DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringgenberg, P.D.; Burris, W.J.
1988-06-28
A method is described of flow testing a formation in a wellbore, comprising: providing a testing string including at least one annulus pressure responsive tool bore closure valve; providing a packer and setting the packer in the wellbore to seal thereacross; running the testing string into the wellbore with the tool bore closure valve in an open position; stinging into the set packer with the bottom of the testing string; increasing pressure a first time in the wellbore annulus around the testing string and above the set packer without cycling the tool bore closure valve; reducing pressure in the wellboremore » annulus; closing the tool bore closure valve responsive to the pressure reduction; increasing pressure a second time in the wellbore annulus; reopening the tool bore closure valve responsive to the second increase; and flowing fluids from the formation through the reopened tool bore closure valve.« less
ANNULUS CLOSURE TECHNOLOGY DEVELOPMENT INSPECTION/SALT DEPOSIT CLEANING MAGNETIC WALL CRAWLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minichan, R; Russell Eibling, R; James Elder, J
2008-06-01
The Liquid Waste Technology Development organization is investigating technologies to support closure of radioactive waste tanks at the Savannah River Site (SRS). Tank closure includes removal of the wastes that have propagated to the tank annulus. Although amounts and types of residual waste materials in the annuli of SRS tanks vary, simple salt deposits are predominant on tanks with known leak sites. This task focused on developing and demonstrating a technology to inspect and spot clean salt deposits from the outer primary tank wall located in the annulus of an SRS Type I tank. The Robotics, Remote and Specialty Equipmentmore » (RRSE) and Materials Science and Technology (MS&T) Sections of the Savannah River National Laboratory (SRNL) collaborated to modify and equip a Force Institute magnetic wall crawler with the tools necessary to demonstrate the inspection and spot cleaning in a mock-up of a Type I tank annulus. A remote control camera arm and cleaning head were developed, fabricated and mounted on the crawler. The crawler was then tested and demonstrated on a salt simulant also developed in this task. The demonstration showed that the camera is capable of being deployed in all specified locations and provided the views needed for the planned inspection. It also showed that the salt simulant readily dissolves with water. The crawler features two different techniques for delivering water to dissolve the salt deposits. Both water spay nozzles were able to dissolve the simulated salt, one is more controllable and the other delivers a larger water volume. The cleaning head also includes a rotary brush to mechanically remove the simulated salt nodules in the event insoluble material is encountered. The rotary brush proved to be effective in removing the salt nodules, although some fine tuning may be required to achieve the best results. This report describes the design process for developing technology to add features to a commercial wall crawler and the results of the demonstration testing performed on the integrated system. The crawler was modified to address the two primary objectives of the task (inspection and spot cleaning). SRNL recommends this technology as a viable option for annulus inspection and salt removal in tanks with minimal salt deposits (such as Tanks 5 and 6.) This report further recommends that the technology be prepared for field deployment by: (1) developing an improved mounting system for the magnetic idler wheel, (2) improving the robustness of the cleaning tool mounting, (3) resolving the nozzle selection valve connections, (4) determining alternatives for the brush and bristle assembly, and (5) adding a protective housing around the motors to shield them from water splash. In addition, SRNL suggests further technology development to address annulus cleaning issues that are apparent on other tanks that will also require salt removal in the future such as: (1) Developing a duct drilling device to facilitate dissolving salt inside ventilation ducts and draining the solution out the bottom of the ducts. (2) Investigating technologies to inspect inside the vertical annulus ventilation duct.« less
Closure head for a nuclear reactor
Wade, Elman E.
1980-01-01
A closure head for a nuclear reactor includes a stationary outer ring integral with the reactor vessel with a first rotatable plug disposed within the stationary outer ring and supported from the stationary outer ring by a bearing assembly. A sealing system is associated with the bearing assembly to seal the annulus defined between the first rotatable plug and the stationary outer ring. The sealing system comprises tubular seal elements disposed in the annulus with load springs contacting the tubular seal elements so as to force the tubular seal elements against the annulus in a manner to seal the annulus. The sealing system also comprises a sealing fluid which is pumped through the annulus and over the tubular seal elements causing the load springs to compress thereby reducing the friction between the tubular seal elements and the rotatable components while maintaining a gas-tight seal therebetween.
Kang, Ran; Li, Haisheng; Lysdahl, Helle; Quang Svend Le, Dang; Chen, Menglin; Xie, Lin; Bünger, Cody
2017-01-01
In an attempt to find an ideal closure method during annulus defect repair, we evaluate the use of medical glue by mechanical and biocompatible test. Cyanoacrylate medical glue was applied together with a multilayer microfiber/nanofiber polycaprolactone scaffold and suture in annulus repair. Continuous axial loading and fatigue mechanical test was performed. Furthermore, the in vitro response of mesenchymal stem cell (MSC) to the glue was evaluated by cell viability assay. The in vivo response of annulus tissue to the glue and scaffold was also studied in porcine lumbar spine; histological sections were evaluated after 3 months. Cyanoacrylate glue significantly improved the closure effect in the experimental group with failure load 2825.7 ± 941.6 N, compared to 774.1 ± 281.3 N in the control group without glue application (p < 0.01). The experimental group also withstood the fatigue test. No toxic effect was observed by in vitro cell culture and in vivo implantation. On the basis of this initial evaluation, the use of cyanoacrylate medical glue improves closure effect with no toxicity in annulus defect repair. This method of annulus repair merits further effectiveness study in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 14-20, 2017. © 2015 Wiley Periodicals, Inc.
Lequin, Michiel B; Barth, Martin; Thomė, Claudius; Bouma, Gerrit J
2012-12-01
Discectomy as a treatment for herniated lumbar discs results in outcomes after surgery that are not uniformly positive. Surgeons face the dilemma between limited nucleus removal which is associated with a higher risk of recurrence, or more aggressive nucleus removal which may lead to disc height loss and persistent back-pain. annulus closure devices may allow for the benefits of limited nucleus removal without the increased risk of recurrence. This is an interim report of an ongoing 24-month post-marketing study of the Barricaid® annulus closure device, consisting of a flexible polymer mesh that blocks the defect, held in place by a titanium bone anchor. We prospectively enrolled 45 patients at four hospitals, and implanted the Barricaid® after a limited discectomy. annulus defect size and volume of removed nucleus were recorded. Reherniations were reported, pain and function were monitored and imaging was performed at regular intervals during 24 months of follow-up. At 12 months postsurgery, pain and function were significantly improved, comparing favorably to reported results from limited discectomy. Disc height has been well maintained. One reherniation has occurred (2.4%), which was associated with a misplaced device. No device fracture, subsidence or migration has been observed. The use of an annulus closure device may provide a reduction in reherniation rate for lumbar discectomy patients with large annulus defects who are at the greatest risk of recurrence. Using such a device should provide the surgeon increased confidence in minimizing nucleus removal, which, in turn, may preserve disc height and biomechanics, reducing degeneration and associated poor clinical outcomes in the long-term. A randomized multicenter study evaluating limited discectomy with and without the Barricaid® is currently underway, and will provide a higher level of evidence.
Core disruptive accident margin seal
Golden, Martin P.
1979-01-01
Apparatus for sealing the annulus defined within a substantially cylindrical rotatable riser assembly and plug combination of a nuclear reactor closure head. The apparatus comprises an inflatable sealing mechanism disposed in one portion of the riser assembly near the annulus such that upon inflation the sealing mechanism is radially actuated against the other portion of the riser assembly thereby sealing the annulus. The apparatus further comprises a connecting mechanism which places one end of the sealing mechanism in fluid communication with the reactor cover gas so that overpressurization of the reactor cover gas will increase the radial actuation of the sealing mechanism thus enhancing sealing of the annulus.
Nuclear reactor sealing system
McEdwards, James A.
1983-01-01
A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.
Amoogzar, Hamid; Shakiba, Ali Mohammad; Derakhshan, Dorna; Ajami, Gholamhossein; Cheriki, Sirous; Borzouee, Mohammad; Edraki, Mohammad Reza; Mehdizadegan, Nima
2015-01-01
The aim of this study was to evaluate the left ventricular systolic and diastolic function before and after transcatheter percutaneous patent ductus arteriosus (PDA) closure. 21 children (age >6 months old) diagnosed with hemodynamically significant PDA underwent percutaneous PDA closure. Conventional, Doppler and tissue Doppler imaging and speckled-derived strain rate echocardiography were done at pre-closure, 1 day (early) and 1 month (late) post-closure. Mean age of the patients (female/male: 1.3) was 17.54 ± 24.7 months with the mean PDA diameter of 3.6 ± 0.8 mm. Systolic measures (ejection fraction, shortening fraction) reduced significantly early after PDA closure (P < 0.05). After 1 month, both improved significantly; ultimately, after 1 month no change was observed in systolic function measures compared with the pre-closure status. Early and late diastolic flow velocities of mitral (E M and A M) reduced considerably in early and late post-closure time (P < 0.05). Both early tissue Doppler early velocity of lateral mitral annulus (E'M) and early to late velocity ratio (E'M/A'M) of lateral mitral annulus decreased significantly (P = 0.02) in early post-closure. After 1 month, E'M increased considerably. (P = 0.01) but E'M/A'M had an insignificant rise (P > 0.05). E M/E'M ratio did not change in early post-closure but it had a considerable reduction in the subsequent month compared with the pre- and early post-closure (P < 0.001 for both occasions). Global and segmental longitudinal strain measures reduced significantly early after PDA closure (P < 0.05) but it improved remarkably in the subsequent month. Transcatheter PDA closure causes a significant decrease in left ventricular performance early after PDA closure which recovers completely within 1 month. Also PDA size can affect post-closure left ventricular function.
Evaluation of age determination techniques for gray wolves
Landon, D.B.; Waite, C.A.; Peterson, R.O.; Mech, L.D.
1998-01-01
We evaluated tooth wear, cranial suture fusion, closure of the canine pulp cavity, and cementum annuli as methods of age determination for known- and unknown-age gray wolves (Canis lupus) from Alaska, Minnesota, Ontario, and Isle Royale, Michigan. We developed age classes for cranial suture closure and tooth wear. We used measurement data obtained from known-age captive and wild wolves to generate a regression equation to predict age based on the degree of closure of the canine pulp cavity. Cementum annuli were studied in known- and unknown-age animals, and calcified, unstained thin sections were found to provide clear annulus patterns under polarized transmitted light. Annuli counts varied among observers, partly because of variation in the pattern of annuli in different regions of the cementum. This variation emphasizes the need for standardized models of cementum analysis. Cranial suture fusion is of limited utility in age determination, while tooth wear can be used to estimate age of adult wolves within 4 years. Wolves lt 7 years old could be aged to within 13 years with the regression equation for closure of the canine pulp cavity. Although inaccuracy remains a problem, cementum-annulus counts were the most promising means of estimating age for gray wolves.
An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.
Sharifi, Shahriar; van Kooten, Theo G; Kranenburg, Hendrik-Jan C; Meij, Björn P; Behl, Marc; Lendlein, Andreas; Grijpma, Dirk W
2013-11-01
Injuries to the intervertebral disc caused by degeneration or trauma often lead to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP). This can compress nerves and cause lower back pain. In this study, the characteristics of poly(D,L-lactide-co-trimethylene carbonate) networks with shape-memory properties have been evaluated in order to prepare biodegradable AF closure devices that can be implanted minimally invasively. Four different macromers with (D,L-lactide) to trimethylene carbonate (DLLA:TMC) molar ratios of 80:20, 70:30, 60:40 and 40:60 with terminal methacrylate groups and molecular weights of approximately 30 kg mol(-1) were used to prepare the networks by photo-crosslinking. The mechanical properties of the samples and their shape-memory properties were determined at temperatures of 0 °C and 40 °C by tensile tests- and cyclic, thermo-mechanical measurements. At 40 °C all networks showed rubber-like behavior and were flexible with elastic modulus values of 1.7-2.5 MPa, which is in the range of the modulus values of human annulus fibrosus tissue. The shape-memory characteristics of the networks were excellent with values of the shape-fixity and the shape-recovery ratio higher than 98 and 95%, respectively. The switching temperatures were between 10 and 39 °C. In vitro culture and qualitative immunocytochemistry of human annulus fibrosus cells on shape-memory films with DLLA:TMC molar ratios of 60:40 showed very good ability of the networks to support the adhesion and growth of human AF cells. When the polymer network films were coated by adsorption of fibronectin, cell attachment, cell spreading, and extracellular matrix production was further improved. Annulus fibrosus closure devices were prepared from these AF cell-compatible materials by photo-polymerizing the reactive precursors in a mold. Insertion of the multifunctional implant in the disc of a cadaveric canine spine showed that these shape-memory devices could be implanted through a small slit and to some extent deploy self-sufficiently within the disc cavity. © 2013 Elsevier Ltd. All rights reserved.
Force Required to Cinch the Tricuspid Annulus: An Ex-Vivo Study
Adkins, Amy; Aleman, Jesus; Boies, Lori; Sako, Edward; Bhattacharya, Shamik
2016-01-01
Background and aim of the study Tricuspid annuloplasty is the most preferred technique for the treatment of functional tricuspid regurgitation (FTR). However, high incidences of recurrent regurgitation and risky reoperation demands a deeper insight into the technique. The cinching force required to bring a dilated annulus back to the original size is unknown. The study aim was to quantify the cinching force in the tricuspid annulus which can contribute to the long-term durability of tricuspid annuloplasty and percutaneous device design. Methods In ten ovine hearts, a suture was anchored around the free wall of the tricuspid annulus with the free end attached to a force transducer. The force transducer was mounted on a slider system which pulled the suture at regular intervals. Closure of the tricuspid valve was achieved by pressurizing the right ventricle at 30 mmHg through the pulmonary valve. The suture was pulled to cinch the tricuspid annulus. The tricuspid annulus area was measured from images taken at each increment, and the corresponding force was recorded. The hearts were tested for three conditions: (i) non-pressurized (NP); (ii) pressurized (P; normal), and (iii) dilated-pressurized (DP; diseased). Leakage data were also collected for pressurized and dilated pressurized conditions. Annulus dilation was created by injecting phenol into the annulus. Results The maximum annulus dilation obtained was 8.82%, and the maximum cinching force was 0.38 ± 0.09 N. Leakage was increased by 81.73% from the pressurized to dilated condition. Conclusion The minimal force required to cinch a tricuspid annulus with severe FTR (23.98% dilation) can be approximated to 0.25 N. The required cinching force can play a major role in the long-term durability of the tricuspid annuloplasty. PMID:26897846
Agha, Hala Mounir; Hamza, Hala S; Kotby, Alyaa; Ganzoury, Mona E L; Soliman, Nanies
2017-10-01
To evaluate the left ventricular function before and after transcatheter percutaneous patent ductus arteriosus (PDA) closure, and to identify the predictors of myocardial dysfunction post-PDA closure if present. Transcatheter PDA closure; conventional, Doppler, and tissue Doppler imaging; and speckle tracking echocardiography. To determine the feasibility and reliability of tissue Doppler and myocardial deformation imaging for evaluating myocardial function in children undergoing transcatheter PDA closure. Forty-two children diagnosed with hemodynamically significant PDA underwent percutaneous PDA closure. Conventional, Doppler, and tissue Doppler imaging, and speckle-derived strain rate echocardiography were performed at preclosure and at 48 hours, 1 month, and 6 months postclosure. Tissue Doppler velocities of the lateral and septal mitral valve annuli were obtained. Global and regional longitudinal peak systolic strain values were determined using two-dimensional speckle tracking echocardiography. The median age of the patients was 2 years and body weight was 15 kg, with the mean PDA diameter of 3.11 ± 0.99 mm. M-mode measurements (left ventricular end diastolic diameter, left atrium diameter to aortic annulus ratio, ejection fraction, and shortening fraction) reduced significantly early after PDA closure ( p < 0.001). After 1 month, left ventricular end diastolic diameter and left atrium diameter to aortic annulus ratio continued to decrease, while ejection fraction and fractional shortening improved significantly. All tissue Doppler velocities showed a significant decrease at 48 hours with significant prolongation of global myocardial function ( p < 0.001) and then were normalized within 1 month postclosure. Similarly, global longitudinal strain significantly decreased at 48 hours postclosure ( p < 0.001), which also recovered at 1 month follow-up. Preclosure global longitudinal strain showed a good correlation with the postclosure prolongation of the myocardial performance index. Transcatheter PDA closure causes a significant decrease in left ventricular performance early after PDA closure, which recovers completely within 1 month. Preclosure global longitudinal strain can be a predictor of postclosure myocardial dysfunction.
Mahmood, Feroze; Warraich, Haider J.; Gorman, Joseph H.; Gorman, Robert C.; Chen, Tzong-Huei; Panzica, Peter; Maslow, Andrew; Khabbaz, Kamal
2014-01-01
Background and aim of the study Intraoperative real-time three-dimensional transesophageal echocardiography (RT-3D TEE) was used to examine the geometric changes that occur in the mitral annulus immediately after aortic valve replacement (AVR). Methods A total of 35 patients undergoing elective surgical AVR under cardiopulmonary bypass was enrolled in the study. Intraoperative RT-3D TEE was used prospectively to acquire volumetric echocardiographic datasets immediately before and after AVR. The 3D echocardiographic data were analyzed offline using TomTec® Mitral Valve Assessment software to assess changes in specific mitral annular geometric parameters. Results Datasets were successfully acquired and analyzed for all patients. A significant reduction was noted in the mitral annular area (-16.3%, p <0.001), circumference (-8.9% p <0.001) and the anteroposterior (-6.3%, p = 0.019) and anterolateral-posteromedial (-10.5%, p <0.001) diameters. A greater reduction was noted in the anterior annulus length compared to the posterior annulus length (10.5% versus 62%, p <0.05) after AVR. No significant change was seen in the non-planarity angle, coaptation depth, and closure line length. During the period of data acquisition before and after AVR, no significant change was noted in the central venous pressure or left ventricular end-diastolic diameter. Conclusion The mitral annulus undergoes significant geometric changes immediately after AVR Notably, a 16.3% reduction was observed in the mitral annular area. The anterior annulus underwent a greater reduction in length compared to the posterior annulus, which suggested the existence of a mechanical compression by the prosthetic valve. PMID:23409347
NASA Technical Reports Server (NTRS)
Spond, D. E.; Holzworth, R. E.; Hall, C. A.
1974-01-01
Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and non-vacuum jacketed concepts, and incorporate the latest technology developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts were evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. It is shown that composite tubing provides improved thermal performance and reduced weight for each design concept considered. Approximately 12 kg (26 lb.) can be saved by the use of composite tubing for the LH2 feedline and the other propulsion lines in the space tug.
Extender for securing a closure
Thomas, II, Patrick A.
2012-10-02
An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.
Lightweight thermally efficient composite feedlines for the space tug cryogenic propulsion system
NASA Technical Reports Server (NTRS)
Spond, D. E.
1975-01-01
Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and nonvacuum jacketed concepts, and incorporate the latest technological developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts are evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. Design concepts were proved in a subscale test program. Detail design was completed on the most promising composite feedline concept and an all-metal feedline. Three full scale curved composite feedlines and one all-metal feedline assembly were fabricated and subjected to a test program representative of flight hardware qualification. The test results show that composite feedline technology is fully developed. Composite feedlines are ready for space vehicle application and offer significant reduction in weights over the conventional all-metal feedlines presently used.
Anatomy of the patent foramen ovale for the interventionalist.
McKenzie, Jeff A; Edwards, William D; Hagler, Donald J
2009-05-01
Patent foramen ovale (PFO) is an interatrial communication whose management is controversial. Several manufacturers have submitted protocols for Food and Drug Administration (FDA) approval of their PFO closure device. The purpose of this study was to define anatomy relevant to percutaneous PFO closure, validate the clinical observation that most PFOs contain little tissue rim at the aorta, comment on proposed closure guidelines, and to discuss approaches to PFO closure. From the Mayo Clinic Tissue Registry, five normal hearts with PFO were selected from each sex from the first 10 decades of life (n = 100). Measurements (mm) included PFO length, diameter, and distance from FO-superior vena cava (SVC) and FO-aortic annulus (AoAn). Patient age, weight, and height were obtained from autopsy reports, and body surface area (BSA) was calculated. PFO length and diameter increased with age (P = 0.029 and 0.001, respectively), and FO-SVC and FO-AoAn increased with BSA (P
No patch technique for complete atrioventricular canal repair.
Aramendi, José Ignacio; Rodriguez, Miguel Angel; Luis, Teresa; Voces, Roberto
2006-08-01
We describe our initial experience with a new technique, consisting in direct closure of the ventricular septal defect component of the AV canal, by directly attaching the common bridging leaflets to the crest of the ventricular septum with interrupted sutures. After closure of the cleft, the ostium primum defect was closed with a running suture suturing the border of the septum primum to the newly created AV valve annulus. Three patients were operated upon. There was no mortality. Mean ischemic time was 39 min and mean pump time 77 min. All patients remained in sinus rhythm. At follow-up only trivial or mild mitral regurgitation was observed. This new technique permits the repair of complete AV canal without the need for any patch. It is fast, simple and reproducible.
Impact of Casing Expansion on the Mechanical and Petro-Physical Properties of Wellbore Cements
NASA Astrophysics Data System (ADS)
Oyibo, A. E.
2014-12-01
The main objective of this research is to investigate the applicability of expandable casing technology as a remediation technique for leaky wells resulting in gas migration problems. Micro annulus is usually created at the cement-formation/cement-casing interface or within the cement matrix either due to poor primary cementing or as a result of activities such as temperature and pressure variation or fracturing operations. Recent reports on gas migration in hydraulically fractured wellbores, has raised concerns on the contamination of fresh water aquifers resulting from fluid migration though this flow path. A unique bench-scale physical model which utilizes expandable tubulars in the remediation of micro annular gas flow has been used to simulate expansion of a previously-cemented casing under field-like conditions. Three different designs of cement slurry: regular 16.4 lb. /gal, 16.4 lb. /gal base slurry foamed to 13 lb. /gal and 16.4 lb. /gal cement slurry with 10% salt concentration. Gas flow path (microannulus) was artificially created at the pipe-cement interface by rotating the inner pipe in a pipe inside pipe assembly with cement in the annulus within the first few hours of hydration to create debonding at the cement-casing interface. Nitrogen gas flow-through experiments were performed before and after the expansion to confirm the sealing of the microannulus. The results obtained confirmed the effectiveness of this technique in the complete closure of gas leakage path, providing seal-tight cement-formation interface free of microannulus. The manipulation of the cement sheath during the casing expansion resulted in improved porosity, permeability and the strength of the cement sheath. SEM micrographs revealed decrease in pore size and fracturing of unhydrated cement grains within the cement matrix. This technology has great potential to become one of the leading cement remediation techniques for leaks behind the casing if implemented. Keywords: Wellbore Integrity, Casing Expansion, Well Gas Leaks, CSH, Pore Collapse, Cement Pore Water.
Afilalo, Jonathan; Grapsa, Julia; Nihoyannopoulos, Petros; Beaudoin, Jonathan; Gibbs, J. Simon R.; Channick, Richard N.; Langleben, David; Rudski, Lawrence G.; Hua, Lanqi; Handschumacher, Mark D.; Picard, Michael H.; Levine, Robert A.
2015-01-01
Background Tricuspid regurgitation (TR) is a risk factor for mortality in pulmonary hypertension (PH). TR severity varies among patients with comparable degrees of PH and right ventricular (RV) remodeling. The contribution of leaflet adaptation to the pathophysiology of TR has yet to be examined. We hypothesized that tricuspid leaflet area (TLA) is increased in PH, and that its size relative to RV remodeling determines TR severity. Methods and Results A prospective cohort of 255 patients with PH from pre- and post-capillary etiologies was assembled from two centers. Patients underwent a 3-D echocardiogram focused on the tricuspid apparatus. TLA was measured with the Omni custom software package. Compared with normal controls, PH patients had a twofold increase in RV volumes, 62% increase in annulus area, and 49% increase in TLA. Those with severe TR demonstrated inadequate increase in TLA relative to the closure area, such that the ratio of TLA-to-closure area <1.78 was highly predictive of severe TR (odds ratio 68.7; 95% CI 16.2, 292.7). The median vena contracta width was 8.5 mm in the group with small TLA and large closure area as opposed to 4.8 mm in the group with large TLA and large closure area. Conclusions TLA plays a significant role in determining which patients with PH develop severe functional TR. The ratio of TLA-to-closure area, reflecting the balance between leaflet adaptation vs. annular dilation and tethering forces, is an indicator of TR severity that may identify which patients stand to benefit from leaflet augmentation during tricuspid valve repair. PMID:25977303
Jamieson, W R Eric
2006-01-01
Since the 2002 Surgical Technology International monograph on valvular prostheses, there have been significant developmental and investigative advances. Aortic bioprostheses and mechanical prostheses have undergone design changes to optimize hemodynamics and prevent patient-prosthesis mismatch to have a potential satisfactory influence on survival. There has been continual technological improvements striving to bring forward advances that improve the durability of bioprostheses and reduce the thrombogenicity of mechanical prostheses. There also has been a continuance to preserve biological tissue with glutaraldehyde, rather than clinically evaluate other cross-linking technologies, by controlling or retarding calcification with therapies to control phospholipids and residual aldehydes. The techniques of mitral valve reconstruction have now been well established and new annuloplasty rings have been designed for the potential of maintaining the anatomical and physiological characteristics of the mitral annulus. Several objectives exist for annuloplasty, namely remodeling of the length and shape of the dilated annulus, prevention of dilatation of the annulus, and support for the potentially fragile area after partial-leaflet resection. Currently, there exists an emergence of catheter-based therapies for management of aortic stenosis and mitral regurgitation. For management of selected populations with critical aortic stenosis, techniques for aortic valve substitution have been developed for both antegrade and retrograde catheter techniques, as well as apical transventricular implantation. Mitral regurgitation has been addressed by experimental transcoronary sinus, stent-like devices and transventricular, edge-to-edge leaflet devices. The devices, descriptions and pictorial images comprise this monograph.
CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES PART II: LEACHING RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Reboul, S.
2012-06-19
The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitratemore » (NaNO{sub 3}), sodium nitrite (NaNO{sub 2}), gibbsite (Al(OH){sub 3}), hydrated sodium bicarbonate (Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O), and muscovite (KAl{sub 2}(AlSi{sub 3}O{sub 10})(OH){sub 2}). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic acid was somewhat more effective in dissolving radionuclides than the water leach. In contrast to the water leaching results, most constituents continued to dissolve during subsequent cycles of oxalic acid leaching. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.« less
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.
Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418
Korakianitis, Theodosios; Shi, Yubing
2006-09-01
Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.
Mitral Valve Chordae Tendineae: Topological and Geometrical Characterization.
Khalighi, Amir H; Drach, Andrew; Bloodworth, Charles H; Pierce, Eric L; Yoganathan, Ajit P; Gorman, Robert C; Gorman, Joseph H; Sacks, Michael S
2017-02-01
Mitral valve (MV) closure depends upon the proper function of each component of the valve apparatus, which includes the annulus, leaflets, and chordae tendineae (CT). Geometry plays a major role in MV mechanics and thus highly impacts the accuracy of computational models simulating MV function and repair. While the physiological geometry of the leaflets and annulus have been previously investigated, little effort has been made to quantitatively and objectively describe CT geometry. The CT constitute a fibrous tendon-like structure projecting from the papillary muscles (PMs) to the leaflets, thereby evenly distributing the loads placed on the MV during closure. Because CT play a major role in determining the shape and stress state of the MV as a whole, their geometry must be well characterized. In the present work, a novel and comprehensive investigation of MV CT geometry was performed to more fully quantify CT anatomy. In vitro micro-tomography 3D images of ovine MVs were acquired, segmented, then analyzed using a curve-skeleton transform. The resulting data was used to construct B-spline geometric representations of the CT structures, enriched with a continuous field of cross-sectional area (CSA) data. Next, Reeb graph models were developed to analyze overall topological patterns, along with dimensional attributes such as segment lengths, 3D orientations, and CSA. Reeb graph results revealed that the topology of ovine MV CT followed a full binary tree structure. Moreover, individual chords are mostly planar geometries that together form a 3D load-bearing support for the MV leaflets. We further demonstrated that, unlike flow-based branching patterns, while individual CT branches became thinner as they propagated further away from the PM heads towards the leaflets, the total CSA almost doubled. Overall, our findings indicate a certain level of regularity in structure, and suggest that population-based MV CT geometric models can be generated to improve current MV repair procedures.
Role of modern 3D echocardiography in valvular heart disease
2014-01-01
Three-dimensional (3D) echocardiography has been conceived as one of the most promising methods for the diagnosis of valvular heart disease, and recently has become an integral clinical tool thanks to the development of high quality real-time transesophageal echocardiography (TEE). In particular, for mitral valve diseases, this new approach has proven to be the most unique, powerful, and convincing method for understanding the complicated anatomy of the mitral valve and its dynamism. The method has been useful for surgical management, including robotic mitral valve repair. Moreover, this method has become indispensable for nonsurgical mitral procedures such as edge to edge mitral repair and transcatheter closure of paravaluvular leaks. In addition, color Doppler 3D echo has been valuable to identify the location of the regurgitant orifice and the severity of the mitral regurgitation. For aortic and tricuspid valve diseases, this method may not be quite as valuable as for the mitral valve. However, the necessity of 3D echo is recognized for certain situations even for these valves, such as for evaluating the aortic annulus for transcatheter aortic valve implantation. It is now clear that this method, especially with the continued development of real-time 3D TEE technology, will enhance the diagnosis and management of patients with these valvular heart diseases. PMID:25378966
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine including a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus, and a third radial wall formed about the outer radial wall that forms an outer flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section corresponding to the aftward annulus section and a forward intake section correspondingmore » to the forward annulus section. The air directing structure may include a switchback coolant flowpath to direct air from the compressor discharge cavity to the staged injector. The switchback coolant flowpath may include an upstream section through the flow annulus, and a downstream section through the outer flow annulus.« less
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
Closedure - Mine Closure Technologies Resource
NASA Astrophysics Data System (ADS)
Kauppila, Päivi; Kauppila, Tommi; Pasanen, Antti; Backnäs, Soile; Liisa Räisänen, Marja; Turunen, Kaisa; Karlsson, Teemu; Solismaa, Lauri; Hentinen, Kimmo
2015-04-01
Closure of mining operations is an essential part of the development of eco-efficient mining and the Green Mining concept in Finland to reduce the environmental footprint of mining. Closedure is a 2-year joint research project between Geological Survey of Finland and Technical Research Centre of Finland that aims at developing accessible tools and resources for planning, executing and monitoring mine closure. The main outcome of the Closedure project is an updatable wiki technology-based internet platform (http://mineclosure.gtk.fi) in which comprehensive guidance on the mine closure is provided and main methods and technologies related to mine closure are evaluated. Closedure also provides new data on the key issues of mine closure, such as performance of passive water treatment in Finland, applicability of test methods for evaluating cover structures for mining wastes, prediction of water effluents from mine wastes, and isotopic and geophysical methods to recognize contaminant transport paths in crystalline bedrock.
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in a forward direction to the forward injector.« less
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in an aftward direction to the staged injector.« less
NASA Technical Reports Server (NTRS)
Hathaway, D. H.; Fowlis, W. W.
1986-01-01
Experimental flow regime diagrams are determined for a new rotating cylindrical annulus configuration which permits a measure of control over the internal vertical temperature gradient. The new annulus has radial temperature gradients imposed on plane horizontal thermally conducting endwalls (with the cylindrical sidewalls as insulators) and is considered to be more relevant to atmospheric dynamics studies than the classical cylindrical annulus. Observations have revealed that, in addition to the axisymmetric flow and nonaxisymmetric baroclinic wave flow which occur in the classical annulus, two additional nonaxisymmetric flow types occur in the new annulus: boundary-layer thermal convection and deep thermal convection. Flow regime diagrams for three different values of the imposed vertical temperature difference are presented, and explanations for the flow transitions are offered. The new annulus provides scientific backup for the proposed Atmospheric General Circulation Experiment for Spacelab. The apparatus diagram is included.
Menciotti, G; Borgarelli, M; Aherne, M; Wesselowski, S; Häggström, J; Ljungvall, I; Lahmers, S M; Abbott, J A
2017-04-01
To assess differences in morphology of the mitral valve (MV) between healthy dogs and dogs affected by myxomatous mitral valve disease (MMVD) using real-time transthoracic three-dimensional echocardiography (RT3DE). Thirty-four were normal dogs and 79 dogs were affected by MMVD. Real-time transthoracic three-dimensional echocardiography mitral datasets were digitally recorded and analyzed using dedicated software. The following variables were obtained and compared between healthy dogs and dogs with MMVD at different stages: antero-posterior annulus diameter, anterolateral-posteromedial annulus diameter, commissural diameter, annulus height, annulus circumference, annulus area, anterior leaflet length, anterior leaflet area, posterior leaflet length, posterior leaflet area, non-planar angle, annulus sphericity index, tenting height, tenting area, tenting volume, the ratio of annulus height and commissural diameter. Dogs with MMVD had a more circular MV annulus compared to healthy dogs as demonstrated by an increased annulus sphericity index (p=0.0179). Affected dogs had a less saddle-shaped MV manifest as a decreased annulus height to commissural width ratio (p=0.0004). Tenting height (p<0.0001), area (p<0.0001), and volume (p<0.0001) were less in affected dogs. Real-time transthoracic three-dimensional echocardiography analysis demonstrated that dogs affected by MMVD had a more circular and less saddle-shaped MV annulus, as well as reduced tenting height area and volume, compared to healthy dogs. Multiple variables differed between dogs at different stages of MMVD. Diagnostic and prognostic utility of these variables, and the significance of these changes in the pathogenesis and natural history of MMVD, require further attention. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiation and viscous dissipation effect on square porous annulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badruddin, Irfan Anjum; Quadir, G. A.
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T{sub h} and inside cold T{sub c} temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
Mitral annulus size links ventricular dilatation to functional mitral regurgitation.
Popović, Zoran B; Martin, Maureen; Fukamachi, Kiyotaka; Inoue, Masahiro; Kwan, Jun; Doi, Kazuyoshi; Qin, Jian Xin; Shiota, Takahiro; Garcia, Mario J; McCarthy, Patrick M; Thomas, James D
2005-09-01
We compared the impact of annulus size and valve deformation (tethering) on mitral regurgitation in the animal dilated cardiomyopathy model, and assessed if acute left ventricular volume changes affect mitral annulus dimensions. We performed 3-dimensional echocardiography in 30 open-chest dogs with pacing-induced cardiomyopathy. Mitral annulus area was calculated from its two orthogonal diameters, whereas valve tethering was quantified by valve tenting area measurement. Mitral valve regurgitant volume showed the highest correlation with annulus area (r = 0.64, P < .001), left atrial volume (r = 0.40, P < .01), and left ventricular end-diastolic volume (r = 0.37, P < .01). Regurgitant volume showed poorer correlation with valve tethering in both septolateral and intercommissural planes (r = 0.35 and r = 0.31, P < .05 for both). Annulus dimensions correlated with acute changes of left ventricular end-diastolic volume (r = 0.68, P = .002). Mitral annulus dilation is the strongest predictor of functional mitral regurgitation in this animal dilated cardiomyopathy model.
Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles
2011-01-01
Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336
NASA Astrophysics Data System (ADS)
Espinal, Daniel
The objective of this research is to investigate and confirm the periodicity of the Non-Synchronous Vibration (NSV) mechanism of a GE axial compressor with a full-annulus simulation. A second objective is to develop a high fidelity single-passage tool with time-accurate unsteady capabilities able to capture rotor-stator interactions and NSV excitation response. A high fidelity methodology for axial turbomachinery simulation is developed using the low diffusion shock-capturing Riemann solver with high order schemes, the Spalart-Allmaras turbulence closure model, the fully conservative unsteady sliding BC for rotor-stator interaction with extension to full-annulus and single-passage configurations, and the phase lag boundary conditions applied to rotor-stator interface and circumferential BC. A URANS solver is used and captures the NSV flow excitation frequency of 2439 Hz, which agrees reasonably well with the measured NSV frequency of 2600 Hz from strain gage test data. It is observed that the circumferentially traveling vortex formed in the vicinity of the rotor tip propagates at the speed of a non-engine order frequency and causes the NSV. The vortex travels along the suction surface of the blade and crosses the passage outlet near blade trailing edge. Such a vortex motion trajectory repeats in each blade passage and generates two low pressure regions due to the vortex core positions, one at the leading edge and one at the trailing edge, both are oscillating due to the vortex coming and leaving. These two low pressure regions create a pair of coupling forces that generates a torsion moment causing NSV. The full-annulus simulation shows that the circumferentially traveling vortex has fairly periodical behavior and is a full annulus structure. Also, frequencies below the NSV excitation frequency of 2439 Hz with large amplitudes in response to flow-separation related phenomena are present. This behavior is consistent with experimental measurements. For circumferentially averaged parameters like total pressure ratio, NSV is observed to have an effect, particularly at radial locations above 70% span. Therefore, to achieve similar or better total pressure ratio a design with a smaller loading of the upper blade span and a higher loading of the mid blade spans should be considered. A fully-conservative sliding interface boundary condition (BC) is implemented with phase-lag capabilities using the Direct Store method for single-passage simulations. Also Direct Store phase-lag was applied to the circumferential BCs to enforce longer disturbance wavelengths. The unsteady simulation using single-blade-passage with periodic BC for an inlet guide vane (IGV)-rotor configuration captures a 2291 Hz NSV excitation frequency and an IGV-rotor-stator configuration predicts a 2365 Hz NSV excitation frequency with a significantly higher amplitude above 90% span. This correlates closely to the predicted NSV excitation frequency of 2439 Hz for the full-annulus configuration. The two-blade-row configuration exhibits the same vortex structures captured in the full-annulus study. The three-blade-row configuration only captures a tip vortex shedding at the leading edge, which can be attributed to the reflective nature of the BCs causing IGV-rotor-stator interactions to be augmented, becoming dominant and shifting NSV excitation response to engine order regime. Phase-lag simulations with a Nodal Diameter (ND) of 5 is enforced for the circumferential BCs for the three-blade-row configuration, and the results exactly matched the frequency response and flow structures of the periodic simulation, illustrating the small effect that phase-lag has on strongly periodic flow disturbances. A ND of 7 is enforced at the sliding interface, however the NSV excitation completely disappears and only the wake propagation from IGV-Rotor-Stator interactions are captured. Rotor blade passage exhibits a circumferentially travelling vortex similar to those observed in the full-annulus and two-blade-row simulations. This can occur when the rotating instability responsible for the NSV no longer maintains a pressure variation with a characteristic frequency signature as it rotates relative to the rotor rotation, and now has become the beginning of a spike-type stall cell. In this scenario the travelling vortex has become evidence of part-stall of the upper spans of the rotor blade, but stalling is contained maintaining stable operation. In conclusion, an efficient method of capturing NSV excitation has been proposed in a high-fidelity manner, where only 2% of the computational resources used in a full-annulus simulation are required for an accurate single-blade-passage multi-stage simulation.
DNAPL Remediation: Selected Projects Approaching Regulatory Closure
This paper is a status update on the use of DNAPL source reduction remedial technologies, and provides information about recent projects where regulatory closure has been reached or projects are approaching regulatory closure, following source reduction.
Life Support System Technologies for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.
2007-01-01
The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.
Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.
2013-11-14
As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less
Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil
NASA Astrophysics Data System (ADS)
Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.
2018-03-01
In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.
Veres, Samuel P; Robertson, Peter A; Broom, Neil D
2008-12-01
Mechanically induced annular disruption of lumbar intervertebral discs followed by microstructural investigation. To investigate the role that elevated nuclear pressures play in disrupting the lumbar intervertebral disc's annulus fibrosus. Compound mechanical loadings have been used to recreate clinically relevant annular disruptions in vitro. However, the role that individual loading parameters play in disrupting the lumbar disc's annulus remains unclear. The nuclei of ovine lumbar intervertebral discs were gradually pressurized by injecting a viscous radio-opaque gel via their inferior vertebrae. Pressurization was conducted until catastrophic failure of the disc occurred. Investigation of the resulting annular disruption was carried out using microcomputed tomography and differential interference contrast microscopy. Gel extrusion from the posterior annulus was the most common mode of disc failure. Unlike other aspects of the annular wall, the posterior region was unable to distribute hydrostatic pressures circumferentially. In each extrusion case, severe disruption of the posterior annulus occurred. Although intralamellar disruption occurred in the mid annulus, interlamellar disruption occurred in the outer posterior annulus. Radial ruptures between lamellae always occurred in the mid-axial plane. With respect to the annular wall, the posterior region is most susceptible to failure in the presence of high nuclear pressure, even when loaded in the neutral position. Weak interlamellar cohesion of the outer posterior lamellae may explain why the majority of herniations remain contained as protrusions within the outer annular wall.
Mechanics of Wound Closure: Emerging Tape-Based Wound Closure Technology vs. Traditional Methods.
Levi, Kemal; Ichiryu, Kei; Kefel, Pelin; Keller, Juergen; Grice, Jon; Belson, Ori; Storne, Eric; Safa, Bauback
2016-10-12
To date, there is still a lack of understanding of how wound closure methods perform comparatively under daily bodily movement during the course of healing and how they affect the mechanics of healing. The present study is a first step in understanding and objectively quantifying the gap. The study provides both a new method of metrology for noninvasive evaluation of skin mechanics at the onset of wound healing and an emerging tape-based wound closure technology. The latter shows better performance with respect to commonly used staples and sutures, holding the wound intact and providing uniform mechanical support across the incision.
241-AZ Farm Annulus Extent of Condition Baseline Inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engeman, Jason K.; Girardot, Crystal L.; Vazquez, Brandon J.
2013-05-15
This report provides the results of the comprehensive annulus visual inspection for tanks 241- AZ-101 and 241-AZ-102 performed in fiscal year 2013. The inspection established a baseline covering about 95 percent of the annulus floor for comparison with future inspections. Any changes in the condition are also included in this document.
Hegewald, Aldemar A; Knecht, Sven; Baumgartner, Daniel; Gerber, Hans; Endres, Michaela; Kaps, Christian; Stüssi, Edgar; Thomé, Claudius
2009-01-01
Background Surgery for disc herniations can be complicated by two major problems: painful degeneration of the spinal segment and re-herniation. Therefore, we examined an absorbable poly-glycolic acid (PGA) biomaterial, which was lyophilized with hyaluronic acid (HA), for its utility to (a) re-establish spinal stability and to (b) seal annulus fibrosus defects. The biomechanical properties range of motion (ROM), neutral zone (NZ) and a potential annulus sealing capacity were investigated. Methods Seven bovine, lumbar spinal units were tested in vitro for ROM and NZ in three consecutive stages: (a) intact, (b) following nucleotomy and (c) after insertion of a PGA/HA nucleus-implant. For biomechanical testing, spinal units were mounted on a loading-simulator for spines. In three cycles, axial loading was applied in an excentric mode with 0.5 Nm steps until an applied moment of ± 7.5 Nm was achieved in flexion/extension. ROM and NZ were assessed. These tests were performed without and with annulus sealing by sewing a PGA/HA annulus-implant into the annulus defect. Results Spinal stability was significantly impaired after nucleotomy (p < 0.001). Intradiscal implantation of a PGA-HA nucleus-implant, however, restored spinal stability (p < 0.003). There was no statistical difference between the stability provided by the nucleus-implant and the intact stage regarding flexion/extension movements (p = 0.209). During the testing sequences, herniation of biomaterial through the annulus defect into the spinal canal regularly occurred, resulting in compression of neural elements. Sewing a PGA/HA annulus-implant into the annulus defect, however, effectively prevented herniation. Conclusion PGA/HA biomaterial seems to be well suited for cell-free and cell-based regenerative treatment strategies in spinal surgery. Its abilities to restore spinal stability and potentially close annulus defects open up new vistas for regenerative approaches to treat intervertebral disc degeneration and for preventing implant herniation. PMID:19604373
Collective Protection (COLPRO) Novel Closures Testing
2013-03-28
science and technology programs for future ColPro systems may include interfaces such as novel designs using zippers, hook-and-pile closures, and...necessitate new testing procedures. Additionally, stand- ards of performance must be adjusted as technologies advance. Test procedures and parameters...listed in this TOP may require updating to accommodate new technologies in test items or in test instrumentation. Any variation to the TOP procedures
Production of Hydrogen from Underground Coal Gasification
Upadhye, Ravindra S.
2008-10-07
A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.
Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A; Burks, Barry L; Quigley, Keith D
2001-09-28
The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less
Technological Advances in Joining
1981-08-01
automotive industry, and similar robots are being equipped to perform many arc welding functions in areas where high production rates must be...nonvacuum electron-beam welding favor the use of this process by the automotive industry. For example, this process has been used to join the component...metal additions were not needed. This process has been also used to weld various assemblies for automotive transmissions (e.g., annulus gear assemblies
Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Stephanie J.; Sams, Terry L.
Full text - Long Abstract. A routine video inspection of the annulus region of double-shell tank 241-A Y-102 in August of 2012 indicated the presence material in the annulus space between the primary and secondary liners. A comparison was made to previous inspections performed in 2006 and 2007. which indicated that a change had occurred. The material was observed at two locations on the floor of the annulus and one location at the top of the annulus region where the primary and secondary top knuckles meet (RPP-ASMT-53793). Subsequent inspections were performed. leading to additional material observed on the floor ofmore » the annulus space in a region that had not previously been inspected (WRPS-PER-2012-1363). The annulus Continuous Air Monitor (CAM) was still operational and was not indicating elevated radiation levels in the annulus region. When the camera from the inspections was recovered. it also did not indicate increased radiation above minimum contamination levels (WRPS-PER-2012-1363). A formal leak assessment team was established August 10, 2012 to review tank 241-AY-102 construction and operating histories and to determine whether the material observed in the annulus had resulted from a leak in the primary tank. The team consisted of individuals from Engineering. Base Operations and Environmental Protection. As this was a first-of-its-kind task. a method for obtaining a sample of the material in the annulus was needed. The consistency of the material was unknown.and the location of a majority of the material was not conducive to using the sampling devices that were currently available at Hanford. A subcontractor was tasked with the development fabrication.and testing of a sampling device that would be able to obtain multiple samples from the material on the annulus floor. as well as the material originating from a refractory air-slot near the floor of the annulus space. This sampler would need to be able to collect and dispense the material it collected into a sample jar retrieval device for transportation of the material to the 222-S laboratory on the Hanford site for analysis. The subcontractor agency fabricated a remote underground sampler by modifying off-the-shelf robotics and parts. Limited testing of the sampler was conducted using a mock-up of the tank annulus and one simulated material type -a salt block. The mock-up testing indicated that the sampler would be able to maneuver within the confined space and that the device worked with full functionality. A total of six weeks had passed from initiation to implementation of the new sampler in the 241-AY-102 tank annulus. Initial sample material was obtained from the annulus floor using the Off-Riser Sampler System that has been used at Hanford tor years to obtain material from the primary tanks. This could be used at the location near Riser 83 since the material was collected directly from the annulus floor and not from a location on the wall or behind a pipe, as was needed from the two locations near Riser 90. After obtaining a small sample of the material on the annulus floor.this sampler sustained terminal damage due to conduit pipes it had to transverse in order to collect and recover material from this location. Several issues were also encountered during deployment of the new sampler into the annulus near Riser 90. These included: Difficulty fitting the sampler down the 12-inch riser into the annulus due to a small tolerance in the size of the sampler; Failure of sampler components and functions during deployment including the camera. pneumatics.and bearing seals; Delays in the field due to supporting equipment issues including cables. cameras. and scaffolding; and, Low recovery of sample material obtained for analysis. The complications that occurred during deployment and use of the new sampler during the sampling event ultimately resulted in lower recovery of material from these locations in the annulus than was obtained using the Off-Riser Sampler System and limited the analyses that could be performed for determining the origin of the material. Following completion of the sample analyses and the assessment of its construction history and use. there was a consensus among the leak assessment team members that two of the three materials sampled from the annulus floor region were the result of waste leaking from a breach in the primary tank. The probable leak cause was identified as corrosion at high temperatures in a tank whose containment margins had been reduced due to construction difficulties (RPP-ASMT-53793). A formal Lessons Learned was created concerning designing equipment tor unique purposes under time constraints. This document was published in OPEXShare on May 20. 2013. It highlighted some of the issues that arose with the subcontractor sampler development and provided recommendations to prevent a recurrence should this task need to be performed again in the future. The document can be found at http://msa.hanford.gov/opex/lesson.cfm/2013/5/20/3481/AY-102-Annulus-Sampler-Designing-Equipment-for-Unique-Purposes-under-Time-Constraints/.« less
Duncan, D.B.
1992-12-29
The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.
Duncan, David B.
1992-01-01
The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.
The shape and motion of gas bubbles in a liquid flowing through a thin annulus
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Veltin, Jeremy; Muggeridge, Ann; Pain, Christopher C.; Matar, Omar K.; Jackson, Matthew; Arland, Kristine; Gyllensten, Atle
2017-11-01
We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly-inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ``tadpole'' shape with an elliptical cap and a highly-stretched tail, due to the confinement between the closely-spaced channel walls. As the annulus is inclined, the bubble tail tends to decrease in length, while the geometry of the cap remains almost invariant. To model the bubble evolution, the thin annulus is conceptualised as a ``Hele-Shaw'' cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model constrained by the same dimensionless quantities. The complex bubble dynamics are solved using a mixed control-volume finite-element method combined with interface-capturing and mesh adaptation techniques. A close match to the experimental data is achieved, both qualitatively and quantitatively, by the numerical simulations. The mechanism for the elliptical cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder. The shape regimes of bubbles flowing through the thin annulus are further explored based on the simulation results. Funding from STATOIL gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Lobato, Lucas; Paul, Stephan; Cordioli, Júlio
2018-05-01
The tympanic annulus is a fibrocartilage ligament that supports the tympanic membrane in a sulcus at the end of the outer ear canal. Among many FE models of the middle ear found in literature, the effect of different boundary conditions at tympanic annulus on middle ear mechanics was not found. In order to investigate the influence of different representations of this detail in FE models, three different ways to connect the tympanic annulus to the outer ear canal were modelled in a reduced middle ear system. This reduced system includes tympanic membrane, tympanic annulus, manubrium, malleus and anterior ligament of malleus. The numerical frequency response function Humbo (umbo velocity vs sound pressure at tympanic membrane) was analyzed through the different boundary conditions and compared to numerical and experimental data from the literature. Also a numerical modal analysis was performed to improve the analysis. It was found that the boundary conditions used to represent the connection between Tympanic Annulus and Outer Ear Canal can change the global stiffness of the system and its natural frequencies as well as change the modal shape of high order modes.
Xu, Xiang; Hu, Jianzhong; Lu, Hongbin
2017-01-01
Objective To research the histological characteristics of a gelatin sponge transplant loaded with goat BMSCs (bone marrow-derived mesenchymal stem cells) combined with PRP (platelet-rich plasma) in repairing an annulus defect. Method BMSCs were separated from the iliac crest of goats, sub-cultured and identified after the third generation. Then, PRP was obtained using blood from the jugular vein of goats via two degrees of centrifugation. In the animal experiments, the goats were divided into the following three groups: a sham group, an injury group and a therapeutic group. In the sham group, we decompressed the lamina and exposed the annulus fibrosus. In the injury group, we exposed the annulus fibrosus after decompression of the lamina and created a 1 × 1 cm defect in the annulus using surgical instruments. In the therapeutic group, after decompression of the lamina, we exposed the annulus, created a 1 × 1 cm defect using surgical instruments, and placed a gelatin sponge combined with BMSCs and PRP into the defect for a combined method of repair. Three, six and twelve weeks after the surgery, the previously damaged or undamaged annulus tissue was removed from the three groups. Then, the above tissue was assayed using HE (hematoxylin-eosin) staining, Masson trichrome staining, AB-PAS (Alcian blue-periodic acid Schiff) staining, and type II collagen staining and observed by microscopy. Results From the HE staining, we observed that the number of repair cells gradually increased. Compared to the injury group, the cell density and gross morphology of cells in the therapeutic group were closer to those of the sham group. As observed by Masson trichrome gelatin staining, many of the fibroblast cells or tissues were under repair, and as time progressed, the number of fibroblast cells and amount of tissue gradually increased. The results of the AB-PAS staining suggest that chondrocytes participated in the repair of the annulus. The level of type II collagen gradually increased, as determined by immunohistochemical staining. Conclusion Our results demonstrate that a gelatin sponge transplant loaded with BMSCs and PRP can effectively repair annulus defects. PMID:28178294
Sampling and monitoring for closure
McLemore, Virginia T.; Smith, Kathleen S.; Russell, Carol C.
2007-01-01
An important aspect of planning a new mine or mine expansion within the modern regulatory framework is to design for ultimate closure. Sampling and monitoring for closure is a form of environmental risk management. By implementing a sampling and monitoring program early in the life of the mining operation, major costs can be avoided or minimized. The costs for treating mine drainage in perpetuity are staggering, especially if they are unanticipated. The Metal Mining Sector of the Acid Drainage Technology Initiative (ADTI-MMS), a cooperative government-industry-academia organization, was established to address drainage-quality technologies of metal mining and metallurgical operations. ADTI-MMS recommends that sampling and monitoring programs consider the entire mine-life cycle and that data needed for closure of an operation be collected from exploration through postclosure.
Research on Annular Frictional Pressure Loss of Hydraulic-Fracturing in Buckling Coiled Tubing
NASA Astrophysics Data System (ADS)
Liu, Bin; Cai, Meng; Li, Junliang; Xu, Yongquan; Wang, Peng
2018-01-01
Compared with conventional hydraulic fracturing, coiled tubing (CT) annular delivery sand fracturing technology is a new method to enhance the recovery ratio of low permeability reservoir. Friction pressure loss through CT has been a concern in fracturing. The small diameter of CT limits the cross-sectional area open to flow, therefore, to meet large discharge capacity, annular delivery sand technology has been gradually developed in oilfield. Friction pressure is useful for determining the required pump horsepower and fracturing construction design programs. Coiled tubing can buckle when the axial compressive load acting on the tubing is greater than critical buckling load, then the geometry shape of annular will change. Annular friction pressure loss elevates dramatically with increasing of discharge capacity, especially eccentricity and CT buckling. Despite the frequency occurrence of CT buckling in oilfield operations, traditionally annular flow frictional pressure loss considered concentric and eccentric annuli, not discussing the effects of for discharge capacity and sand ratio varying degree of CT buckling. The measured data shows that the factors mentioned above cannot be ignored in the prediction of annular pressure loss. It is necessary to carry out analysis of annulus flow pressure drop loss in coiled tubing annular with the methods of theoretical analysis and numerical simulation. Coiled tubing buckling has great influence on pressure loss of fracturing fluid. Therefore, the correlations have been developed for turbulent flow of Newtonian fluids and Two-phase flow (sand-liquid), and that improve the friction pressure loss estimation in coiled tubing operations involving a considerable level of buckling. Quartz sand evidently increases pressure loss in buckling annular, rising as high as 40%-60% more than fresh water. Meanwhile, annulus flow wetted perimeter increases with decreasing helical buckling pitch of coiled tubing, therefore, the annulus flow frictional pressure loss rapidly increases with decreasing helical buckling pitch. The research achievement provides theoretical guidance for coiled tubing annular delivery sand fracturing operation and design.
Advances in surgical management of lumbar degenerative disease.
Silber, Jeff S; Anderson, D Greg; Hayes, Victor M; Vaccaro, Alexander R
2002-07-01
The past several years have seen many advances in spine technology. Some of these advances have improved the quality of life of patients suffering from disabling low back pain from degenerative disk disease. Traditional fusion procedures are trending toward less invasive approaches with less iatrogenic soft-tissue morbidity. The diversity of bone graft substitutes is increasing with the potential for significant improvements in fusion success with the future introduction of several well tested bone morphogenic proteins to the spinal market. Biologic solutions to modify the natural history of disk degeneration are being investigated. Recently, electrothermal modulation of the posterior annulus fibrosis has been published as a semi-invasive technique to relieve low back pain generated by fissures in the outer annulus and ingrowing nociceptors (intradiskal electrothermal therapy, and intradiskal electrothermal annuloplasty). Initial results are promising, however, prospective randomized studies comparing this technique with conservative therapy are still lacking. The same is true for artificial nucleus pulposus replacement using hydrogel cushions implanted in the intervertebral space after removal of the nucleus pulposus posterior or through an anterior approach. Intervertebral disk prostheses are presently being studied in small prospective patient cohorts. As with all new developments, careful prospective, long-term trials are needed to fully define the role of these technologies in the management of symptomatic lumbar degenerative disk disease.
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1985-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1983-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
Gruber, H E; Marrero, E; Ingram, J A; Hoelscher, G L; Hanley, E N
2017-01-01
Chemokines are an important group of soluble molecules with specialized functions in inflammation. The roles of many specialized chemokines and their receptors remain poorly understood in the human intervertebral disc. We investigated CXCL16 and its receptor, CXCR6, to determine their immunolocalization in disc tissue and their presence following exposure of cultured human annulus fibrosus cells to proinflammatory cytokines. CXCL16 is a marker for inflammation; it also can induce hypoxia-inducible factor 1α (HIF-1α), which is a phenotypic marker of heathy nucleus pulposus tissue. We found CXCL16 and CXCR6 immunostaining in many cells of the annulus portion of the disc. Molecular studies showed that annulus fibrosus cells exposed to IL-1ß, but not TNF-α, exhibited significant up-regulation of CXCL16 expression vs. control cells. There was no significant difference in the percentage of annulus cells that exhibited immunolocalization of CXCL16 in grade I/II, grade III or grade IV/V specimens. The presence of CXCL16 and its receptor, CXCR6, in the annulus in vivo suggests the need for future research concerning the role of this chemokine in proinflammatory functions, HIF-1α expression and disc vascularization.
Sprong, Matthew Evan; Dallas, Bryan; Paul, Erina; Xia, Michelle
2018-05-03
The primary goal of the study was to evaluate how the use of rehabilitation technology impacted closure status for consumers receiving services in fiscal year (FY) 2014. Rehabilitation Service Administration (RSA-911) Case Service Report FY 2014 archival dataset was obtained from the U.S. Department of Education (2014) and secondary analyses was performed for this study. RSA-911 archival data is updated on an annual basis and consists of all state-federal rehabilitation consumers who were served in the specific fiscal year. The dataset contains information related to each consumer's demographic information (e.g. age, gender, race) and other supplemental information (e.g. weekly earnings at closure, cause of disability, services provided). A multiple logistic regression analysis was utilized and revealed that white consumers receiving rehabilitation technology (RT) services have significantly higher closure rate than consumers of other races, RT services differ by the employment status at application, RT services differ by the type of disability, educational level at application for people receiving RT services did predict closure status (i.e. exiting with an employment outcome), IEP status did not predict closure status, weekly earnings at application did predict closure status and the interaction effect between IEP and RT services is statistically significant. The odds ratio (ORs) were presented at the 95% confidence interval (CI). Vocational rehabilitation counselors needs training to correctly identify appropriate RT services for consumers, so that the likelihood of exiting with an employment outcome is obtained. Implications for Rehabilitation RT services significantly improved their chances of successful employment compared to those who did not receive RT services. Education at closure would also have some significant impact on employment outcomes. Training in Assistive Technology (AT) for Vocational Rehabilitation counselors will assist in the proper identification of AT requirements, which may lead to a higher likelihood of consumers exiting with an employment outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, James J.; Wall, Donald; Wittman, Richard S.
Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less
The Double-Orifice Valve Technique to Treat Tricuspid Valve Incompetence.
Hetzer, Roland; Javier, Mariano; Delmo Walter, Eva Maria
2016-01-01
A straightforward tricuspid valve (TV) repair technique was used to treat either moderate or severe functional (normal valve with dilated annulus) or for primary/organic (Ebstein's anomaly, leaflet retraction/tethering and chordal malposition/tethering, with annular dilatation) TV incompetence, and its long-term outcome assessed. A double-orifice valve technique was employed in 91 patients (mean age 52.6 ± 23.2 years; median age 56 years; range: 0.6-82 years) with severe tricuspid regurgitation. Among the patients, three had post-transplant iatrogenic chordal rupture, five had infective endocarditis, 11 had mitral valve insufficiency, 23 had Ebstein's anomaly, and 47 had isolated severe TV incompetence. The basic principle was to reduce the distance between the coapting leaflets, wherein the most mobile leaflet could coapt to the opposite leaflet, by creating two orifices, ensuring valve competence. The TV repair was performed through a median sternotomy or right anterior thoracotomy in the fifth intercostal space under cardiopulmonary bypass. The degree and extent of creating a double-valve orifice was determined by considering the minimal body surface area (BSA)-related acceptable TV diameter. Repair was accomplished by passing pledgeted mattress sutures from the middle of the true anterior annulus to a spot on the opposite septal annulus, located approximately two-thirds of the length of the septal annulus to avoid injury to the bundle of His. The annular apposition divides the TV into a larger anterior and a smaller posterior orifices, enabling valve closure, on both sides. In adults, the diameter of the anterior valve orifice should be 23-25 mm, and the posterior orifice 15-18 mm; thus, the total valve orifice area is 5-6 cm2. In children, the total valve orifice should be a standard deviation of 1.7 mm for a BSA of <1. 0m2, and 1.5 mm for a BSA of >1.0m2. During a mean follow up of 8.7 ± 1.34 years (median 10 years; range: 1.5-25.9 years) there have been no reoperations for TV insufficiency or stenosis. Reoperations on three patients (mean age 42.5 ± 8.7 years) were indicated for aortic valve replacement at 14 months postoperatively (n = 1) and for assist device implantation (n = 2) who eventually underwent heart transplant at 18 and 20 months after TV repair, respectively. The cumulative 12-year survival rate was 86.9%. This double-orifice technique is technically a straightforward repair to abolish TV incompetence with highly satisfactory results, particularly in patients with severe annular dilatation or with leaflet and chordal tethering. In the present series, the technique provided no pitfalls (if the location of the conduction system was borne in mind), requiring only a gentle placement of sutures. It also led to no residual regurgitation or reoperation during the follow up period.
Podlesnikar, Tomaz; Prihadi, Edgard A; van Rosendael, Philippe J; Vollema, E Mara; van der Kley, Frank; de Weger, Arend; Ajmone Marsan, Nina; Naji, Franjo; Fras, Zlatko; Bax, Jeroen J; Delgado, Victoria
2018-01-01
Accurate aortic annulus sizing is key for selection of appropriate transcatheter aortic valve implantation (TAVI) prosthesis size. The present study compared novel automated 3-dimensional (3D) transesophageal echocardiography (TEE) software and multidetector row computed tomography (MDCT) for aortic annulus sizing and investigated the influence of the quantity of aortic valve calcium (AVC) on the selection of TAVI prosthesis size. A total of 83 patients with severe aortic stenosis undergoing TAVI were evaluated. Maximal and minimal aortic annulus diameter, perimeter, and area were measured. AVC was assessed with computed tomography. The low and high AVC burden groups were defined according to the median AVC score. Overall, 3D TEE measurements slightly underestimated the aortic annulus dimensions as compared with MDCT (mean differences between maximum, minimum diameter, perimeter, and area: -1.7 mm, 0.5 mm, -2.7 mm, and -13 mm 2 , respectively). The agreement between 3D TEE and MDCT on aortic annulus dimensions was superior among patients with low AVC burden (<3,025 arbitrary units) compared with patients with high AVC burden (≥3,025 arbitrary units). The interobserver variability was excellent for both methods. 3D TEE and MDCT led to the same prosthesis size selection in 88%, 95%, and 81% of patients in the total population, the low, and the high AVC burden group, respectively. In conclusion, the novel automated 3D TEE imaging software allows accurate and highly reproducible measurements of the aortic annulus dimensions and shows excellent agreement with MDCT to determine the TAVI prosthesis size, particularly in patients with low AVC burden. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Performance and Reliability of Exhaust Gas Waste Heat Recovery Units
2014-09-01
transfer in an annulus with an externally enhanced inner tube. International Journal of Heat and Fluid Flow, 14(1), 54‒63. Akpinar, E. K. (2006...from http://www.energy-tech.com/article.cfm?id=17567 Masliyah, J., & Nandakumar, K. (1976). Heat transfer in internally finned tubes. Journal of...exchanger by using turbulator. International Journal of Engineering Science & Advanced Technology, 2(4), 881‒885. Patankar, S. V. (1980). The
Fluidized bed injection assembly for coal gasification
Cherish, Peter; Salvador, Louis A.
1981-01-01
A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.
Variable flow control for a nuclear reactor control rod
Carleton, Richard D.; Bhattacharyya, Ajay
1978-01-01
A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.
Saturation of SERCA's lipid annulus may protect against its thermal inactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, Val Andrew; Center for Bone and Muscle Health, Brock University, St. Catharines, ON; Department of Health Sciences, Brock University, St. Catharines, ON
The sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA) pumps are integral membrane proteins that catalyze the active transport of Ca{sup 2+} into the sarcoplasmic reticulum, thereby eliciting muscle relaxation. SERCA pumps are highly susceptible to oxidative damage, and cytoprotection of SERCA dampens thermal inactivation and is a viable therapeutic strategy in combating diseases where SERCA activity is impaired, such as muscular dystrophy. Here, we sought to determine whether increasing the percent of saturated fatty acids (SFA) within SERCA's lipid annulus through diet could protect SERCA pumps from thermal inactivation. Female Wistar rats were fed either a semi-purified control diet (AIN93G, 7% soybeanmore » oil by weight) or a modified AIN93G diet containing high SFA (20% lard by weight) for 17 weeks. Soleus muscles were extracted and SERCA lipid annulus and activity under thermal stress were analyzed. Our results show that SERCA's lipid annulus is abundant with short-chain (12–14 carbon) fatty acids, which corresponds well with SERCA's predicted bilayer thickness of 21 Å. Under control-fed conditions, SERCA's lipid annulus was already highly saturated (79%), and high-fat feeding did not increase this any further. High-fat feeding did not mitigate the reductions in SERCA activity seen with thermal stress; however, correlational analyses revealed significant and strong associations between % SFA and thermal stability of SERCA activity with greater %SFA being associated with lower thermal inactivation and greater % polyunsaturation and unsaturation index being associated with increased thermal inactivation. Altogether, these findings show that SERCA's lipid annulus may influence its susceptibility to oxidative damage, which could have implications in muscular dystrophy and age-related muscle wasting. - Highlights: • SERCA's lipid annulus in rat soleus was measured after immunoconcentration. • Short fatty acid chains surround SERCA and may ensure optimal hydrophobic matching. • SERCA's annulus is highly saturated in control-fed and high-fat fed rats. • Greater saturation associates with small levels of thermal inactivation. • Greater unsaturation associates with large levels of thermal inactivation.« less
1984-01-01
fac- turs are described as follows: (a) Basil stability -- Determination of horizontal movement in the slurry wall or the ground behind the wall...SG-l.2) M Acid mine drainage (FeSO4 pH 3) N Liqnin (in Ca++ solution) N Orqanic residues trom pesticide manutacture N Alcohol M/H asiqnificant
Lou, Junyang; Obuchowski, Nancy A; Krishnaswamy, Amar; Popovic, Zoran; Flamm, Scott D; Kapadia, Samir R; Svensson, Lars G; Bolen, Michael A; Desai, Milind Y; Halliburton, Sandra S; Tuzcu, E Murat; Schoenhagen, Paul
2015-01-01
Preprocedural 3-dimensional CT imaging of the aortic annular plane plays a critical role for transcatheter aortic valve replacement (TAVR) planning; however, manual reconstructions are complex. Automated analysis software may improve reproducibility and agreement between readers but is incompletely validated. In 110 TAVR patients (mean age, 81 years; 37% female) undergoing preprocedural multidetector CT, automated reconstruction of the aortic annular plane and planimetry of the annulus was performed with a prototype of now commercially available software (syngo.CT Cardiac Function-Valve Pilot; Siemens Healthcare, Erlangen, Germany). Fully automated, semiautomated, and manual annulus measurements were compared. Intrareader and inter-reader agreement, intermodality agreement, and interchangeability were analyzed. Finally, the impact of these measurements on recommended valve size was evaluated. Semiautomated analysis required major correction in 5 patients (4.5%). In the remaining 95.5%, only minor correction was performed. Mean manual annulus area was significantly smaller than fully automated results (P < .001 for both readers) but similar to semiautomated measurements (5.0 vs 5.4 vs 4.9 cm(2), respectively). The frequency of concordant recommendations for valve size increased if manual analysis was replaced with the semiautomated method (60% agreement was improved to 82.4%; 95% confidence interval for the difference [69.1%-83.4%]). Semiautomated aortic annulus analysis, with minor correction by the user, provides reliable results in the context of TAVR annulus evaluation. Copyright © 2015 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Annulus fibrosus of the mitral valve: reality or myth.
Berdajs, Denis; Zünd, Gregor; Camenisch, Colette; Schurr, Ulrich; Turina, Marko I; Genoni, Michele
2007-01-01
Surgical repair of the mitral valve is in most cases limited to the posterior leaflet of the mitral valve and to the annulus fibrosus. The term annulus fibrosus is still used in anatomical and clinical terminology and is described as a cord like structure providing the attachment of the mitral vale. However, to date no evidence exists of a ring-or cord-like structure at this area. Herein, we describe the attachment of the mitral valve by using the macroscopical and microscopical techniques. The ventricular attachment of the posterior mitral valve leaflet was investigated in 10 human hearts. In dry dissected specimens, the intraventricular illumination was used to identify the attachment of the mitral valve to the left ventricular muscle. Using the histological techniques, we verified the position of the annulus fibrosus. The attachment of the posterior mitral valve leaflet is a band-like structure positioned between the left ventricular muscle and the left atrium. This fibrous band illustrates the morphological attachment of the mitral valve and, as thus, was interpreted as the annulus fibrosus of the mitral valve. Based on our data, no ring-like structure was found corresponding to the anatomical description of the annulus fibrosus, instead the band-like fibrous tissue was identified positioned between the mitral valve and the left ventricle. Histologicaly, we detected that this structure is part of the greater structural system that is directly connected to the membranous septum, to the left and right fibrous trigone and the attachment aortic root to the left ventricular muscle.
On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material
Momeni Shahraki, Narjes; Fatemi, Ali; Goel, Vijay K.; Agarwal, Anand
2015-01-01
Besides the biology, stresses and strains within the tissue greatly influence the location of damage initiation and mode of failure in an intervertebral disk. Finite element models of a functional spinal unit (FSU) that incorporate reasonably accurate geometry and appropriate material properties are suitable to investigate such issues. Different material models and techniques have been used to model the anisotropic annulus fibrosus, but the abilities of these models to predict damage initiation in the annulus and to explain clinically observed phenomena are unclear. In this study, a hyperelastic anisotropic material model for the annulus with two different sets of material constants, experimentally determined using uniaxial and biaxial loading conditions, were incorporated in a 3D finite element model of a ligamentous FSU. The purpose of the study was to highlight the biomechanical differences (e.g., intradiscal pressure, motion, forces, stresses, strains, etc.) due to the dissimilarity between the two sets of material properties (uniaxial and biaxial). Based on the analyses, the biaxial constants simulations resulted in better agreements with the in vitro and in vivo data, and thus are more suitable for future damage analysis and failure prediction of the annulus under complex multiaxial loading conditions. PMID:26090359
Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid
NASA Astrophysics Data System (ADS)
Kjolsing, Eric J.; Todd, Michael D.
2017-04-01
To further the development of a downhole vibration based energy harvester, this study explores how fluid velocity affects damping in a fluid-conveying pipe stemming from a viscous annulus fluid. A linearized equation of motion is formed which employs a hydrodynamic forcing function to model the annulus fluid. The system is solved in the frequency domain through the use of the spectral element method. The three independent variables investigated are the conveyed fluid velocity, the rotational stiffness of the boundary (using elastic springs), and the annulus fluid viscosity. It was found that, due to the hydrodynamic functions frequency-dependence, increasing the conveyed fluid velocity increases the systems damping ratio. It was also noted that stiffer systems saw the damping ratio increase at a slower rate when compared to flexible systems as the conveyed fluid velocity was increased. The results indicate that overestimating the stiffness of a system can lead to underestimated damping ratios and that this error is made worse if the produced fluid velocity or annulus fluid viscosity is underestimated. A numeric example was provided to graphically illustrate these errors. Approved for publication, LA-UR-15-28006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin
Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focusedmore » on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.« less
Li, Yinfeng; Liu, Silin; Datta, Dibakar; Li, Zhonghua
2015-11-12
Wrinkles as intrinsic topological feature have been expected to affect the electrical and mechanical properties of atomically thin graphene. Molecular dynamics simulations are adopted to investigate the wrinkling characteristics in hydrogenated graphene annulus under circular shearing at the inner edge. The amplitude of wrinkles induced by in-plane rotation around the inner edge is sensitive to hydrogenation, and increases quadratically with hydrogen coverage. The effect of hydrogenation on mechanical properties is investigated by calculating the torque capability of annular graphene with varying hydrogen coverage and inner radius. Hydrogenation-enhanced wrinkles cause the aggregation of carbon atoms towards the inner edge and contribute to the critical torque strength of annulus. Based on detailed stress distribution contours, a shear-to-tension conversion mechanism is proposed for the contribution of wrinkles on torque capacity. As a result, the graphane annulus anomalously has similar torque capacity to pristine graphene annulus. The competition between hydrogenation caused bond strength deterioration and wrinkling induced local stress state conversion leads to a U-shaped evolution of torque strength relative to the increase of hydrogen coverage from 0 to 100%. Such hydrogenation tailored topological and mechanical characteristics provides an innovative mean to develop novel graphene-based devices.
NASA Astrophysics Data System (ADS)
Ragui, Karim; Boutra, Abdelkader; Bennacer, Rachid; Labsi, Nabila; Benkahla, Youb Khaled
2018-07-01
The main purpose of our investigation is to show the impact of pertinent parameters; such Lewis and porous thermal Rayleigh numbers as well as the buoyancy and the aspect ratios; on the double-diffusive convection phenomena which occur within a porous annulus; found between a cold (and less concentric) outer circular cylinder and a hot (and concentric) inner one, to come out with global correlations which predict the mean transfer rates in such annulus. To do so, the physical model for the momentum conservation equation is made using the Brinkman extension of the classical Darcy equation. The set of coupled equations is solved using the finite volume method and the SIMPLER algorithm. Summarizing the numerical predictions, global correlations of overall transfer within the porous annulus as a function of the governing studied parameters are set forth which predict within ±2% the numerical results. These correlations may count as a complement to previous researches done in the case a Newtonian-fluid annulus. It is to note that the validity of the computing code used was ascertained by comparing our results with the experimental data and numerical ones already available in the literature.
NASA Astrophysics Data System (ADS)
Ragui, Karim; Boutra, Abdelkader; Bennacer, Rachid; Labsi, Nabila; Benkahla, Youb Khaled
2018-02-01
The main purpose of our investigation is to show the impact of pertinent parameters; such Lewis and porous thermal Rayleigh numbers as well as the buoyancy and the aspect ratios; on the double-diffusive convection phenomena which occur within a porous annulus; found between a cold (and less concentric) outer circular cylinder and a hot (and concentric) inner one, to come out with global correlations which predict the mean transfer rates in such annulus. To do so, the physical model for the momentum conservation equation is made using the Brinkman extension of the classical Darcy equation. The set of coupled equations is solved using the finite volume method and the SIMPLER algorithm. Summarizing the numerical predictions, global correlations of overall transfer within the porous annulus as a function of the governing studied parameters are set forth which predict within ±2% the numerical results. These correlations may count as a complement to previous researches done in the case a Newtonian-fluid annulus. It is to note that the validity of the computing code used was ascertained by comparing our results with the experimental data and numerical ones already available in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Heidi; Shoffner, Peggy; Lagos, Leonel E.
2012-07-01
The River Corridor Closure Project is the nation's largest environmental cleanup closure project where innovative technologies are being utilized to overcome DOE's environmental clean-up challenges. DOE provides a Technology Needs Statement that specifies their on-site challenges and the criteria to overcome those challenges. This allows for both the private sector and federally funded organizations to respond with solutions that meet their immediate needs. DOE selects the company based on their ability to reduce risk to human health and the environment, improve efficiency of the cleanup, and lower costs. These technologies are our link to a cleaner, safer, healthier tomorrow. (authors)
The papillary muscles as shock absorbers of the mitral valve complex. An experimental study.
Joudinaud, Thomas M; Kegel, Corrine L; Flecher, Erwan M; Weber, Patricia A; Lansac, Emmanuel; Hvass, Ulrich; Duran, Carlos M G
2007-07-01
Although it is known that the papillary muscles ensure the continuity between the left ventricle (LV) and the mitral apparatus, their precise mechanism needs further study. We hypothesize that the papillary muscles function as shock absorbers to maintain a constant distance between their tips and the mitral annulus during the entire cardiac cycle. Sonomicrometry crystals were implanted in five sheep in the mitral annulus at the trigones (T1 and T2), mid anterior annulus (AA) mid posterior annulus (PA), base of the posterior lateral scallops (P1 and P2), tips of papillary muscles (M1 and M2), and LV apex. LV and aortic pressures were simultaneously recorded and used to define the different phases of the cardiac cycle. No significant distance changes were found during the cardiac cycle between each papillary muscle tip and their corresponding mitral hemi-annulus: M1-T1, (3.5+/-2%); M1-P1 (5+/-2%); M1-PA (5+/-3%); M2-T2 (2.7+/-2%); M2-P2 (6.1+/-3%); and M2-AA (4.2+/-3%); (p>0.05, ANOVA). Significant changes were observed in distances between each papillary muscle tip and the contralateral hemi-mitral annulus: M1-T2 (1.7+/-3%); M1-P2 (23+/-6%); M1-AA (6+/-3%); M2-T1 (8+/-3%); M2-P1 (10.5+/-6%); and M2-PA (12.6+/-8%); (p<0.05 ANOVA). The distance changes between LV apex and each papillary muscle tip were significantly different: apex-M1 (12.9+/-1%) and apex-M2 (10.5+/-1%) and different from the averaged distance change between the LV apex and each annulus crystal (8.3+/-1%) with p<0.05. The papillary muscles seem to be independent mechanisms designed to work as shock absorbers to maintain the basic mitral valve geometry constant during the cardiac cycle.
NASA Technical Reports Server (NTRS)
Goodykoontz, J.; Vonglahn, U.
1980-01-01
An inverted velocity profile coaxial nozzle for use with supersonic cruise aircraft produces less jet noise than an equivalent conical nozzle. Furthermore, decreasing the annulus height (increasing radius ratio with constant flow) results in further noise reduction benefits. The annulus shape (height) was varied by an eccentric mounting of the annular nozzle with respect to a conical core nozzle. Acoustic measurements were made in the flyover plane below the narrowest portion of the annulus and at 90 deg and 180 deg from this point. The model-scale spectra are scaled up to engine size (1.07 m diameter) and the perceived noise levels for the eccentric and baseline concentric inverted velocity profile coaxial nozzles are compared over a range of operating conditions. The implications of the acoustic benefits derived with the eccentric nozzle to practical applications are discussed.
VanOsdol, John G.
2013-06-25
The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.
The Lawn Hill annulus: An Ordovician meteorite impact into water-saturated dolomite
NASA Astrophysics Data System (ADS)
Darlington, Vicki; Blenkinsop, Tom; Dirks, Paul; Salisbury, Jess; Tomkins, Andrew
2016-12-01
The Lawn Hill Impact Structure (LHIS) is located 250 km N of Mt Isa in NW Queensland, Australia, and is marked by a highly deformed dolomite annulus with an outer diameter of 18 km, overlying low metamorphic grade siltstone, sandstone, and shale, along the NE margin of the Georgina Basin. This study provides detailed field observations from sections of the Lawn Hill annulus and adjacent areas that demonstrate a clear link between the deformation of the dolomite and the Lawn Hill impact. 40Ar-39Ar dating of impact-related melt particles provides a time of impact in the Ordovician (472 ± 8 Ma) when the Georgina Basin was an active depocenter. The timing and stratigraphic thickness of the dolomite sequence in the annulus suggest that there was possibly up to 300 m of additional sedimentary rocks on top of the currently exposed Thorntonia Limestone at the time of impact. The exposed annulus is remarkably well preserved, with preservation attributed to postimpact sedimentation. The LHIS has an atypical crater morphology with no central uplift. The heterogeneous target materials at Lawn Hill were probably low-strength, porous, and water-saturated, with all three properties affecting the crater morphology. The water-saturated nature of the carbonate unit at the time of impact is thought to have influenced the highly brecciated nature of the annulus, and restricted melt production. The impact timing raises the possibility that the Lawn Hill structure may be a member of a group of impacts resulting from an asteroid breakup that occurred in the mid-Ordovician (470 ± 6 Ma).
The Superfund Innovative Technology Evaluation Program SUMMARY AND CLOSURE REPORT
The Superfund Innovative Technology Evaluation (SITE) Program promoted the development, commercialization, and implementation of innovative hazardous waste treatment technologies for 20 years. SITE offered a mechanism for conducting joint technology demonstration and evaluation ...
Rodrigues, Samantha A; Thambyah, Ashvin; Broom, Neil D
2015-03-01
The annulus-endplate anchorage system performs a critical role in the disc, creating a strong structural link between the compliant annulus and the rigid vertebrae. Endplate failure is thought to be associated with disc herniation, a recent study indicating that this failure mode occurs more frequently than annular rupture. The aim was to investigate the structural principles governing annulus-endplate anchorage and the basis of its strength and mechanisms of failure. Loading experiments were performed on ovine lumbar motion segments designed to induce annulus-endplate failure, followed by macro- to micro- to fibril-level structural analyses. The study was funded by a doctoral scholarship from our institution. Samples were loaded to failure in three modes: torsion using intact motion segments, in-plane tension of the anterior annulus-endplate along one of the oblique fiber angles, and axial tension of the anterior annulus-endplate. The anterior region was chosen for its ease of access. Decalcification was used to investigate the mechanical influence of the mineralized component. Structural analysis was conducted on both the intact and failed samples using differential interference contrast optical microscopy and scanning electron microscopy. Two main modes of anchorage failure were observed--failure at the tidemark or at the cement line. Samples subjected to axial tension contained more tidemark failures compared with those subjected to torsion and in-plane tension. Samples decalcified before testing frequently contained damage at the cement line, this being more extensive than in fresh samples. Analysis of the intact samples at their anchorage sites revealed that annular subbundle fibrils penetrate beyond the cement line to a limited depth and appear to merge with those in the vertebral and cartilaginous endplates. Annulus-endplate anchorage is more vulnerable to failure in axial tension compared with both torsion and in-plane tension and is probably due to acute fiber bending at the soft-hard interface of the tidemark. This finding is consistent with evidence showing that flexion, which induces a similar pattern of axial tension, increases the risk of herniation involving endplate failure. The study also highlights the important strengthening role of calcification at this junction and provides new evidence of a fibril-based form of structural integration across the cement line. Copyright © 2015 Elsevier Inc. All rights reserved.
Zahn, Evan M; Nevin, Phillip; Simmons, Charles; Garg, Ruchira
2015-02-01
To describe a new technique for transcatheter patent ductus arteriosus (PDA) closure in extremely preterm infants using commercially available technology. PDA in premature neonates continues to be a significant clinical problem contributing importantly to both morbidity and mortality. Surgical ligation and medical therapy both have their drawbacks. Hospital records and catheterization reports of all premature neonates (< 32 weeks gestation) who underwent transcatheter PDA closure between March 2013 and February 2014 were reviewed. Particular attention was paid to procedural details, complications, and short and mid-term outcomes. Six premature infants born at gestational ages ranging between 26 and 31 weeks (median, 26 weeks) underwent attempted transcatheter PDA closure using the Amplatzer Vascular Plug II (AVP II). Median age and weight was 21.5 days (16-80 days) and 1,180 g (870-2,240 g), respectively. Fluoroscopy and echocardiography were used to guide device. Contrast angiography was not used in any patient. Complete closure was achieved in all patients with no major procedural complications. Median fluoroscopy and procedural times were 9.4 (0-19.5) and 51.5 (33-87) min, respectively. All patients were alive at the time of this report. There were no instances of device migration, left pulmonary artery (LPA), or aortic coarctation. This preliminary study demonstrates that transcatheter PDA closure can be successfully performed in extremely preterm neonates using currently available technology with a high success rate and a low incidence of complications. This report also describes a novel transvenous approach using a combination of echocardiography and judicious use of fluoroscopy to avoid arterial access in this fragile patient population. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets
Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.
2016-01-01
We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786
NASA Astrophysics Data System (ADS)
Guo, Z. Y.; Peng, X. Q.; Moran, B.
2006-09-01
This paper presents a composites-based hyperelastic constitutive model for soft tissue. Well organized soft tissue is treated as a composite in which the matrix material is embedded with a single family of aligned fibers. The fiber is modeled as a generalized neo-Hookean material in which the stiffness depends on fiber stretch. The deformation gradient is decomposed multiplicatively into two parts: a uniaxial deformation along the fiber direction and a subsequent shear deformation. This permits the fiber-matrix interaction caused by inhomogeneous deformation to be estimated by using effective properties from conventional composites theory based on small strain linear elasticity and suitably generalized to the present large deformation case. A transversely isotropic hyperelastic model is proposed to describe the mechanical behavior of fiber-reinforced soft tissue. This model is then applied to the human annulus fibrosus. Because of the layered anatomical structure of the annulus fibrosus, an orthotropic hyperelastic model of the annulus fibrosus is developed. Simulations show that the model reproduces the stress-strain response of the human annulus fibrosus accurately. We also show that the expression for the fiber-matrix shear interaction energy used in a previous phenomenological model is compatible with that derived in the present paper.
Long, Rose G; Bürki, Alexander; Zysset, Philippe; Eglin, David; Grijpma, Dirk W.; Blanquer, Sebastien BG; Hecht, Andrew C; Iatridis, James C
2015-01-01
Unrepaired defects in the annulus fibrosus of intervertebral discs are associated with degeneration and persistent back pain. A clinical need exists for a disc repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disc height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disc biomechanics with low herniation risk, suggesting further evaluation for disc repair may be warranted. PMID:26577987
Meakin, J R
2001-03-01
An axisymmetric finite element model of a human lumbar disk was developed to investigate the properties required of an implant to replace the nucleus pulposus. In the intact disk, the nucleus was modeled as a fluid, and the annulus as an elastic solid. The Young's modulus of the annulus was determined empirically by matching model predictions to experimental results. The model was checked for sensitivity to the input parameter values and found to give reasonable behavior. The model predicted that removal of the nucleus would change the response of the annulus to compression. This prediction was consistent with experimental results, thus validating the model. Implants to fill the cavity produced by nucleus removal were modeled as elastic solids. The Poisson's ratio was fixed at 0.49, and the Young's modulus was varied from 0.5 to 100 MPa. Two sizes of implant were considered: full size (filling the cavity) and small size (smaller than the cavity). The model predicted that a full size implant would reverse the changes to annulus behavior, but a smaller implant would not. By comparing the stress distribution in the annulus, the ideal Young's modulus was predicted to be approximately 3 MPa. These predictions have implications for current nucleus implant designs. Copyright 2001 Kluwer Academic Publishers
Kobielarz, Magdalena; Szotek, Sylwia; Głowacki, Maciej; Dawidowicz, Joanna; Pezowicz, Celina
2016-09-01
The biophysical properties of the annulus fibrosus of the intervertebral disc are determined by collagen and elastin fibres. The progression of scoliosis is accompanied by a number of pathological changes concerning these structural proteins. This is a major cause of dysfunction of the intervertebral disc. The object of the study were annulus fibrosus samples excised from intervertebral discs of healthy subjects and patients treated surgically for scoliosis in the thoracolumbar or lumbar spine. The research material was subjected to structural analysis by light microscopy and quantitative analysis of the content of collagen types I, II, III and IV as well as elastin by immunoenzymatic test (ELISA). A statistical analysis was conducted to assess the impact of the sampling site (Mann-Whitney test, α=0.05) and scoliosis (Wilcoxon matched pairs test, α=0.05) on the obtained results. The microscopic studies conducted on scoliotic annulus fibrosus showed a significant architectural distortion of collagen and elastin fibres. Quantitative biochemical assays demonstrated region-dependent distribution of only collagen types I and II in the case of healthy intervertebral discs whereas in the case of scoliotic discs region-dependent distribution concerned all examined proteins of the extracellular matrix. Comparison of scoliotic and healthy annulus fibrosus revealed a significant decrease in the content of collagen type I and elastin as well as a slight increase in the proportion of collagen types III and IV. The content of collagen type II did not differ significantly between both groups. The observed anomalies are a manifestation of degenerative changes affecting annulus fibrosus of the intervertebral disc in patients suffering from scoliosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Faletti, Riccardo; Gatti, Marco; Cosentino, Aurelio; Bergamasco, Laura; Cura Stura, Erik; Garabello, Domenica; Pennisi, Giovanni; Salizzoni, Stefano; Veglia, Simona; Ottavio, Davini; Rinaldi, Mauro; Fonio, Paolo
2018-05-26
to determine reliability and reproducibility of measurements of aortic annulus in 3D models printed from cardiovascular computed tomography (CCT) images. Retrospective study on the records of 20 patients who underwent aortic valve replacement (AVR) with pre-surgery annulus assessment by CCT and intra-operative sizing by Hegar dilators (IOS). 3D models were fabricated by fused deposition modelling of thermoplastic polyurethane filaments. For each patient, two 3D models were independently segmented, modelled and printed by two blinded "manufacturers": a radiologist and a radiology technician. Two blinded cardiac surgeons performed the annulus diameter measurements by Hegar dilators on the two sets of models. Matched data from different measurements were analyzed with Wilcoxon test, Bland-Altmann plot and within-subject ANOVA. No significant differences were found among the measurements made by each cardiac surgeon on the same 3D model (p = 0.48) or on the 3D models printed by different manufacturers (p = 0.25); also, no intraobserver variability (p = 0.46). The annulus diameter measured on 3D models showed good agreement with the reference CCT measurement (p = 0.68) and IOH sizing (p = 0.11). Time and cost per model were: model creation ∼10-15 min; printing time ∼60 min; post-processing ∼5min; material cost ∼1€. CONCLUSION: 3D printing of aortic annulus can offer reliable, not expensive patient-specific information to be used in the pre-operative planning of AVR or transcatheter aortic valve implantation (TAVI). Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Contemporary Approach to the Diagnosis and Management of Primary Angle-Closure Disease.
Razeghinejad, M Reza; Myers, Jonathan S
2018-05-16
Primary angle closure disease spectrum varies from a narrow angle to advanced glaucoma. A variety of imaging technologies may assist the clinician in determining the pathophysiology and diagnosis of primary angle closure, but gonioscopy remains a mainstay of clinical evaluation. Laser iridotomy effectively eliminates the pupillary block component of angle closure; however, studies show that in many patients the iridocorneal angle remains narrow from underlying anatomic issues, and increasing lens size often leads to further narrowing over time. Recent studies have further characterized the role of the lens in angle closure disease, and cataract or clear lens extraction is increasingly used earlier in its management. As a first surgical step in angle closure glaucoma, lens extraction alone often effectively controls the pressure with less risk of complications than concurrent or stand alone glaucoma surgery, but may not be sufficient in more advanced or severe disease. We provide a comprehensive review on the primary angle-closure disease nomenclature, imaging, and current laser and surgical management. Copyright © 2018. Published by Elsevier Inc.
Dandl, R.A.
1961-10-24
An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)
NASA Astrophysics Data System (ADS)
Patrick, William P.; Bryant, Rebecca S.; Greenwald, Larry E.
2002-05-01
A unique low-pressure-drop muffler is described which has been designed to attenuate low frequency tonal noise in ducts. Flow through the muffler is divided into two noncommunicating paths in the cylindrical configuration which was designed, built, and tested. Half of the flow is ducted through a straight central annulus and the other half is ducted through a partitioned outer annulus which directs the flow in a spiral flow pattern around the inner annulus. Thus the outer flow has a longer path length and the sound within the outer annulus is phase-delayed relative to the inner flow causing destructive interference between the inner and outer waves with resulting strong attenuation at the tuned frequencies. A procedure will be described for designing a muffler (with flow) to produce high attenuation at the fundamental noise tone and all harmonics (up to the first cross mode). Results will be presented which show that the muffler achieved over 20 dB attenuation for the first five harmonics of the incident noise in a flowing duct.
Automatic detection of cardiac cycle and measurement of the mitral annulus diameter in 4D TEE images
NASA Astrophysics Data System (ADS)
Graser, Bastian; Hien, Maximilian; Rauch, Helmut; Meinzer, Hans-Peter; Heimann, Tobias
2012-02-01
Mitral regurgitation is a wide spread problem. For successful surgical treatment quantification of the mitral annulus, especially its diameter, is essential. Time resolved 3D transesophageal echocardiography (TEE) is suitable for this task. Yet, manual measurement in four dimensions is extremely time consuming, which confirms the need for automatic quantification methods. The method we propose is capable of automatically detecting the cardiac cycle (systole or diastole) for each time step and measuring the mitral annulus diameter. This is done using total variation noise filtering, the graph cut segmentation algorithm and morphological operators. An evaluation took place using expert measurements on 4D TEE data of 13 patients. The cardiac cycle was detected correctly on 78% of all images and the mitral annulus diameter was measured with an average error of 3.08 mm. Its full automatic processing makes the method easy to use in the clinical workflow and it provides the surgeon with helpful information.
Noise suppression due to annulus shaping of conventional coaxial nozzle
NASA Technical Reports Server (NTRS)
Vonglahn, U.; Goodykoontz, J.
1980-01-01
A method which shows that increasing the annulus width of a conventional coaxial nozzle with constant bypass velocity will lower the noise level is described. The method entails modifying a concentric coaxial nozzle to provide an eccentric outer stream annulus while maintaining approximately the same through flow as that for the original concentric bypass nozzle. Acoustical tests to determine the noise generating characteristics of the nozzle over a range of flow conditions are described. The tests involved sequentially analyzing the noise signals and digitally recording the 1/3 octave band sound pressure levels. The measurements were made in a plane passing through the minimum and maximum annulus width points, as well as at 90 degrees in this plane, by rotating the outer nozzle about its axis. Representative measured spectral data in the flyover plane for the concentric nozzle obtained at model scale are discussed. Representative spectra for several engine cycles are presented for both the eccentric and concentric nozzles at engine size.
CFD modelling of liquid-solid transport in the horizontal eccentric annuli
NASA Astrophysics Data System (ADS)
Sayindla, Sneha; Challabotla, Niranjan Reddy
2017-11-01
In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.
Scattering of circumferential waves in a cracked annulus
NASA Astrophysics Data System (ADS)
Valle, Christine; Qu, Jianmin; Jacobs, Laurence J.
2000-05-01
This paper considers guided waves propagating in the circumferential direction of an annulus with a radial crack, with the objective of developing an ultrasonic technique that can detect and characterize these cracks. Specifically, the finite element method is used to simulate the propagation and scattering of guided circumferential waves in a cracked annulus. This method fosters a better understanding of the wave fields, so that a transducer configuration used in the field can be optimized for crack detection/characterization. Both a point source (simulating laser generated ultrasound) and a distributed source (simulating a PZT transducer) are modeled and compared to corresponding experimental results. Animations (snapshots at different instants in time) of the strain energy field in the annulus are given for various combinations of load profiles, incident angles, and incident frequencies. Results of this paper provide the necessary design guidelines for developing nondestructive ultrasonic techniques for the detection/characterization of radial cracks in cylindrical pressure vessels, gas/oil pipes, and shaft/bearing systems.
Long-term culture of bovine nucleus pulposus explants in a native environment.
van Dijk, Bart G M; Potier, Esther; Ito, Keita
2013-04-01
Chronic low back pain is a disease with tremendous financial and social implications, and it is often caused by intervertebral disc degeneration. Regenerative therapies for disc repair are promising treatments, but they need to be tested in physiological models. To develop a physiological in vitro explant model that incorporates the native environment of the intervertebral disc, for example, hypoxia, low glucose, and high tissue osmolarity. Bovine nucleus pulposus (NP) explants were cultured for 42 days in conditions mimicking the native physiological environment. Two different approaches were used to balance the swelling pressure of the NP: raised medium osmolarity or an artificial annulus. Bovine NP explants were either cultured in media with osmolarity balanced at isotonic and hypertonic levels compared with the native tissue or cultured inside a fiber jacket used as an artificial annulus. Oxygen and glucose levels were set at either standard (21% O2 and 4.5 g/L glucose) or physiological (5% O2 and 1 g/L glucose) levels. Samples were analyzed at Day 0, 3, and 42 for tissue composition (water, sulfated glycosaminoglycans, DNA, and hydroxyproline contents and fixed charge density), tissue histology, cell viability, and cellular behavior with messenger RNA (mRNA) expression. Both the hypertonic culture and the artificial annulus approach maintained the tissue matrix composition for 42 days. At Day 3, mRNA expressions of aggrecan, collagen Type I, and collagen Type II in both hypertonic and artificial annulus cultures were not different from Day 0; however, at Day 42, the artificial annulus preserved the mRNA expression closer to Day 0. Gene expressions of matrix metalloprotease 13, tissue inhibitor of matrix metalloprotease 1, and tissue inhibitor of matrix metalloprotease 2 were downregulated under physiological O2 and glucose levels, whereas the other parameters analyzed were not affected. Although the hypertonic culture and the artificial annulus approach are both promising models to test regenerative therapies, the artificial annulus was better able to maintain a cellular behavior closer to the native tissue in longer term cultures. Copyright © 2013 Elsevier Inc. All rights reserved.
[Intradiscal temperature variation resulting from radiofrequency thermal therapy. Cadaver study].
Ramírez-León, J F; Rugeles-Ortiz, J G; Barreto-perea, J A; Alonso-cuéllar, G O
2014-01-01
Disc disease is one of the most common causes of lumbar pain. The new era of treatments for degenerative disc disease involves the use of minimally-invasive thermal technologies allowing for collagen remodeling and destruction of nociceptors in the annulus. However, a better understanding of the treatment pathophysiology is needed. The purpose of this study was to measure intradiscal temperature variation after thermodiscoplasty. A human cadaver spine specimen was obtained and divided into blocks, each composed of two intervertebral plates and an intact disc. Radio frequency was applied at five spots with three different time intervals. Temperature was measured in each of the combinations. Units were weighed before and after treatment. Finally, the disc was exposed and the tightening achieved with each radio frequency application was measured. Data were analyzed with the SPSS software. The mean weight reduction obtained was 1.4 g on average (SD 0.599), with values between 0.5 and 2.6 grams. Mean temperature in the posterior rim of the annulus was 37.6 degrees C and mean temperature variation was 3.0 degrees C (SD 6.407). Mean tightening achieved in all blocks overall was 1.4 mm. The results obtained show the effectiveness of radio frequency thermodiscoplasty when performed within the safety parameters. Temperature values with radio frequency were lower than those found in comparable studies. The weight and the tightening show the effect of disc shrinking and dehydration. This report is an effective tool to define time parameters for the application of this technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn
We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.
FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS
Loeb, E.; Nicklas, J.H.
1959-02-01
A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted pursuant to § 146.8(b)(1) shall be preceded by an initial pressure test. A positive gauge pressure on the casing/tubing annulus (filled with liquid) shall be maintained continuously. The pressure shall be...
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted pursuant to § 146.8(b)(1) shall be preceded by an initial pressure test. A positive gauge pressure on the casing/tubing annulus (filled with liquid) shall be maintained continuously. The pressure shall be...
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted pursuant to § 146.8(b)(1) shall be preceded by an initial pressure test. A positive gauge pressure on the casing/tubing annulus (filled with liquid) shall be maintained continuously. The pressure shall be...
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted pursuant to § 146.8(b)(1) shall be preceded by an initial pressure test. A positive gauge pressure on the casing/tubing annulus (filled with liquid) shall be maintained continuously. The pressure shall be...
Smíd, Michal; Ferda, Jirí; Baxa, Jan; Cech, Jakub; Hájek, Tomás; Kreuzberg, Boris; Rokyta, Richard
2010-04-01
Precise determination of the aortic annulus size constitutes an integral part of the preoperative evaluation prior to aortic valve replacement. It enables the estimation of the size of prosthesis to be implanted. Knowledge of the size of the ascending aorta is required in the preoperative analysis and monitoring of its dilation enables the precise timing of the operation. Our goal was to compare the precision of measurement of the aortic annulus and ascending aorta using magnetic resonance (MR), multidetector-row computed tomography (MDCT), transthoracic echocardiography (TTE), and transoesophageal echocardiography (TEE) in patients with degenerative aortic stenosis. A total of 15 patients scheduled to have aortic valve replacement were enrolled into this prospective study. TTE was performed in all patients and was supplemented with TEE, CT and MR in the majority of patients. The values obtained were compared with perioperative measurements. For the measurement of aortic annulus, MR was found to be the most precise technique, followed by MDCT, TTE, and TEE. For the measurement of ascending aorta, MR again was found to be the most precise technique, followed by MDCT, TEE, and TTE. In our study, magnetic resonance was found to be the most precise technique for the measurement of aortic annulus and ascending aorta in patients with severe degenerative aortic stenosis. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Zahari, Siti Nurfaezah; Rahim, Nor Raihanah Abdull; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage. PMID:29065672
Zahari, Siti Nurfaezah; Latif, Mohd Juzaila Abd; Rahim, Nor Raihanah Abdull; Kadir, Mohammed Rafiq Abdul; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage.
Communication strategies and timeliness of response to life critical telemetry alarms.
Bonzheim, Kimberly A; Gebara, Rani I; O'Hare, Bridget M; Ellis, R Darin; Brand, Monique A; Balar, Salil D; Stockman, Rita; Sciberras, Annette M; Haines, David E
2011-05-01
A centralized electrocardiogram telemetry monitoring system (TMS) facilitates early identification of critical arrhythmias and acute medical decompensation. Timely intervention can only be performed if abnormalities are communicated rapidly to the direct caregiver. The study objectives were to measure effectiveness of bi-directional voice communication badges versus one-way alphanumeric pagers for telemetry alarm response and communication loop closure. A sequential observational pilot study of nursing response to TMS alarms compared communication technologies on four nursing units in a 1,061 bed tertiary care hospital with 264 TMS channels of telemetry over a 2-year period. Subsequently, the communication technologies were compared in a randomized fashion on a 68-bed progressive cardiac care unit. Caregivers were blinded to the protocol. All alarm responses were recorded during two periods using either pagers or voice communication devices. Alarm response time and closure of the communication loop were analyzed in a blinded fashion. The direct communication functionality of the badge significantly shortened the time to first contact, time to completion, and rate of closure of the communication loop in both the pilot and study phases. Median time to first contact with the communication badge was 0.5 min, compared to 1.6 min with pager communication (p < 0.0003). Communication loop closure was achieved in 100% of clinical alarms using the badge versus 19% with the pager (p < 0.0001). Communication badge technology reduced alarm time to first contact and completion as well as facilitated communication loop closures. Immediate two-way communication significantly impacted practice, alarm management, and resulted in faster bedside care.
Lace Up for Healthy Feet: The Impact of Shoe Closure on Plantar Stress Response.
Rahemi, Hadi; Armstrong, David G; Enriquez, Ana; Owl, Joshua; Talal, Talal K; Najafi, Bijan
2017-07-01
This study examined the impact of shoe closure on plantar thermal stress response (TSR), which is known to be a surrogate of shear stress and skin perfusion. It is aimed to explore potential impact of shoe closure on increasing risk factors associated with plantar ulcers in people with diabetic peripheral neuropathy (DPN). Fifteen eligible subjects were enrolled. The left foot was used as a reference and fitted to a self-adjusted and habitual lace-tightening method by each subject. The right foot was used as a test closure and fitted into three lace closure conditions: loose, tight, and preset optimal closure (reel clutch, BOA technology). Thermal images were taken after 5 minutes of acclimatization (pre-trial) and immediately after 200 walking steps in each shoe closure condition (post-trial). TSR was calculated from the thermal images. TSR was significantly higher in the test closure with loose (70.24%, P = .000) and tight (66.85%, P = .007) and lower (-206.53%, P = .000) in the preset optimal closure when compared to the reference closure. Only lace closure conditions affected TSR with no significant impact from age, BMI, and gender in our sample in a multivariable regression model. The results from this study suggest that shoelace closure technique can have a profound effect on TSR. It therefore stands to reason that optimal lace closure may have an impact in reducing risk of plantar ulcers in people with DPN. Interestingly, results revealed that even a self-adjusted lace closure may not be necessarily optimal and a preset closure setting like reel clutch might ultimately be recommended to minimize risk. Further study is warranted to confirm or refute these interesting results.
Liquid-metal dip seal with pneumatic spring
Poindexter, Allan M.
1977-01-01
An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.
Preliminary results of laser tissue welding in extravesical reimplantation of the ureters.
Kirsch, A J; Dean, G E; Oz, M C; Libutti, S K; Treat, M R; Nowygrod, R; Hensle, T W
1994-02-01
One exciting potential use of laparoscopic technology is the extravesical reimplantation of the ureters. We have assessed the efficacy of laser-activated fibrinogen solder to close vesical muscle flaps over submucosal ureters (Lich-Gregoir technique) in a canine model. Four dogs were subjected to unilateral flap closures via a protein solder (indocyanine green and fibrinogen) applied to the bladder serosa and exposed to 808 nm. continuous wave diode laser energy. Contralateral reimplantation was performed using 4-zero vicryl muscle flap closures (controls). At 7, 14 and 28 days postoperatively, intravenous pyelograms confirmed bilateral ureteral patency. At intravesical pressures above 100 cm. H2O, there was no evidence of wound disruption in either group. Nondisrupted wound closures were sectioned and strained until ultimate breakage to determine tensile strength. At each study interval the laser-welded closures withstood greater stress than the controls. Although these data represent single tissue samples and are not amenable to statistical analysis, laser-welded closures appeared to be stronger at each study interval. In conclusion, laser-welded vesical wound closures appear at least as strong as suture closures in the canine model.
Immersed boundary-finite element model of fluid-structure interaction in the aortic root
NASA Astrophysics Data System (ADS)
Flamini, Vittoria; DeAnda, Abe; Griffith, Boyce E.
2016-04-01
It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid-structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin's immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.
Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-01-01
The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work. PMID:27869708
The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-11-18
The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.
Annular inhomogeneities with eigenstrain and interphase modeling
NASA Astrophysics Data System (ADS)
Markenscoff, Xanthippi; Dundurs, John
2014-03-01
Two and three-dimensional analytical solutions for an inhomogeneity annulus/ring (of arbitrary thickness) with eigenstrain are presented. The stresses in the core may become tensile (for dilatational eigenstrain in the annulus) depending on the relative shear moduli. For shear eigenstrain, an “interface rotation” and rotation jumps at the interphase also occur, consistent with the Frank-Bilby interface model. A Taylor series expansion for small thickness of the annulus is obtained to the second-order as to model thin interphases, with the limit agreeing with the Gurtin-Murdoch surface membrane, but also accounting for curvature effects.. The Eshelby “driving forces” on a boundary with eigenstrain are calculated, and for small, but finite, interphase thicknesses they account for the interaction of the two interfaces of the layer, and the next order term may induce instabilities, for some bimaterial combinations, if it becomes large enough to render the driving force zero. It is also proven that for 2-D inhomogeneities with eigenstrain the stresses have reduced material dependence for any geometry of the inhomogeneity. The case when the outer boundary of the inhomogeneity annulus with eigenstrain is a free surface is also analyzed and agrees with classical surface tension results in the limit, but, moreover, the thick free surface terms (next order in the expansion depending on the radius) are also obtained and may induce instabilities depending on the bimaterial combinations. Applications of inhomogeneity annuluses with eigenstrain are wide and include interphases in thermal barrier coatings and coated particles in electrically/thermally conductive adhesives.
Aortic annulus sizing using watershed transform and morphological approach for CT images
NASA Astrophysics Data System (ADS)
Mohammad, Norhasmira; Omar, Zaid; Sahrim, Mus'ab
2018-02-01
Aortic valve disease occurs due to calcification deposits on the area of leaflets within the human heart. It is progressive over time where it can affect the mechanism of the heart valve. To avoid the risk of surgery for vulnerable patients especially senior citizens, a new method has been introduced: Transcatheter Aortic Valve Implantation (TAVI), which places a synthetic catheter within the patient's valve. This entails a procedure of aortic annulus sizing, which requires manual measurement of the scanned images acquired from Computed Tomographic (CT) by experts. The step requires intensive efforts, though human error may still eventually lead to false measurement. In this research, image processing techniques are implemented onto cardiac CT images to achieve an automated and accurate measurement of the heart annulus. The image is first put through pre-processing for noise filtration and image enhancement. Then, a marker image is computed using the combination of opening and closing operations where the foreground image is marked as a feature while the background image is set to zero. Marker image is used to control the watershed transformation and also to prevent oversegmentation. This transformation has the advantage of fast computational and oversegmentation problems, which usually appear with the watershed transform can be solved with the introduction of marker image. Finally, the measurement of aortic annulus from the image data is obtained through morphological operations. Results affirm the approach's ability to achieve accurate annulus measurements compared to conventional techniques.
The geometrical effect of different annuloplasty rings on mitral valve annulus.
Al-Maisary, Sameer; Graser, Bastian; Engelhardt, Sandy; Wolf, Ivo; Karck, Matthias; DE Simone, Raffaele
2017-06-01
Different types of mitral annuloplasty rings are commercially available. The aim of this study was to investigate the effect of implantation of six types of annuloplasty rings on the geometry and dynamics of the mitral valve. Three-dimensional echocardiography images of 42 patients were acquired to visualize the mitral valve annulus. Virtual representations of six commercially available annuloplasty rings were matched to anatomical mitral annuli of each patient according to anterolateral-posteromedial diameter. The virtual displacement of each annuloplasty ring after the implantation was measured and compared with the other rings. Patients with severe mitral regurgitation had significantly dilated annuli according to anterolateral-posteromedial diameter, anterior-posterior diameter and to annulus circumference. Anterior and posterior heights of the mitral annuli and non-planarity angle showed no significant differences among different patients with different degree of mitral regurgitation. The ratio of anterior-posterior to anterolateral-posteromedial diameter was almost identical in all groups with identical annular shapes. The implantation of the Carpentier-Edwards Classic Annuloplasty Ring™ led to maximal displacement of mitral annulus, followed by the IM-Ring™, without a statistical significance. In contrary, the implantation of a MyxoETlogix Ring™ was associated with minimal displacement of mitral annulus throughout the groups, but without statistical significance. The implantation of different ring types in patients with different annuli shapes and dimensions did not lead to any significant change in the configuration of mitral annuli after the virtual implantation of the tested annuloplasty rings.
Atrial and ventricular function after cardioversion of atrial fibrillation.
Xiong, C.; Sonnhag, C.; Nylander, E.; Wranne, B.
1995-01-01
OBJECTIVE--Previous studies on atrial recovery after cardioversion of atrial fibrillation have not taken into account new knowledge about the pathophysiology of transmitral and transtricuspid flow velocity patterns. It is possible to shed further light on this problem if atrioventricular inflow velocity, venous filling pattern, and atrioventricular annulus motion are recorded and interpreted together. DESIGN--Prospective examinations of mitral and tricuspid transvalvar flow velocities, superior caval and pulmonary venous filling, and mitral and tricuspid annulus motion were recorded using Doppler echocardiography. Examinations were performed before and 24 hours, 1 month, and 20 months after cardioversion. SETTING--Tertiary referral centre for cardiac disease with facilities for invasive and non-invasive investigation. PATIENTS--16 patients undergoing cardioversion of atrial fibrillation in whom sinus rhythm had persisted for 24 hours or more. RESULTS--Before conversion there was no identifiable A wave in transvalvar flow recordings. The total motion of the tricuspid and mitral annulus was subnormal and there was no identifiable atrial component. Venous flow patterns in general showed a low systolic velocity. After conversion, A waves and atrial components were seen in all patients and increased significantly (P < 0.01) with time. There was a similar time course for the amplitude of annulus atrial components, an increased systolic component of venous inflow, an increased A wave velocity, and a decreased E/A ratio of the transvalvar velocity curves. The ventricular component of annulus motion was unchanged. Changes in general occurred earlier on the right side than the left. CONCLUSIONS--This study indicates that, in addition to the previously known electromechanical dissociation of atrial recovery that exists after cardioversion of atrial fibrillation, there may also be a transient deterioration of ventricular function modulating the transvalvar inflow velocity recordings. Function on the right side generally becomes normal earlier than on the left. Integration of information from transvalvar inflow curves, annulus motion, and venous filling patterns gives additional insight into cardiac function. PMID:7547019
Sündermann, Simon H.; Gessat, Michael; Cesarovic, Nikola; Frauenfelder, Thomas; Biaggi, Patric; Bettex, Dominique; Falk, Volkmar; Jacobs, Stephan
2013-01-01
OBJECTIVES Implantation of an annuloplasty ring is an essential component of a durable mitral valve repair. Currently available off-the-shelf rings still do not cover all the variations in mitral annulus anatomy and pathology from subject to subject. Computed tomography (CT) and echo imaging allow for 3-D segmentation of the mitral valve and mitral annulus. The concept of tailored annuloplasty rings has been proposed although, to date, no surgically applicable implementation of patient-specific annuloplasty rings has been seen. The objective of this trial was to prove the concept of surgical implantation of a model-guided, personalized mitral annuloplasty ring, manufactured based on individual CT-scan models. METHODS ECG-gated CT angiography was performed in six healthy pigs under general anaesthesia. Based on the individual shape of the mitral annulus in systole, a customized solid ring with integrated suturing holes was designed and manufactured from a biocompatible titanium alloy by a rapid process using laser melting. The ring was implanted three days later and valve function was assessed by intraoperative echocardiography. The macroscopic annulus–annuloplasty match was assessed after heart explantation. RESULTS CT angiography provided good enough image quality in all animals to allow for segmentation of the mitral annulus. The individually tailored mitral rings were manufactured and successfully implanted in all pigs. In 50%, a perfect matching of the implanted ring and the mitral annulus was achieved. In one animal, a slight deviation of the ring shape from the circumference was seen postoperatively. The rings implanted in the first two animals were significantly oversized but the deviation did not affect valve competence. CONCLUSIONS CT image quality and accuracy of the dimensions of the mitral annulus were sufficient for digital modelling and rapid manufacturing of mitral rings. Implantation of individually tailored annuloplasty rings is feasible. PMID:23287589
Philip, Femi; Faza, Nadine Nadar; Schoenhagen, Paul; Desai, Milind Y; Tuzcu, E Murat; Svensson, Lars G; Kapadia, Samir R
2015-08-01
Patients with severe aortic stenosis due to BAV are excluded from transcatheter aortic valve replacement (TAVR) due to concern for asymmetric expansion and valve dysfunction. We sought to characterize the aortic root and annulus in bicuspid aortic valve (BAV) and tricuspid aortic valves (TAV). We identified patients with severe AS who underwent multi-detector computed tomographic (MDCT) imaging prior to surgical aortic valve replacement (SAVR, n = 200) for BAV and TAVR (n = 200) for TAV from 2010 to 2013. The presence of a BAV was confirmed on surgical and pathological review. Annulus measurements of the basal ring (short- and long-axis, area-derived diameter), coronary ostia height, sinus area (SA), sino-tubular junction area (STJ), calcification and eccentricity index (EI, 1-short axis/long axis) were made. Patients with TAV were older (78.8 years vs. 57.8 years, P = 0.04) than those with BAV. The aortic annulus area (5.21 ± 2.1 cm(2) vs. 4.63 ± 2.0 cm(2) , P = 0.0001), sinus of Valsalva diameter (3.7 ± 0.9 cm vs. 3.1 ± 0.1 cm, P = 0.001) and ascending aorta diameter (3.5 ± 0.7 cm vs. 2.97 ± 0.6 cm, P = 0.001) were significantly larger with BAV. Bicuspid aortic annuli were significantly less elliptical (EI, 1.24 ± 0.1 vs. 1.29 ± 0.1, P = 0.006) and more circular (39% vs. 4%, P < 0.001) compared to the TAV annulus. There was more eccentric annular calcification in BAV vs. TAV (68% vs. 32%, P < 0.001). The mean distance from the aortic annulus to the left main coronary ostium was less than the right coronary ostium. Less than 10% of the BAV annuli would not fit a currently available valved stents. Bicuspid aortic valves have a larger annulus size, sinus of Valsalva and ascending aorta dimensions. In addition, the BAV aortic annuli appear circular and most will fit currently available commercial valved stents. © 2015 Wiley Periodicals, Inc.
Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc.
Vergari, Claudio; Mansfield, Jessica; Meakin, Judith R; Winlove, Peter C
2016-06-01
The intervertebral disc is a multicomposite structure, with an outer fibrous ring, the annulus fibrosus, retaining a gel-like core, the nucleus pulposus. The disc presents complex mechanical behaviour, and it is of high importance for spine biomechanics. Advances in multiscale modelling and disc repair raised a need for new quantitative data on the finest details of annulus fibrosus mechanics. In this work we explored inter-lamella and inter-bundle behaviour of the outer annulus using micromechanical testing and second harmonic generation microscopy. Twenty-one intervertebral discs were dissected from cow tails; the nucleus and inner annulus were excised to leave a ring of outer annulus, which was tested in circumferential loading while imaging the tissue's collagen fibres network with sub-micron resolution. Custom software was developed to determine local tissue strains through image analysis. Inter-bundle linear and shear strains were 5.5 and 2.8 times higher than intra-bundle strains. Bundles tended to remain parallel while rotating under loading, with large slipping between them. Inter-lamella linear strain was almost 3 times the intra-lamella one, but no slipping was observed at the junction between lamellae. This study confirms that outer annulus straining is mainly due to bundles slipping and rotating. Further development of disc multiscale modelling and repair techniques should take into account this modular behaviour of the lamella, rather than considering it as a homogeneous fibre-reinforced matrix. The intervertebral disc is an organ tucked between each couple of vertebrae in the spine. It is composed by an outer fibrous layer retaining a gel-like core. This organ undergoes severe and repeated loading during everyday life activities, since it is the compliant component that gives the spine its flexibility. Its properties are affected by pathologies such as disc degeneration, a major cause of back pain. In this article we explored the micromechanical behaviour of the disc's outer layer using second harmonic generation, a technique which allowed us to visualize, with unprecedented detail, how bundles of collagen fibres slide relative to each other when loaded. Our results will help further the development of new multiscale numerical models and repairing techniques. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bekeredjian, Raffi; Bodingbauer, Dorothea; Hofmann, Nina P; Greiner, Sebastian; Schuetz, Moritz; Geis, Nicolas A; Kauczor, Hans U; Bryant, Mark; Chorianopoulos, Emmanuel; Pleger, Sven T; Mereles, Derliz; Katus, Hugo A; Korosoglou, Grigorios
2015-03-01
To investigate if the extent of aortic valve calcification is associated with postprocedural prosthesis eccentricity and paravalvular regurgitation (PAR) in patients undergoing transcatheter aortic valve implantation (TAVI). Cardiac computed tomography angiography (CCTA) was performed before and 3 months after TAVI in 46 patients who received the self-expanding CoreValve and in 22 patients who underwent balloon-expandable Edwards Sapien XT implantation. Aortic annulus calcification was measured with CCTA prior to TAVI and prosthesis eccentricity was assessed with post-TAVI CCTA. Standard echocardiography was also performed in all patients at 3-month follow-up exam. Annulus eccentricity was reduced during TAVI using both implantation systems (from 0.23 ± 0.06 to 0.18 ± 0.07 using CoreValve and from 0.20 ± 0.07 to 0.05 ± 0.03 using Edwards Sapien XT; P<.001 for both). With Edwards Sapien XT, eccentricity reduction at the level of the aortic annulus was significantly higher compared with CoreValve (P<.001). Annulus eccentricity after CoreValve use was significantly related to absolute valve calcification and to valve calcification indexed to body surface area (BSA) (r = 0.48 and 0.50, respectively; P<.001 for both). Furthermore, a significant association was observed between aortic valve calcification and PAR (P<.01 by ANOVA) in patients who received CoreValve. Using ROC analysis, a cut-off value over 913 mm² aortic valve calcification predicted the occurrence of moderate or severe PAR with a sensitivity of 92% and a specificity of 63% (area under the curve = 0.75). Furthermore, multivariable analysis showed that aortic valve calcification was a robust predictor of postprocedural eccentricity and PAR, independent of the aortic annulus size and native valve eccentricity and of CoreValve prosthesis size (adjusted r = 0.46 and 0.50, respectively; P<.01 for both). Such associations were not present with the Edwards Sapien XT system. The extent of native aortic annulus calcification is predictive for postprocedural prosthesis eccentricity and PAR, which is an important marker for long-term mortality in patients undergoing TAVI. This observation applies for the CoreValve, but not for the Edwards Sapien XT valve.
Siminiak, Tomasz; Dankowski, Rafał; Baszko, Artur; Lee, Christopher; Firek, Ludwik; Kałmucki, Piotr; Szyszka, Andrzej; Groothuis, Adam
2013-01-01
Functional mitral regurgitation (FMR) is known to contribute to a poor prognosis in patients with heart failure (HF). Current guidelines do not recommend cardiac surgery in patients with FMR and impaired ejection fraction due to the high procedural risk. Percutaneous techniques aimed at mitral valve repair may constitute an alternative to currently used routine medical treatment. To provide a description of a novel percutaneous suture-based technique of direct mitral annuloplasty using the Mitralign Bident system, as well as report our first case successfully treated with this method. A deflectable guiding catheter is advanced via the femoral route across the aortic valve to the posterior wall of the ventricle. A nested deflectable catheter is advanced through the guide toward the mitral annulus that allows the advancement of an insulated radiofrequency wire to cross the annulus. The wire is directed across the annulus in a target area that is 2-5 mm from the base of the leaflet into the annulus, as assessed by real-time 3D transoesophageal echocardiography. After placement of the first wire, another wire is positioned using a duel lumen bident delivery catheter, which provides a predetermined separation between wires (i.e. 14, 17 or 21 mm). Each wire provides a guide rail for implantation of sutured pledget implants within the annulus. Two pairs of pledgets are implanted, one pair in each of the P1 and P3 scallop regions of the posterior mitral annulus. A dedicated plication lock device is used to provide a means for plication of the annulus within each pair of the pledgets, and to retain the plication by delivering a suture locking implant. The plications result in improved leaflet coaptation and a reduction of the regurgitant orifice area. A 60-year-old female with diagnosed dilated cardiomyopathy, concomitant FMR class III and congestive HF was successfully treated with the Mitralign Bident system. Two pairs of pledgets were implanted resulting in an improvement of transoesophageal echocardiographic parameters, including proximal isovelocity surface area radius (0.7 cm to 0.4 cm), effective regurgitant orfice area (0.3 cm² to 0.1 cm²) and mitral regurgitant volume (49 mL to 10 mL). Percutaneous mitral annuloplasty with the Mitralign Bident system is feasible. Future clinical trials are needed to assess its safety and efficacy.
30 CFR 250.522 - When do I have to repeat casing diagnostic testing?
Code of Federal Regulations, 2011 CFR
2011-07-01
... term has expired, immediately. (b) your well, previously on gas lift, has been shut-in or returned to flowing status without gas lift for more than 180 days, immediately on the production casing (A annulus). The production casing (A annulus) of wells on active gas lift are exempt from diagnostic testing. (c...
Jorna, Siebe; Siebert, Larry D.; Brueckner, Keith A.
1976-11-09
An aperture attenuator for use with high power lasers which includes glass windows shaped and assembled to form an annulus chamber which is filled with a dye solution. The annulus chamber is shaped such that the section in alignment with the axis of the incident beam follows a curve which is represented by the equation y = (r - r.sub.o).sup.n.
Importance of Air Absorption During Mechanical Integrity Testing
NASA Astrophysics Data System (ADS)
Arnold, Fredric C.
1990-11-01
Wells used for injection of liquid industrial waste into deep saline aquifers are required to be periodically tested for mechanical integrity. A generally accepted method to demonstrate mechanical integrity is to pressurize the casing-tubing annulus and monitor any decline in pressure. If air is used to pressurize the annulus, uncertainty may exist in differentiating between absorption of air into water in the annulus and loss of pressure due to the absence of mechanical integrity. An analytical model of air absorbance has been derived and used to quantify the pressure decline due to dissolving and diffusion of the air in annular water. A parameteric study was made to determine when annular pressure decline due to absorption of air is significant.
Core disruptive accident margin seal
Garin, John; Belsick, James C.
1978-01-01
An apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible member disposed between the first and second riser components and attached to a metal member which is attached to an actuating mechanism. When the actuating mechanism is not actuated, the flexible member does not contact the riser components thus allowing the free rotation of the riser components. When desired, the actuating mechanism causes the flexible member to contact the first and second riser components in a manner to block the annulus defined between the riser components, thereby sealing the annulus between the riser components.
Combined natural convection and non-gray radiation heat transfer in a horizontal annulus
NASA Astrophysics Data System (ADS)
Sun, Yujia; Zhang, Xiaobing; Howell, John R.
2018-02-01
Natural convection and non-gray radiation in an annulus containing a radiative participating gas is investigated. To determine the effect of non-gray radiation, the spectral line based weighted sum of gray gas is adopted to model the gas radiative properties. Case with only surface radiation (transparent medium) is also considered to see the relative contributions of surface radiation and gas radiation. The finite volume method is used to solve the mass, momentum, energy and radiative transfer equations. Comparisons between pure convection, case considering only surface radiation and case considering both gas radiation and surface radiation are made and the results show that radiation is not negligible and gas radiation becomes more important with increasing Rayleigh number (and the annulus size).
Albes, Johannes M
2017-12-01
Interrupted pledget-armed braided sutures are widely used for valve implantation. In a 74-year-old woman with aortic valve endocarditis and shallow annular abscess, annulus dehiscence resulted after resection. As resistance was too high for sufficient primary approximation, a snug fit of the valve by means of circumferential application of curbed tourniquets resembling Medusa's head after suture placement was achieved. Closest possible approximation of the upper and lower part of the annulus with the prosthesis prior to final fixation was thus possible, so that application of too much tension on a single suture could be avoided. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawless, W.F.
2013-07-01
Citizen involvement in DOE's decision-making for the environmental cleanup from DOE's management of its nuclear wastes across the DOE complex has had a positive effect on the cleanup of its SRS site, characterized by an acceleration of cleanup not only for the Transuranic wastes at SRS, but also for DOE's first two closures of HLW tanks, both of which occurred at SRS. The Citizens around SRS had pushed successfully for the closures of Tanks 17 and 20 in 1997, becoming the first closures of HLW tanks under regulatory guidance in the USA. However, since then, HLW tank closures ceased duemore » to a lawsuit, the application of new tank clean-up technology, interagency squabbling between DOE and NRC over tank closure criteria, and finally and almost fatally, from budget pressures. Despite an agreement with its regulators for the closure of Tanks 18 and 19 by the end of calendar year 2012, the outlook in Fall 2011 to close these two tanks had dimmed. It was at this point that the citizens around SRS became reengaged with tank closures, helping DOE to reach its agreed upon milestone. (authors)« less
Nanocoaxes for Optical and Electronic Devices
Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.
2014-01-01
The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400
[Progress on the Rule of Clavicle Epiphyseal Closure Using Multi-Imaging Technology].
Fan, F; Tu, M; Luo, Y Z; Zhang, K; Chen, X G; Deng, Z H
2016-08-01
People aged 18 years could be punished lightly or diminished criminal responsibility, even be spared the death sentence, which has important meaning in Chinese judicatory adjudication. The epiphysis of long bones from human limbs and the secondary sexual characteristics almost have developed completely before 18 years old. Clavicle epiphysis is one of the articular metaphysis which has a late epiphyseal closure. The recent studies in exploring the rule of clavicle epiphyseal by multi-imaging technology shows that the development of clavicle epiphysis has some value in age estimation of 18 years old. CT, especially thin-section CT, is widely used at present. However, thin-section CT scanning has great net radiation, which is not ethically acceptable if it is not for diagnosis and treatment. MRI is nonradioactive tomographic imaging and easy to evaluate, which is one of the future research directions in forensic age estimation using the medial clavicle. This paper summarizes the progress on the rule of clavicle epiphyseal closure, and analyzes and summarizes the feasibility of rule of clavicle epiphyseal closure applies on age estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Le Couteulx, S; Caudron, J; Dubourg, B; Cauchois, G; Dupré, M; Michelin, P; Durand, E; Eltchaninoff, H; Dacher, J-N
2018-05-01
To evaluate intra- and inter-observer variability of multidetector computed tomography (MDCT) sizing of the aortic annulus before transcatheter aortic valve replacement (TAVR) and the effect of observer experience, aortic valve calcification and image quality. MDCT examinations of 52 consecutive patients with tricuspid aortic valve (30 women, 22 men) with a mean age of 83±7 (SD) years (range: 64-93 years) were evaluated retrospectively. The maximum and minimum diameters, area and circumference of the aortic annulus were measured twice at diastole and systole with a standardized approach by three independent observers with different levels of experience (expert [observer 1]; resident with intensive 6 months practice [observer 2]; trained resident with starting experience [observer 3]). Observers were requested to recommend the valve prosthesis size. Calcification volume of the aortic valve and signal to noise ratio were evaluated. Intra- and inter-observer reproducibility was excellent for all aortic annulus dimensions, with an intraclass correlation coefficient ranging respectively from 0.84 to 0.98 and from 0.82 to 0.97. Agreement for selection of prosthesis size was almost perfect between the two most experienced observers (k=0.82) and substantial with the inexperienced observer (k=0.67). Aortic valve calcification did not influence intra-observer reproducibility. Image quality influenced reproducibility of the inexperienced observer. Intra- and inter-observer variability of aortic annulus sizing by MDCT is low. Nevertheless, the less experienced observer showed lower reliability suggesting a learning curve. Copyright © 2017. Published by Elsevier Masson SAS.
Choy, Andrew Tsz Hang; Chan, Barbara Pui
2015-01-01
Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332
Why do some intervertebral discs degenerate, when others (in the same spine) do not?
Adams, Michael A; Lama, Polly; Zehra, Uruj; Dolan, Patricia
2015-03-01
This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration "phenotypes": endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs. © 2014 Wiley Periodicals, Inc.
A technique of snaring method for fitting a prosthetic valve into the annulus.
Nagasaka, Shigeo; Kawata, Tetsuji; Matsuta, Masahiro; Taniguchi, Shigeki
2005-01-01
Tourniquetting technique to fit a prosthetic valve (PV) into the annulus in valve replacement surgery has been previously reported. We modified the previously reported method and designed a simpler tying technique. We performed 11 aortic (AVR: including four cases for calcified aortic stenosis (AS) with a small annulus and one cases for infective endocarditis with intramuscular abscess cavity), eight mitral valve replacements (MVR), and one tricuspid valve replacement (TVR: for corrected transposition of the great arteries). A PV was implanted using 2-0 polyester mattress sutures with a pledget. Each of the two tourniquets held a suture at the bottom of the annulus and at the opposite position to fit a PV. The sutures between each snare were tied down from the bottom to the top. In MVR, after seating of a PV with two tourniquets, we could make sure that no native tissue of any preserved mitral apparatus disturbed PV leaflet motion. In calcific AS, a PV had a good fitting into the annulus because of tourniquets applied to unseated part during tying sutures. In AVR for infective endocarditis, mattress sutures supported by a Teflon pledget were placed to close the abscess cavity. After snaring on one of these sutures, we tied down the sutures, ensuring that they did not cut through the friable tissues. In TVR, we found that native leaflets interfered with PV motion after seating down the prosthesis and those leaflets were resected before tying down the sutures. Postoperative transesophageal echocardiography showed no paravalvular leakage in any patients and excellent PV functions.
Thompson, Jamie N.; Beauchamp, David A.
2014-01-01
We evaluated freshwater growth and survival from juvenile (ages 0–3) to smolt (ages 1–5) and adult stages in wild steelhead Oncorhynchus mykiss sampled in different precipitation zones of the Skagit River basin, Washington. Our objectives were to determine whether significant size-selective mortality (SSM) in steelhead could be detected between early and later freshwater stages and between each of these freshwater stages and returning adults and, if so, how SSM varied between these life stages and mixed and snow precipitation zones. Scale-based size-at-annulus comparisons indicated that steelhead in the snow zone were significantly larger at annulus 1 than those in the mixed rain–snow zone. Size at annuli 2 and 3 did not differ between precipitation zones, and we found no precipitation zone × life stage interaction effect on size at annulus. Significant freshwater and marine SSM was evident between the juvenile and adult samples at annulus 1 and between each life stage at annuli 2 and 3. Rapid growth between the final freshwater annulus and the smolt migration did not improve survival to adulthood; rather, it appears that survival in the marine environment may be driven by an overall higher growth rate set earlier in life, which results in a larger size at smolt migration. Efforts for recovery of threatened Puget Sound steelhead could benefit by considering that SSM between freshwater and marine life stages can be partially attributed to growth attained in freshwater habitats and by identifying those factors that limit growth during early life stages.
Scala tympani cochleostomy II: topography and histology.
Adunka, Oliver F; Radeloff, Andreas; Gstoettner, Wolfgang K; Pillsbury, Harold C; Buchman, Craig A
2007-12-01
To assess intracochlear trauma using two different round window-related cochleostomy techniques in human temporal bones. Twenty-eight human temporal bones were included in this study. In 21 specimens, cochleostomies were initiated inferior to the round window (RW) annulus. In seven bones, cochleostomies were drilled anterior-inferior to the RW annulus. Limited cochlear implant electrode insertions were performed in 19 bones. In each specimen, promontory anatomy and cochleostomy drilling were photographically documented. Basal cochlear damage was assessed histologically and electrode insertion properties were documented in implanted bones. All implanted specimens showed clear scala tympani electrode placements regardless of cochleostomy technique. All 21 inferior cochleostomies were atraumatic. Anterior-inferior cochleostomies resulted in various degrees of intracochlear trauma in all seven bones. For atraumatic opening of the scala tympani using a cochleostomy approach, initiation of drilling should proceed from inferior to the round window annulus, with gradual progression toward the undersurface of the lumen. While cochleostomies initiated anterior-inferior to the round window annulus resulted in scala tympani opening, many of these bones displayed varying degrees of intracochlear trauma that may result in hearing loss. When intracochlear drilling is avoided, the anterior bony margin of the cochleostomy remains a significant intracochlear impediment to in-line electrode insertion.
Parametric Analysis of Life Support Systems for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly S.; Bagdigian, Bob M.
2011-01-01
The National Aeronautics and Space Administration is in a process of evaluating future targets for space exploration. In order to maintain the welfare of a crew during future missions, a suite of life support technology is responsible for oxygen and water generation, carbon dioxide control, the removal of trace concentrations of organic contaminants, processing and recovery of water, and the storage and reclamation of solid waste. For each particular life support subsystem, a variety competing technologies either exist or are under aggressive development efforts. Each individual technology has strengths and weaknesses with regard to launch mass, power and cooling requirements, volume of hardware and consumables, and crew time requirements for operation. However, from a system level perspective, the favorability of each life support architecture is better assessed when the sub-system technologies are analyzed in aggregate. In order to evaluate each specific life support system architecture, the measure of equivalent system mass (ESM) was employed to benchmark system favorability. Moreover, the results discussed herein will be from the context of loop-closure with respect to the air, water, and waste sub-systems. Specifically, closure relates to the amount of consumables mass that crosses the boundary of the vehicle over the lifetime of a mission. As will be demonstrated in this manuscript, the optimal level of loop closure is heavily dependent upon mission requirements such as duration and the level of extra-vehicular activity (EVA) performed. Sub-system level trades were also considered as a function of mission duration to assess when increased loop closure is practical. Although many additional factors will likely merit consideration in designing life support systems for future missions, the ESM results described herein provide a context for future architecture design decisions toward a flexible path program.
Sakamoto, Kosuke; Totsugawa, Toshinori; Hiraoka, Arudo; Tamura, Kentaro; Yoshitaka, Hidenori; Sakaguchi, Taichi
2018-05-30
An 88-year-old woman was diagnosed with aortic stenosis and an aortic annulus that was too narrow to perform transcatheter aortic valve implantation. Surgery was performed through a 7-cm right mini-thoracotomy at the fourth intercostal space. A 19-mm aortic valve bioprosthesis was implanted after root enlargement. The fourth intercostal space was a suitable site for aortic root enlargement because of the shorter skin-to-root distance and the detailed exposure of the aortic valve after cutting the aortic wall. This study concluded that minimally-invasive aortic valve replacement following root enlargement can be an option for the treatment of elderly patients with aortic stenosis accompanied by an annulus that is too small to perform transcatheter aortic valve implantation.
The fern sporangium: an ultrafast natural catapult
NASA Astrophysics Data System (ADS)
Noblin, Xavier; Argentina, Mederic; Westbrook, Jared; Llorens, Coraline; Rojas, Nicolas; Dumais, Jacques
2012-02-01
Plants have developed fascinating mechanisms to create ultra fast movements that often reach the upper limit allowed by physical laws. Inspiration for new technologies is one of the reasons for the strong interest for these mechanisms, along with the deep interest of understanding complex, natural systems. The fern sporangium is a capsule that contains the spores, it is surrounded by a row of cells called the annulus which acts as a beam. Due to the water evaporation from its cells, the annulus bends strongly and induces elastic energy storage during an opening phase. The tension in the cells breaks when cavitation bubbles appear in the cells, leading to a fast release of the elastic energy. The fern sporangium then acts as a catapult which ejects rapidly its spores by closing back to the initial closed shape. We have analyzed the slow opening motion and the fast catapulting mechanism. We found that the catapult motion involves two time scales, showing a very original behavior. In man-made catapults, the recoil motion needs to be arrested by a cross bar so that the projectile is released from the arm. We show here that the fern sporangium replaces the essential cross bar by an elegant poroelastic damping, leading to a completely autonomous, efficient device.
Theoretical flow regime diagrams for the AGCE
NASA Technical Reports Server (NTRS)
Fowlis, W. W.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.
1984-01-01
The major criterion for the design of the Atmospheric General Circulation Experiment is that it be possible to realize strong baroclinic instability in the apparatus. A spherical annulus configuration which allows only steady basic state flows was chosen for the first set of stability analyses. Baroclinic instability was found for this configuration and few results suggest a regime diagram very different from the cylindrical annulus regime diagram.
Totaro, Pasquale; Adragna, Nicola; Argano, Vincenzo
2008-03-01
Today, the 'gold standard' treatment of functional mitral regurgitation (MR) is the subject of much discussion. Although restrictive annuloplasty is currently considered the most reproducible technique, the means by which the degree of annular restriction is optimized remains problematic. The study was designed in order to identify whether the degree of restriction of the mitral annulus could influence early and midterm results following the treatment of functional MR using restrictive annuloplasty. A total of 32 consecutive patients with functional MR grade > or = 3+ was enrolled, among whom the mean anterior-posterior (AP) mitral annulus diameter was 39 +/- 3 mm. Restrictive mitral annuloplasty (combined with coronary artery bypass grafting) was performed in all patients using a Carpentier-Edwards Classic or Physio ring (size 26 or 28). The degree of AP annular restriction was calculated for each patient, and correlated with early and mid-term residual MR and left ventricular (LV) reverse remodeling (in terms of LV end-diastolic diameter (LVEDD) and LV end-diastolic volume (LVEDV) reduction). All surviving patients were examined at a one-year follow up. The mean AP mitral annulus restriction achieved was 48 +/- 4%. Intraoperatively, transesophageal echocardiography showed no residual MR in any patient. Before discharge from hospital, transthoracic echocardiography confirmed an absence of residual MR and showed significant LV reverse remodeling (LVEDV from 121 +/- 25 ml to 97 +/- 26 ml; LVEDD from 55 +/- 6 mm to 47 +/- 8 mm). A significant correlation (r = 0.57, p < 0.001) was identified between the degree of AP annulus restriction and LVEDV reduction. A cut-off of annular restriction of 40% (based on AP annulus measurement) correlated with a more significant reverse remodeling. The early postoperative data, with no recurrence of significant MR, was confirmed at a one-year follow up examination. A marked restriction of the AP mitral annulus diameter (> 40% of preoperative) appears to have a favorable influence on early postoperative LV reverse remodeling, and also allows for complete resolution of functional MR. In addition, 'no tolerance' of early residual MR seems to have a favorable influence on mid-term results, leading to a reduction in the one-year recurrence of significant MR.
Finding Closure, Continuing Bonds, and Codentification After the 9/11 Attacks.
Toom, Victor
2017-06-13
In this article, I'm interested in the 2750 victims of the 9/11 attacks in New York City. I consider two connected issues. The first regards bereavement journeys of victims' families and the significance of receiving a body to bury vis-à-vis the normative assignment to find closure. The second issue I address is how forensic experts, their technologies, and managing protocols interact with victims' families and their emotions. Using insights from Science and Technology Studies, I articulate some of the goods and bads of identification practices and argue for extensive communication and cooperation between experts and victims' families.
NASA Technical Reports Server (NTRS)
Hohwiesner, Bill; Claudinon, Bernard
1991-01-01
The European Space Agency (ESA) has been working to develop an autonomous rendezvous and docking capability since 1984 to enable Hermes to automatically dock with Columbus. As a result, ESA with Matra, MBB, and other space companies have developed technologies that are also directly supportive of the current NASA initiative for Automated Rendezvous and Capture. Fairchild and Matra would like to discuss the results of the applicable ESA/Matra rendezvous and capture developments, and suggest how these capabilities could be used, together with an existing NASA Explorer Platform satellite, to minimize new development and accomplish a cost effective automatic closure and capture demonstration program. Several RV sensors have been developed at breadboard level for the Hermes/Columbus program by Matra, MBB, and SAAB. Detailed algorithms for automatic rendezvous, closure, and capture have been developed by ESA and CNES for application with Hermes to Columbus rendezvous and docking, and they currently are being verified with closed-loop software simulation. The algorithms have multiple closed-loop control modes and phases starting at long range using GPS navigation. Differential navigation is used for coast/continuous thrust homing, holdpoint acquisition, V-bar hopping, and station point acquisition. The proximity operation sensor is used for final closure and capture. A subset of these algorithms, comprising the proximity operations algorithms, could easily be extracted and tailored to a limited objective closure and capture flight demonstration.
Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Kawamura, Masashi; Yoshioka, Daisuke; Saito, Tetsuya; Ueno, Takayoshi; Kuratani, Toru; Sawa, Yoshiki
2016-09-01
We assessed the effects of different types of prosthetic rings on mitral annular dynamics using real-time three-dimensional echocardiography (RT3DE). RT3DE was performed in 44 patients, including patients undergoing mitral annuloplasty using the Cosgrove-Edwards flexible band (Group A, n = 10), the semi-rigid Sorin Memo 3D ring (Group B, n = 17), the semi-rigid Edwards Physio II ring (Group C, n = 7) and ten control subjects. Various annular diameters were measured throughout the cardiac cycle. We observed flexible anterior annulus motion in all of the groups except Group C. A flexible posterior annulus was only observed in Group B and the Control group. The mitral annular area changed during the cardiac cycle by 8.4 ± 3.2, 6.3 ± 2.0, 3.2 ± 1.3, and 11.6 ± 5.0 % in Group A, Group B, Group C, and the Control group, respectively. The dynamic diastolic to systolic change in mitral annular diameters was lost in Group C, while it was maintained in Group A, and to a good degree in Group B. In comparison to the Control group, the mitral annulus shape was more ellipsoid in Group B and Group C, and more circular in Group A. Although mitral regurgitation was well controlled by all of the types of rings that were utilized in the present study, we demonstrated that the annulus motion and annulus shape differed according to the type of prosthetic ring that was used, which might provide important information for the selection of an appropriate prosthetic ring.
Khoueir, Ziad; Jassim, Firas; Poon, Linda Yi-Chieh; Tsikata, Edem; Ben-David, Geulah S; Liu, Yingna; Shieh, Eric; Lee, Ramon; Guo, Rong; Papadogeorgou, Georgia; Braaf, Boy; Simavli, Huseyin; Que, Christian; Vakoc, Benjamin J; Bouma, Brett E; de Boer, Johannes F; Chen, Teresa C
2017-10-01
To determine the diagnostic capability of peripapillary 3-dimensional (3D) retinal nerve fiber layer (RNFL) volume measurements from spectral-domain optical coherence tomography (OCT) volume scans for open-angle glaucoma (OAG). Assessment of diagnostic accuracy. Setting: Academic clinical setting. Total of 180 patients (113 OAG and 67 normal subjects). One eye per subject was included. Peripapillary 3D RNFL volumes were calculated for global, quadrant, and sector regions, using 4 different-size annuli. Peripapillary 2D RNFL thickness circle scans were also obtained. Area under the receiver operating characteristic curve (AUROC) values, sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios. Among all 2D and 3D RNFL parameters, best diagnostic capability was associated with inferior quadrant 3D RNFL volume of the smallest annulus (AUROC value 0.977). Otherwise, global 3D RNFL volume AUROC values were comparable to global 2D RNFL thickness AUROC values for all 4 annulus sizes (P values: .0593 to .6866). When comparing the 4 annulus sizes for global RNFL volume, the smallest annulus had the best AUROC values (P values: .0317 to .0380). The smallest-size annulus may have the best diagnostic potential, partly owing to having no areas excluded for being larger than the 6 × 6 mm 2 scanned region. Peripapillary 3D RNFL volume showed excellent diagnostic performance for detecting glaucoma. Peripapillary 3D RNFL volume parameters have the same or better diagnostic capability compared to peripapillary 2D RNFL thickness measurements, although differences were not statistically significant. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tabata, Tomotsugu; Cardon, Lisa A.; Armstrong, Guy P.; Fukamach, Kiyotaka; Takagaki, Masami; Ochiai, Yoshie; McCarthy, Patrick M.; Thomas, James D.
2003-01-01
BACKGROUND: Doppler tissue echocardiography and color M-mode Doppler flow propagation velocity have proven useful in evaluating cross-sections of patients with left ventricular (LV) dysfunction, but experience with serial changes is limited. Purpose and methods: We tested their use by evaluating the temporal changes of LV function in a pacing-induced congestive heart failure model. Rapid ventricular pacing was initiated and maintained in 20 dogs for 4 weeks. Echocardiography was performed at baseline and weekly during brief pacing cessation. RESULTS: With rapid pacing, LV volume significantly increased and ejection fraction (57%-28%), stroke volume (37-18 mL), and mitral annulus systolic velocity (16.1-6.6 cm/s) by Doppler tissue echocardiography significantly decreased, with ejection fraction and mitral annulus systolic velocity closely correlated (r = 0.706, P <.0001). In contrast to the mitral inflow velocities, mitral annulus early diastolic velocity decreased steadily (12.3-7.3 cm/s) resulting in a dramatic decrease in mitral annulus early/late (1.22-0.57) diastolic velocity with no tendency toward pseudonormalization. The color M-mode Doppler flow propagation velocity also showed significant steady decrease (57-24 cm/s) throughout the pacing period. Multiple regression analysis chose mitral annulus systolic velocity (r = 0.895, P <.0001) and propagation velocity (r = 0.782, P <.0001) for the most important factor predicting LV systolic and diastolic function, respectively. CONCLUSIONS: Doppler tissue echocardiography and color M-mode Doppler flow could evaluate the serial deterioration in LV dysfunction throughout the pacing period. These were more useful in quantifying progressive LV dysfunction than conventional ehocardiographic techniques, and were probably relatively independent of preload. These techniques could be suitable for longitudinal evaluation in addition to the cross-sectional study.
Mediratta, Anuj; Addetia, Karima; Medvedofsky, Diego; Schneider, Robert J; Kruse, Eric; Shah, Atman P; Nathan, Sandeep; Paul, Jonathan D; Blair, John E; Ota, Takeyoshi; Balkhy, Husam H; Patel, Amit R; Mor-Avi, Victor; Lang, Roberto M
2017-05-01
With the increasing use of transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis (AS), computed tomography (CT) remains the standard for annulus sizing. However, 3D transesophageal echocardiography (TEE) has been an alternative in patients with contraindications to CT. We sought to (1) test the feasibility, accuracy, and reproducibility of prototype 3DTEE analysis software (Philips) for aortic annular measurements and (2) compare the new approach to the existing echocardiographic techniques. We prospectively studied 52 patients who underwent gated contrast CT, procedural 3DTEE, and TAVR. 3DTEE images were analyzed using novel semi-automated software designed for 3D measurements of the aortic root, which uses multiplanar reconstruction, similar to CT analysis. Aortic annulus measurements included area, perimeter, and diameter calculations from these measurements. The results were compared to CT-derived values. Additionally, 3D echocardiographic measurements (3D planimetry and mitral valve analysis software adapted for the aortic valve) were also compared to the CT reference values. 3DTEE image quality was sufficient in 90% of patients for aortic annulus measurements using the new software, which were in good agreement with CT (r-values: .89-.91) and small (<4%) inter-modality nonsignificant biases. Repeated measurements showed <10% measurements variability. The new 3D analysis was the more accurate and reproducible of the existing echocardiographic techniques. Novel semi-automated 3DTEE analysis software can accurately measure aortic annulus in patients with severe AS undergoing TAVR, in better agreement with CT than the existing methodology. Accordingly, intra-procedural TEE could potentially replace CT in patients where CT carries significant risk. © 2017, Wiley Periodicals, Inc.
Long-Term Heating to Improve Receiver Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc
The buildup of hydrogen in the heat transfer fluid (HTF) that circulates through components of parabolic trough power plants decreases receiver thermal efficiency, and ultimately, it decreases plant performance and electricity output. The generation and occurrence of hydrogen in the HTF provides the driving force for hydrogen to permeate from the HTF through the absorber tube wall and into the receiver annulus. Getters adsorb hydrogen from the annulus volume until they saturate and are no longer able to maintain low hydrogen pressure. The increase in hydrogen pressure within the annulus significantly degrades thermal performance of the receiver and decreases overallmore » power-plant efficiency. NREL and Acciona Energy North America (Acciona) are developing a method to control the levels of dissolved hydrogen in the circulating HTF. The basic approach is to remove hydrogen from the expansion tanks of the HTF subsystem at a rate that maintains hydrogen in the circulating HTF to a target level. Full-plant steady-state models developed by the National Renewable Energy Laboratory (NREL) predict that if hydrogen is removed from the HTF within the expansion tanks, the HTF that circulates through the collector field remains essentially free of hydrogen until the HTF returns to the power block in the hot headers. One of the key findings of our modeling is the prediction that hydrogen will reverse-permeate out of the receiver annulus if dissolved hydrogen in the HTF is kept sufficiently low. To test this prediction, we performed extended heating of an in-service receiver that initially had high levels of hydrogen in its annulus. The heating was performed using NREL's receiver test stand. Results of our testing showed that receiver heat loss steadily decreased with daily heating, resulting in a corresponding improvement in receiver thermal efficiency.« less
Pirat, Bahar; Yildirir, Aylin; Simşek, Vahide; Ozin, Bülent; Müderrisoğlu, Haldun
2008-03-01
We investigated the effect of increased preload through postural changes (leg lifting) on tissue Doppler parameters in patients with and without coronary artery disease (CAD). The study included 42 patients who were scheduled for coronary angiography. All the patients underwent standard two-dimensional, color Doppler and tissue Doppler echocardiography before coronary angiography. Tissue Doppler imaging was performed from septal and lateral mitral annuluses at baseline and during 45 degrees leg lifting followed by two-minute stabilization. Patients were grouped based on coronary angiography findings: those having stenosis greater than 70% were considered to have CAD and those with normal coronary arteries comprised the control group. Echocardiography measurements were compared between the two groups. Angiography showed normal coronary arteries or border irregularities in 22 patients and CAD in 20 patients. The two groups were similar with regard to demographic data and ejection fractions, except for male preponderance in the CAD group. Compared with the control group, patients with CAD exhibited a significantly lower isovolumic acceleration rate (IVA) at the lateral (p=0.007) and septal (p=0.03) mitral annuluses. In the control group, leg lifting resulted in increased systolic velocity (S) compared with baseline at the lateral (p=0.009) and septal (p=0.01) annuluses, whereas S wave augmentation was only significant at the septal annulus (p=0.009) in patients with CAD. No significant change was observed in IVA following leg lifting in both groups. Preload alteration induced by leg lifting resulted in similar changes in tissue Doppler parameters in patients with and without CAD, except for blunted augmentation of S wave at the lateral annulus in CAD. Detection of decreased IVA at baseline may be a useful finding for CAD.
In vitro and in silico investigations of disc nucleus replacement
Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik
2012-01-01
Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4–L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential. PMID:22337630
A novel collinear optical system with annulus mirrors for holographic disc driver
NASA Astrophysics Data System (ADS)
Wang, Ye
2008-12-01
This paper focus on a novel collinear lens system with annulus mirrors for holographic disc driver, both information beam and reference beam are use same laser beam. The expanded and parallel laser beam, center part of it as the information beam then through Fourier transform lens, the beam around center part as a reference beam. On this axis, the ring reference beam reflected by two annulus shaped mirrors, then became a convergent beam, together with the information beam which through the first Fourier transform lens then produce holographic pattern to be write into the holographic disc behind of them, this lens system with two mirrors made the angle between information beam and reference beam more wide, can improved the multiplex level of holographic storage. Pair of Fourier transform lens with advance performance is designed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karami, K.; Bahari, K., E-mail: KKarami@uok.ac.ir, E-mail: K.Bahari@razi.ac.ir
2012-10-01
We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order ofmore » magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.« less
ERIC Educational Resources Information Center
Gok Colak, Feride; Tugluk, Mehmet Nur
2017-01-01
This study aimed to investigate the cognitive structures of prospective preschool teachers and to identify their misconceptions about the concepts of circle, disk and annulus. In the study, the Word Association Test was used as the data collection instrument. The study was conducted in the fall semester of the 2014-2015 academic year with the…
Duct flow nonuniformities: Effect of struts in SSME HGM II(+)
NASA Technical Reports Server (NTRS)
Burke, Roger
1988-01-01
A numerical study, using the INS3D flow solver, of laminar and turbulent flow around a two dimensional strut, and three dimensional flow around a strut in an annulus is presented. A multi-block procedure was used to calculate two dimensional laminar flow around two struts in parallel, with each strut represented by one computational block. Single block calculations were performed for turbulent flow around a two dimensional strut, using a Baldwin-Lomax turbulence model to parameterize the turbulent shear stresses. A modified Baldwin-Lomax model was applied to the case of a three dimensional strut in an annulus. The results displayed the essential features of wing-body flows, including the presence of a horseshoe vortex system at the junction of the strut and the lower annulus surface. A similar system was observed at the upper annulus surface. The test geometries discussed were useful in developing the capability to perform multiblock calculations, and to simulate turbulent flow around obstructions located between curved walls. Both of these skills will be necessary to model the three dimensional flow in the strut assembly of the SSME. Work is now in progress on performing a three dimensional two block turbulent calculation of the flow in the turnaround duct (TAD) and strut/fuel bowl juncture region.
Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.
Karakolis, Thomas; Callaghan, Jack P
2015-01-01
Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Toghraie, Davood; Karimipour, Arash; Wongwises, Somchai
2017-05-01
Presets work aims to investigate the natural convection inside a cylindrical annulus mold containing molten gallium under a horizontal magnetic field in three-dimensional coordinates. The modeling system is a vertical cylindrical annulus which is made by two co-axial cylinders of internal and external radii. The internal and external walls are maintained isothermal but in different temperatures. The upper and lower sides of annulus are also considered adiabatic while it is filled by an electrical conducting fluid. Three dimensional cylindrical coordinates as (r , θ , z) are used to respond the velocity components as (u , v , w) . The governing equations are steady, laminar and Newtonian using the Boussinesq approximation. Equations are nonlinear and they must be corresponded by applying the finite volume approach; so that the hybrid-scheme is applied to discretize equations. The results imply that magnetic field existence leads to generate the Lorentz force in opposite direction of the buoyancy forces. Moreover the Lorentz force and its corresponded electric field are more significant in both Hartmann layer and Roberts layer, respectively. The strong magnetic field is required to achieve better quality products in the casting process of a liquid metal with a higher Prandtl number.
Multiple pure tone noise prediction
NASA Astrophysics Data System (ADS)
Han, Fei; Sharma, Anupam; Paliath, Umesh; Shieh, Chingwei
2014-12-01
This paper presents a fully numerical method for predicting multiple pure tones, also known as “Buzzsaw” noise. It consists of three steps that account for noise source generation, nonlinear acoustic propagation with hard as well as lined walls inside the nacelle, and linear acoustic propagation outside the engine. Noise generation is modeled by steady, part-annulus computational fluid dynamics (CFD) simulations. A linear superposition algorithm is used to construct full-annulus shock/pressure pattern just upstream of the fan from part-annulus CFD results. Nonlinear wave propagation is carried out inside the duct using a pseudo-two-dimensional solution of Burgers' equation. Scattering from nacelle lip as well as radiation to farfield is performed using the commercial solver ACTRAN/TM. The proposed prediction process is verified by comparing against full-annulus CFD simulations as well as against static engine test data for a typical high bypass ratio aircraft engine with hardwall as well as lined inlets. Comparisons are drawn against nacelle unsteady pressure transducer measurements at two axial locations as well as against near- and far-field microphone array measurements outside the duct. This is the first fully numerical approach (no experimental or empirical input is required) to predict multiple pure tone noise generation, in-duct propagation and far-field radiation. It uses measured blade coordinates to calculate MPT noise.
Boersma, Lucas V A; Schmidt, Boris; Betts, Tim R; Sievert, Horst; Tamburino, Corrado; Teiger, Emmanuel; Stein, Kenneth M; Bergmann, Martin W
2016-09-01
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and the rate of ischemic stroke attributed to non-valvular AF is estimated at 5% per year. Several multi-center studies established left atrial appendage closure as a safe and effective alternative to oral anticoagulation, but there is a need for additional real world data. The purpose of this observational, prospective, single-arm, multicenter clinical study is to compile real-world clinical outcome data for WATCHMAN™ LAA (left atrial appendage) Closure Technology. One thousand subjects at up to 70 institutions in Europe, the Middle East, and Russia will be enrolled. Patients will be followed for 2 years after WATCHMAN implantation, according to standard medical practice. Primary endpoints include procedural and long-term data including stroke/embolism, bleeding, and death. This article presents the background of the LAAC device and describes the design of the study. Results for peri-procedural analyses are expected toward the end of 2015; long-term follow-up data are expected in the latter half of 2017. The EWOLUTION study will formally expand knowledge of LAA closure into a broader real world setting. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Langer, Nathaniel B; Hamid, Nadira B; Nazif, Tamim M; Khalique, Omar K; Vahl, Torsten P; White, Jonathon; Terre, Juan; Hastings, Ramin; Leung, Diana; Hahn, Rebecca T; Leon, Martin; Kodali, Susheel; George, Isaac
2017-01-01
The experience with transcatheter aortic valve replacement is increasing worldwide; however, the incidence of potentially catastrophic cardiac or aortic complications has not decreased. In most cases, significant injuries to the aorta, aortic valve annulus, and left ventricle require open surgical repair. However, the transcatheter aortic valve replacement patient presents a unique challenge as many patients are at high or prohibitive surgical risk and, therefore, an open surgical procedure may not be feasible or appropriate. Consequently, prevention of these potentially catastrophic injuries is vital, and practitioners need to understand when open surgical repair is required and when alternative management strategies can be used. The goal of this article is to provide an overview of current management and prevention strategies for major complications involving the aorta, aortic valve annulus, and left ventricle. © 2016 American Heart Association, Inc.
Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping
2009-01-01
Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.
Project Turnover Deliverables for the SY Farm Enraf Annulus Leak Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
SCAIEF, C.C.
2000-09-19
This document identifies the deliverables that ensure the end user of the SY Farm Enraf Annulus Leak Detectors (ALD) has all the documentation and training required for operating and maintaining the new system. All deliverable items checked on the Acceptance For Beneficial Use (ABU) form have been completed and are available to the end user. This document was written as required by HNF-IP-0842, Volume IV section 3.12 Acceptance of Structures, Systems, and Components for Beneficial Use. This document applies to the deliverable documentation required to operate and maintain the SY Farm Enraf ALD System. Appendix A provides a copy ofmore » the ABU form as listed in the appendix of TWR-4092, Engineering Task Plan for the New SY Farm Annulus Leak Detectors. This document attests that all required deliverable items checked on the ABU have been completed and are available to the end user.« less
Should the annular tendon of the eye be named 'annulus of Zinn' or 'of Valsalva'?
Zampieri, Fabio; Marrone, Daniela; Zanatta, Alberto
2015-02-01
The annular tendon is commonly named 'annulus of Zinn', from the German anatomist and botanist Johann Gottfried Zinn (1727-1759) who described this structure in his Descriptio anatomica oculi humani (Anatomical Description of the Human Eye, 1755). This structure, however, had been previously discovered not by Zinn, but by Antonio Maria Valsalva (1666-1723) some decades before the publication of Zinn, in his Dissertatio anatomica prima and Dissertatio anatomica altera (First and Second Anatomical Dissertations), inside Valsalva's Opera omnia published in 1740. We advance that this structure could be re-named such as 'annulus of Valsalva-Zinn' because Valsalva, even making a mistake in its functional interpretation, first described this anatomical structure. Likewise, Valsalva, with his discovery, advanced a revolutionary idea for that time on the usefulness of anatomy for clinic and pathology. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Cues used by the black fly, Simulium annulus, for attraction to the common loon (Gavia immer).
Weinandt, Meggin L; Meyer, Michael; Strand, Mac; Lindsay, Alec R
2012-12-01
The parasitic relationship between a black fly, Simulium annulus, and the common loon (Gavia immer) has been considered one of the most exclusive relationships between any host species and a black fly species. To test the host specificity of this blood-feeding insect, we made a series of bird decoy presentations to black flies on loon-inhabited lakes in northern Wisconsin, U.S.A. To examine the importance of chemical and visual cues for black fly detection of and attraction to hosts, we made decoy presentations with and without chemical cues. Flies attracted to the decoys were collected, identified to species, and quantified. Results showed that S. annulus had a strong preference for common loon visual and chemical cues, although visual cues from Canada geese (Branta canadensis) and mallards (Anas platyrynchos) did attract some flies in significantly smaller numbers. © 2012 The Society for Vector Ecology.
Anterior Segment Imaging for Angle Closure.
Chansangpetch, Sunee; Rojanapongpun, Prin; Lin, Shan C
2018-04-01
To summarize the role of anterior segment imaging (AS-imaging) in angle closure diagnosis and management, and the possible advantages over the current standard of gonioscopy. Literature review and perspective. Review of the pertinent publications with interpretation and perspective in relation to the use of AS-imaging in angle closure assessment focusing on anterior segment optical coherence tomography and ultrasound biomicroscopy. Several limitations have been encountered with the reference standard of gonioscopy for angle assessment. AS-imaging has been shown to have performance in angle closure detection compared to gonioscopy. Also, imaging has greater reproducibility and serves as better documentation for long-term follow-up than conventional gonioscopy. The qualitative and quantitative information obtained from AS-imaging enables better understanding of the underlying mechanisms of angle closure and provides useful parameters for risk assessment and possible prediction of the response to laser and surgical intervention. The latest technologies-including 3-dimensional imaging-have allowed for the assessment of the angle that simulates the gonioscopic view. These advantages suggest that AS-imaging has a potential to be a reference standard for the diagnosis and monitoring of angle closure disease in the future. Although gonioscopy remains the primary method of angle assessment, AS-imaging has an increasing role in angle closure screening and management. The test should be integrated into clinical practice as an adjunctive tool for angle assessment. It is arguable that AS-imaging should be considered first-line screening for patients at risk for angle closure. Copyright © 2018 Elsevier Inc. All rights reserved.
Sampling and monitoring for closure
McLemore, V.T.; Russell, C.C.; Smith, K.S.
2004-01-01
The Metals Mining Sector of the Acid Drainage Technology Initiative (ADTI-MMS) addresses technical drainage-quality issues related to metal mining and related metallurgical operations, for future and active mines, as well as, for historical mines and mining districts. One of the first projects of ADTI-MMS is to develop a handbook describing the best sampling, monitoring, predicting, mitigating, and modeling of drainage from metal mines, pit lakes and related metallurgical facilities based upon current scientific and engineering practices. One of the important aspects of planning a new mine in today's regulatory environment is the philosophy of designing a new or existing mine or expansion of operations for ultimate closure. The holistic philosophy taken in the ADTI-MMS handbook maintains that sampling and monitoring programs should be designed to take into account all aspects of the mine-life cycle. Data required for the closure of the operation are obtained throughout the mine-life cycle, from exploration through post-closure.
Biomechanical Characterization of an Annulus Sparing Spinal Disc Prosthesis
Buttermann, Glenn R.; Beaubien, Brian P.
2009-01-01
Background Context Current spine arthroplasty devices, require disruption of the annulus fibrosus for implantation. Preliminary studies of a unique annulus sparing intervertebral prosthetic disc (IPD), found that preservation of the annulus resulted in load sharing of the annulus with the prosthesis. Purpose Determine flexibility of the IPD versus fusion constructs in normal and degenerated human spines. Study design/Setting Biomechanical comparison of motion segments in the intact, fusion and mechanical nucleus replacement states for normal and degenerated states. Patient setting Thirty lumbar motion segments. Outcomes Measures Intervertebral height; motion segment range-of-motion (ROM), neutral zone (NZ), stiffness. Methods Motion segments had multi-directional flexibility testing to 7.5 Nm for intact discs, discs reconstructed using the IPD (n=12), or after anterior/posterior fusions (n=18). Interbody height and axial compression stiffness changes were determined for the reconstructed discs by applying axial compression to 1500 N. Analysis included stratifying results to normal mobile vs. rigid degenerated intact motion segments. Results The mean interbody height increase was 1.5 mm for IPD reconstructed discs. vs 3.0 mm for fused segments. Axial compression stiffness was 3.0 ± 0.9 kN/mm for intact compared to 1.2 ± 0.4 kN/mm for IPD reconstructed segments. Reconstructed disc ROM was 9.0° ± 3.7° in flexion-extension, 10.6° ± 3.4° in lateral bending and 2.8° ± 1.4° in axial torsion which was similar to intact values and significantly greater than respective fusion values (p<0.001). Mobile intact segments exhibited significantly greater rotation after fusion vs. their more rigid counterparts (p<0.05), however, intact motion was not related to motion after IPD reconstruction. The NZ and rotational stiffness followed similar trends. Differences in NZ between mobile and rigid intact specimens tended to decrease in the IPD reconstructed state. Conclusion The annulus sparing IPD generally reproduced the intact segment biomechanics in terms of ROM, NZ, and stiffness. Furthermore, the IPD reconstructed discs imparted stability by maintaining a small neutral zone. The IPD reconstructed discs were significantly less rigid than the fusion constructs and may be an attractive alternative for the treatment of DDD. PMID:19540816
ERIC Educational Resources Information Center
Loke, Swee-Kin
2013-01-01
Academic developers in New Zealand, including many specialising in educational technology, have recently been asked to demonstrate their value to the Tertiary Education Commission in view of a new funding model (Prebble, 2011). Cost-cutting measures in other countries, including the 2010 closure of UK's agency for information and communication…
Rainey, Jeanette J; Kenney, Jasmine; Wilburn, Ben; Putman, Ami; Zheteyeva, Yenlik; O'Sullivan, Megan
During an influenza pandemic, the United States Centers for Disease Control and Prevention (CDC) may recommend school closures. These closures could have unintended consequences for students and their families. Publicly available social media could be analyzed to identify the consequences of an unplanned school closure. As a proxy for an unplanned, pandemic-related school closure, we used the district-wide school closure due to the September 10-18, 2012 teachers' strike in Chicago, Illinois. We captured social media posts about the school closure using the Radian6 social media-monitoring platform. An online workforce from Amazon Mechanical Turk categorized each post into one of two groups. The first group included relevant posts that described the impact of the closure on students and their families. The second group included irrelevant posts that described the political aspects of the strike or topics unrelated to the school closure. All relevant posts were further categorized as expressing a positive, negative, or neutral sentiment. We analyzed patterns of relevant posts and sentiment over time and compared our findings to household surveys conducted after other unplanned school closures. We captured 4,546 social media posts about the district-wide school closure using our search criteria. Of these, 930 (20%) were categorized as relevant by the online workforce. Of the relevant posts, 619 (67%) expressed a negative sentiment, 51 (5%) expressed a positive sentiment, and 260 (28%) were neutral. The number of relevant posts, and especially those with a negative sentiment, peaked on day 1 of the strike. Negative sentiment expressed concerns about childcare, missed school lunches, and the lack of class time for students. This was consistent with findings from previously conducted household surveys. Social media are publicly available and can readily provide information on the impact of an unplanned school closure on students and their families. Using social media to assess the impact of an unplanned school closure due to a public health event would be informative. An online workforce can effectively assist with the review process.
Rainey, Jeanette J.; Kenney, Jasmine; Wilburn, Ben; Putman, Ami; Zheteyeva, Yenlik; O’Sullivan, Megan
2016-01-01
Background During an influenza pandemic, the United States Centers for Disease Control and Prevention (CDC) may recommend school closures. These closures could have unintended consequences for students and their families. Publicly available social media could be analyzed to identify the consequences of an unplanned school closure. Methods As a proxy for an unplanned, pandemic-related school closure, we used the district-wide school closure due to the September 10–18, 2012 teachers’ strike in Chicago, Illinois. We captured social media posts about the school closure using the Radian6 social media-monitoring platform. An online workforce from Amazon Mechanical Turk categorized each post into one of two groups. The first group included relevant posts that described the impact of the closure on students and their families. The second group included irrelevant posts that described the political aspects of the strike or topics unrelated to the school closure. All relevant posts were further categorized as expressing a positive, negative, or neutral sentiment. We analyzed patterns of relevant posts and sentiment over time and compared our findings to household surveys conducted after other unplanned school closures. Results We captured 4,546 social media posts about the district-wide school closure using our search criteria. Of these, 930 (20%) were categorized as relevant by the online workforce. Of the relevant posts, 619 (67%) expressed a negative sentiment, 51 (5%) expressed a positive sentiment, and 260 (28%) were neutral. The number of relevant posts, and especially those with a negative sentiment, peaked on day 1 of the strike. Negative sentiment expressed concerns about childcare, missed school lunches, and the lack of class time for students. This was consistent with findings from previously conducted household surveys. Conclusion Social media are publicly available and can readily provide information on the impact of an unplanned school closure on students and their families. Using social media to assess the impact of an unplanned school closure due to a public health event would be informative. An online workforce can effectively assist with the review process. PMID:27655229
Danna, Paolo; Sagone, Antonio; Proietti, Riccardo; Arensi, Andrea; Viecca, Maurizio; Santangeli, Pasquale; Di Biase, Luigi; Natale, Andrea
2012-09-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia. The mortality rate of patients with AF is doubled as compared to non-fibrillating controls. The most relevant complication of AF is a major increase in the risk of stroke. The gold standard in reducing cerebrovascular events in AF is warfarin therapy, which is not free from contraindications and limitations. The left atrial appendage (LAA) is the main source of emboli causing stroke in AF. LAA closure is a seducing approach to stroke risk reduction in AF without anticoagulation. Since 1949, heart surgeons have performed LAA closure or amputation in patients with AF. Percutaneous endovascular LAA closure is a new, less invasive, technique to reach the goal. Several devices have been used to perform this intervention, and the results of published trials are encouraging in terms of effectiveness and relative safety of this attractive technique. In this review we examine the published trials and data on percutaneous LAA closure, with particular attention to the risks and benefits of this procedure.
Ishii, K; Koga, Y; Maeda, M; Nakamura, K; Sekiya, R; Yonezawa, T; Onitsuka, T; Shibata, K
1988-01-01
A 70-year-old male with tricuspid regurgitation due to a blunt chest trauma inflicted 16 years previously underwent prosthetic valve replacement. At surgery, a tear, which produced tricuspid regurgitation, was found around the annulus of the anterior leaflet of the tricuspid valve. Since this area has not been reported as a location for heart trauma-producing tricuspid regurgitation, a possible mechanism of tricuspid regurgitation is discussed in this patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. L. Winston
2007-09-01
The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.
Annular dynamics of memo3D annuloplasty ring evaluated by 3D transesophageal echocardiography.
Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Yoshioka, Daisuke; Sawa, Yoshiki
2018-04-01
We assessed the mitral annular motion after mitral valve repair with the Sorin Memo 3D® (Sorin Group Italia S.r.L., Saluggia, Italy), which is a unique complete semirigid annuloplasty ring intended to restore the systolic profile of the mitral annulus while adapting to the physiologic dynamism of the annulus, using transesophageal real-time three-dimensional echocardiography. 17 patients (12 male; mean age 60.4 ± 14.9 years) who underwent mitral annuloplasty using the Memo 3D ring were investigated. Mitral annular motion was assessed using QLAB®version8 allowing for a full evaluation of the mitral annulus dynamics. The mitral annular dimensions were measured throughout the cardiac cycle using 4D MV assessment2® while saddle shape was assessed through sequential measurements by RealView®. Saddle shape configuration of the mitral annulus and posterior and anterior leaflet motion could be observed during systole and diastole. The mitral annular area changed during the cardiac cycle by 5.7 ± 1.8%.The circumference length and diameter also changed throughout the cardiac cycle. The annular height was significantly higher in mid-systole than in mid-diastole (p < 0.05). The Memo 3D ring maintained a physiological saddle-shape configuration throughout the cardiac cycle. Real-time three-dimensional echocardiography analysis confirmed the motion and flexibility of the Memo 3D ring upon implantation.
Williams, Jamie R.; Natarajan, Raghu N.; Andersson, Gunnar B.J.
2009-01-01
Understanding the relationship between repetitive lifting and the breakdown of disc tissue over several years of exposure is difficult to study in vivo and in vitro. The aim of this investigation was to develop a three-dimensional poroelastic finite element model of a lumbar motion segment that reflects the biological properties and behaviors of in vivo disc tissues including swelling pressure due to the proteoglycans and strain dependent permeability and porosity. It was hypothesized that when modeling the annulus, prescribing tissue specific material properties will not be adequate for studying the in vivo loading and unloading behavior of the disc. Rather, regional variations of these properties, which are known to exist within the annulus, must also be included. Finite element predictions were compared to in vivo measurements published by Tyrrell et al., (Tyrrell et al., 1985) of percent change in total stature for two loading protocols, short-term creep loading and standing recovery and short-term cyclic loading with standing recovery. The model in which the regional variations of material properties in the annulus had been included provided an overall better prediction of the in vivo behavior as compared to the model in which the annulus properties were assumed to be homogenous. This model will now be used to study the relationship between repetitive lifting and disc degeneration. PMID:17156786
Wang, Yan-Li; Wang, Qing-Ling; Wang, Liang; Wu, Ying-Biao; Wang, Zhi-Bin; Cameron, James; Liang, Yu-Lu
2013-02-01
The associations between the aortic dimensions (of the aortic sinus, aortic annulus and aortic arch) and physiological variables have not been established in the Chinese population. The present study examined the associations among physiological variables to determine the aortic root and arch dimensions echocardiographically. The diameters of the aortic sinus, annulus and arch were measured in 1,010 subjects via 2-D echocardiography with a 3.5-MHz transducer in a trans-thoracic position. The images of the aortic sinus and aortic annulus were obtained from a standard parasternal long-axis view. The maximum diameter of the valve orifice was measured at the end of systole. The aortic arch dimension was visualized in the long-axis using a suprasternal notch window and the maximum transverse diameter was measured. Epidata 3.0, Excel 2007 and SPSS version 17.0 were used to collect and analyze the data. A total of 1,010 subjects were enrolled. The mean age was 55.0±17.0 years (range of 18 to 90 years). The body surface area (BSA) was the best predictor of all the studied physiological variables and may be used to predict aortic sinus, annulus and arch dimensions independently (r=0.54, 0.37 and 0.39, respectively). Gender, blood pressure, age and BSA are significant predictors of the aortic dimensions. Of these, BSA was the best predictor.
High Resolution N-Body Simulations of Terrestrial Planet Growth
NASA Astrophysics Data System (ADS)
Clark Wallace, Spencer; Quinn, Thomas R.
2018-04-01
We investigate planetesimal accretion with a direct N-body simulation of an annulus at 1 AU around a 1 M_sun star. The planetesimal ring, which initially contains N = 106 bodies is evolved through the runaway growth stage into the phase of oligarchic growth. We find that the mass distribution of planetesimals develops a bump around 1022 g shortly after the oligarchs form. This feature is absent in previous lower resolution studies. We find that this bump marks a boundary between growth modes. Below the bump mass, planetesimals are packed tightly enough together to populate first order mean motion resonances with the oligarchs. These resonances act to heat the tightly packed, low mass planetesimals, inhibiting their growth. We examine the eccentricity evolution of a dynamically hot planetary embryo embedded in an annulus of planetesimals and find that dynamical friction acts more strongly on the embryo when the planetesimals are finely resolved. This effect disappears when the annulus is made narrow enough to exclude most of the mean motion resonances. Additionally, we find that the 1022 g bump is significantly less prominent when we follow planetesimal growth with a skinny annulus.This feature, which is reminiscent of the power law break seen in the size distribution of asteroid belt objects may be an important clue for constraining the initial size of planetesimals in planet formation models.
Schuhbaeck, Annika; Weingartner, Christina; Arnold, Martin; Schmid, Jasmin; Pflederer, Tobias; Marwan, Mohamed; Rixe, Johannes; Nef, Holger; Schneider, Christian; Lell, Michael; Uder, Michael; Ensminger, Stephan; Feyrer, Richard; Weyand, Michael; Achenbach, Stephan
2015-07-01
The geometry of the aortic annulus and implanted transcatheter aortic valve prosthesis might influence valve function. We investigated the influence of valve type and aortic valve calcification on post-implant geometry of catheter-based aortic valve prostheses. Eighty consecutive patients with severe aortic valve stenosis (mean age 82 ± 6 years) underwent computed tomography before and after TAVI. Aortic annulus diameters were determined. Influence of prosthesis type and degree of aortic valve calcification on post-implant eccentricity were analysed. Aortic annulus eccentricity was reduced in patients after TAVI (0.21 ± 0.06 vs. 0.08 ± 0.06, p<0.0001). Post-TAVI eccentricity was significantly lower in 65 patients following implantation of a balloon-expandable prosthesis as compared to 15 patients who received a self-expanding prosthesis (0.06 ± 0.05 vs. 0.15 ± 0.07, p<0.0001), even though the extent of aortic valve calcification was not different. After TAVI, patients with a higher calcium amount retained a significantly higher eccentricity compared to patients with lower amounts of calcium. Patients undergoing TAVI with a balloon-expandable prosthesis show a more circular shape of the implanted prosthesis as compared to patients with a self-expanding prosthesis. Eccentricity of the deployed prosthesis is affected by the extent of aortic valve calcification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Characterization of interfacial waves in horizontal core-annular flow
NASA Astrophysics Data System (ADS)
Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.
2016-11-01
In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.
Balkovec, Christian; Adams, Michael A; Dolan, Patricia; McGill, Stuart M
2015-10-01
Study Design Biomechanical study on cadaveric spines. Objective Spinal bending causes the annulus to pull vertically (axially) on the end plate, but failure mechanisms in response to this type of loading are poorly understood. Therefore, the objective of this study was to identify the weak point of the intervertebral disk in tension. Methods Cadaveric motion segments (aged 79 to 88 years) were dissected to create midsagittal blocks of tissue, with ∼10 mm of bone superior and inferior to the disk. From these blocks, 14 bone-disk-bone slices (average 4.8 mm thick) were cut in the frontal plane. Each slice was gripped by its bony ends and stretched to failure at 1 mm/s. Mode of failure was recorded using a digital camera. Results Of the 14 slices, 10 failed by the hyaline cartilage being peeled off the subchondral bone, with the failure starting opposite the lateral annulus and proceeding medially. Two slices failed by rupturing of the trabecular bone, and a further two failed in the annulus. Conclusions The hyaline cartilage-bone junction is the disk's weak link in tension. These findings provide a plausible mechanism for the appearance of bone and cartilage fragments in herniated material. Stripping cartilage from the bony end plate would result in the herniated mass containing relatively stiff cartilage that does not easily resorb.
DiBiase, Andrew T; Woodhouse, Neil R; Papageorgiou, Spyridon N; Johnson, Nicola; Slipper, Carmel; Grant, James; Alsaleh, Maryam; Khaja, Yousef; Cobourne, Martyn T
2018-04-01
A multicenter parallel 3-arm randomized clinical trial was carried out in 3 university hospitals in the United Kingdom to investigate the effect of supplemental vibratory force on space closure and treatment outcome with fixed appliances. Eighty-one subjects less than 20 years of age with mandibular incisor irregularity undergoing extraction-based fixed appliance treatment were randomly allocated to supplementary (20 minutes/day) use of an intraoral vibrational device (AcceleDent; OrthoAccel Technologies, Houston, Tex) (n = 29), an identical nonfunctional (sham) device (n = 25), or fixed-appliance only (n = 27). Space closure in the mandibular arch was measured from dental study casts taken at the start of space closure, at the next appointment, and at completion of space closure. Final records were taken at completion of treatment. Data were analyzed blindly on a per-protocol basis with descriptive statistics, 1-way analysis of variance, and linear regression modeling with 95% confidence intervals. Sixty-one subjects remained in the trial at start of space closure, with all 3 groups comparable for baseline characteristics. The overall median rate of initial mandibular arch space closure (primary outcome) was 0.89 mm per month with no difference for either the AcceleDent group (difference, -0.09 mm/month; 95% CI, -0.39 to 0.22 mm/month; P = 0.57) or the sham group (difference, -0.02 mm/month; 95% CI, -0.32 to 0.29 mm/month; P = 0.91) compared with the fixed only group. Similarly, no significant differences were identified between groups for secondary outcomes, including overall treatment duration (median, 18.6 months; P >0.05), number of visits (median, 12; P >0.05), and percentage of improvement in the Peer Assessment Rating (median, 90.0%; P >0.05). Supplemental vibratory force during orthodontic treatment with fixed appliances does not affect space closure, treatment duration, total number of visits, or final occlusal outcome. NCT02314975. The protocol was not published before trial commencement. AcceleDent units were donated by OrthoAccel Technologies; no contribution to the conduct or the writing of this study was made by the manufacturer. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Reddy, Vivek Y; Möbius-Winkler, Sven; Miller, Marc A; Neuzil, Petr; Schuler, Gerhard; Wiebe, Jens; Sick, Peter; Sievert, Horst
2013-06-25
The purpose of this study was to assess the safety and efficacy of left atrial appendage (LAA) closure in nonvalvular atrial fibrillation (AF) patients ineligible for warfarin therapy. The PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients With Atrial Fibrillation) trial demonstrated that LAA closure with the Watchman device (Boston Scientific, Natick, Massachusetts) was noninferior to warfarin therapy. However, the PROTECT AF trial only included patients who were candidates for warfarin, and even patients randomly assigned to the LAA closure arm received concomitant warfarin for 6 weeks after Watchman implantation. A multicenter, prospective, nonrandomized study was conducted of LAA closure with the Watchman device in 150 patients with nonvalvular AF and CHADS₂ (congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, and prior stroke or transient ischemic attack) score ≥1, who were considered ineligible for warfarin. The primary efficacy endpoint was the combined events of ischemic stroke, hemorrhagic stroke, systemic embolism, and cardiovascular/unexplained death. The mean CHADS₂ score and CHA₂DS₂-VASc (CHADS₂ score plus 2 points for age ≥75 years and 1 point for vascular disease, age 65 to 74 years, or female sex) score were 2.8 ± 1.2 and 4.4 ± 1.7, respectively. History of hemorrhagic/bleeding tendencies (93%) was the most common reason for warfarin ineligibility. Mean duration of follow-up was 14.4 ± 8.6 months. Serious procedure- or device-related safety events occurred in 8.7% of patients (13 of 150 patients). All-cause stroke or systemic embolism occurred in 4 patients (2.3% per year): ischemic stroke in 3 patients (1.7% per year) and hemorrhagic stroke in 1 patient (0.6% per year). This ischemic stroke rate was less than that expected (7.3% per year) based on the CHADS₂ scores of the patient cohort. LAA closure with the Watchman device can be safely performed without a warfarin transition, and is a reasonable alternative to consider for patients at high risk for stroke but with contraindications to systemic oral anticoagulation. (ASA Plavix Feasibility Study With Watchman Left Atrial Appendage Closure Technology [ASAP]; NCT00851578). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
The Synthesis of Force Closure Grasps in the Plane.
1985-09-01
TASK U Artificial Inteligence Laboratory AREA A WORK UN IT "NMUIERS ~( 545 Technology Square Cambridge, MA 02139 SI. CONTROLLING OFICE NAME ANO... ARTIFICIAL INThLLIX’ ENCE LABORATORY A. 1. Memo 861 September, 1985 The Synthesis of Force-Closure Grasps In the Plane DTIC ’VeL% ,#ECTE 1 VnDcNguyenU Abstract... Artificial In- telligenmcc Liabomatory of thle Massachuset Is hInsttute of Teclhnolog3 . Support for the Lahoratot * s Artificial Intelligence research is
Finite Element Analysis of Patient-Specific Mitral Valve with Mitral Regurgitation.
Pham, Thuy; Kong, Fanwei; Martin, Caitlin; Wang, Qian; Primiano, Charles; McKay, Raymond; Elefteriades, John; Sun, Wei
2017-03-01
Functional mitral regurgitation (FMR) is a significant complication of left ventricular dysfunction and strongly associated with a poor prognosis. In this study, we developed a patient-specific finite element (FE) model of the mitral apparatus in a FMR patient which included: both leaflets with thickness, annulus, chordae tendineae, and chordae insertions on the leaflets and origins on the papillary muscles. The FE model incorporated human age- and gender-matched anisotropic hyperelastic material properties, and MV closure at systole was simulated. The model was validated by comparing the FE results from valve closure simulation with the in vivo geometry of the MV at systole. It was found that the FE model could not replicate the in vivo MV geometry without the application of tethering pre-tension force in the chordae at diastole. Upon applying the pre-tension force and performing model optimization by adjusting the chordal length, position, and leaflet length, a good agreement between the FE model and the in vivo model was established. Not only were the chordal forces high at both diastole and systole, but the tethering force on the anterior papillary muscle was higher than that of the posterior papillary muscle, which resulted in an asymmetrical gap with a larger orifice area at the anterolateral commissure resulting in MR. The analyses further show that high peak stress and strain were found at the chordal insertions where large chordal tethering forces were found. This study shows that the pre-tension tethering force plays an important role in accurately simulating the MV dynamics in this FMR patient, particularly in quantifying the degree of leaflet coaptation and stress distribution. Due to the complexity of the disease, the patient-specific computational modeling procedure of FMR patients presented should be further evaluated using a large patient cohort. However, this study provides useful insights into the MV biomechanics of a FMR patient, and could serve as a tool to assist in pre-operative planning for MV repair or replacement surgical or interventional procedures.
[The use of palisade technique in tympanoplasties after Heermann].
Wielgosz, Romuald; Mroczkowski, Edward
2006-01-01
The palisade tympanoplasties-technique with using of tragal and conchal autografts for reconstruction of the tympanic membrane and the auditory canal wall was described. The operation started with the endaural incision. Tragal and conchal autograft palisade fragments with perichondrium for reconstruction of the tympanic membrane and the auditory canal wall have been used up to 1996 in 15,300 cases. We placed palisaded cartilage fragments parallel to the manubrium of the malleus in type I tympanoplasties and in type II or III procedures parallel to the long process of the incus. The "tunnel plasty" in the eustachian tubal entrance is performed with "simmering", "architrave" and "anti-architrave" to keep the tubal entrance open. This "tunnel plasty" results in a nice reconstruction of the tympano-meatal niche. The "annulus-stapes plate" in type III tympanoplasties replaces the function of the incus, crossing the promontory and reducing adhesions. This annulus-stapes bridge is fixed with a further palisade cartilage, "step plasty", which connects the "tunnel-plasty" with "annulus-stapes plate". The palisade-epitympanum-antrum plasty allows ventilation of the antrum via a tunnel constructed of well-fitting parallel pieces of cartilage fixed by self-tension (no glue) and replacing the bony canal wall. The "columella-tunnel plasty" has an L-shaped notch in the "annulus-stapes plate" fixing a columella of cartilage, placed in the oval window. Only in a case with a narrow oval window niche, a type IV palisade plasty can be performed or a prosthesis placed. The "annulus-stapes cartilage plate" is more stable reconstruction in type III tympanoplasties than are incus of foreign body interpositions. Adhesions on the promontory are found more often with fascia than with cartilage fragments. Histologic study of autograft cartilage showed good preservation of cartilage cells even 26 years after transplantation. The use of palisade cartilage technique brings very good functional and better long-term results.
Nakanishi, Koki; Homma, Shunichi; Han, Jiho; Takayama, Hiroo; Colombo, Paolo C; Yuzefpolskaya, Melana; Garan, Arthur R; Farr, Maryjane A; Kurlansky, Paul; Di Tullio, Marco R; Naka, Yoshifumi; Takeda, Koji
2018-07-01
Although late-onset right-sided heart failure is recognized as a clinical problem in the treatment of patients with left ventricular assist devices (LVADs), the mechanism and predictors are unknown. Tricuspid valve (TV) deformation leads to the restriction of the leaflet motion and decreased coaptation, resulting in a functional tricuspid regurgitation that may act as a surrogate marker of late right-sided heart failure. This study aimed to investigate the association of preoperative TV deformation (annulus dilatation and leaflet tethering) with late right-sided heart failure development after continuous-flow LVAD implantation. The study cohort consisted of 274 patients who underwent 2-dimensional echocardiography before LVAD implantation. TV annulus diameter and tethering distance were measured in an apical 4-chamber view. Late right-sided heart failure was defined as right-sided heart failure requiring readmission and medical and/or surgical treatment after initial LVAD implantation. During a mean follow-up of 25.1 ± 19.0 months after LVAD implantation, late right-sided heart failure occurred in 33 patients (12.0%). Multivariate Cox proportional hazard analysis demonstrated that TV annulus diameter (hazard ratio 1.221 per 1 mm, p <0.001) was significantly associated with late right-sided heart failure development, whereas leaflet tethering distance was not. The best cut-off value of the TV annular diameter was 41 mm (area under the curve 0.787). Kaplan-Meier analysis showed that patients with dilated TV annulus (TV annular diameter ≥41 mm) exhibited a significantly higher late right-sided heart failure occurrence than those without TV annular enlargement (log-rank p <0.001). In conclusion, preoperative TV annulus diameter, but not leaflet tethering distance, predicted the occurrence of late right-sided heart failure after LVAD implantation. Copyright © 2018 Elsevier Inc. All rights reserved.
Kimura, Sumito; Streiff, Cole; Zhu, Meihua; Shimada, Eriko; Datta, Saurabh; Ashraf, Muhammad; Sahn, David J
2014-02-01
The aim of this study was to assess the accuracy, feasibility, and reproducibility of determining stroke volume from a novel 3-dimensional (3D) color Doppler flow quantification method for mitral valve (MV) inflow and left ventricular outflow tract (LVOT) outflow at different stroke volumes when compared with the actual flow rate in a pumped porcine cardiac model. Thirteen freshly harvested pig hearts were studied in a water tank. We inserted a latex balloon into each left ventricle from the MV annulus to the LVOT, which were passively pumped at different stroke volumes (30-80 mL) using a calibrated piston pump at increments of 10 mL. Four-dimensional flow volumes were obtained without electrocardiographic gating. The digital imaging data were analyzed offline using prototype software. Two hemispheric flow-sampling planes for color Doppler velocity measurements were placed at the MV annulus and LVOT. The software computed the flow volumes at the MV annulus and LVOT within the user-defined volume and cardiac cycle. This novel 3D Doppler flow quantification method detected incremental increases in MV inflow and LVOT outflow in close agreement with pumped stroke volumes (MV inflow, r = 0.96; LVOT outflow, r = 0.96; P < .01). Bland-Altman analysis demonstrated overestimation of both (MV inflow, 5.42 mL; LVOT outflow, 4.46 mL) with 95% of points within 95% limits of agreement. Interobserver variability values showed good agreement for all stroke volumes at both the MV annulus and LVOT. This study has shown that the 3D color Doppler flow quantification method we used is able to compute stroke volumes accurately at the MV annulus and LVOT in the same cardiac cycle without electrocardiographic gating. This method may be valuable for assessment of cardiac output in clinical studies.
Khalique, Omar K; Hahn, Rebecca T; Gada, Hemal; Nazif, Tamim M; Vahl, Torsten P; George, Isaac; Kalesan, Bindu; Forster, Molly; Williams, Mathew B; Leon, Martin B; Einstein, Andrew J; Pulerwitz, Todd C; Pearson, Gregory D N; Kodali, Susheel K
2014-08-01
This study sought to determine the impact of quantity and location of aortic valve calcification (AVC) on paravalvular regurgitation (PVR) and rates of post-dilation (PD) immediately after transcatheter aortic valve replacement (TAVR). The impact of AVC in different locations within the aortic valve complex is incompletely understood. This study analyzed 150 patients with severe, symptomatic aortic stenosis who underwent TAVR. Total AVC volume scores were calculated from contrast-enhanced multidetector row computed tomography imaging. AVC was divided by leaflet sector and region (Leaflet, Annulus, left ventricular outflow tract [LVOT]), and a combination of LVOT and Annulus (AnnulusLVOT). Asymmetry was assessed. Receiver-operating characteristic analysis was performed with greater than or equal to mild PVR and PD as classification variables. Logistic regression was performed. Quantity of and asymmetry of AVC for all regions of the aortic valve complex predicted greater than or equal to mild PVR by receiver-operating characteristic analysis (area under the curve = 0.635 to 0.689), except Leaflet asymmetry. Receiver-operating characteristic analysis for PD was significant for quantity and asymmetry of AVC in all regions, with higher area under the curve values than for PVR (area under the curve = 0.648 to 0.741). On multivariable analysis, Leaflet and AnnulusLVOT calcification were independent predictors of both PVR and PD regardless of multidetector row computed tomography area cover index. Quantity and asymmetry of AVC in all regions of the aortic valve complex predict greater than or equal to mild PVR and performance of PD, with the exception of Leaflet asymmetry. Quantity of AnnulusLVOT and Leaflet calcification independently predict PVR and PD when taking into account multidetector row computed tomography area cover index. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Spinner, Erin M; Lerakis, Stamatios; Higginson, Jason; Pernetz, Maria; Howell, Sharon; Veledar, Emir; Yoganathan, Ajit P
2012-01-01
While it is understood that annular dilatation contributes to tricuspid regurgitation (TR), other factors are less clear. The geometry of the right ventricle (RV) and left ventricle (LV) may alter tricuspid annulus size and papillary muscle (PM) positions leading to TR. Three-dimensional echocardiographic images were obtained at Emory University Hospital using a GE Vivid 7 ultrasound system. End-diastolic area was used to classify ventricle geometry: control (n=21), isolated RV dilatation (n=17), isolated LV dilatation (n=13), and both RV and LV dilatation (n=13). GE EchoPAC was used to measure annulus area and position of the PM tips. Patients with RV dilatation had significant (P≤ 0.05) displacement of all PMs apically and the septal PM and posterior PM away from the center of the RV toward the LV. Patients with LV dilatation had significant (P≤0.05) apical displacement of the anterior PM. Pulmonary arterial pressure (r=0.66), annulus area (r=0.51), apical displacement of the anterior PM (r=0.26), posterior PM (r=0.49), and septal PM (r=0.40), lateral displacement of the septal PM (r=0.37) and posterior PM (r=0.40), and tenting area and height (r=0.54, 0.49), were significantly (P≤0.05) correlated to the grade of TR. Ventricle classification (r=0.46) and RV end-diastolic area (r=0.48) also were correlated with the grade of TR. A regression analysis found ventricle classification (P=0.001), pulmonary arterial pressure (P≤0.001) annulus area (P=0.027), and apical displacement of the anterior PM (P=0.061) to be associated with the grade of TR. Alterations in ventricular geometry can lead to TR by altering both tricuspid annulus size and PM position. Understanding these geometric interactions with the aim of correcting pathological alterations of the tricuspid valve apparatus may lead to more robust repairs.
Kretzschmar, Daniel; Lauten, Alexander; Goebel, Bjoern; Doenst, Torsten; Poerner, Tudor C; Ferrari, Markus; Figulla, Hans R; Hamadanchi, Ali
2016-03-01
The assessment of aortic annular size is critical, and inappropriate sizing is thought to be a main reason of paravalvular aortic regurgitation. Multidetector computed tomograph is associated with the risk of contrast nephropathy. For optimal evaluation of the complex structure of the aortic annulus, three-dimensional (3D)-methods should be used. We therefore sought to determine the value of 3D-transoesophageal echocardiography (3D-TEE) for appropriate sizing. Hundred and one patients (mean age 81·4 years) with symptomatic aortic valve stenosis (AS) and high surgical risk profile (mean log. EuroScore 28·8%) being scheduled for transcatheter aortic valve implantation (TAVI) were included. 2D- and 3D-TEE were performed before the procedure to evaluate the aortic annulus diameter. Maximum, minimum and mean (max diameter + min diameter/2) annulus diameters were 24·7, 23·1 and 23. 9 mm in 3D-TEE and compared to 22·6 mm in 2D-TEE (P<0·001; 0·07; <0·001). The interobserver variability for 3D-TEE was low with a mean difference of 0·18 mm compared to 2D-TEE with 0·59 mm. The application of 3D-TEE caused a change of prosthesis size selection in 40% of patients compared to 2D-TEE. In this study, we implanted three different types of catheter-mounted valves (Edwards-SAPIEN(™) XT valve, CoreValve(™) and JenaValve(™) ). Final angiography confirmed valve competence (mild insufficiency) in 91%, and there was no aortic regurgitation greater than moderate in the follow-up echocardiographic evaluation. Assessment of aortic annulus dimensions for TAVI size selection can safely be performed with 3D-TEE only. Based on our results with significantly higher annulus diameter compared to 2D-TEE, we recommend 3D-TEE to reduce prosthesis undersizing. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Patent foramen ovale closure and migraine: science and sensibility.
Gupta, Vinod Kumar
2010-09-01
Migraine has been associated with patent foramen ovale (PFO), and PFO closure has become the most high-profile nonpharmacologic invasive therapy recommended for the prevention of recurrent migraine attacks, as well as for preventing further attacks in cryptogenic stroke. The results of Migraine Intervention with STARFlex Technology (MIST), a controversial but important recent randomized clinical trial (RCT) of PFO closure for migraine, do not support PFO closure for preventing migraine attacks. All patients with migraine, however, do not have a PFO, and the characteristic periodicity and predictability of migraine cannot be explained on the basis of paradoxical embolism through the PFO. Closure of the PFO or atrial septal defect can aggravate migraine suddenly. PFO increases in size with age, but migraine generally subsides with the passage of years. Serendipity does play a role in some medical discoveries, but in the absence of a logically defensible theoretical basis, chance and statistics can both become misleading. With soft end points, RCTs in migraine patients can generate conflicting and irreconcilable data. RCTs cannot supplant or substitute clinical common sense or justify serendipity. Scientific progress mandates that any serendipitous research must ultimately conform to the principles of the basic sciences surrounding the chance discovery. PFO closure for preventing migraine attacks is an unfortunate, but sobering, chapter in the migraine research saga.
Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel
Herrmann, Steven D.; Mariani, Robert D.
2002-01-01
A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.
NASA Technical Reports Server (NTRS)
Urasek, D. C.; Kovich, G.; Moore, R. D.
1973-01-01
Performance was obtained for a 50-cm-diameter compressor designed for a high weight flow per unit annulus area of 208 (kg/sec)/sq m. Peak efficiency values of 0.83 and 0.79 were obtained for the rotor and stage, respectively. The stall margin for the stage was 23 percent, based on equivalent weight flow and total-pressure ratio at peak efficiency and stall.
Horizontal baffle for nuclear reactors
Rylatt, John A.
1978-01-01
A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.
Advanced life support technology development for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.
1990-01-01
An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.
Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements
NASA Technical Reports Server (NTRS)
Trefny, C. J.
1985-01-01
Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.
Variations on Debris Disks. IV. An Improved Analytical Model for Collisional Cascades
NASA Astrophysics Data System (ADS)
Kenyon, Scott J.; Bromley, Benjamin C.
2017-04-01
We derive a new analytical model for the evolution of a collisional cascade in a thin annulus around a single central star. In this model, r max the size of the largest object changes with time, {r}\\max \\propto {t}-γ , with γ ≈ 0.1-0.2. Compared to standard models where r max is constant in time, this evolution results in a more rapid decline of M d , the total mass of solids in the annulus, and L d , the luminosity of small particles in the annulus: {M}d\\propto {t}-(γ +1) and {L}d\\propto {t}-(γ /2+1). We demonstrate that the analytical model provides an excellent match to a comprehensive suite of numerical coagulation simulations for annuli at 1 au and at 25 au. If the evolution of real debris disks follows the predictions of the analytical or numerical models, the observed luminosities for evolved stars require up to a factor of two more mass than predicted by previous analytical models.
Slow deformation of intervertebral discs.
Broberg, K B
1993-01-01
Intervertebral discs exhibit pronounced time-dependent deformations when subjected to load variations. These deformations are caused by fluid flow to and from the disc and by viscoelastic deformation of annulus fibres. The fluid flow is caused by differences between mechanical and osmotic pressure. A mechanical model of lumbar disc functions allows one to calculate both the extent of fluid flow and its implications for disc height as well as the role played by viscoelastic deformation of annulus fibres. From such calculations changes in body height are estimated. Experimental results already documented in the literature offer bases for the determination of the parameters involved. Body height variations are studied, both those related to normal diurnal rhythmicity and those related to somewhat exceptional circumstances. The normal diurnal fluid flow is found to be about +/- 40% of the disc fluid content late in the evening. Viscoelastic deformation of annulus fibres contributes approximately one quarter of the height change obtained after several hours normal activity, but dominates during the first hour.
NASA Astrophysics Data System (ADS)
Shahzadi, Iqra; Nadeem, S.
2017-06-01
A genuine neurotic condition is experienced when some blood constituents accumulate on the wall of the artery get withdrew from the wall, again join the circulatory system and coagulation occur. Role of copper nanoparticles and inclined magnetic field on the peristaltic flow of a nanofluid in an annular region of inclined annulus is investigated. We represent the clot model by considering the small artery as an annulus whose outer tube has a wave of sinusoidal nature and inner tube has a clot on its walls. Lubrication approach is used to simplify the problem. Close form solutions are determined for temperature and velocity profile. Impact of related parameters on pressure rise, pressure gradient, velocity and streamlines are interpreted graphically. Comparison among the pure blood and copper blood is presented and analyzed. One main finding of the considered analysis is that the inclusion of copper nanoparticles enlarges the amplitude of the velocity. Therefore, the considered study plays a dominant role in biomedical applications.
NASA Astrophysics Data System (ADS)
Maehara, Kazuyuki; Nakai, Sadaaki; Naga, Kumi; Nishimoto, Seiji
2004-09-01
Changes in discs after Er-Yag laser irradiation are scarcely reported. We made an experimental study using white rabbits and Er-Yag laser. Under general anesthesia, Er-Yag laser was irradiated into lumbar discs. Three or 8 weeks after irradiation, rabbits were sacrificed, and these discs were extracted. The quantitative analysis of the glycosaminoglycan content in the annulus fibrosus, and the incorporation of 35S-sulfate in chondroitin 4 sulfate were measured. The results showed, the increased incorporation of 35S-sulfate in chondroitin 4 sulfate and chondroitin 6 sulfates in groups of laser irradiation may indicate Er-Yag laser irradiation in nucleus pulposus, accelerated glycosaminoglycan production, in the annulus fibrosus. But no difference of unsaturated isomers of chondroitin 4 sulfate, and chondroitin 6 sulfate, and no difference of saturated isomer of keratan sulfate indicate, the influence of Er-Yag laser irradiation was not so high, as to bring the quantitative changes of matrix of annulus fibrosus in term of 8 weeks.
Combustor with multistage internal vortices
Shang, Jer Yu; Harrington, R.E.
1987-05-01
A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.
Combustor with multistage internal vortices
Shang, Jer Y.; Harrington, Richard E.
1989-01-01
A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.
Space-charge-limited currents for cathodes with electric field enhanced geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu
This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less
Balakrishnan, K G; Sapru, R P; Sasidharan, K; Venkitachalam, C G
1982-01-01
The clinical, haemodynamic and angiographic features of 18 patients with right ventricular endomyocardial fibrosis (RVEMF) and 8 patients with Ebstein's anomaly of the tricuspid valve (EATV) have been compared. Diagnosis was confirmed by selective angiography. The position of the tricuspid annulus was identified from selective right ventricular angiograms and confirmed by selective right coronary angiography. In 83% of RVEMF patients the tricuspid annulus was displaced to the left of the spine. A false impression of displacement of the tricuspid leaflet can thus be created. However, a tricuspid leaflet displaced away from the tricuspid annulus was found only in patients with EATV. A considerable overlap exists between the wide spectrum of clinical presentations of the two conditions. Helpful distinguishing features that favour EATV were, the presence of a scratchy diastolic murmur and polyphasic QRS complexes in the ECG. Atrial fibrillation in the ECG, and myocardial calcification or pericardial effusion, whenever present, favour RVEMF.
NASA Astrophysics Data System (ADS)
Abbas, Zaheer; Hasnain, Jafar
A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.
Phase retrieval in annulus sector domain by non-iterative methods
NASA Astrophysics Data System (ADS)
Wang, Xiao; Mao, Heng; Zhao, Da-zun
2008-03-01
Phase retrieval could be achieved by solving the intensity transport equation (ITE) under the paraxial approximation. For the case of uniform illumination, Neumann boundary condition is involved and it makes the solving process more complicated. The primary mirror is usually designed segmented in the telescope with large aperture, and the shape of a segmented piece is often like an annulus sector. Accordingly, It is necessary to analyze the phase retrieval in the annulus sector domain. Two non-iterative methods are considered for recovering the phase. The matrix method is based on the decomposition of the solution into a series of orthogonalized polynomials, while the frequency filtering method depends on the inverse computation process of ITE. By the simulation, it is found that both methods can eliminate the effect of Neumann boundary condition, save a lot of computation time and recover the distorted phase well. The wavefront error (WFE) RMS can be less than 0.05 wavelength, even when some noise is added.
Galbusera, Fabio; Jonas, René; Schlager, Benedikt; Wilke, Hans-Joachim; Villa, Tomaso
2017-01-01
The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep that may help to refine the understanding of parallel in vitro experiments and that can be used to predict when mechanical failure occurs. Anisotropic hyperelastic material properties were assigned to the annulus fibrosus and factorial optimization analyses were performed to find out the optimal parameters of the ground substance and of the collagen fibers. For the ground substance of the annulus fibrosus the investigation was based on experimental data taken from the literature, while for the collagen fibers tensile tests on annulus specimens were conducted. Flexibility analysis in flexion-extension, lateral bending and axial rotation were conducted. Different material properties for the anterior, lateral and posterior regions of the annulus were found. The posterior part resulted the stiffest region in compression whereas the anterior one the stiffest region in tension. Since the flexibility outcomes were in a good agreement with the literature data, we considered this model suitable to be used in conjunction with in vitro and in vivo tests to investigate the mechanical behaviour of the ovine lumbar disc. PMID:28472100
Desrochers, Jane; Duncan, Neil A
2014-01-01
Cells in the intervertebral disc, as in other connective tissues including tendon, ligament and bone, form interconnected cellular networks that are linked via functional gap junctions. These cellular networks may be necessary to affect a coordinated response to mechanical and environmental stimuli. Using confocal microscopy with fluorescence recovery after photobleaching methods, we explored the in situ strain environment of the outer annulus of an intact bovine disc and the effect of high-level flexion on gap junction signalling. The in situ strain environment in the extracellular matrix of the outer annulus under high flexion load was observed to be non-uniform with the extensive cellular processes remaining crimped sometimes at flexion angles greater than 25°. A significant transient disruption of intercellular communication via functional gap junctions was measured after 10 and 20 min under high flexion load. This study illustrates that in healthy annulus fibrosus tissue, high mechanical loads can impede the functioning of the gap junctions. Future studies will explore more complex loading conditions to determine whether losses in intercellular communication can be permanent and whether gap junctions in aged and degenerated tissues become more susceptible to load. The current research suggests that cellular structures such as gap junctions and intercellular networks, as well as other cell-cell and cell-matrix interconnections, need to be considered in computational models in order to fully understand how macroscale mechanical signals are transmitted across scales to the microscale and ultimately into a cellular biosynthetic response in collagenous tissues.
Control rod driveline and grapple
Germer, John H.
1987-01-01
A control rod driveline and grapple is disclosed for placement between a control rod drive and a nuclear reactor control rod containing poison for parasitic neutron absorption required for reactor shutdown. The control rod is provided with an enlarged cylindrical handle which terminates in an upwardly extending rod to provide a grapple point for the driveline. The grapple mechanism includes a tension rod which receives the upwardly extending handle and is provided with a lower annular flange. A plurality of preferably six grapple segments surround and grip the control rod handle. Each grapple rod segment grips the flange on the tension rod at an interior upper annular indentation, bears against the enlarged cylindrical handle at an intermediate annulus and captures the upwardly flaring frustum shaped handle at a lower and complementary female segment. The tension rods and grapple segments are surrounded by and encased within a cylinder. The cylinder terminates immediately and outward extending annulus at the lower portion of the grapple segments. Excursion of the tension rod relative to the encasing cylinder causes rod release at the handle by permitting the grapple segments to pivot outwardly and about the annulus on the tension rod so as to open the lower defined frustum shaped annulus and drop the rod. Relative movement between the tension rod and cylinder can occur either due to electromagnetic release of the tension rod within defined limits of travel or differential thermal expansion as between the tension rod and cylinder as where the reactor exceeds design thermal limits.
Annulus formation on scales of four species of coregonids reared under artificial conditions
Hogman, Walter J.
1968-01-01
Scales from known-age coregonids reared in the laboratory were examined to determine when annuli formed and to learn possible factors of their formation. Scales were taken monthly from marked fish for periods up to 21 months. Scales were also examined from fish that died and from preserved specimens of young-of-the-year for each species. Two marks formed on almost all scales each calender year. The stronger formed during March-April and the weaker in October-November. Both marks had all the usual characteristics of an annulus but the spring mark was considered the annulus and the fall mark an accessory check. The annulus formed during a period of constant temperatures and of little change in growth or increasing growth. The accessory check formed during a period of declining temperatures (1-5 degrees F, or 0.6-2.8 degrees C, per month) and of little change in growth or declining growth. Most fish grew throughout the winter; the only exceptions were one bloater (Coregonus hoyi) and several of the largest lake whitefish (C. clupeaformis). Fish were always given all the food they would eat to eliminate availability of food as a factor of mark formation. The temperature of the water during the winter (50 ±. 0.3 F; 10.0 ±. 0.2 C) did not arrest metabolic activity. The growth rate was related more closely to day length than to other variables examined.
Nerurkar, Nandan L.; Mauck, Robert L.
2012-01-01
Mechanical function of the annulus fibrosus of the intervertebral disc is dictated by the composition and microstructure of its highly ordered extracellular matrix. Recent work on engineered angle-ply laminates formed from mesenchymal stem cell (MSC)-seeded nanofibrous scaffolds indicates that the organization of collagen fibers into planes of alternating alignment may play an important role in annulus fibrosus tissue function. Specifically, these engineered tissues can resist tensile deformation through shearing of the interlamellar matrix as layers of collagen differentially reorient under load. In the present work, a hyperelastic constitutive model was developed to describe the role of interlamellar shearing in reinforcing the tensile response of biologic laminates, and was applied to experimental results from engineered annulus constructs formed from MSC-seeded nanofibrous scaffolds. By applying the constitutive model to uniaxial tensile stress–strain data for bilayers with three different fiber orientations, material parameters were generated that characterize the contributions of extrafibrillar matrix, fibers, and interlamellar shearing interactions. By 10 weeks of in vitro culture, interlamellar shearing accounted for nearly 50% of the total stress associated with uniaxial extension in the anatomic range of ply angle. The model successfully captured changes in function with extracellular matrix deposition through variations in the magnitude of model parameters with culture duration. This work illustrates the value of engineered tissues as tools to further our understanding of structure–function relations in native tissues and as a test-bed for the development of constitutive models to describe them. PMID:21287395
Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M
2011-12-01
Mechanical function of the annulus fibrosus of the intervertebral disc is dictated by the composition and microstructure of its highly ordered extracellular matrix. Recent work on engineered angle-ply laminates formed from mesenchymal stem cell (MSC)-seeded nanofibrous scaffolds indicates that the organization of collagen fibers into planes of alternating alignment may play an important role in annulus fibrosus tissue function. Specifically, these engineered tissues can resist tensile deformation through shearing of the interlamellar matrix as layers of collagen differentially reorient under load. In the present work, a hyperelastic constitutive model was developed to describe the role of interlamellar shearing in reinforcing the tensile response of biologic laminates, and was applied to experimental results from engineered annulus constructs formed from MSC-seeded nanofibrous scaffolds. By applying the constitutive model to uniaxial tensile stress-strain data for bilayers with three different fiber orientations, material parameters were generated that characterize the contributions of extrafibrillar matrix, fibers, and interlamellar shearing interactions. By 10 weeks of in vitro culture, interlamellar shearing accounted for nearly 50% of the total stress associated with uniaxial extension in the anatomic range of ply angle. The model successfully captured changes in function with extracellular matrix deposition through variations in the magnitude of model parameters with culture duration. This work illustrates the value of engineered tissues as tools to further our understanding of structure-function relations in native tissues and as a test-bed for the development of constitutive models to describe them.
Observations of the north polar water ice annulus on Mars using THEMIS and TES
Wagstaff, K.L.; Titus, T.N.; Ivanov, A.B.; Castano, R.; Bandfield, J.L.
2008-01-01
The Martian seasonal CO2 ice caps advance and retreat each year. In the spring, as the CO2 cap gradually retreats, it leaves behind an extensive defrosting zone from the solid CO2 cap to the location where all CO2 frost has sublimated. We have been studying this phenomenon in the north polar region using data from the THermal EMission Imaging System (THEMIS), a visible and infra-red (IR) camera on the Mars Odyssey spacecraft, and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor. Recently, we discovered that some THEMIS images of the CO2 defrosting zone contain evidence for a distinct defrosting phenomenon: some areas just south of the CO2 cap edge are too bright in visible wavelengths to be defrosted terrain, but too warm in the IR to be CO2 ice. We hypothesize that we are seeing evidence for a seasonal annulus of water ice (frost) that recedes with the seasonal CO2 cap, as predicted by previous workers. In this paper, we describe our observations with THEMIS and compare them to simultaneous observations by TES and OMEGA. All three instruments find that this phenomenon is distinct from the CO2 cap and most likely composed of water ice. We also find strong evidence that the annulus widens as it recedes. Finally, we show that this annulus can be detected in the raw THEMIS data as it is collected, enabling future long-term onboard monitoring. ?? 2007.
PDF methods for turbulent reactive flows
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1995-01-01
Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.
Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle
2010-11-01
Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.
Dankerl, Peter; Hammon, Matthias; Seuss, Hannes; Tröbs, Monique; Schuhbaeck, Annika; Hell, Michaela M; Cavallaro, Alexander; Achenbach, Stephan; Uder, Michael; Marwan, Mohamed
2017-05-01
To evaluate the performance of computer-aided evaluation software for a comprehensive workup of patients prior to transcatheter aortic valve implantation (TAVI) using low-contrast agent and low radiation dose third-generation dual-source CT angiography. We evaluated 30 consecutive patients scheduled for TAVI. All patients underwent ECG-triggered high-pitch dual-source CT angiography of the aortic root and aorta with a standardized contrast agent volume (30 ml Imeron350, flow rate 4 ml/s) and low-dose (100 kv/350 mAs) protocol. An expert (10 years of experience) manually evaluated aortic root and iliac access dimensions (distance between coronary ostia and aortic annulus, minimal/maximal diameters and area-derived diameter of the aortic annulus) and best CT-predicted fluoroscopic projection angle as the reference standard. Utilizing computer-aided software (syngo.via), the same pre-TAVI workup was performed and compared to the reference standard. Mean CTDI[Formula: see text] was 3.46 mGy and mean DLP 217.6 ± 12.1 mGy cm, corresponding to a mean effective dose of 3.7 ± 0.2 mSv. Computer-aided evaluation was successful in all but one patient. Compared to the reference standard, Bland-Altman analysis indicated very good agreement for the distances between aortic annulus and coronary ostia (RCA: mean difference 0.8 mm; 95 % CI 0.4-1.2 mm; LM: mean difference 0.9 mm; 95 % CI 0.5-1.3 mm); however, we demonstrated a systematic overestimation of annulus- derived diameter using the software (mean difference 44.4 mm[Formula: see text]; 95 % CI 30.4-58.3 mm[Formula: see text]). Based on respective annulus dimensions, the recommended prosthesis size (Edwards SAPIEN 3) matched in 26 out of the 29 patients (90 %). CT-derived fluoroscopic projection angles showed an excellent agreement for both methods. Out of 58 iliac arteries, 15 (25 %) arteries could not be segmented by the software. Preprocessing time of the software was 71 ± 11 s (range 51-96 s), and reading time with the software was 118 ± 31 s (range 68-201 s). In the workup of pre-TAVI CT angiography, computer-aided evaluation of low-contrast, low-dose examinations is feasible with good agreement and quick reading time. However, a systematic overestimation of the aortic annulus area is observed.
Malinowski, Marcin; Wilton, Penny; Khaghani, Asghar; Brown, Michael; Langholz, David; Hooker, Victoria; Eberhart, Lenora; Hooker, Robert L; Timek, Tomasz A
2016-09-01
Left ventricular assist device (LVAD) implantation may alter right ventricular shape and function and lead to tricuspid regurgitation. This in turn has been reported to be a determinant of right ventricular (RV) failure after LVAD implantation, but the effect of mechanical left ventricular (LV) unloading on the tricuspid annulus is unknown. The aim of the study was to provide insight into the effect of LVAD support on tricuspid annular geometry and dynamics that may help to optimize LV unloading with the least deleterious effect on the right-sided geometry. In seven open-chest anaesthetized sheep, nine sonomicrometry crystals were implanted on the right ventricle. Additional nine crystals were implanted around the tricuspid annulus, with one crystal at each commissure defining three separate annular regions: anterior, posterior and septal. Left ventricular unloading was achieved by connecting a cannula in the left atrium and the aorta to a continuous-flow pump. The pump was used for 15 min at a full flow of 3.8 ± 0.3 l/min. Epicardial echocardiography was used to assess the degree of tricuspid insufficiency. Haemodynamic, echocardiographic and sonomicrometry data were collected before and during full unloading. Tricuspid annular area, and the regional and total perimeter were calculated from crystal coordinates, while 3D annular geometry was expressed as the orthogonal distance of each annular crystal to the least squares plane of all annular crystals. There was no significant tricuspid regurgitation observed either before or during LV unloading. Right ventricular free wall to septum diameter increased significantly at end-diastole during unloading from 23.6 ± 5.8 to 26.3 ± 6.5 mm (P = 0.009), but the right ventricular volume, tricuspid annular area and total perimeter did not change from baseline. However, the septal part of the annulus significantly decreased its maximal length (38.6 ± 8.1 to 37.9 ± 8.2 mm, P = 0.03). Annular contraction was not altered. The tricuspid annulus had a complex 3D saddle-shaped geometry that was unaffected during experimental conditions. In healthy sheep hearts, left ventricular unloading increased septal-free wall RV diameter and reduced the length of the septal annulus, without altering the motion or geometry of the tricuspid annulus. Acute left ventricular unloading alone in healthy sheep was not sufficient to significantly perturb tricuspid annular dynamics and result in tricuspid insufficiency. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Energy efficient engine: High pressure turbine uncooled rig technology report
NASA Technical Reports Server (NTRS)
Gardner, W. B.
1979-01-01
Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.
Financial viability, medical technology, and hospital closures.
Prince, T R; Sullivan, J A
2000-01-01
Informed investments in medical technology and information systems are associated with the financial viability of community hospitals. Financially distressed facilities are 3 to 4 years behind proactive hospitals in supporting high-speed data, voice, and image transmissions to physicians in various locations. Impact of the Balanced Budget Act of 1997, fraud and abuse activities, Y2K issues, and lack of information systems support for physicians will result in 800 hospital closures and mergers of distressed hospitals over the next 60 months. These findings are based on the application of an eight-step framework for classifying information systems in health care entities. This framework is validated by survey instruments, site visits, interviews with senior management in 44 health care entities containing 576 hospitals, and judgments on the financial status of the health care entities.
Closure of skin incisions in rabbits by laser soldering: I: Wound healing pattern.
Simhon, David; Brosh, Tamar; Halpern, Marisa; Ravid, Avi; Vasilyev, Tamar; Kariv, Naam; Katzir, Abraham; Nevo, Zvi
2004-01-01
Temperature-controlled tissue laser soldering is an innovative sutureless technique awaiting only solid experimental data to become the gold-standard surgical procedure for incision closure. The goals of the current study were: (1) to define the optimal laser soldering conditions, (2) to explore the immediate skin reparative healing events after sealing the wound, and (3) to determine the long-term trajectory of skin wound healing. Skin incisions were generated over rabbit dorsa and were closed using different wound-closure interventions, in three groups: (a) closure, using a temperature-controlled infrared fiberoptic CO2 laser system, employing 47% bovine serum albumin as a solder; (b) wound closure by cyanoacrylate glues; and (c) wound closure by sutures. The reparative outcomes were evaluated macroscopically and microscopically, employing semi-quantitative grading indices. Laser soldering of incisions at T = 65 degrees C emerged as the optimal method achieving immediate wound sealing. This in turn induced accelerated reparative events characterized by a reduced inflammatory reaction, followed by minimal scarring and leading to a fine quality healing. Temperature-controlled laser soldering offers an accelerated wound reparative process with numerous advantages over the conventional methods. Further investigations may reveal additional benefits in the spectrum of advantages that this innovative surgical technology has to offer. This can introduce new scientific insight that will pave the way for clinical use.
Thermionic converter temperature controller
Shaner, Benjamin J [McMurray, PA; Wolf, Joseph H [Pittsburgh, PA; Johnson, Robert G. R. [Trafford, PA
2001-04-24
A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.
Efficacy of identifying stocked crappies in a Tennessee reservoir through oxytetracycline marking
Isermann, D.A.; Bettoli, P.W.; Sammons, S.M.
1999-01-01
Oxytetracycline (OTC) immersion was used to identify black-nosed crappies, a morphological variation of black crappie Pomoxis nigromaculatus, stocked into Normandy Reservoir, Tennessee, during fall 1997. The technique effectively marked 97% of the treated fish. Analysis of one otolith per fish by one reader successfully identified 98% of marked and unmarked fish in a blind test. Marks were formed before annulus formation and were not obscured by annulus-related autofluorescence, suggesting that OTC can be effectively used late in the year (October and November) in Tennessee.
Chen, Weiming; Wang, An; Lin, Chia-Ying; Mo, Xiumei; Ye, Xiaojian
2018-01-01
Introduction Herniation of the nucleus pulposus (NP) because of defects in the annulus fibrosus (AF) is a well-known cause of low back pain. Defects in the AF thus remain a surgical challenge, and efforts have been made to develop new techniques for closure and repair. In this study, we developed an electrospun aligned nanoyarn scaffold (AYS) and nanoyarn/three-dimensional porous nanofibrous hybrid scaffold (HS) for AF tissue engineering. Methods The AYS was fabricated via conjugated electrospinning, while the aligned nanofibrous scaffold (AFS) was prepared by traditional electrospinning as a baseline scaffold. The HS was constructed by freeze-drying and cross-linking methods. Scanning electron microscopy and mechanical measurement were used to characterize the properties of these scaffolds. Bone marrow derived mesenchymal stem cells (BMSCs) were seeded on scaffolds, and cell proliferation was determined by CCK-8 assay, while cell infiltration and differentiation were assessed by histological measurement and quantitative real-time polymerase chain reaction, respectively. Results Morphological measurements showed that AYS presented a relatively better three-dimensional structure with larger pore sizes, higher porosity, and better fibers’ alignment compared to AFS. Mechanical testing demonstrated that the tensile property of AFS and AYS was qualitatively similar to the native AF tissue, albeit to a lesser extent. When BMSCs were seeded and cultured on these scaffolds, the number of cells cultured on HS and AYS was found to be significantly higher than that on AFS and culture plate after 7 days of culture (P<0.05). In addition, cell infiltration was significantly higher in HS when compared with AFS and AYS (P<0.05). A part of BMSCs ingressed into the inner part of AYS upon long-term in vitro culture. No significant difference was observed between AFS and AYS in terms of the median infiltration depth (P>0.05). BMSCs seeded on AYS demonstrated an increased expression of COL1A1, while the expression levels of SOX-9, COL2A1, and Aggrecan were higher in HS compared to other scaffolds (P<0.05). Conclusion These findings indicate that HS makes a proper scaffold for the AF tissue engineering as it replicates the axial compression and tensile property of AF, thereby providing a better platform for cell infiltration and cell–scaffold interaction. PMID:29588584
Ma, Jun; He, Yunfei; Liu, Xilin; Chen, Weiming; Wang, An; Lin, Chia-Ying; Mo, Xiumei; Ye, Xiaojian
2018-01-01
Herniation of the nucleus pulposus (NP) because of defects in the annulus fibrosus (AF) is a well-known cause of low back pain. Defects in the AF thus remain a surgical challenge, and efforts have been made to develop new techniques for closure and repair. In this study, we developed an electrospun aligned nanoyarn scaffold (AYS) and nanoyarn/three-dimensional porous nanofibrous hybrid scaffold (HS) for AF tissue engineering. The AYS was fabricated via conjugated electrospinning, while the aligned nanofibrous scaffold (AFS) was prepared by traditional electrospinning as a baseline scaffold. The HS was constructed by freeze-drying and cross-linking methods. Scanning electron microscopy and mechanical measurement were used to characterize the properties of these scaffolds. Bone marrow derived mesenchymal stem cells (BMSCs) were seeded on scaffolds, and cell proliferation was determined by CCK-8 assay, while cell infiltration and differentiation were assessed by histological measurement and quantitative real-time polymerase chain reaction, respectively. Morphological measurements showed that AYS presented a relatively better three-dimensional structure with larger pore sizes, higher porosity, and better fibers' alignment compared to AFS. Mechanical testing demonstrated that the tensile property of AFS and AYS was qualitatively similar to the native AF tissue, albeit to a lesser extent. When BMSCs were seeded and cultured on these scaffolds, the number of cells cultured on HS and AYS was found to be significantly higher than that on AFS and culture plate after 7 days of culture ( P <0.05). In addition, cell infiltration was significantly higher in HS when compared with AFS and AYS ( P <0.05). A part of BMSCs ingressed into the inner part of AYS upon long-term in vitro culture. No significant difference was observed between AFS and AYS in terms of the median infiltration depth ( P >0.05). BMSCs seeded on AYS demonstrated an increased expression of COL1A1 , while the expression levels of SOX-9 , COL2A1 , and Aggrecan were higher in HS compared to other scaffolds ( P <0.05). These findings indicate that HS makes a proper scaffold for the AF tissue engineering as it replicates the axial compression and tensile property of AF, thereby providing a better platform for cell infiltration and cell-scaffold interaction.
Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy
2015-04-01
Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5 weeks. Taken together, these findings illustrate the advantages of incorporating collagen as a means to enhance cell migration and proliferation in porous scaffolds which could be used to augment tissue repair strategies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
The Short-Term Effects of Ketogenic Diet on Cardiac Ventricular Functions in Epileptic Children.
Doksöz, Önder; Çeleğen, Kübra; Güzel, Orkide; Yılmaz, Ünsal; Uysal, Utku; İşgüder, Rana; Çeleğen, Mehmet; Meşe, Timur
2015-09-01
Our primary aim was to determine the short-term effects of a ketogenic diet on cardiac ventricular function in patients with refractory epilepsy. Thirty-eight drug-resistant epileptic patients who were treated with a ketogenic diet were enrolled in this prospective study. Echocardiography was performed on all patients before beginning the ketogenic diet and after the sixth month of therapy. Two-dimensional, M-mode, color flow, spectral Doppler, and pulsed-wave tissue Doppler imaging measurements were performed on all patients. The median age of the 32 patients was 45.5 months, and 22 (57.8%) of them were male. Body weight, height, and body mass index increased significantly at the sixth month of therapy when compared with baseline values (P < 0.05). Baseline variables assessed by conventional M-mode echocardiography showed no significant difference at month 6 (P > 0.05). Doppler flow indices of mitral annulus and tricuspid annulus velocity of patients at baseline and month 6 showed no significant differences (P > 0.05). Tricuspid annular E/A ratio was lower at month 6 (P < 0.05). Although mitral annulus tissue Doppler imaging studies showed no significant difference (P > 0.05), there was a decrease in Ea velocity and Ea/Aa ratio gathered from tricuspid annulus at month 6 compared with baseline (P < 0.05). A 6-month duration ketogenic diet does not impair left ventricular functions in children with refractory epilepsy; however, it may be associated with a right ventricular diastolic dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.
Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.
Römgens, Anne M; van Donkelaar, Corrinus C; Ito, Keita
2013-11-01
Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.
Tricuspid Annular Geometry: A Three-Dimensional Transesophageal Echocardiographic Study
Mahmood, Feroze; Kim, Han; Chaudary, Bilal; Bergman, Remco; Matyal, Robina; Gerstle, Jeniffer; Gorman, Joseph H.; Gorman, Robert C.; Khabbaz, Kamal R.
2013-01-01
Objective To demonstrate the clinical feasibility of accurately measuring tricuspid annular area by 3-dimensional (3D) transesophageal echocardiography (TEE) and to assess the geometric differences based on the presence of tricuspid regurgitation (TR). Also, the shape of the tricuspid annulus was compared with previous descriptions in the literature. Design Prospective. Setting Tertiary care university hospital. Interventions Three-dimensional TEE. Participants Patients undergoing cardiac surgery. Measurements and Main Results Volumetric data sets from 20 patients were acquired by 3D TEE and prospectively analyzed. Comparisons in annular geometry were made between groups based on the presence of TR. The QLab (Philips Medical Systems, Andover, MA) software package was used to calculate tricuspid annular area by both linear elliptical dimensions and planimetry. Further analyses were performed in the 4D Cardio-View (TomTec Corporation GmBH, Munich, Germany) and MATLAB (Natick, MA) software environments to accurately assess annular shape. It was found that patients with greater TR had an eccentrically dilated annulus with a larger annular area. Also, the area as measured by the linear ellipse method was overestimated as compared to the planimetry method. Furthermore, the irregular saddle-shaped geometry of the tricuspid annulus was confirmed through the mathematic model developed by the authors. Conclusions Three-dimensional TEE can be used to measure the tricuspid annular area in a clinically feasible fashion, with an eccentric dilation seen in patients with TR. The tricuspid annulus shape is complex, with annular high and low points, and annular area calculation based on linear measurements significantly overestimates 3D planimetered area. PMID:23725682
Cardiovascular Involvement in Children with Osteogenesis Imperfecta
Karamifar, Hamdollah; Ilkhanipoor, Homa; Ajami, Gholamhossein; Karamizadeh, Zohreh; Amirhakimi, Gholamhossein; Shakiba, Ali-Mohammad
2013-01-01
Objective Osteogenesis imperfecta is a hereditary disease resulting from mutation in type I procollagen genes. One of the extra skeletal manifestations of this disease is cardiac involvement. The prevalence of cardiac involvement is still unknown in the children with osteogenesis imperfecta. The present study aimed to investigate the prevalence of cardiovascular abnormalities in these patients. Methods 24 children with osteogenesis imperfecta and 24 normal children who were matched with the patients regarding sex and age were studied. In both groups, standard echocardiography was performed, and heart valves were investigated. Dimensions of left ventricle, aorta annulus, sinotubular junction, ascending and descending aorta were measured and compared between the two groups. Findings The results revealed no significant difference between the two groups regarding age, sex, ejection fraction, shortening fraction, mean of aorta annulus, sinotubular junction, ascending and descending aorta, but after correction based on the body surface area, dimensions of aorta annulus, sinotubular junction, ascending and descending aorta in the patients were significantly higher than those in the control group (P<0.05). Two (8.3%) patients had aortic insufficiency and five (20%) patients had tricuspid regurgitation, three of whom had gradient >25 mmHg and one patient had pulmonary insufficiency with indirect evidence of pulmonary hypertension. According to Z scores of aorta annulus, sinotubular junction and ascending aorta, 5, 3, and 1 out of 24 patients had Z scores >2 respectively. Conclusion The prevalence of valvular heart diseases and aortic root dilation was higher in children with osteogenesis imperfecta. In conclusion, cardiovascular investigation is recommended in these children. PMID:24800009
Contrast gain control: a bilinear model for chromatic selectivity.
Singer, B; D'Zmura, M
1995-04-01
We report the results of psychophysical experiments on color contrast induction. In earlier work [Vision Res. 34, 3111 (1994)], we showed that modulating the spatial contrast of an annulus in time induces an apparent modulation of the contrast of a central disk, at isoluminance. Here we vary the chromatic properties of disk and annulus systematically in a study of the interactions among the luminance and the color-opponent channels. Results show that induced contrast depends linearly on both disk and annulus contrast, at low and moderate contrast levels. This dependence leads us to propose a bilinear model for color contrast gain control. The model predicts the magnitude and the chromatic properties of induced contrast. In agreement with experimental results, the model displays chromatic selectivity in contrast gain control and a negligible effect of contrast modulation at isoluminance on the appearance of achromatic contrast. We show that the bilinear model for chromatic selectivity may be realized as a feed-forward multiplicative gain control. Data collected at high contrast levels are fit by embellishing the model with saturating nonlinearities in the contrast gain control of each color channel.
Visual processing of rotary motion.
Werkhoven, P; Koenderink, J J
1991-01-01
Local descriptions of velocity fields (e.g., rotation, divergence, and deformation) contain a wealth of information for form perception and ego motion. In spite of this, human psychophysical performance in estimating these entities has not yet been thoroughly examined. In this paper, we report on the visual discrimination of rotary motion. A sequence of image frames is used to elicit an apparent rotation of an annulus, composed of dots in the frontoparallel plane, around a fixation spot at the center of the annulus. Differential angular velocity thresholds are measured as a function of the angular velocity, the diameter of the annulus, the number of dots, the display time per frame, and the number of frames. The results show a U-shaped dependence of angular velocity discrimination on spatial scale, with minimal Weber fractions of 7%. Experiments with a scatter in the distance of the individual dots to the center of rotation demonstrate that angular velocity cannot be assessed directly; perceived angular velocity depends strongly on the distance of the dots relative to the center of rotation. We suggest that the estimation of rotary motion is mediated by local estimations of linear velocity.
NASA Technical Reports Server (NTRS)
Davino, R.; Lakshminarayana, B.
1982-01-01
The experiment was performed using the rotating hot-wire technique within the rotor blade passage and the stationary hot-wire technique for the exitflow of the rotor blade passage. The measurements reveal the effect of rotation and subsequent flow interactions upon the rotor blade flowfield and wake development in the annulus-wall region. The flow near the rotor blade tips is found to be highly complex due to the interaction of the annulus-wall boundary layer, the blade boundary layers, the tip leakage flow, and the secondary flow. Within the blade passage, this interaction results in an appreciable radial inward flow as well as a defect in the mainstream velocity near the mid-passage. Turbulence levels within this region are very high. This indicates a considerable extent of flow mixing due to the viscous flow interactions. The size and strength of this loss core is found to grow with axial distance from the blade trailing edge. The nature of the rotor blade exit-flow was dominated by the wake development.
Creeping gaseous flows through elastic tube and annulus micro-configurations
NASA Astrophysics Data System (ADS)
Elbaz, Shai; Jacob, Hila; Gat, Amir
2016-11-01
Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.
Modeling mantle convection in the spherical annulus
NASA Astrophysics Data System (ADS)
Hernlund, John W.; Tackley, Paul J.
2008-12-01
Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.
Speckle tracking evaluation of right ventricular functions in children with sickle cell disease.
Tolba, Osama Abd Rab Elrasol; El-Shanshory, Mohamed Ramadan; El-Gamasy, Mohamed Abd Elaziz; El-Shehaby, Walid Ahmed
2017-01-01
Cardiac dysfunction is a risk factor for death in patients with sickle cell disease (SCD). Aim of the work is to evaluate the right ventricular systolic and diastolic functions by tissue Doppler and speckling tracking imaging in children with SCD. Thirty children with SCD and thirty controls were subjected to clinical, laboratory evaluations, and echocardiographic study using GE Vivid 7 (GE Medical System, Horten, Norway with a 3.5-MHz multifrequency transducer) including; Two-dimensional and tissue Doppler echocardiographic study (lateral tricuspid valve annulus peak E' velocity, lateral tricuspid valve annulus peak A' velocity, E'/A' ratio, isovolumetric relaxation time, lateral tricuspid valve annulus S' and septal S' waves and peak longitudinal systolic strain [PLSS] and time to PLSS) were done in six right ventricular segments. There was a significant decrease in right ventricular systolic and diastolic function in patients group when compared to controls. Children with SCD have impaired right ventricular systolic and diastolic functions when compared to healthy children with early evaluation of the systolic dysfunction by speckle tracking imaging technique.
Vasilyev, Nikolay V.; Gosline, Andrew H.; Butler, Evan; Lang, Nora; Codd, Patrick J.; Yamauchi, Haruo; Feins, Eric N.; Folk, Chris R.; Cohen, Adam L.; Chen, Richard; Zurakowski, David; del Nido, Pedro J.; Dupont, Pierre E
2013-01-01
Background Beating-heart image-guided intracardiac interventions have been evolving rapidly. To extend the domain of catheter-based and transcardiac interventions into reconstructive surgery, a new robotic tool delivery platform (TDP) and tissue approximation device have been developed. Initial results employing these tools to perform patent foramen ovale (PFO) closure are described. Methods and Results A robotic TDP comprised of superelastic metal tubes provides the capability of delivering and manipulating tools and devices inside the beating heart. A new device technology is also presented that utilizes a metal-based MicroElectroMechanical Systems (MEMS) manufacturing process to produce fully-assembled and fully-functional millimeter-scale tools. As a demonstration of both technologies, a PFO creation and closure was performed in a swine model. In the first group of animals (N=10), a preliminary study was performed. The procedural technique was validated with a transcardiac handheld delivery platform and epicardial echocardiography, video-assisted cardioscopy and fluoroscopy. In the second group (N=9), the procedure was performed percutaneously using the robotic TDP under epicardial echocardiography and fluoroscopy imaging. All PFO’s were completely closed in the first group. In the second group, the PFO was not successfully created in 1 animal, and the defects were completely closed in 6 of the 8 remaining animals. Conclusions In contrast to existing robotic catheter technologies, the robotic TDP utilizes a combination of stiffness and active steerability along its length to provide the positioning accuracy and force application capability necessary for tissue manipulation. In combination with a MEMS tool technology, it can enable reconstructive procedures inside the beating heart. PMID:23899870
Intracardiac Echocardiography for Structural Heart and Electrophysiological Interventions.
Basman, Craig; Parmar, Yuvrajsinh J; Kronzon, Itzhak
2017-09-06
With an increasing number of interventional procedures performed for structural heart disease and cardiac arrhythmias each year, echocardiographic guidance is necessary for safe and efficient results. The purpose of this review article is to overview the principles of intracardiac echocardiography (ICE) and describes the peri-interventional role of ICE in a variety of structural heart disease and electrophysiological interventions. Both transthoracic (TTE) and transesophageal echocardiography have limitations. ICE provides the advantage of imaging from within the heart, providing shorter image distances and higher resolution. ICE may be performed without sedation and avoids esophageal intubation as with transesophageal echocardiography (TEE). Limitations of ICE include the need for additional venous access with possibility of vascular complications, potentially higher costs, and a learning curve for new operators. Data supports the use of ICE in guiding device closure of interatrial shunts, transseptal puncture, and electrophysiologic procedures. This paper reviews the more recent reports that ICE may be used for primary guidance or as a supplement to TEE in patients undergoing left atrial appendage (LAA) closure, interatrial shunt closure, transaortic valve implantation (TAVI), percutaneous mitral valve repair (PMVR), paravalvular leak (PVL) closure, aortic interventions, transcatheter pulmonary valve replacement (tPVR), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) closure. ICE imaging technology will continue to expand and help improve structural heart and electrophysiology interventions.
Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Jim G.
2013-03-27
Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.
Air-clad fibres for astronomical instrumentation: focal-ratio degradation
NASA Astrophysics Data System (ADS)
Åslund, Mattias L.; Canning, John
2009-05-01
Focal-ratio degradation (FRD) of light launched into high-numerical aperture (NA) single-annulus all-silica undoped air-clad fibres at an NA of 0.54 is reported. The measured annular light distribution remained Gaussian after 30 m of propagation, but the angular FWHM of the output annulus doubled from 4° after 1 m propagation to 8.5° after 30 m, which is significantly larger than that reported of standard doped-silica fibres (NA < 0.22). No significant diffractive effects were observed. The design of air-clad fibres for broad-band, high-NA astrophotonics applications is discussed.
Thermal analysis of the FSP-1 fuel pin irradiation test. [for SP-100 space power reactor
NASA Technical Reports Server (NTRS)
Lyon, William F., III
1991-01-01
Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow.
NASA Technical Reports Server (NTRS)
Anderson, W. J. (Inventor)
1976-01-01
A gas lubricated thrust bearing is described which employs relatively rigid inwardly cantilevered spokes carrying a relatively resilient annular member or annulus. This annulus acts as a beam on which are mounted bearing pads. The resilience of the beam mount causes the pads to accept the load and, with proper design, responds to a rotating thrust-transmitting collar by creating a gas film between the pads and the thrust collar. The bearing may be arranged for load equalization thereby avoiding the necessity of gimbal mounts or the like for the bearing. It may also be arranged to respond to rotation in one or both directions.
NASA Astrophysics Data System (ADS)
Chen, Shanzhen; Jiang, Xiaoyun
2012-08-01
In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.
Accuracy of GPS time transfer verified by closure around the world
NASA Technical Reports Server (NTRS)
Lewandowski, Wlodimierz W.; Petit, Gerard; Thomas, Claudine
1992-01-01
The precision of time transfer over intercontinental distances by the Global Positioning System common-view method, using measurements of ionospheric delays, precise ephemerides provided by the Defense Mapping Agency (DMA) and a consistent set of antenna coordinates, reaches 3 to 4 ns for a single 13-minute measurement, and decreases to 2 ns when averaging several measurements over the period of one day. It is thought that even this level of precision can be bettered by improving the ionospheric measurements, the ephemerides of satellites, and the antenna coordinates. In the same conditions, an estimation of the accuracy is attained by using three intercontinental links encircling the Earth to establish a closure condition; the three independent links should add to zero. We have computed such a closure condition over a period of 13 months using data recorded at the Paris Observatory, at the Communications Research Laboratory in Tokyo, and at the National Institute for Standards and Technology in Boulder, Colorado. The closure condition is verified to within a few nanoseconds, but a bias, varying with time, can be detected.
Nolan, Winifred P; See, Jovina L; Chew, Paul T K; Friedman, David S; Smith, Scott D; Radhakrishnan, Sunita; Zheng, Ce; Foster, Paul J; Aung, Tin
2007-01-01
To evaluate noncontact anterior segment optical coherence technology (AS-OCT) as a qualitative method of imaging the anterior chamber angle and to determine its ability to detect primary angle closure when compared with gonioscopy in Asian subjects. Prospective observational case series. Two hundred three subjects were recruited from glaucoma clinics in Singapore with diagnoses of primary angle closure, primary open-angle glaucoma, ocular hypertension, or cataract. Both eyes (if eligible) of each patient were included in the study. Exclusion criteria were pseudophakia or previous glaucoma surgery. Images of the nasal, temporal, and inferior angles were obtained with AS-OCT in dark and then light conditions. Gonioscopic angle width was graded using the Spaeth classification for each quadrant in low lighting conditions. Angle closure was defined by AS-OCT as contact between the peripheral iris and angle wall anterior to the scleral spur and by gonioscopy as a Spaeth grade of 0 degree (posterior trabecular meshwork not visible). Comparison of the 2 methods in detecting angle closure was done by eye and by individual. Sensitivities and specificities of AS-OCT were calculated using gonioscopy as the reference standard. Complete data were available for 342 eyes of 200 patients. Of the patients, 70.9% had a clinical diagnosis of treated or untreated primary angle closure. Angle closure in > or =1 quadrants was detected by AS-OCT in 142 (71%) patients (228 [66.7%] eyes) and by gonioscopy in 99 (49.5%) patients (152 [44.4%] eyes). The inferior angle was closed more frequently than the nasal or temporal quadrants using both AS-OCT and gonioscopy. When performed under dark conditions, AS-OCT identified 98% of those subjects found to have angle closure on gonioscopy (95% confidence interval [CI], 92.2-99.6) and led to the characterization of 44.6% of those found to have open angles on gonioscopy to have angle closure as well. With gonioscopy as the reference standard, specificity of AS-OCT in the dark was 55.4% (95% CI, 45.2-65.2) for detecting individuals with angle closure. Anterior segment OCT is a rapid noncontact method of imaging angle structures. It is highly sensitive in detecting angle closure when compared with gonioscopy. More persons are found to have closed angles with AS-OCT than with gonioscopy.
Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won
2015-08-01
Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.
Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.
The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removalmore » and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned motor pumps designed to fit within available risers and have significant agitation capabilities to suspend waste solids. Waste removal and closure of two tanks has been accomplished with agitation provided by 3 SMPs installed within the tanks. In 2012, a team was assembled to investigate alternative solids removal technologies to support waste removal for closing tanks. The goal of the team was to find a more cost effective approach that could be used to replace the current mixing pump technology. This team was unable to identify an alternative technology outside of mixing pumps to support waste agitation and removal from SRS waste tanks. However, the team did identify a potentially lower cost mixing pump compared to the baseline SLPs and SMPs. Rather than using the traditional procurement using an engineering specification, the team proposed to seek commercially available submersible mixer pumps (CSMP) as alternatives to SLPs and SMPs. SLPs and SMPs have a high procurement cost and the actual cost of moving pumps between tanks has shown to be significantly higher than the original estimates that justified the reuse of SMPs and SLPs. The team recommended procurement of “off-the-shelf” industry pumps which may be available for significant savings, but at an increased risk of failure and reduced operating life in the waste tank. The goal of the CSMP program is to obtain mixing pumps that could mix from bulk waste removal through tank closure and then be abandoned in place as part of tank closure. This paper will present the development, progress and relative advantages of the CSMP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, T.K.; Anderson, J.L.; Condie, K.G.
Experiments designed to investigate surface dryout in a heated, ribbed annulus test section simulating one of the annular coolant channels of a Savannah River Plant production reactor Mark 22 fuel assembly have been conducted at the Idaho National Engineering Laboratory. The inner surface of the annulus was constructed of aluminum and was electrically heated to provide an axial cosine power profile and a flat azimuthal power shape. Data presented in this report are from the ECS-2, WSR, and ECS-2cE series of tests. These experiments were conducted to examine the onset of wall thermal excursion for a range of flow, inletmore » fluid temperature, and annulus outlet pressure. Hydraulic boundary conditions on the test section represent flowrates (0.1--1.4 1/s), inlet fluid temperatures (293--345 K), and outlet pressures (-18--139.7 cm of water relative to the bottom of the heated length (61--200 cm of water relative to the bottom of the lower plenum)) expected to occur during the Emergency Coolant System (ECS) phase of postulated Loss-of-Coolant Accident in a production reactor. The onset of thermal excursion based on the present data is consistent with data gathered in test rigs with flat axial power profiles. The data indicate that wall dryout is primarily a function of liquid superficial velocity. Air entrainment rate was observed to be a strong function of the boundary conditions (primarily flowrate and liquid temperature), but had a minor effect on the power at the onset of thermal excursion for the range of conditions examined. 14 refs., 33 figs., 13 tabs.« less
[Indications for and clinical outcome of the Ross procedure: a review].
Morita, K; Kurosawa, H
2001-04-01
The Ross procedure has been used increasingly to treat aortic valve disease in children and young adults. The primary indication for the Ross procedure is to provide a permanent valve replacement in children with congenital aortic stenosis. More recently, it has been extended to young adults with a bicuspid aortic valve and small aortic annulus, especially women wishing to have children. Other possible indications include complex left ventricular outflow obstructive disease, native or prosthetic valve endocarditis, and adult aortic insufficiency with a dilated aortic annulus. Conversely, Marfan syndrome is considered to an absolute contraindication, and this procedure should be used with caution in patients with rheumatic valve disease and a dysplastic dilated aortic root because of the higher associated incidence of autograft dysfunction. The technique of total aortic root replacement has become the preferred method of autograft implantation, because it carries the lowest risk of pulmonary autograft failure. In patients with marked graft-host size mismatch, either concomitant aortic annulus reduction and fixation or aortic annulus enlargement (i.e., the Ross-Konno procedure) should be performed. The Ross Procedure International Registry data document that in the modern era (post-1986) the early and late mortality rate is 2.5% and 1%, respectively. Excellent long-term results have been reported, and the benefits of this procedure include optimal hemodynamics, low risk of endocarditis, resistance to infection in patients with active endocarditis, and nonthrombogeneicity and therefore few anticoagulation-related complications. The Ross procedure can be performed with acceptable early and mid-term mortality and excellent autograft durability. Further long-term follow-up will confirm the role of this procedure in patients with various types of aortic valve disease.
Riki-Marishani, Mohsen; Gholoobi, Arash; Sazegar, Ghasem; Aazami, Mathias H; Hedjazi, Aria; Sajjadian, Maryam; Ebrahimi, Mahmoud; Aghaii-Zade Torabi, Ahmad
2017-09-01
A prosthetic system to repair secondary tricuspid valve regurgitation was developed. The conceptual engineering of the current device is based on 3D segmental remodelling of the tricuspid valve annulus in lieu of reductive annuloplasty. This study was designed to investigate the operational safety of the current prosthetic system with regard to the anatomical integrity of the right coronary artery (RCA) in fresh cadaveric human hearts. During the study period, from January to April 2016, the current prosthetic system was implanted on the tricuspid valve annulus in fresh cadaveric human hearts that met the study's inclusion criteria. The prepared specimens were investigated via selective coronary angiography of the RCA in the catheterization laboratory. The RCA angiographic anatomies were categorized as normal, distorted, kinked or occluded. Sixteen specimens underwent implantation of the current prosthetic system. The mean age of the cadaveric human hearts was 43.24 ± 15.79 years, with vehicle accident being the primary cause of death (59%). A dominant RCA was noticed in 62.5% of the specimens. None of the specimens displayed any injury, distortion, kinking or occlusion in the RCA due to the implantation of the prostheses. In light of the results of the present study, undertaken on fresh cadaveric human heart specimens, the current segmental prosthetic system for 3D remodelling of the tricuspid valve annulus seems to be safe vis-à-vis the anatomical integrity of the RCA. Further in vivo studies are needed to investigate the functional features of the current prosthetic system with a view to addressing the complex pathophysiology of secondary tricuspid valve regurgitation. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Ferumoxytol MRA for transcatheter aortic valve replacement planning with renal insufficiency.
Kallianos, Kimberly; Henry, Travis S; Yeghiazarians, Yerem; Zimmet, Jeffrey; Shunk, Kendrick A; Tseng, Elaine E; Mahadevan, Vaikom; Hope, Michael D
2017-03-15
Computed tomography angiography (CTA) is the test of choice for pre-procedure imaging of transcatheter aortic valve replacement (TAVR) candidates. The iodinated contrast required, however, increases the risk of renal dysfunction in patients with pre-existing renal failure. Ferumoxytol is a magnetic resonance imaging (MRI) contrast agent that can be used with renal failure. Its long vascular resonance time allows gated MRA sequences that approach CTA in image quality. We present respiratory and cardiac gated MRA enabled by ferumoxytol that can be post-processed in an analogous fashion to CTA. Seven patients with renal failure presenting for TAVR were imaged with respiratory and cardiac gated MRA at 3T using ferumoxtyol for contrast. Aortic annulus, root and peripheral access dimensions were calculated in a fashion identical to that used for CTA. Of these, 6 patients underwent a TAVR procedure and 5 had intraoperative valve assessment with transesophageal echocardiograph (TEE) using standard clinical protocols that employed both two- and three-dimensional techniques. Good correlation between MRA aortic annulus measurements and those from TEE were shown in 5 patients with mean annulus area of 392.4mm 2 (290-470 range) versus 374.1mm 2 (285-440 range), with a pairwise correlation coefficient of 0.92, p=0.029. All patients received Sapien valve implants (one 20mm, three 23mm, and two 26mm valves). Access decisions were guided by MRA with no complications. Annulus sizing resulted in no greater than trace/mild aortic regurgitation in all patients. Ferumoxytol MRA is a safe alternative to CTA in patients with renal failure for pre-TAVR analysis of the aortic root and peripheral access. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Im, Yu-Mi; Park, Chun Soo; Park, Jeong-Jun; Yun, Tae-Jin
2016-03-01
Surgical techniques currently used for the repair of Ebstein's anomaly comprise reconstruction of the tricuspid valve mechanism at the level of the true annulus with or without plication of the atrialized right ventricle. However, performing this procedure for patients with a dysmorphic anterior leaflet (i.e., insufficient leaflet tissue and decreased mobility due to tethering) may necessitate technical modifications. A retrospective review was performed of 31 patients (seven males and 24 females, median age at operation 31 years) with Ebstein's anomaly, who underwent tricuspid valve repair between March 2002 and December 2014. The original Hetzer technique (annulus to annulus approximation) was employed for six patients with a well-formed anterior leaflet. In 25 patients, the tricuspid valve mechanism was restored at the displaced septal leaflet by approximating the anterior leaflet attachment in the true annulus to the displaced septal leaflet attachment in the mid-septum. A bidirectional superior cavopulmonary anastomosis was added in 27 of 31 (87%) patients. No early or late death occurred during the median follow-up of 66 months (1-138 months). Immediate postoperative tricuspid regurgitation was trivial to mild in 22 patients, and the median preoperative, immediate postoperative, and last follow-up tricuspid regurgitation jet areas in 21 adult patients were 23.3 cm2, 10.4 cm2, and 7.0 cm2, respectively. Two patients underwent reoperation at 81 and 119 months postoperatively. Five-year freedom from severe tricuspid regurgitation or reoperation was 93.2%. Restoration of the tricuspid valve mechanism at the level of displaced septal leaflet leads to excellent long-term outcomes. The addition of the bidirectional superior cavopulmonary anastomosis has contributed to the success of this technique. © 2016 Wiley Periodicals, Inc.
Hidalgo, Francisco; Mesa, Dolores; Ruiz, Martín; Delgado, Mónica; Rodríguez, Sara; Pardo, Laura; Pan, Manuel; López, Amador; Romero, Miguel A; Suárez de Lezo, José
2016-11-01
The percutaneous mitral valve repair procedure (MitraClip) appears to reduce mitral annulus diameter in patients with functional mitral regurgitation, but the relationship between this and regurgitation severity has not been demonstrated. The aim of this study was to determine the effect of mitral annulus remodeling on the reduction of mitral regurgitation in patients with functional etiology. The study included all patients with functional mitral regurgitation treated with MitraClip at our hospital until January 2015. Echocardiogram (iE33 model, Philips) was performed in all patients immediately after device positioning. Changes in the mitral annulus correlated with mitral regurgitation severity, as assessed using the effective regurgitant orifice area. The study included 23 patients (age, 65±14 years; 74% men; left ventricular ejection fraction, 31%±13%; systolic pulmonary artery pressure, 47±10 mmHg). After the procedure, the regurgitant orifice area decreased by 0.30 cm 2 ±0.04 cm 2 (P<.0005), from a baseline of 0.49 cm 2 ±0.09 cm 2 . Anteroposterior diameter decreased by 3.14 mm±1.01 mm (P<.0005) from a baseline of 28.27 mm±4.9 mm, with no changes in the intercommissural diameter (0.50 mm±0.91 mm vs 40.68 mm±4.7 mm; P=.26). A significant association was seen between anteroposterior diameter reduction and regurgitant orifice area reduction (r=.49; P=.020). In patients with functional mitral regurgitation, the MitraClip device produces an immediate reduction in the anteroposterior diameter. This remodeling may be related to the reduction in mitral regurgitation. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Tricuspid annuloplasty with the MC3 ring and septal plication technique.
Isomura, Tadashi; Hirota, Masanori; Hoshino, Joji; Fukada, Yasuhisa; Kondo, Taichi; Takahashi, Yu
2015-01-01
Functional tricuspid regurgitation is caused by annular dilation mainly in the posterior annulus. However, ring annuloplasty does not always prevent the recurrence of tricuspid regurgitation due to dilation of the septal annulus. We developed a septal plication technique with a 3-dimensional MC3 ring. Between 2006 and 2011, 76 patients (male/female 30/46; mean age 68 ± 11 years) with functional tricuspid regurgitation received tricuspid ring annuloplasty. After placement of the annular sutures, the 3 commissural ring portions were fixed on the equivalent commissures to plicate the anterior and posterior annulus. The end of the septal ring portion was fixed at the optimal annular position to obtain minimal tricuspid regurgitation. All patients were followed-up for a mean of 47 ± 18 months; the longest duration was 79 months. Although there was no operative death, one patient died of sepsis during hospitalization (hospital mortality 1.3%). After implantation of the MC3 ring (mean size 31.0 ± 3.3 mm), additional edge-to-edge sutures were required for minor leakage in 5 (7%) patients. The degree of tricuspid regurgitation was significantly reduced at discharge (0.5 ± 0.6) and midterm (0.6 ± 0.6) compared to 2.5 ± 0.7 before the operation (p < 0.0001). The surgical durability of the MC3 ring was satisfactory at early and midterm follow-up, suggesting that correct plication of the septal annulus is effective for tricuspid ring annuloplasty with a 3-dimensional MC3 ring. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Nacar, Alper Buğra; Acar, Gürkan; Yorgun, Hikmet; Akçay, Ahmet; Özkaya, Mesut; Canpolat, Uğur; Akkoyun, Murat; Tuncer, Cemal
2012-09-01
Prolonged atrial conduction time measured by tissue Doppler imaging (TDI) has been associated with increased risk of atrial fibrillation. We aimed to evaluate the effect of subclinical hyperthyroidism (SH) and antithyroid treatment on atrial conduction time. A total of 30 patients with SH (26 females; mean age 34.8 ± 8.5 years) and 30 age- and gender-matched controls were included. Using TDI, atrial conduction time was measured from the lateral mitral annulus, septal mitral annulus, and lateral tricuspid annulus. Intra- and interatrial conduction delay were calculated. TDI and thyroid hormone levels were studied at the time of enrollment and after achievement of euthyroid state with propylthiouracil treatment. Patients were followed for 14 ± 3 weeks. Atrial conduction time at the lateral and septal mitral annulus were significantly higher in patients with SH compared to controls. Both inter-, right, and left intraatrial electromechanical delay were prolonged in patients with SH compared to control subjects (21.3 ± 6.1 vs. 13.9 ± 4.3, P < 0.001 and 4.2 ± 3.5 vs. 2.3 ± 1.9, P = 0.014 and 17.1 ± 6.0 vs. 11.6 ± 3.8, P < 0.001, respectively). After achievement of euthyroid state, inter- and left intraatrial electromechanical delay were significantly decreased compared to baseline values and approximated to the values of the control group (P < 0.001). SH is associated with prolonged atrial conduction time. After achievement of euthyroid state, decrement in atrial conduction time may reveal how the antithyroid treatment may prevent the development of atrial fibrillation in these patients. © 2012, Wiley Periodicals, Inc.
Centrifugal shot blasting. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1999-07-01
At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.
A 100-kWt NaK-Cooled Space Reactor Concept for an Early-Flight Mission
NASA Astrophysics Data System (ADS)
Poston, David I.
2003-01-01
A stainless-steel (SS) sodium-potassium (NaK) cooled reactor could potentially be the first step in utilizing fission technology in space. The sum of all system-level experience for liquid-metal-cooled space reactors has been with NaK, including the SNAP-10a, the only reactor ever launched by the US. This paper describes a 100-kWt NaK reactor, the NaK-100, which is designed to be developed with minimal technical risk. In additional to NaK technology heritage, the NaK-100 uses a proven fuel-form (SS/UO2) and is designed for simplified system integration and testing. The pins are placed within a solid SS prism, and the NaK flows in an annulus between the pins and the prism. The nuclear and thermal-hydraulic performance of the NaK-100 is presented, as well as the major differences between the NaK-100 and SNAP-10a.
Practical operational implementation of Teton Pass avalanche monitoring infrasound system.
DOT National Transportation Integrated Search
2008-12-01
Highway snow avalanche forecasting programs typically rely on weather and field observations to make road closure and hazard : evaluations. Recently, infrasonic avalanche monitoring technology has been developed for practical use near Teton Pass, WY ...
NASA Technical Reports Server (NTRS)
Olson, R. L.; Gustan, E. A.; Vinopal, T. J.
1985-01-01
Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.
Wyles, Cody C; Taunton, Michael J; Jacobson, Steven R; Tran, Nho V; Sierra, Rafael J; Trousdale, Robert T
2015-01-01
Wound necrosis is a potentially devastating complication of complex knee reconstruction. Laser-assisted indocyanine green angiography (LA-ICGA) is a technology that has been described in the plastic surgery literature to provide an objective assessment of skin perfusion in the operating room. This novel technology uses a plasma protein bound dye (ICG) and a camera unit that is calibrated to view the frequency emitted by the dye. The intention of this technology is to offer real-time visualization of blood flow to skin and soft tissue in a way that might help surgeons make decisions about closure or coverage of a surgical site based on blood flow, potentially avoiding soft tissue reconstruction while preventing skin necrosis or wound breakdown after primary closures, but its efficacy is untested in the setting of complex TKA. The purpose of this study was to evaluate perfusion borders and tension ischemia in a series of complex knee reconstructions to guide optimal wound management. Beginning in mid-2011, an LA-ICGA system was used to evaluate soft tissue viability in knee reconstruction procedures that were considered high risk for wound complications. Seven patients undergoing complex primary or revision TKA from 2011 to 2013 were included. These patients were chosen as a convenience sample of knee reconstruction procedures for which we obtained consultation with the plastic surgery service. The perfusion of skin and soft tissue coverage was evaluated intraoperatively for all patients with the LA-ICGA system, and the information was used to guide wound management. Followup was at a mean of 9 months (range, 6-17 months), no patients were lost to followup, and the main study endpoint was uneventful healing of the surgical incision. All seven closures went on to heal without necrosis. One patient, however, was subsequently revised for a deep periprosthetic infection 4 months after their knee reconstruction and underwent flap coverage at the time of that revision. Implementation of LA-ICGA provides an objective intraoperative assessment of soft tissue perfusion. This technology may help guide the surgeon's decisions about wound closure in real-time to accommodate the perfusion challenges unique to each patient. Specifically, patients with medical risk factors for poor perfusion or wound healing (such as diabetes, peripheral vascular disease, tobacco use, corticosteroid therapy, infection) or anatomical/surgical risk factors (ie, previous surgery about the reconstruction site, trauma wounds, or reconstruction of severe deformity) may benefit from objective intraoperative information regarding perfusion of the wound site. Furthermore, LA-ICGA could be used to prospectively evaluate the physiologic impact of different wound closure techniques. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Methods of performing downhole operations using orbital vibrator energy sources
Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.
2004-02-17
Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1993-01-01
The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.
Absence of posterior tricuspid valve leaflet and valve reconstruction
Komoda, Takeshi; Stamm, Christof; Fleck, Eckart; Hetzer, Roland
2012-01-01
We report a rare case of the absence of a posterior tricuspid valve leaflet. A male patient, aged 46, suffering from severe tricuspid valve regurgitation (TR) of unknown aetiology and atrial septal aneurysm was referred to our hospital for surgery. On surgical inspection, the posterior tricuspid valve leaflet and its subvalvular apparatus were completely absent and only the valve annulus was seen in the corresponding position. The anterior and septal leaflets were normal. We successfully reconstructed the tricuspid valve as follows: the head of an anterior papillary muscle was approximated to the ventricular septum (Sebening stitch). After the approximation of the centre of the tricuspid annulus of the anterior leaflet to the tricuspid annulus on the opposite side, a sizer of 29 mm in diameter was easily passed through the anterior orifice. The posterior orifice was closed with running sutures (posterior annulorrhaphy after Hetzer). Before these procedures, we attempted to reconstruct the tricuspid valve with a posterior annulorrhaphy alone; however, valve competence was insufficient. A Sebening stitch was necessary to improve the valve competence. Echocardiography showed TR grade 1 at the patient's discharge from hospital and TR grade 1 to 2 at the follow-up, 10 months after the operation. PMID:22419794
NASA Technical Reports Server (NTRS)
1975-01-01
The main tasks described involved an interferometric evaluation of several cubes, a prediction of their dihedral angles, a comparison of these predictions with independent measurements, a prediction and comparison of far field performance, recommendations as to revised dihedral angles and a subsequent analysis of cubes which were reworked to confirm the recommendations. A tolerance study and theoretical evaluation of several cubes was also performed to aid in understanding the results. The far field characteristics evaluated included polarization effects and treated both intensity distribution and encircled energy data. The energy in the 13.2 - 16.9 arc-sec annular region was tabulated as an indicator of performance sensitivity. The results are provided in viewgraph form, and show the average dihedral angle of an original set of test cubes to have been 1.8 arc-sec with an average far field annulus diameter of 18 arc-sec. Since the peak energy in the 13.2 - 16.9 arc-sec annulus was found to occur for a 1.35 arc-sec cube, and since cube tolerances were shown to increase the annulus diameter slightly, a nominal dihedral angle of 1.25 arc-sec was recommended.
Postpneumonectomy Compression of the Mitral Annulus: Rare Vascular Complication in Sportive Patient.
Debeaumont, David; Bota, Susana; Baste, Jean-Marc; Bellefleur, Marie; Stepowski, Dimitri; Vincent, Florence; Bonnevie, Tristan; Gravier, Francis-Edouard; Netchitailo, Marie; Tardif, Catherine; Boutry, Alain; Muir, Jean-François; Coquart, Jérémy
2016-01-01
Numerous postpneumonectomy complications exist. We present a rare clinical case of postpneumonectomy exertional dyspnea revealing compression of the mitral annulus by the descending aorta. The patient was 42-year-old former smoker with pulmonary emphysema. He has been operated on, in 2012 (i.e., right pneumonectomy). Before the surgery, the patient was a recreational runner. However, after some months, it was difficult for the patient to resume running. Cardiopulmonary exercise testing indicated moderate exercise intolerance with important oxygen desaturation. More interestingly, a decrease of low oxygen pulse was noticed from the first ventilatory threshold with no electrical modification on the electrocardiogram. This decrease was indicative of a decline in stroke volume. The thoracic scan revealed a right pneumonectomy pocket with a liquid abnormal content. Moreover, the mediastinum had shifted toward the pneumonectomy space and the left lung was distended and emphysematous. Echocardiography revealed a major change in the mediastinal anatomy. The mitral annulus was observed to be compressed by the rear wall of the descending aorta. The diagnosis of postpneumonectomy syndrome or platypnea-orthodeoxia syndrome was ruled out in this patient. Mitral annular compression by the descending aorta is rare complication, which must be researched in patients with postpneumonectomy exertional dyspnea.
Postpneumonectomy Compression of the Mitral Annulus: Rare Vascular Complication in Sportive Patient
Debeaumont, David; Bota, Susana; Baste, Jean-Marc; Bellefleur, Marie; Stepowski, Dimitri; Vincent, Florence; Bonnevie, Tristan; Gravier, Francis-Edouard; Netchitailo, Marie; Tardif, Catherine; Boutry, Alain; Muir, Jean-François
2016-01-01
Numerous postpneumonectomy complications exist. We present a rare clinical case of postpneumonectomy exertional dyspnea revealing compression of the mitral annulus by the descending aorta. The patient was 42-year-old former smoker with pulmonary emphysema. He has been operated on, in 2012 (i.e., right pneumonectomy). Before the surgery, the patient was a recreational runner. However, after some months, it was difficult for the patient to resume running. Cardiopulmonary exercise testing indicated moderate exercise intolerance with important oxygen desaturation. More interestingly, a decrease of low oxygen pulse was noticed from the first ventilatory threshold with no electrical modification on the electrocardiogram. This decrease was indicative of a decline in stroke volume. The thoracic scan revealed a right pneumonectomy pocket with a liquid abnormal content. Moreover, the mediastinum had shifted toward the pneumonectomy space and the left lung was distended and emphysematous. Echocardiography revealed a major change in the mediastinal anatomy. The mitral annulus was observed to be compressed by the rear wall of the descending aorta. The diagnosis of postpneumonectomy syndrome or platypnea-orthodeoxia syndrome was ruled out in this patient. Mitral annular compression by the descending aorta is rare complication, which must be researched in patients with postpneumonectomy exertional dyspnea. PMID:28116204
Yang, Xinlin; Wang, Daidong; Hao, Jianrong; Gong, Meiqing; Arlet, Vincent; Balian, Gary; Shen, Francis H; Li, Xudong Joshua
2011-06-01
Tissue engineering is a promising approach for treatment of disc degeneration. Herein, we evaluated effects of rotating bioreactor culture on the extracellular matrix production and proliferation of human annulus fibrosus (AF) cells. AF cells were embedded into alginate beads, and then cultured up to 3 weeks in a rotating wall vessel bioreactor or a static vessel. By real-time reverse transcription-polymerase chain reaction, expression of aggrecan, collagen type I and type II, and collagen prolyl 4-hydroxylase II was remarkably elevated, whereas expression of matrix metalloproteinase 3 and a disintegrin and metalloproteinase with thrombospondin motifs 5 was significantly decreased under bioreactor. Biochemical analysis revealed that the levels of the whole cell-associated proteoglycan and collagen were approximately five- and twofolds in rotating bioreactor, respectively, compared to those in static culture. Moreover, AF cell proliferation was augmented in rotating bioreactor. DNA contents were threefolds higher in rotating bioreactor than that in static culture. Expression of the proliferating cell nuclear antigen was robustly enhanced in rotating bioreactor as early as 1 week. Our findings suggested that rotating bioreactor culture would be an effective technique for expansion of human annulus cells for tissue engineering driven treatment of disc degeneration.
Stelzeneder, David; Welsch, Goetz Hannes; Kovács, Balázs Krisztián; Goed, Sabine; Paternostro-Sluga, Tatjana; Vlychou, Marianna; Friedrich, Klaus; Mamisch, Tallal Charles; Trattnig, Siegfried
2012-02-01
The purpose of our investigation was to compare quantitative T2 relaxation time measurement evaluation of lumbar intervertebral discs with morphological grading in young to middle-aged patients with low back pain, using a standardized region-of-interest evaluation approach. Three hundred thirty lumbar discs from 66 patients (mean age, 39 years) with low back pain were examined on a 3.0T MR unit. Sagittal T1-FSE, sagittal, coronal, and axial T2-weighted FSE for morphological MRI, as well as a multi-echo spin-echo sequence for T2 mapping, were performed. Morphologically, all discs were classified according to Pfirrmann et al. Equally sized rectangular regions of interest (ROIs) for the annulus fibrosus were selected anteriorly and posteriorly in the outermost 20% of the disc. The space between was defined as the nucleus pulposus. To assess the reproducibility of this evaluation, inter- and intraobserver statistics were performed. The Pfirrmann scoring of 330 discs showed the following results: grade I: six discs (1.8%); grade II: 189 (57.3%); grade III: 96 (29.1%); grade IV: 38 (11.5%); and grade V: one (0.3%). The mean T2 values (in milliseconds) for the anterior and the posterior annulus, and the nucleus pulposus for the respective Pfirrmann groups were: I: 57/30/239; II: 44/67/129; III: 42/51/82; and IV: 42/44/56. The nucleus pulposus T2 values showed a stepwise decrease from Pfirrmann grade I to IV. The posterior annulus showed the highest T2 values in Pfirrmann group II, while the anterior annulus showed relatively constant T2 values in all Pfirrmann groups. The inter- and intraobserver analysis yielded intraclass correlation coefficients (ICC) for average measures in a range from 0.82 (anterior annulus) to 0.99 (nucleus). Our standardized method of region-specific quantitative T2 relaxation time evaluation seems to be able to characterize different degrees of disc degeneration quantitatively. The reproducibility of our ROI measurements is sufficient to encourage the use of this method in future investigations, particularly for longitudinal studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Joshi, Abhijeet Bhaskar
The origin of the lower back pain is often the degenerated lumbar intervertebral disc (IVD). We are proposing replacement of the degenerated nucleus by a PVA/PVP polymeric hydrogel implant. We hypothesize that a polymeric hydrogel nucleus implant can restore the normal biomechanics of the denucleated IVD by mimicking the natural load transfer phenomenon as in case of the intact IVD. Lumbar IVDs (n = 15) were harvested from human cadavers. In the first part, specimens were tested in four different conditions for compression: Intact, bone in plug, denucleated and Implanted. Hydrogel nucleus implants were chosen to have line-to-line fit in the created nuclear cavity. In the second part, nucleus implant material (modulus) and geometric (height and diameter) parameters were varied and specimens (n = 9) were tested. Nucleus implants with line-to-line fit significantly restored (88%) the compressive stiffness of the denucleated IVD. The synergistic effect between the implant and the intact annulus resulted in the nonlinear increase in implanted IVD stiffness, where Poisson effect of the hydrogel played major role. Nucleus implant parameters were observed to have a significant effect on the compressive stiffness. All implants with modulus in the tested range restored the compressive stiffness. The undersize implants resulted in incomplete restoration while oversize implants resulted in complete restoration compared to the BI condition. Finite element models (FEM) were developed to simulate the actual test conditions and validated against the experimental results for all conditions. The annulus (defined as hyperelastic, isotropic) mainly determined the nonlinear response of the IVD. Validated FEMs predicted 120--3000 kPa as a feasible range for nucleus implant modulus. FEMs also predicted that overdiameter implant would be more effective than overheight implant in terms of stiffness restoration. Underdiameter implants, initially allowed inward deformation of the annulus and hence were less effective compared to underheight implants. This research successfully proved the feasibility of PVA/PVP polymeric hydrogel as a replacement for degenerated nucleus. This approach may reduce the abnormal stresses on the annulus and thus, prevent/postpone the degeneration of the annulus. A validated FEM can be used as a design tool for optimization of hydrogel nucleus implants design and related feasibility studies.
Guthrie, Kathleen M.; Agarwal, Ankit; Teixeira, Leandro B. C.; Dubielzig, Richard R.; Abbott, Nicholas L.; Murphy, Christopher J.; Singh, Harpreet; McAnulty, Jonathan F.; Schurr, Michael J.
2013-01-01
Silver is a commonly used topical antimicrobial. However, technologies to immobilize silver at the wound surface are lacking, while currently available silver-containing wound dressings release excess silver that can be cytotoxic and impair wound healing. We have shown that precise concentrations of silver at lower levels can be immobilized into a wound bed using a polyelectrolyte multilayer (PEM) attachment technology. These silver nanoparticle-impregnated PEMs are non-cytotoxic yet bactericidal in vitro, but their effect on wound healing in vivo was previously unknown. Objective The purpose of this study was to determine the effect on wound healing of integrating silver nanoparticle/PEMs into the wound bed. Methods A full-thickness, splinted, excisional murine wound healing model was employed in both phenotypically normal mice and spontaneously diabetic mice (healing impaired model). Results Gross image measurements showed an initial small lag in healing in the silver-treated wounds in diabetic mice, but no difference in time to complete wound closure in either normal or diabetic mice. Histological analysis showed modest differences between silver-treated and control groups on day 9, but no difference between groups at the time of wound closure. Conclusions We conclude that silver nanoparticle/PEMs can be safely integrated into the wound beds of both normal and diabetic mice without delaying wound closure, and with transient histological effects. The results of this study suggest the feasibility of this technology for use as a platform to effect nanoscale wound engineering approaches to microbial prophylaxis or to augment wound healing. PMID:23511285
Stewart, Ellen; Aitken, Mhairi
2015-12-01
Many policymakers, researchers and commentators argue that hospital closures are necessary as health systems adapt to new technological and financial contexts, and as population health needs in developed countries shift. However closures are often unpopular with local communities. Previous research has characterised public opposition as an obstacle to change. Public opposition to the siting of wind farms, often described as NIMBYism (Not In My Back Yard), is a useful comparator issue to the perceived NOOMBYism (Not Out Of My Back Yard) of hospital closure protestors. The analysis of public attitudes to wind farms has moved from a fairly crude characterisation of the 'attitude-behaviour gap' between publics who support the idea of wind energy, but oppose local wind farms, to empirical, often qualitative, studies of public perspectives. These have emphasised the complexity of public attitudes, and revealed some of the 'rational' concerns which lie beneath protests. Research has also explored processes of community engagement within the wind farm decision-making process, and the crucial role of trust between communities, authorities, and developers. Drawing on what has been learnt from studies of opposition to wind farms, we suggest a range of questions and approaches to explore public perspectives on hospital closure more thoroughly. Understanding the range of public responses to service change is an important first step in resolving the practical dilemma of effecting health system transformation in a democratic fashion.
PREDICTING BACTERIAL CONCENTRATION ON THE NATION'S BEACHES
A classical example of the failure of institutions and environmental technology to protect the nation's aesthetic, recreational, and public health values is represented by the July-August, 1999 Huntington Beach, California beach closure. This multi-million dollar regional public ...
Observations and Models of Highly Intermittent Phytoplankton Distributions
Mandal, Sandip; Locke, Christopher; Tanaka, Mamoru; Yamazaki, Hidekatsu
2014-01-01
The measurement of phytoplankton distributions in ocean ecosystems provides the basis for elucidating the influences of physical processes on plankton dynamics. Technological advances allow for measurement of phytoplankton data to greater resolution, displaying high spatial variability. In conventional mathematical models, the mean value of the measured variable is approximated to compare with the model output, which may misinterpret the reality of planktonic ecosystems, especially at the microscale level. To consider intermittency of variables, in this work, a new modelling approach to the planktonic ecosystem is applied, called the closure approach. Using this approach for a simple nutrient-phytoplankton model, we have shown how consideration of the fluctuating parts of model variables can affect system dynamics. Also, we have found a critical value of variance of overall fluctuating terms below which the conventional non-closure model and the mean value from the closure model exhibit the same result. This analysis gives an idea about the importance of the fluctuating parts of model variables and about when to use the closure approach. Comparisons of plot of mean versus standard deviation of phytoplankton at different depths, obtained using this new approach with real observations, give this approach good conformity. PMID:24787740
77 FR 4550 - Promising and Practical Strategies to Increase Postsecondary Success
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
... Education. Appendix A: Standard Keywords and Tags Accelerated Learning Achievement Gap Closure Adult Education Affordability Assessment Technology Badges Basic Skills Blended Learning Block Scheduling [[Page... Collection/Use Degree Attainment Developmental/Remedial Education Digital Materials Dual Degrees Earn and...
10 CFR 960.4-2-3 - Rock characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction... engineering measures beyond reasonably available technology for the construction, operation, and closure of..., brine migration, or other physical, chemical, or radiation-related phenomena that could be expected to...
10 CFR 960.4-2-3 - Rock characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction... engineering measures beyond reasonably available technology for the construction, operation, and closure of..., brine migration, or other physical, chemical, or radiation-related phenomena that could be expected to...
REQUIREMENTS FOR HAZARDOUS WASTE LANDFILL DESIGN, CONSTRUCTION AND CLOSURE
This publication contains edited versions of the material presented at ten Technology Transfer seminars conducted in 1988 on this subject. Sections are included on design of clay and flexible membrane liners, leachate collector systems, and landfill covers. Construction quality a...
40 CFR 265.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the wastes, application of advanced technology, or alternative disposal, treatment, or re-use.... 265.118 Section 265.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT...
The design and development of transonic multistage compressors
NASA Technical Reports Server (NTRS)
Ball, C. L.; Steinke, R. J.; Newman, F. A.
1988-01-01
The development of the transonic multistage compressor is reviewed. Changing trends in design and performance parameters are noted. These changes are related to advances in compressor aerodynamics, computational fluid mechanics and other enabling technologies. The parameters normally given to the designer and those that need to be established during the design process are identified. Criteria and procedures used in the selection of these parameters are presented. The selection of tip speed, aerodynamic loading, flowpath geometry, incidence and deviation angles, blade/vane geometry, blade/vane solidity, stage reaction, aerodynamic blockage, inlet flow per unit annulus area, stage/overall velocity ratio, and aerodynamic losses are considered. Trends in these parameters both spanwise and axially through the machine are highlighted. The effects of flow mixing and methods for accounting for the mixing in the design process are discussed.
CO2CARE - Site Closure Assessment Research - Recent Results
NASA Astrophysics Data System (ADS)
Wipki, Mario; Liebscher, Axel; Kühn, Michael; Lüth, Stefan; Durucan, Sevket; Deflandre, Jean-Pierre; Wollenweber, Jens; Chadwick, Andy; Böhm, Gualtiero
2013-04-01
The EU project CO2CARE, which started in January 2011, supports the large scale demonstration of CCS technology by addressing requirements of operators and regulators face in terms of CO2 storage site abandonment. The CO2CARE consortium, consisting of 24 project partners from universities, research institutes, and the industry, investigate technologies and procedures for abandonment and post-closure safety, satisfying the regulatory requirements for the transfer of responsibility. Nine key injections sites in Europe, USA, Japan, and Australia, each with a specific (hydro) geological and environmental character, were selected for investigations. These sites can be divided into the CO2 storage types on-shore, off-shore, natural CO2 reservoir, depleted gas reservoirs, and saline aquifers. The project mainly focuses on three key areas: - well abandonment and long-term integrity; - reservoir management and prediction from closure to the long-term; - risk management methodologies for long-term safety. These key areas are in turn closely linked to the three high-level requirements of the EU Directive 2009/31/EC, Article 18 for CO2 storage which are: (i) absence of any detectable leakage, (ii) conformity of actual behaviour of the injected CO2 with the modeled behaviour, and (iii) the storage site is evolving towards a situation of long-term stability. The identification of criteria and the development of site abandonment procedures and technologies, which guarantee the fulfillment of the high-level requirements, are the major objectives in CO2CARE. These criteria have to be fulfilled prior to subsequent transfer of responsibility to the competent authorities, typically 20 or 30 years after site closure. Finally, the essential results of the different working groups in CO2CARE will feed into overall guidelines for regulatory compliance and "Best Practice" for site abandonment. Dissemination of the results will show policy makers and the general public how site abandonment procedures for CO2 storage sites can be undertaken sustainably, cost-effectively and with no adverse effect to the local population and the natural environment. After more than two-thirds of the project`s lifetime, an overview of the project`s goals and the most relevant research findings are presented.
Advanced Technologies to Improve Closure of Life Support Systems
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2016-01-01
As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.
NASA Technical Reports Server (NTRS)
Kovich, G.; Moore, R. D.; Urasek, D. C.
1973-01-01
The overall and blade-element performance are presented for an air compressor stage designed to study the effect of weight flow per unit annulus area on efficiency and flow range. At the design speed of 424.8 m/sec the peak efficiency of 0.81 occurred at the design weight flow and a total pressure ratio of 1.56. Design pressure ratio and weight flow were 1.57 and 29.5 kg/sec (65.0 lb/sec), respectively. Stall margin at design speed was 19 percent based on the weight flow and pressure ratio at peak efficiency and at stall.
Bifurcation of Limit Cycles in a Near-Hamiltonian System with a Cusp of Order Two and a Saddle
NASA Astrophysics Data System (ADS)
Bakhshalizadeh, Ali; Zangeneh, Hamid R. Z.; Kazemi, Rasool
In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.
Bimodal spatial distribution of macular pigment: evidence of a gender relationship
NASA Astrophysics Data System (ADS)
Delori, François C.; Goger, Douglas G.; Keilhauer, Claudia; Salvetti, Paola; Staurenghi, Giovanni
2006-03-01
The spatial distribution of the optical density of the human macular pigment measured by two-wavelength autofluorescence imaging exhibits in over half of the subjects an annulus of higher density superimposed on a central exponential-like distribution. This annulus is located at about 0.7° from the fovea. Women have broader distributions than men, and they are more likely to exhibit this bimodal distribution. Maxwell's spot reported by subjects matches the measured distribution of their pigment. Evidence that the shape of the foveal depression may be gender related leads us to hypothesize that differences in macular pigment distribution are related to anatomical differences in the shape of the foveal depression.
Yuan, Yuan; Long, Deyong; Dong, Jianzeng; Tao, Ling; Ma, Changsheng
2017-12-01
We report a case of a patient with right axillary ventricular. Similar congenital anomaly of the right atrium was reported as "right appendage diverticulum or right atrial diverticulum." However, this independent chamber has its own annulus, synchronizes with the right ventricular, and generates large ventricular potential. Under the guidance of the CARTO mapping system (Biosense Webster, Diamond Bar, CA, USA), a right atrioventricular accessory pathway associated with type B Wolff-Parkinson-White syndrome was ablated successfully. This pathway was close to the annulus of the axillary ventricular. The patient remained free of arrhythmia at 1-year follow-up. © 2017 Wiley Periodicals, Inc.
MATERIALS SUPPORTING THE NEW RECREATIONAL WATER QUALITY CRITERIA FOR PATHOGENS
EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures...
Raspovic, Katherine M; Wukich, Dane K; Naiman, Daniel Q; Lavery, Lawrence A; Kirsner, Robert S; Kim, Paul J; Steinberg, John S; Attinger, Christopher E; Danilkovitch, Alla
2018-04-23
In a multicenter randomized controlled trial (RCT), the use of viable cryopreserved placental membrane (vCPM) for chronic diabetic foot ulcers (DFUs) resulted in a higher proportion of wound closure in comparison to good wound care: 62% vs. 21% (p < 0.01). However, patients in RCTs are not representative of daily physician practice. Healthcare databases serve as a valuable tool to evaluate therapy effectiveness and to supplement evidence from RCTs. The objective of this study was to evaluate the effectiveness of vCPM for DFU management using Net Health's WoundExpert ® electronic health records (EHR). The primary endpoint was the proportion of DFUs that achieved complete closure. Other endpoints included time and number of grafts to closure, probability of wound closure by week 12, and the number of wound-related infections and amputations. De-identified EHR data for 360 patients with 441 wounds treated with vCPM were extracted from the database. Average patient age was 63.7 years with a mean wound size of 5.1 cm 2 and an average wound duration of 102 days prior to vCPM treatment. For evaluation of clinical outcomes, 350 DFUs larger than 0.25 cm 2 at baseline were analyzed. Closure at the end of treatment was achieved in 59.4% of wounds with a median treatment duration of 42.0 days and 4 applications of vCPM. The probability of wound closure at week 12 was 71%, and the number of amputations and wound-related infections was 13 (3.0%) and 9 (2.0%), respectively. Data also demonstrated a correlation between wound size and closure rate as well as a correlation between > 50% wound area reduction by week 4 and wound closure by week 12. The results of this study mirror previous RCT efficacy data, supporting the benefits of vCPM for DFU management. These results can also influence policy and treatment decisions regarding advanced vCPM technology. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.
Safety Oversight of Decommissioning Activities at DOE Nuclear Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zull, Lawrence M.; Yeniscavich, William
2008-01-15
The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less
Unexpected delayed complete atrioventricular block after Cardioband implantation.
Sorini Dini, Carlotta; Landi, Daniele; Meucci, Francesco; Di Mario, Carlo
2018-03-06
The Cardioband system is a transcatheter direct annuloplasty device that is implanted in patients with severe symptomatic functional mitral regurgitation (MR) due to annulus dilatation and high surgical risk. This device covers the posterior two-thirds of the annulus, from the anterolateral to the posteromedial commissure, implanted in close proximity of the left circumflex artery, atrioventricular (AV) conduction system, and coronary sinus. We present the case of an 80-year-old-gentleman with prohibitive surgical risk, treated with Cardioband implantation for functional MR with an evident P1-P2 cleft and P2-P3 indentation, a relative contraindication to MitraClip implantation. We achieved procedural success with significative mitral annulus reduction (30% anteroposterior reduction from 37 to 26 mm) and MR reduction (from grade 4 to grade 1-2). A late onset Mobitz 2 AV block developed after 26 hr and evolved to complete AV block in the following day, requiring definitive biventricular pacemaker (PM). Less than 200 Cardioband implantations have been performed but, to our knowledge, this is the first reported AV block, possibly facilitated by the pre-existing bifascicular block, suggesting the opportunity of prolonged ECG monitoring after Cardioband like any other mechanical transcatheter structural intervention possibly affecting the AV conduction system. © 2018 Wiley Periodicals, Inc.
Cagdas, Metin; Velibey, Yalcin; Guvenc, Tolga Sinan; Gungor, Baris; Guzelburc, Ozge; Calik, Nazmi; Ugur, Murat; Tekkesin, Ahmet Ilker; Gurkan, Kadir; Eren, Mehmet
2015-01-01
Atrial electromechanical delay (AEMD) that reflects delayed conduction may show us the clinical reflection of pathological changes in the atria. The main objective of the present study is to investigate AEMD in patients who had previous rheumatic carditis but without hemodynamically significant valvular disease. A total of 40 patients, previously diagnosed as rheumatic carditis but without significant valvular stenosis/regurgitation and atrial enlargement; and 39 age- and-sex matched controls were enrolled for the present study. Parameters of AEMD (lateral mitral annulus electromechanical delay, septal mitral annulus electromechanical delay and lateral tricuspid annulus electromechanical delay) were measured with tissue Doppler echocardiography and left intra-atrial and inter-atrial conduction times were calculated accordingly. A 24h ambulatory Holter monitoring was used in both groups to detect atrial fibrillation episodes and quantify atrial extrasystoles. Parameters of AEMD, including left intra-atrial and inter-atrial conduction times of subjects in the study group were longer compared to the control group (23.7 ± 7.0 vs. 18.3 ± 6.2). Increased AEMD is observed in patients with previous rheumatic carditis and no significant valvular stenosis/regurgitation and atrial enlargement, which may partly explain the increased incidence of atrial fibrillation observed in these patients.
Calafiore, Antonio Maria; Bartoloni, Giovanni; Al Amri, Hussein; Iacò, Angela Lorena; Abukhudair, Walid; Lanzaro, Bianca Iadanza; Di Mauro, Michele
2012-11-01
The tricuspid valve (TV) lies in between the right atrium and the right ventricle (RV), consisting of annulus, leaflets, chords and papillary muscles. The RV appears triangular-shaped in a lateral view and crescent-shaped in a cross-section one. In normal conditions, the septum is concave toward the left ventricle (LV) in both systole and diastole and the RV volume is larger than the LV volume, although its mass is a third of the LV. The strict relationship between the TV apparatus and the RV underlies the physiological mechanism of TV functioning, and so, the RV plays an important role in case of functional tricuspid regurgitation. Nevertheless, the systematic assessment of RV is still not performed mainly due to lack of standardization. Hence, new echocardiographic guidelines have recently been proposed to standardize the RV assessment using transthoracic 2D‑echocardiography. 3D-echocardiography and MRI are more useful to measure volumes and ejection fraction; in particular, MRI is able to provide a tissue evaluation. Today, surgical strategies are directed mainly to the annulus with fluctuating results because functional tricuspid regurgitation is not due only to the annulus but also to the RV, which is difficult to assess, due to its evolution being unpredictable and complicated by the interaction with LV.
Small aspect ratio Taylor-Couette flow: onset of a very-low-frequency three-torus state.
Lopez, Juan M; Marques, Francisco
2003-09-01
The nonlinear dynamics of Taylor-Couette flow in a small aspect ratio annulus (where the length of the cylinders is half of the annular gap between them) is investigated by numerically solving the full three-dimensional Navier-Stokes equations. The system is invariant to arbitrary rotations about the annulus axis and to a reflection about the annulus half-height, so that the symmetry group is SO(2)xZ2. In this paper, we systematically investigate primary and subsequent bifurcations of the basic state, concentrating on a parameter regime where the basic state becomes unstable via Hopf bifurcations. We derive the four distinct cases for the symmetries of the bifurcated orbit, and numerically find two of these. In the parameter regime considered, we also locate the codimension-two double Hopf bifurcation where these two Hopf bifurcations coincide. Secondary Hopf bifurcations (Neimark-Sacker bifurcations), leading to modulated rotating waves, are subsequently found and a saddle-node-infinite-period bifurcation between a stable (node) and an unstable (saddle) modulated rotating wave is located, which gives rise to a very-low-frequency three-torus. This paper provides the computed example of such a state, along with a comprehensive bifurcation sequence leading to its onset.
Silicon sample holder for molecular beam epitaxy on pre-fabricated integrated circuits
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor)
1994-01-01
The sample holder of the invention is formed of the same semiconductor crystal as the integrated circuit on which the molecular beam expitaxial process is to be performed. In the preferred embodiment, the sample holder comprises three stacked micro-machined silicon wafers: a silicon base wafer having a square micro-machined center opening corresponding in size and shape to the active area of a CCD imager chip, a silicon center wafer micro-machined as an annulus having radially inwardly pointing fingers whose ends abut the edges of and center the CCD imager chip within the annulus, and a silicon top wafer micro-machined as an annulus having cantilevered membranes which extend over the top of the CCD imager chip. The micro-machined silicon wafers are stacked in the order given above with the CCD imager chip centered in the center wafer and sandwiched between the base and top wafers. The thickness of the center wafer is about 20% less than the thickness of the CCD imager chip. Preferably, four titanium wires, each grasping the edges of the top and base wafers, compress all three wafers together, flexing the cantilever fingers of the top wafer to accommodate the thickness of the CCD imager chip, acting as a spring holding the CCD imager chip in place.
NASA Astrophysics Data System (ADS)
Shahzadi, Iqra; Nadeem, S.; Rabiei, Faranak
The current article deals with the combine effects of single wall carbon nanotubes and effective viscosity for the peristaltic flow of nanofluid through annulus. The nature of the walls is assumed to be permeable. The present theoretical model can be considered as mathematical representation to the motion of conductive physiological fluids in the existence of the endoscope tube which has many biomedical applications such as drug delivery system. The outer tube has a wave of sinusoidal nature that is travelling along its walls while the inner tube is rigid and uniform. Lubrication approach is used for the considered analysis. An empirical relation for the effective variable viscosity of nanofluid is proposed here interestingly. The viscosity of nanofluid is the function of radial distance and the concentration of nanoparticles. Exact solution for the resulting system of equations is displayed for various quantities of interest. The outcomes show that the maximum velocity of SWCNT-blood nanofluid enhances for larger values of viscosity parameter. The pressure gradient in the more extensive part of the annulus is likewise found to increase as a function of variable viscosity parameter. The size of the trapped bolus is also influenced by variable viscosity parameter. The present examination also revealed that the carbon nanotubes have many applications related to biomedicine.
Ultrasound based mitral valve annulus tracking for off-pump beating heart mitral valve repair
NASA Astrophysics Data System (ADS)
Li, Feng P.; Rajchl, Martin; Moore, John; Peters, Terry M.
2014-03-01
Mitral regurgitation (MR) occurs when the mitral valve cannot close properly during systole. The NeoChordtool aims to repair MR by implanting artificial chordae tendineae on flail leaflets inside the beating heart, without a cardiopulmonary bypass. Image guidance is crucial for such a procedure due to the lack of direct vision of the targets or instruments. While this procedure is currently guided solely by transesophageal echocardiography (TEE), our previous work has demonstrated that guidance safety and efficiency can be significantly improved by employing augmented virtuality to provide virtual presentation of mitral valve annulus (MVA) and tools integrated with real time ultrasound image data. However, real-time mitral annulus tracking remains a challenge. In this paper, we describe an image-based approach to rapidly track MVA points on 2D/biplane TEE images. This approach is composed of two components: an image-based phasing component identifying images at optimal cardiac phases for tracking, and a registration component updating the coordinates of MVA points. Preliminary validation has been performed on porcine data with an average difference between manually and automatically identified MVA points of 2.5mm. Using a parallelized implementation, this approach is able to track the mitral valve at up to 10 images per second.
NASA Astrophysics Data System (ADS)
Wang, Ziwei; Jiang, Xiong; Chen, Ti; Hao, Yan; Qiu, Min
2018-05-01
Simulating the unsteady flow of compressor under circumferential inlet distortion and rotor/stator interference would need full-annulus grid with a dual time method. This process is time consuming and needs a large amount of computational resources. Harmonic balance method simulates the unsteady flow in compressor on single passage grid with a series of steady simulations. This will largely increase the computational efficiency in comparison with the dual time method. However, most simulations with harmonic balance method are conducted on the flow under either circumferential inlet distortion or rotor/stator interference. Based on an in-house CFD code, the harmonic balance method is applied in the simulation of flow in the NASA Stage 35 under both circumferential inlet distortion and rotor/stator interference. As the unsteady flow is influenced by two different unsteady disturbances, it leads to the computational instability. The instability can be avoided by coupling the harmonic balance method with an optimizing algorithm. The computational result of harmonic balance method is compared with the result of full-annulus simulation. It denotes that, the harmonic balance method simulates the flow under circumferential inlet distortion and rotor/stator interference as precise as the full-annulus simulation with a speed-up of about 8 times.
Kapich, Davorin D.
1985-01-01
A shaft seal system is disclosed for isolating two regions of different fluid mediums through which a rotatable shaft extends. The seal system includes a seal housing through which the shaft extends and which defines an annular land and an annular labyrinth both of which face on the shaft so that each establishes a corresponding fluid sealing annulus. A collection cavity is formed in communication with the annular sealing spaces, and fluids compatible with the fluids in each of the two regions to be isolated are introduced, respectively, into the annular sealing spaces and collected in the collection cavity from which the fluid mixture is removed and passed to a separator which separates the fluids and returns them to their respective annular sealing spaces in a recycling manner. In the illustrated embodiment, the isolated fluid mediums comprise a liquid region and a gas region. Gas is removed from the gas region and passed through a purifier and a gas pump operative to introduce the purified gas through the labyrinth sealing annulus to the collection cavity. After passing to the separator, the separated gas is passed through a dryer from which the dried gas is caused to pass through the labyrinth sealing annulus into the collection cavity independently of the purified gas so as to insure isolation of the gas region in the event of sealing gas pump malfunction.
Skoda, G.I.
1989-03-28
A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.
Degradation of Victoria Crater, Mars
NASA Technical Reports Server (NTRS)
Wilson, Sharon A.; Grant, John A.; Cohen, Barbara A.; Golombek, Mathew P.; Geissler, Paul E.; Sullivan, Robert J.; Kirk, Randolph L.; Parker, Timothy J.
2008-01-01
The $\\sim$750 m diameter and $\\sim$75 m deep Victoria crater in Meridiani Planum, Mars, presents evidence for significant degradation including a low, serrated, raised rim characterized by alternating alcoves and promontories, a surrounding low relief annulus, and a floor partially covered by dunes. The amount and processes of degradation responsible for the modified appearance of Victoria crater were evaluated using images obtained in situ by the Mars Exploration Rover Opportunity in concert with a digital elevation model created using orbital HiRISE images. Opportunity traversed along the north and northwest rim and annulus, but sufficiently characterized features visible in the DEM to enable detailed measurements of rim relief, ejecta thickness, and wall slopes around the entire degraded, primary impact structure. Victoria retains a 5 m raised rim consisting of 1-2 m of uplifted rocks overlain by 3 m of ejecta at the rim crest. The rim is $\\sim$120 to 220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500 to 750 m across indicate the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by approximately 150 m and infilled by about 50 m of sediments. Eolian processes are responsible for modification at Victoria, but lesser contributions from mass wasting or other processes cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for $\\sim$50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is $\\sim$20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when $\\sim$1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped darker, regional basaltic sands.
Tanks focus area multiyear program plan FY97-FY99
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-08-01
The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. Themore » focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.« less
Wolf, Heinz; Stauffer, Tony; Chen, Shu-Chen Y; Lee, Yoojin; Forster, Ronald; Ludzinski, Miron; Kamat, Madhav; Mulhall, Brian; Guazzo, Dana Morton
2009-01-01
Part 1 of this series demonstrated that a container closure integrity test performed according to ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method using a VeriPac 325/LV vacuum decay leak tester by Packaging Technologies & Inspection, LLC (PTI) is capable of detecting leaks > or = 5.0 microm (nominal diameter) in rigid, nonporous package systems, such as prefilled glass syringes. The current study compared USP, Ph.Eur. and ISO dye ingress integrity test methods to PTI's vacuum decay technology for the detection of these same 5-, 10-, and 15-microm laser-drilled hole defects in 1-mL glass prefilled syringes. The study was performed at three test sites using several inspectors and a variety of inspection conditions. No standard dye ingress method was found to reliably identify all holed syringes. Modifications to these standard dye tests' challenge conditions increased the potential for dye ingress, and adjustments to the visual inspection environment improved dye ingress detection. However, the risk of false positive test results with dye ingress tests remained. In contrast, the nondestructive vacuum decay leak test method reliably identified syringes with holes > or = 5.0 microm.
Full Scale Alternative Catalyst Testing for Bosch Reactor Optimization
NASA Technical Reports Server (NTRS)
Barton, Katherine; Abney, Morgan B.
2011-01-01
Current air revitalization technology onboard the International Space Station (ISS) cannot provide complete closure of the oxygen and hydrogen loops. This makes re-supply necessary, which is possible for missions in low Earth orbit (LEO) like the ISS, but unviable for long term space missions outside LEO. In comparison, Bosch technology reduces carbon dioxide with hydrogen, traditionally over a steel wool catalyst, to create water and solid carbon. The Bosch product water can then be fed to the oxygen generation assembly to produce oxygen for crew members and hydrogen necessary to reduce more carbon dioxide. Bosch technology can achieve complete oxygen loop closure, but has many undesirable factors that result in a high energy, mass, and volume system. Finding a different catalyst with an equal reaction rate at lower temperatures with less catalyst mass and longer lifespan would make a Bosch flight system more feasible. Developmental testing of alternative catalysts for the Bosch has been performed using the Horizontal Bosch Test Stand. Nickel foam, nickel shavings, and cobalt shavings were tested at 500 C and compared to the original catalyst, steel wool. This paper presents data and analysis on the performance of each catalyst tested at comparable temperatures and recycle flow rates.
MOBILITY AND DEGRADATION OF RESIDUES AT HAZARDOUS WASTE LAND TREATMENT SITES AT CLOSURE
Soil treatment systems that are designed and managed based on a knowledge of soil-waste interactions may represent a significant technology for simultaneous treatment and ultimate disposal of selected hazardous wastes in an environmentally acceptable manner. hese soil treatment s...
Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Barton, Katherine
2012-01-01
State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials
Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Barton, Katherine
2011-01-01
State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials.
In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography
NASA Astrophysics Data System (ADS)
Enfield, Joey; O'Connell, Marie-Louise; Lawlor, Kate; Jonathan, Enock; O'Mahony, Conor; Leahy, Martin
2010-07-01
The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip) have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization.
NASA Astrophysics Data System (ADS)
Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi
2017-10-01
With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.
Akyuva, Yener; Kaplan, Necati; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin, Duygu Yasar; Karaaslan, Numan; Guler, Olcay; Ateş, Özkan
2018-04-09
The aim of this in vitro experimental study was to design a novel, polyvinyl alcohol(PVA)-basedpolymericscaffold that permits the controlled release of insulin-likegrowthfactor1(IGF-1)/bonemorphogenetic protein-2(BMP-2) following intervertebral disc administration. The drug delivery system was composed of two different solutions that formed a scaffold within seconds after coming into contact with each other. We performed swelling,pH,temperature tests and analysis of the controlled release of growth factors from this system.The release kinetics of the growth factors was determined through enzyme linked immunosorbent assay(ELISA). Cell proliferation and viability was monitored with microscopy and analyzed using an MTT assay and acridine orange/propidium iodide(AO/PI) staining. Chondroadherin(CHAD), hypoxiainduciblefactor-1alpha(HIF-1α),collagentypeII(COL2A1) gene expressions were determined with quantitative real-timepolymerasechainreaction(qRT-PCR) analysis to show the effects of IGF-1/BMP-2 administration on annulus fibrosus cell(AFC)/nucleus pulposus cell(NPC) cultures. The scaffold allowed for the controlled release of IGF-1 and BMP-2 in different time intervals. It was observed that as the application time increased, the number of cells and the degree of extracellular matrix development increased in AFC/NPC cultures. AO/PI staining and an MTT analysis showed that cells retained their specific morphology and continued to proliferate. It was observed that HIF-1α and CHAD expression increased in a time-dependent manner, and there wasn't any COL2A1 expression in the AFC/NPC cultures. The designed scaffold may be used as an alternative method for intervertebral disc administration of growth factors after further in vivo studies. We believe that such prototype scaffolds may be an innovative technology in targeted drug therapies after reconstructive neurosurgeries.
Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae.
Toma, Milan; Bloodworth, Charles H; Pierce, Eric L; Einstein, Daniel R; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S
2017-03-01
The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations.
Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae
Toma, Milan; Bloodworth, Charles H.; Pierce, Eric L.; Einstein, Daniel R.; Cochran, Richard P.; Yoganathan, Ajit P.; Kunzelman, Karyn S.
2016-01-01
The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations. PMID:27624659
Two-Point Turbulence Closure Applied to Variable Resolution Modeling
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.; Rubinstein, Robert
2011-01-01
Variable resolution methods have become frontline CFD tools, but in order to take full advantage of this promising new technology, more formal theoretical development is desirable. Two general classes of variable resolution methods can be identified: hybrid or zonal methods in which RANS and LES models are solved in different flow regions, and bridging or seamless models which interpolate smoothly between RANS and LES. This paper considers the formulation of bridging methods using methods of two-point closure theory. The fundamental problem is to derive a subgrid two-equation model. We compare and reconcile two different approaches to this goal: the Partially Integrated Transport Model, and the Partially Averaged Navier-Stokes method.
A closer look at four-dot masking of a foveated target
Wilson, Hugh R.
2016-01-01
Four-dot masking with a common onset mask was recently demonstrated in a fully attended and foveated target (Filmer, Mattingley & Dux, 2015). Here, we replicate and extend this finding by directly comparing a four-dot mask with an annulus mask while probing masking as a function of mask duration, and target-mask separation. Our results suggest that while an annulus mask operates via spatially local contour interactions, a four-dot mask operates through spatially global mechanisms. We also measure how the visual system’s representation of an oriented bar is impacted by a four-dot mask, and find that masking here does not degrade the precision of perceived targets, but instead appears to be driven exclusively by rendering the target completely invisible. PMID:27280073
Measurement of interstage fluid-annulus dynamical properties
NASA Technical Reports Server (NTRS)
Adams, M. L.; Makay, E.; Diaz-Tous, I. A.
1982-01-01
The work described in this paper is part of an Electric Power Research Institute sponsored effort to improve rotor vibrational performance on power plant feed water pumps. A major objective of this effort is to reduce vibration levels by devising inter-stage sealing configurations with optimized damping capacity, realizing that the typical multi-stage centrifugal pump has several ore inter-stage fluid annuli than it has journal bearings. Also, the fluid annuli are distributed between the journal bearings where vibration levels are highest and can therefore be 'exercised' more as dampers than can the bearings. Described in this paper is a test apparatus which has been built to experimentally determine fluid-annulus dynamical coefficients for various configurations of inter-stage sealing geometry.
Two-phase/two-phase heat exchanger simulation analysis
NASA Technical Reports Server (NTRS)
Kim, Rhyn H.
1992-01-01
The capillary pumped loop (CPL) system is one of the most desirable devices to dissipate heat energy in the radiation environment of the Space Station providing a relatively easy control of the temperature. A condenser, a component of the CPL system, is linked with a buffer evaporator in the form of an annulus section of a double tube heat exchanger arrangement: the concentric core of the double tube is the condenser; the annulus section is used as a buffer between the conditioned space and the radiation surrounding but works as an evaporator. A CPL system with this type of condenser is modeled to simulate its function numerically. Preliminary results for temperature variations of the system are shown and more investigations are suggested for further improvement.
Instantons in Script N = 2 magnetized D-brane worlds
NASA Astrophysics Data System (ADS)
Billò, Marco; Frau, Marialuisa; Pesando, Igor; Di Vecchia, Paolo; Lerda, Alberto; Marotta, Raffaele
2007-10-01
In a toroidal orbifold of type IIB string theory we study instanton effects in Script N = 2 super Yang-Mills theories engineered with systems of wrapped magnetized D9 branes and Euclidean D5 branes. We analyze the various open string sectors in this brane system and study the 1-loop amplitudes described by annulus diagrams with mixed boundary conditions, explaining their rôle in the stringy instanton calculus. We show in particular that the non-holomorphic terms in these annulus amplitudes precisely reconstruct the appropriate Kähler metric factors that are needed to write the instanton correlators in terms of purely holomorphic variables. We also explicitly derive the correct holomorphic structure of the instanton induced low energy effective action in the Coulomb branch.
Wisser, Wilfried
2010-11-01
Transapical aortic valve implantation is an evolving technology for treating high-risk patients with symptomatic aortic stenosis. The transition to a catheter based implantation technique inherits one fundamental change: the native valve stays in place and is no longer removed. The selection of the correct plane of the aortic annulus, therefore, is mandatory. In addition, exact alignment of the sheath and catheters according to axis of the ascending aorta is imperative for correct implantation. That is why any additional movements have to be avoided. To aid in better workflow, we developed an easy-to-use cheap holder for the introduction sheath. By using a rigid table mount instrument holder the sheath can easily be fixed in the desired orientation, abolishing any movement and reducing the X-ray load to the implanting surgeon.
Utilization of volume correlation filters for underwater mine identification in LIDAR imagery
NASA Astrophysics Data System (ADS)
Walls, Bradley
2008-04-01
Underwater mine identification persists as a critical technology pursued aggressively by the Navy for fleet protection. As such, new and improved techniques must continue to be developed in order to provide measurable increases in mine identification performance and noticeable reductions in false alarm rates. In this paper we show how recent advances in the Volume Correlation Filter (VCF) developed for ground based LIDAR systems can be adapted to identify targets in underwater LIDAR imagery. Current automated target recognition (ATR) algorithms for underwater mine identification employ spatial based three-dimensional (3D) shape fitting of models to LIDAR data to identify common mine shapes consisting of the box, cylinder, hemisphere, truncated cone, wedge, and annulus. VCFs provide a promising alternative to these spatial techniques by correlating 3D models against the 3D rendered LIDAR data.
Conradi, Lenard; Seiffert, Moritz; Shimamura, Kazuo; Schirmer, Johannes; Blankenberg, Stefan; Reichenspurner, Hermann; Diemert, Patrick; Treede, Hendrik
2014-09-01
Transcatheter aortic valve implantation (TAVI) has become routine for the treatment of high-risk patients with aortic stenosis. We assessed safety and feasibility of a left ventricular apical access and closure device combined with second-generation transapical (TA) TAVI transcatheter heart valves (THV). Three elderly, comorbid patients (logEuroSCORE I 13.0-31.1%) received transapical aortic valve implantation (TA-AVI) via the Apica ASC device (Apica Cardiovascular Ltd., Galway, Ireland) using second-generation THV (Medtronic Engager [Medtronic 3F Therapeutics, Santa Ana, California, United States], JenaValve [JenaValve Technology GmbH, Munich, Germany], Symetis Acurate [Symetis S.A., Ecublens, Switzerland]). Access was gained using a non-rib-spreading technique and a novel access and closure device. THV deployment was successful with excellent hemodynamic outcome (no PVL, n = 2; trace PVL, n = 1; mean transvalvular gradients, 5-19 mm Hg) and complete apical hemostasis. No periprocedural major adverse events occurred and Valve Academic Research Consortium-2-defined composite end point of device success was met in all cases. Safety and feasibility of TA-AVI using the ASC device with second-generation THV was demonstrated. Combining latest available technology is a major step toward improved functional outcome and decreased surgical trauma in TA-AVI. Potentially, technical enhancements may eventually pave the way toward a fully percutaneous TA-AVI procedure. Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mildrum, C.M.
1987-08-18
A fuel rod is described for a nuclear reactor fuel assembly, comprising: (a) a hollow cladding tube; (b) a pair of end plugs connected to and sealing the cladding tube at opposite ends thereof; (c) a plurality of fuel pellets contained on the tube and being composed of fissile material having a single enrichment the value of which is at the level of the maximum enrichment loading of the rod, the pellets having provided in a stack having one end disposed adjacent to one of the end plugs and an opposite end disposed remote from the other of the endmore » plugs; and (d) a plenum spring disposed in the tube between the other end plug and the opposite end of the pellet stack for retaining the pellets in a stack form; (e) at least some of the fuel pellets having an annular configuration and at least other of the fuel pellets having a solid configuration; (f) each of some of the annular fuel pellets having an annulus of a first size; (e) each of other of the annual fuel pellets having an annulus of a second size different from the first size, whereby graduation of axial enrichment loading is provided between the annual fuel pellets of the fuel rod.« less
Inertial migration of particles in Taylor-Couette flows
NASA Astrophysics Data System (ADS)
Majji, Madhu V.; Morris, Jeffrey F.
2018-03-01
An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.
NASA Astrophysics Data System (ADS)
Zeeshan, M.; Duggal, R.; Tated, M. K.; Singh, M.
2018-02-01
Heat exchangers are widely used in various energy-recovery applications. However, for specific applications where metallic tubes are subjected to various drawbacks i.e. cost, weight, corrosion etc. polymer materials are promising alternatives. In present study, various conventional as well as promising alternatives materials are chosen for investigation computationally. Experimentally, bi-annulus heat exchanger configuration is investigated for metallic materials. The simulations carried out conclude that the dimensionless temperature parameter for Cross-linked polypropylethylene (PEX) is greater than other polymers. It increases with increasing axial length of tube. The value for dimensionless temperature is higher for copper which is used as conventional tube material. Among different polymers highest temperature is observed for PEX followed by Low density polypropylene (LDPE), Polypropylene (PP) and Polyvinylidene fluoride (PVDF). For axial length up to 70mm approx. the temperature rises for PEX, LDPE is 28.3% and 26.4% respectively. However, temperature variation is same for PP and PVDF for same axial distance. This temperature variation is increased to 72.4%, 67.2%, 58.62% and 56.89% for PEX, LDPE, PP and PVDF respectively as axial distance variation reaches the end of pipe. The inner annulus temperature for PEX material at 10% length of tube is 28.3% of temperature achieved in copper tube which increases to 72.4% for full length of tube.
Ye, Dongping; Liang, Weiguo; Dai, Libing; Zhou, Longqiang; Yao, Yicun; Zhong, Xin; Chen, Honghui; Xu, Jiake
2015-05-01
Degeneration of the intervertebral disc (IVD) is a major chronic medical condition associated with back pain. To better understand the pathogenesis of IVD degeneration, we performed comparative and quantitative proteomic analyses of normal and degenerated human annulus fibrosus (AF) cells and identified proteins that are differentially expressed between them. Annulus fibrosus cells were isolated and cultured from patients with lumbar disc herniation (the experimental group, degenerated AF cells) and scoliosis patients who underwent orthopaedic surgery (the control group, normal AF cells). Comparative proteomic analyses of normal and degenerated cultured AF cells were carried out using 2-D electrophoresis, mass spectrometric analyses, and database searching. Quantitative analyses of silver-stained 2-D electrophoresis gels of normal and degenerated cultured AF cells identified 10 protein spots that showed the most altered differential expression levels between the two groups. Among these, three proteins were decreased, including heat shock cognate 71-kDa protein, glucose-6-phosphate 1-dehydrogenase, and protocadherin-23, whereas seven proteins were increased, including guanine nucleotide-binding protein G(i) subunit α-2, superoxide dismutase, transmembrane protein 51, adenosine receptor A3, 26S protease regulatory subunit 8, lipid phosphate phosphatase-related protein, and fatty acyl-crotonic acid reductase 1. These differentially expressed proteins might be involved in the pathophysiological process of IVD degeneration and have potential values as biomarkers of the degeneration of IVD. © 2015 Wiley Publishing Asia Pty Ltd.
Apodization of two-dimensional pupils with aberrations
NASA Astrophysics Data System (ADS)
Reddy, Andra Naresh Kumar; Hashemi, Mahdieh; Khonina, Svetlana Nikolaevna
2018-06-01
The technique proposed to enhance the resolution of the point spread function (PSF) of an optical system underneath defocussing and spherical aberrations. The method of approach is based on the amplitude and phase masking in a ring aperture for modifying the light intensity distribution in the Gaussian focal plane (YD = 0) and in the defocussed planes (YD= π and YD= 2π ). The width of the annulus modifies the distribution of the light intensity in the side lobes of the resultant PSF. In the presence of an asymmetry in the phase of the annulus, the Hanning amplitude apodizer [cos(π β ρ )] employed in the pupil function can modify the spatial distribution of light in the maximum defocussed plane ({Y}D = 2π ), results in PSF with improved resolution.
Fabrication and Characterization of a Nanocoax-Based Electrochemical Sensor
NASA Astrophysics Data System (ADS)
Rizal, Binod; Archibald, Michelle M.; Naughton, Jeffrey R.; Connolly, Timothy; Shepard, Stephen C.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.
2014-03-01
We used an imprint lithography process to fabricate three dimensional electrochemical sensors comprising arrays of vertically-oriented coaxial electrodes, with the coax cores and shields serving as working and counter electrodes, respectively, and with nanoscale separation gaps.[2] Arrays of devices with different electrode gaps (coax annuli) were prepared, yielding increasing sensitivity with decreasing annulus thickness. A coax-based sensor with a 100 nm annulus was found to have sensitivity 100 times greater than that of a conventional planar sensor control, which had millimeter-scale electrode gap spacing. We suggest that this enhancement is due to an increase in the diffusion of molecules between electrodes, which improves the current per unit surface area compared to the planar device. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).
NASA Astrophysics Data System (ADS)
Hatami, M.; Zhou, J.; Geng, J.; Jing, D.
2018-04-01
In this paper, the effect of a variable magnetic field (VMF) on the natural convection heat transfer of Fe3O4-water nanofluid in a half-annulus cavity is studied by finite element method using FlexPDE commercial code. After deriving the governing equations and solving the problem by defined boundary conditions, the effects of three main parameters (Hartmann Number (Ha), nanoparticles volume fraction (φ) and Rayleigh number (Ra)) on the local and average Nusselt numbers of inner wall are investigated. As a main outcome, results confirm that in low Eckert numbers, increasing the Hartmann number make a decrease on the Nusselt number due to Lorentz force resulting from the presence of stronger magnetic field.
Core disruptive accident margin seal
Garin, John
1978-01-01
An apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible metal member having a first side attached to one of the riser components and a second side extending toward the other riser component and an actuating mechanism attached to the flexible metal member while extending to an accessible location. When the actuating mechanism is not activated, the flexible metal member does not contact the other riser component thus allowing the free rotation of the riser assembly and plug combination. When desired, the actuating mechanism causes the second side of the flexible metal member to contact the other riser component thereby sealing the annulus between the components.
Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.
Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice
2018-01-01
Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Lin, C. H.; Meyer, M. S.
1983-01-01
The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.
An underground nuclear power station using self-regulating heat-pipe controlled reactors
Hampel, V.E.
1988-05-17
A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.
Underground nuclear power station using self-regulating heat-pipe controlled reactors
Hampel, Viktor E.
1989-01-01
A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.
NASA Technical Reports Server (NTRS)
Le, G.
2008-01-01
A major unsolved question in the physics of ionosphere-magnetosphere coupling is how field-aligned currents (FACs) close. In order to maintain the divergence free condition, overall downward FACs (carried mainly by upward electrons) must eventually balance the overall upward FACs associated with the precipitating electrons through ionospheric Pedersen currents. Although much of the current closure may take place via local Pedersen currents flowing between Region 1 (R1) and Region 2 (R2) FACs, there is a generally an imbalance, i.e., more currents in R1 than in R2, in total currents between them. The net currents may be closed within R1 via cross-polar cap Pedersen currents. In this study, we use the magnetic field observations from Space Technology 5 mission to quantify the imbalance of R1 and R2 currents. We will determine the net R1-R2 currents under various solar wind conditions and discuss the implication of such imbalance to the ionospheric closure currents.
Cold Plasma Welding System for Surgical Skin Closure: In Vivo Porcine Feasibility Assessment.
Harats, Moti; Lam, Amnon; Maller, Michael; Kornhaber, Rachel; Haik, Josef
2016-09-29
Cold plasma skin welding is a novel technology that bonds skin edges through soldering without the use of synthetic materials or conventional wound approximation methods such as sutures, staples, or skin adhesives. The cold plasma welding system uses a biological solder applied to the edges of a skin incision, followed by the application of cold plasma energy. The objectives of this study were to assess the feasibility of a cold plasma welding system in approximating and fixating skin incisions compared with conventional methods and to evaluate and define optimal plasma welding parameters and histopathological tissue response in a porcine model. The cold plasma welding system (BioWeld1 System, IonMed Ltd, Yokneam, Israel) was used on porcine skin incisions using variable energy parameters. Wound healing was compared macroscopically and histologically to incisions approximated with sutures. When compared to sutured skin closure, cold plasma welding in specific system parameters demonstrated comparable and favorable wound healing results histopathologically as well as macroscopically. No evidence of epidermal damage, thermal or otherwise, was encountered in the specified parameters. Notably, bleeding, infection, and wound dehiscence were not detected at incision sites. Skin incisions welded at extreme energy parameters presented second-degree burns. Implementation of cold plasma welding has been shown to be feasible for skin closure. Initial in vivo results suggest cold plasma welding might provide equal, if not better, healing results than traditional methods of closure.
Biological life support systems for martian missions: some problems and prospects
NASA Astrophysics Data System (ADS)
Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lasseur, C.
Taking into account the experience of scientific researches obtained during experiments in the BIOS - 3 of the Institute of Biophysics of Siberian Branch of Russian Academy of Science (IBP SB RAS) and the MELISSA program (ESA), approaches in creation biological life support systems for a flight period and a fixed-site base of Martian mission are considered. Various alternate variants of designing of elements of BLSS based on use of Chlorella and/or Spirulina, and also greenhouses with higher plants for the flight period of Martian mission are analyzed. For this purpose construction of BLSS ensuring full closure of matter turnover according to gas exchange and water and partial closure on the human's exometabolites is supposed. For the fixed site Martian station BLSS based on use of higher plants with a various degree of closure of internal mass exchange are suggested. Various versions of BLSS configuration and degree of closure of mass exchange depending on duration of Martian mission, the diet type of a crew and some other conditions are considered. Special attention is given to problems of reliability and tolerance of matter turnover processes in BLSS which maintenance is connected, in particular, with additional oxygen reproduction inside a system. Technologies for realization of BLSS of various configurations are offered and justified. The auxiliary role of the physicochemical methods in BLSS functioning both for the flight period and for the crew stay on Mars is justified.
Farina, Roberto; Simonelli, Anna; Rizzi, Alessandro; Pramstraller, Mattia; Cucchi, Alessandro; Trombelli, Leonardo
2013-07-01
This study aims to evaluate the early postoperative healing of papillary incision wounds and its association with (1) patient/site-related factors and technical (surgical) aspects as well as with (2) 6-month clinical outcomes following buccal single flap approach (SFA) in the treatment of intraosseous periodontal defects. Forty-three intraosseous defects in 35 patients were accessed with a buccal SFA alone or in combination with a reconstructive technology (graft, enamel matrix derivative (EMD), graft + EMD, or graft + membrane). Postoperative healing was evaluated at 2 weeks using the Early Wound-Healing Index (EHI). EHI ranged from score 1 (i.e., complete flap closure and optimal healing) to score 4 (i.e., loss of primary closure and partial tissue necrosis). SFA resulted in a complete wound closure at 2 weeks in the great majority of sites. A significantly more frequent presence of interdental contact point and interdental soft tissue crater, and narrower base of the interdental papilla were observed at sites with either EHI > 1 or EHI = 4 compared to sites with EHI = 1. No association between EHI and the 6-month clinical outcomes was observed. At 2 weeks, buccal SFA may result in highly predictable complete flap closure. Site-specific characteristics may influence the early postoperative healing of the papillary incision following SFA procedure. Two-week soft tissue healing, however, was not associated with the 6-month clinical outcomes.
Economic Value of Army Foreign Military Sales
2015-12-01
12 2. Direct Commercial Sales vs. Foreign Military Sales .....................15 3...the final bill to the customer, and the DSCA sends a closure certificate to DFAS. 2. Direct Commercial Sales vs. Foreign Military Sales Direct ...is defined as the “coproduction, licensed production, countertrade, subcontracting, and technology transfer—mandated by foreign governments as a
Nilsson, David
2016-12-01
In contrast to the European historical experience, Africa's urban infrastructural systems are characterised by stagnation long before demand has been saturated. Water infrastructures have been stabilised as systems predominantly providing services for elites, with millions of poor people lacking basic services in the cities. What is puzzling is that so little emphasis has been placed on innovation and the adaptation of the colonial technological paradigm to better suit the local and current socio-economic contexts. Based on historical case studies of Kampala and Nairobi, this paper argues that the lack of innovation in African urban water infrastructure can be understood using Pinch and Bijker's concept of technological closure, and by looking at water technology from its embedded values and ideology. Large-scale water technology became part of African leaders' strategies to build prosperous nations and cities after decolonisation and the ideological purpose of infrastructure may have been much more important than previously understood. Water technology had reached a state of closure in Europe and then came to represent modernisation and progress in the colonial context. It has continued to serve such a similar symbolic purpose after independence, with old norms essentially being preserved. Recent sector reforms have defined problems predominantly as of economic and institutional nature while state actors have become 'unseeing' vis-á-vis controversies within the technological systems themselves. In order to induce socio-technical innovation towards equality in urban infrastructure services, it will be necessary to understand the broader incentive structure that governs the relevant social groups, such as governments, donors, water suppliers and the consumers, as well as power-structures and political accountability.
da Silva, Cristina; Sahlen, Anders; Winter, Reidar; Bäck, Magnus; Rück, Andreas; Settergren, Magnus; Manouras, Aristomenis; Shahgaldi, Kambiz
2014-12-01
To investigate the role of 2D-transthoracic echocardiography (2D-TTE) and 3D-transesophageal echocardiography (3D-TEE) in the determination of aortic annulus size prior transcatheter aortic valve implantation (TAVI) and its' impact on the prevalence of patient prosthesis mismatch (PPM). Echocardiography plays an important role in measuring aortic annulus dimension in patients undergoing TAVI. This has great importance since it determines both eligibility for TAVI and selection of prosthesis type and size, and can be potentially important in preventing an inadequate ratio between the prosthetic valvular orifice and the patient's body surface area, concept known as prosthesis-patient mismatch (PPM). A total of 45 patients were studied pre-TAVI: 20 underwent 3D-TEE (men/women 12/8, age 84.8 ± 5.6) and 25 2D-TTE (men/women 9/16, age 84.4 ± 5.4) in order to measure aortic annulus diameter. The presence of PPM was assessed before hospital discharge and after a mean period of 3 months. Moderate PPM was defined as indexed aortic valve area (AVAi) ≤ 0.85 cm(2)/m(2) and severe PPM as AVAi < 0.65 cm(2)/m(2). Immediately post-TAVI, moderate PPM was present in 25 and 28 % of patients worked up using 3D-TEE and 2D-TTE respectively p value = n.s) and severe PPM occurred in 10 % of the patients who underwent 3D-TEE and in 20 % in those with 2D-TTE (p value = n.s). The echocardiographic evaluation 3 months post-TAVI showed 25 % moderate PPM in the 3D-TEE group compared with 24 % in the 2D-TTE group (p value = n.s) and no cases of severe PPM in the 3DTEE group comparing to 20 % in the 2D-TTE group (p = 0.032). Our results indicate a higher incidence of severe PPM in patients who performed 2DTTE compared to those performing 3DTEE prior TAVI. This suggests that the 3D technique should replace the 2DTTE analysis when investigating the aortic annulus diameter in patients undergoing TAVI.
Skoda, George I.
1989-01-01
A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of the stem remote from the disk. The latch plate is held normally closed by three radial latches spaced at 120.degree. around the periphery of the plate.
NASA Astrophysics Data System (ADS)
Schultz, David Sheldon
Countless debilitating pathologies exhibit symptoms that result from altered mechanical behavior of soft tissue. Therefore, it is of clinical and economic importance to mechanically evaluate soft tissues and attribute degenerative changes to alterations in structural constituents. The studies presented here focus on the annulus fibrosus and the sclera. Failure in these tissues is common and catastrophic. The annulus fibrosus may fail, resulting in herniation and nerve impingement, or the disc may degenerate over time, resulting in reduced mobility and pain. Similarly, the sclera may degenerate over time with intraocular pressure spurring creep behavior that distends the eye beyond its ideal shape. This causes myopic vision and puts patients at risk of macular degeneration and retinal detachment. These two tissues share a common structural role as the outer wall of a pressure vessel. Also, they are made of strikingly similar constituents, primarily consisting of water, type I collagen, glycosaminoglycans and elastin. The microstructure of these tissues, however, is very different. The annulus fibrosus is representative of an anisotropic tissue. Its well-organized fibril structure was analyzed via polarization modulated second harmonic microscopy in order to characterize fibril architecture. Structurally relevant biochemical constituents were quantified with biochemical assays. Morphologically healthy annulus tended to have a more highly organized microstructure and tended to absorb more strain energy when subject to a tensile load cycle. Given the strong correlation between fibril organization and select mechanical properties, predictive models will likely benefit from a characterization of fibril continuity and orientation coherence. The sclera is representative of an isotropic tissue. Its less-organized fibril structure has evolved to sustain biaxial plane stress. In the sclera, collagen content and associated crosslinks were primary determinants of stiffness. Substantial collagen crosslink accumulation is a primary factor causing the stiffening of sclera with increased age. The influence of crosslinks dominates diffusion and permeability behavior. Exogenous crosslinking may help modulate the mechanical and fluid transport properties of the sclera and cornea. Treatment with methylglyoxal reduces the permeability and increases the stiffness of both. However, differences in the pre-treatment level of organization within the microstructure encourages asymmetric results.
NASA Astrophysics Data System (ADS)
Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe
2014-05-01
Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., vol. 75, p 647-683
2012-01-01
Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production. PMID:22963171
Ii, Hisataka; Warraich, Sumeeta; Tenn, Neil; Quinonez, Diana; Holdsworth, David W; Hammond, James R; Dixon, S Jeffrey; Séguin, Cheryle A
2016-09-01
Equilibrative nucleoside transporter 1 (ENT1) mediates passage of adenosine across the plasma membrane. We reported previously that mice lacking ENT1 (ENT1(-/-)) exhibit progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis (DISH) in humans. Here, we investigated mechanisms underlying aberrant mineralization in ENT1(-/-) mice. Micro-CT revealed ectopic mineralization of spinal tissues in both male and female ENT1(-/-) mice, involving the annulus fibrosus of the intervertebral discs (IVDs) of older mice. IVDs were isolated from wild-type and ENT1(-/-) mice at 2months of age (prior to disc mineralization), 4, and 6months of age (disc mineralization present) and processed for real-time PCR, cell isolation, or histology. Relative to the expression of ENTs in other tissues, ENT1 was the primary nucleoside transporter expressed in wild-type IVDs and mediated the functional uptake of [(3)H]2-chloroadenosine by annulus fibrosus cells. No differences in candidate gene expression were detected in IVDs from ENT1(-/-) and wild-type mice at 2 or 4months of age. However, at 6months of age, expression of genes that inhibit biomineralization Mgp, Enpp1, Ank, and Spp1 were reduced in IVDs from ENT1(-/-) mice. To assess whether changes detected in ENT1(-/-) mice were cell autonomous, annulus fibrosus cell cultures were established. Compared to wild-type cells, cells isolated from ENT1(-/-) IVDs at 2 or 6months of age demonstrated greater activity of alkaline phosphatase, a promoter of biomineralization. Cells from 2-month-old ENT1(-/-) mice also showed greater mineralization than wild-type. Interestingly, altered localization of alkaline phosphatase activity was detected in the inner annulus fibrosus of ENT1(-/-) mice in vivo. Alkaline phosphatase activity, together with the marked reduction in mineralization inhibitors, is consistent with the mineralization of IVDs seen in ENT1(-/-) mice at older ages. These findings establish that both cell-autonomous and systemic mechanisms contribute to ectopic mineralization in ENT1(-/-) mice. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Muhlen, Luis S. W.; Najafi, Behzad; Rinaldi, Fabio; Marchesi, Renzo
2014-04-01
Solar troughs are amongst the most commonly used technologies for collecting solar thermal energy and any attempt to increase the performance of these systems is welcomed. In the present study a parabolic solar trough is simulated using a one dimensional finite element model in which the energy balances for the fluid, the absorber and the envelope in each element are performed. The developed model is then validated using the available experimental data . A sensitivity analysis is performed in the next step in order to study the effect of changing the type of the working fluid and the corresponding Reynolds number on the overall performance of the system. The potential improvement due to the addition of a shield on the upper half of the annulus and enhancing the convection coefficient of the heat transfer fluid is also studied.
Rotating reverse osmosis: a dynamic model for flux and rejection
NASA Technical Reports Server (NTRS)
Lee, S.; Lueptow, R. M.
2001-01-01
Reverse osmosis (RO) is a compact process for the removal of ionic and organic pollutants from contaminated water. However, flux decline and rejection deterioration due to concentration polarization and membrane fouling hinders the application of RO technology. In this study, a rotating cylindrical RO membrane is theoretically investigated as a novel method to reduce polarization and fouling. A dynamic model based on RO membrane transport incorporating concentration polarization is used to predict the performance of rotating RO system. Operating parameters such as rotational speed and transmembrane pressure play an important role in determining the flux and rejection in rotating RO. For a given geometry, a rotational speed sufficient to generate Taylor vortices in the annulus is essential to maintain high flux as well as high rejection. The flux and rejection were calculated for wide range of operating pressures and rotational speeds. c 2001 Elsevier Science B.V. All rights reserved.
First uses of HAART 300 rings for aortic valve repair in Poland - 4 case studies.
Juściński, Jacek H; Koprowski, Andrzej; Kołaczkowska, Magdalena; Kowalik, Maciej M; Rogowski, Jan A; Rankin, James S
2018-03-01
Aortic valve reconstructions using geometric annuloplasty rings HAART 300/200 open new era in aortic valve surgery. The HAART technology resizes, reshapes, stabilizes and simplifies aortic valve repair. The HAART aortic repair rings are designed to be implanted directly into aortic annulus (under aortic valve leaflets). We present first in Poland 4 cases of aortic valve reconstructions using geometric annuloplasty rings HAART 300. Two patients had type IA aortic insufficiency (due to El-Khoury classification) - they were treated by HAART 300 ring insertion and ascending aorta prosthesis implantation. Third patient, Marfan with type IB aortic insufficiency was repaired by HAART 300 ring implantation followed by remodeling (Yacoub) procedure. Fourth patient with type II aortic insufficiency (due to RCC prolapse) was repaired by HAART 300 implantation and cusp plication. All patients shows good results on 6 months postoperative 3D TTE examinations. Presented technique is reproducible and simplify aortic valve reconstructions.
In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE).
Rahmani, Benyamin; Tzamtzis, Spyros; Sheridan, Rose; Mullen, Michael J; Yap, John; Seifalian, Alexander M; Burriesci, Gaetano
2017-04-01
This study presents the in vitro hydrodynamic assessment of the TRISKELE, a new system suitable for transcatheter aortic valve implantation (TAVI), aiming to mitigate the procedural challenges experienced with current technologies. The TRISKELE valve comprises three polymeric leaflet and an adaptive sealing cuff, supported by a novel fully retrievable self-expanding nitinol wire frame. Valve prototypes were manufactured in three sizes of 23, 26, and 29 mm by automated dip-coating of a biostable polymer, and tested in a hydrodynamic bench setup in mock aortic roots of 21, 23, 25, and 27 mm annulus, and compared to two reference valves suitable for equivalent implantation ranges: Edwards SAPIEN XT and Medtronic CoreValve. The TRISKELE valves demonstrated a global hydrodynamic performance comparable or superior to the controls with significant reduction in paravalvular leakage. The TRISKELE valve exhibits enhanced anchoring and improved sealing. The valve is currently under preclinical investigation.
Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Culley, Dennis E.; Braunscheidel, Edward P.; Welch, Gerard E.
2005-01-01
Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system.
Kasel, Albert M; Shivaraju, Anupama; Schneider, Stephan; Krapf, Stephan; Oertel, Frank; Burgdorf, Christof; Ott, Ilka; Sumer, Christian; Kastrati, Adnan; von Scheidt, Wolfgang; Thilo, Christian
2014-09-01
To provide a simplified, standardized methodology for a successful transfemoral transcatheter aortic valve replacement (TAVR) procedure with the Sapien XT valve in patients with severe aortic stenosis (AS). TAVR is currently reserved for patients with severe, symptomatic AS who are inoperable or at high operative risk. In many institutions, TAVR is performed under general anesthesia with intubation or with conscious sedation. In addition, many institutions still use transesophageal echo (TEE) during the procedure for aortic root angulations and positioning of the valve prior to implantation. Methods. We enrolled 100 consecutive patients (mean age, 80 ± 7 years; range, 50-94 years; female n=59) with severe symptomatic AS. Annulus measurements were based on computed tomography angiograms. All patients underwent fluoroscopy-guided transfemoral TAVR with little to no sedation and without simultaneous TEE. TAVR was predominantly performed with the use of local and central analgesics; only 36% of our cohort received conscious sedation. Procedural success of TAVR was 99%. Transthoracic echocardiography before discharge excluded aortic regurgitation (AR) >2 in all patients (AR >1; n=6). In-hospital stroke rate was 6%. The vessel closure system was successfully employed in 96%. Major vascular complication rate was 1%. The 30-day mortality was 2%. Fluoroscopy-guided TAVR with the use of just analgesics with or without conscious sedation is safe and effective, and this potentially enables a more time-effective and cost-effective procedure. This paper provides simplified, stepwise guidance on how to perform transfemoral TAVR with the Sapien XT valve.
Aortic root dilatation in young patients with cryptogenic stroke and patent foramen ovale.
Keenan, Niall G; Brochet, Éric; Juliard, Jean-Michel; Malanca, Mihaela; Aubry, Pierre; Lepage, Laurent; Cueff, Caroline; Jondeau, Guillaume; Iung, Bernard; Vahanian, Alec; Messika-Zeitoun, David
2012-01-01
No previous study has looked for an association between aortic dilatation and the clinical sequelae of patent foramen ovale (PFO), although a possible relationship has been identified in case reports. To compare aortic dimensions in patients with symptomatic PFO and healthy controls. Forty-seven patients were identified who presented with cryptogenic cerebrovascular accident (CVA) assessed as most likely secondary to PFO (confirmed by contrast study), were aged less than 50 years and underwent percutaneous PFO closure. Forty-seven age-, sex- and body surface area-matched healthy controls were also identified. Aortic root diameters were greater in PFO patients. The difference was more marked at the levels of the sinuses of Valsalva (34±4 vs 31±3 mm, P<0.01) and the proximal ascending aorta (32±4 vs 29±3, P<0.01) and more modest at the level of the aortic annulus (23±3 vs 22±2 mm, P=0.20). In addition, patients with massive right-to-left shunting tended to have larger aortic diameters. In contrast, left ventricular end-systolic and end-diastolic diameters were not larger than in controls (30±4 vs 32±5 mm, P=0.10 and 48±5 vs 50±4 mm, P=0.04, respectively). The present study shows that aortic diameter is increased in young patients with cryptogenic CVA and PFO compared with in healthy subjects. Our results suggest that aortic dilatation may potentiate the risk of CVA in PFO patients and support further research in this area. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Investigation of the tip clearance flow inside and at the exit of a compressor rotor passage
NASA Technical Reports Server (NTRS)
Pandya, A.; Lakshminarayana, B.
1982-01-01
The nature of the tip clearance flow in a moderately loaded compressor rotor is studied. The measurements were taken inside the clearance between the annulus-wall casing and the rotor blade tip. These measurements were obtained using a stationary two-sensor hot-wire probe in combination with an ensemble averaging technique. The flowfield was surveyed at various radial locations and at ten axial locations, four of which were inside the blade passage in the clearance region and the remaining six outside the passage. Variations of the mean flow properties in the tangential and the radial directions at various axial locations were derived from the data. Variation of the leakage velocity at different axial stations and the annulus-wall boundary layer profiles from passage-averaged mean velocities were also estimated.
Rotating-fluid experiments with an atmospheric general circulation model
NASA Technical Reports Server (NTRS)
Geisler, J. E.; Pitcher, E. J.; Malone, R. C.
1983-01-01
In order to determine features of rotating fluid flow that are dependent on the geometry, rotating annulus-type experiments are carried out with a numerical model in spherical coordinates. Rather than constructing and testing a model expressly for this purpose, it is found expedient to modify an existing general circulation model of the atmosphere by removing the model physics and replacing the lower boundary with a uniform surface. A regime diagram derived from these model experiments is presented; its major features are interpreted and contrasted with the major features of rotating annulus regime diagrams. Within the wave regime, a narrow region is found where one or two zonal wave numbers are dominant. The results reveal no upper symmetric regime; wave activity at low rotation rates is thought to be maintained by barotropic rather than baroclinic processes.
Measurements of gas temperatures at 100 kHz within the annulus of a rotating detonation engine
NASA Astrophysics Data System (ADS)
Rein, Keith D.; Roy, Sukesh; Sanders, Scott T.; Caswell, Andrew W.; Schauer, Frederick R.; Gord, James R.
2017-03-01
Cycle-resolved measurements of H2O temperatures and number densities taken within the detonation channel of a hydrogen—air rotating detonation engine (RDE) at a 100 kHz repetition rate using laser absorption spectroscopy are presented. The laser source used is an MEMS-tunable Vertical-Cavity Surface Emitting laser which scans from 1330 to 1360 nm. Optical access into and out of the RDE is achieved using a dual-core fiber optic. Light is pitched into the RDE through a sapphire window via a single-mode core, retroreflected off the mirror-polished inner radius of the RDE annulus, and collected with the multi-mode fiber core. The resulting absorption spectra are used to determine gas temperatures as a function of time. These measurements allow characterization of the transient-temperature response of the RDE.
Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
NASA Astrophysics Data System (ADS)
Tahir, Madeeha; Naeem, Muhammad Nawaz; Javaid, Maria; Younas, Muhammad; Imran, Muhammad; Sadiq, Naeem; Safdar, Rabia
2018-04-01
In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.
Hydrogen generation from caustic aluminum reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
REYNOLDS, D.A.
2001-10-23
A ''crawler'' is to enter the AY farm annulus to clean the metal surface for corrosion measurements. The ''crawler'' weighs about 190 pounds of which 150 pounds are aluminum. (These values are supplied by the vender of the ''crawler''.) There is a potential that cleaning the surface of the metal may cause a leak to occur in the primary tank wall and the waste may contact the aluminum. The hydroxide in the waste may react with the aluminum and form hydrogen gas. The purpose of this analysis is to estimate the rate of hydrogen gas generation and the time tomore » reach the lower flammable limit (LFL) in the annulus. Surface area of the aluminum piece is estimated to be 2 sq.ft. (This value was given by the vender.) SA:= 2 {center_dot} ft{sup 2}.« less
Simulation of Plasma Transport in a Toroidal Annulus with TEMPEST
NASA Astrophysics Data System (ADS)
Xiong, Z.
2005-10-01
TEMPEST is an edge gyro-kinetic continuum code currently under development at LLNL to study boundary plasma transport over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. Here we report simulation results from the 4D (θ, ψ, E, μ) TEMPEST, for benchmark purpose, in an annulus region immediately inside the separatrix of a large aspect ratio, circular cross-section tokamak. Besides the normal poloidal trapping regions, there are radial inaccessible regions at a fixed poloid angle, energy and magnetic moment due to the radial variation of the B field. To handle such cases, a fifth-order WENO differencing scheme is used in the radial direction. The particle and heat transport coefficients are obtained for different collisional regimes and compared with the neo-classical transport theory.
NASA Astrophysics Data System (ADS)
Jha, B. K.; Aina, B.; Muhammad, S. A.
2015-03-01
This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.
Nazmul, Mohammed N; Cha, Yong-Mei; Lin, Grace; Asirvatham, Samuel J; Powell, Brian D
2013-03-01
Pacemaker and implantable cardioverter-defibrillator (ICD) leads can cause tricuspid valve regurgitation (TR). Few data are available on the best management of significant TR that develops after pacemaker or ICD implantation and regarding any benefits of right ventricular (RV) lead extraction. We sought to determine the impact of RV lead removal on lead-induced TR. We reviewed all patients between 1 January 2000 and 31 December 2010 at the tertiary care hospital who had a preoperative indication of TR and underwent percutaneous extraction of an RV lead with the intent of trying to correct moderate or severe TR. Pre- and post-procedure echoes and clinical data were retrospectively reviewed. In the four patients identified, the RV lead was removed and placed in the coronary sinus to try to improve moderate or severe TR due to lead impingement. There was no significant improvement in the degree of TR except one patient where TR improved slightly from moderate to mild-moderate. All patients had a dilated tricuspid valve annulus by the time of lead extraction. Tricuspid annulus dilatation appeared to account for the persistent TR after RV lead removal. A greater degree of tricuspid valve annulus dilatation may be a marker and mechanism for irreversible lead-induced TR. Further studies are needed to determine whether surgical tricuspid valve repair or replacement combined with RV lead extraction would result in better outcomes than a percutaneous lead extraction approach.
Mikami, T; Kudo, T; Sakurai, N; Sakamoto, S; Tanabe, Y; Yasuda, H
1983-06-01
The mechanism for the development of functional tricuspid regurgitation (TR) was studied by an ultrasonic method. Thirty-five examinations were performed in 31 patients who were expected to have functional TR, and the severity was classified into 4 grades according to the extension of the regurgitant signals by pulsed Doppler echocardiography. The satisfactory horizontal section of the tricuspid valve was obtained by two-dimensional echocardiography (2DE) to measure the tricuspid annular diameter and to observe systolic configuration of the tricuspid valve in 22 examinations. The tricuspid annular diameter was well correlated with the severity of TR, and "lack of coaptation" of the valve was recognized on 2DE in some cases of severe TR with the markedly dilated annulus, indicating that this dilatation was an important trigger of functional TR. Additionally, in the majority of patients with severe TR, "anterior displacement" of the tips of tricuspid leaflet(s) (6 mm or more from the tricuspid annulus towards the right ventricle) was observed, which was thought to be due to the chordal traction secondary to the right ventricular dilatation, and contributed to the development of functional TR by disturbing sufficient coaptation. In one particular case, severe TR was associated with " malaligned coaptation" caused by the anterior displacement confined to the septal leaflet, indicating that asymmetrical dilatation of the right ventricle and/or disorientation of chordae-valve system may contribute to TR.(ABSTRACT TRUNCATED AT 250 WORDS)
Koshkelashvili, Nikoloz; Codolosa, Jose N; Goykhman, Igor; Romero-Corral, Abel; Pressman, Gregg S
2015-12-15
Aging is associated with calcium deposits in various cardiovascular structures, but patterns of calcium deposition, if any, are unknown. In search of such patterns, we performed quantitative assessment of mitral annular calcium (MAC) and aortic valve calcium (AVC) in a broad clinical sample. Templates were created from gated computed tomography (CT) scans depicting the aortic valve cusps and mitral annular segments in relation to surrounding structures. These were then applied to CT reconstructions from ungated, clinically indicated CT scans of 318 subjects, aged ≥65 years. Calcium location was assigned using the templates and quantified by the Agatston method. Mean age was 76 ± 7.3 years; 48% were men and 58% were white. Whites had higher prevalence (p = 0.03) and density of AVC than blacks (p = 0.02), and a trend toward increased MAC (p = 0.06). Prevalence of AVC was similar between men and women, but AVC scores were higher in men (p = 0.008); this difference was entirely accounted for by whites. Within the aortic valve, the left cusp was more frequently calcified than the others. MAC was most common in the posterior mitral annulus, especially its middle (P2) segment. For the anterior mitral annulus, the medial (A3) segment calcified most often. In conclusion, AVC is more common in whites than blacks, and more intense in men, but only in whites. Furthermore, calcium deposits in the mitral annulus and aortic valve favor certain locations. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhou, Qiongjie; Ren, Yunyun; Yan, Yingliu; Chu, Chen; Gui, Yonghao; Li, Xiaotian
2012-11-01
This study's aim was to evaluate the effect of preeclampsia and intrauterine growth restriction (IUGR) on fetal cardiac function, and the relationship of the latter with adverse pregnancy outcomes. We did a cross-sectional study of 132 women with uncomplicated singleton pregnancies, 34 with preeclampsia without IUGR, and 12 with preeclampsia and IUGR. Fetal cardiac structure and function were evaluated using fetal two-dimension ultrasound, pulsed wave Doppler and tissue Doppler imaging (TDI). Data were analyzed by t-tests, ANOVA, Chi-square tests, or Wilcoxon rank-sum test. Compared with the normal pregnancy group, mitral/tricuspid early systolic peak velocity of annulus/late diastolic peak velocity of annulus (Sa) and left ventricular (LV)/right ventricular (RV) early diastolic peak velocity at the annulus (Ea) in TDI decreased in preeclampsia with or without IUGR (P < 0.05). LV/RV Ea underwent a gestational decrease in preeclampsia with or without IUGR (P < 0.05). The changes in mitral/tricuspid Sa and LV Sa associated with preeclampsia were even more pronounced with preterm delivery at less than 34 gestational weeks and stillbirth (P < 0.05). Intrauterine growth restriction influences fetal cardiac function in the presence of preeclampsia, and TDI may be a sensitive and preferable method to detect such changes. Fetal LV/RV Ea is a potential marker for early fetal cardiac diastolic impairment, and mitral/tricuspid Sa and LV Sa may be predictors for adverse pregnancy outcomes. © 2012 John Wiley & Sons, Ltd.
Mengoni, Marlène; Kayode, Oluwasegun; Sikora, Sebastien N F; Zapata-Cornelio, Fernando Y; Gregory, Diane E; Wilcox, Ruth K
2017-08-01
The development of current surgical treatments for intervertebral disc damage could benefit from virtual environment accounting for population variations. For such models to be reliable, a relevant description of the mechanical properties of the different tissues and their role in the functional mechanics of the disc is of major importance. The aims of this work were first to assess the physiological hoop strain in the annulus fibrosus in fresh conditions ( n = 5) in order to extract a functional behaviour of the extrafibrillar matrix; then to reverse-engineer the annulus fibrosus fibrillar behaviour ( n = 6). This was achieved by performing both direct and global controlled calibration of material parameters, accounting for the whole process of experimental design and in silico model methodology. Direct-controlled models are specimen-specific models representing controlled experimental conditions that can be replicated and directly comparing measurements. Validation was performed on another six specimens and a sensitivity study was performed. Hoop strains were measured as 17 ± 3% after 10 min relaxation and 21 ± 4% after 20-25 min relaxation, with no significant difference between the two measurements. The extrafibrillar matrix functional moduli were measured as 1.5 ± 0.7 MPa. Fibre-related material parameters showed large variability, with a variance above 0.28. Direct-controlled calibration and validation provides confidence that the model development methodology can capture the measurable variation within the population of tested specimens.
A meta-analysis of aortic root size in elite athletes.
Iskandar, Aline; Thompson, Paul D
2013-02-19
The aorta is exposed to hemodynamic stress during exercise, but whether or not the aorta is larger in athletes is not clear. We performed a systematic literature review and meta-analysis to examine whethere athletes demonstrate increased aortic root dimensions compared with nonathlete controls. We searched MEDLINE and Scopus from inception through August 12, 2012, for English-language studies reporting the aortic root size in elite athletes. Two investigators independently extracted athlete and study characteristics. A multivariate linear mixed model was used to conduct meta-regression analyses. We identified 71 studies reporting aortic root dimensions in 8564 unique athletes, but only 23 of these studies met our criteria by reporting aortic root dimensions at the aortic valve annulus or sinus of Valsalva in elite athletes (n=5580). Athletes were compared directly with controls (n=727) in 13 studies. On meta-regression, the weighted mean aortic root diameter measured at the sinuses of Valsalva was 3.2 mm (P=0.02) larger in athletes than in the nonathletic controls, whereas aortic root size at the aortic valve annulus was 1.6 mm (P=0.04) greater in athletes than in controls. Elite athletes have a small but significantly larger aortic root diameter at the sinuses of Valsalva and aortic valve annulus, but this difference is minor and clinically insignificant. Clinicians evaluating athletes should know that marked aortic root dilatation likely represents a pathological process and not a physiological adaptation to exercise.
Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model
Perkins, R. J.; Hosea, J. C.; Bertelli, N.; ...
2017-09-04
Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less
Smith, Lachlan J; Martin, John T; Szczesny, Spencer E; Ponder, Katherine P; Haskins, Mark E; Elliott, Dawn M
2010-01-01
Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disorder characterized by a deficiency in β-glucuronidase activity, leading to systemic accumulation of poorly degraded glycosaminoglycans (GAG). Along with other morbidities, MPS VII is associated with paediatric spinal deformity. The objective of this study was to examine potential associations between abnormal lumbar spine matrix structure and composition in MPS VII, and spine segment and tissue-level mechanical properties, using a naturally occurring canine model with a similar clinical phenotype to the human form of the disorder. Segments from juvenile MPS VII and unaffected dogs were allocated to: radiography, gross morphology, histology, biochemistry, and mechanical testing. MPS VII spines had radiolucent lesions in the vertebral body epiphyses. Histologically, this corresponded to a GAG-rich cartilaginous region in place of bone, and elevated GAG staining was seen in the annulus fibrosus. Biochemically, MPS VII samples had elevated GAG in the outer annulus fibrosus and epiphyses, low calcium in the epiphyses, and high water content in all regions except the nucleus pulposus. MPS VII spine segments had higher range of motion and lower stiffness than controls. Endplate indentation stiffness and failure loads were significantly lower in MPS VII samples, while annulus fibrosus tensile mechanical properties were normal. Vertebral body lesions in MPS VII spines suggest a failure to convert cartilage to bone during development. Low stiffness in these regions likely contributes to mechanical weakness in motion segments and is a potential factor in the progression of spinal deformity. PMID:19918911
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
A critical role of solute carrier 22a14 in sperm motility and male fertility in mice
Maruyama, Shin-ya; Ito, Momoe; Ikami, Yuusuke; Okitsu, Yu; Ito, Chizuru; Toshimori, Kiyotaka; Fujii, Wataru; Yogo, Keiichiro
2016-01-01
We previously identified solute carrier 22a14 (Slc22a14) as a spermatogenesis-associated transmembrane protein in mice. Although Slc22a14 is a member of the organic anion/cation transporter family, its expression profile and physiological role have not been elucidated. Here, we show that Slc22a14 is crucial for sperm motility and male fertility in mice. Slc22a14 is expressed specifically in male germ cells, and mice lacking the Slc22a14 gene show severe male infertility. Although the overall differentiation of sperm was normal, Slc22a14−/− cauda epididymal spermatozoa showed reduced motility with abnormal flagellar bending. Further, the ability to migrate into the female reproductive tract and fertilise the oocyte were also impaired in Slc22a14−/− spermatozoa. The abnormal flagellar bending was thought to be partly caused by osmotic cell swelling since osmotic challenge or membrane permeabilisation treatment alleviated the tail abnormality. In addition, we found structural abnormalities in Slc22a14−/− sperm cells: the annulus, a ring-like structure at the mid-piece–principal piece junction, was disorganised, and expression and localisation of septin 4, an annulus component protein that is essential for the annulus formation, was also impaired. Taken together, our results demonstrated that Slc22a14 plays a pivotal role in normal flagellar structure, motility and fertility in mouse spermatozoa. PMID:27811987
Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, R. J.; Hosea, J. C.; Bertelli, N.
Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less
Kayode, Oluwasegun; Sikora, Sebastien N. F.; Zapata-Cornelio, Fernando Y.; Gregory, Diane E.; Wilcox, Ruth K.
2017-01-01
The development of current surgical treatments for intervertebral disc damage could benefit from virtual environment accounting for population variations. For such models to be reliable, a relevant description of the mechanical properties of the different tissues and their role in the functional mechanics of the disc is of major importance. The aims of this work were first to assess the physiological hoop strain in the annulus fibrosus in fresh conditions (n = 5) in order to extract a functional behaviour of the extrafibrillar matrix; then to reverse-engineer the annulus fibrosus fibrillar behaviour (n = 6). This was achieved by performing both direct and global controlled calibration of material parameters, accounting for the whole process of experimental design and in silico model methodology. Direct-controlled models are specimen-specific models representing controlled experimental conditions that can be replicated and directly comparing measurements. Validation was performed on another six specimens and a sensitivity study was performed. Hoop strains were measured as 17 ± 3% after 10 min relaxation and 21 ± 4% after 20–25 min relaxation, with no significant difference between the two measurements. The extrafibrillar matrix functional moduli were measured as 1.5 ± 0.7 MPa. Fibre-related material parameters showed large variability, with a variance above 0.28. Direct-controlled calibration and validation provides confidence that the model development methodology can capture the measurable variation within the population of tested specimens. PMID:28879014
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module explains the difference between closure and post-closure. It lists the types of facilities that are subject to closure/post-closures and defines the difference between partial and final closure. It specifies who submits a closure plan and when a closure plan must be submitted, lists the steps in the process, and states the time frame for submittal. It identifies when and how a closure must be amended. It explains the time frame for notification of closure and the deadlines for beginning and completing closure. It specifies which facilities need contingent post-closure plans and lists and the elements of post-closure andmore » cites the requirements. It specifies the conditions and timing for amending a post-closure plan and states who must certify closure/post-closure.« less
ERIC Educational Resources Information Center
Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Green, Vanessa; Oliva, Doretta; Lang, Russell
2011-01-01
This study assessed the effectiveness of microswitches for simple responses (i.e., partial hand closure, vocalization, and hand stroking) and a keyboard emulator to facilitate the writing performance of three participants with extensive motor disabilities. The study was carried out according to an ABAB design. During the A phases, the participants…
ERIC Educational Resources Information Center
Small, Ruth V.; Venkatesh, Murali
Research that identifies factors that facilitate information processing and enhance performance without reducing group confidence and decision satisfaction may influence future development of groupwork systems. This paper contains a review of the literature on cognitive and motivational issues in both group decision-making and learning contexts…
ERIC Educational Resources Information Center
Capalbo, Susan M.; Heggem, Christine N.
1999-01-01
Presents an overview of the use of telemedicine technologies and critical access hospitals in rural areas. Discusses changes in rural population, hospital closures, and federal health care policy. Provides anecdotal evidence on the impact of these innovations in rural Montana, which suggests that different health care solutions are needed for…
NASA Astrophysics Data System (ADS)
Tyagi, M.; Zulqarnain, M.
2017-12-01
Offshore oil and gas exploration and production operations, involve the use of some of the cutting edge and challenging technologies of the modern time. These technological complex operations involves the risk of major accidents as well, which have been demonstrated by disasters such as the explosion and fire on the UK production platform piper alpha, the Canadian semi-submersible drilling rig Ocean Ranger and the explosion and capsizing of Deepwater horizon rig in the Gulf of Mexico. By conducting Quantitative Risk Assessment (QRA), safety of various operations as well as their associated risks and significance during the entire life phase of an offshore project can be quantitatively estimated. In an underground blowout, the uncontrolled formation fluids from higher pressure formation may charge up shallower overlying low pressure formations or may migrate to sea floor. Consequences of such underground blowouts range from no visible damage at the surface to the complete loss of well, loss of drilling rig, seafloor subsidence or hydrocarbons discharged to the environment. These blowouts might go unnoticed until the over pressured sands, which are the result of charging from higher pressure reservoir due to an underground blowout. Further, engineering formulas used to estimate the fault permeability and thickness are very simple in nature and may add to uncertainty in the estimated parameters. In this study the potential of a deepwater underground blowout are assessed during drilling life phase of a well in Popeye-Genesis field reservoir in the Gulf of Mexico to estimate the time taken to charge a shallower zone to its leak-off test (LOT) value. Parametric simulation results for selected field case show that for relatively high permeability (k = 40mD) fault connecting a deep over-pressured zone to a shallower low-pressure zone of similar reservoir volumes, the time to recharge the shallower zone up to its threshold LOT value is about 135 years. If the ratio of the reservoir volumes for shallower to deeper zone is about 0.1, the recharging time significantly decreased to 24 years. Also, the hydrocarbons might possibly migrate through casing-wellbore annulus due to delamination fractures between cement interfaces with rock/casing and any other micro annulus gap not isolated by cement.
Constraint Embedding Technique for Multibody System Dynamics
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Cheng, Michael K.
2011-01-01
Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with closure-constraints into an equivalent tree-topology system, and thus allows one to take advantage of the host of techniques available to the latter class of systems. This technology is highly suitable for the class of multibody systems where the closure-constraints are local, i.e., where they are confined to small groupings of bodies within the system. Important examples of such local closure-constraints are constraints associated with four-bar linkages, geared motors, differential suspensions, etc. One can eliminate these closure-constraints and convert the system into a tree-topology system by embedding the constraints directly into the system dynamics and effectively replacing the body groupings with virtual aggregate bodies. Once eliminated, one can apply the well-known results and algorithms for tree-topology systems to solve the dynamics of such closed-chain system.
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
40 CFR 264.228 - Closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...
40 CFR 264.228 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...
40 CFR 264.228 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...
40 CFR 264.228 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...
40 CFR 264.228 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...
Post-closure care of engineered municipal solid waste landfills.
Bagchi, Amalendu; Bhattacharya, Abhik
2015-03-01
Post-closure care is divided into perpetual care (PPC) and long-term care (LTC). Guidelines for post-closure care and associated costs are important for engineered municipal solid waste (MSW) landfills. In many states in the USA, landfill owners are required to set aside funds for 30-40 years of LTC. Currently there are no guidelines for PPC, which is also required. We undertook a pilot study, using two landfills (note: average landfill capacity 2.5 million MT MSW waste) in Wisconsin, to establish an approach for estimating the LTC period using field data and PPC funding need. Statistical analysis of time versus concentration data of selected leachate parameters showed that the concentration of most parameters is expected to be at or below the preventive action limit of groundwater and leachate volume will be very low, within 40 years of the LTC period. The gas extraction system may need to be continued for more than 100 years. Due to lack of data no conclusion could be made regarding adequacy of the LTC period for the groundwater monitoring system. The final cover must be maintained for perpetuity. The pilot study shows that although technology is available, the financial liability of maintaining a 'Dry Tomb' design for landfills is significantly higher than commonly perceived. The paper will help landfill professionals to estimate realistic post-closure funding and to develop field-based policies for LTC and PPC of engineered MSW landfills. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.; Frye, C.
1994-04-01
This report presents the results of the Community Environmental Response Facilitation Act (CERFA) investigation conducted by The Earth Technology Corporation (TETC) at Alabama Army Ammunition Plant, a U.S. Government property selected for closure by the Base Realignment and Closure (BRAC) Commission. Under CERFA, Federal agencies are required to identify real property that can be immediately reused and redeveloped. Satisfying this objective requires the identification of real property where no hazardous substances or petroleum, products, regulated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), were stored for one year or more, known to have been released, or disposed. Themore » Alabama Army Ammunition Plant is a 2,187-acre site (more or less) located in Talladega County, Alabama, approximately 5 miles north of Childersburg, Alabama. The installation's primary mission was to manufacture explosives. Activities associated with the property that have environmental significance are the former manufacturing of explosives, the recycling of spent acids, and the disposal of wastes resulting from these operations. The facility is on U.S. Environmental Protection Agency's National Priorities List. Alabama Army Ammunition Plant, CERFA, Base closure, BRAC.« less
Robot-assisted surgery and incisional hernia: a comparative study of ergonomics in a training model.
Sánchez, Alexis; Rodríguez, Omaira; Jara, Génesis; Sánchez, Renata; Vegas, Liumariel; Rosciano, José; Estrada, Luis
2018-01-04
Over the years, incisional hernia repair has evolved. Currently, primary closure of the defect before placing the mesh is a critical step in incisional hernia repair and minimally invasive surgery incorporation has an important role due to great advantages. Despite its benefits, laparoscopic closure with suture intracorporeal knotting is physically demanding and technically complex. Robotic technology provides an optimal three-dimensional view, maneuverability of the instruments but no study has assessed the impact of the DaVinci system in the ergonomics which is the objective in this study. Fourteen surgeons were able to achieve surgical repair of a defect in an incisional hernia inanimate model. The task was performed with conventional laparoscopy and robotic assistance. The mental effort was registered and physical disturbances were measured with the Local Experienced Discomfort scale. The subjects expressed discomfort mainly in the dominant side (p = 0.006). In the comparative analysis between the two approaches, upper limb less disturbance (p = 0.04) and lower mental effort (p = 0.001) were reported with robotic approach. Robotic assistance decreases mental and physical effort during the primary closure of a defect in an incisional hernia inanimate model.
Visualizing polarization singularities in Bessel-Poincaré beams.
Shvedov, V; Karpinski, P; Sheng, Y; Chen, X; Zhu, W; Krolikowski, W; Hnatovsky, C
2015-05-04
We demonstrate that an annulus of light whose polarization is linear at each point, but the plane of polarization gradually rotates by π radians can be used to generate Bessel-Poincaré beams. In any transverse plane this beam exhibits concentric rings of polarization singularities in the form of L-lines, where the polarization is purely linear. Although the L-lines are invisible in terms of light intensity variations, we present a simple way to visualize them as dark rings around a sharp peak of intensity in the beam center. To do this we use a segmented polarizer whose transmission axes are oriented differently in each segment. The radius of the first L-line is always smaller than the radius of the central disk of the zero-order Bessel beam that would be produced if the annulus were homogeneously polarized and had no phase circulation along it.
A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herer, C.; Souyri, A.; Garnier, J.
1995-09-01
Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to themore » annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.« less
Coaxial fuel and air premixer for a gas turbine combustor
York, William D; Ziminsky, Willy S; Lacy, Benjamin P
2013-05-21
An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.
Large panel design for containment air baffle
Orr, Richard S.
1992-01-01
The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel.
NASA Astrophysics Data System (ADS)
Liang, Feng; Wang, Dechang
In this paper, we suppose that a planar piecewise Hamiltonian system, with a straight line of separation, has a piecewise generalized homoclinic loop passing through a Saddle-Fold point, and assume that there exists a family of piecewise smooth periodic orbits near the loop. By studying the asymptotic expansion of the first order Melnikov function corresponding to the period annulus, we obtain the formulas of the first six coefficients in the expansion, based on which, we provide a lower bound for the maximal number of limit cycles bifurcated from the period annulus. As applications, two concrete systems are considered. Especially, the first one reveals that a quadratic piecewise Hamiltonian system can have five limit cycles near a generalized homoclinic loop under a quadratic piecewise smooth perturbation. Compared with the smooth case [Horozov & Iliev, 1994; Han et al., 1999], three more limit cycles are found.
Well purge and sample apparatus and method
Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.; Gustafson, Gregg S.
1995-01-01
The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.
Stress fields around two pores in an elastic body: exact quadrature domain solutions.
Crowdy, Darren
2015-08-08
Analytical solutions are given for the stress fields, in both compression and far-field shear, in a two-dimensional elastic body containing two interacting non-circular pores. The two complex potentials governing the solutions are found by using a conformal mapping from a pre-image annulus with those potentials expressed in terms of the Schottky-Klein prime function for the annulus. Solutions for a three-parameter family of elastic bodies with two equal symmetric pores are presented and the compressibility of a special family of pore pairs is studied in detail. The methodology extends to two unequal pores. The importance for boundary value problems of plane elasticity of a special class of planar domains known as quadrature domains is also elucidated. This observation provides the route to generalization of the mathematical approach here to finding analytical solutions for the stress fields in bodies containing any finite number of pores.
NASA Astrophysics Data System (ADS)
Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin
2018-02-01
The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.
Genus Ranges of Chord Diagrams
Burns, Jonathan; Jonoska, Nataša; Saito, Masahico
2015-01-01
A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges. PMID:26478650
Genus Ranges of Chord Diagrams.
Burns, Jonathan; Jonoska, Nataša; Saito, Masahico
2015-04-01
A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.
NASA Technical Reports Server (NTRS)
Om, Deepak; Childs, Morris E.
1987-01-01
An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.
Well purge and sample apparatus and method
Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.
1995-10-24
The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.
Feedwater temperature control methods and systems
Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip
2014-04-22
A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.
Large panel design for containment air baffle
Orr, R.S.
1992-12-08
The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel. 9 figs.
Preliminary considerations for extraction of thermal effect from magma
NASA Astrophysics Data System (ADS)
Hickox, C. E.; Dunn, J. C.
Simplified mathematical models are developed to describe the extraction of thermal energy from magma based on the concept of a counter-flow heat exchanger inserted into the magma body. Analytical solutions are used to investigate influence of the basic variables on electric power production. Calculations confirm that the proper heat exchanger flow path is down the annulus with hot fluid returning to the surface through the central core. The core must be insulated from the annulus to achieve acceptable wellhead temperatures, but this insulation thickness can be quite small. The insulation is effective in maintaining the colder annular flow below expected formation temperatures so that a net beat gain from the formation above a magma body is predicted. The analynes show that optimum flow rates exist that maximize electric power production. These optimum flow rates are functions of the heat transfer coefficients that describe magma energy extraction.
Opposing flow in square porous annulus: Influence of Dufour effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athani, Abdulgaphur, E-mail: abbu.bec@gmail.com; Al-Rashed, Abdullah A. A. A., E-mail: aa.alrashed@paaet.edu.kw; Khaleed, H. M. T., E-mail: khalid-tan@yahoo.com
Heat and mass transfer in porous medium is very important area of research which is also termed as double diffusive convection or thermo-solutal convection. The buoyancy ratio which is the ratio of thermal to concentration buoyancy can have negative values thus leading to opposing flow. This article is aimed to study the influence of Dufour effect on the opposing flow in a square porous annulus. The partial differential equations that govern the heat and mass transfer behavior inside porous medium are solved using finite element method. A three node triangular element is used to divide the porous domain into smallermore » elements. Results are presented with respect to geometric and physical parameters such as duct diameter ratio, Rayleigh number, radiation parameter etc. It is found that the heat transfer increase with increase in Rayleigh number and radiation parameter. It is observed that Dufour coefficient has more influence on velocity profile.« less
Local fragmentation of thin disks in Eddington-inspired gravity
NASA Astrophysics Data System (ADS)
Roshan, Mahmood; Kazemi, Ali; De Martino, Ivan
2018-06-01
We find the generalized version of the Toomre's criterion for the stability of a rotating thin disk in the context of Eddington inspired Born-Infeld (EiBI) gravity which possesses one free parameter χ. To do so we use the weak field limit of the theory and find the dispersion relation for the propagation of matter density waves on the surface of a self-gravitating and differentially rotating disk. Finally we find a new version of Toomre's stability criterion for thin disks. We show that EiBI gravity with negative χ destabilizes all the rotating thin disks. On the other hand EiBI with positive χ substantially can suppress the local fragmentation, and has stabilizing effects against axi-symmetric perturbations. More specifically, we show that only an annulus remains unstable on the surface of the disk. The width of the annulus directly depends on the magnitude of χ.
Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.
Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M
2017-12-01
We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.
Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model
NASA Astrophysics Data System (ADS)
Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.
2016-09-01
The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.
40 CFR 265.228 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 265.228... DISPOSAL FACILITIES Surface Impoundments § 265.228 Closure and post-closure care. (a) At closure, the owner... impoundment and provide post-closure care for a landfill under subpart G and § 265.310, including the...
40 CFR 265.228 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Closure and post-closure care. 265.228... DISPOSAL FACILITIES Surface Impoundments § 265.228 Closure and post-closure care. (a) At closure, the owner... impoundment and provide post-closure care for a landfill under subpart G and § 265.310, including the...
40 CFR 264.146 - Use of a mechanism for financial assurance of both closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... assurance of both closure and post-closure care. 264.146 Section 264.146 Protection of Environment... mechanism for financial assurance of both closure and post-closure care. An owner or operator may satisfy the requirements for financial assurance for both closure and post-closure care for one or more...
Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus
van den Akker, Guus G. H.; Surtel, Don A. M.; Cremers, Andy; Richardson, Stephen M.; Hoyland, Judith A.; van Rhijn, Lodewijk W.
2016-01-01
Introduction Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Methods Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). Results The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. Conclusion We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair. PMID:26794306
Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus.
van den Akker, Guus G H; Surtel, Don A M; Cremers, Andy; Richardson, Stephen M; Hoyland, Judith A; van Rhijn, Lodewijk W; Voncken, Jan Willem; Welting, Tim J M
2016-01-01
Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.
Seiffert, Moritz; Bader, Ralf; Kappert, Utz; Rastan, Ardawan; Krapf, Stephan; Bleiziffer, Sabine; Hofmann, Steffen; Arnold, Martin; Kallenbach, Klaus; Conradi, Lenard; Schlingloff, Friederike; Wilbring, Manuel; Schäfer, Ulrich; Diemert, Patrick; Treede, Hendrik
2014-10-01
This analysis reports on the initial German multicenter experience with the JenaValve (JenaValve Technology GmbH, Munich, Germany) transcatheter heart valve for the treatment of pure aortic regurgitation. Experience with transcatheter aortic valve implantation (TAVI) for severe aortic regurgitation is limited due to the risk of insufficient anchoring of the valve stent within the noncalcified aortic annulus. Transapical TAVI with a JenaValve for the treatment of severe aortic regurgitation was performed in 31 patients (age 73.8 ± 9.1 years) in 9 German centers. All patients were considered high risk for surgery (logistic EuroSCORE [European System for Cardiac Operative Risk Evaluation] 23.6 ± 14.5%) according to a local heart team consensus. Procedural results and clinical outcomes up to 6 months were analyzed. Implantation was successful in 30 of 31 cases (aortic annulus diameter 24.7 ± 1.5 mm); transcatheter heart valve dislodgement necessitated valve-in-valve implantation in 1 patient. Post-procedural aortic regurgitation was none/trace in 28 of 31 and mild in 3 of 31 patients. During follow-up, 2 patients underwent valvular reinterventions (surgical aortic valve replacement for endocarditis, valve-in-valve implantation for increasing paravalvular regurgitation). All-cause mortality was 12.9% and 19.3% at 30 days and 6 months, respectively. In the remaining patients, a significant improvement in New York Heart Association class was observed and persisted up to 6 months after TAVI. Aortic regurgitation remains a challenging pathology for TAVI. After initial demonstration of feasibility, this multicenter study revealed the JenaValve transcatheter heart valve as a reasonable option in this subset of patients. However, a significant early noncardiac mortality related to the high-risk population emphasizes the need for careful patient selection. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
MATERIALS SUPPORTING THE NEW RECREATIONAL ...
EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures. The methods are supported by a series of epidemiology studies evaluating the rate of GI illness resulting from swimming events. Implementation of BEACH Act amendments
Bubblers Speed Nuclear Waste Processing at SRS
None
2018-05-23
At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.
ERIC Educational Resources Information Center
Rush, S. Craig; Partridge, Ashley; Wheeler, Joanna
2016-01-01
One means of sustaining school operations when a disaster makes school buildings inaccessible or inoperable for an extended period of time is to use online and other communication technology to temporarily provide online schooling, also known as emergency online schools. However, the current literature on emergency online schools suggests that…
NASA Astrophysics Data System (ADS)
Prucha, R. H.; Dayton, C. S.; Hawley, C. M.
2002-12-01
The Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, a former Department of Energy nuclear weapons manufacturing facility, is currently undergoing closure. The natural semi-arid interaction between surface and subsurface flow at RFETS is complex and complicated by the industrial modifications to the flow system. Using a substantial site data set, a distributed parameter, fully-integrated hydrologic model was developed to assess the hydrologic impact of different hypothetical site closure configurations on the current flow system and to better understand the integrated hydrologic behavior of the system. An integrated model with this level of detail has not been previously developed in a semi-arid area, and a unique, but comprehensive, approach was required to calibrate and validate the model. Several hypothetical scenarios were developed to simulate hydrologic effects of modifying different aspects of the site. For example, some of the simulated modifications included regrading the current land surface, changing the existing surface channel network, removing subsurface trenches and gravity drain flow systems, installing a slurry wall and geotechnical cover, changing the current vegetative cover, and converting existing buildings and pavement to permeable soil areas. The integrated flow model was developed using a rigorous physically-based code so that realistic design parameters can simulate these changes. This code also permitted evaluation of changes to complex integrated hydrologic system responses that included channelized and overland flow, pond levels, unsaturated zone storage, groundwater heads and flow directions, and integrated water balances for key areas. Results generally show that channel flow offsite decreases substantially for different scenarios, while groundwater heads generally increase within the reconfigured industrial area most of which is then discharged as evapotranspiration. These changes have significant implications to site closure and operation.
Agricultural Intensification as a Mechanism of Adaptation to Climate Change Impacts
NASA Astrophysics Data System (ADS)
Kyle, P.; Calvin, K. V.; le Page, Y.; Patel, P.; West, T. O.; Wise, M. A.
2015-12-01
The research, policy, and NGO communities have devoted significant attention to the potential for agricultural intensification, or closure of "yield gaps," to alleviate future global hunger, poverty, climate change impacts, and other threats. However, because the research to this point has focused on biophysically attainable yields—assuming optimal choices under ideal conditions—the presently available work has not yet addressed the likely responses of the agricultural sector to real-world conditions in the future. This study investigates endogenous agricultural intensification in response to global climate change impacts—that is, intensification independent of policies or other exogenous interventions to promote yield gap closure. The framework for the analysis is a set of scenarios to 2100 in the GCAM global integrated assessment model, enhanced to include endogenous irrigation, fertilizer application, and yields, in each of 283 land use regions, with maximum yields based on the 95th percentile of attainable yields in a recent global assessment. We assess three levels of agricultural climate impacts, using recent global gridded crop model datasets: none, low (LPJmL), and high (Pegasus). Applying formulations for decomposition of climate change impacts response developed in prior AgMIP work, we find that at the global level, availability of high-yielding technologies mitigates price shocks and shifts the agricultural sector's climate response modestly towards intensification, away from cropland expansion and reduced production. At the regional level, the behavior is more complex; nevertheless, availability of high-yielding production technologies enhances the inter-regional shifts in agricultural production that are induced by climate change, complemented by commensurate changes in trade patterns. The results highlight the importance of policies to facilitate yield gap closure and inter-regional trade as mechanisms for adapting to climate change
Hypersonic airbreathing vehicle conceptual design (focus on aero-space plane)
NASA Technical Reports Server (NTRS)
Hunt, James L.; Martin, John G.
1989-01-01
The airbreathing single stage to orbit (SSTO) vehicle design environment is variable-rich, intricately networked and sensitivity intensive. As such, it represents a tremondous technology challenge. Creating a viable design will require sophisticated configuration/synthesis and the synergistic integration of advanced technologies across the discipline spectrum. In design exercises, reductions in the fuel weight-fraction requirements projected for an orbital vehicle concept can result from improvements in aerodynamics/controls, propulsion efficiencies and trajectory optimization; also, gains in the fuel weight-fraction achievable for such a concept can result from improvements in structural design, heat management techniques, and material properties. As these technology advances take place, closure on a viable vehicle design will be realizable.
NASA Technical Reports Server (NTRS)
Wright, M. Clara; Manuel, Michele; Wallace, Terryl; Newman, Andy; Brinson, Kate
2015-01-01
This DAA is for the Phase II webinar presentation of the ARMD-funded SMASH technology. A self-repairing aluminum-based composite system has been developed using liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal matrix composite was thermodynamically designed to have a matrix with a relatively even dispersion of low-melting phase, allowing for repair of cracks at a pre-determined temperature. Shape memory alloy wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to optimize and computer model the SMASH technology for aeronautical applications.
Maeda, Koichi; Kuratani, Toru; Torikai, Kei; Shimamura, Kazuo; Mizote, Isamu; Ichibori, Yasuhiro; Takeda, Yasuharu; Daimon, Takashi; Nakatani, Satoshi; Nanto, Shinsuke; Sawa, Yoshiki
2013-07-01
Even mild paravalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) is associated with increased late mortality. Electrocardiogram-gated multi-slice computed tomography (MSCT) enables detailed aortic annulus assessment. We describe the impact of MSCT for PVL following TAVR. Congruence between the prosthesis and annulus diameters affects PVL; therefore, we calculated the OverSized AortiC Annular ratio (OSACA ratio) and OSACA (transesophageal echocardiography, TEE) ratio as prosthesis diameter/annulus diameter on MSCT or TEE, respectively, and compared their relationship with PVL ≤ trace following TAVR. Of 36 consecutive patients undergoing TAVR (Group A), the occurrence of PVL ≤ trace (33.3%) was significantly related to the OSACA ratio (p = 0.00020). In receiver-operating characteristics analysis, the cutoff value of 1.03 for the OSACA ratio had the highest sum of sensitivity (75.0%) and specificity (91.7%; AUC = 0.87) with significantly higher discriminatory performance for PVL as compared to the OSACA (TEE) ratio (AUC = 0.69, p = 0.028). In nine consecutive patients (Group B) undergoing TAVR based on guidelines formulated from our experience with Group A, PVL ≤ trace was significantly more frequent (88.9%) than that in Group A (p = 0.0060). The OSACA ratio has a significantly higher discriminatory performance for PVL ≤ trace than the OSACA (TEE) ratio, and aortic annular measurement from MSCT is more accurate than that from TEE. © 2013 Wiley Periodicals, Inc.
Aortic root dynamism, geometry, and function after the remodeling operation: Clinical relevance.
Yacoub, Magdi H; Aguib, Heba; Gamrah, Mazen Abou; Shehata, Nairouz; Nagy, Mohamed; Donia, Mohamed; Aguib, Yasmine; Saad, Hesham; Romeih, Soha; Torii, Ryo; Afifi, Ahmed; Lee, Su-Lin
2018-04-13
Valve-conserving operations for aneurysms of the ascending aorta and root offer many advantages, and their use is steadily increasing. Optimizing the results of these operations depends on providing the best conditions for normal function and durability of the new root. Multimodality imaging including 2-dimensional echocardiography, multislice computed tomography, and cardiovascular magnetic resonance combined with image processing and computational fluid dynamics were used to define geometry, dynamism and aortic root function, before and after the remodeling operation. This was compared with 4 age-matched controls. The size and shape of the ascending aorta, aortic root, and its component parts showed considerable changes postoperatively, with preservation of dynamism. The postoperative size of the aortic annulus was reduced without the use of external bands or foreign material. Importantly, the elliptical shape of the annulus was maintained and changed during the cardiac cycle (Δ ellipticity index was 15% and 28% in patients 1 and 2, respectively). The "cyclic" area of the annulus changed in size (Δarea: 11.3% in patient 1 and 13.1% in patient 2). Functional analysis showed preserved reservoir function of the aortic root, and computational fluid dynamics demonstrated normalized pattern of flow in the ascending aorta, sinuses of Valsalva, and distal aorta. The remodeling operation results in near-normal geometry of the aortic root while maintaining dynamism of the aortic root and its components. This could have very important functional implications; the influence of these effects on both early- and long-term outcomes needs to be studied further. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Pnevmatikos, Dimitris; Geka, Maria; Divane, Maria
2010-12-01
This study investigates the emergence, development and structure of ethnic identity during childhood. Forty Roma children living in Greece aged between 2.8 and 11.9 years answered questions about their awareness/recognition of four aspects of their ethnic identity-namely place of habitation, traditional costumes, the Roma language, and early betrothal of children-their identity and their sense of stability and constancy. The study also investigates how the children feel about the abandonment of those four aspects. The evidence from the current data supports the hypothesis that awareness of ethnic identity emerges before the age of 4. Moreover, this study offers direct empirical evidence of the multidimensionality of ethnic identity. A model of three concentric rings is proposed, extending from a core containing the most highly valued aspects of ethnic identity to the outer annulus that comprises the nonpermanent and nonstable aspects of ethnic identity. The aspects in each annulus differ in terms of the development of the sense of stability and constancy and the feelings associated with loss of the aspects in question. Even the youngest participants considered the aspects in the core to be stable and constant as well as emotionally charged; and even the 11-year-olds did not consider the aspects contained in the outer, more fluid annulus as stable and constant aspects of their ethnic identity. The development of an aspect is determined by what the majority of adults in a society, at a particular time in history, consider to be most important.
Precession effects on a liquid planetary core
NASA Astrophysics Data System (ADS)
Liu, Min; Li, Li-Gang
2018-02-01
Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.
NASA Technical Reports Server (NTRS)
Greenberg, N. L.; Castro, P. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.
2000-01-01
Color M-mode echocardiography has recently been utilized to describe diastolic flow propagation velocity (Vp) in the left ventricle. While increasing temporal resolution from 15 to 200 Hz, this M-mode technique requires the user to select a single scanline, potentially limiting quantification of Vp due to the complex three-dimensional inflow pattern. We previously performed computational fluid dynamics simulations to demonstrate the insignificance of the scanline orientation, however geometric complexity was limited. The purpose of this study was to utilize high frame-rate 2D color Doppler images to investigate the importance of scanline selection in patients for the quantification of Vp. 2D color Doppler images were digitally acquired at 50 frames/s in 6 subjects from the apical 4-chamber window (System 5, GE/Vingmed, Milwaukee, WI). Vp was determined for a set of scanlines positioned through 5 locations across the mitral annulus (from the anterior to posterior mitral annulus). An analysis of variance was performed to examine the differences in Vp as a function of scanline position. Vp was not effected by scanline position in sampled locations from the center of the mitral valve towards the posterior annulus. Although not statistically significant, there was a trend to slower propagation velocities on the anterior side of the valve (60.8 +/- 16.7 vs. 54.4 +/- 13.6 cm/s). This study clinically validates our previous numerical experiment showing that Vp is insensitive to small perturbations of the scanline through the mitral valve. However, further investigation is necessary to examine the impact of ventricular geometry in pathologies including dilated cardiomyopathy.
Melrose, J; Taylor, T K; Ghosh, P
1997-06-01
Trypsin inhibitory proteins of low buoyant density (p < or = 1.35 g/mL) fractions were prepared by CsCl density gradient ultracentrifugation of 4 M guanidinium hydrochloride extracts of lumbar beagle and greyhound annulus fibrosus and nucleus pulposus from animals aged 1 to 6 years. Affinity blotting with biotinylated trypsin was used to identify active trypsin inhibitory protein species; these species were also identified immunologically by Western blotting using antibodies against bovine pancreatic trypsin inhibitor (BPTI), and human inter-alpha-trypsin inhibitor (ITI). None of the trypsin inhibitory species evident in Western blots were reactive with anti-human alpha1-proteinase inhibitor (alpha-1-PI), alpha2-macroglobulin or secretory leucocyte proteinase inhibitor. The greyhound intervertebral disc samples generally had higher levels of active trypsin inhibitor species per unit weight of tissue extracted, and a more extensive range of inhibitor species. Inhibitor species of 30, 32, 34 kDa were identified in both beagle and greyhound intervertebral disc samples; these species were generally most prominent in the annulus fibrosus samples. In contrast, the nucleus pulposus samples contained relatively large trypsin inhibitor species; the anti-BPTI detected an inhibitor species of approximately 85-90 kDa; anti-ITI detected species of 120-250 kDa; biotinylated trypsin detected species of 60-110 kDa. A small molecular mass trypsin inhibitor species of 6 kDa, which was of similar mobility to BPTI, was also detected in annulus fibrosus samples; however, this species did not react with anti-BPTI.
DDD versus VVIR pacing in patients, ages 70 and over, with complete heart block.
Ouali, Sana; Neffeti, Elyes; Ghoul, Karima; Hammas, Sami; Kacem, Slim; Gribaa, Rim; Remedi, Fahmi; Boughzela, Essia
2010-05-01
Dual-chamber pacing is believed to have an advantage over single-chamber ventricular pacing. The aim of the study was to determine whether elderly patients with implanted pacemaker for complete atrioventricular block gain significant benefit from dual-chamber (DDD) compared with single-chamber ventricular demand (VVIR). The study was designed as a double-blind randomized two-period crossover study-each pacing mode was maintained for 3 months. Thirty patients (eight men, mean age 76.5 +/- 4.3 years) with implanted PM were submitted to a standard protocol, which included an interview, functional class assessment, quality of life (QoL) questionnaires, 6-minute walk test, and transthoracic echocardiographic examinations. QoL was measured by the SF-36. All these parameters were obtained on DDD mode pacing and VVIR mode pacing. Paired data were compared. QoL was significantly different between the two groups and showed the best values in DDD. Overall, no patient preferred VVIR mode, 18 preferred DDD mode, and 12 expressed no preference. No differences in mean walking distances were observed between patients with single-chamber and dual-chamber pacing. VVI pacing elicited marked decrease in left ventricle ejection fraction and significant enlargement of the left atrium. DDD pacing resulted in significant increase of the peak systolic velocities in lateral mitral annulus and septal mitral annulus. Early diastolic velocities on both sides of mitral annulus did not change. In active elderly patients with complete heart block, DDD pacing is associated with improved quality of life and systolic ventricular function compared with VVI pacing.
Kurkluoglu, Mustafa; John, Anitha S; Cross, Russell; Chung, David; Yerebakan, Can; Zurakowski, David; Jonas, Richard A; Sinha, Pranava
2015-01-01
Indications for prophylactic tricuspid annuloplasty in patients with pulmonary regurgitation (PR) after tetralogy of Fallot (TOF) repair are unclear and often extrapolated from acquired functional tricuspid regurgitation (TR) data in adults, where despite correction of primary left heart pathology, progressive tricuspid annular dilation is noted beyond a threshold diameter >4 cm (21 mm/m(2)). We hypothesized that unlike in adult functional TR, in pure volume-overload conditions such as patients with PR after TOF, the tricuspid valve size is likely to regress after pulmonary valve replacement (PVR). A total of 43 consecutive patients who underwent PVR from 2005 until 2012 at a single institution were retrospectively reviewed. Absolute and indexed tricuspid annulus diameters (TADs), tricuspid annulus Z-scores, grade of TR along with right ventricular size, and function indices were recorded before and after PVR. Preoperative and postoperative echocardiographic data were available in all patients. A higher tricuspid valve Z-score correlated with greater TR both preoperatively (P = 0.005) and postoperatively (P = 0.02). Overall reductions in the absolute and indexed TAD and tricuspid valve Z-scores were seen postoperatively, with greater absolute as well as percentage reduction seen with larger preoperative TAD index (P = 0.007) and higher tricuspid annulus Z-scores (P = 0.06). In pure volume-overload conditions such as patients with PR after TOF, reduction in the tricuspid valve size is seen after PVR. Concomitant tricuspid annuloplasty should not be considered based on tricuspid annular dilation alone. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Omojaro, Adebola Peter; Breitkopf, Cornelia
2017-07-01
Heat transfer performance during the simultaneous charging and discharging (SCD) operation process for phase change materials (PCM) contained inside the annulus of concentric horizontal cylinder was investigated. In the experimental set-up, the PCM inside the annulus serves as the heat sink along with an externally imposed forced cooling air. The obtained time wise temperature profile was used to determine the effects of different heat fluxes and the imposed forced convection cooling on the melt fraction values and the transition shift time from the observed conduction to natural convection heat transfer patterns. Furthermore, non-dimensional analysis was presented for the heat transfer at the interface to enable generalizing the result. Comparison of the results show that the SCD operation mode establish the condition that enables much PCM phase transition time and thus longer time of large latent heat transfer effect than the Partial and non simultaneous operations. Analysis results show that the variation of the heat flux for the SCD mode did not change the dominance of the natural convection over conduction heat transfers in the PCM. However, it significantly influences the commencement/transition shift time and melting rate while higher heat fluxes yields melt fraction that was 38-63% more for investigated process time. Variation with different cooling air flow rate shows more influences on the melt fraction than on the mode of heat transfer occurring in the PCM during melting. Available non-SCD modes correlation was shown to be insufficient to accurately predict interface heat transfer for the SCD modes.
Pathophysiology, diagnosis, and treatment of discogenic low back pain
Peng, Bao-Gan
2013-01-01
Discogenic low back pain is a serious medical and social problem, and accounts for 26%-42% of the patients with chronic low back pain. Recent studies found that the pathologic features of discs obtained from the patients with discogenic low back pain were the formation of the zones of vascularized granulation tissue, with extensive innervation in fissures extending from the outer part of the annulus into the nucleus pulposus. Studies suggested that the degeneration of the painful disc might originate from the injury and subsequent repair of annulus fibrosus. Growth factors such as basic fibroblast growth factor, transforming growth factor β1, and connective tissue growth factor, macrophages and mast cells might play a key role in the repair of the injured annulus fibrosus and subsequent disc degeneration. Although there exist controversies about the role of discography as a diagnostic test, provocation discography still is the only available means by which to identify a painful disc. A recent study has classified discogenic low back pain into two types that were annular disruption-induced low back pain and internal endplate disruption-induced low back pain, which have been fully supported by clinical and theoretical bases. Current treatment options for discogenic back pain range from medicinal anti-inflammation strategy to invasive procedures including spine fusion and recently spinal arthroplasty. However, these treatments are limited to relieving symptoms, with no attempt to restore the disc’s structure. Recently, there has been a growing interest in developing strategies that aim to repair or regenerate the degenerated disc biologically. PMID:23610750
40 CFR 265.146 - Use of a mechanism for financial assurance of both closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... assurance of both closure and post-closure care. 265.146 Section 265.146 Protection of Environment... Use of a mechanism for financial assurance of both closure and post-closure care. An owner or operator may satisfy the requirements for financial assurance for both closure and post-closure care for one or...
Recent advances in Li/SO2 battery technology
NASA Astrophysics Data System (ADS)
Ralston, R. E.
The areas of improvement discussed are related to cell closure-hermetic seals, improved glass-to-metal seals, and lithium-limited cell design. Attention is given to the design of a Li/SO2 cell which can safely withstand discharge below zero volts into voltage reversal. The design characteristics of an unbalanced cell, the new lithium-limited or balanced cell, and a high rate unbalanced design are compared in a table for the 'D' size cell. It is concluded that the improvements in cell closure, glass seal stability, and cell balance have resulted in storability, reliability, and abuse resistance characteristics which make the performance of today's Li/SO2 battery without equal among competitive primary batteries. However, the Li/SO2 cell must not be used in applications where extreme electrical or environmental conditions can push the system beyond its recommended limits.
Boiler for generating high quality vapor
NASA Technical Reports Server (NTRS)
Gray, V. H.; Marto, P. J.; Joslyn, A. W.
1972-01-01
Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.
30 CFR 250.428 - What must I do in certain cementing and casing situations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... point. (h) Need to use less than required cement for the surface casing during floating drilling... permafrost zone uncemented Fill the annulus with a liquid that has a freezing point below the minimum...
Mitral Annular Dynamics in Mitral Annular Calcification: A Three-Dimensional Imaging Study.
Pressman, Gregg S; Movva, Rajesh; Topilsky, Yan; Clavel, Marie-Annick; Saldanha, Jason A; Watanabe, Nozomi; Enriquez-Sarano, Maurice
2015-07-01
The mitral annulus displays complex conformational changes during the cardiac cycle that can now be quantified by three-dimensional echocardiography. Mitral annular calcification (MAC) is increasingly encountered, but its structural and dynamic consequences are largely unexplored. The objective of this study was to describe alterations in mitral annular dimensions and dynamics in patients with MAC. Transthoracic three-dimensional echocardiography was performed in 43 subjects with MAC and 36 age- and sex-matched normal control subjects. Mitral annular dimensions were quantified, using dedicated software, at six time points (three diastolic, three systolic) during the cardiac cycle. In diastole, the calcified annulus was larger and flatter than normal, with increased anteroposterior diameter (29.4 ± 0.6 vs 27.8 ± 0.6 mm, P = .046), reduced height (2.8 ± 0.2 vs 3.6 ± 0.2 mm, P = .006), and decreased saddle shape (8.9 ± 0.6% vs 11.4 ± 0.6%, P = .005). In systole, patients with MAC had greater annular area at all time points (P < .05 for each) compared with control subjects, because of reduced contraction along the anteroposterior diameter (P < .001). Saddle shape increased in early systole (from 10.5% to 13.5%, P = .04) in control subjects but not in those with MAC (P = NS). Valvular alterations were also noted; although mitral valve tent length decreased during systole in both groups, decreases were less in patients with MAC (P < .05 for mid- and late systole). For certain parameters (e.g., annular area), changes were confined largely to those patients with moderate to severe MAC (P = .006 vs control subjects, but nonsignificant for patients with mild MAC). Quantitative three-dimensional echocardiography provides new insights into the dynamic consequences of MAC. This imaging technique demonstrates that the mitral annulus is not made smaller by calcification. However, there is loss of annular contraction, particularly along the anteroposterior diameter, and loss of early systolic folding along the intercommissural diameter. Associated valvular alterations include smaller than usual declines in tenting during systole. These quantitative three-dimensional echocardiographic data provide new insights into the dynamic physiology of the calcified mitral annulus. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Slonecker, E. Terrence; Fisher, Gary B.
2009-01-01
This project is a research collaboration between the U.S. Environmental Protection Agency (EPA) Office of Inspector General (OIG) and the U.S. Geological Survey (USGS) Eastern Geographic Science Center (EGSC), for the purpose of evaluating the utility of hyperspectral remote sensing technology for post-closure monitoring of residual contamination at delisted and closed hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act [CERCLA (also known as 'Superfund')] of 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986.
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Mechanical integrity. 147.3107 Section 147.3107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted...
40 CFR 147.3010 - Mechanical integrity tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring of annulus pressure listed in § 146.8(b)(1) of this chapter will only be acceptable if preceded by a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at the time of the pressure test. ...
40 CFR 147.3010 - Mechanical integrity tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitoring of annulus pressure listed in § 146.8(b)(1) of this chapter will only be acceptable if preceded by a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at the time of the pressure test. ...
40 CFR 147.3010 - Mechanical integrity tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitoring of annulus pressure listed in § 146.8(b)(1) of this chapter will only be acceptable if preceded by a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at the time of the pressure test. ...
40 CFR 147.3010 - Mechanical integrity tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitoring of annulus pressure listed in § 146.8(b)(1) of this chapter will only be acceptable if preceded by a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at the time of the pressure test. ...
Mody, Gita N; Nirmal, Ida Anita; Duraisamy, Sulochana; Perakath, Benjamin
2008-12-01
Wound closure using topical negative pressure (TNP) has been reported to be effective, but equipment costs can be prohibitive in resource-challenged countries. Because nonhealing wounds are exceedingly common in developing countries such as India, the ability to optimize wound care with limited resources is very important. To investigate the feasibility and efficacy of providing TNP in an Indian medical referral center, a randomized controlled trial comparing a locally constructed TNP device (treatment) to wet-to-dry gauze dressings (control) was conducted. Eligible study participants (N = 48) were recruited from the inpatient wards. Wound etiologies included diabetic foot ulcers (15), pressure ulcers (11), cellulitis/fasciitis (11), and "other" (11). Following enrollment, wound size was assessed using computer-aided measurements of digital photographs and block-randomized to the study arms using a concealed allocation table. Wounds in both treatment groups were débrided before dressing application and patients were followed until wound closure or being lost to follow-up for an average of 26.3 days (+/- 18.5) in the control and 33.1 days (+/- 37.3) in the treatment group. No statistically significant differences in time to closure between the two treatment groups were observed except in a subset analysis of pressure ulcers (mean 10 +/- 7.11 days for treatment and 27 +/- 10.6 days in control group, P = 0.05). Direct costs to close a pressure ulcer also were lower in the TNP than in the control group. A review of the literature suggests the outcomes obtained using a locally constructed TNP device are similar to those obtained using commercially available devices. As a result of this study, a dedicated tissue viability team has been established to identify wounds suitable for TNP, oversee treatment, monitor the need for surgical débridement, and employ wound healing principles and technology appropriately. These results suggest that inexpensive materials can be utilized for TNP wound closure in a developing country.
Lertsapcharoen, Pornthep; Khongphatthanayothin, Apichai; La-orkhun, Vidhavas; Supachokchaiwattana, Pentip; Charoonrut, Phingphol
2006-01-01
Our purpose was to evaluate self-expanding nanoplatinum-coated nitinol devices for transcatheter closure of atrial septal defects and patent ductus arteriosus in a swine model. The devices were braided from platinum-activated nitinol wires and filled with polyester to enhance thrombogenicity. The platinum activation of the nitinol wires was carried out with the help of Nanofusion technology. The coating of platinum covers the exposed surface of the nitinol wires and prevents the release of nickel into the blood stream after the implantation of the device but does not affect its shape memory, which makes the device self-expanding after it is loaded from the catheter. Atrial septal defects were created in 12 piglets by balloon dilation of the patent foramen ovale. The size of the device was selected on the basis of the diameter of the balloon and the size of the defect, measured by transthoracic echocardiography. The devices were successfully deployed in all 12 piglets under fluoroscopic study. Transthoracic color Doppler echocardiograms showed complete closure of the atrial septal defect within 15 minutes of device implantation. Twelve patent ductus arteriosus closure devices were deployed in the right or left subclavian arteries in 10 piglets. Angiograms showed complete occlusion of the subclavian arteries within a few minutes of device deployment. In the atrial septal defect cases, the autopsy findings showed complete organizing fibrin thrombus formation and complete neo-endothelialization on the outer surface of the devices within one week and six weeks of implantation, respectively. The use of self-expanding nanoplatinum-coated nitinol devices for the transcatheter closure of atrial septal defects and patent ductus arteriosus is feasible. The excellent occlusion result and complete neo-endothelialization of the devices in the swine model is an indication of the potential of these devices in human application.
Chen, Ru; Yang, Ke; Zheng, Zhong; Ong, Moh-Lim; Wang, Ning-Li; Zhan, Si-Yan
2016-03-01
To systematically evaluate the safety and efficacy of latanoprost monotherapy for the treatment of patients with angle-closure glaucoma. We searched EMBASE, Medline, Cochrane Library, Chinese Journal Full-text Database (CNKI), Chinese Science and Technology Periodical Database (VIP), and Wang Fang using the search terms "latanoprost" (or its commercial name, Xalatan) and "angle-closure glaucoma." Resulting articles were then screened using preset inclusion criteria. Subgroup and sensitivity analyses were performed to evaluate the impact of research population, research type (blinded or controlled), and withdrawal/loss to follow-up. A total of 17 studies (n=807) were included in this meta-analysis. The primary outcome measure was intraocular pressure (IOP). Changes in the mean, peak, and trough IOP from baseline were used as effect measures. As I statistic revealed statistical heterogeneity, the random-effects model was applied. With the exception of 2 non-Asian populations from Australia and Peru, all 13 countries included in this study were from Asia. Latanoprost reduced mean IOP by 7.9 mm Hg (32.4%), peak IOP by 7.4 mm Hg (29.8%), and trough IOP by 7.9 mm Hg (32.5%). The most frequent ocular adverse effects were ocular hyperemia, discomfort (including eye irritation, ocular discomfort, foreign body sensation, and itching), and blurred vision with a total incidence rate of 9.4%, 8.7%, and 5.2%, respectively. Systemic adverse effects encompass rhinitis, dizziness, headache, and nonspecific skin pigmentation. Latanoprost is effective at reducing the IOP of patients with angle-closure glaucoma. Adverse reactions associated with latanoprost were mainly ocular in nature.
Transabdominal preperitoneal herniorrhaphy using laser-assisted tissue soldering in a porcine model.
Lanzafame, Raymond J; Soltz, Barbara A; Stadler, Istvan; Soltz, Robert
2009-01-01
Collagen solder is capable of fixation of surgical meshes during laparoscopic herniorrhaphy without compromising tissue integration, increasing adhesions or inflammation. This pilot study describes development of instrumentation and techniques for transabdominal preperitoneal (TAPP) herniorrhaphy using laser-assisted soldering technology. Anesthetized 20-kg to 25-kg female Yorkshire pigs underwent laparoscopy performed using a 3-trocar technique. Peritoneal incisions were made and pockets created in the preperitoneal space for mesh placement. Parietex TEC mesh segments embedded in 60% collagen-solder were soldered to the muscle surface by using a prototype laser (1.45micro, 4.5W CW, 5mm spot, and 55 degrees C set temperature) and custom laparoscopic handpiece. Parietex TEC mesh segments (Control) were affixed to the muscle with fibrin sealant (Tisseel). Peritoneal closure was with staples (Control) or by soldering collagen embedded Vicryl mesh segments over the peritoneal incision (Mesh/TAPP). Segments were inserted using a specially designed introducer. Animals were recovered and underwent second-look laparoscopy at 6 weeks postimplantation. Mesh sites were harvested after animals were euthanized. The mesh-solder constructs were easily inserted and affixed in the TAPP approach. Tisseel tended to drip during application, particularly in vertical and ventral locations. Postoperative healing was similar to Control segments in all cases. Mesh/TAPP closures healed without scarring or adhesion formation. Collagen-based tissue soldering permits normal wound healing and may mitigate or reduce use of staples for laparoscopic mesh fixation and peritoneal closure. Laser-assisted mesh fixation and peritoneal closure is a promising alternative for laparoscopic herniorrhaphy. Further development of this strategy is warranted.
Monitoring and control of atmosphere in a closed environment
NASA Technical Reports Server (NTRS)
Humphries, R.; Perry, J.
1991-01-01
Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.
ERIC Educational Resources Information Center
Solberg, Brooke L.
2011-01-01
As a result of massive retirement and educational program expense and closure, the field of Medical Laboratory Science (MLS) is facing a critical workforce shortage. Combatting this issue by increasing undergraduate class size is a difficult proposition due to the intense psychomotor curricular requirements of MLS programs. Technological advances…
Sharen, Gao-Wa; Zhang, Jun; Qin, Chuan; Lv, Qing
2017-02-01
The dynamic characteristics of the area of the atrial septal defect (ASD) were evaluated using the technique of real-time three-dimensional echocardiography (RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane (LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group (n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method (4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume (P<0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated (P<0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group (P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group (P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group (P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant (P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group (P=0.031). The aRVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group (P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.
Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission.
Sherman, Michael B; Kakani, Kishore; Rochon, D'Ann; Jiang, Wen; Voss, Neil R; Smith, Thomas J
2017-10-01
Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus As with other members of the Tombusvirus genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507-517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). P73 lies immediately adjacent to a putative zinc binding site (M. Li et al., J Virol 87:12166-12175, 2013, https://doi.org/10.1128/JVI.01965-13) that is formed by three icosahedrally related His residues in the N termini of the C subunit at the quasi-6-fold axes. To better understand how this buried residue might affect vector transmission, we determined the cryo-electron microscopy structure of wild-type CNV in the native and swollen state and of the transmission-defective mutant, P73G, under native conditions. With the wild-type CNV, the swollen structure demonstrated the expected expansion of the capsid. However, the zinc binding region at the quasi-6-fold at the β-annulus axes remained intact. By comparison, the zinc binding region of the P73G mutant, even under native conditions, was markedly disordered, suggesting that the β-annulus had been disrupted and that this could destabilize the capsid. This was confirmed with pH and urea denaturation experiments in conjunction with electron microscopy analysis. We suggest that the P73G mutation affects the zinc binding and/or the β-annulus, making it more fragile under neutral/basic pH conditions. This, in turn, may affect zoospore transmission. IMPORTANCE Cucumber necrosis virus (CNV), a member of the genus Tombusvirus , is transmitted in nature via zoospores of the fungus Olpidium bornovanus While a number of plant viruses are transmitted via insect vectors, little is known at the molecular level as to how the viruses are recognized and transmitted. As with many spherical plant viruses, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation that lies inside the capsid immediately adjacent to a putative zinc binding site (Li et al., J Virol 87:12166-12175, 2013, https://doi.org/10.1128/JVI.01965-13) blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507-517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). Here, we show that the P73G mutant is less stable than the wild type, and this appears to be correlated with destabilization of the β-annulus at the icosahedral 3-fold axes. Therefore, the β-annulus appears not to be essential for particle assembly but is necessary for interactions with the transmission vector. Copyright © 2017 American Society for Microbiology.
Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission
Sherman, Michael B.; Kakani, Kishore; Rochon, D'Ann; Jiang, Wen; Voss, Neil R.
2017-01-01
ABSTRACT Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus. As with other members of the Tombusvirus genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507–517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). P73 lies immediately adjacent to a putative zinc binding site (M. Li et al., J Virol 87:12166–12175, 2013, https://doi.org/10.1128/JVI.01965-13) that is formed by three icosahedrally related His residues in the N termini of the C subunit at the quasi-6-fold axes. To better understand how this buried residue might affect vector transmission, we determined the cryo-electron microscopy structure of wild-type CNV in the native and swollen state and of the transmission-defective mutant, P73G, under native conditions. With the wild-type CNV, the swollen structure demonstrated the expected expansion of the capsid. However, the zinc binding region at the quasi-6-fold at the β-annulus axes remained intact. By comparison, the zinc binding region of the P73G mutant, even under native conditions, was markedly disordered, suggesting that the β-annulus had been disrupted and that this could destabilize the capsid. This was confirmed with pH and urea denaturation experiments in conjunction with electron microscopy analysis. We suggest that the P73G mutation affects the zinc binding and/or the β-annulus, making it more fragile under neutral/basic pH conditions. This, in turn, may affect zoospore transmission. IMPORTANCE Cucumber necrosis virus (CNV), a member of the genus Tombusvirus, is transmitted in nature via zoospores of the fungus Olpidium bornovanus. While a number of plant viruses are transmitted via insect vectors, little is known at the molecular level as to how the viruses are recognized and transmitted. As with many spherical plant viruses, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation that lies inside the capsid immediately adjacent to a putative zinc binding site (Li et al., J Virol 87:12166–12175, 2013, https://doi.org/10.1128/JVI.01965-13) blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507–517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). Here, we show that the P73G mutant is less stable than the wild type, and this appears to be correlated with destabilization of the β-annulus at the icosahedral 3-fold axes. Therefore, the β-annulus appears not to be essential for particle assembly but is necessary for interactions with the transmission vector. PMID:28724762
Management of hidradenitis suppurativa wounds with an internal vacuum-assisted closure device.
Chen, Y Erin; Gerstle, Theodore; Verma, Kapil; Treiser, Matthew D; Kimball, Alexandra B; Orgill, Dennis P
2014-03-01
Hidradenitis suppurativa is a chronic, debilitating disease that is difficult to treat. Once medical management fails, wide local excision offers the best chance for cure. However, the resultant wound often proves too large or contaminated for immediate closure. The authors performed a retrospective chart review of hidradenitis cases managed surgically between 2005 and 2010. Data collected included patient characteristics, management method, and outcomes. Approximately half of the patients received internal vacuum-assisted closure therapy using the vacuum-assisted closure system and delayed closure and half of the patients received immediate primary closure at the time of their excision. Delayed closure consisted of closing the majority of the wound in a linear fashion following internal vacuum-assisted closure while accepting healing by means of secondary intention for small wound areas. Patients managed with internal vacuum-assisted closure had wounds on average four times larger in area than patients managed without internal vacuum-assisted closure. In both groups, all wounds were eventually closed primarily. Healing times averaged 2.2 months with internal vacuum-assisted closure and 2.7 months without. At an average follow-up time of 2.3 months, all patients with internal vacuum-assisted closure had no recurrence of their local disease. Severe hidradenitis presents a treatment challenge, as surgical excisions are often complicated by difficult closures and unsatisfactory recurrence rates. This study demonstrates that wide local excision with reasonable outcomes can be achieved using accelerated delayed primary closure. This method uses internal vacuum-assisted closure as a bridge between excision and delayed primary closure, facilitating closure without recurrence in large, heavily contaminated wounds. Therapeutic, III.
Diprionidae sawflies on lodgepole and ponderosa pines
USDA-ARS?s Scientific Manuscript database
Eight species of Diprionidae feed on lodgepole pine (Pinus contorta) and ponderosa pine (P. ponderosa) in western United States: Neodiprion burkei Middleton, N. annulus contortae Ross, N. autumnalis Smith, N. fulviceps (Cresson), N. gillettei (Rohwer), N. mundus Rohwer, N. ventralis Ross, and Zadi...
Investigations of large area electron beam diodes for excimer lasers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
This report summarizes the results of a one year research program at the University of Michigan to investigate the physics and technology of microsecond electron beam diodes. These experiments were performed on the Michigan Electron Long Beam Accelerator (MELBA) at parameters: Voltage {equals} {minus}0.65 to {minus}0.9 MV, current {equals} 1 {minus}50 kA, and pulselength {equals} 0.5 {minus} 5 microseconds. Major accomplishments include: (1) the first two-wavelength (CO2 and HeNe) laser deflection measurements of diode plasma and neutrals; (2) measurements of the effects on magnetic field gradient on microsecond diode closure; (3) demonstration of good fidelity of processed x-ray signals asmore » a diagnostic of beam voltage; (4) extended-pulselength scaling of electron beam diode arcing and diode closure; and (5) innovative Cerenkov plate diagnostics of e-beam dynamics.« less
Approaches to lunar base life support
NASA Technical Reports Server (NTRS)
Brown, M. F.; Edeen, M. A.
1990-01-01
Various approaches to reliable, low maintenance, low resupply regenerative long-term life support for lunar base application are discussed. The first approach utilizes Space Station Freedom physiochemical systems technology which has closed air and water loops with approximately 99 and 90 percent closure respectively, with minor subsystem changes to the SSF baseline improving the level of water resupply for the water loop. A second approach would be a physiochemical system, including a solid waste processing system and improved air and water loop closure, which would require only food and nitrogen for resupply. A hybrid biological/physiochemical life support system constitutes the third alternative, incorporating some level of food production via plant growth into the life support system. The approaches are described in terms of mass, power, and resupply requirements; and the potential evolution of a small, initial outpost to a large, self-sustaining base is discussed.
Detection of atrial electromechanical dysfunction in obesity.
Erdem, Fatma Hizal; Ozturk, Serkan; Baltaci, Davut; Donmez, Ibraham; Alçelik, Aytekin; Ayhan, Selim; Yaz, Mehmet
2015-12-01
Obesity is associated with atrial fibrillation and is known as an independent risk factor. The aim of our study was to investigate if there was any association between the body mass index and atrial electromechanical intervals in obese and non-obese patients. Seventy patients were enrolled in the study. Body mass index (BMI), functional capacity, and fasting blood sugar were evaluated; then, these patients were divided into two groups, patients who had a BMI ≥ 30 were known as obese (35 patients) and those who had a BMI < 30 were known as non-obese patients. All patients were evaluated by transthoracic echocardiography. LA volumes were measured by the discs method in the apical four-chamber view. LA active and passive emptying volumes and fraction were calculated. Using TDI, atrial electromechanical coupling (PA) was measured from the lateral mitral annulus (PA lateral), septal mitral annulus (PA septum), and right ventricular tricuspid annulus (PA tricuspid). LA diameter was significantly higher in obese patients (P = 0.021). LA passive emptying volume and fraction were significantly decreased in obese patients (P = 0.038 and P = 0.011). LA active emptying volume and fraction were significantly increased in obese patients (P = 0.001 and P = 0.001). Left intraatrial and interatrial electromechanical delay were significantly higher in obese patients (18.9 ± 3.8 vs 11.9 ± 2.0, P < 0.001 and 29.5 ± 4.1 vs 17.9 ± 2.5, P < 0.001). Also interatrial electromechanical delay correlated positively with BMI. This study revealed that delayed atrial electromechanical interval and impaired LA mechanical functions were related to BMI in obese-patients. These findings may be an early sign of subclinical atrial dysfunction and arrhythmias in obese patients.
Chokan, Kou; Murakami, Hideki; Endo, Hirooki; Mimata, Yoshikuni; Yamabe, Daisuke; Tsukimura, Itsuko; Oikawa, Ryosuke; Doita, Minoru
2016-04-01
T2 mapping was used to quantify moisture content of the lumbar spinal disk nucleus pulposus (NP) and annulus fibrosus before and after exercise stress, and after rest, to evaluate the intervertebral disk function. To clarify water retention in intervertebral disks of the lumbar vertebrae by performing magnetic resonance imaging before and after exercise stress and quantitatively measuring changes in moisture content of intervertebral disks with T2 mapping. To date, a few case studies describe functional evaluation of articular cartilage with T2 mapping; however, T2 mapping to the functional evaluation of intervertebral disks has rarely been applied. Using T2 mapping might help detect changes in the moisture content of intervertebral disks, including articular cartilage, before and after exercise stress, thus enabling the evaluation of changes in water retention shock absorber function. Subjects, comprising 40 healthy individuals (males: 26, females: 14), underwent magnetic resonance imaging T2 mapping before and after exercise stress and after rest. Image J image analysis software was then used to set regions of interest in the obtained images of the anterior annulus fibrosus, posterior annulus fibrosus, and NP. T2 values were measured and compared according to upper vertebrae position and degeneration grade. T2 values significantly decreased in the NP after exercise stress and significantly increased after rest. According to upper vertebrae position, in all of the upper vertebrae positions, T2 values for the NP significantly decreased after exercise stress and significantly increased after rest. According to the degeneration grade, in the NP of grade 1 and 2 cases, T2 values significantly decreased after exercise stress and significantly increased after rest. T2 mapping could be used to not only diagnose the degree of degeneration but also evaluate intervertebral disk function. 3.
De Groot-de Laat, Lotte E; Ren, Ben; McGhie, Jackie; Oei, Frans B S; Raap, Goris Bol; Bogers, J J C; Geleijnse, Marcel L
2014-11-01
Mitral regurgitation (MR) is a common disorder for which mitral valve surgery is an established therapy. Although surgical indications are clearly defined for the management of valvular heart disease, a gap exists between current guidelines and their effective application. The study aim was to provide an insight into the diagnostic information provided for cardiac surgeons before performing mitral valve surgery. The source documents and echocardiographic studies of 100 patients, referred by nine hospitals, were screened for arguments for MR severity justifying referral for surgery. Details of the documented MR mechanism, mitral annulus (MA) size, tricuspid regurgitation (TR) severity and annulus size were also noted. According to the referring physician, MR was severe in 83% and moderate-to-severe in 17%. In the great majority of patients (98%) the MR mechanism was mentioned, although specific information on the prolapsing scallops was available in only 17% of cases. The recommended primary determinants of MR severity, vena contracta and proximal isovelocity surface area (PISA) were measured in only 22% and 31% of patients, respectively. In 94% of patients with available PISA information this was described only qualitatively. Correct image expansion using the zoom mode was performed in only 25% of these patients, and a correct adaptation of the Nyquist limit in only 6%. Tricuspid annulus measurements guiding the need for concomitant tricuspid valvuloplasty in patients with less than severe TR were reported in only 6% of patients. These data demonstrate a clear and important gap between current guidelines and real-world practice with regards to the echocardiographic diagnostic information provided to the surgeon before performing mitral valve surgery.
SHIELDS, VONNIE D.C.; HILDEBRAND, JOHN G.
2008-01-01
The antennal flagellum of female Manduca sexta bears eight sensillum types: two trichoid, two basiconic, one auriculate, two coeloconic, and one styliform complex sensilla. The first type of trichoid sensillum averages 34 μm in length and is innervated by two sensory cells. The second type averages 26 μm in length and is innervated by either one or three sensory cells. The first type of basiconic sensillum averages 22 μm in length, while the second type averages 15 μm in length. Both types are innervated by three bipolar sensory cells. The auriculate sensillum averages 4 μm in length and is innervated by two bipolar sensory cells. The coeloconic type-A and type-B both average 2 μm in length. The former type is innervated by five bipolar sensory cells, while the latter type, by three bipolar sensory cells. The styliform complex sensillum occurs singly on each annulus and averages 38-40 μm in length. It is formed by several contiguous sensilla. Each unit is innervated by three bipolar sensory cells. A total of 2,216 sensilla were found on a single annulus (annulus 21) of the flagellum. Electrophysiological responses from type-A trichoid sensilla to a large panel of volatile odorants revealed three different subsets of olfactory receptor cells (ORCs). Two subsets responded strongly to only a narrow range of odorants, while the third responded strongly to a broad range of odorants. Anterograde labeling of ORCs from type-A trichoid sensilla revealed that their axons projected mainly to two large female glomeruli of the antennal lobe. PMID:11754510
Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings.
Jensen, Morten O; Jensen, Henrik; Smerup, Morten; Levine, Robert A; Yoganathan, Ajit P; Nygaard, Hans; Hasenkam, J Michael; Nielsen, Sten L
2008-09-30
New insight into the 3D dynamic behavior of the mitral valve has prompted a reevaluation of annuloplasty ring designs. Force balance analysis indicates correlation between annulus forces and stresses in leaflets and chords. Improving this stress distribution can intuitively enhance the durability of mitral valve repair. We tested the hypothesis that saddle-shaped annuloplasty rings have superior uniform systolic force distribution compared with a nonuniform force distribution in flat annuloplasty rings. Sixteen 80-kg pigs had a flat (n=8) or saddle-shaped (n=8) mitral annuloplasty ring implanted. Mitral annulus 3D dynamic geometry was obtained with sonomicrometry before ring insertion. Strain gauges mounted on dedicated D-shaped rigid flat and saddle-shaped annuloplasty rings provided the intraoperative force distribution perpendicular to the annular plane. Average systolic annular height to commissural width ratio before ring implantation was 14.0%+/-1.6%. After flat and saddle shaped ring implantation, the annulus was fixed in the diastolic (9.0%+/-1.0%) and systolic (14.3%+/-1.3%) configuration, respectively (P<0.01). Force accumulation was seen from the anterior (0.72N+/-0.14N) and commissural annular segments (average 1.38N+/-0.27N) of the flat rings. In these segments, the difference between the 2 types of rings was statistically significant (P<0.05). The saddle-shaped annuloplasty rings did not experience forces statistically significantly larger than zero in any annular segments. Saddle-shaped annuloplasty rings provide superior uniform annular force distribution compared to flat rings and appear to represent a configuration that minimizes out-of-plane forces that could potentially be transmitted to leaflets and chords. This may have important implications for annuloplasty ring selections.
Wong, Dennis T L; Bertaso, Angela G; Liew, Gary Y H; Thomson, Viji S; Cunnington, Michael S; Richardson, James D; Gooley, Robert; Lockwood, Siobhan; Meredith, Ian T; Worthley, Matthew I; Worthley, Stephen G
2013-04-01
Significant paravalvular aortic regurgitation (PAR) after transcatheter aortic valve implantation (TAVI) is associated with negative clinical consequences. We hypothesize that increased eccentricity of the aortic annulus is associated with greater PAR. Patients with severe aortic stenosis underwent multidetector computed tomography (MDCT) before successful TAVI with the Medtronic CoreValve bioprosthesis. The smallest (D(min)) and largest (D(max)) orthogonal diameters in the basal ring of the aortic annulus were determined. We defined circularity of aortic annulus using the eccentricity index (1 - D(min)/D(max)). The primary endpoint was early occurrence of significant PAR, defined as > grade II PAR by postprocedural aortography. Eighty-four patients, mean age 83 ± 4 years with a mean aortic valve area of 0.7 ± 0.2 cm² were included. Twenty patients had postprocedural PAR > grade II. Using a receiver operating characteristic (ROC) analysis, eccentricity index correlated with significant PAR (AUC = 0.834; P=.034). A retrospectively determined eccentricity index cut-off of >0.25 was related to significant PAR with a sensitivity of 80%, specificity of 86%, and negative predictive value of 95% (P<.001). On univariate logistic regression, eccentricity index of >0.25 (P<.001) and device implantation depth (P=.015) correlated with significant PAR, while other parameters such as annular calcification and cover index did not. On multivariate analysis including only parameters with P<.1 on univariate analysis, eccentricity index >0.25 was the sole independent predictor of significant PAR. Eccentricity index is related to significant PAR after TAVI with Medtronic CoreValve. Further larger studies are required to determine the utility of this novel index in screening suitable patients for this procedure.
Equilibrium and magnetic properties of a rotating plasma annulus
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Si, Jiahe; Liu, Wei; Li, Hui
2008-10-01
Local linear analysis shows that magneto-rotational instability can be excited in laboratory rotating plasmas with a density of 1019m-3, a temperature on the order of 10eV, and a magnetic field on the order of 100G. A laboratory plasma annulus experiment with a dimension of ˜1m, and rotation at ˜0.5 sound speed is described. Correspondingly, magnetic Reynolds number of these plasmas is ˜1000, and magnetic Prandtl number ranges from about one to a few hundred. A radial equilibrium, ρUθ2/r =d(p+Bz2/2μ0)/dr=K0, with K0 being a nonzero constant, is proposed for the experimental data. Plasma rotation is observed to drive a quasisteady diamagnetic electrical current (rotational current drive) in a high-β plasma annulus. The rotational energy depends on the direction and the magnitude of the externally applied magnetic field. Radial current (Jr) is produced through biasing the center rod at a negative electric potential relative to the outer wall. Jr×Bz torque generates and sustains the plasma rotation. Rotational current drive can reverse the direction of vacuum magnetic field, satisfying a necessary condition for self-generated closed magnetic flux surfaces inside plasmas. The Hall term is found to be substantial and therefore needs to be included in the Ohm's law for the plasmas. Azimuthal magnetic field (Bθ) is found to be comparable with the externally applied vacuum magnetic field Bz, and mainly caused by the electric current flowing in the center cylinder; thus, Bθ∝r-1. Magnetic fluctuations are anisotropic, radial-dependent, and contain many Fourier modes below the ion cyclotron frequency. Further theoretical analysis reflecting these observations is needed to interpret the magnetic fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuah, Yon Jin; Lee, Wu Chean; Wong, Hee Kit
Prior research has investigated the immediate response after application of tensile strain on annulus fibrosus (AF) cells for the past decade. Although mechanical strain can produce either catabolic or anabolic consequences to the cell monolayer, little is known on how to translate these findings into further tissue engineering applications. Till to date, the application and effect of tensile pre-strained cells to construct a three-dimensional (3D) AF tissue remains unknown. This study aims to investigate the effect of tensile pre-strained exposure of 1 to 24 h on the development of AF pellet culture for 3 weeks. Equibiaxial cyclic tensile strain wasmore » applied on AF monolayer cells over a period of 24 h, which was subsequently developed into a cell pellet. Investigation on cellular proliferation, phenotypic gene expression, and histological changes revealed that tensile pre-strain for 24 h had significant and lasting effect on the AF tissue development, with enhanced cell proliferation, and up-regulation of collagen type I, II, and aggrecan expression. Our results demonstrated the regenerative ability of AF cell pellets subjected to 24 h tensile pre-straining. Knowledge on the effects of tensile pre-strain exposure is necessary to optimize AF development for tissue reconstruction. Moreover, the tensile pre-strained cells may further be utilized in either cell therapy to treat mild disc degeneration disease, or the development of a disc construct for total disc replacement. - Highlights: • Establishment of tensile pre-strained cell line population for annulus development. • Tensile strain limits collagen gene expression declination in monolayer culture. • Tensile pre-strained cells up-regulate their matrix protein in 3D pellet culture.« less
Krackhardt, Florian; Kherad, Behrouz; Krisper, Maximilian; Pieske, Burkert; Laule, Michael; Tschöpe, Carsten
2017-01-01
Conduction disturbances requiring permanent pacemaker implantation following transcatheter aortic valve replacement (TAVR) are a common problem. Pacemaker implantation rates after TAVR appear to be higher compared to conventional aortic valve replacement. The aim of this study was to analyze whether a high annulus implantation conveys the benefit of a decreased rate of permanent pacemaker implantation while being safe and successful according to Valve Academic Research Consortium 2 (VARC2)-criteria. A total of 23 patients with symptomatic severe aortic valve stenosis, an aortic annulus of 19-27 mm and at high risk for surgery were treated with the Lotus valve. In all patients the valve was implanted in a high annulus position via femoral access. The primary device performance endpoint was VARC2-defined device success after 30 days and the primary safety endpoint was the need for permanent pacemaker implantation. The mean age was 73.23 ± 7.65 years, 46% were female, 38% were New York Heart Association class III/IV at baseline. Thirty-day follow-up data were available for all patients. The VARC2-defined device success rate after 30 days was 22/23 (96%). 2/21 (10%) patients required a newly implanted pacemaker due to 3rd degree atrioventricular block. 25% of the patients developed a new left bundle branch block after valvuloplasty or device implantation. 21 of the 23 patients (96%) had no other signs of conduction disturbances after 30 days. The approach of the modified implantation technique of Lotus TAVR device was safe and effective. The incidence of need for a permanent pacemaker following TAVR could be significantly reduced due to adopted implantation protocol.
NASA Astrophysics Data System (ADS)
Ritvanen, J.; Jalali, P.
2009-06-01
Rapid granular shear flow is a classical example in granular materials which exhibits both fluid-like and solid-like behaviors. Another interesting feature of rapid granular shear flows is the formation of ordered structures upon shearing. Certain amount of granular material, with uniform size distribution, is required to be loaded in the container in order to shear it under stable conditions. This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous rotation of the plate over the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height from three symmetric locations and rotational speed of the shearing plate are measured. The annulus has a capacity of up to 15 kg of spherical steel balls of 3 mm in diameter. Rapid shear flow experiments are performed in one compressive force and rotation rate. The sensitivity of fluctuations is then investigated by different means through monodisperse packing. In this work, we present the results of the experiments showing how the flow properties depend on the amount of loaded granular material which is varied by small amounts between different experiments. The flow can exist in stable (fixed behavior) and unstable (time-dependent behavior) regimes as a function of the loaded material. We present the characteristics of flow to detect the formation of any additional structured layer in the annulus. As a result, an evolution graph for the bed height has been obtained as material is gradually added. This graph shows how the bed height grows when material increases. Using these results, the structure inside the medium can be estimated at extreme stable and unstable conditions.
Detonation propagation in annular arcs of condensed phase explosives
NASA Astrophysics Data System (ADS)
Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa
2017-11-01
We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.
Bhatti, M M; Zeeshan, A; Ellahi, R
2016-12-01
In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Direct injury to right coronary artery in patients undergoing tricuspid annuloplasty.
Díez-Villanueva, Pablo; Gutiérrez-Ibañes, Enrique; Cuerpo-Caballero, Gregorio P; Sanz-Ruiz, Ricardo; Abeytua, Manuel; Soriano, Javier; Sarnago, Fernando; Elízaga, Jaime; González-Pinto, Angel; Fernández-Avilés, Francisco
2014-04-01
Direct injury to the right coronary artery as a result of reparative operation on the tricuspid valve is a rare, probably underdiagnosed, but serious complication, which often involves dramatic clinical consequences. So far, only five cases have been described in the literature. We describe our single-center experience of this complication, and review and analyze relevant clinical and anatomic considerations related to this entity. Cases previously reported in the literature were also reviewed. We describe four cases of direct injury to the right coronary artery in patients undergoing tricuspid annuloplasty (DeVega annuloplasty, 3; ring annuloplasty, 1) in our institution since 2005. All patients had right ventricular dilatation and severely dilated tricuspid annulus. Right coronary artery occlusion always occurred between the right marginal artery and the crux of the heart. Patients presented with hemodynamic or electrical instability. Coronary flow could be restored in 2 patients (percutaneously 1; surgically 1), both of whom finally survived, while it was not technically possible in the other 2 (1 died). Occlusion of the right coronary artery in patients undergoing tricuspid annuloplasty is a rare complication that may occur if great annulus dilatation is present, thus altering both normal annular geometry and the relationship between the right coronary artery and the tricuspid annulus, particularly when DeVega annuloplasty is performed. Such an entity should be considered in the immediate postoperative period in an unstable patient, especially when complementary tests support this diagnosis. Prompt recognition and treatment can positively affect the patient's outcome, most often by means of an emergency revascularization strategy. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Stolfo, Davide; De Luca, Antonio; Morea, Gaetano; Merlo, Marco; Vitrella, Giancarlo; Caiffa, Thomas; Barbati, Giulia; Rakar, Serena; Korcova, Renata; Perkan, Andrea; Pinamonti, Bruno; Pappalardo, Aniello; Berardini, Alessandra; Biagini, Elena; Saia, Francesco; Grigioni, Francesco; Rapezzi, Claudio; Sinagra, Gianfranco
2018-04-15
Patients with heart failure (HF) and severe symptomatic functional mitral regurgitation (FMR) may benefit from MitraClip implantation. With increasing numbers of patients being treated the success of procedure becomes a key issue. We sought to investigate the pre-procedural predictors of device failure in patients with advanced HF treated with MitraClip. From April 2012 to November 2016, 76 patients with poor functional class (NYHA class III-IV) and severe left ventricular (LV) remodeling underwent MitraClip implantation at University Hospitals of Trieste and Bologna (Italy). Device failure was assessed according to MVARC criteria. Patients were subsequently followed to additionally assess the patient success after 12months. Mean age was 67±12years, the mean Log-EuroSCORE was 23.4±16.5%, and the mean LV end-diastolic volume index and ejection fraction (EF) were 112±33ml/m 2 and 30.6±8.9%, respectively. At short-term evaluation, device failure was observed in 22 (29%) patients. Univariate predictors of device failure were LVEF, LV and left atrial volumes and anteroposterior mitral annulus diameter. Annulus dimension (OR 1.153, 95% CI 1.002-1.327, p=0.043) and LV end-diastolic volume (OR 1.024, 95% CI 1.000-1.049, p=0.049) were the only variables independently associated with the risk of device failure at the multivariate model. Pre-procedural anteroposterior mitral annulus diameter accurately predicted the risk of device failure after MitraClip in the setting of advanced HF. Its assessment might aid the selection of the best candidates to percutaneous correction of FMR. Copyright © 2018 Elsevier B.V. All rights reserved.
Horehledova, Barbora; Mihl, Casper; Hendriks, Babs M F; Eijsvoogel, Nienke G; Vainer, Jindrich; Veenstra, Leo F; Wildberger, Joachim E; Das, Marco
2018-06-16
Incorrect prosthesis size has direct impact on patient outcome after transcatheter aortic valve implantation (TAVI) procedure. Currently, annular diameter, area or perimeter may be used for prosthesis size selection. The aim was to evaluate whether the use different annular dimensions would result in the selection of different prosthesis sizes, when assessed in the same TAVI-candidate during the same phase of a cardiac cycle. Fifty consecutive TAVI-candidates underwent retrospectively ECG-gated computed tomography angiography (CTA). Aortic root dimensions were assessed in the 20% phase of the R-R interval. Annular short diameter, perimeter and area were used to select the prosthesis size, based on the industry recommendations for a self-expandable (Medtronic CoreValve; MCV) and balloon-expandable (Edwards Sapien XT Valve; ESV) valve. Complete agreement on selected prosthesis size amongst all three annular dimensions was observed in 62% (31/50; ESV) and 30% (15/50; MCV). Short aortic annulus measurement resulted in a smaller prosthesis size in 20% (10/50; ESV) and in 60% of cases (30/50; MCV) compared to the size suggested by both annular perimeter and area. In 18% (9/50; ESV) and 10% of cases (5/50; MCV) a larger prosthesis would have been selected based on annular perimeter compared to annular diameter and area. Prosthesis size derived from area was always in agreement with at least one other parameter in all cases. Aortic annulus area appears to be the most robust parameter for TAVI-prosthesis size selection, regardless of the specific prosthesis size. Short aortic annulus diameter may underestimate the prosthesis size, while use of annular perimeter may lead to size overestimation in some cases.
Emanuel, Kaj S; van der Veen, Albert J; Rustenburg, Christine M E; Smit, Theodoor H; Kingma, Idsart
2018-03-21
The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quality of motion considerations in numerical analysis of motion restoring implants of the spine.
Bowden, Anton E; Guerin, Heather L; Villarraga, Marta L; Patwardhan, Avinash G; Ochoa, Jorge A
2008-06-01
Motion restoring implants function in a dynamic environment that encompasses the full range of spinal kinematics. Accurate assessment of the in situ performance of these devices using numerical techniques requires model verification and validation against the well-established nonlinear quality of motion of the spine, as opposed to the previous norm of matching kinematic endpoint metrics such as range of motion and intervertebral disc pressure measurements at a single kinematic reference point. Experimental data was obtained during cadaveric testing of nine three-functional spinal unit (L3-S1) lumbar spine segments. Each specimen was tested from 8 Nm of applied flexion moment to 6 Nm of applied extension moment with an applied 400 N compressive follower preload. A nonlinear kinematic curve representing the spinal quality of motion (applied moment versus angular rotation) for the index finite element model was constructed and compared to the kinematic responses of the experimental specimens. The effect of spinal soft tissue structure mechanical behaviors on the fidelity of the model's quality of motion to experimental data was assessed by iteratively modifying the material representations of annulus fibrosus, nucleus pulposus, and ligaments. The present work demonstrated that for this model, the annulus fibrosus played a small role in the nonlinear quality of motion of the model, whereas changes in ligament representations had a large effect, as validated against the full kinematic range of motion. An anisotropic continuum representation of the annulus fibrosus was used, along with nonlinear fabric representations of the ligaments and a hyperelastic representation of the nucleus pulposus. Our results suggest that improvements in current methodologies broadly used in numerical simulations of the lumbar spine are needed to fully describe the highly nonlinear motion of the spine.
von Renteln, Daniel; Schmidt, Arthur; Vassiliou, Melina C; Gieselmann, Maria; Caca, Karel
2009-10-01
Secure endoscopic closure of transgastric natural orifice transluminal endoscopic surgery (NOTES) access is of paramount importance. The over-the-scope clip (OTSC) system has previously been shown to be effective for NOTES gastrotomy closure. To compare OTSC gastrotomy closure with surgical closure. Randomized, controlled animal study. Animal facility laboratory. Thirty-six female domestic pigs. Gastrotomies were created by using a needle-knife and an 18-mm balloon. The animals were subsequently randomized to either open surgical repair with interrupted sutures or endoscopic repair with 12-mm OTSCs. In addition, pressurized leak tests were performed in ex vivo specimens of 18-mm scalpel incisions closed with suture (n = 14) and of intact stomachs (n = 10). The mean time for endoscopic closure was 9.8 minutes (range 3-22, SD 5.5). No complications occurred during either type of gastrotomy closure. At necropsy, examination of all OTSC and surgical closures demonstrated complete sealing of gastrotomy sites without evidence of injury to adjacent organs. Pressurized leak tests showed a mean burst pressure of 83 mm Hg (range 30-140, SD 27) for OTSC closures and 67 mm Hg (range 30-130, SD 27.7) for surgical sutures. Ex vivo hand-sewn sutures of 18-mm gastrotomies (n = 14) exhibited a mean burst pressure of 65 mm Hg (range 20-140, SD 31) and intact ex vivo stomachs (n = 10) had a mean burst pressure of 126 mm Hg (range 90-170, SD 28). The burst pressure of ex vivo intact stomachs was significantly higher compared with OTSC closures (P < .01), in vivo surgical closures (P < .01), and ex vivo hand-sewn closures (P < .01). There was a trend toward higher burst pressures in the OTSC closures compared with surgical closures (P = .063) and ex vivo hand-sewn closures (P = .094). In vivo surgical closures demonstrated similar burst pressures compared with ex vivo hand-sewn closures (P = .848). Nonsurvival setting. Endoscopic closure by using the OTSC system is comparable to surgical closure in a nonsurvival porcine model. This technique is easy to perform and is suitable for NOTES gastrotomy closure.
Evaluation of the Momentum Closure Schemes in MPAS-Ocean
NASA Astrophysics Data System (ADS)
Zhao, Shimei; Liu, Yudi; Liu, Wei
2018-04-01
In order to compare and evaluate the performances of the Laplacian viscosity closure, the biharmonic viscosity closure, and the Leith closure momentum schemes in the MPAS-Ocean model, a variety of physical quantities, such as the relative reference potential energy (RPE) change, the RPE time change rate (RPETCR), the grid Reynolds number, the root mean square (RMS) of kinetic energy, and the spectra of kinetic energy and enstrophy, are calculated on the basis of results of a 3D baroclinic periodic channel. Results indicate that: 1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests. The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures: the largest value is in the biharmonic viscosity closure, followed by that in the Laplacian viscosity closure, and that in the Leith closure is the smallest. 2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR, but they can also damage certain physical processes. Generally, the damage to the rotation process is greater than that to the advection process. 3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales. Most dissipation concentrates on small scales, and the energy of small-scale eddies is often transferred to large-scale kinetic energy. The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales, followed by that in the Leith closure. Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure. 4) The characteristic length scale L and the dimensionless parameter D in the Leith closure are inherently coupled. The RPETCR is inversely proportional to the product of D and L. When the product of D and L is constant, both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith closure. The dissipative scale in the Leith closure depends on the parameter L, and the dissipative intensity depends on the parameter D. 5) Although optimal results may not be achieved by using the optimal parameters obtained from the 2D barotropic model in the 3D baroclinic simulation, the total energies are dissipative in all three closures. Dissipation is the strongest in the biharmonic viscosity closure, followed by that in the Leith closure, and that in the Laplacian viscosity closure is the weakest. Mesoscale eddies develop the fastest in the biharmonic viscosity closure after the baroclinic adjustment process finishes, and the kinetic energy reaches its maximum, which is attributed to the smallest dissipation of enstrophy in the biharmonic viscosity closure. Mesoscale eddies develop the slowest, and the kinetic energy peak value is the smallest in the Laplacian viscosity closure. Results in the Leith closure are between that in the biharmonic viscosity closure and the Laplacian viscosity closure.
Bautista-Hernandez, Victor; Brown, David W; Loyola, Hugo; Myers, Patrick O; Borisuk, Michele; del Nido, Pedro J; Baird, Christopher W
2014-09-01
Tricuspid regurgitation (TR) remains a risk factor for morbidity and mortality through staged palliation in patients with hypoplastic left heart syndrome (HLHS). Reports on the mechanisms associated with TR in patients with HLHS are limited. Thus, we sought to describe our experience with tricuspid valve (TV) repair in these patients, focusing on the mechanisms of TR and corresponding surgical techniques. We performed a retrospective single-center review (January 2000 to December 2012) of patients with HLHS undergoing TV repair and completing Fontan circulation. We evaluated the pre- and postoperative echocardiograms, intraoperative findings, and surgical techniques used. A total of 53 TV repairs were performed in 35 patients with HLHS completing staged palliation. TV repairs were performed at stage II in 15, between stage II and III in 4, at stage III in 27, and after stage III in 7. The surgical techniques for valvuloplasty included annuloplasty (38%), anteroseptal (AS) commissuroplasty (66%), anterior papillary muscle repositioning (11%), multiple commissuroplasties (9%), septal-posterior commissuroplasty (9%), and fenestration closure (4%). The predominant jet of TR emanated along the AS commissure in 68% of the cases. All patients survived the procedure and were discharged. Preoperative echocardiography showed a dilated TV annulus on the lateral dimension, anteroposterior dimension, and area that was significantly reduced after TV repair (P < .0001). The preoperative mean TR, as assessed by lateral (P = .002) and anteroposterior (P = .005) vena contracta, was also significantly reduced after TV repair. TV repair did not significantly affect right ventricular systolic function immediately after surgery (P = .17) or at the most recent follow-up visit (P = .52). Patients with anterior leaflet prolapse were at increased risk of worse outcomes, including moderate or greater right ventricular dysfunction (P = .02). Patients requiring reoperation for TV repair were younger (6.3 vs 28.1 months, P < .0001) at the initial operation. One patient died of heart failure. Freedom from TV replacement and transplant-free survival were both 97% at the most recent follow-up point. TR in patients with HLHS commonly emanates from the AS commissure. The associated mechanisms are often annular dilatation and anterior leaflet prolapse. Preoperative anterior leaflet prolapse was associated with worse outcomes. Annuloplasty, closure of the AS commissure, and repositioning of the anterior papillary muscle are effective in addressing TR in the short- and mid-term in this challenging population. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
40 CFR 264.151 - Wording of the instruments.
Code of Federal Regulations, 2013 CFR
2013-07-01
... assurance for closure or post-closure care is demonstrated through the financial test specified in subpart H... parts 264 and 265. The current closure and/or post-closure cost estimates covered by such a test are... CFR parts 264 and 265. The current closure and/or post-closure cost estimate covered by the test are...
40 CFR 264.151 - Wording of the instruments.
Code of Federal Regulations, 2012 CFR
2012-07-01
... assurance for closure or post-closure care is demonstrated through the financial test specified in subpart H... parts 264 and 265. The current closure and/or post-closure cost estimates covered by such a test are... CFR parts 264 and 265. The current closure and/or post-closure cost estimate covered by the test are...
40 CFR 264.151 - Wording of the instruments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... assurance for closure or post-closure care is demonstrated through the financial test specified in subpart H... parts 264 and 265. The current closure and/or post-closure cost estimates covered by such a test are... CFR parts 264 and 265. The current closure and/or post-closure cost estimate covered by the test are...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
Tapia, M; Latrémouille, C; Chabert, J P; Fabiani, J N
1995-12-01
The authors report the case of major tricuspid regurgitation occurring early after mitral valve replacement. The mechanism was demonstrated at reoperation: the heart was deformed by a posterior pericardial effusion and cardiodiaphragmatic pericardial adhesions.
Improved power efficiency for very-high-temperature solar-thermal-cavity receivers
McDougal, A.R.; Hale, R.R.
1982-04-14
This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.
Pereira, Diana R; Silva-Correia, Joana; Oliveira, Joaquim M; Reis, Rui L; Pandit, Abhay; Biggs, Manus J
2018-04-01
Intervertebral disc (IVD) degeneration is associated with both structural damage and aging related degeneration. Annulus fibrosus (AF) defects such as annular tears, herniation and discectomy require novel tissue engineering strategies to functionally repair AF tissue. An ideal construct will repair the AF by providing physical and biological support, facilitating regeneration. The presented strategy herein proposes a gellan gum-based construct reinforced with cellulose nanocrystals (nCell) as a biological self-gelling AF substitute. Nanocomposite hydrogels were fabricated and characterized with respect to hydrogel swelling capacity, degradation rate in vitro and mechanical properties. Rheological evaluation on the nanocomposites demonstrated the GGMA reinforcement with nCell promoted matrix entanglement with higher scaffold stiffness observed upon ionic crosslinking. Compressive mechanical tests demonstrated compressive modulus values close to those of the human AF tissue. Furthermore, cell culture studies with encapsulated bovine AF cells indicated that nanocomposite constructs promoted cell viability and a physiologically relevant cell morphology for up to fourteen days in vitro. Copyright © 2017 Elsevier Inc. All rights reserved.
Hydrologic data for a subsurface waste-injection site at Mulberry, Florida; 1972-77
Wilson, William Edward; Parsons, David C.; Spechler, R.M.
1979-01-01
Since October 1972, industrial liquid waste has been injected into a brine aquifer of limestone and dolomite in Mulberry, FL., at a depth of more than 4,000 feet below land surface. During 1977, the injection rate was about 8.8 million gallons per month. To determine what effect the injected waste has on the ground-water body, water levels have been measured and water samples collected from two monitor wells that tap different permeable zones above the injection zone, and from a satellite monitor well that taps the injection zone. The monitor wells are in the annulus of the injection well, and the satellite monitor well is 2,291 feet from the injection well. This report updates previous data reports and includes all hydrologic data collected by the U.S. Geological Survey during 1972-77. Included is a table of well-construction data, a graph showing the volume of waste injected each month, and hydrographs of the annulus monitor wells and the satellite monitor well. (Woodard-USGS)
Convection driven zonal flows and vortices in the major planets.
Busse, F. H.
1994-06-01
The dynamical properties of convection in rotating cylindrical annuli and spherical shells are reviewed. Simple theoretical models and experimental simulations of planetary convection through the use of the centrifugal force in the laboratory are emphasized. The model of columnar convection in a cylindrical annulus not only serves as a guide to the dynamical properties of convection in rotating sphere; it also is of interest as a basic physical system that exhibits several dynamical properties in their most simple form. The generation of zonal mean flows is discussed in some detail and examples of recent numerical computations are presented. The exploration of the parameter space for the annulus model is not yet complete and the theoretical exploration of convection in rotating spheres is still in the beginning phase. Quantitative comparisons with the observations of the dynamics of planetary atmospheres will have to await the consideration in the models of the effects of magnetic fields and the deviations from the Boussinesq approximation.
Exact sum rules for inhomogeneous drums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amore, Paolo, E-mail: paolo.amore@gmail.com
2013-09-15
We derive general expressions for the sum rules of the eigenvalues of drums of arbitrary shape and arbitrary density, obeying different boundary conditions. The formulas that we present are a generalization of the analogous formulas for one dimensional inhomogeneous systems that we have obtained in a previous paper. We also discuss the extension of these formulas to higher dimensions. We show that in the special case of a density depending only on one variable the sum rules of any integer order can be expressed in terms of a single series. As an application of our result we derive exact summore » rules for the homogeneous circular annulus with different boundary conditions, for a homogeneous circular sector and for a radially inhomogeneous circular annulus with Dirichlet boundary conditions. -- Highlights: •We derive an explicit expression for the sum rules of inhomogeneous drums. •We discuss the extension to higher dimensions. •We discuss the special case of an inhomogeneity only along one direction.« less
Power efficiency for very high temperature solar thermal cavity receivers
McDougal, Allan R.; Hale, Robert R.
1984-01-01
This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.
Labyrinth seal forces on a whirling rotor
NASA Technical Reports Server (NTRS)
Wright, D. V.
1983-01-01
An experimental investigation of air labyrinth seal forces on a subsynchronously whirling model rotor is described and test results are given for diverging, converging, and straight two-strip seals. The effects of pressure drop, provide basic experimental data needed in the development of design methods for predicting and preventing self-excited whirl of turbine rotors and other machines having labyrinth seals. The total dynamic seal forces on the whirling model rotor are measured accurately by means of an active damping and stiffness system that is adjusted to obtain neutral whirl stability of the model rotor system. In addition, the whirling pressure pattern in the seal annulus is measured for a few test conditions and the corresponding pressure forces on the rotor are compared with the total measured forces. This comparison shows that either radial and axial pressure gradients in the seal annulus or drag forces on the rotor are significant. Comparisons made between the measured seal forces and theoretical results show that present theory is inadequate.
Transcatheter Therapies for Treating Tricuspid Regurgitation.
Rodés-Cabau, Josep; Hahn, Rebecca T; Latib, Azeem; Laule, Michael; Lauten, Alexander; Maisano, Francesco; Schofer, Joachim; Campelo-Parada, Francisco; Puri, Rishi; Vahanian, Alec
2016-04-19
Tricuspid valve (TV) disease has been relatively neglected, despite the known association between severe tricuspid regurgitation (TR) and mortality. Few patients undergo isolated tricuspid surgery, which remains associated with high in-hospital mortality rates, particularly in patients with prior left-sided valve surgery. Patients with severe TR are often managed medically for years before TV repair or replacement. Current guidelines recommend TV repair in the presence of a dilated tricuspid annulus at the time of a left-sided valve surgical intervention, even if regurgitation is mild. This proposed algorithm aims to prevent the inevitable progression to severe TR and the need for a second surgical intervention. Recently, novel transcatheter treatment options were developed for treating patients with severe TR and right heart failure with prohibitive surgical risk. Here we describe currently available transcatheter treatment options for severe TR implanted at different levels: the junction between vena cavae and right atrium; the tricuspid annulus; or between TV leaflets, improving coaptation. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Well fluid isolation and sample apparatus and method
Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.
1995-01-01
The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. A seal may be positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Purged well fluid is stored in a riser above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.
Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.
Cui, Zhihua; Ai, Chi; Lv, Lei; Yin, Fangxian
2017-01-01
The shear swirling flow vibration cementing (SSFVC) technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1) the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2) the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.
40 CFR 261.151 - Wording of the instruments.
Code of Federal Regulations, 2013 CFR
2013-07-01
... assurance for closure or post-closure care is demonstrated through the financial test specified in subpart H... parts 264 and 265. The current closure and/or post-closure cost estimates covered by such a test are... financial test specified in subpart H of 40 CFR parts 264 and 265. The current closure and/or post-closure...
50 CFR 660.360 - Recreational fishery-management measures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... authorized for recreational fishing are hook-and-line and spear. Spears may be propelled by hand or by... when the closure is in effect. The closure is not in effect at this time. This closure may be imposed... when the closure is in effect. The closure is not in effect at this time. This closure may be imposed...
50 CFR 660.360 - Recreational fishery-management measures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... authorized for recreational fishing are hook-and-line and spear. Spears may be propelled by hand or by... when the closure is in effect. The closure is not in effect at this time. This closure may be imposed... when the closure is in effect. The closure is not in effect at this time. This closure may be imposed...
Manufacturing Methods & Technology Project Execution Report. First CY 83.
1983-11-01
UCCURRENCE. H 83 5180 MMT FOR METAL DEWAR AND UNBONDED LEADS THE GOLD WIRE BONDED CONNECTIOkS ARE MADE BY HAND WHICH IS A TEDIOUS AND EXPENSIVE PROCESS. THE...ATTACHMENTS CURRENT FILAMENT WOUND COMPOSIIE ROCKET MOTOR CASES REQUIRE FORGED METAL POLE PIECESt NOZZLE CLOSURE ATTACHMENT RINGS, AND OTHER ATTACHMENT RINGS... ELASTOMER INSULATOR PROCESS LARGE TACTICAL ROCKET MOTOR INSULATORS ARE COSTLY, LACK DESIGN CHANGE FLEXIBILITY AND SUFFER LONG LEAD TIMES. CURRENT