaction rates in the nozzle. Performance results for these cases are compared to the performance of a conventional ramjet operating with perfect gas hydrogen propellant. The performance of the conventional ramjet is superior to that of the annular flow, electrothermal ramjet. However, it is argued that the mechanical complexities associated with conventional ramjet operation are difficult to attain, and for this reason the annular flow, electrothermal ramjet is more desirable as a launch system. Models are presented which describe both electrothermal plug ramjet and conventional ramjet operation, and it is shown that for a given flight velocity there is a rate of heat addition per unit propellant mass for which ramjet operation is optimized.
Linearization of an annular image by using a diffractive optic
NASA Technical Reports Server (NTRS)
Matthys, Donald R.
1996-01-01
The goal for this project is to develop the algorithms for fracturing the zones defined by the mapping transformation, and to actually produce the binary optic in an appropriate setup. In 1984 a side-viewing panoramic viewing system was patented, consisting of a single piece of glass with spherical surfaces which produces a 360 degree view of the region surrounding the lens which extends about 25 degrees in front of and 20 degrees behind the lens. The system not only produces images of good quality, it is also afocal, i.e., images stay in focus for objects located right next to the lens as well as those located far from the lens. The lens produced a panoramic view in an annular shaped image, and so the lens was called a PAL (panoramic annular lens). When applying traditional measurements to PAL images, it is found advantageous to linearize the annular image. This can easily be done with a computer and such a linearized image can be produced within about 40 seconds on current microcomputers. However, this process requires a frame-grabber and a computer, and is not real-time. Therefore, it was decided to try to perform this linearization optically by using a diffractive optic.
NASA Astrophysics Data System (ADS)
Sadovskii, V. M.; Sadovskaya, O. V.
2016-10-01
The Tarasov fan-shaped mechanism, simulating the formation of shear ruptures in a brittle rock at stress conditions corresponding to seismogenic depths, is analyzed. For computation of the stress-strain state of a rock near the equilibrium fan-structure the original method is constructed. The fault is modeled as a narrow elongated layer, filled with the domino-blocks, between two elastic half-spaces. Displacements and stresses around the fan are represented in the integral form as a superposition of edge dislocations with an unknown function of distribution of the Burgers vector. To take into account the stresses of lateral thrust, the solution of plane problem of the elasticity is used for a tensile crack, on the surfaces of which the previously unknown normal stresses are distributed. The exact formulation of the problem leads to a system of two nonlinear singular integral equations, which is solved numerically by the method of successive approximations. The obtained solution is used, when setting the initial data in computations of the dynamics of the Tarasov fan-shaped mechanism. With the help of this solution the discontinuous nature of shear ruptures, observed in natural and laboratory experiments, is explained.
Effect of Operating Variables on the Performance of a Highly Loaded Annular Combustor
NASA Astrophysics Data System (ADS)
Muduli, S. K.; Mishra, R. K.; Satpathy, R. K.; Chandel, S.
2015-04-01
A highly loaded full-scale annular combustor is studied in the air-flow facility for the effect of operating variables such as compressor discharge velocity and fuel-air ratio on the performance parameters. The combustor is designed to operate at high pressures and high exit temperatures that impose stringent limitations on its performance such as pressure loss, exit temperature profiles and combustion efficiency. The effect of excess air ratio on performance parameters is found to be marginal over the range tested. Increasing the excess air ratio decreases the pressure loss, exit pattern factors and combustion efficiency. The inlet Mach no. is found to influence the pressure loss strongly and exit temperature patterns marginally. Combustion efficiency is found to deteriorate with increase in Mach number. This will in turn affect the integrity and life of hot end components of the aero engine.
NASA Astrophysics Data System (ADS)
Barkat, Ouarda; Benghalia, Abdelmadjid
2009-10-01
In this work, the full-wave method is used for computing the resonant frequency, the bandwidth, and radiation pattern of High temperature superconductor, or an imperfectly conducting annular ring microstrip, which is printed on uniaxial anisotropic substrate. Galerkin’s method is used in the resolution of the electric field integral equation. The TM set of modes issued from the cavity model theory are used to expand the unknown currents on the patch. Numerical results concerning the effect of the anisotropic substrates on the antenna performance are presented and discussed. It is found that microstrip superconducting could give high efficiency with high gain in millimeter wavelengths. Results are compared with previously published data and are found to be in good agreement.
Brain-wave representation of words by superposition of a few sine waves
Suppes, Patrick; Han, Bing
2000-01-01
Data from three previous experiments were analyzed to test the hypothesis that brain waves of spoken or written words can be represented by the superposition of a few sine waves. First, we averaged the data over trials and a set of subjects, and, in one case, over experimental conditions as well. Next we applied a Fourier transform to the averaged data and selected those frequencies with high energy, in no case more than nine in number. The superpositions of these selected sine waves were taken as prototypes. The averaged unfiltered data were the test samples. The prototypes were used to classify the test samples according to a least-squares criterion of fit. The results were seven of seven correct classifications for the first experiment using only three frequencies, six of eight for the second experiment using nine frequencies, and eight of eight for the third experiment using five frequencies. PMID:10890906
Optical information encryption based on incoherent superposition with the help of the QR code
NASA Astrophysics Data System (ADS)
Qin, Yi; Gong, Qiong
2014-01-01
In this paper, a novel optical information encryption approach is proposed with the help of QR code. This method is based on the concept of incoherent superposition which we introduce for the first time. The information to be encrypted is first transformed into the corresponding QR code, and thereafter the QR code is further encrypted into two phase only masks analytically by use of the intensity superposition of two diffraction wave fields. The proposed method has several advantages over the previous interference-based method, such as a higher security level, a better robustness against noise attack, a more relaxed work condition, and so on. Numerical simulation results and actual smartphone collected results are shown to validate our proposal.
Robot Behavior Acquisition Superposition and Composting of Behaviors Learned through Teleoperation
NASA Technical Reports Server (NTRS)
Peters, Richard Alan, II
2004-01-01
Superposition of a small set of behaviors, learned via teleoperation, can lead to robust completion of a simple articulated reach-and-grasp task. Results support the hypothesis that a set of learned behaviors can be combined to generate new behaviors of a similar type. This supports the hypothesis that a robot can learn to interact purposefully with its environment through a developmental acquisition of sensory-motor coordination. Teleoperation bootstraps the process by enabling the robot to observe its own sensory responses to actions that lead to specific outcomes. A reach-and-grasp task, learned by an articulated robot through a small number of teleoperated trials, can be performed autonomously with success in the face of significant variations in the environment and perturbations of the goal. Superpositioning was performed using the Verbs and Adverbs algorithm that was developed originally for the graphical animation of articulated characters. Work was performed on Robonaut at NASA-JSC.
Superposition and detection of two helical beams for optical orbital angular momentum communication
NASA Astrophysics Data System (ADS)
Liu, Yi-Dong; Gao, Chunqing; Gao, Mingwei; Qi, Xiaoqing; Weber, Horst
2008-07-01
A loop-like system with a Dove prism is used to generate a collinear superposition of two helical beams with different azimuthal quantum numbers in this manuscript. After the generation of the helical beams distributed on the circle centered at the optical axis by using a binary amplitude grating, the diffractive field is separated into two polarized ones with the same distribution. Rotated by the Dove prism in the loop-like system in counter directions and combined together, the two fields will generate the collinear superposition of two helical beams in certain direction. The experiment shows consistency with the theoretical analysis. This method has potential applications in optical communication by using orbital angular momentum of laser beams (optical vortices).
Brain-wave representation of words by superposition of a few sine waves.
Suppes, P; Han, B
2000-07-18
Data from three previous experiments were analyzed to test the hypothesis that brain waves of spoken or written words can be represented by the superposition of a few sine waves. First, we averaged the data over trials and a set of subjects, and, in one case, over experimental conditions as well. Next we applied a Fourier transform to the averaged data and selected those frequencies with high energy, in no case more than nine in number. The superpositions of these selected sine waves were taken as prototypes. The averaged unfiltered data were the test samples. The prototypes were used to classify the test samples according to a least-squares criterion of fit. The results were seven of seven correct classifications for the first experiment using only three frequencies, six of eight for the second experiment using nine frequencies, and eight of eight for the third experiment using five frequencies.
A numerical dressing method for the nonlinear superposition of solutions of the KdV equation
NASA Astrophysics Data System (ADS)
Trogdon, Thomas; Deconinck, Bernard
2014-01-01
In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg-de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t.
Generation of mesoscopic quantum superpositions through Kerr-stimulated degenerate downconversion
NASA Astrophysics Data System (ADS)
Paris, Matteo G. A.
1999-12-01
A two-step interaction scheme involving chi(2) and chi(3) nonlinear media is suggested for the generation of Schrödinger cat-like states of a single-mode optical field. In the first step, a weak coherent signal undergoes a self-Kerr phase modulation in a chi(3) crystal, leading to a Kerr kitten, namely a microscopic superposition of two coherent states with opposite phases. In the second step, such a Kerr kitten enters a chi(2) crystal and, in turn, plays the role of a quantum seed for stimulated phase-sensitive amplification. The output state in the above-threshold regime consists in a quantum superposition of mesoscopically distinguishable squeezed states, i.e. an optical cat-like state. The whole setup does not rely on conditional measurements, and is robust against decoherence, as only weak signals interact with the Kerr medium.
NASA Astrophysics Data System (ADS)
Tian, Si-Cong; Wan, Ren-Gang; Wang, Li-Jie; Shu, Shi-Li; Tong, Cun-Zhu; Wang, Li-Jun
2016-12-01
A scheme is proposed for coherent population transfer and creation of coherent superposition states assisted by one time-dependent tunneling pulse and one time-independent tunneling pulse in triple quantum dots. Time-dependent tunneling, which is similar to the Stokes laser pulse used in traditional stimulated Raman adiabatic passage, can lead to complete population transfer from the ground state to the indirect exciton states. Time-independent tunneling can also create double dark states, resulting in the distribution of the population and arbitrary coherent superposition states. Such a scheme can also be extended to multiple quantum dots assisted by one time-dependent tunneling pulse and more time-independent tunneling pulses.
Na, Shuai; Wong, Lawrence L P; Chen, Albert I H; Li, Zhenhao; Macecek, Mirek; Yeow, John T W
2017-04-01
Air-coupled capacitive micromachined ultrasonic transducers (CMUTs) based on annular cell geometry have recently been reported. Finite element analysis and experimental studies have demonstrated their significant improvement in transmit efficiency compared with the conventional circular-cell CMUTs. Extending the previous work, this paper proposed a lumped element model of annular-cell CMUTs. Explicit expressions of the resonance frequency, modal vector, and static displacement of a clamped annular plate under uniform pressure were first derived based on the plate theory and curve fitting method. The lumped model of an annular CMUT cell was then developed by adopting the average displacement as the spatial variable. Using the proposed model, the ratio of average-to-maximum displacement was derived to be 8/15. Experimental and simulation studies on a fabricated annular CMUT cell verified the effectiveness of the lumped model. The proposed model provides an effective and efficient way to analyze and design air-coupled annular-cell CMUTs.
An annular pancreas associated with carcinoma of the papilla of Vater: report of a case.
Yazawa, Naoki; Imaizumi, Toshihide; Furukawa, Daisuke; Matsuyama, Masahiro; Gunji, Hisashi; Kato, Kenichiro; Tobita, Kosuke; Nakagohri, Toshio; Makuuchi, Hiroyasu; Hirabayashi, Kenichi; Ogoshi, Kyoji
2012-05-01
An annular pancreas is an uncommon congenital anomaly that usually presents early in childhood. Malignancy in the setting of an annular pancreas is unusual. We herein report a case of annular pancreas with carcinoma of the papilla of Vater. A 59-year-old man presented with epigastric discomfort and was referred to us after gastroduodenal endoscopy showed a tumor of the papilla of Vater. Preoperative imaging showed the pancreatic parenchyma encircling the descending duodenum and a tumor at the papilla of Vater. A pancreaticoduodenectomy was performed for the annular pancreas and the ampullary tumor. Histological examination confirmed a complete annular pancreas and carcinoma in situ of the papilla of Vater. We also provide a review of the reported cases of an annular pancreas with periampullary neoplasms and discuss the clinical characteristics of this anomaly.
Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud
2015-10-21
Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and (18)F, (99m)Tc, (131)I and (177)Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the (99m)Tc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.
NASA Technical Reports Server (NTRS)
Platnick, S.
1999-01-01
Photon transport in a multiple scattering medium is critically dependent on scattering statistics, in particular the average number of scatterings. A superposition technique is derived to accurately determine the average number of scatterings encountered by reflected and transmitted photons within arbitrary layers in plane-parallel, vertically inhomogeneous clouds. As expected, the resulting scattering number profiles are highly dependent on cloud particle absorption and solar/viewing geometry. The technique uses efficient adding and doubling radiative transfer procedures, avoiding traditional time-intensive Monte Carlo methods. Derived superposition formulae are applied to a variety of geometries and cloud models, and selected results are compared with Monte Carlo calculations. Cloud remote sensing techniques that use solar reflectance or transmittance measurements generally assume a homogeneous plane-parallel cloud structure. The scales over which this assumption is relevant, in both the vertical and horizontal, can be obtained from the superposition calculations. Though the emphasis is on photon transport in clouds, the derived technique is applicable to any scattering plane-parallel radiative transfer problem, including arbitrary combinations of cloud, aerosol, and gas layers in the atmosphere.
Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach
NASA Technical Reports Server (NTRS)
Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.
2014-01-01
The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+.
Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates
NASA Astrophysics Data System (ADS)
Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim
2016-05-01
We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.
Role of the retinal detector array in perceiving the superposition effects of light
NASA Astrophysics Data System (ADS)
Roychoudhuri, Chandrasekhar; Lakshminarayanan, Vasudevan
2006-08-01
The perception of light in nature comes through the photopigment molecules of our retina. The objective of this paper is to relate our modern understanding of the quantum mechanical chemical processes in the retinal molecules with our observation of superposition ("interference") fringes due to multiple light beams. The issue of "interference" is important for two subtle reasons. First, we do not perceive light except though the response of the light detecting molecules. Second, EM fields do not operate on each other to create the "interference" (superposition) effects. When the intrinsic molecular properties of a detector allows it to respond simultaneously to all the superposed light beams on them, they sum the effects and report the corresponding "fringes" of superposition. In the human eye the "seeing" (or perception) is initiated by photo-isomerization of retinal, the chromophore of the opsin molecule. There exists several orders of magnitude difference between the characteristic times for the molecular processes of light absorption and the visual signal generation through the photochemical cascade. This allows us to function in the daily chores of walking and visual identification of objects and enjoy the beauty of the natural sceneries even though the retinal layer is bombarded simultaneously by innumerable beams of light with same and different frequencies, which will normally produce a flood of electronic "white noise" over a very wide range of temporal frequencies, namely the heterodyne beat signal. How do the eyes completely suppress this wide range of heterodyne beat signal?
Yamaguchi, Y; Sugiyama, M; Sato, Y; Mine, Y; Yamato, T; Ishida, H; Takahashi, S
2003-01-01
It has been reported that annular pancreas should be evaluated for coexisting malignant tumors. However, no cases have been reported in which magnetic resonance cholangiopancreatography and endoscopic ultrasonography clearly demonstrated an annular pancreas complicated by bile duct carcinoma. We present a case that emphasizes the importance of magnetic resonance cholangiopancreatography and endoscopic ultrasonography in directly confirming a diagnosis of annular pancreas complicated by bile duct carcinoma.
Pancreaticoduodenectomy for pancreas carcinoma occurring in the annular pancreas: report of a case.
Kawaida, Hiromichi; Kono, Hiroshi; Watanabe, Mitsuaki; Maki, Akira; Amemiya, Hidetake; Matsuda, Masanori; Fujii, Hideki; Fukasawa, Mitsuharu; Takahashi, Ei; Sano, Katsuhiro; Inoue, Tomohiro
2015-08-01
The annular pancreas is a rare congenital anomaly in which a ring of the pancreas parenchyma surrounds the second part of the duodenum. Malignant tumors are extremely rare in patients with an annular pancreas. A 64-year-old man presented with appetite loss and vomiting. Abdominal contrast-enhanced computed tomography (CT) indicated pancreas parenchyma surrounding the second part of the duodenum, and a hypovascular area occupying lesion in the annular pancreas. Subtotal stomach-preserving pancreaticoduodenectomy was performed. Histopathology showed pancreatic carcinoma occurring in the complete annular pancreas.
Davison, James E; Davies, Alison; Moss, Celia; Kirk, Jeremy M W; Taibjee, Saleem M; Agwu, J Chizo
2010-01-01
Diabetes mellitus is associated with a range of dermatologic presentations, including granuloma annulare and necrobiosis lipoidica diabeticorum. Granuloma annulare occurs earlier than necrobiosis lipoidica diabeticorum and the association with diabetes mellitus is much weaker. We describe two children with diabetes who both developed granuloma annulare and later, necrobiosis lipoidica diabeticorum. We postulate that the early onset and transient nature of granuloma annulare, compared with the later onset and persistence of necrobiosis lipoidica diabeticorum, might account for the different apparent rates of association with diabetes mellitus.
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2015-08-11
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Studies on Normal and Microgravity Annular Two Phase Flows
NASA Technical Reports Server (NTRS)
Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.
1999-01-01
Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.
Geometry optimization of linear and annular plasma synthetic jet actuators
NASA Astrophysics Data System (ADS)
Neretti, G.; Seri, P.; Taglioli, M.; Shaw, A.; Iza, F.; Borghi, C. A.
2017-01-01
The electrohydrodynamic (EHD) interaction induced in atmospheric air pressure by a surface dielectric barrier discharge (DBD) actuator has been experimentally investigated. Plasma synthetic jet actuators (PSJAs) are DBD actuators able to induce an air stream perpendicular to the actuator surface. These devices can be used in the field of aerodynamics to prevent or induce flow separation, modify the laminar to turbulent transition inside the boundary layer, and stabilize or mix air flows. They can also be used to enhance indirect plasma treatment effects, increasing the reactive species delivery rate onto surfaces and liquids. This can play a major role in plasma processing and chemical kinetics modelling, where often only diffusive mechanisms are considered. This paper reports on the importance that different electrode geometries can have on the performance of different PSJAs. A series of DBD aerodynamic actuators designed to produce perpendicular jets has been fabricated on two-layer printed circuit boards (PCBs). Both linear and annular geometries were considered, testing different upper electrode distances in the linear case and different diameters in the annular one. An AC voltage supplied at a peak of 11.5 kV and a frequency of 5 kHz was used. Lower electrodes were connected to the ground and buried in epoxy resin to avoid undesired plasma generation on the lower actuator surface. Voltage and current measurements were carried out to evaluate the active power delivered to the discharges. Schlieren imaging allowed the induced jets to be visualized and gave an estimate of their evolution and geometry. Pitot tube measurements were performed to obtain the velocity profiles of the PSJAs and to estimate the mechanical power delivered to the fluid. The optimal values of the inter-electrode distance and diameter were found in order to maximize jet velocity, mechanical power or efficiency. Annular geometries were found to achieve the best performance.
NASA Astrophysics Data System (ADS)
Hu, Xing-Biao; Bullough, Robin
1998-03-01
In this paper, the Caudrey-Dodd-Gibbon-Kotera-Sawada hierarchy in bilinear form is considered. A Bäcklund transformation for the CDGKS hierarchy is presented. Under certain conditions, the corresponding nonlinear superposition formula is proved.
Structure Limits for a 30mm Annular Piston.
1988-05-01
Properties ," BRL Report #1359, Mar 1971. 4. Republic Steel Corp., "Precipitation Hardenable Stainless Steel, PH13 -8MO, 15-5 PH, PH15-7MO, 17-4 PH, 17...u * 3 *1938 - Serving the Army for Fifty Years - 1988 STRUCTURE LIMITS FOR A *30-MMA ANN.,\\ULAR PISTON CRIS WATSON DTIC MAY 1988 JUN 14 8 APPROVED...NAME OF FUNDING/SPONSORING 8 b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATIONj (If applicable) r-c ADDRESS (City, State
Cylindrical plasmas generated by an annular beam of ultraviolet light
Thomas, D. M.; Allen, J. E.
2015-07-15
We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light, taking place only in the cylinder's outer region. In the steady state, both the outer and inner regions contain a plasma, with that in the inner region being uniform and field-free. At the interface between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching zero in the quasi-neutral (λ{sub D} → 0) limit. The system offers the possibility of producing a uniform stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.
Detonation Initiation by Annular Jets and Shock Waves
2007-11-02
11,12,13,14,15,16,17,18, 19,20,21,22 to better understand the shock implosion process. The current interest in air-breathing pulse detonation engines ( PDEs ) has led...This technology has yet to be realized and, as a result, current PDEs use initiator tubes sensitized with oxygen 23 or detonate more sensitive mixtures... Detonation Initiation by Annular Jets and Shock Waves Final Report for Award ONR N00014-03 -0931 Joseph E. Shepherd Aeronautics California Institute
Histiocytoid Sweet's syndrome presenting with annular erythematous plaques*
Marcarini, Renata; de Araujo, Raquel Nardelli; Nóbrega, Monisa Martins; Medeiros, Karina Bittencourt; Gripp, Alexandre Carlos; Maceira, Juan Manuel Piñeiro
2016-01-01
Histiocytoid Sweet's Syndrome is a rare inflammatory disease described in 2005 as a variant of the classical Sweet's Syndrome (SS). Histopathologically, the dermal inflammatory infiltrate is composed mainly of mononuclear cells that have a histiocytic appearance and represent immature myeloid cells. We describe a case of Histiocytoid Sweet's Syndrome in an 18-year-old man. Although this patient had clinical manifestations compatible with SS, the cutaneous lesions consisted of erythematous annular plaques, which are not typical for this entity and have not been described in histiocytic form so far. The histiocytic subtype was confirmed by histopathological analysis that showed positivity for myeloperoxidase in multiple cells with histiocytic appearance. PMID:28300927
Dynamically adjustable annular laser trapping based on axicons
Shao, Bing; Esener, Sadik C.; Nascimento, Jaclyn M.; Botvinick, Elliot L.; Berns, Michael W
2006-09-01
To study the chemotactic response of sperm to an egg and to characterize sperm motility, an annular laser trap based on axicons is designed, simulated with the ray-tracing tool, and implemented. The diameter of the trapping ring can be adjusted dynamically for a range of over 400 {mu}m by simply translating one axicon along the optical axis. Trapping experiments with microspheres and dog sperm demonstrate the feasibility of the system,and the power requirement agrees with theoretical expectation. This new type of laser trapping could provide a prototype of a parallel, objective, and quantitative tool for animal fertility and biotropism study.
Laser window with annular grooves for thermal isolation
Warner, B.E.; Horton, J.A.; Alger, T.W.
1983-07-13
A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.
New fluxon resonant mechanism in annular Josephson tunnel structures.
Nappi, C; Lisitskiy, M P; Rotoli, G; Cristiano, R; Barone, A
2004-10-29
A novel dynamical state has been observed in the dynamics of a perturbed sine-Gordon system. This resonant state has been experimentally observed as a singularity in the dc current-voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. In this respect it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps. This occurs because the size of nonlinear excitations is comparable with that of the system.
A study of unsteady flow induced by annular cascade
Takama, N.; Yoshiki, H.; Nishimura, K.; Sumiyoshi, K.
1999-07-01
The authors have experimentally studied phenomena of unsteady flow induced by annular cascade. The test apparatus consists of a swirl generator connected to a suction-type wind tunnel. The swirl generator duplicates variable inlet guide vanes (VIGV). The authors measured distributions of velocity flow by a hot wire anemometer and a three-hole Pilot tube, and pressure by semiconductor transducers. Results are: (1) the Strouhal number is independent of Reynolds number under each experimental condition; (2) the velocity wave propagates from pressure side of a vane to suction side of a neighboring vane; and (3) the setting angle of VIGV has effects on a fundamental frequency.
Preparative-scale proteins seperations by continuous annular chromatography
Bloomingburg, G.F.; Bauer, J.S.; Carta, G.; Byers, C.H. . Dept. of Chemical Engineering; Oak Ridge National Lab., TN )
1989-01-01
The use of continuous annular chromatography (CAC) for the separation of protein mixtures is studied in a preparative-scale CAC unit. S-Sepharose, a strong-acid porous cation exchange resin is used as the separation medium mixtures of albumin, hemoglobin, and cytochrome-C are used as a model separation system. Equilibrium and mass transfer parameter are developed for this system on the basis of fixed-bed chromatograph experiments. A mathematical model is then successfully used in conjunction with these parameters to simulate the performance of the CAC separations. 11 refs., 11 figs., 3 tabs.
Asymmetric Separation and Perturbation Sensitivity in an Annular Diffuser
NASA Astrophysics Data System (ADS)
Coffman, Jesse; Morris, Scott; Jemcov, Aleksander; Cameron, Joshua
2013-11-01
When an annular diffuser stalls, the separation can take many forms. Experiments show that one type of separation appears to be asymmetric and periodic. This asymmetry appears to be influenced by upstream and downstream components and inlet flow conditions. By understanding the changes effected at the exit of the diffuser by the inlet perturbations, the diffuser performance can be more accurately predicted within a system. This work aims to understand the influence of velocity perturbations at the inlet of the diffuser on the overall duct performance. This is done by application of the Euler equations and a RANS simulation for various circumferential wavenumbers.
Annular Suspension and Pointing System (ASPS) magnetic rotary joint
NASA Technical Reports Server (NTRS)
Smith, W. E.; Quach, W.; Thomas, W.
1993-01-01
The Annular Suspension and Pointing System (ASPS) is a prototype of flight hardware for a high-accuracy space payload pointing mount. The long term project objective is to perform modifications and implement improvements to the existing ASPS in hopes of recommission. Also, new applications will be investigated for this technology. This report will focus on the first aspect of this overall goal, to establish operation of a single bearing station. Presented is an overview of the system history and bearing operation followed by the processes, results, and status of the single bearing study.
Identification of dynamic coefficients of annular turbulent seals
NASA Technical Reports Server (NTRS)
Nordmann, R.; Massmann, H.
1984-01-01
An identification procedure to determine dynamic coefficients of annular turbulent seals in turbopumps is presented. Measurements were carried out at a built test rig with two symmetrical arranged seals. A rigid rotating shaft is surrounded by an elastically supported housing, which is excited by impact forces. The relative radial motion between the rotating parts and the housing, respectively between the seal surfaces, is measured by displacement pick-ups and from the time signals complex frequency response functions can be calculated. Finally an analytical model, depending on the seal parameters, is fitted to the measured data, to find the dynamic coefficients.
Dynamically adjustable annular laser trapping based on axicons
NASA Astrophysics Data System (ADS)
Shao, Bing; Esener, Sadik C.; Nascimento, Jaclyn M.; Botvinick, Elliot L.; Berns, Michael W.
2006-09-01
To study the chemotactic response of sperm to an egg and to characterize sperm motility, an annular laser trap based on axicons is designed, simulated with the ray-tracing tool, and implemented. The diameter of the trapping ring can be adjusted dynamically for a range of over 400 μm by simply translating one axicon along the optical axis. Trapping experiments with microspheres and dog sperm demonstrate the feasibility of the system, and the power requirement agrees with theoretical expectation. This new type of laser trapping could provide a prototype of a parallel, objective, and quantitative tool for animal fertility and biotropism study.
Beamforming using spatial matched filtering with annular arrays (L).
Kim, Kang-Sik; Liu, Jie; Insana, Michael F
2007-04-01
A linear array beamforming method for ultrasonic B-mode imaging using spatial matched filtering (SMF) and a rectangular aperture geometry was recently proposed Kim et al., [J. Acoust. Soc. Am. 120, 852-861 (2006)]. This letter extends those results to include circularly symmetric apertures. SMF applied to annular arrays can improve the lateral resolution and echo signal-to-noise ratio as compared with conventional dynamic-receive delay-sum beamforming. At high frequencies, where delay and sum beamforming is problematic, SMF showed greatly improved target contrast over an extended field of view.
Exhaust emissions of a double annular combustor: Parametric study
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1974-01-01
A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.
Final Technical Report for the MIT Annular Fuel Research Project
Mujid S. Kazimi; Pavel Hejzlar
2008-01-31
MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research ENergy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in poer density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghuse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited.
Gundel, L.A.; Lee, V.C.; Mahanama, K.R.R.; Stevens, R.K.; Daisey,J.M.
1994-06-01
An annular denuder-based sampler, here called the integrated organic vapor/particle sampler (IOVPS), has been developed for direct determination of both gas and particulate semi-volatile organic species. The IOVPS uses a cyclone inlet for removal of particles greater than 2.5 micrometers from the airstream, followed by two or three sandblasted glass annular denuders coated with ground particles of an adsorbent resin. The denuders trap the gas phase species of interest before the airstream passes through a filter and a backup denuder. Extracts of the denuders and filters are analyzed for the semi-volatile species of interest. The IOVPS has been tested and validated for sampling semi-volatile polycyclic aromatic hydrocarbons (PAH) in indoor laboratory room air and environmental tobacco smoke (ETS). Ground XAD-4 was the adsorbent for these initial studies. Gas- and particulate-phase concentrations of semi-volatile PAH are presented for these two environments. The new sampler provides the means for directly determining phase distributions of PAH and other classes of semi-volatile organic species, rather than by difference or by techniques that are subject to large positive and negative artifacts. For example, the results obtained with the IOVPS indicate that the volatilization artifact ('blow-off') from particulate PAH collected in indoor laboratory room air with a conventional filter-sorbent bed sampler at face velocity of 33 cm sec-1 led to three-fold underestimation of the particulate fractions of phenanthrene, pyrene and chrysene. Phase distributions for PAH in ETS are also reported here.
Probe with integrated heater and thermocouple pack
McCulloch, R.W.; Dial, R.E.; Finnell, W.R.
1988-02-16
A gamma thermometer probe for detecting heat produced within the thermometer probe is described comprising: an outer elongate thermometer sheath having a cylindrical cross-section, a length, an outer end and an inner end; an elongate rod having a cylindrical cross-section fitted within the elongate thermometer sheath, the rod being constructed of material that absorbs radiation and produces heat; annular recesses formed between the rod, and sheath and being spaced apart along the length of the rod, the recesses forming annular chambers that are resistive to heat flow; a longitudinal bore extending axially into the rod and being positioned to extend through the cylinders defined by the annular chambers; and an integrated thermocouple pack dimensioned to fit within the longitudinal bore and extending through the cylinders defined by the annular chambers.
ERIC Educational Resources Information Center
Kalyn, Brenda
2006-01-01
Integrated learning is an exciting adventure for both teachers and students. It is not uncommon to observe the integration of academic subjects such as math, science, and language arts. However, educators need to recognize that movement experiences in physical education also can be linked to academic curricula and, may even lead the…
Non-null annular subaperture stitching interferometry for aspheric test
NASA Astrophysics Data System (ADS)
Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian
2015-10-01
A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.
Gouy phase shift for annular beam profiles in attosecond experiments.
Schlaepfer, F; Ludwig, A; Lucchini, M; Kasmi, L; Volkov, M; Gallmann, L; Keller, U
2017-02-20
Attosecond pump-probe measurements are typically performed by combining attosecond pulses with more intense femtosecond, phase-locked infrared (IR) pulses because of the low average photon flux of attosecond light sources based on high-harmonic generation (HHG). Furthermore, the strong absorption of materials at the extreme ultraviolet (XUV) wavelengths of the attosecond pulses typically prevents the use of transmissive optics. As a result, pump and probe beams are typically recombined geometrically with a center-hole mirror that reflects the larger IR beam and transmits the smaller XUV, which leads to an annular beam profile of the IR. This modification of the IR beam can affect the pump-probe measurements because the propagation that follows the reflection on the center-hole mirror can strongly deviate from that of an ideal Gaussian beam. Here we present a detailed experimental study of the Gouy phase of an annular IR beam across the focus using a two-foci attosecond beamline and the RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) technique. Our measurements show a Gouy phase shift of the truncated beam as large as 2π and a corresponding rate of 50 as/mm time delay change across the focus in a RABBITT measurement. These results are essential for attosecond pump-probe experiments that compare measurements of spatially separated targets.
A Compact Annular Ring Microstrip Antenna for WSN Applications
Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie
2012-01-01
A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels. PMID:23012510
Characterization of interfacial waves in horizontal core-annular flow
NASA Astrophysics Data System (ADS)
Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.
2016-11-01
In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.
Portal annular pancreas: a systematic review of a clinical challenge.
Harnoss, Jonathan M; Harnoss, Julian C; Diener, Markus K; Contin, Pietro; Ulrich, Alexis B; Büchler, Markus W; Schmitz-Winnenthal, Friedrich H
2014-10-01
Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF).On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered.In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery).Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option.
Critical Heat Flux in a Thin Annular Channel
NASA Astrophysics Data System (ADS)
Habtour, Ahmed; Anderson, Elgin
2002-11-01
The improved accuracy in predicting critical heat flux (CHF) for specific reactor core geometry would allow for increased power output. The objectives of this project were to incorporate a scale model test to determine the feasibility of generating high power density in an annular fuel arrangement in a reactor. The desired power density was 100W/cm2. This would be accomplished by using resistive heating on the outer cylinder of an annular flow channel between concentric cylinders. The inner cylinder consists of a hemispherical shape in the upstream direction to condition the flow. The second objective was to study the behavior of two-phase flow through a simulated reactor core. The CHF would be measured and compared with existing correlations. Finally, the concept of a future full scale testing would be investigated. The results of this project are not only applicable to nuclear reactors, but can be used to increase the efficiency of other applications such as fuel cells, combustion engines, turbines and polymer processes.
Design Attributes and Scale Up Testing of Annular Centrifugal Contactors
David H. Meikrantz; Jack D. Law
2005-04-01
Annular centrifugal contactors are being used for rapid yet efficient liquid- liquid processing in numerous industrial and government applications. Commercialization of this technology began eleven years ago and now units with throughputs ranging from 0.25 to 700 liters per minute are readily available. Separation, washing, and extraction processes all benefit from the use of this relatively new commercial tool. Processing advantages of this technology include: low in-process volume per stage, rapid mixing and separation in a single unit, connection-in-series for multi-stage use, and a wide operating range of input flow rates and phase ratios without adjustment. Recent design enhancements have been added to simplify maintenance, improve inspection ability, and provide increased reliability. Cartridge-style bearing and mechanical rotary seal assemblies that can include liquid-leak sensors are employed to enhance remote operations, minimize maintenance downtime, prevent equipment damage, and extend service life. Clean-in-place capability eliminates the need for disassembly, facilitates the use of contactors for feed clarification, and can be automated for continuous operation. In nuclear fuel cycle studies, aqueous based separations are being developed that efficiently partition uranium, actinides, and fission products via liquid-liquid solvent extraction. Thus, annular centrifugal contactors are destined to play a significant role in the design of such new processes. Laboratory scale studies using mini-contactors have demonstrated feasibility for many such separation processes but validation at an engineering scale is needed to support actual process design.
Swirling Annular Flow Experiments with Application to Plasma Torches
NASA Astrophysics Data System (ADS)
Fisher, L. E.; Settles, G. S.; Miller, J. D.
2001-11-01
Swirling flows have many applications such as combustors and cyclone separators. Here, a turbulent swirling annular cold-flow experiment is conducted in order to gain insight into conditions within a plasma cutting torch. Compressed air is forced through six circumferentially-spaced holes that impart tangential velocity to the flow at the annulus inlet. The flow subsequently traverses an annulus of L/D1 =1.8 before exiting through a sonic nozzle. The annulus (created by a cylindrical cathode in the center of the actual plasma torch) is viewable through an outer plexiglass cylinder in our 11:1 scaled-up cold-flow apparatus. Surface oil-flow visualization and laser sheet imaging are employed to investigate the annular flowfield at a Reynolds number of about 1000 based on gap width D2-D1. Results of these experiments, leading to a physical model of the flowfield, are shown. These results are helpful in understanding and improving the fluid-dynamic behavior of actual plasma torches, widely used to cut sheet metal in manufacturing. Supported by Hypertherm Inc.
The Growth of Instabilities in Annular Liquid Sheets
Duke, Daniel J.; Honnery, Damon R; Soria, Julio
2015-11-01
An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed image correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.
Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool
NASA Astrophysics Data System (ADS)
Duan, Li; Kang, Qi; Zhang, Di
2016-07-01
Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.
Flow properties of particles in a model annular shear cell
NASA Astrophysics Data System (ADS)
Wang, X.; Zhu, H. P.; Yu, A. B.
2012-05-01
In order to quantitatively investigate the mechanical and rheological properties of solid flow in a shear cell under conditions relevant to those in an annular cell, we performed a series of discrete particle simulations of slightly polydispersed spheres from quasi-static to intermediate flow regimes. It is shown that the average values of stress tensor components are uniformly distributed in the cell space away from the stationary walls; however, some degree of inhomogeneity in their spatial distributions does exist. A linear relationship between the (internal/external) shear and normal stresses prevails in the shear cell and the internal and external friction coefficients can compare well with each other. It is confirmed that annular shear cells are reasonably effective as a method of measuring particle flow properties. The so-called I-rheology proposed by Jop et al. [Nature (London) 441, 727 (2006)] is rigorously tested in this cell system. The results unambiguously display that the I-rheology can effectively describe the intermediate flow regime with a high correlation coefficient. However, significant deviations take place when it is applied to the quasi-static regime, which corresponds to very small values of inertial number.
The Effect of Nonuniform Inlet Conditions on Annular Diffusers
NASA Astrophysics Data System (ADS)
Padilla, Angelina; Elkins, Chris; Eaton, John
2010-11-01
Most practical diffusers have complex 3D geometries and may have highly disturbed inlet flows. The performance of diffusers designed for optimum pressure recovery is governed by flow separation which can be very sensitive to inlet perturbations. We are examining the effect of upstream disturbances on the performance of practical annular diffusers. Experiments are conducted in an annular diffuser sector containing a single NACA 0015 airfoil shaped support strut. Three component, time averaged velocities are measured using magnetic resonance velocimetry and static pressure data are measured with conventional wall taps. We are testing four inlet conditions: a uniform velocity profile with thin boundary layers and relatively low turbulence intensity, a similar case with higher turbulence levels, a mean profile with uniform velocity except for a high velocity wall jet at the outer radius, and a nonuniform profile in which the mean velocity decreases with increasing radius. Generally, the results show that the diffuser acts to increase flow distortion. For the case with the radial velocity gradient, passing through the diffuser strongly increases the velocity gradient. The wall jet on the outer (diffusing) wall eliminates flow separation resulting in higher pressure recovery and thicker wall boundary layers on the other three walls. Interestingly, the separated wake of the support strut closes more rapidly for the case with the radial velocity gradient.
Novel applications of continuous annular chromatography: Separation of sugars
Howard, A.J.; Carta, G.; Byers, C.H.
1987-01-01
Continuous chromatographic separations of fructose-glucose-sucrose mixtures have been investigated experimentally in a laboratory-scale continuous annular chromatograph using Ca-exchanged Dowex 50W-X8 resin as adsorbent. Comparative chromatographic separation studies have also been conducted for the system using a conventional fixed-bed column packed with the same resin. Complete resolution of fructose-glucose mixtures could be obtained both in a 60 cm-long continuous annular chromatograph and in a conventional column of the same length with sugars feed concentration up to 200 g/L. In the four-component mixture blue dextran (higher molecular weight saccharide), sucrose, glucose and fructose complete rsolution of all species except sucrose-glucose under the relatively mild separating conditions tested. The experimental results have been analyzed in terms of approximate linear chromatographic theories for fixed and rotating beds. Bed properties and equilibrium and mass transfer parameters used in the model were obtained through independent experiments. With these parameters a good fit to the experimental results was obtained. Differences in feed mixtures and dispersion characteristics contribute to the minor offset between fixed bed and continuous chromatograph results. 21 refs., 12 figs., 3 tabs.
Baroclinic annular variability of internal motions in a Patagonian fjord
NASA Astrophysics Data System (ADS)
Ross, Lauren; Valle-Levinson, Arnoldo; Pérez-Santos, Iván.; Tapia, Fabian J.; Schneider, Wolfgang
2015-08-01
Time series of horizontal velocities, echo intensity, wind velocity, and atmospheric pressure were collected for ˜200 days in a Patagonian fjord to explore pycnocline motions produced by the Southern Hemisphere's baroclinic annular mode (BAM). The BAM variability occurs between 20 and 30 days and is associated with fluctuations in atmospheric kinetic energy and in turbulent fluxes of heat. Spectra of horizontal velocities and normalized echo intensity in the fjord's water showed highest energy between 25 and 30 days. This was explained by sustained westerly winds associated with extreme low-pressure systems (˜900 hPa) that had periodicity related to the BAM. Wind forcing produced >40 cm s-1 along-channel and cross-channel currents in the surface layer, which in turn created a wind-induced setup toward the head of the fjord. The setup was accompanied by a deepening of the pycnocline (from 5 to 15 m depth) with ˜25 to 30 day periodicity, as derived from the normalized echo intensity. The dominant empirical orthogonal function mode of the normalized echo intensity profiles explained 70.8% of the variance and also exhibited a ˜25-30 day periodicity. Further, a wavelet and spectral analysis of 10 years of atmospheric pressure indicated peaks between 25 and 30 days each year, indicating that the BAM consistently influences weather patterns in Chilean Patagonia. This is the first documented case of baroclinic annular variability in a specific region of the Southern Hemisphere, and of its effects on fjord systems.
Mount assembly for porous transition panel at annular combustor outlet
NASA Technical Reports Server (NTRS)
Sweeney, Ralph B. (Inventor); Verdouw, Albert J. (Inventor)
1980-01-01
A gas turbine engine combustor assembly of annular configuration has outer and inner walls made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween and each outer and inner wall including a transition panel of porous metal defining a combustor assembly outlet supported by a combustor mount assembly including a stiffener ring having a side undercut thereon fit over a transition panel end face; and wherein an annular weld joins the ring to the end face to transmit exhaust heat from the end face to the stiffener ring for dissipation from the combustor; a combustor pilot member is located in axially spaced, surrounding relationship to the end face and connector means support the stiffener ring in free floating relationship with the pilot member to compensate for both radial and axial thermal expansion of the transition panel; and said connector means includes a radial gap for maintaining a controlled flow of coolant from outside of the transition panel into cooling relationship with the stiffener ring and said weld to further cool the end face against excessive heat build-up therein during flow of hot gas exhaust through said outlet.
A compact annular ring microstrip antenna for WSN applications.
Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie
2012-01-01
A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.
Effects of Gravity on Bubble Formation in an Annular Jet
NASA Technical Reports Server (NTRS)
Koepp, R. A.; Parthasarathy, R. N.; Gollahalli, S. R.
2004-01-01
The effects of gravity on the bubble formation in an annular jet were studied. The experiments were conducted in the 2.2-second drop tower at the NASA Glenn Research Center. Terrestrial gravity experiments were conducted at the Fluid Dynamics Research Laboratory at the University of Oklahoma. Stainless steel tubing with inner diameters of 1/8" (gas inner annulus) and 5/16" (liquid outer annulus) served as the injector. A rectangular test section, 6" x 6" x 14" tall, made out of half-inch thick Lexan was used. Images of the annular jet were acquired using a high-speed camera. The effects of gravity and varying liquid and gas flow rates on bubble size, wavelength, and breakup length were documented. In general, the bubble diameter was found to be larger in terrestrial gravity than in microgravity for varying Weber numbers (0.05 - 0.16 and 5 - 11) and liquid flow rates (1.5 ft/s - 3.0 ft/s). The wavelength was found to be larger in terrestrial gravity than in microgravity, but remained constant for varying Weber numbers. For low Weber numbers (0.05 - 0.16), the breakup length in microgravity was significantly higher than in terrestrial gravity. Comparison with linear stability analysis showed estimated bubble sizes within 9% of experimental bubble sizes. Bubble size compared to other terrestrial gravity experiments with same flow conditions showed distinct differences in bubble size, which displayed the importance of injector geometry on bubble formation.
NASA Astrophysics Data System (ADS)
Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Andina, D.; Sanchez, M. E.
2012-04-01
The authors have been involved in Model Codes for Construction prior to Eurocodes now Euronorms, and in a Drainage Instruction for Roads for Spain that adopted a prediction model from BPR (Bureau of Public Roads) of USA to take account of evident regional differences in Iberian Peninsula and Spanish Isles, and in some related studies. They used Extreme Value Type I (Gumbell law) models, with independent actions in superposition; this law was also adopted then to obtain maps of extreme rains by CEDEX. These methods could be extrapolated somehow with other extreme values distributions, but the first step was useful to set valid superposition schemas for actions in norms. As real case, in East of Spain rain comes usually extensively from normal weather perturbations, but in other cases from "cold drop" local high rains of about 400mm in a day occur, causing inundations and in cases local disasters. The city of Valencia in East of Spain was inundated at 1,5m high from a cold drop in 1957, and the river Turia formerly through that city was just later diverted some kilometers to South in a wider canal. With Gumbell law the expected intensity grows with time for occurrence, indicating a value for each given "return period", but the increasing speed grows with the "annual dispersion" of the Gumbell law, and some rare dangerous events may become really very possible in periods of many years. That can be proved with relatively simple models, e.g. with Extreme Law type I, and they could be made more precise or discussed. Such effects were used for superposition of actions on a structure for Model Codes, and may be combined with hydraulic effects, e.g. for bridges on rivers. These different Gumbell laws, or other extreme laws, with different dispersion may occur for marine actions of waves, earthquakes, tsunamis, and maybe for human perturbations, that could include industrial catastrophes, or civilization wars if considering historical periods.
Annular Lichenoid Dermatitis of Youth: A Chronic Case Managed Using Pimecrolimus.
Malachowski, Stephen J; Creasey, Mackenzie; Kinkley, Nancy; Heaphy, Michael R
2016-11-01
Annular lichenoid dermatitis of youth, first described in 2003, is a rare and occasionally chronic skin disease. We report a case of annular lichenoid dermatitis of youth relapsing over the course of 5 years successfully treated and maintained with topical pimecrolimus cream.
Souza, Fernanda Homem de Mello de; Ribeiro, Camila Ferrari; Pereira, Marcela Abou Chami; Mesquita, Lismary; Fabrício, Lincoln
2011-01-01
Simultaneous occurrence of granuloma annulare and necrobiosis lipoidica is quite rare. There are seven reported cases in the literature, but only one presenting ulcerated necrobiosis lipoidica. We report a 39-year-old male with histopathologically confirmed granuloma annulare and ulcerated necrobiosis lipoidica, without diabetes mellitus.
NASA Technical Reports Server (NTRS)
Groom, N. J.
1979-01-01
An analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator with permanent magnet fluxbiasing is presented. An AMCD consists of a spinning annular rim which is suspended by a noncontacting linear electromagnetic spin motor. The actuator is treated as a lumped-parameter electromechanical system in the development of the model.
NASA Astrophysics Data System (ADS)
Cai, Jianjun; Shen, Xueju; Lin, Chao
2016-01-01
We propose a security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition by combining full phase encryption technique with our previous cryptosystem. In the encryption process, the original image is phase encoded rather than bonded with a RPM. In the decryption process, two phase-contrast filters (PCFs) are employed to obtain the plaintext. As a consequence, the new cryptosystem guarantees high-level security to the attack based on iterative Fourier transform and maintains the good performance of our previous cryptosystem, especially conveniences. Some numerical simulations are presented to verify the validity and the performance of the modified cryptosystem.
NASA Astrophysics Data System (ADS)
Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.
2009-10-01
Scattering in one dimension of an attractive ultracold bosonic cloud from a barrier can lead to the formation of two nonoverlapping clouds. Once formed, the clouds travel with constant velocity, in general different in magnitude from that of the incoming cloud, and do not disperse. The phenomenon and its mechanism—transformation of kinetic energy to internal energy of the scattered cloud—are obtained by solving the time-dependent many-boson Schrödinger equation. The analysis of the wave function shows that the object formed corresponds to a quantum superposition state of two distinct wave packets traveling through real space.
Effect of Superposition Location of Ultrasonic Fields on Sonochemical Reaction Rate
NASA Astrophysics Data System (ADS)
Yasuda, Keiji; Matsuura, Kazumasa
2013-07-01
The effect of the superposition location of ultrasonic fields on the sonochemical reaction rate was investigated using a sonochemical reactor with four transducers at 486 kHz. The transducers were attached at the bottom, upper side middle side, and lower side of a vessel. The reaction rate of potassium iodide in aqueous solution was measured. In the cases of the upper and bottom transducers, and the lower and bottom transducers, the synergy effect of sonochemical efficiency was observed. The amount of synergy effect for the upper and bottom transducers increased with increasing electric power.
Annular core liquid-salt cooled reactor with multiple fuel and blanket zones
Peterson, Per F.
2013-05-14
A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.
Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Elrod, David Alan
1988-01-01
The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.
Filoux, Erwan; Mamou, Jonathan; Moran, Carmel M; Pye, Stephen D; Ketterling, Jeffrey A
2012-12-01
A resolution integral (RI) method based on anechoic- pipe, tissue-mimicking phantoms was used to compare the detection capabilities of high-frequency imaging systems based on a single-element transducer, a state-of-the-art 256-element linear array, or a 5-element annular array. All transducers had a central frequency of 40 MHz with similar conventionally measured axial and lateral resolutions (about 50 and 85 μm, respectively). Using the RI metric, the annular array achieved the highest performance (RI = 60), followed by the linear array (RI = 47), and the single-element transducer (RI = 24). Results showed that the RI metric could be used to efficiently quantify the effective transducer performance and compare the image quality of different systems.
Shah, Shweta B; Sahinidis, Nikolaos V
2012-01-01
Protein structure alignment is the problem of determining an assignment between the amino-acid residues of two given proteins in a way that maximizes a measure of similarity between the two superimposed protein structures. By identifying geometric similarities, structure alignment algorithms provide critical insights into protein functional similarities. Existing structure alignment tools adopt a two-stage approach to structure alignment by decoupling and iterating between the assignment evaluation and structure superposition problems. We introduce a novel approach, SAS-Pro, which addresses the assignment evaluation and structure superposition simultaneously by formulating the alignment problem as a single bilevel optimization problem. The new formulation does not require the sequentiality constraints, thus generalizing the scope of the alignment methodology to include non-sequential protein alignments. We employ derivative-free optimization methodologies for searching for the global optimum of the highly nonlinear and non-differentiable RMSD function encountered in the proposed model. Alignments obtained with SAS-Pro have better RMSD values and larger lengths than those obtained from other alignment tools. For non-sequential alignment problems, SAS-Pro leads to alignments with high degree of similarity with known reference alignments. The source code of SAS-Pro is available for download at http://eudoxus.cheme.cmu.edu/saspro/SAS-Pro.html.
Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states
NASA Astrophysics Data System (ADS)
Kish, Laszlo B.
2009-03-01
A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case ( N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.
Generation of mesoscopic quantum superpositions through Kerr-stimulated degenerate downconversion
NASA Astrophysics Data System (ADS)
Paris, Matteo G. A.
1999-12-01
A two-step interaction scheme involving icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/>(2) and icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/>(3) nonlinear media is suggested for the generation of Schrödinger cat-like states of a single-mode optical field. In the first step, a weak coherent signal undergoes a self-Kerr phase modulation in a icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/>(3) crystal, leading to a Kerr kitten, namely a microscopic superposition of two coherent states with opposite phases. In the second step, such a Kerr kitten enters a icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/>(2) crystal and, in turn, plays the role of a quantum seed for stimulated phase-sensitive amplification. The output state in the above-threshold regime consists in a quantum superposition of mesoscopically distinguishable squeezed states, i.e. an optical cat-like state. The whole setup does not rely on conditional measurements, and is robust against decoherence, as only weak signals interact with the Kerr medium.
Enhanced simulation software for rocket turbopump, turbulent, annular liquid seals
NASA Technical Reports Server (NTRS)
Padavala, Satya; Palazzolo, Alan
1994-01-01
One of the main objectives of this work is to develop a new dynamic analysis for liquid annular seals with arbitrary profile and to analyze a general distorted interstage seal of the space shuttle main engine high pressure oxygen turbopump (SSME-ATD-HPOTP). The dynamic analysis developed is based on a method originally proposed by Nelson and Nguyen. A simpler scheme based on cubic splines is found to be computationally more efficient and has better convergence properties at higher eccentricities. The first order solution of the original analysis is modified by including a more exact solution that takes into account the variation of perturbed variables along the circumference. A new set of equations for dynamic analysis are derived based on this more general model. A unified solution procedure that is valid for both Moody's and Hirs' friction models is presented. Dynamic analysis is developed for three different models: constant properties, variable properties, and thermal effects with variable properties. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. An example case of an elliptical seal with varying degrees of axial curvature is analyzed in detail. A case study based on predicted clearances of an interstage seal of the SSME-ATD-HPOTP is presented. Dynamic coefficients based on external specified load are introduced to analyze seals that support a preload. The other objective of this work is to study the effect of large rotor displacements of SSME-ATD-HPOTP on the dynamics of the annular seal and the resulting transient motion. One task is to identify the magnitude of motion of the rotor about the centered position and establish limits of effectiveness of using current linear models. This task is accomplished by solving the bulk flow model seal governing equations directly for transient seal forces for any given type of motion, including motion with large eccentricities. Based on the above study, an equivalence is
Annular suspension and pointing system with controlled DC electromagnets
NASA Technical Reports Server (NTRS)
Vu, Josephine Lynn; Tam, Kwok Hung
1993-01-01
The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.
Visualization of lithium ions by annular bright field imaging.
Oshima, Yoshifumi; Lee, Soyeon; Takayanagi, Kunio
2016-10-14
The detection of lithium ions is required for characterization of lithium ion batteries, since the movement of lithium ions in the battery is one of the key ways to improve the performance. Annular bright field (ABF) imaging enables us to visualize individual lithium atomic columns simultaneously with heavy elements. Furthermore, it has been found that the number of lithium ions at the column is countable when the specimen is thin. These results suggest that movement of lithium ions in the material can be observed by taking consecutive ABF images during operation or in situ ABF observation. Actually, the spinel structure of L2V4O crystals was directly observed to be transformed into the defective NaCl structure at the moment when lithium ions were extracted from the original position during electron beam irradiation. We clarify the features of ABF imaging by comparing it with HAADF imaging in order to understand what information can be obtained by ABF imaging directly.
Dynamic force and moment coefficients for short length annular seals
NASA Astrophysics Data System (ADS)
San Andres, Luis
1993-01-01
Close form expressions for the dynamic force and moment coefficients in short length annular pressure seals operating at the concentric and aligned position are derived. The analysis considers fully developed turbulent flow within the seal and determines a set of ordinary differential equations for the bulk-flow field due to perturbations in rotor displacements and angular motions. The flow equations are solved exactly for seals of short length where dynamic variations in circumferential velocity are neglected. The analytical solution derived is simple and reasonably accurate for seals of length to diameter ratios (L/D) as large as 0.5 as comparisons with results from full-scale numerical solutions show. The formulae presented are practical for use in preliminary design stages and parametric studies of dynamic seal performance.
Geometry-Driven Folding of a Floating Annular Sheet.
Paulsen, Joseph D; Démery, Vincent; Toga, K Buğra; Qiu, Zhanlong; Russell, Thomas P; Davidovitch, Benny; Menon, Narayanan
2017-01-27
Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of self contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple two-dimensional setting where an annular polymer sheet floating on an air-water interface is subjected to different tensions on the inner and outer rims. The sheet folds and wrinkles into many distinct morphologies that break axisymmetry. These states can be understood within a recent geometric approach for determining the gross shape of extremely bendable yet inextensible sheets by extremizing an appropriate area functional. Our analysis explains the remarkable feature that the observed buckling transitions between wrinkled and folded shapes are insensitive to the bending rigidity of the sheet.
Annular resonators for high-power chemical lasers
NASA Astrophysics Data System (ADS)
Wade, Richard C.
1993-08-01
Resonators capable of extracting highly coherent energy from DF and HF chemical laser annular gain media have been under investigation for weapon application since 1974. This survey article traces the background of interest in these devices, describes the various concepts that have been experimentally and analytically investigated, and discusses the issues associated with their operation. From the discussion of issues, preferred concepts are selected. Applicability of these concepts to high-power operation is addressed through discussions of past and ongoing high-power demonstration programs and the issues facing their application to weapon sized devices capable of strategic and tactical missions such as ballistic missile defense (BMD), theater missile defense (TMD), and anti satellite (ASAT).
Development of annular targets for {sup 99}MO production.
Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.
1999-09-30
The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of {sup 99}Mo.
Hydrodynamics of annular-dispersed flow. [PWR; BWR
Ishii, M.; Kataoka, I.
1982-01-01
The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data.
The liquid annular reactor system (LARS) for deep space exploration
NASA Astrophysics Data System (ADS)
Maise, George; Paniagua, John; Powell, James R.; Ludewig, Hans; Todosow, Michael
1999-05-01
A new propulsion concept for high Δ V space missions, termed LARS (Liquid Annular Reactor System), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (-6000 K). The molten fuel is contained in a lower-temperature solid container which rotates to stabilize and hold in the liquid layer by centripetal force. Containment of ultra high temperature molten refractories, using this method, has been experimentally demonstrated by A.V. Grosse. The specific impulse of a rocket exhausting hydrogen at 6000 K is 2000 seconds, approximately double that of solid-core nuclear rockets. A LARS-powered space probe could accomplish extra-solar missions to 550 A.U. in approximately 35 years.
Annular Plaques on the Tongue: What Is Your Diagnosis?
Kayhan, Tuba Çelebĺ; Bĺlaç, Cemal; Bĺlaç, Dilek Bayraktar; Ecemĺş, Talat
2011-01-01
Geographic tongue is an inflammatory disorder of the tongue characterized by asymptomatic erythematous patches with serpiginous borders. Candidiasis of the tongue may be confused with geographic tongue. A 63-year-old male patient with painful white annular lesions localized to the left side of his tongue is presented. He applied topical corticosteroid and antiinflammatory agents, but his lesions did not respond to those therapies. Using direct mycologic examination and culture, the patient was diagnosed with candidiasis. After systemic and topical antifungal therapy, clinical improvement was observed. With this case, the clinical forms of oral candidiasis were discussed, and it was suggested that the clinical presentation of mucosal candidiasis may vary according to the stage of infection and individual immunity. PMID:22148032
Investigation of a low NOx full-scale annular combustor
NASA Technical Reports Server (NTRS)
1982-01-01
An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.
Mathematical model for multicomponent separations on the continuous annular chromatograph
Bratzler, R.L.; Begovich, J.M.
1980-12-01
A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally.
The Effect of Upstream Vane Wakes on Annular Diffuser Flows
NASA Astrophysics Data System (ADS)
Cherry, Erica; Padilla, Angelina; Elkins, Christopher; Eaton, John
2008-11-01
Experiments were performed to determine the sensitivity to inlet conditions of the flow in two annular diffusers. One of the diffusers was a conservative design typical of a diffuser directly upstream of the combustor in a jet engine. The other had the same length and inlet shape as the first diffuser but a larger area ratio and was meant to operate on the verge of separation. Each diffuser was connected to two different inlets, one containing a fully-developed channel flow, the other containing wakes from a row of airfoils. Three-component velocity measurements were taken on the flow in each inlet/diffuser combination using Magnetic Resonance Velocimetry. Results will be presented on the 3D velocity fields in the two diffusers and the effect of the airfoil wakes on separation and secondary flows.
Aerodynamic performance of an annular classical airfoil cascade
NASA Technical Reports Server (NTRS)
Bergsten, D. E.; Stauter, R. C.; Fleeter, S.
1983-01-01
Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.
Annular billiard dynamics in a circularly polarized strong laser field
NASA Astrophysics Data System (ADS)
Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.
2012-01-01
We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.
Stability of Three-Layered Annular Plate with Composite Facings
NASA Astrophysics Data System (ADS)
Pawlus, D.
2017-02-01
Paper presents the behaviour of three-layered annular plates subjected to loads acting in plate plane. Plates are composed of laminated fibre-reinforced composite facings and foam core. The static and dynamic parameters of plate critical state were evaluated. The sensitivity of composite structure of plate to the acting of quickly increasing in time loads is shown. The problem has been solved numerically using the finite element method. Results have been compared with ones obtained for plate models with isotropic layers. These plate models have also been calculated solving formulated task analytically and numerically by means of the finite difference method. Solutions to the problem concern the axisymmetrical and asymmetrical plate buckling modes. Numerous presented tables and figures create the image of the stability behaviour of examined composite plates.
Geometry-Driven Folding of a Floating Annular Sheet
NASA Astrophysics Data System (ADS)
Paulsen, Joseph D.; Démery, Vincent; Toga, K. Buǧra; Qiu, Zhanlong; Russell, Thomas P.; Davidovitch, Benny; Menon, Narayanan
2017-01-01
Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of self contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple two-dimensional setting where an annular polymer sheet floating on an air-water interface is subjected to different tensions on the inner and outer rims. The sheet folds and wrinkles into many distinct morphologies that break axisymmetry. These states can be understood within a recent geometric approach for determining the gross shape of extremely bendable yet inextensible sheets by extremizing an appropriate area functional. Our analysis explains the remarkable feature that the observed buckling transitions between wrinkled and folded shapes are insensitive to the bending rigidity of the sheet.
Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements
David H. Meikrantz; Troy G. Garn; Jack D. Law
2010-02-01
A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middle of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.
Design and application of three-zone annular filters
NASA Astrophysics Data System (ADS)
Liu, Ximin; Liu, Liren; Liu, De'an; Bai, Lihua
2006-10-01
We design three-zone annular filters to be applied to optical storage system. The designed filters extend the depth of focus and realize transverse superresolution simultaneously, which will improve the performance of optical storage system greatly. And we propose two feasible schemes to improve imaging resolution of three-dimensional imaging system. One scheme depends on a complex filter formed by cascading of a three-zone phase filter and a three-zone amplitude filter. The complex filter converge the optimized transverse superresolution and the optimized axial superresolution of two different filters onto a single filter. It can improve the three-dimensional imaging performances greatly. Another scheme depends on a single three-zone complex filter. We propose a three-zone complex filter with phase shift 0.8[pi], which presents bigger design margin, better imaging quality and stronger three-dimensional superresolution capability.
Interfacial shear modeling in two-phase annular flow
Kumar, R.; Edwards, D.P.
1996-11-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.
Interfacial shear modeling in two-phase annular flow
Kumar, R.; Edwards, D.P.
1996-07-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.
Interfacial transfer in annular dispersed flow. [PWR; BWR
Ishii, M.; Kataoka, I.
1982-01-01
The interfacial drag, droplet entrainment, droplet deposition and droplet-size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The onset of droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet-size distribution have been obtained from a simple model in collaboration with a large number of data. Then the rate equations for entrainment and deposition have been developed. The drag correlations relevant to the droplet transfer is also presented. The comparison of the correlations to various data show satisfactory agreement.
Stability of Three-Layered Annular Plate with Composite Facings
NASA Astrophysics Data System (ADS)
Pawlus, D.
2016-10-01
Paper presents the behaviour of three-layered annular plates subjected to loads acting in plate plane. Plates are composed of laminated fibre-reinforced composite facings and foam core. The static and dynamic parameters of plate critical state were evaluated. The sensitivity of composite structure of plate to the acting of quickly increasing in time loads is shown. The problem has been solved numerically using the finite element method. Results have been compared with ones obtained for plate models with isotropic layers. These plate models have also been calculated solving formulated task analytically and numerically by means of the finite difference method. Solutions to the problem concern the axisymmetrical and asymmetrical plate buckling modes. Numerous presented tables and figures create the image of the stability behaviour of examined composite plates.
Fuel Injector Design Optimization for an Annular Scramjet Geometry
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.
2003-01-01
A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.
Annular-beam, 17 GHz free-electron maser experiment
Earley, L.M.; Carlsten, B.E.; Fazio, M.V.
1997-06-01
Experiments have been conducted on a 15-17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. The electron beam source was a 1 {mu}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacted with the TM{sub 02} and TM{sub 03} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. This greatly reduced the kinetic energy loss caused by the beam potential depression associated with the space charge which was a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. The experiment was operated in a single shot mode with a large number of diagnostics to measure power, frequency and energy.
Fast High Capacity Annular Gas Puff Valve Design Concept
NASA Astrophysics Data System (ADS)
Ruden, Edward
2000-10-01
A fast opening gas valve design concept is presented that can theoretically inject a few grams of D2 gas radially outward into a coaxial annular vacuum region with a radius of about 10 cm in less that 100 μ s. The concept employs a single turn 20-30 T pulsed magnetic field coil that axially accelerates an Mg alloy ring, which seals a gas plenum, to high velocity, releasing the gas. Both coil and ring are profiled to minimize stress in the ring. Such a device could be used to supply the initial gas load for a proposed 5 MJ Dense Plasma Focus driven by AFRL's Shiva Star Capacitor bank. The intent here is keep the vacuum current feed insulator under high vacuum during the discharge to avoid surface breakdown. Alternatively, a high energy rep ratable plasma flow opening switch could be supplied with such a valve. This work is funded by the USAF.
Digital controller design: Analysis of the annular suspension pointing system
NASA Technical Reports Server (NTRS)
Kuo, B. C.
1979-01-01
The Annular Suspension and Pointing System (ASPS) is a payload auxiliary pointing device of the Space Shuttle. The ASPS is comprised of two major subassemblies, a vernier and a coarse pointing subsystem. The experiment is attached to a mounting plate/rim combination which is suspended on magnetic bearing/actuators (MBA) strategically located about the rim. Fine pointing is achieved by gimballing the plate/rim within the MBA gaps. Control about the experiment line-of-sight is obtained through the use of a non-contacting rim drive and positioning torquer. All sensors used to close the servo loops on the vernier system are noncontacting elements. Therefore, the experiment is a free-flyer constrained only by the magnetic forces generated by the control loops.
Two-phase flow instabilities in a vertical annular channel
Babelli, I.; Nair, S.; Ishii, M.
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Closed-cycle annular-flow-return laser
Olson, R.A.; Sarka, B. Jr.; Garscadden, A.; Bletzinger, P.
1981-07-01
A compact, high repetition rate, closed-cycle rare-gas laser has been achieved in a novel design utilizing an annular flow return surrounding the laser flow channel. The 112-cm long by 30.5-cm-diam. laser head is compact and attractive for portable applications. High repetition rate (to 15 kHz) multiline laser operation has been achieved in high-pressure (to 2 atm) mixtures of Ne--Xe (6 lines), Ar--Xe (7 lines), He--Xe (9 lines), He--Kr (4 lines), and He--Ar (3 lines). Reliable long lifetime performance has been demonstrated by operating a He--Xe laser continuously for 100 hours at a pulse-repetition rate of 5 kHz (1.8 x 10/sup 9/ pulses) with no degradation of the 1.1-W average laser output power.
Annular dark field transmission electron microscopy for protein structure determination.
Koeck, Philip J B
2016-02-01
Recently annular dark field (ADF) transmission electron microscopy (TEM) has been advocated as a means of recording images of biological specimens with better signal to noise ratio (SNR) than regular bright field images. I investigate whether and how such images could be used to determine the three-dimensional structure of proteins given that an ADF aperture with a suitable pass-band can be manufactured and used in practice. I develop an approximate theory of ADF-TEM image formation for weak amplitude and phase objects and test this theory using computer simulations. I also test whether these simulated images can be used to calculate a three-dimensional model of the protein using standard software and discuss problems and possible ways to overcome these.
Intermittent Flow of Granular Matter in an Annular Geometry
NASA Astrophysics Data System (ADS)
Brzinski, Ted; Daniels, Karen E.
Granular solids can be subjected to a finite stress below which the response is elastic. Above this yield stress, however, the material fails catastrophically, undergoing a rapid plastic deformation. In the case of a monotonically increasing stress the material exhibits a characteristic stick-slip response. We investigate the statistics of this intermittent failure in an annular shear geometry, driven with a linear-ramp torque in order to generate the stick-slip behavior. The apparatus is designed to allow visual access to particle trajectories and inter-particle forces (through the use of photoelastic materials). Additionally, twelve piezoelectric sensors at the outer wall measure acoustic emissions due to the plastic deformation of the material. We vary volume fraction, and use both fixed and deformable boundaries. We measure how the distribution of slip size and duration are related to the bulk properties of the packing, and compare to systems with similar governing statistics.
Non-axisymmetric instability of core-annular flow
NASA Astrophysics Data System (ADS)
Hu, Howard H.; Patankar, Neelesh
1995-05-01
Stability of core-annular flow of water and oil in a vertical circular pipe is studied with respect to non-axisymmetric disturbances. Results show that when the oil core is thin, the flow is most unstable to the asymmetric sinuous mode of disturbance, and the core moves in the form of corkscrew waves as observed in experiments. The asymmetric mode of disturbance is the most dangerous mode for quite a wide range of material and flow parameters. This asymmetric mode persists in vertical pipes with upward and downward flows and in horizontal pipes. The analysis also applies to the instability of freely rising axisymmetric cigarette smoke or a thermal plume. The study predicts a unique wavelength for the asymmetric meandering waves.
Approximants to the Tonks-Langmuir theory for a collisionless annular plasma.
Zhang, Yunchao; Charles, Christine; Boswell, Rod
2015-12-01
Maclaurin series approximant and Padé rational approximant are used to solve the Tonks-Langmuir theory for an annular plasma and investigate the radial transport behavior of charged particles. Coefficients of the well-known Maclaurin approximant are given in a novel form of recurrence relations which are convenient for computation and present a lower limit for the annular ratio of inner radius to outer radius (i.e., this approximant is not applicable to annular geometries with small inner radii). The newly introduced Padé approximant extrapolates the annular ratio limit determined by the Maclaurin approximant to a lower value and hence is applicable to most annular geometries. General radial profiles of the normalized plasma density and mean drift velocity of ions are given across the annulus and they are independent of the gas type and the Paschen number of the discharge. The annular modeling is applied to an argon plasma and obtains the electron temperature as a function of the Paschen number for different annular geometries.
Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL
Troy G. Garn; David H. Meikrantz; Nick R. Mann; Jack D. Law; Terry A. Todd
2008-09-01
Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a wide range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2016-08-01
In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser
Adaptive superposition of finite element meshes in linear and nonlinear dynamic analysis
NASA Astrophysics Data System (ADS)
Yue, Zhihua
2005-11-01
The numerical analysis of transient phenomena in solids, for instance, wave propagation and structural dynamics, is a very important and active area of study in engineering. Despite the current evolutionary state of modern computer hardware, practical analysis of large scale, nonlinear transient problems requires the use of adaptive methods where computational resources are locally allocated according to the interpolation requirements of the solution form. Adaptive analysis of transient problems involves obtaining solutions at many different time steps, each of which requires a sequence of adaptive meshes. Therefore, the execution speed of the adaptive algorithm is of paramount importance. In addition, transient problems require that the solution must be passed from one adaptive mesh to the next adaptive mesh with a bare minimum of solution-transfer error since this form of error compromises the initial conditions used for the next time step. A new adaptive finite element procedure (s-adaptive) is developed in this study for modeling transient phenomena in both linear elastic solids and nonlinear elastic solids caused by progressive damage. The adaptive procedure automatically updates the time step size and the spatial mesh discretization in transient analysis, achieving the accuracy and the efficiency requirements simultaneously. The novel feature of the s-adaptive procedure is the original use of finite element mesh superposition to produce spatial refinement in transient problems. The use of mesh superposition enables the s-adaptive procedure to completely avoid the need for cumbersome multipoint constraint algorithms and mesh generators, which makes the s-adaptive procedure extremely fast. Moreover, the use of mesh superposition enables the s-adaptive procedure to minimize the solution-transfer error. In a series of different solid mechanics problem types including 2-D and 3-D linear elastic quasi-static problems, 2-D material nonlinear quasi-static problems
Graded-Index Optics are Matched to Optical Geometry in the Superposition Eyes of Scarab Beetles
NASA Astrophysics Data System (ADS)
McIntyre, P.; Caveney, S.
1985-11-01
Detailed measurements were made of the gradients of refractive index (g.r.i.) and relevant optical properties of the lens components in the ventral superposition eyes of three crepuscular species of the dung-beetle genus Onitis (Scarabaeinae). Each ommatidial lens has two components, a corneal facet and a crystalline cone; in both of these, the gradients provide a significant proportion of the refractive power. The spatial relationship between the lenses and the retina (optical geometry) was also determined. A computer ray-trace model based on these data was used to analyse the optical properties of the lenses and of the eye as a whole. Ray traces were done in two and three dimensions. The ommatidial lenses in all three species are afocal g.r.i. telescopes of low angular magnification. Parallel incident rays emerge approximately parallel for all angles of incidence up to the maximum. The superposition image of a distant point source is a small patch of light about the size of a rhabdom. There are obvious differences in the lens properties of the three species, most significantly in the shape of the refractive-index gradients in the crystalline cone, in the extent of the g.r.i. region in the two lens components and in the front-surface curvature of the corneal facet lens. These give rise to different angular magnifications M of the ommatidial lenses, the values for the three species being 1.7, 1.3, 1.0. This variation in M is matched by a variation in optical geometry, most evident in the different clear-zone widths. As a result, the level of the best superposition image lies close to the retina in the model eyes of all three species. The angular magnification also sets the maximum aperture or pupil of the eye and hence the brightness of the image on the retina. The smaller M, the larger the aperture and the brighter the image. By adopting a suitable value for M and the appropriate eye geometry, an eye can set image brightness and hence sensitivity within a certain
Sizing defects using annular-array techniques with an automatic ultrasonic data-acquisition system
Gieske, J.H.; Stoker, G.C.; Walkington, P.D.
1983-01-01
The results of sizing internal flaws by a annular phased array technique are presented. The data was taken using a microprocessor controlled phased array pulser/receiver operated with a minicomputer ultrasonic data acquisition system. Flat bottom holes of two sizes which were machined in an aluminum block at various depths were used as targets. Sizing of these targets by the annular array technique is compared with sizing by conventional flat and focused single transducer techniques. The results show that the measured flaw size determined by the annular array technique is to a large extent independent of echo amplitude and flaw depth.
On the Motion of an Annular Film in Microgravity Gas-Liquid Flow
NASA Astrophysics Data System (ADS)
McQuillen, John B.
2002-11-01
Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.
Characterization of annular two-phase gas-liquid flows in microgravity
NASA Astrophysics Data System (ADS)
Bousman, W. Scott; McQuillen, John B.
1994-08-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
NASA Astrophysics Data System (ADS)
Meerson, Baruch; Tsori, Yoav
1998-01-01
The wire ballast resistor (BR) is one of the simplest physical systems that exhibit bistability and pattern formation. An annular BR is suggested as a simple two-dimensional extension of the wire BR. The nonuniformity of the electric current density in the annular BR leads to translational symmetry breaking in the temperature domain dynamics. As a result, the steady-state position of the domain wall is ``pinned'' and the system exhibits coarsening. The two-phase steady-state relaxation towards it and coarsening in the annular BR are investigated analytically and numerically.
Characterization of annular two-phase gas-liquid flows in microgravity
NASA Technical Reports Server (NTRS)
Bousman, W. Scott; Mcquillen, John B.
1994-01-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
High-power test of annular-ring coupled structures for the J-PARC linac energy upgrade
NASA Astrophysics Data System (ADS)
Tamura, Jun; Ao, Hiroyuki; Nemoto, Yasuo; Asano, Hiroyuki; Suzuki, Takahiro
2015-02-01
Annular-ring coupled structures (ACSs) will increase the beam energy of the Japan proton accelerator research complex (J-PARC) linac from 181 to 400 MeV to achieve a beam power of 1 MW for a materials and life science experimental facility. The mass production of the ACS cavities commenced in March 2009. Before the installation, all cavities require power testing. High-power testing is essential not only for confirming the cavity's design performance but also for preventing delays in cavity conditioning schedule. However, the 2011 Tohoku earthquake damaged J-PARC facilities, including the ACS power-test area, and cavity conditioning was interrupted for two years. After the facility's restoration, two ACS cavities (M01 and M11) were conditioned. They performed 15-20% above the designed accelerating field of 4.2 MV/m. As M01 was initially conditioned six years ago, the most recent conditioning time required for M01 was drastically reduced. From this result, we confirmed that long-term stored ACS cavities purged with nitrogen gas do not produce critical cavity performance issues. During high-power operation of M11, which is a unique cavity equipped with a capacitive iris in a waveguide, no significant increases in the temperature and the discharge rate around the capacitive iris were observed. Even considering beam loss due to residual gas scattering, the vacuum pressure was sufficiently low (4 × 10-6 Pa). More stable operation can be expected following a month-long conditioning process before the beam is commissioned. M11's conditioning successfully demonstrated an auto-conditioning program, and we established the conditioning scheme using this auto-conditioning program for all ACS cavities in a limited time and with limited manpower.
Limitations to the validity of single wake superposition in wind farm yield assessment
NASA Astrophysics Data System (ADS)
Gunn, K.; Stock-Williams, C.; Burke, M.; Willden, R.; Vogel, C.; Hunter, W.; Stallard, T.; Robinson, N.; Schmidt, S. R.
2016-09-01
Commercially available wind yield assessment models rely on superposition of wakes calculated for isolated single turbines. These methods of wake simulation fail to account for emergent flow physics that may affect the behaviour of multiple turbines and their wakes and therefore wind farm yield predictions. In this paper wake-wake interaction is modelled computationally (CFD) and physically (in a hydraulic flume) to investigate physical causes of discrepancies between analytical modelling and simulations or measurements. Three effects, currently neglected in commercial models, are identified as being of importance: 1) when turbines are directly aligned, the combined wake is shortened relative to the single turbine wake; 2) when wakes are adjacent, each will be lengthened due to reduced mixing; and 3) the pressure field of downstream turbines can move and modify wakes flowing close to them.
NASA Astrophysics Data System (ADS)
Wang, Xiaogang; Zhao, Daomu
2012-10-01
We propose an optoelectronic image encryption and decryption technique based on coherent superposition principle and digital holography. With the help of a chaotic random phase mask (CRPM) that is generated by using logistic map, a real-valued primary image is encoded into a phase-only version and then recorded as an encoded hologram. As for multiple-image encryption, only one digital hologram is to be transmitted as the encrypted result by using the multiplexing technique changing the reference wave angle. The bifurcation parameters, the initial values for the logistic maps, the number of the removed elements and the reference wave parameters are kept and transmitted as private keys. Both the encryption and decryption processes can be implemented in opto-digital manner or fully digital manner. Simulation results are given for testing the feasibility of the proposed approach.
Multi-level manual and autonomous control superposition for intelligent telerobot
NASA Technical Reports Server (NTRS)
Hirai, Shigeoki; Sato, T.
1989-01-01
Space telerobots are recognized to require cooperation with human operators in various ways. Multi-level manual and autonomous control superposition in telerobot task execution is described. The object model, the structured master-slave manipulation system, and the motion understanding system are proposed to realize the concept. The object model offers interfaces for task level and object level human intervention. The structured master-slave manipulation system offers interfaces for motion level human intervention. The motion understanding system maintains the consistency of the knowledge through all the levels which supports the robot autonomy while accepting the human intervention. The superposing execution of the teleoperational task at multi-levels realizes intuitive and robust task execution for wide variety of objects and in changeful environment. The performance of several examples of operating chemical apparatuses is shown.
NASA Astrophysics Data System (ADS)
Yang, Xiao-Dong; Chen, Li-Qun
2006-01-01
Stability in transverse parametric vibration of axially accelerating viscoelastic beams is investigated. The governing equation is derived from Newton's second law, Boltzmann's superposition principle, and the geometrical relation. When the axial speed is a constant mean speed with small harmonic variations, the governing equation can be treated as a continuous gyroscopic system with small periodically parametric excitations and a damping term. The method of multiple scales is applied directly to the governing equation without discretization. The stability conditions are obtained for combination and principal parametric resonance. Numerical examples demonstrate that the increase of the viscosity coefficient causes the lager instability threshold of speed fluctuation amplitude for given detuning parameter and smaller instability range of the detuning parameter for given speed fluctuation amplitude. The instability region is much bigger in lower order principal resonance than that in the higher order.
Helmich, Benjamin; Sierka, Marek
2012-01-15
An algorithm for similarity recognition of molecules and molecular clusters is presented which also establishes the optimum matching among atoms of different structures. In the first step of the algorithm, a set of molecules are coarsely superimposed by transforming them into a common reference coordinate system. The optimum atomic matching among structures is then found with the help of the Hungarian algorithm. For this, pairs of structures are represented as complete bipartite graphs with a weight function that uses intermolecular atomic distances. In the final step, a rotational superposition method is applied using the optimum atomic matching found. This yields the minimum root mean square deviation of intermolecular atomic distances with respect to arbitrary rotation and translation of the molecules. Combined with an effective similarity prescreening method, our algorithm shows robustness and an effective quadratic scaling of computational time with the number of atoms.
Nonlocal quantum macroscopic superposition in a high-thermal low-purity state.
Brezinski, Mark E; Liu, Bin
2008-12-16
Quantum state exchange between light and matter is an important ingredient for future quantum information networks as well as other applications. Photons are the fastest and simplest carriers of information for transmission but in general, it is difficult to localize and store photons, so usually one prefers choosing matter as quantum memory elements. Macroscopic superposition and nonlocal quantum interactions have received considerable interest for this purpose over recent years in fields ranging from quantum computers to cryptography, in addition to providing major insights into physical laws. However, these experiments are generally performed either with equipment or under conditions that are unrealistic for practical applications. Ideally, the two can be combined using conventional equipment and conditions to generate a "quantum teleportation"-like state, particularly with a very small amount of purity existing in an overall highly mixed thermal state (relatively low decoherence at high temperatures). In this study we used an experimental design to demonstrate these principles. We performed optical coherence tomography (OCT) using a thermal source at room temperatures of a specifically designed target in the sample arm. Here, position uncertainty (i.e., dispersion) was induced in the reference arm. In the sample arm (target) we placed two glass plates separated by a different medium while altering position uncertainty in the reference arm. This resulted in a chirped signal between the glass plate reflective surfaces in the combined interferogram. The chirping frequency, as measured by the fast Fourier transform (FFT), varies with the medium between the plates, which is a nonclassical phenomenon. These results are statistically significant and occur from a superposition between the glass surface and the medium with increasing position uncertainty, a true quantum-mechanical phenomenon produced by photon pressure from two-photon interference. The differences in
NASA Astrophysics Data System (ADS)
Carlisle, Andrew; Kwon, Hyukjoon; Jeong, Hyunseok; Ferraro, Alessandro; Paternostro, Mauro
2015-08-01
Optomechanics is currently believed to provide a promising route towards the achievement of genuine quantum effects at the large, massive-system scale. By using a recently proposed figure of merit that is well suited to address continuous-variable systems, in this paper we analyze the requirements needed for the state of a mechanical mode (embodied by an end-cavity cantilever or a membrane placed within an optical cavity) to be qualified as macroscopic. We show that according to the phase-space-based criterion that we have chosen for our quantitative analysis, the state achieved through strong single-photon radiation-pressure coupling to a quantized field of light and conditioned by measurements operated on the latter might be interpreted as macroscopically quantum. In general, though, genuine macroscopic quantum superpositions appear to be possible only under quite demanding experimental conditions.
Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun
2014-06-02
Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).
Lee, Su-Yong; Kim, Ho-Joon; Ji, Se-Wan; Nha, Hyunchul
2011-07-15
We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.
NASA Astrophysics Data System (ADS)
Matsuo, Miyuki; Yokoyama, Misao; Umemura, Kenji; Gril, Joseph; Yano, Ken'ichiro; Kawai, Shuichi
2010-04-01
This paper deals with the kinetics of the color properties of hinoki ( Chamaecyparis obtusa Endl.) wood. Specimens cut from the wood were heated at 90-180°C as accelerated aging treatment. The specimens completely dried and heated in the presence of oxygen allowed us to evaluate the effects of thermal oxidation on wood color change. Color properties measured by a spectrophotometer showed similar behavior irrespective of the treatment temperature with each time scale. Kinetic analysis using the time-temperature superposition principle, which uses the whole data set, was successfully applied to the color changes. The calculated values of the apparent activation energy in terms of L *, a *, b *, and Δ E^{*}_{ab} were 117, 95, 114, and 113 kJ/mol, respectively, which are similar to the values of the literature obtained for other properties such as the physical and mechanical properties of wood.
Tsuchiya, K.; Shioya, T.
2015-04-15
We have developed a practical method for determining an excellent initial arrangement of magnetic arrays for a pure-magnet Halbach-type undulator. In this method, the longitudinal magnetic field distribution of each magnet is measured using a moving Hall probe system along the beam axis with a high positional resolution. The initial arrangement of magnetic arrays is optimized and selected by analyzing the superposition of all distribution data in order to achieve adequate spectral quality for the undulator. We applied this method to two elliptically polarizing undulators (EPUs), called U#16-2 and U#02-2, at the Photon Factory storage ring (PF ring) in the High Energy Accelerator Research Organization (KEK). The measured field distribution of the undulator was demonstrated to be excellent for the initial arrangement of the magnet array, and this method saved a great deal of effort in adjusting the magnetic fields of EPUs.
Superposition of Cohesive Elements to Account for R-Curve Toughening in the Fracture of Composites
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Rose, Cheryl A.; Song, Kyongchan
2008-01-01
The relationships between a resistance curve (R-curve), the corresponding fracture process zone length, the shape of the traction/displacement softening law, and the propagation of fracture are examined in the context of the through-the-thickness fracture of composite laminates. A procedure that accounts for R-curve toughening mechanisms by superposing bilinear cohesive elements is proposed. Simple equations are developed for determining the separation of the critical energy release rates and the strengths that define the independent contributions of each bilinear softening law in the superposition. It is shown that the R-curve measured with a Compact Tension specimen test can be reproduced by superposing two bilinear softening laws. It is also shown that an accurate representation of the R-curve is essential for predicting the initiation and propagation of fracture in composite laminates.
Tsuchiya, K; Shioya, T
2015-04-01
We have developed a practical method for determining an excellent initial arrangement of magnetic arrays for a pure-magnet Halbach-type undulator. In this method, the longitudinal magnetic field distribution of each magnet is measured using a moving Hall probe system along the beam axis with a high positional resolution. The initial arrangement of magnetic arrays is optimized and selected by analyzing the superposition of all distribution data in order to achieve adequate spectral quality for the undulator. We applied this method to two elliptically polarizing undulators (EPUs), called U#16-2 and U#02-2, at the Photon Factory storage ring (PF ring) in the High Energy Accelerator Research Organization (KEK). The measured field distribution of the undulator was demonstrated to be excellent for the initial arrangement of the magnet array, and this method saved a great deal of effort in adjusting the magnetic fields of EPUs.
Precise position measurement of an atom using superposition of two standing wave fields
NASA Astrophysics Data System (ADS)
Idrees, M.; Bacha, B. A.; Javed, M.; Ullah, S. A.
2017-04-01
We present a scheme that provides a strong basis for precise localization of atoms, using superposition of two standing wave fields in a three level Λ -type gain assisted model. We show how atomic interference and diffraction occur at a particular node or antinode region of the standing wave fields. Two, three, four and even single localized peaks of atoms are observed in both full-wavelength and sub-half-wavelength domains, with 100 percent localization probability in a single peak. Dark lines appearing in the node region of the standing wave fields show strong evidence for atomic destructive interference. The proposed scheme allows for efficient localization of an atom to a particular point.
Murray, J.J.
1983-07-25
For the so-called superconducting FFS option with L* = 2.2 m, the MK2 solenoid does not overlap Q1, the FFS quad nearest the IP. For the permanent magnet option with L* = 0.75 m, the MK2 solenoid would overlap both Q1 and Q2. In either case an 8 m long solenoid, contemplated for the SLD detector, would overlap both Q1 and Q2. The solenoid field cannot be shielded so in an overlap region one will have a superposition of solenoid an quadrupole fields. Recently, the question was raised, What are the optical consequences when the solenoid and quad fields are superimposed. The question had not been considered before, but rough estimates suggested immediately that there might indeed be ugly consequences in terms of an enlargement of spot size at the IP. The purpose of this note is to answer the question quantitatively and to consider methods of correction of the ugly consequences.
Numerical model for macroscopic quantum superpositions based on phase-covariant quantum cloning
NASA Astrophysics Data System (ADS)
Buraczewski, A.; Stobińska, M.
2012-10-01
Macroscopically populated quantum superpositions pose a question to what extent the macroscopic world obeys quantum mechanical laws. Recently, such superpositions for light, generated by an optimal quantum cloner, have been demonstrated. They are of fundamental and technological interest. We present numerical methods useful for modeling of these states. Their properties are governed by a Gaussian hypergeometric function, which cannot be reduced to either elementary or easily tractable functions. We discuss the method of efficient computation of this function for half-integer parameters and a moderate value of its argument. We show how to dynamically estimate a cutoff for infinite sums involving this function performed over its parameters. Our algorithm exceeds double precision and is parallelizable. Depending on the experimental parameters it chooses one of the several ways of summation to achieve the best efficiency. The methods presented here can be adjusted for analysis of similar experimental schemes. Program summary Program title: MQSVIS Catalogue identifier: AEMR_ v1_ 0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1643 No. of bytes in distributed program, including test data, etc.: 13212 Distribution format: tar.gz Programming language: C with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux. Has the code been vectorized or parallelized?: Yes (OpenMP). RAM: 200 MB for single run for 1000×1000 tile Classification: 4.15, 18. External routines: OpenMP Nature of problem: Recently, macroscopically populated quantum superpositions for light, generated by an optimal quantum cloner, have
Superposition and entanglement of mesoscopic squeezed vacuum states in cavity QED
Chen Changyong; Feng Mang; Gao Kelin
2006-03-15
We propose a scheme to generate superposition and entanglement between the mesoscopic squeezed vacuum states by considering the two-photon interaction of N two-level atoms in a cavity with high quality factor, assisted by a strong driving field. By virtue of specific choices of the cavity detuning, a number of multiparty entangled states can be prepared, including the entanglement between the atomic and the squeezed vacuum cavity states and between the squeezed vacuum states and the coherent states of the cavities. We also present how to prepare entangled states and 'Schroedinger cats' states regarding the squeezed vacuum states of the cavity modes. The possible extension and application of our scheme are discussed. Our scheme is close to the reach with current cavity QED techniques.
Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B
2014-09-15
Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.
An Improved Method of Heterogeneity Compensation for the Convolution / Superposition Algorithm
NASA Astrophysics Data System (ADS)
Jacques, Robert; McNutt, Todd
2014-03-01
Purpose: To improve the accuracy of convolution/superposition (C/S) in heterogeneous material by developing a new algorithm: heterogeneity compensated superposition (HCS). Methods: C/S has proven to be a good estimator of the dose deposited in a homogeneous volume. However, near heterogeneities electron disequilibrium occurs, leading to the faster fall-off and re-buildup of dose. We propose to filter the actual patient density in a position and direction sensitive manner, allowing the dose deposited near interfaces to be increased or decreased relative to C/S. We implemented the effective density function as a multivariate first-order recursive filter and incorporated it into GPU-accelerated, multi-energetic C/S implementation. We compared HCS against C/S using the ICCR 2000 Monte-Carlo accuracy benchmark, 23 similar accuracy benchmarks and 5 patient cases. Results: Multi-energetic HCS increased the dosimetric accuracy for the vast majority of voxels; in many cases near Monte-Carlo results were achieved. We defined the per-voxel error, %|mm, as the minimum of the distance to agreement in mm and the dosimetric percentage error relative to the maximum MC dose. HCS improved the average mean error by 0.79 %|mm for the patient volumes; reducing the average mean error from 1.93 %|mm to 1.14 %|mm. Very low densities (i.e. < 0.1 g / cm3) remained problematic, but may be solvable with a better filter function. Conclusions: HCS improved upon C/S's density scaled heterogeneity correction with a position and direction sensitive density filter. This method significantly improved the accuracy of the GPU based algorithm reaching the accuracy levels of Monte Carlo based methods with performance in a few tenths of seconds per beam. Acknowledgement: Funding for this research was provided by the NSF Cooperative Agreement EEC9731748, Elekta / IMPAC Medical Systems, Inc. and the Johns Hopkins University. James Satterthwaite provided the Monte Carlo benchmark simulations.
NASA Astrophysics Data System (ADS)
Jia, Dongming; Manz, Jörn; Paulus, Beate; Pohl, Vincent; Tremblay, Jean Christophe; Yang, Yonggang
2017-01-01
We design four linearly x- and y-polarized as well as circularly right (+) and left (-) polarized, resonant π / 2 -laser pulses that prepare the model benzene molecule in four different degenerate superposition states. These consist of equal (0.5) populations of the electronic ground state S0 (1A1g) plus one of four degenerate excited states, all of them accessible by dipole-allowed transitions. Specifically, for the molecule aligned in the xy-plane, these excited states include different complex-valued linear combinations of the 1E1u,x and 1E1u,y degenerate states. As a consequence, the laser pulses induce four different types of periodic adiabatic attosecond (as) charge migrations (AACM) in benzene, all with the same period, 504 as, but with four different types of angular fluxes. One of the characteristic differences of these fluxes are the two angles for zero fluxes, which appear as the instantaneous angular positions of the "source" and "sink" of two equivalent, or nearly equivalent branches of the fluxes which flow in pincer-type patterns from one molecular site (the "source") to the opposite one (the "sink"). These angles of zero fluxes are either fixed at the positions of two opposite carbon nuclei in the yz-symmetry plane, or at the centers of two opposite carbon-carbon bonds in the xz-symmetry plane, or the angles of zero fluxes rotate in angular forward (+) or backward (-) directions, respectively. As a resume, our quantum model simulations demonstrate quantum control of the electronic fluxes during AACM in degenerate superposition states, in the attosecond time domain, with the laser polarization as the key knob for control.
Fracture Mechanics Analysis of an Annular Crack in a Three-concentric-cylinder Composite Model
NASA Technical Reports Server (NTRS)
Kuguoglu, Latife H.; Binienda, Wieslaw K.; Roberts, Gary D.
2004-01-01
A boundary-value problem governing a three-phase concentric-cylinder model was analytically modeled to analyze annular interfacial crack problems with Love s strain functions in order to find the stress intensity factors (SIFs) and strain energy release rates (SERRs) at the tips of an interface crack in a nonhomogeneous medium. The complex form of a singular integral equation (SIE) of the second kind was formulated using Bessel s functions in the Fourier domain, and the SIF and total SERR were calculated using Jacoby polynomials. For the validity of the SIF equations to be established, the SIE of the three-concentric-cylinder model was reduced to the SIE for a two-concentric-cylinder model, and the results were compared with the previous results of Erdogan. A preliminary set of parametric studies was carried out to show the effect of interphase properties on the SERR. The method presented here provides insight about the effect of interphase properties on the crack driving force.
Entrained liquid fraction calculation in adiabatic disperse-annular flows at low rate in film
NASA Astrophysics Data System (ADS)
Yagov, V. V.; Minko, M. V.
2016-04-01
In this work, we continue our study [1] and extend further an approach to low reduced pressures. An approximate model of droplets entrainment from the laminar film surface and an equation for calculating entrainment intensity are proposed. To carry out direct verification of this equation using experimental data is extremely difficult because the integral effect—liquid flow rate in a film at a dynamic equilibrium between entrainment and deposition—is usually measured in the experiments. The balance between flows of droplets entrainment and deposition corresponds to the dynamic equilibrium because of turbulent diffusion. The transcendental equation, which was obtained on the basis of this balance, contains one unknown numerical factor and allows one to calculate the liquid rate. Comparing calculation results with the experimental data for the water-air and water-helium flows at low reduced pressures (less than 0.03) has shown their good agreement at the universal value of a numerical constant, if an additional dimensionless parameter, a fourth root of vaporliquid densities ratio, is introduced. The criterion that determines the boundary of using methods of this work and that of [1] in calculations and that reflects effect of pressure and state of film surface on distribution of the liquid in the annular flow is proposed; the numerical value of this criterion has been determined.
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III
1996-01-01
The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.
Non-annular, hemispheric signature of the winter North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
García-Serrano, J.; Haarsma, R. J.
2016-07-01
Sensitivity experiments with an atmospheric general circulation model (AGCM) without a proper stratosphere are performed to locally force a North Atlantic oscillation (NAO)-like response in order to analyse the tropospheric dynamics involved in its hemispheric extent. Results show that the circulation anomalies are not confined to the North Atlantic basin not even within the first 10 days of integration, where the atmospheric response propagates downstream into the westerly jets. At this linear stage, transient-eddy activity dominates the emerging, regional NAO-like pattern while zonal-eddy coupling may add on top of the wave energy propagation. Later at the quasi-equilibrium nonlinear stage, the atmospheric response emphasizes a wavenumber-5 structure embedded in the westerly jets, associated with transient-eddy feedback upon the Atlantic and Pacific storm-tracks. This AGCM waveguided structure rightly projects on the observational NAO-related circumglobal pattern, providing evidence of its non-annular character in the troposphere. These findings support the view on the importance of the circumglobal waveguide pattern on the development of NAO-related anomalies at hemispheric level. It could help to settle a consensus view of the Arctic Oscillation, which has been elusive so far.
NASA Astrophysics Data System (ADS)
Appel, B. R.; Winer, A. M.; Tokiwa, Y.; Biermann, H. W.
As part of the Southern California Air Quality Study (SCAQS), nitrous acid (HONO) measurements were made at Long Beach, CA during the period 11 November-12 December 1987, using two distinctly different techniqes. One of these, the annular denuder method (ADM), used two denuders in tandem, coated with an alkaline medium to obtain 4- or 6-h integrated measurements. A small FEP Tefloncoated glass cyclone preceded the denuders to exclude coarse particles while minimizing loss or artifactual formation of HONO. Nitrite recoveries from the rear denuder were used to correct for sampling artifacts. In the second method, 15 min average HONO concentrations were measured with a differential optical absorption spectrometer (DOAS) coupled to a 25 m basepath, open multiple reflection system operated at a total optical path of 800 m. Period-averaged HONO concentrations from the two techniques were highly correlated ( r = 0.94), with DOAS results averaging about 10% higher. However, ADM results were biased high at low HONO concentrations. HONO and NO concentrations showed a significant, positive correlation ( r = 0.8), consistent with a common emission source (e.g. auto exhaust) for the two pollutants.
Annular lichenoid dermatitis of youth--a further case in a 12-year-old girl.
Kleikamp, Stefanie; Kutzner, Heinz; Frosch, Peter J
2008-08-01
Annular lichenoid dermatitis of youth was first described by Annessi et al. in 2003. Clinical criteria are persistent erythematous macules and annular lesions with a red-brown edge and a central hypopigmentation usually found on the flanks and groins of children and adolescents. Histologically, the disease is characterized by a lichenoid interface dermatitis with necrotic keratinocytes at the tip of the rete ridges. In our case a 12-year old girl developed annular red-brown macules with papules at the borders in an inframammary location. The histology of the lesion's border showed a lichenoid lymphocytic infiltrate with apoptotic keratinocytes at the tip of rete ridges. The lesions cleared with 0.03% tacrolimus ointment. Annular lichenoid dermatitis of youth is probably a new entity in the group of lichenoid dermatoses.
Myers, N.J.
1994-12-31
The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.
Predicting multidimensional annular flows with a locally based two-fluid model
Antal, S.P. Edwards, D.P.; Strayer, T.D.
1998-06-01
Annular flows are a well utilized flow regime in many industrial applications, such as, heat exchangers, chemical reactors and industrial process equipment. These flows are characterized by a droplet laden vapor core with a thin, wavy liquid film wetting the walls. The prediction of annular flows has been largely confined to one-dimensional modeling which typically correlates the film thickness, droplet loading, and phase velocities by considering the average flow conditions and global mass and momentum balances to infer the flow topology. In this paper, a methodology to predict annular flows using a locally based two-fluid model of multiphase flow is presented. The purpose of this paper is to demonstrate a modeling approach for annular flows using a multifield, multidimensional two-fluid model and discuss the need for further work in this area.
Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....
Free transverse vibration of a wrinkled annular thin film by using finite difference method
NASA Astrophysics Data System (ADS)
Wang, C. G.; Liu, Y. P.; Lan, L.; Tan, H. F.
2016-02-01
This paper investigates the free transverse vibration of a wrinkled annular thin film. The non-dimensional Hamilton motion equation of the wrinkled annular thin film is established, which is solved by using the finite difference method to acquire the vibration frequency and mode. The predicted vibration characteristics are verified by the experimental measurements based on the digital image correlation (DIC) technique. The results show that wrinkles have great effects on the vibration of the annular thin film. Especially for the heavily wrinkled cases, the local-global interactive mode dominates the vibration of the annular thin film. The frequency increases as the wrinkling level increases which is mainly due to the increased nonlinear geometric stiffness. The results provide favorable supports for understanding the role of nonlinear wrinkling on the vibration of thin films.
An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode
Zhu, Danni; Zhang, Jun Zhong, Huihuang; Qi, Zumin
2015-11-15
The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.
An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode
NASA Astrophysics Data System (ADS)
Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Qi, Zumin
2015-11-01
The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.
Annular Pulse Shaping Technique for Large-Diameter Kolsky Bar Experiments on Concrete
2014-10-01
AFRL-RW-EG-TP-2014-005 Annular Pulse Shaping Technique for Large- Diameter Kolsky Bar Experiments on Concrete ...EXPERIMENTS ON CONCRETE N/A N/A 2502 9210 W0DT (1) Bradley E. Martin, RWMW (2) William F. Heard, Engineer Research and Development Center (3) Thomas...the dynamic compressive response of concretes . The purpose of implementing an annular pulse shaper design is to alleviate inertia-induced stresses in
Phase reconstruction in annular bright-field scanning transmission electron microscopy.
Ishida, Takafumi; Kawasaki, Tadahiro; Tanji, Takayoshi; Kodama, Tetsuji; Matsutani, Takaomi; Ogai, Keiko; Ikuta, Takashi
2015-04-01
A novel technique for reconstructing the phase shifts of electron waves was applied to Cs-corrected scanning transmission electron microscopy (STEM). To realize this method, a new STEM system equipped with an annular aperture, annularly arrayed detectors and an arrayed image processor has been developed and evaluated in experiments. We show a reconstructed phase image of graphite particles and demonstrate that this new method works effectively for high-resolution phase imaging.
Curry, William H; Stemper, Brian D; Pryzbylo, Jason; Trueden, Justine; Wilkins, Natasha; Paskoff, Glenn R; Shender, Barry S
2015-01-01
Internal intervertebral disc disruption is involved in the onset of a wide range of spinal dysfunction, ultimately affecting not only the disc itself but the surrounding osseous and neural structures as well. The ability of disc to withstand and effectively distribute axial load is dependent upon whether peripherally located annular fibers provide the support necessary to contain and corral the pressure sensitive nucleus. Any alteration in the structures immediate to the nucleus jeopardize this ability. While annular tears and fissures have been thoroughly investigated, one form of internal disc disruption is less well-understood. A network of elastin cross-bridges provides resistance to delamination of the collagenous sheets that comprise the annulus. The current investigation utilized a Nitrogen gas-induced pressure mechanism to disrupt elastin cross links that exist between annular lamellae. Twenty five cadaveric lumbar spine motion segments (mean age: 52±12 yr.) were subjected to the annular disruption protocol. Damage to the annulus was assessed using MRI, cryomicrotome and histological staining procedures. MRI images were compared to cryomicrotome images to determine the ability of standard clinical MRI scans to determine annular damage. In many cases MRI was moderately revealing in terms of damage. Future studies will quantify biomechanical consequences of these low level annular disruptions relative to segmental stability.
Na, Shuai; Chen, Albert I H; Wong, Lawrence L P; Li, Zhenhao; Macecek, Mirek; Yeow, John T W
2016-09-01
A novel design of an air-coupled capacitive micromachined ultrasonic transducer (CMUT) with annular cell geometry (annular CMUT) is proposed. Finite element analysis shows that an annular cell has a ratio of average-to-maximum displacement (RAMD) of 0.52-0.58 which is 58-76% higher than that of a conventional circular cell. The increased RAMD leads to a larger volume displacement which results in a 48.4% improved transmit sensitivity and 127.3% improved power intensity. Single-cell annular CMUTs were fabricated with 20-μm silicon plates on 13.7-μm deep and 1.35-mm wide annular cavities using the wafer bonding technique. The measured RAMD of the fabricated CMUTs is 0.54. The resonance frequency was measured to be 94.5kHz at 170-V DC bias. The transmit sensitivity was measured to be 33.83Pa/V and 25.85Pa/V when the CMUT was excited by a continuous wave and a 20-cycle burst, respectively. The receive sensitivity at 170-V DC bias was measured to be 7.7mV/Pa for a 20-cycle burst, and 15.0mV/Pa for a continuous incident wave. The proposed annular CMUT design demonstrates a significant improvement in transmit efficiency, which is an important parameter for air-coupled ultrasonic transducers.
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1995-01-01
Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio (J) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter (C = (S/H) square root of J) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.
Design and Fabrication of Micro Hemispheric Shell Resonator with Annular Electrodes
Wang, Renxin; Bai, Bing; Feng, Hengzhen; Ren, Ziming; Cao, Huiliang; Xue, Chenyang; Zhang, Binzhen; Liu, Jun
2016-01-01
Electrostatic driving and capacitive detection is widely used in micro hemispheric shell resonators (HSR). The capacitor gap distance is a dominant factor for the initial capacitance, and affects the driving voltage and sensitivity. In order to decrease the equivalent gap distance, a micro HSR with annular electrodes fabricated by a glassblowing method was developed. Central and annular cavities are defined, and then the inside gas drives glass softening and deformation at 770 °C. While the same force is applied, the deformation of the hemispherical shell is about 200 times that of the annular electrodes, illustrating that the deformation of the electrodes will not affect the measurement accuracy. S-shaped patterns on the annular electrodes and internal-gear-like patterns on the hemispherical shell can improve metal malleability and avoid metal cracking during glass expansion. An arched annular electrode and a hemispheric shell are demonstrated. Compared with HSR with a spherical electrode, the applied voltage could be reduced by 29%, and the capacitance could be increased by 39%, according to theoretical and numerical calculation. The surface roughness of glass after glassblowing was favorable (Rq = 0.296 nm, Ra = 0.217 nm). In brief, micro HSR with an annular electrode was fabricated, and its superiority was preliminarily confirmed. PMID:27897977
NASA Astrophysics Data System (ADS)
Jiang, Wei; Wang, Langping; Wang, Xiaofeng
2016-08-01
In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.
Annular structures as intermediates in fibril formation of Alzheimer Abeta17-42.
Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Nussinov, Ruth
2008-06-05
We report all-atom molecular dynamics simulations of annular beta-amyloid (17-42) structures, single- and double-layered, in solution. We assess the structural stability and association force of Abeta annular oligomers associated through different interfaces, with a mutated sequence (M35A), and with the oxidation state (M35O). Simulation results show that single-layered annular models display inherent structural instability: one is broken down into linear-like oligomers, and the other collapses. On the other hand, a double-layered annular structure where the two layers interact through their C-termini to form an NC-CN interface (where N and C are the N and C termini, respectively) exhibits high structural stability over the simulation time due to strong hydrophobic interactions and geometrical constraints induced by the closed circular shape. The observed dimensions and molecular weight of the oligomers from atomic force microscopy (AFM) experiments are found to correspond well to our stable double-layered model with the NC-CN interface. Comparison with K3 annular structures derived from the beta 2-microglobulin suggests that the driving force for amyloid formation is sequence specific, strongly dependent on side-chain packing arrangements, structural morphologies, sequence composition, and residue positions. Combined with our previous simulations of linear-like Abeta, K3 peptide, and sup35-derived GNNQQNY peptide, the annular structures provide useful insight into oligomeric structures and driving forces that are critical in amyloid fibril formation.
Luy, B; Glaser, S J
2001-01-01
The superposition of scalar and residual dipolar couplings gives rise to so-called cylindrical mixing Hamiltonians in dipolar coupling spectroscopy. General analytical polarization and coherence transfer functions are presented for three cylindrically coupled spins 12 under energy-matched conditions. In addition, the transfer efficiency is analyzed as a function of the relative coupling constants for characteristic special cases.
Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations
John D. Bess
2009-11-01
One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.
Predicting Activation of Experiments Inside the Annular Core Research Reactor
Greenberg, Joseph Isaac
2015-11-01
The objective of this thesis is to create a program to quickly estimate the radioactivity and decay of experiments conducted inside of the Annular Core Research Reactor at Sandia National Laboratories and eliminate the need for users to write code. This is achieved by model the neutron fluxes in the reactor’s central cavity where experiments are conducted for 4 different neutron spectra using MCNP. The desired neutron spectrum, experiment material composition, and reactor power level are then input into CINDER2008 burnup code to obtain activation and decay information for every isotope generated. DREAD creates all of the files required for CINDER2008 through user selected inputs in a graphical user interface and executes the program for the user and displays the resulting estimation for dose rate at various distances. The DREAD program was validated by weighing and measuring various experiments in the different spectra and then collecting dose rate information after they were irradiated and comparing it to the dose rates that DREAD predicted. The program provides results with an average of 17% higher estimates than the actual values and takes seconds to execute.
Acoustic modal analysis of a full-scale annular combustor
NASA Technical Reports Server (NTRS)
Karchmer, A. M.
1982-01-01
An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.
Current Density Measurements of an Annular-Geometry Ion Engine
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.
2012-01-01
The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.
Current Density Measurements of an Annular-Geometry Ion Engine
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.
2012-01-01
The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.
Design and fabrication of a 40-MHz annular array transducer
Ketterling, Jeffrey A.; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.
2006-01-01
This paper investigates the feasibility of fabricating a 5-ring, focused annular array transducer operating at 40 MHz. The active piezoelectric material of the transducer was a 9-μm thick polyvinylidene fluoride (PVDF) film. One side of the PVDF was metallized with gold and forms the ground plane of the transducer. The array pattern of the transducer and electrical traces to each annulus were formed on a copper-clad polyimide film. The PVDF and polyimide were bonded with a thin layer of epoxy, pressed into a spherically curved shape, and then back filled with epoxy. A 5-ring transducer with equal area elements and 100 μm kerfs between annuli was fabricated and tested. The transducer had a total aperture of 6 mm and a geometric focus of 12 mm. The pulse/echo response from a quartz plate located at the geometric focus, two-way insertion loss (IL), complex impedance, electrical cross-talk, and lateral beamwidth were all measured for each annulus. The complex impedance data from each element were used to perform electrical matching and the measurements were repeated. After impedance matching, fc ≈ 36 MHz and BWs ranged from 31 to 39%. The ILs for the matched annuli ranged from −28 to −38 dB. PMID:16060516
Reactor pulse repeatability studies at the annular core research reactor
DePriest, K.R.; Trinh, T.Q.; Luker, S. M.
2011-07-01
The Annular Core Research Reactor (ACRR) at Sandia National Laboratories is a water-moderated pool-type reactor designed for testing many types of objects in the pulse and steady-state mode of operations. Personnel at Sandia began working to improve the repeatability of pulse operations for experimenters in the facility. The ACRR has a unique UO{sub 2}-BeO fuel that makes the task of producing repeatable pulses difficult with the current operating procedure. The ACRR produces a significant quantity of photoneutrons through the {sup 9}Be({gamma}, n){sup 8}Be reaction in the fuel elements. The photoneutrons are the result of the gammas produced during fission and in fission product decay, so their production is very much dependent on the reactor power history and changes throughout the day/week of experiments in the facility. Because the photoneutrons interfere with the delayed-critical measurements required for accurate pulse reactivity prediction, a new operating procedure was created. The photoneutron effects at delayed critical are minimized when using the modified procedure. In addition, the pulse element removal time is standardized for all pulse operations with the modified procedure, and this produces less variation in reactivity removal times. (authors)
Adipophilin expression in necrobiosis lipoidica, granuloma annulare, and sarcoidosis.
Schulman, Joshua M; LeBoit, Philip E
2015-03-01
Necrobiosis lipoidica (NL), granuloma annulare (GA), and sarcoidosis usually are distinguished by clinical presentation and routine microscopy, but their distinction can sometimes be challenging. Historically, a clue to diagnosing NL or GA has been the identification of lipid droplets in the areas of altered collagen, but such studies have required fresh frozen tissue, making them impractical. Here, we present the first report of immunohistochemical staining to detect adipophilin, a membrane protein in lipid droplets, in NL (n = 12), GA (n = 19), sarcoidosis (n = 12), and, as a control for nonspecific tissue damage, nongranulomatous cutaneous necrosis (n = 13). Four patterns of labeling were identified: (1) extracellular, within zones of altered collagen; (2) both intracellular and extracellular, after the distribution of palisaded or scattered histiocytes; (3) intracellular, within clustered histiocytes; and (4) periadnexal. All cases of NL demonstrated pattern 1; nearly all cases of GA (18/19) demonstrated pattern 2; most sarcoidosis (10/12) demonstrated pattern 3; and nongranulomatous necrosis demonstrated either pattern 4 (6/13) or did not stain (6/13), confirming that the antibody to adipophilin did not adhere nonspecifically to the damaged tissue. An additional set of 3 biopsies with overlapping or partially sampled features of NL, GA, and/or sarcoidosis subsequently confirmed the potential utility of adipophilin staining in diagnostically challenging cases. We conclude that the pattern of adipophilin expression is a useful adjunct in the evaluation of granulomatous dermatitis.
Flow Pressure Loss through Straight Annular Corrugated Pipes
NASA Technical Reports Server (NTRS)
Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy
2016-01-01
Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.
Imbalanced superfluid state in an annular disk.
Ye, Fei; Chen, Yan; Wang, Z D; Zhang, F C
2009-09-02
The imbalanced superfluid state of spin- 1/2 fermions with s-wave pairing is numerically studied by solving the Bogoliubov-de Gennes equation at zero temperature in an annular disk geometry with narrow radial width. Two distinct types of systems are considered. The first case may be relevant to heavy fermion superconductors, where magnetic field causes spin imbalance via Zeeman interaction and the system is studied in a grand canonical ensemble. As the magnetic field increases, the system is transformed from the uniform superfluid state to the Fulde-Ferrell-Larkin-Ovchinnikov state, and finally to the spin polarized normal state. The second case may be relevant to cold fermionic systems, where the number of fermions of each species is fixed as in a canonical ensemble. In this case, the ground state depends on the pairing strength. For weak pairing, the order parameter exhibits a periodic domain wall lattice pattern with a localized spin distribution at low spin imbalance, and a sinusoidally modulated pattern with extended spin distribution at high spin imbalance. For strong pairing, the phase separation between the superfluid state and polarized normal state is found to be preferable, while the increase of spin imbalance simply changes the ratio between them.
Extraction of phenol in wastewater with annular centrifugal contactors.
Xu, Jin-Quan; Duan, Wu-Hua; Zhou, Xiu-Zhu; Zhou, Jia-Zhen
2006-04-17
Solvent extraction is an effective way to treat and recover the phenolic compounds from the high content phenolic wastewater at present. The experimental study on treating the wastewater containing phenol has been carried out with QH-1extractant (the amine mixture) and annular centrifugal contactors. The distribution ratio of phenol was 108.6 for QH-1-phenol system. The mass-transfer process of phenol for the system was mainly controlled by diffusion. When the flow ratio (aqueous/organic) was changed from 1/1 to 4/1, the rotor speed was changed from 2500 to 4000 r/min, and the total flow of two phases was changed from 20 to 70 mL/min, the mass-transfer efficiency E of the single-stage centrifugal contactor was more than 95%. When the flow ratio was changed from 4.4/1 to 4.9/1, the rotor speed was 3000 r/min, and the total flow of two phases was changed from 43.0 to 47.0 mL/min, the extraction rate rho of the three-stage cascade was more than 99%. When 15% NaOH was used for stripping of phenol in QH-1, the stripping efficiency of the three-stage cascade was also more than 99% under the experimental conditions.
Linear unsteady aerodynamic forces on vibrating annular cascade blades
NASA Astrophysics Data System (ADS)
Nagasaki, Taketo; Yamasaki, Nobuhiko
2003-05-01
The paper presents the formulation to compute numerically the unsteady aerodynamic forces on the vibrating annular cascade blades. The formulation is based on the finite volume method. By applying the TVD scheme to the linear unsteady calculations, the precise calculation of the peak of unsteady aerodynamic forces at the shock wave location like the delta function singularity becomes possible without empirical constants. As a further feature of the present paper, results of the present numerical calculation are compared with those of the double linearization theory (DLT), which assumes small unsteady and steady disturbances but the unsteady disturbances are much smaller than the steady disturbances. Since DLT requires far less computational resources than the present numerical calculation, the validation of DLT is quite important from the engineering point of view. Under the conditions of small steady disturbances, a good agreement between these two results is observed, so that the two codes are cross-validated. The comparison also reveals the limitation on the applicability of DLT.
Visual Measurements of Droplet Size in Gas Liquid Annular Flow
Fore, L.B.; Ibrahim, B.B.; Beus, S.G.
2000-07-01
Drop size distributions have been measured for nitrogen-water annular flow in a 9.67 mm hydraulic diameter duct, at system pressures of 3.4 and 17 atm and a temperature of 38 C. These new data extend the range of conditions represented by existing data in the open literature, primarily through an increase in system pressure. Since most existing correlations were developed from data obtained at lower pressures, it should be expected that the higher-pressure data presented in this paper would not necessarily follow those correlations. The correlation of Tatterson, et al. (1977) does not predict the new data very well, while the correlation of Kataoka, et al. (1983) only predicts those data taken at the lower pressure of 3.4 atm. However, the maximum drop size correlation of Kocamustafaogullari, et al. (1994) does predict the current data to a reasonable approximation. Similarly, their correlation for the Sauter mean diameter can predict the new data, provided the coefficient in the equation is adjusted.
Characterization of Novel Calorimeters in the Annular Core Research Reactor
NASA Astrophysics Data System (ADS)
Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael
2016-02-01
A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.
Experimental Investigation and Analysis of an Annular Pogo Accumulator
NASA Technical Reports Server (NTRS)
Peugeot, John; Schwarz, Jordan; Yang, H. Q.; Zoladz, Tom
2011-01-01
An experimental investigation was conducted on a scaled annular pogo accumulator for the Ares I Upper Stage. The test article was representative of the LO2 feedline and preliminary accumulator design, and included multiple designs of a perforated ring connecting the accumulator to the core feedline flow. The system was pulse tested in water over a range of pulse frequency and flow rates. Time dependent measurements of pressure at various locations in the test article were used to extract system compliance, inertance, and resistance. Preliminary results indicated a significant deviation from standard orifice flow theory and suggest a strong dependence on feedline average velocity. In addition, several CFD analyses were conducted to investigate the details of the time variant flow field. Both two-dimensional and three-dimensional simulations were performed with time varying boundary conditions used to represent system pulsing. The CFD results compared well with the sub-scale results and demonstrated the influence of feedline average velocity on the flow into and out of the accumulator. This paper presents updated results of the investigation including a parametric design space for determining resistance characteristics. Using the updated experimental results a new scaling relationship has been defined for shear flow over a cavity. A comparison of sub-scale and full scale CFD simulations provided early verification of the scaling of the fluid flowfield and resistance characteristics.
Stability of three-layered core-annular flow
NASA Astrophysics Data System (ADS)
Pillai, Dipin; Pushpavanam, Subramaniam; Sundararajan, T.
2016-11-01
Stability of a three-layered core-annular flow is analyzed using the method of modal linear stability analysis. A temporal analysis shows that the flow becomes unstable to two modes of instability when inertial effects are negligible. An energy budget analysis reveals that these two modes correspond to capillary instability associated with each fluid-fluid interface. With an increase in Reynolds number, the system exhibits additional Reynolds stress modes of instabilities. These modes correspond to the Tollmien-Schlichting type of waves associated with high Reynolds number shear flows, and are considered precursor to transition to turbulence. An investigation of the parameter space reveals that the system may simultaneously show up to 5 distinct modes of instability, viz., the two capillary modes at each interface and three Reynolds stress modes in the bulk of each phase. In addition, a spatio-temporal analysis shows that the Reynolds stress modes are always convectively unstable whereas the capillary modes may undergo a transition from convective to absolute instability with decrease in Weber number. To obtain encapsulated droplets in experiments, the operating parameters must be chosen such that the system lies in the regime of convective instability. MHRD-Govt of India, NSF 0968313.
NASA Astrophysics Data System (ADS)
Namba, Masanobu; Nishino, Ryohei
The purpose of this paper is to study the effect of neighboring blade rows on the unsteady aerodynamic response of oscillating cascade blades on the basis of a genuine three-dimensional model. To this end, mathematical formulations based on the lifting surface theory are developed for a pair of contra-rotating annular cascades of oscillating blades. The mechanism of frequency scattering of blade loadings and mode scattering of acoustic waves resulting from interaction between the blade rows in relative rotational motions is mathematically explained. Simultaneous integral equations for all frequency components of blade loadings are derived from the flow tangency condition on the blade surfaces of both blade rows. The validity of the computation codes is verified.
NASA Astrophysics Data System (ADS)
Nossal, Susan M.; Roesler, Fred L.; Coakley, Monica M.; Reynolds, Ronald J.
1996-10-01
A Fabry-Perot annular summing spectroscopy technique has been sued at the University of Wisconsin's Pine Bluff Observatory to acquire geocoronal Balmer-(alpha) line profile data with significantly improved precision and height resolution. The double-etalon Fabry-Perot interference pattern is imaged onto a photometrics PM512 CCD chip, thus enabling light to be gathered in multiple spectral bins simultaneously. In comparison with scanning systems we used earlier, the high quantum efficiency of the CCD and the multi-channel detection associated with the Fabry-Perot annular summing technique have enabled us to save a factor of about 10 in the integration time required for studies of the line profile. As a result, we are now able to both more precisely observe the line shape of the very faint Balmer- (alpha) emission and obtain data using shorter integration times. Our data illustrate the scientific potential for using this technique for the study of very faint extended emission line sources. The increase in the signal-to-noise of our data has enabled us to examine Balmer-(alpha) profile asymmetries which we have found to be compatible with predictions that on the order of 10 percent of the geocoronal Balmer-(alpha) excitation arises from cascades due to higher-member solar Lyman series excitation. This fine structure was overlooked in previous Balmer-(alpha) studies aimed at determining non-Maxwellian dynamical properties of exospheric hydrogen; we find that cascade excitation largely masks the expected very small dynamical perturbations to the line profile at low shadow heights, and must be more thoroughly studied before drawing conclusions about exospheric dynamics. Accounting for cascade laos leads to more realistic determinations of exospheric hydrogen temperatures near the exobase.
Cooper, W Grant
2009-08-01
Evidence requiring transcriptase quantum processing is identified and elementary quantum methods are used to qualitatively describe origins and consequences of time-dependent coherent proton states populating informational DNA base pair sites in T4 phage, designated by G-C-->G'-C', G-C-->*G-*C and AT-->*A-*T. Coherent states at these 'point' DNA lesions are introduced as consequences of hydrogen bond arrangement, keto-amino-->enol-imine, where product protons are shared between two sets of indistinguishable electron lone-pairs, and thus, participate in coupled quantum oscillations at frequencies of approximately 10(13) s(-1). This quantum mixing of proton energy states introduces stability enhancements of approximately 0.25-7 kcal/mole. Transcriptase genetic specificity is determined by hydrogen bond components contributing to the formation of complementary interstrand hydrogen bonds which, in these cases, is variable due to coupled quantum oscillations of coherent enol-imine protons. The transcriptase deciphers and executes genetic specificity instructions by implementing measurements on superposition proton states at G'-C', *G-*C and *A-*T sites in an interval Deltat<10(-13) s. After initiation of transcriptase measurement, model calculations indicate proton decoherence time, tau(D), satisfies the relation Deltat
Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere
NASA Astrophysics Data System (ADS)
Kim, Junsu; Reichler, Thomas
2016-07-01
The proper simulation of the annular mode time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that this time scale is systematically overestimated by climate models. As suggested by the fluctuation-dissipation theorem, this may imply that climate models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the annular mode time scale. Here, we use long control simulations with the coupled and uncoupled version of the GFDL climate model, CM2.1 and AM2.1, respectively, to study the effects of internal atmospheric variability and forcing from the lower boundary on the stability of the annular mode time scale. In particular, we ask whether a model's annular mode time scale and dynamical sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the annular mode time scale when diagnosed from decadal records. Even under the fixed forcing conditions of our long control run at least 100 years of data are required in order to keep the uncertainty in the annular mode time scale of the Northern Hemisphere to 10 %; over the Southern Hemisphere, the required length increases to 200 years. If nature's annular mode time scale over the Northern Hemisphere is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. Over the Southern Hemisphere, however, the discrepancies between model and reanalysis are sufficiently large to conclude that the model is unable to reproduce the observed time scale structure correctly. The effects of ocean coupling lead to a considerable increase in time scale and uncertainty in time scale, effects which
NASA Technical Reports Server (NTRS)
Nikitin, S. P.; Masalov, A. V.
1992-01-01
The results of numerical simulations of quantum state evolution in the process of second harmonic generation (SHG) are discussed. It is shown that at a particular moment of time in the fundamental mode initially coherent state turns into a superposition of two macroscopically distinguished states. The question of whether this superposition exhibits quantum interference is analyzed.
NASA Astrophysics Data System (ADS)
Frolov, S. M.; Dubrovskii, A. V.; Ivanov, V. S.
2016-07-01
The possibility of integrating the Continuous Detonation Chamber (CDC) in a gas turbine engine (GTE) is demonstrated by means of three-dimensional (3D) numerical simulations, i. e., the feasibility of the operation process in the annular combustion chamber with a wide gap and with separate feeding of fuel (hydrogen) and oxidizer (air) is proved computationally. The CDC with an upstream isolator damping pressure disturbances propagating towards the compressor is shown to exhibit a gain in the total pressure of 15% as compared with the same combustion chamber operating in the deflagration mode.
Methodological developments and strategies for a fast flexible superposition of drug-size molecules.
Klebe, G; Mietzner, T; Weber, F
1999-01-01
An alternative to experimental high through-put screening is the virtual screening of compound libraries on the computer. In absence of a detailed structure of the receptor protein, candidate molecules are compared with a known reference by mutually superimposing their skeletons and scoring their similarity. Since molecular shape highly depends on the adopted conformation, an efficient conformational screening is performed using a knowledge-based approach. A comprehensive torsion library has been compiled from crystal data stored in the Cambridge Structural Database. For molecular comparison a strategy is followed considering shape associated physicochemical properties in space such as steric occupancy, electrostatics, lipophilicity and potential hydrogen-bonding. Molecular shape is approximated by a set of Gaussian functions not necessarily located at the atomic positions. The superposition is performed in two steps: first by a global alignment search operating on multiple rigid conformations and then by conformationally relaxing the best scored hits of the global search. A normalized similarity scoring is used to allow for a comparison of molecules with rather different shape and size. The approach has been implemented on a cluster of parallel processors. As a case study, the search for ligands binding to the dopamine receptor is given.
Methodological developments and strategies for a fast flexible superposition of drug-size molecules
NASA Astrophysics Data System (ADS)
Klebe, Gerhard; Mietzner, Thomas; Weber, Frank
1999-01-01
An alternative to experimental high through-put screening is the virtual screening of compound libraries on the computer. In absence of a detailed structure of the receptor protein, candidate molecules are compared with a known reference by mutually superimposing their skeletons and scoring their similarity. Since molecular shape highly depends on the adopted conformation, an efficient conformational screening is performed using a knowledge-based approach. A comprehensive torsion library has been compiled from crystal data stored in the Cambridge Structural Database. For molecular comparison a strategy is followed considering shape associated physicochemical properties in space such as steric occupancy, electrostatics, lipophilicity and potential hydrogen-bonding. Molecular shape is approximated by a set of Gaussian functions not necessarily located at the atomic positions. The superposition is performed in two steps: first by a global alignment search operating on multiple rigid conformations and then by conformationally relaxing the best scored hits of the global search. A normalized similarity scoring is used to allow for a comparison of molecules with rather different shape and size. The approach has been implemented on a cluster of parallel processors. As a case study, the search for ligands binding to the dopamine receptor is given.
NASA Astrophysics Data System (ADS)
Chen, Linfei; Gao, Xiong; Chen, Xudong; He, Bingyu; Liu, Jingyu; Li, Dan
2016-04-01
In this paper, a new optical image cryptosystem is proposed based on two-beam coherent superposition and unequal modulus decomposition. Different from the equal modulus decomposition or unit vector decomposition, the proposed method applies common vector decomposition to accomplish encryption process. In the proposed method, the original image is firstly Fourier transformed and the complex function in spectrum domain will be obtained. The complex distribution is decomposed into two vector components with unequal amplitude and phase by the common vector decomposition method. Subsequently, the two components are modulated by two random phases and transformed from spectrum domain to spatial domain, and amplitude parts are extracted as encryption results and phase parts are extracted as private keys. The advantages of the proposed cryptosystem are: four different phase and amplitude information created by the method of common vector decomposition strengthens the security of the cryptosystem, and it fully solves the silhouette problem. Simulation results are presented to show the feasibility and the security of the proposed cryptosystem.
Quantum superposition of a single microwave photon in two different 'colour' states
NASA Astrophysics Data System (ADS)
Zakka-Bajjani, Eva; Nguyen, François; Lee, Minhyea; Vale, Leila R.; Simmonds, Raymond W.; Aumentado, José
2011-08-01
Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~7GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different 'colours'. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.
Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes.
Huang, Chi-Chieh; Wu, Xiudong; Liu, Hewei; Aldalali, Bader; Rogers, John A; Jiang, Hongrui
2014-08-13
In nature, reflecting superposition compound eyes (RSCEs) found in shrimps, lobsters and some other decapods are extraordinary imaging systems with numerous optical features such as minimum chromatic aberration, wide-angle field of view (FOV), high sensitivity to light and superb acuity to motion. Here, we present life-sized, large-FOV, wide-spectrum artificial RSCEs as optical imaging devices inspired by the unique designs of their natural counterparts. Our devices can form real, clear images based on reflection rather than refraction, hence avoiding chromatic aberration due to dispersion by the optical materials. Compared to imaging at visible wavelengths using conventional refractive lenses of comparable size, our artificial RSCEs demonstrate minimum chromatic aberration, exceptional FOV up to 165° without distortion, modest aberrations and comparable imaging quality without any post-image processing. Together with an augmenting cruciform pattern surrounding each focused image, our large-FOV, wide-spectrum artificial RSCEs possess enhanced motion-tracking capability ideal for diverse applications in military, security, medical imaging and astronomy.
Identification of Distant Drug Off-Targets by Direct Superposition of Binding Pocket Surfaces
Schumann, Marcel; Armen, Roger S.
2013-01-01
Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target (“distant off-targets”). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target (“distant off-target”). PMID:24391782
Stabilizing the phase of superpositions of cat states in a cavity using real-time feedback
NASA Astrophysics Data System (ADS)
Ofek, N.; Petrenko, A.; Heeres, R.; Reinhold, P.; Liu, Y.; Leghtas, Z.; Vlastakis, B.; Frunzio, L.; Jiang, Liang; Mirrahimi, M.; Devoret, M. H.; Schoelkopf, R. J.
In a superconducting cQED architecture, a hardware efficient quantum error correction (QEC) scheme exists, called the cat code, which maps a qubit onto superpositions of cat states in a superconducting resonator, by mapping the occurrence of errors, or single photon jumps, onto unitary rotations of the encoded state. By tracking the parity of the encoded state, we can count the number of photon jumps and are able to apply a correcting unitary transformation. However, the situation is complicated by the fact that photon jumps do not commute with the deterministic anharmonic time evolution of a resonator state, or Kerr, inherited by the resonator from its coupling to a Josephson junction. As predicted in, a field in the resonator will inherit an overall phase θ = KT in IQ space each time a photon jumps that is proportional to the Kerr K and the time T at which the jump occurs. Here I will present how we can track the errors in real time, take them into account together with the time they occur and make it possible to stabilize the qubit information. Please place my talk right after the talk of Andrei Petrenko.
NASA Astrophysics Data System (ADS)
Dalla Pozza, Nicola; Wiseman, Howard M.; Huntington, Elanor H.
2015-01-01
The preparation stage of optical qubits is an essential task in all the experimental setups employed for the test and demonstration of quantum optics principles. We consider a deterministic protocol for the preparation of qubits as a superposition of vacuum and one photon number states, which has the advantage to reduce the amount of resources required via phase-sensitive measurements using a local oscillator (‘dyne detection’). We investigate the performances of the protocol using different phase measurement schemes: homodyne, heterodyne, and adaptive dyne detection (involving a feedback loop). First, we define a suitable figure of merit for the prepared state and we obtain an analytical expression for that in terms of the phase measurement considered. Further, we study limitations that the phase measurement can exhibit, such as delay or limited resources in the feedback strategy. Finally, we evaluate the figure of merit of the protocol for different mode-shapes handily available in an experimental setup. We show that even in the presence of such limitations simple feedback algorithms can perform surprisingly well, outperforming the protocols when simple homodyne or heterodyne schemes are employed.
Mochizuki, Koji; Takayama, Kozo
2014-01-01
This study reports the results of applying the time-temperature superposition principle (TTSP) to the prediction of color changes in liquid formulations. A sample solution consisting of L-tryptophan and glucose was used as the model liquid formulation for the Maillard reaction. After accelerated aging treatment at elevated temperatures, the Commission Internationale de l'Eclairage (CIE) LAB color parameters (a*, b*, L*, and E*ab) of the sample solution were measured using a spectrophotometer. The TTSP was then applied to a kinetic analysis of the color changes. The calculated values of the apparent activation energy of a*, b*, L*, and ΔE*ab were 105.2, 109.8, 91.6, and 103.7 kJ/mol, respectively. The predicted values of the color parameters at 40°C were calculated using Arrhenius plots for each of the color parameters. A comparison of the relationships between the experimental and predicted values of each color parameter revealed the coefficients of determination for a*, b*, L*, and ΔE*ab to be 0.961, 0.979, 0.960, and 0.979, respectively. All the R(2) values were sufficiently high, and these results suggested that the prediction was highly reliable. Kinetic analysis using the TTSP was successfully applied to calculating the apparent activation energy and to predicting the color changes at any temperature or duration.
Ultrafast convolution/superposition using tabulated and exponential kernels on GPU
Chen Quan; Chen Mingli; Lu Weiguo
2011-03-15
Purpose: Collapsed-cone convolution/superposition (CCCS) dose calculation is the workhorse for IMRT dose calculation. The authors present a novel algorithm for computing CCCS dose on the modern graphic processing unit (GPU). Methods: The GPU algorithm includes a novel TERMA calculation that has no write-conflicts and has linear computation complexity. The CCCS algorithm uses either tabulated or exponential cumulative-cumulative kernels (CCKs) as reported in literature. The authors have demonstrated that the use of exponential kernels can reduce the computation complexity by order of a dimension and achieve excellent accuracy. Special attentions are paid to the unique architecture of GPU, especially the memory accessing pattern, which increases performance by more than tenfold. Results: As a result, the tabulated kernel implementation in GPU is two to three times faster than other GPU implementations reported in literature. The implementation of CCCS showed significant speedup on GPU over single core CPU. On tabulated CCK, speedups as high as 70 are observed; on exponential CCK, speedups as high as 90 are observed. Conclusions: Overall, the GPU algorithm using exponential CCK is 1000-3000 times faster over a highly optimized single-threaded CPU implementation using tabulated CCK, while the dose differences are within 0.5% and 0.5 mm. This ultrafast CCCS algorithm will allow many time-sensitive applications to use accurate dose calculation.
Superposition of elliptic functions as solutions for a large number of nonlinear equations
NASA Astrophysics Data System (ADS)
Khare, Avinash; Saxena, Avadh
2014-03-01
For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ4, the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn2(x, m), it also admits solutions in terms of dn^2(x,m) ± sqrt{m} cn(x,m) dn(x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.
NASA Astrophysics Data System (ADS)
Li, Hai-Sheng; Zhu, Qingxin; Zhou, Ri-Gui; Song, Lan; Yang, Xing-jiang
2014-04-01
Multi-dimensional color image processing has two difficulties: One is that a large number of bits are needed to store multi-dimensional color images, such as, a three-dimensional color image of needs bits. The other one is that the efficiency or accuracy of image segmentation is not high enough for some images to be used in content-based image search. In order to solve the above problems, this paper proposes a new representation for multi-dimensional color image, called a -qubit normal arbitrary quantum superposition state (NAQSS), where qubits represent colors and coordinates of pixels (e.g., represent a three-dimensional color image of only using 30 qubits), and the remaining 1 qubit represents an image segmentation information to improve the accuracy of image segmentation. And then we design a general quantum circuit to create the NAQSS state in order to store a multi-dimensional color image in a quantum system and propose a quantum circuit simplification algorithm to reduce the number of the quantum gates of the general quantum circuit. Finally, different strategies to retrieve a whole image or the target sub-image of an image from a quantum system are studied, including Monte Carlo sampling and improved Grover's algorithm which can search out a coordinate of a target sub-image only running in where and are the numbers of pixels of an image and a target sub-image, respectively.
NASA Technical Reports Server (NTRS)
Biezad, D. J.; Schmidt, D. K.; Leban, F.; Mashiko, S.
1986-01-01
Single-channel pilot manual control output in closed-tracking tasks is modeled in terms of linear discrete transfer functions which are parsimonious and guaranteed stable. The transfer functions are found by applying a modified super-position time series generation technique. A Levinson-Durbin algorithm is used to determine the filter which prewhitens the input and a projective (least squares) fit of pulse response estimates is used to guarantee identified model stability. Results from two case studies are compared to previous findings, where the source of data are relatively short data records, approximately 25 seconds long. Time delay effects and pilot seasonalities are discussed and analyzed. It is concluded that single-channel time series controller modeling is feasible on short records, and that it is important for the analyst to determine a criterion for best time domain fit which allows association of model parameter values, such as pure time delay, with actual physical and physiological constraints. The purpose of the modeling is thus paramount.
NASA Astrophysics Data System (ADS)
Ismail Ozkaya, Sait
2014-03-01
An Excel Visual Basic program, SUPERPOSE, is presented to predict the distribution, relative size and strike of tensile and shear fractures on anticlinal structures. The program is based on the concept of stress superposition; addition of curvature-related local tensile stress and regional far-field stress. The method accurately predicts fractures on many Middle East Oil Fields that were formed under a strike slip regime as duplexes, flower structures or inverted structures. The program operates on the Excel platform. The program reads the parameters and structural grid data from an Excel template and writes the results to the same template. The program has two routines to import structural grid data in the Eclipse and Zmap formats. The platform of SUPERPOSE is a single layer structural grid of a given cell size (e.g. 50×50 m). In the final output, a single tensile or two conjugate shear fractures are placed in each cell if fracturing criteria are satisfied; otherwise the cell is left blank. Strike of the representative fracture(s) is calculated and exact, but the length is an index of fracture porosity (fracture density×length×aperture) within that cell.
Securing multiple color information by optical coherent superposition based spiral phase encoding
NASA Astrophysics Data System (ADS)
Abuturab, Muhammad Rafiq
2014-05-01
A new optical multiple-color image cryptosystem using optical coherent superposition based spiral phase encoding is proposed, which can be applied to achieve a nonlinear multiple-image encryption of the same size. This multiplexed coding scheme is lensless, non time-consuming and decoding procedure is free from cross talk and noise effects in real time. In this contribution, a color image is decomposed into three independent channels, i.e., red, green and blue. Each channel is then divided into an arbitrarily selected spiral phase mask (SPM) and a spiral key mask (SKM). The selected SPM is introduced as an encrypted image for multiple color images. The SKMs are employed as different decryption keys for different images. That means, only need is to send the construction parameters (as the order, the wavelength, the focal length, and the radius) of the SPM independently to multiple-user, but not the key itself, so it enhances robustness against existing attacks than double random phase encoding techniques. Moreover, the maximum data can be securely handled with a single parameter variation. The encryption process can be performed digitally while the decryption process is very simple and can be implemented using optoelectronic architecture. A set of numerical simulation results confirm the feasibility and effectiveness of the proposed cryptosystem for multiple-color image encryption.
Quantum Delayed-Choice Experiment with a Beam Splitter in a Quantum Superposition
NASA Astrophysics Data System (ADS)
Zheng, Shi-Biao; Zhong, You-Peng; Xu, Kai; Wang, Qi-Jue; Wang, H.; Shen, Li-Tuo; Yang, Chui-Ping; Martinis, John M.; Cleland, A. N.; Han, Si-Yuan
2015-12-01
A quantum system can behave as a wave or as a particle, depending on the experimental arrangement. When, for example, measuring a photon using a Mach-Zehnder interferometer, the photon acts as a wave if the second beam splitter is inserted, but as a particle if this beam splitter is omitted. The decision of whether or not to insert this beam splitter can be made after the photon has entered the interferometer, as in Wheeler's famous delayed-choice thought experiment. In recent quantum versions of this experiment, this decision is controlled by a quantum ancilla, while the beam splitter is itself still a classical object. Here, we propose and realize a variant of the quantum delayed-choice experiment. We configure a superconducting quantum circuit as a Ramsey interferometer, where the element that acts as the first beam splitter can be put in a quantum superposition of its active and inactive states, as verified by the negative values of its Wigner function. We show that this enables the wave and particle aspects of the system to be observed with a single setup, without involving an ancilla that is not itself a part of the interferometer. We also study the transition of this quantum beam splitter from a quantum to a classical object due to decoherence, as observed by monitoring the interferometer output.
Probing the conductance superposition law in single-molecule circuits with parallel paths.
Vazquez, H; Skouta, R; Schneebeli, S; Kamenetska, M; Breslow, R; Venkataraman, L; Hybertsen, M S
2012-10-01
According to Kirchhoff's circuit laws, the net conductance of two parallel components in an electronic circuit is the sum of the individual conductances. However, when the circuit dimensions are comparable to the electronic phase coherence length, quantum interference effects play a critical role, as exemplified by the Aharonov-Bohm effect in metal rings. At the molecular scale, interference effects dramatically reduce the electron transfer rate through a meta-connected benzene ring when compared with a para-connected benzene ring. For longer conjugated and cross-conjugated molecules, destructive interference effects have been observed in the tunnelling conductance through molecular junctions. Here, we investigate the conductance superposition law for parallel components in single-molecule circuits, particularly the role of interference. We synthesize a series of molecular systems that contain either one backbone or two backbones in parallel, bonded together cofacially by a common linker on each end. Single-molecule conductance measurements and transport calculations based on density functional theory show that the conductance of a double-backbone molecular junction can be more than twice that of a single-backbone junction, providing clear evidence for constructive interference.
Fast 3D molecular superposition and similarity search in databases of flexible molecules
NASA Astrophysics Data System (ADS)
Krämer, Andreas; Horn, Hans W.; Rice, Julia E.
2003-01-01
We present a new method (fFLASH) for the virtual screening of compound databases that is based on explicit three-dimensional molecular superpositions. fFLASH takes the torsional flexibility of the database molecules fully into account, and can deal with an arbitrary number of conformation-dependent molecular features. The method utilizes a fragmentation-reassembly approach which allows for an efficient sampling of the conformational space. A fast clique-based pattern matching algorithm generates alignments of pairs of adjacent molecular fragments on the rigid query molecule that are subsequently reassembled to complete database molecules. Using conventional molecular features (hydrogen bond donors and acceptors, charges, and hydrophobic groups) we show that fFLASH is able to rapidly produce accurate alignments of medium-sized drug-like molecules. Experiments with a test database containing a diverse set of 1780 drug-like molecules (including all conformers) have shown that average query processing times of the order of 0.1 seconds per molecule can be achieved on a PC.
Rotating annular chromatograph for continuous metal separations and recovery
Begovich, J.M.; Sisson, W.G.
1981-01-01
Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. By continuously introducing the feed material to be separated at a stationary point at the top of the bed and eluent everywhere else around the annulus, elution chromatography occurs. The rotation of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence, the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6-m-long device with a 12.7-mm-wide annulus. The effect of annulus width and diameter has recently been studied using the same device with a 50.8-mm-wide annulus and another 0.6-m-long chromatograph with an 89-mm diameter and annulus widths of 6.4, 12.7, and 22.2 mm. These columns have been constructed of Plexiglas and typically operate at a gauge pressure of 175 kPa. To further study the effect of size and pressure, a new 445-mm-diam by 1-m-long column with a 31.8-mm-wide annulus has been fabricated. Its metal construction allows preparative-scale operation with a wide variety of liquids at pressures to 1.3 MPa. Three metal recovery systems have been explored: (1) separation of iron and aluminum in ammonium sulfate-sulfuric acid solutions; (2) separation of hafnium from zirconium in sulfuric acid solutions; and (3) the separation of copper, nickel, and cobalt in ammonium carbonate solutions. This last system simulates the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. It has been studied, using similar conditions, on each of the chromatographs, and the results demonstrate the effect of column dimensions on the quality and quantity of the separation. 8 figures, 1 table.
Genetic predisposition to calcific aortic stenosis and mitral annular calcification.
Kutikhin, Anton G; Yuzhalin, Arseniy E; Brusina, Elena B; Ponasenko, Anastasia V; Golovkin, Alexey S; Barbarash, Olga L
2014-09-01
Valvular calcification precedes the development of valvular stenosis and may represent an important early phenotype for valvular heart disease. It is known that development of valvular calcification is likely to occur among members of a family. However, the knowledge about the role of genomic predictive markers in valvular calcification is still elusive. Aims of this review are to assess the impact of gene polymorphisms on risk and severity of aortic stenosis and mitral annular calcification. According to the results of the investigations carried out, all polymorphisms may be divided into the three groups conferring the level of evidence of their association with valvular stenosis. It is possible to conclude that apoB (XbaI, rs1042031, and rs6725189), ACE (rs4340), IL10 (rs1800896 and rs1800872), and LPA (rs10455872) gene polymorphisms may be associated with valvular calcific stenosis with a relatively high level of evidence. A number of other polymorphisms, such as PvuII polymorphism within the ORα gene, rs1042636 polymorphism within the CaSR gene, rs3024491, rs3021094, rs1554286, and rs3024498 polymorphisms within the IL10 gene, rs662 polymorphism within the PON1 gene, rs2276288 polymorphism within the MYO7A gene, rs5194 polymorphism within the AGTR1 gene, rs2071307 polymorphism within the ELN gene, rs17659543 and rs13415097 polymorphisms within the IL1F9 gene may correlate with a risk of calcific valve stenosis with moderate level of evidence. Finally, rs1544410 polymorphism within the VDR gene, E2 and E4 alleles within the apoE gene, rs6254 polymorphism within the PTH gene, and rs1800871 polymorphism within the IL10 gene may be associated with aortic stenosis with low level of evidence.
Interaction of acoustic and vortical waves with an annular cascade
NASA Astrophysics Data System (ADS)
Vinogradov, Igor V.
Noise generated by a turbofan engine has both tonal and broadband noise components. It is shown in this thesis that a computationally efficient method for tonal noise can be applied for broadband noise as well. In the thesis, both types of noise are studied using linearized three-dimensional Euler equations model. First, a numerical method for tonal noise calculation is formulated using a high accuracy implicit scheme for the spatial derivatives and the assumption that the flow variables depend on time in a periodic fashion. The system of equations is then solved in frequency domain using time-marching technique. The high accuracy approximation allows to reduce the number of grid points while, due to factoring out of the time variable, grid-dependent time step can be used. In order to verify the method, comparison with existing codes is made for a number of geometries. Several acceleration techniques are tested, including parallel computing, grid clustering, and multigrid. Second, for an annular cascade with zero blade loading the results show that the mean flow swirl changes the physics of scattering in three major ways: (i) it modifies the number of acoustic modes in the duct, (ii) it changes their duct radial profile, and (iii) it causes significant amplitude and radial phase variations of the incident disturbances. The method is also applied toward loaded cascades and the results indicate significant effect of thickness at high frequency for cases of non-zero stagger and camber. Finally, a three-dimensional model is presented for fan broadband interaction noise based on spectral representation of the impinging upstream turbulence and a multiple scale analysis for the evolution of turbulence in a nonuniform swirling flow. Comparison of the radiated noise spectra for three-dimensional and two-dimensional cascades is presented.
Probe with integrated heater and thermocouple pack
McCulloch, R.W.; Dial, R.E.; Finnell, W.F.R.
1988-02-16
This patent describes a gamma thermometer probe for detecting heat produced within the thermometer probe. It comprises: an outer elongate thermometer sheath; an elongate rod; annular recesses; a longitudinal bore; and an integrated thermocouple pack. The thermocouple pack comprises: a first type wire, and second type wires. The second type wires comprises: an outer section; and an inner segment.
Katsura, S; Fukuda, W; Inawashiro, S; Fujiki, N M; Gebauer, R
1987-12-01
The integral equation for the distribution function of effective field of the +/- J random Ising model in the pair (Bethe) approximation is investigated. Its exact solutions at H (magnetic field) = O, T (temperature) = O and for z (coordination number) = 3 expressed as superpositions of 2N + 1 (more than 3), delta functions are considered. Then the integral equation is reduced to a system of algebraic equations of z - 1th degree with N + 1 unknowns. The system of the equations is solved by the Gröbner basis method with N = 1,2,3,4. The number of physically acceptable solutions for a given N is omega(N) + 1, where omega(N) is the number of divisors of N. The ground-state energy and entropy for these are calculated. They are very close in value (entropies are positive), and it is suggested that a number of physically acceptable solutions correspond to local stationary spin-glass states, as discussed in the literatures.
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings
Zheng, Shuang; Wang, Jian
2017-01-01
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325
Dankovcik, Robert; Jirasek, Jan E.; Kucera, Eduard; Feyereisl, Jaroslav; Radonak, Jozef; Dudas, Marek
2009-01-01
Objective To evaluate the power of prenatal 2-D ultrasound examination in the 2nd trimester as a method of choice for accurate diagnosis of annular pancreas. Methods Co-incidence of the double bubble sign (often accompanying gastroduodenal dilatation) together with a hyperechogenic band around the duodenum (corresponding with the tissue of annular pancreas) was used as a diagnostic criterion. Findings from postnatal surgery served for verification. Results From 7,897 screened pregnancies, annular pancreas was proven in the cases where both signs were present, but never without the hyperechogenic band (N1 = 3, N2 = 3, p ≤ 0.05). Sensitivity and specificity were 100%. Conclusions More multicentric studies are required to test this approach. The following diagnostic strategy is reasonable at the present time: when the double bubble sign is discovered, always suspect annular pancreas and look for the second sign: hyperechogenic bands around the duodenum. Also look for known associated anomalies, and vice versa, if any of associated anomalies are noted, also search specifically for the signs of annular pancreas. PMID:19047797
NASA Astrophysics Data System (ADS)
Yin, Suqin; Zhang, Bin; Dan, Youquan
2011-06-01
When high-power annular laser beams produced by the unstable resonator pass through the volume Bragg grating (VBG), absorption of light in the VBG will induce a temperature increment, resulting in changes in surface distortion. Considering that the surface distortion of the grating induces index and period differences, the scalar wave equations for the annular laser beams propagating in the VBG have been solved numerically and iteratively using finite-difference and sparse matrix methods. The variation in intensity distributions, the total power reflection coefficient, and the power in the bucket (PIB) for the annular laser beams passing through the reflection VBG with deformation have been analyzed quantitatively. It can be shown that the surface distortion of the VBG and the beam orders of the annular beams affect evidently the intensity distributions, the power reflection coefficient, and the PIB of the output beam. The peak intensity decreases as the deformation of the VBG increases. The total power reflection efficiency decreases significantly with the increase in deformations of the VBG. The PIB of the output beam decreases as the obscuration ratio β and the deformation of the VBG increase. For the given obscuration ratio β, the influence of deformation of reflection VBG on the PIB of the annular beams is more sensitive with increase in distortion of the VBG and decrease in beam order.
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings
NASA Astrophysics Data System (ADS)
Zheng, Shuang; Wang, Jian
2017-01-01
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.
Three-dimensional regular arrangement of the annular ligament of the rat stapediovestibular joint.
Ohashi, Mitsuru; Ide, Soyuki; Kimitsuki, Takashi; Komune, Shizuo; Suganuma, Tatsuo
2006-03-01
The stapes footplate articulates with the vestibular window through the annular ligament. This articulation is known as the stapediovestibular joint (SVJ). We investigated the ultrastructure of adult rat SVJ and report here on the characteristic ultrastructure of the corresponding annular ligament. Transmission electron microscopy showed that this annular ligament comprises thick ligament fibers consisting of a peripheral mantle of microfibrils and an electron-lucent central amorphous substance that is regularly arranged in a linear fashion, forming laminated structures parallel to the horizontal plane of the SVJ. Scanning electron microscopy revealed that transverse microfibrils cross the thick ligament fibers, showing a lattice-like structure. The annular ligament was vividly stained with elastica van Gieson's stain and the Verhoeff's iron hematoxylin method. Staining of the electron-lucent central amorphous substance of the thick ligament fibers by the tannate-metal salt method revealed an intense electron density. These results indicate that the annular ligament of the SVJ is mainly composed of mature elastic fibers.
Stroke volume and mitral annular velocities. Insights from tissue Doppler imaging.
Bruch, C; Stypmann, J; Gradaus, R; Breithardt, G; Wichter, T
2004-10-01
The aim of this study was to assess the impact of stroke volume (SV) on mitral annular velocities derived from tissue Doppler imaging (TDI). To this end, conventional echocardiographic variables and TDI derived mitral annular velocities (S', E', A') were obtained in 14 patients (pts) with increased SV (due to primary mitral (n=12) (ISV group)), in 41 pts with reduced SV (due to ischemic (n=27) or dilated cardiomyopathy (n=9) or hypertensive heart disease (n=5) (RSV group)) and 29 asymptomatic controls with normal SV (CON group). Systolic (S') and early diastolic (E') mitral annular velocities were elevated in the ISV group in the comparison to the CON group, but were significantly reduced in the RSV group. Late diastolic annular velocities (A') did not differ between the ISV and the CON group, but were lowest in the RSV group. On simple linear regression analysis, SV was significantly related to S' (r=0.74, p<0.001), to E' (r=0.74, p<0.001) and to A' (r=0.43, p<0.01). On multiple regression analysis, SV was a stronger independent predictor of S' and E' than conventional systolic or diastolic echocardiographic variables. Thus, stroke volume has a significant impact on TDI derived systolic (S') and early diastolic (E') mitral annular velocities. This should be considered, when TDI is used in the evaluation of LV performance or in the estimation of filling pressures.
Generalization of susceptibility of RF systems through far-field pattern superposition
NASA Astrophysics Data System (ADS)
Verdin, B.; Debroux, P.
2015-05-01
The purpose of this paper is to perform an analysis of RF (Radio Frequency) communication systems in a large electromagnetic environment to identify its susceptibility to jamming systems. We propose a new method that incorporates the use of reciprocity and superposition of the far-field radiation pattern of the RF system and the far-field radiation pattern of the jammer system. By using this method we can find the susceptibility pattern of RF systems with respect to the elevation and azimuth angles. A scenario was modeled with HFSS (High Frequency Structural Simulator) where the radiation pattern of the jammer was simulated as a cylindrical horn antenna. The RF jamming entry point used was a half-wave dipole inside a cavity with apertures that approximates a land-mobile vehicle, the dipole approximates a leaky coax cable. Because of the limitation of the simulation method, electrically large electromagnetic environments cannot be quickly simulated using HFSS's finite element method (FEM). Therefore, the combination of the transmit antenna radiation pattern (horn) superimposed onto the receive antenna pattern (dipole) was performed in MATLAB. A 2D or 3D susceptibility pattern is obtained with respect to the azimuth and elevation angles. In addition, by incorporating the jamming equation into this algorithm, the received jamming power as a function of distance at the RF receiver Pr(Φr, θr) can be calculated. The received power depends on antenna properties, propagation factor and system losses. Test cases include: a cavity with four apertures, a cavity above an infinite ground plane, and a land-mobile vehicle approximation. By using the proposed algorithm a susceptibility analysis of RF systems in electromagnetic environments can be performed.
Fast Electron Correlation Methods for Molecular Clusters without Basis Set Superposition Errors
Kamiya, Muneaki; Hirata, So; Valiev, Marat
2008-02-19
Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly-interacting molecular clusters [Hirata et al. Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine–water clusters with an excellent result for an initial performance assessment. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole–dipole approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of the cluster subunits as closely as possible and also self-consistently with one another in the cluster environment. They have been shown to lead to dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits like zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSE) known to plague direct evaluation of weak interactions have been eliminated by com-bining the Valiron–Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method in an economical fashion (quadratic scaling n2 with respect to the number of subunits n when n is small and linear scaling when n is large). A new variant of VMFC has also been proposed in which three-body and all higher-order Coulomb effects on BSSE are estimated approximately. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results of conventional electron correlation calculations within 0.1 kcal/mol. The proposed method is significantly more accurate and also efficient than conventional correlation methods uncorrected of BSSE.
NASA Astrophysics Data System (ADS)
White, J. A.
2014-12-01
As a significant fraction of a carbon storage project's budget is devoted to site characterization and monitoring, there has been an intense drive in recent years to both lower cost and improve the quality of data obtained. Two data streams that are cheap and always available are pressure and flow rate measurements from the injection well. Falloff testing, in which the well is shut-in for some period of time and the pressure decline curve measured, is often used to probe the storage zone and look for indications of hydraulic barriers, fracture-dominated flow, and other reservoir characteristics. These tests can be used to monitor many hydromechanical processes of interest, including hydraulic fracturing and fault reactivation. Unfortunately, the length of the shut-in period controls how far away from the injector information may be obtained. For operational reasons these tests are typically kept short and infrequent, limiting their usefulness. In this work, we present a new analysis method in which ongoing injection data is used to reconstruct an equivalent falloff test, without shutting in the well. The entire history of injection may therefore be used as a stand in for a very long test. The method relies upon a simple superposition principle to transform a multi-rate injection sequence into an equivalent single-rate process. We demonstrate the effectiveness of the method using injection data from the Snøhvit storage project. We also explore its utility in an active pressure management scenario. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Bioeffects induced by exposure to microwaves are mitigated by superposition of ELF noise.
Litovitz, T A; Penafiel, L M; Farrel, J M; Krause, D; Meister, R; Mullins, J M
1997-01-01
We have previously demonstrated that microwave fields, amplitude modulated (AM) by an extremely low-frequency (ELF) sine wave, can induce a nearly twofold enhancement in the activity of ornithine decarboxylase (ODC) in L929 cells at SAR levels of the order of 2.5 W/kg. Similar, although less pronounced, effects were also observed from exposure to a typical digital cellular phone test signal of the same power level, burst modulated at 50 Hz. We have also shown that ODC enhancement in L929 cells produced by exposure to ELF fields can be inhibited by superposition of ELF noise. In the present study, we explore the possibility that similar inhibition techniques can be used to suppress the microwave response. We concurrently exposed L929 cells to 60 Hz AM microwave fields or a 50 Hz burst-modulated DAMPS (Digital Advanced Mobile Phone System) digital cellular phone field at levels known to produce ODC enhancement, together with band-limited 30-100 Hz ELF noise with root mean square amplitude of up to 10 microT. All exposures were carried out for 8 h, which was previously found to yield the peak microwave response. In both cases, the ODC enhancement was found to decrease exponentially as a function of the noise root mean square amplitude. With 60 Hz AM microwaves, complete inhibition was obtained with noise levels at or above 2 microT. With the DAMPS digital cellular phone signal, complete inhibition occurred with noise levels at or above 5 microT. These results suggest a possible practical means to inhibit biological effects from exposure to both ELF and microwave fields.
Mochizuki, Koji; Takayama, Kozo
2016-01-01
A prediction method for color changes based on the time-temperature superposition principle (TTSP) was developed for acetaminophen solution. Color changes of acetaminophen solution are caused by the degradation of acetaminophen, such as hydrolysis and oxidation. In principle, the TTSP can be applied to only thermal aging. Therefore, the impact of oxidation on the color changes of acetaminophen solution was verified. The results of our experiment suggested that the oxidation products enhanced the color changes in acetaminophen solution. Next, the color changes of acetaminophen solution samples of the same head space volume after accelerated aging at various temperatures were investigated using the Commission Internationale de l'Eclairage (CIE) LAB color space (a*, b*, L* and ΔE*ab), following which the TTSP was adopted to kinetic analysis of the color changes. The apparent activation energies using the time-temperature shift factor of a*, b*, L* and ΔE*ab were calculated as 72.4, 69.2, 72.3 and 70.9 (kJ/mol), respectively, which are similar to the values for acetaminophen hydrolysis reported in the literature. The predicted values of a*, b*, L* and ΔE*ab at 40 °C were obtained by calculation using Arrhenius plots. A comparison between the experimental and predicted values for each color parameter revealed sufficiently high R(2) values (>0.98), suggesting the high reliability of the prediction. The kinetic analysis using TTSP was successfully applied to predicting the color changes under the controlled oxygen amount at any temperature and for any length of time.
NASA Astrophysics Data System (ADS)
Kripal, Ram; Pandey, Sangita
2010-06-01
The electron paramagnetic resonance (EPR) studies are carried out on Cr 3+ ion doped ammonium dihydrogen phosphate (ADP) single crystals at room temperature. Four magnetically inequivalent sites for chromium are observed. No hyperfine structure is obtained. The crystal-field and spin Hamiltonian parameters are calculated from the resonance lines obtained at different angular rotations. The zero field and spin Hamiltonian parameters of Cr 3+ ion in ADP are calculated as: | D| = (257 ± 2) × 10 -4 cm -1, | E| = (79 ± 2) × 10 -4 cm -1, g = 1.9724 ± 0.0002 for site I; | D| = (257 ± 2) × 10 -4 cm -1, | E| = (77 ± 2) × 10 -4 cm -1, g = 1.9727 ± 0.0002 for site II; | D| = (259 ± 2) × 10 -4 cm -1, | E| = (78 ± 2) × 10 -4 cm -1, g = 1.9733 ± 0.0002 for site III; | D| = (259 ± 2) × 10 -4 cm -1, | E| = (77 ± 2) × 10 -4 cm -1, g = 1.973 ± 0.0002 for site IV, respectively. The site symmetry of Cr 3+ doped single crystal is discussed on the basis of EPR data. The Cr 3+ ion enters the lattice substitutionally replacing the NH 4+ sites. The optical absorption spectra are recorded in 195-925 nm wavelength range at room temperature. The energy values of different orbital levels are determined. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The calculated values of Racah interelectronic repulsion parameters ( B and C), cubic crystal-field splitting parameter ( Dq) and nephelauxetic parameters ( h and k) are: B = 640, C = 3070, Dq = 2067 cm -1, h = 1.44 and k = 0.21, respectively. ZFS parameters are also determined using Bkq parameters from superposition model.
NASA Astrophysics Data System (ADS)
Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.
2013-05-01
This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.
Annular spherically focused ring transducers for improved single-beam acoustical tweezers
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2016-02-01
The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.
Annular spherically focused ring transducers for improved single-beam acoustical tweezers
Mitri, F. G.
2016-02-14
The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.
NASA Astrophysics Data System (ADS)
Copeland, Kyle
2015-07-01
The superposition approximation was commonly employed in atmospheric nuclear transport modeling until recent years and is incorporated into flight dose calculation codes such as CARI-6 and EPCARD. The useful altitude range for this approximation is investigated using Monte Carlo transport techniques. CARI-7A simulates atmospheric radiation transport of elements H-Fe using a database of precalculated galactic cosmic radiation showers calculated with MCNPX 2.7.0 and is employed here to investigate the influence of the superposition approximation on effective dose rates, relative to full nuclear transport of galactic cosmic ray primary ions. Superposition is found to produce results less than 10% different from nuclear transport at current commercial and business aviation altitudes while underestimating dose rates at higher altitudes. The underestimate sometimes exceeds 20% at approximately 23 km and exceeds 40% at 50 km. Thus, programs employing this approximation should not be used to estimate doses or dose rates for high-altitude portions of the commercial space and near-space manned flights that are expected to begin soon.