Sample records for anodic peak current

  1. Investigation of different anode materials for aluminium rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Muñoz-Torrero, David; Leung, Puiki; García-Quismondo, Enrique; Ventosa, Edgar; Anderson, Marc; Palma, Jesús; Marcilla, Rebeca

    2018-01-01

    In order to shed some light into the importance of the anodic reaction in reversible aluminium batteries, we investigate here the electrodeposition of aluminium in an ionic liquid electrolyte (BMImCl-AlCl3) using different substrates. We explore the influence of the type of anodic material (aluminium, stainless steel and carbon) and its 3D geometry on the reversibility of the anodic reaction by cyclic voltammetry (CV) and galvanostatic charge-discharge. The shape of the CVs confirms that electrodeposition of aluminium was feasible in the three materials but the highest peak currents and smallest peak separation in the CV of the aluminium anode suggested that this material was the most promising. Interestingly, carbon-based substrates appeared as an interesting alternative due to the high peak currents in CV, moderate overpotentials and dual role as anode and cathode. 3D substrates such as fiber-based carbon paper and aluminium mesh showed significantly smaller overpotentials and higher efficiencies for Al reaction suggesting that the use of 3D substrates in full batteries might result in enhanced power. This is corroborated by polarization testing of full Al-batteries.

  2. Pulsed electromagnetic acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  3. High Voltage, Low Inductance Hydrogen Thyratron Study Program.

    DTIC Science & Technology

    1981-01-01

    E-E Electrode Spacing Ef Cathode Heater Voltage egy Peak Forward Grid Voltage epy Peak Forward Anode Voltage epx Peak Inverse Anode Voltage Eres... electrodes . ........... 68 30 Marx generator used for sample testing. ........... 68 31 Waveforms showing sample holdoff and sample breakdown 73 32...capability (a function of gas pressure and electrode spacing) could be related to its current rise time capability (a function of gas pressure and inductance

  4. Anodic stripping voltammetry enhancement by redox magnetohydrodynamics.

    PubMed

    Clark, Emily A; Fritsch, Ingrid

    2004-04-15

    The effect of an external magnetic field on linear scan anodic stripping voltammetry (ASV) in solutions of 10(-6)-10(-7) M concentrations of lead, cadmium, and copper at mercury films on glassy carbon electrodes has been investigated. A high concentration of Hg(2+) was added to the analyte solution to induce a large cathodic current during the deposition step. Therefore, a large Lorentz force from the net flux of charge through the magnetic field resulted in convection due to magnetohydrodynamics. The faster delivery of analytes to the mercury film electrode during deposition caused an increase in the anodic stripping peaks. The effect of varying Hg(2+) concentrations (0-60 mM) and magnetic field strengths (0-1.77 T) on the enhancement of the stripping peaks was investigated. Enhancements as large as 129% for peak currents and 167% for peak areas were observed. An enhancement of approximately 100% was observed when 60 mM Fe(3+) replaced high concentrations of Hg(2+). This method of convection exhibits promise for small-volume ASV analysis with possible improved limits of detection and decreased preconcentration times.

  5. Experimental study of effect of magnetic field on anode temperature distribution in an ATON-type Hall thruster

    NASA Astrophysics Data System (ADS)

    Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-05-01

    The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.

  6. Statistical analysis of the electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide-chitosan for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ekrami-Kakhki, Mehri-Saddat; Abbasi, Sedigheh; Farzaneh, Nahid

    2018-01-01

    The purpose of this study is to statistically analyze the anodic current density and peak potential of methanol oxidation at Pt nanoparticles supported on functionalized reduced graphene oxide (RGO), using design of experiments methodology. RGO is functionalized with methyl viologen (MV) and chitosan (CH). The novel Pt/MV-RGO-CH catalyst is successfully prepared and characterized with transmission electron microscopy (TEM) image. The electrocatalytic activity of Pt/MV-RGOCH catalyst is experimentally evaluated for methanol oxidation. The effects of methanol concentration and scan rate factors are also investigated experimentally and statistically. The effects of these two main factors and their interactions are investigated, using analysis of variance test, Duncan's multiple range test and response surface method. The results of the analysis of variance show that all the main factors and their interactions have a significant effect on anodic current density and peak potential of methanol oxidation at α = 0.05. The suggested models which encompass significant factors can predict the variation of the anodic current density and peak potential of methanol oxidation. The results of Duncan's multiple range test confirmed that there is a significant difference between the studied levels of the main factors. [Figure not available: see fulltext.

  7. Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia

    PubMed Central

    2014-01-01

    Background Transcranial direct current stimulation (tDCS) of the primary motor cortex has been shown to modulate pain and trigeminal nociceptive processing. Methods Ten patients with classical trigeminal neuralgia (TN) were stimulated daily for 20 minutes over two weeks using anodal (1 mA) or sham tDCS over the primary motor cortex (M1) in a randomized double-blind cross-over design. Primary outcome variable was pain intensity on a verbal rating scale (VRS 0–10). VRS and attack frequency were assessed for one month before, during and after tDCS. The impact on trigeminal pain processing was assessed with pain-related evoked potentials (PREP) and the nociceptive blink reflex (nBR) following electrical stimulation on both sides of the forehead before and after tDCS. Results Anodal tDCS reduced pain intensity significantly after two weeks of treatment. The attack frequency reduction was not significant. PREP showed an increased N2 latency and decreased peak-to-peak amplitude after anodal tDCS. No severe adverse events were reported. Conclusion Anodal tDCS over two weeks ameliorates intensity of pain in TN. It may become a valuable treatment option for patients unresponsive to conventional treatment. PMID:25424567

  8. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    PubMed

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  9. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    PubMed Central

    Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295

  10. Facile electrochemical pretreatment of multiwalled carbon nanotube - Polydimethylsiloxane paste electrode for enhanced detection of dopamine and uric acid

    NASA Astrophysics Data System (ADS)

    Buenaventura, Angelo Gabriel E.; Yago, Allan Christopher C.

    2018-05-01

    A facile electrochemical pretreatment via anodization was done on Carbon Paste Electrodes (CPEs) composed of Multiwalled Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS) binder to produce `anodized' CPEs (ACPE). Cyclic Voltammetry (CV) technique was used to anodize the CPEs. The anodization step, performed in various solutions (0.2 M NaOH(aq), 0.06 M BR Buffer at pH 7.0, and 0.2 M HNO3(aq)), were found to enhance the electrochemical properties of the ACPEs compared to non-anodized CPE. Electrochemical Impedance Spectroscopy (EIS) measurements revealed a significantly lower charge transfer resistance (Rct) for the ACPEs (4.01-6.25 kΩ) as compared to CPE (25.9 kΩ). Comparison of the reversibility analysis for Fe(CN)63-/4- redox couple showed that the ACPEs have peak current ratio (Ia/Ic) at range of 0.97-1.10 while 1.92 for the CPE; this result indicated better electrochemical reversible behaviors for Fe(CN)63-/4- redox couple using the ACPEs. CV Anodization process was further optimized by varying solution and CV parameters (i.e. pH, composition, number of cycles, and potential range), and the resulting optimized ACPE was used for enhanced detection of Dopamine (DA) and Uric Acid (UA) in the presence of excess Ascorbic Acid (AA). Employing Differential Pulse Voltammetry technique, enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained. The anodic peak currents for the oxidation of DA and UA appeared at 0.263V and 0.414 V, respectively, and it was observed to be linearly increasing with increasing concentrations of biomolecules (25-100 µM). The detection limit was determined to be 3.86 µM for DA and 5.61 µM for UA. This study showed a quick and cost-effective pretreatment for CPEs based on MWCNT-PDMS composite which lead to significant enhancement on its electrochemical properties.

  11. Study on the mechanism of Si-glass-Si two step anodic bonding process

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Wang, Hao; Xue, Yongzhi; Shi, Fangrong; Chen, Shaoping

    2018-04-01

    Si-glass-Si was successfully bonded together through a two-step anodic bonding process. The bonding current in each step of the two-step bonding process was investigated, and found to be quite different. The first bonding current decreased quickly to a relatively small value, but for the second bonding step, there were two current peaks; the current first decreased, then increased, and then decreased again. The second current peak occurred earlier with higher temperature and voltage. The two-step anodic bonding process was investigated in terms of bonding current. SEM and EDS tests were conducted to investigate the interfacial structure of the Si-glass-Si samples. The two bonding interfaces were almost the same, but after an etching process, transitional layers could be found in the bonding interface and a deeper trench with a thickness of ~1.5 µm could be found in the second bonding interface. Atomic force microscopy mapping results indicated that sodium precipitated from the back of the glass, which makes the roughness of the surface become coarse. Tensile tests indicated that the fracture occurred at the glass substrate and that the bonding strength increased with the increment of bonding temperature and voltage with the maximum strength of 6.4 MPa.

  12. A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang

    The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.

  13. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

    PubMed

    Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata

    2017-03-01

    A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m 2 and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Effect of anode position on the performance characteristics of a low-power cylindrical Hall thruster

    NASA Astrophysics Data System (ADS)

    Gao, Yuanyuan; Liu, Hui; Hu, Peng; Huang, Hongyan; Yu, Daren

    2017-06-01

    In this paper, the design of a new cylindrical Hall thruster (CHT) is presented. Its anode is separated from the gas distributor, which is made of ceramic. The effect of the anode position on the performance characteristics of the CHT was investigated by mounting a series of anodes with different radii inside the CHT. It is found that progressively positioning the anode away from the axis along the radial direction increases the ion current and reduces the electron current. Meanwhile, the peak energy in the ion energy distribution function increases, and the shape of the ion energy distribution function noticeably narrows; the ion beam in the plume converges. It is suggested that moving the anode away from the axis may strengthen the electron confinement, thus optimizing the ionization efficiency. Additionally, the electric field near the anode appears to deflect toward the axis, which may promote the collimation of the ion beam in the plume. As a result, the overall performance of the CHT is significantly enhanced in our proposed design.

  15. Modelling of crater formation on anode surface by high-current vacuum arcs

    NASA Astrophysics Data System (ADS)

    Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura

    2016-11-01

    Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.

  16. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle.

    PubMed

    Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang

    2018-02-01

    Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Properties of micro-arc oxidation coatings on aluminum alloy at different negative peak current densities

    NASA Astrophysics Data System (ADS)

    Gu, Xin; Jiang, Bailing; Li, Hongtao; Liu, Cancan; Shao, Lianlian

    2018-05-01

    Micro-arc oxidation coatings were fabricated on 6061 aluminum alloy using whereby bipolar pulse mode in the case of different negative peak current densities. The phase composition, microstructures and wear properties were studied using x-ray diffraction, scanning electron microscopy and ball-on-disk wear tester, respectively. As results indicate, by virtue of negative peak current density, the oxygen can be expelled by produced hydrogen on anode in the case of negative pulse width and via the opened discharge channel. The results of x-ray diffraction, surface and cross-sectional morphology indicated that the coating was structured compactly taking on less small-diameter micro-pores and defects with negative peak current density of 75 A dm‑2. Additionally, as the results of wear tracks and weight loss bespeak, by virtue of appropriate negative peak current density, coatings resisted the abrasive wear and showed excellent wear resistance.

  18. Fuel Exhaling Fuel Cell.

    PubMed

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  19. Design of a 500-kJ Mather-type plasma focus device

    NASA Astrophysics Data System (ADS)

    Heidarnia, A.; Sadighzadeh, A.; Zaeem, A. A.; Damideh, V.

    2016-12-01

    In this article, design of a 500-kJ Mather-type plasma focus device to achieve 1011 neutrons/shot is reported. One of its important characteristics is the triple-part anode design. The anode is surrounded by an alumina insulator. The second part of the anode is changeable in order to locate cylindrical, conical, or other shapes of pieces mounted on it. This geometry leads to the easier investigation of the neutron and X-ray emissions of the device. The third part of the anode is for changing the materials exposed to different kinds of radiations. The design parameters are considered by semiempirical and empirical formulas and are sketched by Solidworks software. Also, the peak current and neutron yield are estimated.

  20. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    NASA Astrophysics Data System (ADS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.

  1. The Effect of Driver Rise-Time on Pinch Current and its Impact on Plasma Focus Performance and Neutron Yield

    NASA Astrophysics Data System (ADS)

    Sears, Jason; Schmidt, Andrea; Link, Anthony; Welch, Dale

    2016-10-01

    Experiments have suggested that dense plasma focus (DPF) neutron yield increases with faster drivers [Decker NIMP 1986]. Using the particle-in-cell code LSP [Schmidt PRL 2012], we reproduce this trend in a kJ DPF [Ellsworth 2014], and demonstrate how driver rise time is coupled to neutron output. We implement a 2-D model of the plasma focus including self-consistent circuit-driven boundary conditions. Driver capacitance and voltage are varied to modify the current rise time, and anode length is adjusted so that run-in coincides with the peak current. We observe during run down that magnetohydrodynamic (MHD) instabilities of the sheath shed blobs of plasma that remain in the inter-electrode gap during run in. This trailing plasma later acts as a low-inductance restrike path that shunts current from the pinch during maximum compression. While the MHD growth rate increases slightly with driver speed, the shorter anode of the fast driver allows fewer e-foldings and hence reduces the trailing mass between electrodes. As a result, the fast driver postpones parasitic restrikes and maintains peak current through the pinch during maximum compression. The fast driver pinch therefore achieves best simultaneity between its ion beam and peak target density, which maximizes neutron production. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Design of a 500-kJ Mather-type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidarnia, A., E-mail: a-heidarnia@yahoo.com; Sadighzadeh, A.; Zaeem, A. A.

    In this article, design of a 500-kJ Mather-type plasma focus device to achieve 10{sup 11} neutrons/shot is reported. One of its important characteristics is the triple-part anode design. The anode is surrounded by an alumina insulator. The second part of the anode is changeable in order to locate cylindrical, conical, or other shapes of pieces mounted on it. This geometry leads to the easier investigation of the neutron and X-ray emissions of the device. The third part of the anode is for changing the materials exposed to different kinds of radiations. The design parameters are considered by semiempirical and empiricalmore » formulas and are sketched by Solidworks software. Also, the peak current and neutron yield are estimated.« less

  3. Application of hollow anodes in a Hall thruster with double-peak magnetic fields

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Sun, Hezhi; Li, Peng; Wei, Liqiu; Su, Hongbo; Peng, Wuji; Li, Hong; Yu, Daren

    2017-08-01

    A low-power Hall thruster was designed with two permanent magnet rings. Unlike conventional Hall thrusters, this one has a symmetrical double-peak magnetic field with a larger gradient. Moreover, the highest magnetic field strength appears in the plume region; hence, the distance from the zero-magnetic region to the channel outlet is shorter than that of other Hall thrusters. This paper presents the law and mechanism of the effect of a U-shaped hollow anode with the front end in the zero-magnetic region and anodes at the first magnetic peak and zero-magnetic point (corresponding to the front and rear end faces of the U-shaped anode, respectively) on the discharge characteristics of the thruster. The study shows that the overall performance of the hollow anode under the same operating conditions is the highest. For the anode at the magnetic peak, although the ionization rate is the highest, most of the ions generated by ionization collide with the walls, causing greater energy loss and minimizing its performance. For the anode at the zero-magnetic point, although its maximum ionization rate is higher than that of the hollow anode, and the power deposition on the walls is slightly smaller, its propellant utilization and voltage utilization are lower than those of the hollow anode; furthermore, its overall performance is poorer than that of the hollow anode because of the short channel and shorter ionization region.

  4. Anode catalysts for direct ethanol fuel cells utilizing directly solar light illumination.

    PubMed

    Chu, Daobao; Wang, Shuxi; Zheng, Peng; Wang, Jian; Zha, Longwu; Hou, Yuanyuan; He, Jianguo; Xiao, Ying; Lin, Huashui; Tian, Zhaowu

    2009-01-01

    Shine a light: A PtNiRu/TiO(2) anode catalyst for direct ethanol fuel cells shows photocatalytic activity. The peak current density for ethanol oxidation under solar light illumination is 2-3 times greater than that in the absence of solar light. Ethanol is oxidized by light-generated holes, and the electrons are collected by the TiO(2) support to generate the oxidation current.Novel PtNiRu/TiO(2) anode catalysts for direct ethanol fuel cells (DEFCs) were prepared from PtNiRu nanoparticles (1:1:1 atomic ratios) and a nanoporous TiO(2) film by a sol-gel and electrodeposition method. The performances of the catalysts for ethanol oxidation were investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results indicate a remarkable enhancement of activity for ethanol oxidation under solar light illumination. Under solar light illumination, the generated oxidation peak current density is 24.6 mA cm(-2), which is about 2.5 times higher than that observed without solar light (9.9 mA cm(-2)). The high catalytic activity of the PtNiRu/TiO(2) complex catalyst for the electrooxidation of ethanol may be attributed to the modified metal/nanoporous TiO(2) film, and the enhanced electrooxidation of ethanol under solar light may be due to the photogeneration of holes in the modified nanoporous TiO(2) film.

  5. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  6. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    NASA Astrophysics Data System (ADS)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  7. In operando X-ray diffraction strain measurement in Ni3Sn2 - Coated inverse opal nanoscaffold anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung; Almer, Jonathan D.; Okasinski, John S.; Braun, Paul V.; Dunand, David C.

    2017-11-01

    Volume changes associated with the (de)lithiation of a nanostructured Ni3Sn2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni3Sn2 anode material and its mechanically supporting Ni scaffold. Using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni3Sn2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiation (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni3Sn2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni3Sn2 is lower due to the lower (de)lithiation-induced contraction/expansion.

  8. Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires

    NASA Astrophysics Data System (ADS)

    Pan, Ko-Ying; Wei, Da-Hua

    2018-01-01

    Platinum nanoparticles (Pt NPs) were decorated on vanadium pentoxide nanowires (V2O5 NWs) to form the core-shelled vanadium-platinum nanowires (Pt@V2O5 NWs) and their electrochemical activities for methanol oxidation were investigated. The synthetic procedure involved the synthesis of abundant vanadium pentoxide nanowires (V2O5 NWs) by a direct vapor-solid growth process (VS method), followed by atomic layer depositions (ALD) of platinum nanoparticles (Pt NPs) onto the V2O5 NWs. After the physical examinations, three designed deposition parameters (50, 100 and 150 cycles) of Pt NPs onto the V2O5 NWs by ALD process were successful. From the measurements of current-voltage (I-V) and cyclic voltammetry (CV) curves respectively, both the conductivity and the ratio of the forward anodic peak current (IF) to the reverse anodic peak current (IR) are enhancing proportionately to the deposition cycles of ALD process, which denotes that coating Pt atomic layers onto V2O5 nanowires indeed improves the catalytic performances than that of pure V2O5 nanowires.

  9. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    PubMed

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  10. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    PubMed

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In operando X-ray diffraction strain measurement in Ni 3Sn 2 – Coated inverse opal nanoscaffold anodes for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung

    Volume changes associated with the (de)lithiation of a nanostructured Ni 3Sn 2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni 3Sn 2 anode material and its mechanically supporting Ni scaffold. By using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni 3Sn 2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiationmore » (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni 3Sn 2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni 3Sn 2 is lower due to the lower (de)lithiation-induced contraction/expansion.« less

  12. In operando X-ray diffraction strain measurement in Ni 3Sn 2 – Coated inverse opal nanoscaffold anodes for Li-ion batteries

    DOE PAGES

    Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung; ...

    2017-11-01

    Volume changes associated with the (de)lithiation of a nanostructured Ni 3Sn 2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni 3Sn 2 anode material and its mechanically supporting Ni scaffold. By using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni 3Sn 2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiationmore » (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni 3Sn 2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni 3Sn 2 is lower due to the lower (de)lithiation-induced contraction/expansion.« less

  13. The optimization of CMC concentration as graphite binder on the anode of LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Hidayat, S.; Cahyono, T.; Mindara, J. Y.; Riveli, N.; Alamsyah, W.; Rahayu, I.

    2017-05-01

    Recently, the most dominating power supply on the mobile electronics market are rechargeable Lithium-ion batteries. This is because of a higher energy density and a longer lifetime compared to similar rechargeable battery systems. Graphite is commonly used as anode material in the Lithium-ion batteries, because of its excellent electrochemical characteristics and low cost fabrication. In this paper, we reported the optimization of the concentration of the CMC (carboxymethyl cellulose), that acts as the binder for graphite anode. Based on our experimental results, the best composition of graphite : C : CMC is 90 : 8 : 2 in weight %. Anode with such composition has, based on SEM measurement, a relatively good surface morphology, while it also has relatively high conductivity, about 2.68 S/cm. The result of cyclic voltammogram with a scan rate of 10 mV/s in the voltage range of 0 to 1 Volt, shows the peak of reduction voltage at 0.85 Volts and the peak voltage of oxidation is at -1.5 Volt. The performance of the battery system with LiFePO4 set as the cathode, shows that the working voltage is about 2.67 Volts at 1 mA current-loading, with the efficiency around 47%.

  14. Reduced Graphene Oxide Anodes for Potential Application in Algae Biophotovoltaic Platforms

    PubMed Central

    Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C.; Periasamy, Vengadesh

    2014-01-01

    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm−2 using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems. PMID:25531093

  15. Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms.

    PubMed

    Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C; Periasamy, Vengadesh

    2014-12-22

    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.

  16. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.

    PubMed

    Karra, Udayarka; Huang, Guoxian; Umaz, Ridvan; Tenaglier, Christopher; Wang, Lei; Li, Baikun

    2013-09-01

    A novel and robust distributed benthic microbial fuel cell (DBMFC) was developed to address the energy supply issues for oceanographic sensor network applications, especially under scouring and bioturbation by aquatic life. Multi-anode/cathode configuration was employed in the DBMFC system for enhanced robustness and stability in the harsh ocean environment. The results showed that the DBMFC system achieved peak power and current densities of 190mW/m(2) and 125mA/m(2) respectively. Stability characterization tests indicated the DBMFC with multiple anodes achieved higher power generation over the systems with single anode. A computational model that integrated physical, electrochemical and biological factors of MFCs was developed to validate the overall performance of the DBMFC system. The model simulation well corresponded with the experimental results, and confirmed the hypothesis that using a multi anode/cathode MFC configuration results in reliable and robust power generation. Published by Elsevier Ltd.

  17. Voltammetric determination of In3+ based on the bifunctionality of a multi-walled carbon nanotubes-nafion modified electrode.

    PubMed

    Li, Junhua; Zhang, Fuxing; Wang, Jianqiu; Xu, Zhifeng; Zeng, Rongying

    2009-05-01

    Due to the strong cation-exchange ability of Nafion and the excellent properties of multi-walled carbon nanotubes (MWCNTs), a highly sensitive and mercury-free method of determining trace levels of In(3+) has been established based on the bifunctionality of a MWCNTs/Nafion modified glassy carbon electrode (GCE). The MWCNTs/Nafion modified GCE detects In(3+) in a 0.01 M HAc-NaAc buffer solution at pH 5.0 using anodic stripping voltammetry (ASV). The experimental results suggest that a sensitive anodic stripping peak appears at -0.58 V on anodic stripping voltammograms, which can be used as an analytical signal for the determination of In(3+). A good linear relationship between the stripping peak currents and the In(3+) concentration is obtained, covering the concentration range from 5.0 x 10(-10) to 2.0 x 10(-7) M, with a correlation coefficient of 0.999; the detection limit is 1.0 x 10(-11) M. This proposed method has been applied to detect In(3+) as a new way.

  18. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  19. Asymmetric anode and cathode extraction structure fast recovery diode

    NASA Astrophysics Data System (ADS)

    Xie, Jiaqiang; Ma, Li; Gao, Yong

    2018-05-01

    This paper presents an asymmetric anode structure and cathode extraction fast and soft recovery diode. The device anode is partial-heavily doped and partial-lightly doped. The P+ region is introduced into the cathode. Firstly, the characteristics of the diode are simulated and analyzed. Secondly, the diode was fabricated and its characteristics were tested. The experimental results are in good agreement with the simulation results. The results show that, compared with the P–i–N diode, although the forward conduction characteristic of the diode is declined, the reverse recovery peak current is reduced by 47%, the reverse recovery time is shortened by 20% and the softness factor is doubled. In addition, the breakdown voltage is increased by 10%. Project supported by the National Natural Science Foundation of China (No. 51177133).

  20. Anodes for protonic ceramic fuel cells (PCFCs) =

    NASA Astrophysics Data System (ADS)

    Nasani, Narendar

    One of the more promising possibilities for future "green" electrical energy generation is the protonic ceramic fuel cell (PCFC). PCFCs offer a low-pollution technology to generate electricity electrochemically with high efficiency. Reducing the operating temperature of solid oxide fuel cells (SOFCs) to the 500-700°C range is desirable to reduce fabrication costs and improve overall longevity. This aim can be achieved by using protonic ceramic fuel cells (PCFCs) due to their higher electrolyte conductivity at these temperatures than traditional ceramic oxide-ion conducting membranes. This thesis deals with the state of the art Ni-BaZr0.85Y0.15O3-delta cermet anodes for PCFCs. The study of PCFCs is in its initial stage and currently only a few methods have been developed to prepare suitable anodes via solid state mechanical mixing of the relevant oxides or by combustion routes using nitrate precursors. This thesis aims to highlight the disadvantages of these traditional methods of anode preparation and to, instead, offer a novel, efficient and low cost nitrate free combustion route to prepare Ni-BaZr0.85Y0.15O3-delta cermet anodes for PCFCs. A wide range of techniques mainly X-ray diffraction (XRD), scanning electron microscopy (SEM), environmental scanning electron microscopy, (ESEM) and electrochemical impedance spectroscopy (EIS) were employed in the cermet anode study. The work also offers a fundamental examination of the effect of porosity, redox cycling behaviour, involvement of proton conducting oxide phase in PCFC cermet anodes and finally progresses to study the electrochemical performance of a state of the art anode supported PCFC. The polarisation behaviour of anodes has been assessed as a function of temperature (T), water vapour (pH2O), hydrogen partial pressures (pH2) and phase purity for electrodes of comparable microstructure. The impedance spectra generally show two arcs at high frequency R2 and low frequency R3 at 600 °C, which correspond to the electrode polarisation resistance. Work shows that the R2 and R3 terms correspond to proton transport and dissociative H2 adsorption on electrode surface, respectively. The polarization resistance of the cermet anode (Rp) was shown to be significantly affected by porosity, with the PCFC cermet anode with the lowest porosity exhibiting the lowest Rp under standard operating conditions. This result highlights that porogens are not required for peak performance in PCFC anodes, a result contrary to that of their oxide-ion conducting anode counterparts. In-situ redox cycling studies demonstrate that polarisation behaviour was drastically impaired by redox cycling. In-situ measurements using an environmental scanning electron microscopy (ESEM) reveal that degradation proceeds due to volume expansion of the Ni-phase during the re-oxidation stage of redox cycling.The anode supported thin BCZY44 based protonic ceramic fuel cell, formed using a peak performing Ni-BaZr0.85Y0.15O3-delta cermet anode with no porogen, shows promising results in fuel cell testing conditions at intermediate temperatures with good durability and an overall performance that exceeds current literature data.

  1. Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography.

    PubMed

    Cho, Kyu Taek; Mench, Matthew M

    2012-03-28

    In this study, the high resolution hydrogen-deuterium contrast radiography method was applied to elucidate the impact of the micro-porous layer (MPL) on water distribution in the porous fuel cell media. At the steady state, deuterium replaced hydrogen in the anode stream, and the large difference in neutron attenuation of the D(2)O produced at the cathode was used to track the produced water. It was found that the water content peaked in the cathode-side diffusion media (DM) for the cell without MPL, but with an MPL on the anode and cathode DM, the peak water amount was pushed toward the anode, resulting in a relatively flattened water profile through components and demonstrating a liquid barrier effect. Additionally, the dynamic water behavior in diffusion media was analyzed to understand the effect of a MPL and operating conditions. The water content in the DM changed with applied current, although there is a significant amount of residual liquid content that does not appear to be part of capillary channels. The effect of the MPL on irreducible saturation in DM and cell performance was also investigated.

  2. Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities.

    PubMed

    Larrosa-Guerrero, Amor; Scott, Keith; Katuri, Krishna P; Godinez, Carlos; Head, Ian M; Curtis, Thomas

    2010-08-01

    The influence of various carbon anodes; graphite, sponge, paper, cloth, felt, fiber, foam and reticulated vitreous carbon (RVC); on microbial fuel cell (MFC) performance is reported. The feed was brewery wastewater diluted in domestic wastewater. Biofilms were grown at open circuit or under an external load. Microbial diversity was analysed as a function of current and anode material. The bacterial community formed at open circuit was influenced by the anode material. However at closed circuit its role in determining the bacterial consortia formed was less important than the passage of current. The rate and extent of organic matter removal were similar for all materials: over 95% under closed circuit. The biofilm in MFCs working at open circuit and in the control reactors, increased COD removal by up to a factor of nine compared with that for baseline reactors. The average voltage output was 0.6 V at closed circuit, with an external resistor of 300 kOmega and 0.75 V at open circuit for all materials except RVC. The poor performance of this material might be related to the surface area available and concentration polarizations caused by the morphology of the material and the structure of the biofilm. Peak power varied from 1.3 mW m(-2) for RVC to 568 mW m(-2) for graphite with biofilm grown at closed circuit.

  3. An ablative pulsed plasma thruster with a segmented anode

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ren, Junxue; Tang, Haibin; Ling, William Yeong Liang; York, Thomas M.

    2018-01-01

    An ablative pulsed plasma thruster (APPT) design with a ‘segmented anode’ is proposed in this paper. We aim to examine the effect that this asymmetric electrode configuration (a normal cathode and a segmented anode) has on the performance of an APPT. The magnetic field of the discharge arc, plasma density in the exit plume, impulse bit, and thrust efficiency were studied using a magnetic probe, Langmuir probe, thrust stand, and mass bit measurements, respectively. When compared with conventional symmetric parallel electrodes, the segmented anode APPT shows an improvement in the impulse bit of up to 28%. The thrust efficiency is also improved by 49% (from 5.3% to 7.9% for conventional and segmented designs, respectively). Long-exposure broadband emission images of the discharge morphology show that compared with a normal anode, a segmented anode results in clear differences in the luminous discharge morphology and better collimation of the plasma. The magnetic probe data indicate that the segmented anode APPT exhibits a higher current density in the discharge arc. Furthermore, Langmuir probe data collected from the central exit plane show that the peak electron density is 75% higher than with conventional parallel electrodes. These results are believed to be fundamental to the physical mechanisms behind the increased impulse bit of an APPT with a segmented electrode.

  4. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    PubMed Central

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-01-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm−1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm−2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm−2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode. PMID:26648509

  5. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm-1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm-2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm-2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  6. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells.

    PubMed

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-09

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm(-1) in 5% H2 and peak power densities of 1.72 and 0.54 W cm(-2) using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm(-2). To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  7. Study of Copper and Purine-Copper Complexes on Modified Carbon Electrodes by Cyclic and Elimination Voltammetry

    PubMed Central

    Trnkova, Libuse; Zerzankova, Lenka; Dycka, Filip; Mikelova, Radka; Jelen, Frantisek

    2008-01-01

    Using a paraffin impregnated graphite electrode (PIGE) and mercury-modified pyrolytic graphite electrode with basal orientation (Hg-PGEb) copper(II) and Cu(II)-DNA purine base solutions have been studied by cyclic (CV) and linear sweep voltammetry (LSV) in connection with elimination voltammetry with linear scan (EVLS). In chloride and bromide solutions (pH 6), the redox process of Cu(II) proceeded on PIGE with two cathodic and two anodic potentially separated signals. According to the elimination function E4, the first cathodic peak corresponds to the reduction Cu(II) + e- → Cu(I) with the possibility of fast disproportionation 2Cu(I) → Cu(II)+ Cu(0). The E4 of the second cathodic peak signalized an electrode process controlled by a surface reaction. The electrode system of Cu(II) on Hg-PGEb in borate buffer (pH 9.2) was characterized by one cathodic and one anodic peak. Anodic stripping voltammetry (ASV) on PIGE and cathodic stripping voltammetry (CSV) on Hg-PGEb were carried out at potentials where the reduction of copper ions took place and Cu(I)-purine complexes were formed. By using ASV and CSV in combination with EVLS, the sensitivity of Cu(I)-purine complex detection was enhanced relative to either ASV or CSV alone, resulting in higher peak currents of more than one order of magnitude. The statistical treatment of CE data was used to determine the reproducibility of measurements. Our results show that EVLS in connection with the stripping procedure is useful for both qualitative and quantitative microanalysis of purine derivatives and can also reveal details of studied electrode processes. PMID:27879715

  8. Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au-TiO2 3D Nanocomposites.

    PubMed

    Farsinezhad, Samira; Banerjee, Shyama Prasad; Bangalore Rajeeva, Bharath; Wiltshire, Benjamin D; Sharma, Himani; Sura, Anton; Mohammadpour, Arash; Kar, Piyush; Fedosejevs, Robert; Shankar, Karthik

    2017-01-11

    Localized surface plasmon resonances (LSPR) in TiO 2 nanorod and nanotube arrays decorated by gold nanoparticles can be exploited to improve photocatalytic activity, enhance nonlinear optical coefficients, and increase light harvesting in solar cells. However, the LSPR typically has a low quality factor, and the resonance is often obscured by the Urbach tail of the TiO 2 band gap absorption. Attempts to increase the LSPR extinction intensity by increasing the density of gold nanoparticles on the surface of the TiO 2 nanostructures invariably produce peak broadening due to the effects of either agglomeration or polydispersity. We present a new class of hybrid nanostructures containing gold nanoparticles (NPs) partially embedded in nanoporous/nanotubular TiO 2 by performing the anodization of cosputtered Ti-Au thin films containing a relatively high ratio of Au:Ti. Our method of anodizing thin film stacks containing alternate layers of Ti and TiAu results in very distinctive LSPR peaks with quality factors as high as 6.9 and ensemble line widths as small as 0.33 eV even in the presence of an Urbach tail. Unusual features in the anodization of such films are observed and explained, including oscillatory current transients and the observation of coherent heterointerfaces between the Au NPs and anatase TiO 2 . We further show that such a plasmonic NP-embedded nanotube structure dramatically outperforms a plasmonic NP-decorated anodic nanotube structure in terms of the extinction coefficient, and achieves a strongly enhanced two-photon fluorescence due to the high density of gold nanoparticles in the composite film and the plasmonic local field enhancement.

  9. Facilitation of NADH Electrooxidation at Treated Carbon Nanotubes

    PubMed Central

    Wooten, Marilyn; Gorski, Waldemar

    2010-01-01

    The relationship between the state of the surface of carbon nanotubes (CNT) and their electrochemical activity was investigated using the enzyme cofactor dihydronicotinamide adenine dinucleotide (NADH) as a redox probe. The boiling of CNT in water, while nondestructive, activated them toward the oxidation of NADH as indicated by a shift in the anodic peak potential of NADH (ENADH) from 0.4 to 0.0 V. The shift in ENADH was due to the redox mediation of NADH oxidation by traces of quinone species that were formed on the surface of treated CNT. The harsher treatment that comprised of microwaving of CNT in concentrated nitric acid had a similar effect on the ENADH and, additionally, it increased the anodic peak current of NADH. The latter correlated with the formation of defects on the surface of acid-microwaved CNT as indicated by their Raman spectra. The increase in current was discussed considering a role of surface mediators on the buckled graphene sheets of acid-microwaved CNT. The other carbon allotropes including the edge plane pyrolytic graphite, graphite powder, and glassy carbon did not display a comparable activation toward the oxidation of NADH. PMID:20088562

  10. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments

    PubMed Central

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A.; Suárez-Suárez, Ana; Head, Ian M.

    2015-01-01

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m−2 and 431 mA m−2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463

  11. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    PubMed

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Anodic stripping voltammetry of gold nanoparticles at boron-doped diamond electrodes and its application in immunochromatographic strip tests.

    PubMed

    Ivandini, Tribidasari A; Wicaksono, Wiyogo P; Saepudin, Endang; Rismetov, Bakhadir; Einaga, Yasuaki

    2015-03-01

    Anodic stripping voltammetry (ASV) of colloidal gold-nanoparticles (AuNPs) was investigated at boron-doped diamond (BDD) electrodes in 50 mM HClO4. A deposition time of 300 s at-0.2 V (vs. Ag/AgCl) was fixed as the condition for the ASV. The voltammograms showed oxidation peaks that could be attributed to the oxidation of gold. These oxidation peaks were then investigated for potential application in immunochromatographic strip tests for the selective and quantitative detection of melamine, in which AuNPs were used as the label for the antibody of melamine. Linear regression of the oxidation peak currents appeared in the concentration range from 0.05-0.6 μg/mL melamine standard, with an estimated LOD of 0.069 μg/mL and an average relative standard deviation of 8.0%. This indicated that the method could be considered as an alternative method for selective and quantitative immunochromatographic applications. The validity was examined by the measurements of melamine injected into milk samples, which showed good recovery percentages during the measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Electrochemical behavior of an antiviral drug acyclovir at fullerene-C(60)-modified glassy carbon electrode.

    PubMed

    Shetti, Nagaraj P; Malode, Shweta J; Nandibewoor, Sharanappa T

    2012-12-01

    Electrochemical oxidation of acyclovir at fullerene-C(60)-modified glassy carbon electrode has been investigated using cyclic and differential pulse voltammetry. In pH 7.4 phosphate buffer, acyclovir showed an irreversible oxidation peak at about 0.96V. The cyclic voltammetric results showed that fullerene-C(60)-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of acyclovir. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the acyclovir determination by differential pulse voltammetry. Effects of anodic peak potential (E(p)/V), anodic peak current (I(p)/μA) and heterogeneous rate constant (k(0)) have been discussed. Under optimized conditions, the concentration range and detection limit were 9.0×10(-8) to 6.0×10(-6)M and 1.48×10(-8)M, respectively. The proposed method was applied to acyclovir determination in pharmaceutical samples and human biological fluids such as urine and blood plasma as a real sample. This method can also be employed in quality control and routine determination of drugs in pharmaceutical formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Anode current density distribution in a cusped field thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  15. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, PengFei; Qiu, Aici; State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode andmore » anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10{sup 21}/cm{sup 3}), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).« less

  16. Integrated 220 GHz Source Development

    DTIC Science & Technology

    2014-05-27

    placement of the anode far enough from the emitter to prevent the deposi- tion of sputtered anode particles. Fully-Integrated High Power Amplifier The...waveguide circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output...circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output powers up

  17. Role of Additives in Minimizing Zinc Electrode Shape Change: The Effect of Lead on the Kinetics of Zn(II) Reduction in Concentrated Alkaline Media.

    DTIC Science & Technology

    1985-07-01

    adherent, and showed excellent physical stability. U -12- 4. RESULTS AND DISCUSSION 4.1 CYCLIC VOLTAMETRY AT A SILVER DISK ELECTRODE Silver screens are...45% KOH containing 5.5% ZnO is shown in Figure 17A. Several sweeps are recorded at scan rates of 10, 20, 50, 100, 200, and 500 mV/s with the highest...voltammetry curves is difficult since the anodic peak depends on the amount of metal deposition in the previous cathodic sweep (16).) The peak currents versus

  18. Effect of surface anodization on stability of orthodontic microimplant

    PubMed Central

    Karmarker, Sanket; Yu, Wonjae

    2012-01-01

    Objective To determine the effect of surface anodization on the interfacial strength between an orthodontic microimplant (MI) and the rabbit tibial bone, particularly in the initial phase after placement. Methods A total of 36 MIs were driven into the tibias of 3 mature rabbits by using the self-drilling method and then removed after 6 weeks. Half the MIs were as-machined (n = 18; machined group), while the remaining had anodized surfaces (n = 18; anodized group). The peak insertion torque (PIT) and the peak removal torque (PRT) values were measured for the 2 groups of MIs. These values were then used to calculate the interfacial shear strength between the MI and cortical bone. Results There were no statistical differences in terms of PIT between the 2 groups. However, mean PRT was significantly greater for the anodized implants (3.79 ± 1.39 Ncm) than for the machined ones (2.05 ± 1.07 Ncm) (p < 0.01). The interfacial strengths, converted from PRT, were calculated at 10.6 MPa and 5.74 MPa for the anodized and machined group implants, respectively. Conclusions Anodization of orthodontic MIs may enhance their early-phase retention capability, thereby ensuring a more reliable source of absolute anchorage. PMID:23112925

  19. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode.

    PubMed

    Yi, Hongchao

    2003-10-01

    An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L(-1) HCl solution containing 0.02 mol L(-1) KI, Hg(2+) was firstly preconcentrated at the MWNT film and then reduced at -0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about -0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I(-) remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg(2+) at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg(2+) over the range 8 x 10(-10)-5 x 10(-7) mol L(-1). The lowest detectable concentration of Hg(2+) is 2 x 10(-10) mol L(-1) at 5 min accumulation. The relative standard deviation (RSD) at 1 x 10(-8) mol L(-1) Hg(2+) was about 6% ( n=10). By using this proposed method, Hg(2+) in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis.

  20. Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong

    2009-08-01

    A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.

  1. Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode.

    PubMed

    Chen, Qianjin; Luo, Long; White, Henry S

    2015-04-21

    We report the electrochemical generation of a single hydrogen bubble within the cavity of a recessed Pt nanopore electrode. The recessed Pt electrode is a conical pore in glass that contains a micrometer-scale Pt disk (1-10 μm radius) at the nanopore base and a nanometer-scale orifice (10-100 nm radius) that restricts diffusion of electroactive molecules and dissolved gas between the nanopore cavity and bulk solution. The formation of a H2 bubble at the Pt disk electrode in voltammetric experiments results from the reduction of H(+) in a 0.25 M H2SO4 solution; the liquid-to-gas phase transformation is indicated in the voltammetric response by a precipitous decrease in the cathodic current due to rapid bubble nucleation and growth within the nanopore cavity. Finite element simulations of the concentration distribution of dissolved H2 within the nanopore cavity, as a function of the H(+) reduction current, indicate that H2 bubble nucleation at the recessed Pt electrode surface occurs at a critical supersaturation concentration of ∼0.22 M, in agreement with the value previously obtained at (nonrecessed) Pt disk electrodes (∼0.25 M). Because the nanopore orifice limits the diffusion of H2 out of the nanopore cavity, an anodic peak corresponding to the oxidation of gaseous and dissolved H2 trapped in the recessed cavity is readily observed on the reverse voltammetric scan. Integration of the charge associated with the H2 oxidation peak is found to approach that of the H(+) reduction peak at high scan rates, confirming the assignment of the anodic peak to H2 oxidation. Preliminary results for the electrochemical generation of O2 bubbles from water oxidation at a recessed nanopore electrode are consistent with the electrogeneration of H2 bubbles.

  2. Template-assisted fabrication of tin and antimony based nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Kurowska, Elżbieta; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-10-01

    Antimony nanowires with diameters ranging from 35 nm to 320 nm were successfully prepared by simple, galvanostatic electrodeposition inside the pores of anodic alumina membranes from a citrate based electrolyte. The use of the potassium antimonyl tartrate electrolyte for electrodeposition results in the formation of Sb/Sb2O3 nanowires. The structural features of the nanowire arrays were investigated by FE-SEM, and the nanowire composition was confirmed by EDS and XRD measurements. A distinct peak at about 27.5° in the XRD pattern recorded for nanowires formed in the tartrate electrolyte was attributed to the presence of co-deposited Sb2O3. Three types of dense arrays of Sn-SnSb nanowires with diameters ranging from 82 nm to 325 nm were also synthesized by DC galvanostatic electrodeposition into the anodic aluminum oxide (AAO) membranes for the first time. Only Sn and SnSb peaks appeared in the XRD pattern and both phases seem to have a relatively high degree of crystallinity. The influence of current density applied during electrodeposition on the composition of nanowires was investigated. It was found that the Sb content in fabricated nanowires decreases with increasing current density. The diameters of all synthesized nanowires roughly correspond to the dimensions of the nanochannels of AAO templates used for electrodeposition.

  3. Mechanisms of anode power deposition in a low pressure free burning arc

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Myers, Roger M.

    1994-01-01

    Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.

  4. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells

    NASA Astrophysics Data System (ADS)

    Olu, Pierre-Yves; Deschamps, Fabien; Caldarella, Giuseppe; Chatenet, Marian; Job, Nathalie

    2015-11-01

    Platinum and palladium are investigated as anodic catalysts for direct borohydride and direct ammonia borane fuel cells (DBFC and DABFC). Half-cell characterizations performed at 25 °C using NH3BH3 or NaBH4 alkaline electrolytes demonstrate the lowest open-circuit potential and highest electrocatalytic activity for the NH3BH3 alkaline electrolyte for Pd and Pt rotating disk electrodes, respectively. Voltammograms performed in fuel cell configuration at 25 °C confirm this trend: the highest open circuit voltage (1.05 V) and peak power density (181 mW·cm-2) are monitored for DABFC using Pd/C and Pt/C anodes, respectively. Increasing the temperature heightens the peak power density (that reaches 420 mW·cm-2 at 60 °C for DBFC using Pt/C anodes), but strongly generates gas from the fuel hydrolysis, hindering the overall fuel cells performances. The anode texture strongly influences the fuel cell performances, highlighting: (i) that an open anode texture is required to efficiently circulate the anolyte and (ii) the difficulty to compare potential anodic catalysts characterized using different fuel cell setups within the literature. Furthermore, TEM imaging of Pt/C and Pd/C catalysts prior/post DBFC and DABFC operation shows fast degradation of the carbon-supported nanoparticles.

  5. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.

    2018-03-01

    We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.

  6. Effect of polarity of electric current on friction behavior of two gallium-lubricated tantalum slipring assemblies

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J.

    1972-01-01

    Computer-processed data from low-speed (10 rpm) slipring experiments with two similar (but of opposite polarity) gallium-lubricated tantalum slipring assemblies (hemisphere against disk) carrying 50 amperes dc in vacuum (10 to the minus 9th power torr) showed that the slipring assembly with the anodic hemisphere had significantly lower peak-to-peak values and standard deviations of coefficient-of-friction samples (a measure of smoothness of operation) than the slipring assembly with the cathodic hemisphere. Similar data from an experiment with the same slipring assemblies running currentless showed more random differences in the frictional behavior between the two assemblies.

  7. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    PubMed

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  8. High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries

    PubMed Central

    Chen, Chunhui; Agrawal, Richa; Wang, Chunlei

    2015-01-01

    Improving the energy capacity of spinel Li4Ti5O12 (LTO) is very important to utilize it as a high-performance Li-ion battery (LIB) electrode. In this work, LTO/Si composites with different weight ratios were prepared and tested as anodes. The anodic and cathodic peaks from both LTO and silicon were apparent in the composites, indicating that each component was active upon Li+ insertion and extraction. The composites with higher Si contents (LTO:Si = 35:35) exhibited superior specific capacity (1004 mAh·g−1) at lower current densities (0.22 A·g−1) but the capacity deteriorated at higher current densities. On the other hand, the electrodes with moderate Si contents (LTO:Si = 50:20) were able to deliver stable capacity (100 mAh·g−1) with good cycling performance, even at a very high current density of 7 A·g−1. The improvement in specific capacity and rate performance was a direct result of the synergy between LTO and Si; the former can alleviate the stresses from volumetric changes in Si upon cycling, while Si can add to the capacity of the composite. Therefore, it has been demonstrated that the addition of Si and concentration optimization is an easy yet an effective way to produce high performance LTO-based electrodes for lithium-ion batteries. PMID:28347076

  9. Polarity-dependent improvement of maximal-effort sprint cycling performance by direct current stimulation of the central nervous system.

    PubMed

    Sasada, Syusaku; Endoh, Takashi; Ishii, Tomoya; Komiyama, Tomoyoshi

    2017-09-14

    Sprint motor performance, such as in short-distance running or cycling, gradually decreases after reaching a maximum speed or cadence. This may be attributed to the central nervous system. Brain stimulation studies have recently revealed the plastic nature of the human brain and spinal cord, but it is unclear how direct current stimulation (DCS) affects sprint motor performance. To address this issue, we investigated DCS's effect on healthy volunteers' sprint cycling performance. DCS was applied to the lumbar spinal cord (3mA) or the leg area of the motor cortex (2mA) for 15min with 3 different polarities: anodal, cathodal, and sham. After DCS, the subjects performed maximal-effort sprint cycling for 30s under a constant load. Pooled mean power during the 30s was significantly greater after cathodal transcutaneous spinal DCS to the lumbar spinal cord (tsDCS) than anodal or sham tsDCS. The improvement with cathodal stimulation was notable both 0-5 and 20-25s after the performance onset. There were no significant inter-conditional differences in peak power. Pooled mean power was significantly greater after anodal transcranial DCS to the motor cortex (tDCS) than after cathodal tDCS, although mean powers of anodal and sham tDCS were not significantly different. The increase in mean power after cathodal tsDCS could result from a reduction in central fatigue. This stimulus method might improve sprint performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Electricity production coupled to ammonium in a microbial fuel cell.

    PubMed

    He, Zhen; Kan, Jinjun; Wang, Yanbing; Huang, Yuelong; Mansfeld, Florian; Nealson, Kenneth H

    2009-05-01

    The production of electricity from ammonium was examined using a rotating-cathode microbial fuel cell (MFC). The addition of ammonium chloride, ammonium sulfate, or ammonium phosphate (monobasic) resulted in electricity generation, while adding sodium chloride, nitrate, or nitrite did not cause any increase in current production. The peak current increased with increasing amount of ammonium addition up to 62.3 mM of ammonium chloride, suggesting that ammonium was involved in electricity generation either directly as the anodic fuel or indirectly as substrates for nitrifiers to produce organic compounds for heterotrophs. Adding nitrate or nitrite with ammonium increased current production compared to solely ammonium addition. Using 16S rRNA-linked molecular analyses, we found ammonium-oxidizing bacteria and denitrifying bacteria on both the anode and cathode electrodes, whereas no anammox bacteria were detected. The dominant ammonium-oxidizing bacteria were closely related to Nitrosomonas europaea. The present MFC achieved an ammonium removal efficiency of 49.2 +/- 5.9 or 69.7 +/- 3.6%, depending on hydraulic retention time, but exhibited a very low Coulombic efficiency.

  11. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    NASA Astrophysics Data System (ADS)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  12. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions.

    PubMed

    Stein, Nienke E; Hamelers, Hubertus V M; Buisman, Cees N J

    2010-04-01

    A MFC-based biosensor can act as online toxicity sensor. Electrical current is a direct linear measure for metabolic activity of electrochemically active microorganisms. Microorganisms gain energy from anodic overpotential and current strongly depends on anodic overpotential. Therefore control of anodic overpotential is necessary to detect toxic events and prevent false positive alarms. Anodic overpotential and thus current is influenced by anode potential, pH, substrate and bicarbonate concentrations. In terms of overpotential all factor showed a comparable effect, anode potential 1.2% change in current density per mV, pH 0.43%/mV, bicarbonate 0.75%/mV and acetate 0.8%/mV. At acetate saturation the maximum acetate conversion rate is reached and with that a constant bicarbonate concentration. Control of acetate and bicarbonate concentration can be less strict than control of anode potential and pH. Current density changes due to changing anode potential and pH are in the same order of magnitude as changes due to toxicity. Strict control of pH and anode potential in a small range is required. The importance of anodic overpotential control for detection of toxic compounds is shown. To reach a stable baseline current under nontoxic conditions a MFC-based biosensor should be operated at controlled anode potential, controlled pH and saturated substrate concentrations. 2009 Elsevier B.V. All rights reserved.

  13. Anode power deposition in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Soulas, George C.

    1992-01-01

    Anode power deposition is the principle performance limiter of magnetoplasmadynamic (MPD) thrusters. Current thrusters lose between 50 and 70 percent of the input power to the anode. In this work, anode power deposition was studied for three cylindrical applied magnetic field thrusters for a range of argon propellant flow rates, discharge currents, and applied-field strengths. Between 60 and 95 percent of the anode power deposition resulted from electron current conduction into the anode, with cathode radiation depositing between 5 and 35 percent of the anode power, and convective heat transfer from the hot plasma accounting for less than 5 percent. While the fractional anode power loss decreased with increasing applied-field strength and anode size, the magnitude of the anode power increased. The rise in anode power resulted from a linear rise in the anode fall voltage with applied-field strength and anode radius. The anode fall voltage also rose with decreasing propellant flow rate. The trends indicate that the anode fall region is magnetized, and suggest techniques for reducing the anode power loss in MPD thrusters.

  14. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions.

    PubMed

    Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei

    2015-04-10

    Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current j(ion) = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.

  15. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions

    NASA Astrophysics Data System (ADS)

    Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei

    2015-04-01

    Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current jion = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.

  16. Anionic microemulsion to solvent stacking for on-line sample concentration of cationic analytes in capillary electrophoresis.

    PubMed

    Kukusamude, Chunyapuk; Srijaranai, Supalax; Quirino, Joselito P

    2014-05-01

    The common SDS microemulsion (i.e. 3.3% SDS, 0.8% octane, and 6.6% butanol) and organic solvents were investigated for the stacking of cationic drugs in capillary zone electrophoresis using a low pH separation electrolyte. The sample was prepared in the acidic microemulsion and a high percentage of organic solvent was included in the electrolyte at anodic end of capillary. The stacking mechanism was similar to micelle to solvent stacking where the micelles were replaced by the microemulsion for the transport of analytes to the organic solvent rich boundary. This boundary is found between the microemulsion and anodic electrolyte. The effective electrophoretic mobility of the cations reversed from the direction of the anode in the microemulsion to the cathode in the boundary. Microemulsion to solvent stacking was successfully achieved with 40% ACN in the anodic electrolyte and hydrodynamic sample injection of 21 s at 1000 mbar (equivalent to 30% of the effective length). The sensitivity enhancement factors in terms of peak height and corrected peak area were 15 to 35 and 21 to 47, respectively. The linearity R(2) in terms of corrected peak area were >0.999. Interday precisions (%RSD, n = 6) were 3.3-4.0% for corrected peak area and 2.0-3.0% for migration time. Application to spiked real sample is also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    NASA Astrophysics Data System (ADS)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  18. The anode mechanism of a thermal argon arc

    NASA Technical Reports Server (NTRS)

    Busz-Peuckert, G.; Finkelnburg, W.

    1984-01-01

    In order to clarify the anode mechanism in freely burning argon arcs, the anode drop was determined by probe measurements in the current intensity range of 10 to 200 A and arc lengths between 2 and 10 mm. Simultaneously, the power input at the anode was determined by measuring the temperature increase in the cooling water, using a thermoelement, and compared to the electrical output at the arc and in the anodic drop area. An anodic contraction was observed in the arc, at low current intensities. The results can be explained in terms of the effects of a cathodic plasma current, and in the contracted arc, in terms of an additional anodic plasma current.

  19. Performance evaluation of a retrofit digital detector-based mammography system.

    PubMed

    Marshall, Nicholas W; van Ongeval, Chantal; Bosmans, Hilde

    2016-02-01

    A retrofit flat panel detector was integrated with a GE DMR+ analog mammography system and characterized using detective quantum efficiency (DQE). Technical system performance was evaluated using the European Guidelines protocol, followed by a limited evaluation of clinical image quality for 20 cases using image quality criteria in the European Guidelines. Optimal anode/filter selections were established using signal difference-to-noise ratio measurements. Only small differences in peak DQE were seen between the three anode/filter settings, with an average value of 0.53. For poly(methyl methacrylate) (PMMA) thicknesses above 60 mm, the Rh/Rh setting was the optimal anode/filter setting. The system required a mean glandular dose of 0.54 mGy at 30 kV Rh/Rh to reach the Acceptable gold thickness limit for 0.1 mm details. Imaging performance of the retrofit unit with the GE DMR+ is notably better than of powder based computed radiography systems and is comparable to current flat panel FFDM systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Novel Architectures for Achieving Direct Electron Transfer in Enzymatic Biofuel Cells

    NASA Astrophysics Data System (ADS)

    Blaik, Rita A.

    Enzymatic biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving direct electron transfer with high enzyme concentrations in a simple system. In this dissertation, methods of constructing electrodes consisting of enzymes attached to nanoparticle-enhanced substrates that serve as high surface area templates are evaluated. In the first method described, glucose oxidase is covalently attached to gold nanoparticles that are assembled onto genetically engineered M13 bacteriophage. The resulting anodes achieve a high peak current per area and a significant improvement in enzyme surface coverage. In the second system, fructose dehydrogenase, a membrane-bound enzyme that has the natural ability to achieve direct electron transfer, is immobilized into a matrix consisting of binders and carbon nanotubes to extend the lifetime of the anode. For the cathode, bilirubin oxidase is immobilized in a carbon nanotube and sol-gel matrix to achieve direct electron transfer. Finally, a full fuel cell consisting of both an anode and cathode is constructed and evaluated with each system described.

  1. Durability Testing of Additively Manufactured High Power Microwave Structures

    DTIC Science & Technology

    2017-10-29

    the aluminum anode, generating microwave powers in excess of 150 MW. After 100 shots on each structure, neither anode showed any signs of...with an average instantaneous peak total efficiency of 27% ± 10%. After 100 shots on each structure, neither anode showed any signs of...uniform axial magnetic field, which was varied on a per- shot basis from 0.13 to 0.31 T. A #304 stainless steel vacuum chamber housed the magnetron

  2. Structural and characteristic variation of anodic oxide on pure Ti with anodization duration

    NASA Astrophysics Data System (ADS)

    Mizukoshi, Yoshiteru; Ohtsu, Naofhumi; Masahashi, Naoya

    2013-10-01

    Change in the structural and characteristic of the anodic oxide on pure Ti with the duration of anodization time was investigated. With the progress of the anodization, the phase of the formed TiO2 successively changed from anatase phase to rutile phase. In the transition process, peak intensities of rutile TiO2 1 0 1, 1 1 1 and 2 1 1 planes of X-ray diffraction characteristically increased. The contact angles of water droplets on the anodize TiO2 were monotonously decreased with the progress of the anodization except on the characteristically oriented rutile surface. In the evaluations of acetaldehyde photocatalysis under UV illumination, the anatase TiO2 anodized for short period exhibited high activities. On the other hand, when illuminated with visible light (>422 nm), rutile-structured TiO2 formed by anodization with a long duration exhibited superior photocatalytic activities probably due to high rutile fraction and sulfur incorporation from the electrolyte.

  3. Transcutaneous spinal direct current stimulation induces lasting fatigue resistance and enhances explosive vertical jump performance

    PubMed Central

    Tate, Rothwelle J.; Conway, Bernard A.

    2017-01-01

    Transcutaneous spinal direct current stimulation (tsDCS) is a non-invasive neuromodulatory intervention that has been shown to modify excitability in spinal and supraspinal circuits in animals and humans. Our objective in this study was to explore the functional neuromodulatory potential of tsDCS by examining its immediate and lasting effects over the repeated performance of a whole body maximal exercise in healthy volunteers. Using a double-blind, randomized, crossover, sham-controlled design we investigated the effects of 15 min of anodal tsDCS on repeated vertical countermovement jump (VCJ) performance at 0, 20, 60, and 180 minutes post-stimulation. Measurements of peak and take-off velocity, vertical displacement, peak power and work done during countermovement and push-off VCJ phases were derived from changes in vertical ground reaction force (12 performance parameters) in 12 healthy participants. The magnitude and direction of change in VCJ performance from pre- to post-stimulation differed significantly between sham and active tsDCS for 7 of the 12 VCJ performance measures (P < 0.05). These differences comprised of a post-sham fatigue in VCJ displacement/work done, peak to peak power and take-off velocity, and a resilience to this fatigue effect post-active tsDCS. In addition there was also an enhancement of countermovement performance and total work done (P < 0.05). These changes did not vary across repeated VCJ performances over time post-tsDCS (P > 0.05). Our original findings demonstrate that one single session of anodal tsDCS in healthy subjects can prevent fatigue and maintain or enhance different aspects of whole body explosive motor power over repeated sets of VCJs performed over a period of three hours. The observed effects are discussed in relation to alterations in central fatigue mechanisms, muscle contraction mode during jump execution and changes in spinal cord excitability. These findings have important implications for power endurance sport performance and for neuromotor rehabilitation. PMID:28379980

  4. Evaluation of a 10 kV, 400 kA Si SGTO at High dI/dt

    DTIC Science & Technology

    2006-05-01

    inspection and high-potting of each component module prior to pulsing. The complete unit was then switched in a low inductance RLC circuit to test...during triggering. A ring down RLC circuit (Fig. 3) was designed with minimum inductance to test for peak dI/dt of anode-cathode flowing current. A...single 860 µF capacitor was charged to a chosen high voltage, then the power supply was disconnected and the switch was triggered to rapidly

  5. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    NASA Astrophysics Data System (ADS)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-06-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  6. Ohmic resistance affects microbial community and ...

    EPA Pesticide Factsheets

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MXC to better comprehend anode fundamentals. Microbial community analysis using 16S rRNA illumine sequencing showed that Geobactor genus, one of the most kinetically efficient anode-respiring bacteria (ARB), was abundant (87%) only on the biofilm anode closest to a reference electrode in which current density was the highest among four anodes. In comparison, Geobacter populations were less than 11% for other three anodes more distant from the reference electrode, generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest anode, while EKA was as high as -0.134 V for the farthest anode. Our study clearly proves that ohmic resistance changes anode potential which mainly causes different biofilm communities on individual anodes and consequently influences anode kinetics. This study explored the use of multiple anodes in microelectrochemical cells and the microbial community on these anodes, as a function of the efficiency in producing hydrogen peroxide.

  7. Simulation results of influence of constricted arc column on anode deformation and melting pool swirl in vacuum arcs with AMF contacts

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zhang, Xiao; Huang, Xiaolong; Jia, Shenli

    2017-11-01

    In the process of vacuum arc breaking, the energy injected into the anode will cause anode melting, evaporation, and deformation, resulting in the formation of the anode melting pool. The anode activities have great influence on the arc behavior. When the arc current is large enough, even the influence of axial magnetic field is considered, the arc column still is in contraction state, which means the arc burns only on a part of the electrode. In this paper, the model of anode melting pool deformation and rotation is used, and the model includes anode melting and solidification module, magneto-hydro-dynamic module of the anode melting pool, the volume of fraction method, and the current continuity equation. In this paper, the diffuse arc area is selected as 100%, 75%, and 50%, respectively. The anode temperature and deformation, the anode melting layer thickness, and the rotational velocity of the anode melting pool are obtained. The results show that when the current is at 17.5 kA (rms) and the diffuse arc area is 100%, the anode's maximum temperature is 1477 K and the crater depth is 0.83 mm. But when the diffuse arc areas are 75% and 50%, the anode's maximum temperatures reach 1500 K and 1761 K, and the crater depths reach 1.2 mm and 3 mm, respectively. Arc contraction will lead to more serious anode deformation. A similar result is obtained when the simulation current is 12.5 kA. Under the similar situation, the simulation results in the crater depth, the residual melt layer thickness, the rotational speed of the melting pool, and the maximum temperature of the anode at current zero are in good agreement with the experimental results.

  8. Observation of radiative surface plasmons in metal-oxide-metal tunnel junctions

    NASA Technical Reports Server (NTRS)

    Donohue, J. F.; Yang, E. Y.

    1986-01-01

    A peak in the UV region of the spectrum of light emitted from metal-oxide-metal (MOM) tunnel junctions has been observed at room temperature. Both the amplitude and wavelength of the peak are sensitive to applied junction bias. The UV peak corresponds to the normal or radiative surface plasmon mode while a visible peak, also present in the present spectra and reported in past MOM literature, is due to the tangential or nonradiative mode. The radiative mode requires no surface roughness or gratings for photon coupling. The results show that it is possible to obtain radiative surface plasmon production followed by a direct decay into photons with MOM tunnel diodes. A MOM diode with a double anode structure is found to emit light associated only with the nonradiative mode. The thickness dependence of the UV peak, along with the experimental results of the double anode MOM diode and the ratio of the UV peak to visible peak, support the contention that the UV light emission is indeed due to the radiative surface plasmon.

  9. Synthesis and tribological properties of diamond-like carbon films by electrochemical anode deposition

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, GuiFeng; Hou, XiaoDuo; Deng, DeWei

    2012-06-01

    Diamond-like carbon films (DLC) are deposited on Ti substrate by electrochemical anodic deposition at room temperature in pure methanol solution using a pulsed DC voltage at a range from 200 V to 2000 V. Raman spectroscopy analysis of the films reveals two broaden characteristic absorption peaks centred at ˜1350 cm-1 and 1580 cm-1, relating to D- and G-band of typical DLC films, respectively. A broad peak centred at 1325-1330 cm-1 is observed when an applied potential is 1200 V, which can confirm that the deposited films contained diamond structure phase. Tribological properties of the coated Ti substrates have been measured by means of a ball-on-plate wear test machine. A related growth mechanism of DLC films by the anodic deposition mode has also been discussed.

  10. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode.

    PubMed

    Wang, Jianbing; Zhi, Dan; Zhou, Hao; He, Xuwen; Zhang, Dayi

    2018-06-15

    Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti 4 O 7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti 4 O 7 as active constituent. The TC electrochemical oxidation on the Ti/Ti 4 O 7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti 4 O 7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts

    PubMed Central

    Hiromoto, Sachiko; Hanawa, Takao

    2005-01-01

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells. PMID:16849246

  12. Stationary semi-solid battery module and method of manufacture

    DOEpatents

    Slocum, Alexander; Doherty, Tristan; Bazzarella, Ricardo; Cross, III, James C.; Limthongkul, Pimpa; Duduta, Mihai; Disko, Jeffry; Yang, Allen; Wilder, Throop; Carter, William Craig; Chiang, Yet-Ming

    2015-12-01

    A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.

  13. Laboratory performance of zinc anodes for impressed current cathodic protection of reinforced concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brousseau, R.; Arnott, M.; Baldock, B.

    1995-08-01

    Cathodic protection is used increasingly to mitigate steel reinforcement corrosion in concrete. the performance of zinc materials as impressed current anodes was evaluated. The anode materials investigated included rolled zinc sheets, metallized zinc, and 85% Zn-15% Al. The circuit resistance and the adhesion of the anodes was monitored with polarization time. Overall performance of arc-sprayed zinc was good. However, its adhesion to the concrete surface slowly decreased as the current density, or the polarization period, increased. Penny blank sheets and metallized 85% Zn-15% Al were found unsuitable as impressed current anodes.

  14. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    NASA Astrophysics Data System (ADS)

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.

    2018-01-01

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on the current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. The results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.

  15. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    DOE PAGES

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...

    2018-01-22

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less

  16. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less

  17. Effect of anode oxide films on glow discharge spatial structure

    NASA Astrophysics Data System (ADS)

    Gulamov, E. N.; Islamov, R. S.; Zabelin, Alexandre M.

    1994-04-01

    A self-consistent calculation of voltage fall on the anode film as a function of its resistance has been performed in the presence of anode current spots under elevated-pressure glow discharge in nitrogen and N2:He equals 1:1 mixture. It has been shown that resistance of anode oxide films in industrial lasers with continuous copper anode can reach the values when total suppression of anode current structures takes place.

  18. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1994-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  19. Thermal management for high-capacity large format Li-ion batteries

    DOEpatents

    Wang, Hsin; Kepler, Keith Douglas; Pannala, Sreekanth; Allu, Srikanth

    2017-05-30

    A lithium ion battery includes a cathode in electrical and thermal connection with a cathode current collector. The cathode current collector has an electrode tab. A separator is provided. An anode is in electrical and thermal connection with an anode current collector. The anode current collector has an electrode tab. At least one of the cathode current collector and the anode current collector comprises a thermal tab for heat transfer with the at least one current collector. The thermal tab is separated from the electrode tab. A method of operating a battery is also disclosed.

  20. Structure of propagating arc in a magneto-hydrodynamic rail plasma actuator

    NASA Astrophysics Data System (ADS)

    Gray, Miles D.; Choi, Young-Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2016-01-01

    The spatio-temporal evolution of a magnetically driven arc in a rail plasma flow actuator has been characterized with high-speed imaging, electrical measurements, and spectroscopy. The arc draws a peak current of ~1 kA. High-speed framing cameras were used to observe the complex arc propagation phenomenon. In particular, the anode and cathode roots were observed to have different modes of transit, which resulted in distinct types of electrode degradation on the anode and cathode surfaces. Observations of the arc electrical properties and induced magnetic fields are used to explain the transit mechanism of the arc. Emission spectroscopy revealed the arc temperature and species composition as a function of transit distance of the arc. The results obtained offer significant insights into the electromagnetic properties of the arc-rail system as well as arc-surface interaction phenomena in a propagating arc.

  1. Performance Test Results of the NASA-457M v2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  2. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee [Lakewood, CO; Tracy, C Edwin [Golden, CO; Liu, Ping [Denver, CO

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  3. Separator plate for a fuel cell

    DOEpatents

    Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

    1996-04-02

    A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

  4. Separator plate for a fuel cell

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1996-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  5. A new disposable electrode for electrochemical study of leukemia K562 cells and anticancer drug sensitivity test.

    PubMed

    Yu, Chunmei; Zhu, Zhenkun; Wang, Li; Wang, Qiuhong; Bao, Ning; Gu, Haiying

    2014-03-15

    Developing cost-effective and simple analysis tools is of vital importance for practical applications in bioanalysis. In this work, a new disposable electrochemical cell sensor with low cost and simple fabrication was proposed to study the electrochemical behavior of leukemia K562 cells and the effect of anticancer drugs on cell viability. The analytical device was integrated by using ITO glass as the substrate of working electrodes and paper as the electrolytic cell. The cyclic voltammetry of the K562 cells at the disposable electrode exhibited an irreversible anodic peak and the peak current is proportional to the cell number. This anodic peak is attributed to the oxidation of guanine in cells involving two protons per transfer of two electrons. For the drug sensitivity tests, arsenic trioxide and cyclophosphamide were added to cell culture media. As a result, the electrochemical responses of the K562 cells decreased significantly. The cytotoxicity curves and results obtained corresponded well with the results of CCK-8 assays. In comparison to conventional methods, the proposed method is simple, rapid and inexpensive. More importantly, the developed sensor is supposed to be a single-use disposable device and electrodes were prepared "as new" for each experiment. We think that such disposable electrodes with these characteristics are suitable for experimental study with cancer cells or other types of pathogens for disease diagnosis, drug selection and on-site monitoring. © 2013 Elsevier B.V. All rights reserved.

  6. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

    1994-11-08

    A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

  7. Three-dimensional anode engineering for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  8. Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores.

    PubMed

    Li, Juan; Li, Congshan; Chen, Cheng; Hao, Qingli; Wang, Zhijia; Zhu, Jie; Gao, Xuefeng

    2012-10-24

    We report a facile nanofabrication method, one-step hard anodizing and etching peeling (OS-HA-EP) of aluminum foils followed by multistep mild anodizing and etching pore-widening (MS-MA-EW), for the controllable tailoring of hexagonally packed three-dimensional alumina taper-nanopores. Their profiles can be precisely tailored by the synergistic control of anodizing time, etching time and cyclic times at the MS-MA-EW stage, exemplified by linear cones, whorl-embedded cones, funnels, pencils, parabolas, and trumpets. Meantime, their periods can also be modulated in the range of 70-370 nm by choosing matched anodizing electrolytes (e.g., H(2)C(2)O(4), H(2)SO(4), H(2)C(2)O(4)-H(2)SO(4), and H(2)C(2)O(4)-C(2)H(5)OH mixture) and anodizing voltages at the OS-HA-EP stage. We also demonstrated that the long-range ordering of nanopits and the peak voltage of stable self-ordered HA, which are unachievable in a single H(2)C(2)O(4) electrolyte system, can be effectively tuned by simply adding tiny quantity of H(2)SO(4) and C(2)H(5)OH to keep an appropriate HA current density, respectively. This method of using the combination of simple pure chemical nanofabrication technologies is very facile and efficient in realizing the controllable tailoring of large-area alumina membranes containing self-ordered taper-nanopores. Our work opens a door for exploring the novel physical and chemical properties of different materials of nanotaper arrays.

  9. Structure that encapsulates lithium metal for high energy density battery anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Yan, Kai; Chu, Steven

    A battery includes 1) an anode, 2) a cathode, and 3) an electrolyte disposed between the anode and the cathode. The anode includes a current collector and an interfacial layer disposed over the current collector, and the interfacial layer includes an array of interconnected, protruding regions that define spaces.

  10. Buried anode lithium thin film battery and process for forming the same

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  11. Time and space resolved spectroscopic investigation during anode plume formation in a high-current vacuum arc

    NASA Astrophysics Data System (ADS)

    Khakpour, A.; Methling, R.; Uhrlandt, D.; Franke, St.; Gortschakow, S.; Popov, S.; Batrakov, A.; Weltmann, K. D.

    2017-05-01

    This paper presents time and space resolved results of spectroscopic measurements during the formation of an anode plume in the late current pulse phase of a high-current vacuum arc. The formation of the anode plume is investigated systematically based on the occurrence of high-current anode spots, depending on gap distance and current for AC 100 Hz and CuCr7525 butt contacts with a diameter of 10 mm. The anode plume is observed after the extinction of anode spot type 2 in which both the anode and cathode are active. It is concluded from the spatial profiles of the atomic and ionic radiation, parallel and perpendicular to anode surface, that the inner part of the plume is dominated by Cu I radiation, whereas a halo of light emitted by Cu II covers the plume. The radiation intensity of Cu III lines is quite low across the whole anode plume. Upper level excited state densities corresponding to Cu I lines at 510.55, 515.32, 521.82, 578.21 nm are determined. The temporal evolution of the resulting excitation temperature in the centre of the plume varies from 8500 K to 6000 K at 500 µs to 100 µs before current zero, respectively. The density calculated for Cu I at position in the plume is in the range of 1-5  ×  1019 m-3.

  12. The influence of anode position and structure on cusped field thruster

    NASA Astrophysics Data System (ADS)

    Niu, Xiang; Liu, Hui; Yang, Chiyu; Jiang, Wenjia; Yu, Daren; Ning, Zhongxi

    2018-04-01

    A cusped field thruster is a kind of electric propulsion device using multi-stage cusped fields to realize plasma discharges and produce thrust. A previous study showed that plasma discharges in this thruster are non-uniform. In this work, a multi-annulus anode is used to measure the radial distribution of anode current density at different anode positions. The experimental results reveal that some electrons may reach the anode along the axis after they accelerate from the final cusp regardless of the anode positions. To further validate this idea and find out the mechanism of this central path along the axis, the central part of the anode is replaced with ceramics. This results in an increase in the total current with larger contributions at larger radii. The current oscillations also get larger. This brief letter is helpful to further understand the movement of electrons in cusped field thrusters and provide guidance on reducing the non-uniform degree of current density.

  13. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    PubMed

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  14. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Liang; He, Hui; Hsu, Andrew; Chen, Rongrong

    2013-11-01

    Carbon supported PdRu catalysts with various Pd:Ru atomic ratios were synthesized by impregnation method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electrochemical half-cell tests, and the anion-exchange membrane direct ethanol fuel cell (AEM-DEFC) tests. XRD results suggest that the PdRu metal exists on carbon support in an alloy form. TEM study shows that the bimetallic PdRu/C catalysts have slightly smaller average particle size than the single metal Pd/C catalyst. Lower onset potential and peak potential and much higher steady state current for ethanol oxidation in alkaline media were observed on the bimetallic catalysts (PdxRuy/C) than on the Pd/C, while the activity for ethanol oxidation on the pure Ru/C was not noticeable. By using Pd/C anode catalysts and MnO2 cathode catalysts, AEM-DEFCs free from the expensive Pt catalyst were assembled. The AEM DEFC using the bimetallic Pd3Ru/C anode catalyst showed a peak power density as high as 176 mW cm-2 at 80 °C, about 1.8 times higher than that using the single metal Pd/C catalyst. The role of Ru for enhancing the EOR activity of Pd/C catalysts is discussed.

  15. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  16. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes

    PubMed Central

    Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng; Li, Nian-Wu; Guo, Yu-Guo

    2015-01-01

    Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li. Li anode is accommodated in the 3D structure without uncontrollable Li dendrites. With the growth of Li dendrites being effectively suppressed, the Li anode in the 3D current collector can run for 600 h without short circuit and exhibits low voltage hysteresis. The exceptional electrochemical performance of the Li-metal anode in the 3D current collector highlights the importance of rational design of current collectors and reveals a new avenue for developing Li anodes with a long lifespan. PMID:26299379

  17. Electrochemical power-producing cell. [Li/Se

    DOEpatents

    Cairns, E.J.; Chilenskas, A.A.; Steunenberg, R.K.; Shimotake, H.

    1972-05-30

    An electrochemical power-producing cell including a molten lithium metal anode, a molten selenium metal cathode, a paste electrolyte separating the anode from the cathode, an anode current collector, and a single layer of niobium expanded metal formed in corrugated shape as cathode current collector is described. In addition, means are provided for sealing the anode and the cathode from loss of lithium and selenium, respectively, and an insulator is provided between the anode housing and the paste electrolyte disk.

  18. Studies of an extractor geometry magnetically insulated ion diode with an exploding metal film anode plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondeau, G.D.

    1989-01-01

    Magnetically insulated diodes (MIDs) are of interest as ion sources for inertial confinement fusion. The authors examined several issues that are of concern with MIDs, including ion turn-on delay and anode plasma production, and diode impedance history and particle current scaling with the applied magnetic field and gas spacing. The LION pulsed power generator (1.5 MV, 4 {Omega}, 40 ns pulse length) was used to power an extractor geometry magnetically insulated (radical magnetic field) ion beam diode. The diode was studied with three anode configurations. In the first, with epoxy-filled-groove (epoxy) anodes, scaling of the ion and electron currents withmore » the gap and the magnetic field was examined. He found that the observed ion current is consistent with a diode model that has been successful with barrel geometry MIDs. The electron leakage current scaled proportionally to 1/Bd{sup 2}, where d is the anode-cathode gap spacing and B is the magnetic field strength. Studies of ion beam propagation in vacuum showed that space charge non-neutrality near the magnetic field coils caused the beam to expand initially. Later in the ion pulse (20 to 30 ns), the beam expansion became much less severe. The second anode configuration utilized an electron collector protruding above an epoxy anode surface. With the collector, he observed less bremsstrahlung across the active anode region. The last anode configuration studied was the exploding metal film active anode plasma source (EMFAAPS). Current from the accelerator was directed by an electron collector or a plasma opening switch through a thin aluminum film, which exploded to form the anode plasma.« less

  19. A Model of Anode Sheath Potential Evolution in a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Foster, John E.; Gallimore, Alec D.

    1996-11-01

    It has been conjectured that the growth in the magnitude of the anode fall voltage with changing transverse magnetic field is a function of the ratio of available transverse current to the discharge current. It has been postulated that at small values of this ratio, the anode fall voltage and thus the near-anode electric field increases in order to assure that the prescribed discharge is maintained.footnote H. Hugel, IEEE Tran. Plas. Sci., PS-8,4, 1980 In this present work, a model is presented which predicts the behavior of the anode fall voltage as a function of transverse magnetic field. The model attempts to explain why the anode fall voltage depends so strongly on this ratio. In addition, it is further shown that because of the current ratio's strong dependence on local electron number density, ultimately it is the changes in near-anode ionization processes with varying transverse magnetic field that control the anode fall voltage.

  20. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, Steven T.; Contolini, Robert J.; Bernhardt, Anthony F.

    1992-01-01

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed.

  1. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, S.T.; Contolini, R.J.; Bernhardt, A.F.

    1992-03-17

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed. 6 figs.

  2. Toxicity of graphene nanoflakes evaluated by cell-based electrochemical impedance biosensing.

    PubMed

    Yoon, Ok Ja; Kim, Insu; Sohn, Il Yung; Kieu, Truong Thuy; Lee, Nae-Eung

    2014-07-01

    Graphene nanoflake toxicity was analyzed using cell-based electrochemical impedance biosensing with interdigitated indium tin oxide (ITO) electrodes installed in a custom-built mini-incubator positioned on an inverted optical microscope. Sensing with electrochemical measurements from interdigitated ITO electrodes was highly linear (R(2) = 0.93 and 0.96 for anodic peak current (Ipa) and cathodic peak current (Ipc), respectively). Size-dependent analysis of Graphene nanoflake toxicity was carried out in a mini-incubator system with cultured HeLa cells treated with Graphene nanoflakes having an average size of 80 or 30 nm for one day. Biological assays of cell proliferation and viability complemented electrochemical impedance measurements. The increased toxicity of smaller Graphene nanoflakes (30 nm) as measured by electrochemical impedance sensing and optical monitoring of treated cells was consistent with the biological assay results. Cell-based electrochemical impedance biosensing can be used to assess the toxicity of nanomaterials with different biomedical and environmental applications. © 2013 Wiley Periodicals, Inc.

  3. Ensemble engineering and statistical modeling for parameter calibration towards optimal design of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Hongyue; Luo, Shuai; Jin, Ran; He, Zhen

    2017-07-01

    Mathematical modeling is an important tool to investigate the performance of microbial fuel cell (MFC) towards its optimized design. To overcome the shortcoming of traditional MFC models, an ensemble model is developed through integrating both engineering model and statistical analytics for the extrapolation scenarios in this study. Such an ensemble model can reduce laboring effort in parameter calibration and require fewer measurement data to achieve comparable accuracy to traditional statistical model under both the normal and extreme operation regions. Based on different weight between current generation and organic removal efficiency, the ensemble model can give recommended input factor settings to achieve the best current generation and organic removal efficiency. The model predicts a set of optimal design factors for the present tubular MFCs including the anode flow rate of 3.47 mL min-1, organic concentration of 0.71 g L-1, and catholyte pumping flow rate of 14.74 mL min-1 to achieve the peak current at 39.2 mA. To maintain 100% organic removal efficiency, the anode flow rate and organic concentration should be controlled lower than 1.04 mL min-1 and 0.22 g L-1, respectively. The developed ensemble model can be potentially modified to model other types of MFCs or bioelectrochemical systems.

  4. Fault Detection and Diagnosis In Hall-Héroult Cells Based on Individual Anode Current Measurements Using Dynamic Kernel PCA

    NASA Astrophysics Data System (ADS)

    Yao, Yuchen; Bao, Jie; Skyllas-Kazacos, Maria; Welch, Barry J.; Akhmetov, Sergey

    2018-04-01

    Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall-Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.

  5. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  6. Uneven biofilm and current distribution in three-dimensional macroporous anodes of bio-electrochemical systems composed of graphite electrode arrays.

    PubMed

    Li, Jun; Hu, Linbin; Zhang, Liang; Ye, Ding-Ding; Zhu, Xun; Liao, Qiang

    2017-03-01

    A 3-D macroporous anode was constructed using different numbers of graphite rod arrays in fixed-volume bio-electrochemical systems (BESs), and the current and biofilm distribution were investigated by dividing the 3-D anode into several subunits. In the fixed-volume chamber, current production was not significantly improved after the electrode number increased to 36. In the case of 100 electrodes, a significant uneven current distribution was found in the macroporous anode. This was attributed to a differential pH distribution, which resulted from proton accumulation inside the macroporous anode. The pH distribution influenced the biofilm development and led to an uneven biofilm distribution. With respect to current generation, the uneven distribution of both the pH and biofilm contributed to the uneven current distribution. The center had a low pH, which led to less biofilm and a lower contribution to the total current, limiting the performance of the BESs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode.

    PubMed

    Yu, Yanyan; Chen, Zuanguang; Zhang, Beibei; Li, Xinchun; Pan, Jianbin

    2013-08-15

    In this work, a facile electrochemical sensor based on poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G) and graphite was fabricated. The composite electrode exhibited excellent selectivity and sensitivity towards uric acid (UA), owing to the electrocatalytic effect of graphene nanosheets and the electrostatic attractions between PDDA-G and UA. The anodic peak current of UA obtained by cyclic voltammetry (CV) increased over 10-fold compared with bare carbon paste electrode (CPE). And the reversibility of the oxidation process was improved significantly. Differential pulse voltammetry (DPV) was used to determine UA in the presence of ascorbic acid (AA) and dopamine (DA). It was found that all of oxidation peaks of three species could be well resolved, and the peak current of UA was much stronger than the other two components. More importantly, considerable-amount of AA and DA showed negligible interference to UA assay. The calibration curve for UA ranged from 0.5 to 20 μmol L(-1) with a correlation coefficient of 0.9934. The constructed sensor has been employed to quantitatively determine UA in urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film.

    PubMed

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-05-06

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12-1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor.

  9. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    PubMed Central

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-01-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12–1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor. PMID:25943704

  10. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  11. Effect of TiO2 Addition on Grain Growth, Anodic Bubble Evolution and Anodic Overvoltage of NiFe2O4-Based Composite Inert Anodes

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Du, Jinjing; Liu, Yihan; Fang, Zhao; Hu, Ping

    2017-11-01

    A two-step powder compaction and sintering process was employed to fabricate TiO2-doped NiFe2O4 ceramic-based inert anodes. Grain growth during isothermal sintering was analyzed using Brook grain growth model. The bubble behavior of NiFe2O4 ceramic-based inert anodes was investigated in a two-compartment see-through quartz cell for aluminum electrolysis process. Anodic overvoltage and potential decay curves of the inert anodes were measured by using the steady state and current interruption technique. The results showed that the kinetic index of grain growth decreased with an increase in temperature. The average activation energy of grain growth for 1.0 wt.% TiO2-doped NiFe2O4 ceramic samples with a sintering temperature range from 1373 to 1673 K dropped from 675.30 to 183.47 kJ/mol. The diameter size of bubbles before releasing from the bottom surface of the anodes was reduced with increasing the current density, and the larger average releasing bubble size for carbon anode at the same current density could be obtained, which was compared to the NiFe2O4 inert anodes. Besides, the cell voltage of carbon anodes fluctuated much more violently under the same experimental conditions. After adding small amount of TiO2, a minor reduction in anodic overvoltage of NiFe2O4-based anodes can be observed.

  12. Evaluation of Cation Migration in Lanthanum Strontium Cobalt Ferrite Solid Oxide Fuel Cell Cathodes via In-operando X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, John S.; Coyle, Christopher A.; Bonnett, Jeff F.

    2018-01-28

    Anode-supported SOFCs with LSCF-6428 cathodes were operated at various temperatures for hundreds of hours in dry or humid (~3% water) cathode air with continuous cathode XRD. Additionally, one cell in dry air was held at OCV and another had 12% CO2 added to the humid air. Long cumulative XRD count times allowed identification of minor phases at <0.1 wt%. In humid air, performance improved during the first couple of hundred hours and Fe-rich Fe,Co spinel XRD peaks gradually shifted to lower angles while nano-nodules formed on LSCF surfaces. With 12% CO2 added, performance degraded after initial activation, unlike without CO2,more » where stability followed activation. In CO2, LSCF XRD peaks shifted indicating gradual decomposition. In dry air, fast initial degradation that decelerated over time occurred at constant current while the cell at OCV was stable. At OCV and 750°C or at constant current and 700°C in dry air, Fe-rich spinel XRD peaks shifted more slowly than in humid air tests; Co-rich Fe,Co spinel peaks shifted to higher angles; and SEM discovered smaller nano-nodules on LSCF than after humid air tests. At constant current at 750°C and 800°C in dry air, no nano-nodules or gradual changes in the XRD patterns were discovered.« less

  13. Anode power in quasisteady magnetoplasmadynamic accelerators

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1978-01-01

    Anode heat flux in a quasi-steady MPD accelerator has been measured directly and locally by thermocouples attached to the inside surface of a shell anode. These measurements show that over a range of arc current from 5.5 to 44 kA, and argon mass flow from 1 to 48 g/s, the fraction of the total arc power deposited in the anode decreases from 50% at 200 kW to 10% at 20 MW. A theoretical model of the anode heat transfer asserts that energy exchange between electrons and heavy particles in the plasma near the anode occurs over distances greater than the anode sheath thickness, and hence the usual anode fall voltage, electron temperature, and work function contributions to the anode heat flux are supplemented by a contribution from the interelectrode potential. Calculations of anode heat flux using the measured current density, plasma potential, and electron temperature in the plasma adjacent to the anode agree with the direct measurements and indicate that the decrease in anode power fraction at higher arc powers can be attributed to the smaller mean free paths in the interelectrode plasma.

  14. Thermal investigation of an electrical high-current arc with porous gas-cooled anode

    NASA Technical Reports Server (NTRS)

    Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.

    1984-01-01

    The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.

  15. High performance direct methanol fuel cell with thin electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  16. Preliminary Development and Testing of a Self-Injecting Gallium MPD Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, Kurt A.

    2008-01-01

    Discharge current and terminal voltage measurements were performed on a gallium electromagnetic thruster at discharge currents in the range of 20-54 kA. It was found that the arc impedance has a value of 6-7 m(Omega) at peak current. The absence of high-frequency oscillations in the terminal voltage trace indicates lack of the "onset" condition often seen in MPD arcs, suggesting that a sufficient number of charge carriers are present for current conduction. The mass ablated per pulse was not measured experimentally; however the mass flow rate was calculated using an ion current assumption and an anode power balance. Measurement of arc impedance predicts a temperature of 3.5 eV which from Saha equilibrium corresponds to Z = 2.0 - 3.5, and assuming Z = 2 yields an Isp of 3000 s and thrust efficiency of 50%.

  17. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  18. Fabrication and characterization of anode catalyst layers with structural variations for DMFC

    NASA Astrophysics Data System (ADS)

    Wang, Dazhi; Shi, Peng; Zhou, Peng; Mao, Qing; Liang, Junsheng; Wang, Suli; Li, Yang; Ren, Tongqun; Sun, Gongquan

    2018-04-01

    In this work, the electrohydrodynamic jet (E-Jet) Layer-by-Layer (LbL) deposition technique was employed to produce anode catalyst layer (CL) structure for direct methanol fuel cells (DMFC). The CLs with different thickness and porosity were fabricated with the control of the E-Jet deposition parameters. Then, the deposited anode CLs with structural variations were assembled to membrane electrode assemblies (MEAs). The results showed that the anode CL with higher porosity contributed higher dispersed catalyst, which further induced greater electrochemical active surface area (ESA) and higher performance. At optimized working condition the anode CL with high-dispersed catalyst of was produced using the E-Jet LbL deposition technique. It was observed that the peak power density is 72.8 mW cm‑2 for the cell having a porosity of 0.63, which has an increase of about 33% after modification of the CL structure.

  19. Method for manufacturing high quality carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor)

    2006-01-01

    A non-catalytic process for the production of carbon nanotubes includes supplying an electric current to a carbon anode and a carbon cathode which have been securely positioned in the open atmosphere with a gap between them. The electric current creates an electric arc between the carbon anode and the carbon cathode, which causes carbon to be vaporized from the carbon anode and a carbonaceous residue to be deposited on the carbon cathode. Inert gas is pumped into the gap to flush out oxygen, thereby preventing interference with the vaporization of carbon from the anode and preventing oxidation of the carbonaceous residue being deposited on the cathode. The anode and cathode are cooled while electric current is being supplied thereto. When the supply of electric current is terminated, the carbonaceous residue is removed from the cathode and is purified to yield carbon nanotubes.

  20. Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes.

    PubMed

    Schalenbach, Maximilian; Zillgitt, Marcel; Maier, Wiebke; Stolten, Detlef

    2015-07-29

    The electrodes in fuel cells simultaneously realize electric and ionic conductivity. In the case of acidic polymer electrolytes, the electrodes are typically made of composites of carbon-supported catalyst and Nafion polymer electrolyte binder. In this study, the interaction of the proton conduction, the electron conduction, and the electrochemical hydrogen conversion in such composite electrode materials was examined. Exposed to a hydrogen atmosphere, these composites displayed up to 10-fold smaller resistivities for the proton conduction than that of Nafion membranes. This effect was ascribed to the simultaneously occurring electrochemical hydrogen oxidation and evolution inside the composite samples, which are driven by different proton and electron resistivities. The parasitic electrochemical currents resulting were postulated to occur in the anode of fuel cells with polymer, solid oxide, or liquid alkaline electrolytes, when the ohmic drop of the ion conduction in the anode is higher with the anodic kinetic overvoltage (as illustrated in the graphical abstract). In this case, the parasitic electrochemical currents increase the anodic kinetic overpotential and the ohmic drop in the anode. Thinner fuel cell anodes with smaller ohmic drops for the ion conduction may reduce the parasitic electrochemical currents.

  1. Plasma properties and heating at the anode of a 1 kW arcjet using electrostatic probes

    NASA Astrophysics Data System (ADS)

    Tiliakos, Nicholas

    A 1 kW hydrazine arcjet thruster has been modified for internal probing of the near-anode boundary layer with an array of fourteen electrostatic micro-probes. The main objectives of this experimental investigation were to: (1) obtain axial and azimuthal distributions of floating potential phisbf, anode sheath potential phisbs, probe current density at zero volts jsba, electron number density nsbes, electron temperature Tsbes, and anode heating due to electrons qsbe for arc currents Isbarc, between 7.8 and 10.6 A, propellant flow rates m = 40-60 mg/s, and specific energies, 18.8 MJ/kg ≤ P/m ≤ 27.4 MJ/kg; (2) probe the anode boundary layer using flush-mounted and cylindrical micro-probes; (3) verify azimuthal current symmetry; (4) understand what affects anode heating, a critical thruster lifetime issue; and (5) provide experimental data for validation of the Megli-Krier-Burton (MKB) model. All of the above objectives were met through the design, fabrication and implementation of fourteen electrostatic micro-probes, of sizes ranging from 0.170 mm to 0.43 mm in diameter. A technique for cleaning and implementing these probes was developed. Two configurations were used: flush-mounted planar probes and cylindrical probes extended 0.10-0.30 mm into the plasma flow. The main results of this investigation are: (1) electrostatic micro-probes can successfully be used in the harsh environment of an arcjet; (2) under all conditions tested the plasma is highly non-equilibrium in the near-anode region; (3) azimuthal current symmetry exists for most operating conditions; (4) the propellant flow rate affects the location of maximum anode sheath potential, current density, and anode heating more than the arc current; (5) the weighted anode sheath potential is always positive and varies from 8-17 V depending on thruster operating conditions; (6) the fraction of anode heating varies from 18-24% of the total input power over the range of specific energies tested; and (7) based on an energy loss factor of delta = 1200, reasonable correlation between the experimental data and the MKB model was found.

  2. Methodology, Technical Approach and Measurement Techniques for Testing of TPM Thermal Protection Materials in IPM Plasmatrons

    DTIC Science & Technology

    2000-04-01

    system, 8 - experiments on a study of boundary layer spectrum infrared window). before boiling of glass- silicide coating. This simple 3. SAMPLES AND...dependencies of surface temperature of tested materials and make conclusions concerned joint gllass- silicide coating and anode power of generator...obtained using test stagnation point configuration. glass- silicide coating vs anode power of HF-generator. Temperature peak at constant power

  3. High-intensity soft-flash x-ray generator utilizing a low-vacuum diode

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroshi; Sato, Eiichi; Shikoda, Arimitsu; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    The fundamental studies on the high-intensity single flash x-ray generator having a low-vacuum diode for biomedical radiography are described. This generator consisted of the following essential components: a high-voltage power supply, a high-voltage pulser with a coaxial oil condenser of l5OnF, a low impedance transmission line made from four coaxial cables with lengths of 5. 6m and a total capacity of 292OpF, a mechanical booster pump, and a flash x-ray tube. The x-ray tube was of the diode-type which was connected to the booster pump with a constant pressure of 1. 7Pa and consisted of the following major devices: a long anode tip made of tungsten with a diameter (D) of less than 3. 0mm and a length (L) of 50mm, a long cathode tip made of tungsten with a D of 1. 0mm and a L of 40mm, a polyoxymethylene insulator, lead diaphragms, and an x-ray window made of polyethylene terephthalate. The coaxial oil condenser in the pulser was charged from 50 to 90kV, and the electric charges in the condenser were discharged to the flash x-ray tube through a transmission line by using a gas gap switch with a highcurrent capacity. The peak voltage increased according to increases in the condenser charged voltage and its value was more than the charged voltage. The peak current primarily increased when the charged voltage was increased, and its value was less than 4OkA. The pulse width of the flash x-rays ranged from 60 to 8Ons, and the time integrated x-ray intensity with a charged voltage of 90kV and an anode cathode (A-C) space of 3. 0mm was about 4pC/kg at 1. Om per pulse the source. The effective focal spot size was primarily determined by the diameter of the anode tip, and its value was about 3. 0mm when an anode diameter of 3. 0mm was employed.

  4. Structural changes of anodic layer on titanium in sulfate solution as a function of anodization duration in constant current mode

    NASA Astrophysics Data System (ADS)

    Komiya, Shinji; Sakamoto, Kouta; Ohtsu, Naofumi

    2014-03-01

    The present study investigated the effect of anodization time, in constant current mode, on the anodic oxide layer formed on titanium (Ti). Anodization of the Ti substrate was carried out in a 0.1 M (NH4)2SO4 aqueous solution with reaction times of various durations, after which the characteristics and photocatalytic activity were investigated in detail. The TiO2 layer fabricated in a short duration exhibited comparatively flat surface morphology and an anatase-type crystal structure. This layer acted as a photocatalyst only under ultraviolet light (UV) illumination. Upon prolonging the anodization, the layer structure changed drastically. The surface morphology became rough, and the crystal structure changed to rutile-type TiO2. Furthermore, the layer showed photocatalytic activity both under UV and visible light illumination. Further anodization increased the amount of methylene blue (MB) adsorbed on the surface, but did not cause additional change to the structure of the anodic layer. The surface morphology and crystal structure of the anodic layer were predominantly controlled by the anodization time; thus, the anodization time is an important parameter for controlling the characteristics of the anodic layer.

  5. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  6. Serotonin (5-HT) released by activated white blood cells in a biological fuel cell provide a potential energy source for electricity generation.

    PubMed

    Justin, Gusphyl A; Sun, Mingui; Zhang, Yingze; Cui, X Tracy; Sclabassi, Robert

    2006-01-01

    Previous studies by our group have demonstrated the ability of white blood cells to generate small electrical currents, on the order of 1-3 microA/cm(2), when placed at the anode compartment of a proton exchange membrane (PEM) biological fuel cell. In this research study, an electrochemical technique is used to further investigate the electron transfer ability of activated white blood cells at interfacing electrodes in an attempt to elucidate the mechanism of electron transfer in the original biological fuel cell experiments. Cyclic voltammograms were obtained for human white blood cells using a three-electrode system. The working and counter electrodes were made from carbon felt and platinum, respectively, while the reference was a saturated calomel electrode (SCE). Oxidation peaks were observed at an average potential of 363 mV vs. SCE for the PMA/ionomycin activated white blood cells in glucose solution. However a corresponding reduction peak was not observed, suggesting irreversibility of the redox reaction. The cyclic voltammograms recorded for the white blood cells bear very close similarities to those of the neurotransmitter serotonin (5-HT). Serotonin released by white blood cells into the extracellular environment may be irreversibly oxidized at the working electrode in the cyclic voltammetry experiments and at the PEM biological fuel cell anode in our earlier electrochemical cell studies.

  7. tDCS Modulates Visual Gamma Oscillations and Basal Alpha Activity in Occipital Cortices: Evidence from MEG.

    PubMed

    Wilson, Tony W; McDermott, Timothy J; Mills, Mackenzie S; Coolidge, Nathan M; Heinrichs-Graham, Elizabeth

    2018-05-01

    Transcranial direct-current stimulation (tDCS) is now a widely used method for modulating the human brain, but the resulting physiological effects are not understood. Recent studies have combined magnetoencephalography (MEG) with simultaneous tDCS to evaluate online changes in occipital alpha and gamma oscillations, but no study to date has quantified the offline (i.e., after tDCS) alterations in these responses. Thirty-five healthy adults received active or sham anodal tDCS to the occipital cortices, and then completed a visual stimulation paradigm during MEG that is known to elicit robust gamma and alpha oscillations. The resulting MEG data were imaged and peak voxel time series were extracted to evaluate tDCS effects. We found that tDCS to the occipital increased the amplitude of local gamma oscillations, and basal alpha levels during the baseline. tDCS was also associated with network-level effects, including increased gamma oscillations in the prefrontal cortex, parietal, and other visual attention regions. Finally, although tDCS did not modulate peak gamma frequency, this variable was inversely correlated with gamma amplitude, which is consistent with a GABA-gamma link. In conclusion, tDCS alters gamma oscillations and basal alpha levels. The net offline effects on gamma activity are consistent with the view that anodal tDCS decreases local GABA.

  8. REGULATOR FOR CALUTRON ION SOURCE

    DOEpatents

    Miller, B.F.

    1958-09-01

    Improvements are described in electric discharge devices and circuits for a calutron and, more specifically, presents an arc discharge regulator circuit for the ion source of the calatron. In general, the source comprises a filament which bombards a cathode with electrons, a griid control electrode between the filament and the cathode, and an anode electrode. The control electrode has a DC potential which is varied in response to changes in the anode current flow by means of a saturable reactor installed in its power supply energizing line having the anode current flowing through its control winding. In this manner the bombardment current to the cathode may be decreased when the anode current increases beyond a predetermined level.

  9. Anode power in a quasi-steady MPD thruster. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Saber, A. J.

    1974-01-01

    Local anode heat flux in a quasi-steady MPD thruster is measured by thermocouples attached to the inside surface of a shell anode. Over a range of arc currents J from 5.5 to 44 kiloamperes and argon propellant mass flows m from 1 to 48 g/sec, with the ratio J2/m held constant, the fraction of arc power deposited in the anode is found to decrease with increasing arc power. Specifically, this anode power fraction decreases from 50% at 200 kW arc power, to 10% at 20 MW. In an effort to account for this functional behavior, the current density, plasma potential, and electron temperature in the plasma adjacent to the anode are measured with probes, and the results are used in a theoretical anode heat flux model. The model asserts that energy exchange between electrons and heavy particles in the plasma near the anode occur over distances greater than the anode sheath thickness.

  10. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    PubMed Central

    2011-01-01

    An investigation of the electrochemical activity of human white blood cells (WBC) for biofuel cell (BFC) applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM) fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc) between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient), a B lymphoblastoid cell line (BLCL), and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester) activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT) from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents. PMID:21569243

  11. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  12. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  13. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber

    NASA Astrophysics Data System (ADS)

    Ding, Can; Yuan, Zhao; He, Junjia

    2017-10-01

    A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.

  14. Coupling of an applied field magnetically insulated ion diode to a high power magnetically insulated transmission line system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maenchen, J.E.

    1983-01-01

    The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source.more » A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm/sup 2/ dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current af« less

  15. Low resistance, low-inductance power connectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony

    An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, withmore » the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.« less

  16. The morphological study of porous silicon formed by electrochemical anodization method

    NASA Astrophysics Data System (ADS)

    Suryana, R.; Sandi, D. K.; Nakatsuka, O.

    2018-03-01

    Due to its good physical and chemical properties, porous silicon (PSi) is very attractive to study. In this research, PSi has been fabricated on n-type Si (100) by the electrochemical anodization method. The electrolyte solution used was a mixture of HF (40%), ethanol (99%) and aquadest with volume ratio of 1:1:2, respectively. It was anodized on Si(100) surface at different current densities of 10 mA/cm2 and 20 mA/cm2 with the anodization time at each current density for 10 min, 20 min, and 30 min. The Scanning Electron Microscope (SEM) images showed that the PSi surfaces have inhomogeneous sized pores in the range of 95.00 nm–1.46 μm. The PSi layers with current density and anodization time of 10 mA/cm2 (10 min), 10mA/cm2 (20 min), and 20mA/cm2 (10 min) have spherical shaped pores while the others have some uncommon (cross sectional) shaped pores on surfaces. It is considered that the cross sectional shaped maybe caused by unstable the current during the electrochemical anodization process.

  17. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles.

    PubMed

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-10-01

    An accurate and precise determination of terbutaline has been carried out using a glassy carbon electrode (GCE) modified with a composite of multi-walled carbon nanotubes (MWCNTs) and nanoparticles of zirconium oxide (ZrO2NPs). Energy dispersive X-ray and scanning electron microscopic techniques were utilized for the characterization of the composite layer. Terbutaline exhibited a broad oxidation peak at 770mV on a GCE. However, MWCNTs/GCE presented an electrocatalytic effect toward the oxidation of terbutaline with a better anodic peak at 660mV. Furthermore, the electrochemical behavior of terbutaline has greatly been improved at a GCE modified with a composite of MWCNTs and nanoparticles of ZrO2. The ZrO2NPs/MWCNTs/GCE exhibited a sharp anodic wave at 645mV with a large enhancement of the current response for terbutaline. Square wave voltammetry (SWV) was performed for the determination of terbutaline at ZrO2NPs/MWCNTs/GCE. A linear plot was obtained for the current responses of terbutaline against concentrations in the range of 10-160nM yielding a detection limit of 2.25nM (based on 3Sb/m). Improved voltammetric behavior, long-time stability and good reproducibility were obtained for terbutaline at the proposed electrode. A mean recovery of 101.2% with an RSD% of 1.9 was obtained for the analysis of the drug formulation. The accurate and precise quantification of terbutaline makes the ZrO2NPs/MWCNTs/GCE system of great interest for monitoring its therapeutic use. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [Analysis of electrically evoked response (EER) in relation to the central visual pathway of the cat (1). Wave shape of the cat EER].

    PubMed

    Fukatsu, Y; Miyake, Y; Sugita, S; Saito, A; Watanabe, S

    1990-11-01

    To analyze the Electrically evoked response (EER) in relation to the central visual pathway, the authors studied the properties of wave patterns and peak latencies of EER in 35 anesthetized adult cats. The cat EER showed two early positive waves on outward current (cornea cathode) stimulus and three or four early positive waves on inward current (cornea anode) stimulus. These waves were recorded within 50 ms after stimulus onset, and were the most consistent components in cat EER. The stimulus threshold for EER showed a less individual variation than amplitude. The difference of stimulus threshold between outward and inward current stimulus was also essentially negligible. The stimulus threshold was higher in early components than in late components. The peak latency of EER became shorter and the amplitude became higher, as the stimulus intensity was increased. However, this tendency was reversed and some wavelets started to appear when the stimulus was extremely strong. The recording using short stimulus duration and bipolar electrodes enabled us to reduce the electrical artifact of EER. These results obtained from cats were compared with those of humans and rabbits.

  20. Lithium compensation for full cell operation

    DOEpatents

    Xiao, Jie; Zheng, Jianming; Chen, Xilin; Lu, Dongping; Liu, Jun; Jiguang, Jiguang

    2016-05-17

    Disclosed herein are embodiments of a lithium-ion battery system comprising an anode, an anode current collector, and a layer of lithium metal in contact with the current collector, but not in contact with the anode. The lithium compensation layer dissolves into the electrolyte to compensate for the loss of lithium ions during usage of the full cell. The specific placement of the lithium compensation layer, such that there is no direct physical contact between the lithium compensation layer and the anode, provides certain advantages.

  1. The effect of segmented anodes on the performance and plume of a Hall thruster

    NASA Astrophysics Data System (ADS)

    Kieckhafer, Alexander W.

    Development of alternative propellants for Hall thruster operation is an active area of research. Xenon is the current propellant of choice for Hall thrusters, but can be costly in large thrusters and for extended test periods. Condensible propellants may offer an alternative to xenon, as they will not require costly active pumping to remove from a test facility, and may be less expensive to purchase. A method has been developed which uses segmented electrodes in the discharge channel of a Hall thruster to divert discharge current to and from the main anode and thus control the anode temperature. By placing a propellant reservoir in the anode, the evaporation rate, and hence, mass flow of propellant can be controlled. Segmented electrodes for thermal control of a Hall thruster represent a unique strategy of thruster design, and thus the performance of the thruster must be measured to determine the effect the electrodes have on the thruster. Furthermore, the source of any changes in thruster performance due to the adjustment of discharge current between the shims and the main anode must be characterized. A Hall thruster was designed and constructed with segmented electrodes. It was then tested at anode voltages between 300 and 400 V and mass flows between 4 and 6 mg/s, as well as 100%, 75%, 50%, 25%, and <5% of the discharge current on the shim electrodes. The level of current on the shims was adjusted by changing the shim voltage. At each operating point, the thruster performance, plume divergence, ion energy, and multiply charged ion fraction were measured. Thruster performance exhibited a small change with the level of discharge current on the shim electrodes. Thrust and specific impulse increased by as much as 6% and 7.7%, respectively, as discharge current was shifted from the main anode to the shims at constant anode voltage. Thruster efficiency did not change. Plume divergence was reduced by approximately 4 degrees of half-angle at high levels of current on the shims and at all combinations of mass flow and anode voltage. The fraction of singly charged xenon in the thruster plume varied between approximately 80% and 95% as the anode voltage and mass flow were changed, but did not show a significant change with shim current. Doubly and triply charged xenon made up the remainder of the ions detected. Ion energy exhibited a mixed behavior. The highest voltage present in the thruster largely dictated the most probable energy; either shim or anode voltage, depending on which was higher. The overall change in most probable ion energy was 20-30 eV, the majority of which took place while the shim voltage was higher than the anode voltage. The thrust, specific impulse, plume divergence, and ion energy all indicate that the thruster is capable of a higher performance output at high levels of discharge current on the shims. The lack of a change in efficiency and fraction of multiply charged ions indicate that the thruster can be operated at any level of current on the shims without detrimental effect, and thus a condensible propellant thruster can control the anode temperature without a decrease in efficiency or a change in the multiply charged ion fraction.

  2. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  3. Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes

    DOE PAGES

    Paulauskas, I. E.; Jellison, G. E.; Boatner, L. A.; ...

    2011-01-01

    The photoelectrochemical stability and surface-alteration characteristics of doped and undoped n-type ZnO single-crystal photoanode electrodes were investigated. The single-crystal ZnO photoanode properties were analyzed using current-voltage measurements plus spectral and time-dependent quantum-yield methods. These measurements revealed a distinct anodic peak and an accompanying cathodic surface degradation process at negative potentials. The features of this peak depended on time and the NaOH concentration in the electrolyte, but were independent of the presence of electrode illumination. Current measurements performed at the peak indicate that charging and discharging effects are apparently taking place at the semiconductor/electrolyte interface. This result is consistent with themore » significant reactive degradation that takes place on the ZnO single crystal photoanode surface and that ultimately leads to the reduction of the ZnO surface to Zn metal. The resulting Zn-metal reaction products create unusual, dendrite-like, surface alteration structural features that were analyzed using x-ray diffraction, energy-dispersive analysis, and scanning electron microscopy. ZnO doping methods were found to be effective in increasing the n-type character of the crystals. Higher doping levels result in smaller depletion widths and lower quantum yields, since the minority carrier diffusion lengths are very short in these materials.« less

  4. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    PubMed

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  5. Simplified Numerical Description of SPT Operations

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1995-01-01

    A simplified numerical model of the plasma discharge within the SPT-100 stationary plasma thruster was developed to aid in understanding thruster operation. A one dimensional description was used. Non-axial velocities were neglected except for the azimuthal electron velocity. A nominal operating condition of 4.5 mg/s of xenon anode flow was considered with 4.5 Amperes of discharge current, and a peak radial magnetic field strength of 130 Gauss. For these conditions, the calculated results indicated ionization fractions of 0.99 near the thruster exit with a potential drop across the discharge of approximately 250 Volts. Peak calculated electron temperatures were found to be sensitive to the choice of total ionization cross section for ionization of atomic xenon by electron bombardment and ranged from 51 eV to 60 eV. The calculated ionization fraction, potential drop, and electron number density agree favorably with previous experiments. Calculated electron temperatures are higher than previously measured.

  6. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  7. A glassy carbon electrode modified with poly(2,4-dinitrophenylhydrazine) for simultaneous detection of dihydroxybenzene isomers.

    PubMed

    Lopa, Nasrin Siraj; Rahman, Md Mahbubur; Jang, Hohyoun; Sutradhar, Sabuj Chandra; Ahmed, Faiz; Ryu, Taewook; Kim, Whangi

    2017-12-06

    2,4-Dinitrophenylhydrazine (DNPH) was electropolymerized on the surface of an anodized glassy carbon electrode by cyclic voltammetry. The anodized electrode has a highly electroactive surface due to the creation of chemically functionalized graphitic nanoparticles, and this facilitates the formation of poly-DNPH via radical polymerization. Poly-DNPH displays excellent redox activity due to the presence of nitro groups on its backbone. These catalyze the electro-oxidation of hydroquinone (HQ) and catechol (CT). The peak-to-peak separation is around 109 mV, while a bare GCE cannot resolve the peaks (located at 165 and 274 mV vs. Ag/AgCl). Sensitivity is also enhanced to ∼1.20 and 1.19 μA·cm -2 ·μM -1 , respectively. The sensor has a linear response that covers the 20-250 μM concentration range for both HQ and CT, with 0.75 and 0.76 μM detection limits, respectively, at simultaneous detection. Commonly present species do not interfere. Graphical abstract A novel conducting poly(2,4-dinitrophenylhydrazine)-modified anodized glassy carbon electrode (pDNPH/AGCE) was developed by electrochemical method. The electro-catalytic activity of pDNPH/AGCE sensor was investigated for the selective and simultaneous electrochemical detection of hydroquinone (HQ) and catechol (CT), which revealed high sensitivities and low detection limits with excellent stability.

  8. Optimization of Aluminum Anodization Conditions for the Fabrication of Nanowires by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Fucsko, Viola

    2005-01-01

    Anodized alumina nanotemplates have a variety of potential applications in the development of nanotechnology. Alumina nanotemplates are formed by oxidizing aluminum film in an electrolyte solution.During anodization, aluminum oxidizes, and, under the proper conditions, nanometer-sized pores develop. A series of experiments was conducted to determine the optimal conditions for anodization. Three-micrometer thick aluminum films on silicon and silicon oxide substrates were anodized using constant voltages of 13-25 V. 0.1-0.3M oxalic acid was used as the electrolyte. The anodization time was found to increase and the overshooting current decreased as both the voltage and the electrolyte concentrations were decreased. The samples were observed under a scanning electron microscope. Anodizing with 25V in 0.3M oxalic acid appears to be the best process conditions. The alumina nanotemplates are being used to fabricate nanowires by electrodeposition. The current-voltage characteristics of copper nanowires have also been studied.

  9. Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Paleska, I.; Pruszkowska-Drachal, R.; Kotowski, J.; Dziudzi, A.; Milewski, J. D.; Kopczyk, M.; Czerwiński, A.

    The electrochemical behavior of lead, lead-antimony, and lead-calcium-aluminium-tin alloys has been studied in solutions containing various concentrations of sulfuric and phosphoric acids. The dependence of these electrode processes on some experimental conditions (mainly sweep rate and potential range) has been studied. The measurements were performed using a cyclic voltammetry technique. The study and the analysis of the morphology of alloys have been performed using a scanning electron microscope (SEM). Cyclic voltammograms of the lead-antimony alloy electrodes, similarly to pure lead electrode, also show the "anodic excursion" peak under some experimental conditions. Well defined current waves, corresponding to the oxidation and reduction processes of Sb, are observed, if the alloy surface is freshly abraded. The oxidation of antimony starts at potentials at which the formation of PbO takes place. The peak current of Sb oxidation reaction decreases during successive cycles, suggesting that Sb dissolves from the alloy surface during the first CV sweeps. Another explanation for this effect might be the formation of a PbSO 4 selective membrane.

  10. Transcranial Direct Current Stimulation Improves Audioverbal Memory in Stroke Patients

    PubMed Central

    Kazuta, Toshinari; Takeda, Kotaro; Osu, Rieko; Tanaka, Satoshi; Oishi, Ayako; Kondo, Kunitsugu; Liu, Meigen

    2017-01-01

    Objective The aim of this study was to investigate whether anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance in stroke patients. Design Twelve stroke patients with audioverbal memory impairment participated in a single-masked, crossover, and sham-controlled experiment. The anodal or sham transcranial direct current stimulation was applied during the Rey Auditory Verbal Learning Test, which evaluates the ability to recall a list of 15 heard words over five trials. The number of correctly recalled words was compared between the anodal and sham conditions and the influence of transcranial direct current stimulation on serial position effect of the 15 words was also examined. Results The increase in the number of correctly recalled words from the first to the fifth trial was significantly greater in the anodal condition than in the sham condition (P < 0.01). There was a significant difference (P < 0.01) between the anodal and sham conditions in the number of correctly recalled words within the first five words (primacy region) over the second to fifth trial trials, but not in the middle (next five words) or recency (last five words) regions. Conclusions Anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance and induced the primacy effect in stroke patients. PMID:28085735

  11. What is the optimal anodal electrode position for inducing corticomotor excitability changes in transcranial direct current stimulation?

    PubMed

    Lee, Minji; Kim, Yun-Hee; Im, Chang-Hwan; Kim, Jung-Hoon; Park, Chang-hyun; Chang, Won Hyuk; Lee, Ahee

    2015-01-01

    Transcranial direct current stimulation (tDCS) non-invasively modulates brain function by inducing neuronal excitability. The conventional hot spot for inducing the highest current density in the hand motor area may not be the optimal site for effective stimulation. In this study, we investigated the influence of the center position of the anodal electrode on changes in motor cortical excitability. We considered three tDCS conditions in 16 healthy subjects: (i) real stimulation with the anodal electrode located at the conventional hand motor hot spot determined by motor evoked potentials (MEPs); (ii) real stimulation with the anodal electrode located at the point with the highest current density in the hand motor area as determined by electric current simulation; and (iii) sham stimulation. Motor cortical excitability as measured by MEP amplitude increased after both real stimulation conditions, but not after sham stimulation. Stimulation using the simulation-derived anodal electrode position, which was found to be posterior to the MEP hot spot for all subjects, induced higher motor cortical excitability. Individual positioning of the anodal electrode, based on the consideration of anatomical differences between subjects, appears to be important for maximizing the effects of tDCS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Transcranial Direct Current Stimulation Improves Audioverbal Memory in Stroke Patients.

    PubMed

    Kazuta, Toshinari; Takeda, Kotaro; Osu, Rieko; Tanaka, Satoshi; Oishi, Ayako; Kondo, Kunitsugu; Liu, Meigen

    2017-08-01

    The aim of this study was to investigate whether anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance in stroke patients. Twelve stroke patients with audioverbal memory impairment participated in a single-masked, crossover, and sham-controlled experiment. The anodal or sham transcranial direct current stimulation was applied during the Rey Auditory Verbal Learning Test, which evaluates the ability to recall a list of 15 heard words over five trials. The number of correctly recalled words was compared between the anodal and sham conditions and the influence of transcranial direct current stimulation on serial position effect of the 15 words was also examined. The increase in the number of correctly recalled words from the first to the fifth trial was significantly greater in the anodal condition than in the sham condition (P < 0.01). There was a significant difference (P < 0.01) between the anodal and sham conditions in the number of correctly recalled words within the first five words (primacy region) over the second to fifth trial trials, but not in the middle (next five words) or recency (last five words) regions. Anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance and induced the primacy effect in stroke patients.

  13. Current collection by high voltage anodes in near ionospheric conditions

    NASA Technical Reports Server (NTRS)

    Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.

    1990-01-01

    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.

  14. A POM–organic framework anode for Li-ion battery

    DOE PAGES

    Yue, Yanfeng; Li, Yunchao; Bi, Zhonghe; ...

    2015-10-12

    Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for portable electronic devices and electric vehicles, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge–discharge cycles. In this work, we demonstrate an approach to improving the cycling performance of lithium-ion battery anodes by constructing an extended 3D network of flexible redox active polyoxometalate (POM) clusters with redox active organic linkers, herein described as POMOF. In addition, this architecture enables the accommodation of large volumemore » changes during cycling at relatively high current rates. For example, the POMOF anode exhibits a high reversible capacity of 540 mA h g –1 after 360 cycles at a current rate of 0.25C and a long cycle life at a current rate of 1.25C (>500 cycles).« less

  15. Nano-structured Platinum-based Catalysts for the Complete Oxidation of Ethylene Glycol and Glycerol

    NASA Astrophysics Data System (ADS)

    Falase, Akinbayowa

    Direct alcohol fuel cells are a viable alternative to the traditional hydrogen PEM fuel cell. Fuel versatility, integration with existing distribution networks, and increased safety when handling these fuels increases their appeal for portable power applications. In order to maximize their utility, the liquid fuel must be fully oxidized to CO2 so as to harvest the full amount of energy. Methanol and ethanol are widely researched as potential fuels to power these devices, but methanol is a toxic substance, and ethanol has a much lower energy density than other liquids such as gasoline or glucose. Oxidation of complex fuels is difficult to realize, due to difficulty in breaking carbon-carbon bonding and poisoning of the catalysts by oxidative byproducts. In order to achieve the highest efficiency, an anode needs to be engineered in such a way as to maximize activity while minimizing poisoning effects of reaction byproducts. We have engineered an anode that uses platinum-based catalysts that is capable of completely oxidizing ethylene glycol and glycerol in neutral and alkaline media with little evidence of CO poisoning. We have constructed a hybrid anode consisting of a nano-structured PtRu electrocatayst with an NAD-dependent alcohol dehydrogenase for improved oxidation of complex molecules. A nano-structured PtRu catalyst was used to oxidize ethylene glycol and glycerol in neutral media. In situ infrared spectroscopy was used to verify complete oxidation via CO2 generation. There was no evidence of poisoning by CO species. A pH study was performed to determine the effect of pH on oxidative current. The peak currents did not trend at 60 mV/pH unit as would be expected from the Nernst equation, suggesting that adsorption of fuel to the surface of the electrode is not an electron-transfer step. We synthesized nano-structured PtRu, PtSn, and PtRuSn catalysts for oxidation of ethylene glycol and glycerol in alkaline media. The PtRu electrocatalyst the highest oxidative currents and highest stability compared to a nano-structured platinum, PtSn, and PtRuSn catalyst. In situ infrared spectroscopy showed complete oxidation of each fuel occurred by the presence of CO 2, with very little poisoning CO species present. In order to increase oxidative performance in neutral media, a hybrid anode based on nano-structured PtRu and a NAD-dependent alcohol dehydrogenase for the oxidation of ethanol and ethylene glycol was developed. Steady state polarization showed that the hybrid anode had higher current densities than the enzyme or the PtRu electrocatalyst alone. The hybrid anode had higher current densities at concentrations up to 3 M while oxidizing ethanol and ethylene glycol. The catalyst synthesis, characterization, and experimental results demonstrate the feasibility of fuel cells that can oxidize higher order fuels that platinum based catalysts or enzymes cannot oxidize alone. The cooperative mechanism from co-catalysis using inorganic and organic catalysts will allow for deep oxidation and improved power generation.

  16. Stable blue phosphorescent organic light emitting devices

    DOEpatents

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  17. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes.

    PubMed

    Xing, Xuan; Ni, Jinren; Zhu, Xiuping; Jiang, Yi; Xia, Jianxin

    2018-08-01

    Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO 2 -Sb/PbO 2 (PbO 2 ), and Ti/SnO 2 -Sb (SnO 2 ) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO 2 anode and 9% at the SnO 2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD -1 ) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Methanol sensor operated in a passive mode

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

  19. Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method

    NASA Astrophysics Data System (ADS)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-08-01

    Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.

  20. Collimated electron beam accelerated at 12 kV from a Penning discharge.

    PubMed

    Toader, D; Oane, M; Ticoş, C M

    2015-01-01

    A pulsed electron beam accelerated at 12 kV with a duration of 40 μs per pulse is obtained from a Penning discharge with a hollow anode and two cathodes. The electrons are extracted through a hole in one of the cathodes and focused by a pair of coils. The electron beam has a diameter of a few mm in the cross section, while the beam current reaches peak values of 400 mA, depending on the magnetic field inside the focussing coils. This relatively inexpensive and compact device is suitable for the irradiation of small material samples placed in high vacuum.

  1. Quantum dot sensitized solar cells: Light harvesting versus charge recombination, a film thickness consideration

    NASA Astrophysics Data System (ADS)

    Wang, Xiu Wei; Wang, Ye Feng; Zeng, Jing Hui; Shi, Feng; Chen, Yu; Jiang, Jiaxing

    2017-08-01

    Sensitizer loading level is one of the key factors determined the performance of sensitized solar cells. In this work, we systemically studied the influence of photo-anode thicknesses on the performance of the quantum-dot sensitized solar cells. It is found that the photo-to-current conversion efficiency enhances with increased film thickness and peaks at around 20 μm. The optimal value is about twice as large as the dye counterparts. Here, we also uncover the underlying mechanism about the influence of film thickness over the photovoltaic performance of QDSSCs from the light harvesting and charge recombination viewpoint.

  2. Temporal survey of electron number density and electron temperature in the exhaust of a megawatt MPD-arc thruster.

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Rose, J. R.; Sigman, D. R.

    1972-01-01

    Temporal and radial profiles are obtained 30 cm downstream from the anode for two peak arc currents (11.2 kA and 20 kA) and for various auxiliary magnetic fields (0, 1.0 T, and 2.0 T) using the Thomson scattering technique. Average density and temperature are relatively constant for over 100 microseconds with significant fluctuations. Radial profiles obtained are relatively flat for 4 cm from the axis. Compared to earlier 20 cm data, the exhaust density has decreased significantly, the average temperature has not changed, and the density ?hole' with an auxiliary magnetic field has enlarged.

  3. Methods for solid electrolyte interphase formation and anode pre-lithiation of lithium ion capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Santhanam; Xi, Xiaomei; Ye, Xiang-Rong

    A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant current between the anode and the dopant source. A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant voltage across the anode and the dopant source. An energy storage device can include an anode having a lithium ion pre-doping level of about 60% to about 90%.

  4. Leakage current and charging/discharging processes in barrier-type anodic alumina thin films for use in metal-insulator-metal capacitors

    NASA Astrophysics Data System (ADS)

    Hourdakis, E.; Koutsoureli, M.; Papaioannou, G.; Nassiopoulou, A. G.

    2018-06-01

    Barrier-type anodic alumina thin films are interesting for use in high capacitance density metal-insulator-metal capacitors due to their excellent dielectric properties at small thickness. This thickness is easily controlled by the anodization voltage. In previous papers we studied the main parameters of interest of the Al/barrier-type anodic alumina/Al structure for use in RF applications and showed the great potential of barrier-type anodic alumina in this respect. In this paper, we investigated in detail charging/discharging processes and leakage current of the above dielectric material. Two different sets of metal-insulator-metal capacitors were studied, namely, with the top Al electrode being either e-gun deposited or sputtered. The dielectric constant of the barrier-type anodic alumina was found at 9.3. Low leakage current was observed in all samples studied. Furthermore, depending on the film thickness, field emission following the Fowler-Nordheim mechanism was observed above an applied electric field. Charging of the anodic dielectric was observed, occurring in the bulk of the anodic layer. The stored charge was of the order of few μC/cm2 and the calculated trap density ˜2 × 1018 states/cm3, the most probable origin of charge traps being, in our opinion, positive electrolyte ions trapped in the dielectric during anodization. We do not think that oxygen vacancies play an important role, since their existence would have a more important impact on the leakage current characteristics, such as resistive memory effects or significant changes during annealing, which were not observed. Finally, discharging characteristic times as high as 5 × 109 s were measured.

  5. Highly efficient lithium composite anode with hydrophobic molten salt in seawater

    NASA Astrophysics Data System (ADS)

    Zhang, Yancheng; Urquidi-Macdonald, Mirna

    A lithium composite anode (lithium/1-butyl-3-methyl-imidazoleum hexafluorophosphate (BMI +PF 6-)/4-VLZ) for primary lithium/seawater semi-fuel-cells is proposed to reduce lithium-water parasitic reaction and, hence, increase the lithium anodic efficiency up to 100%. The lithium composite anode was activated when in contact with artificial seawater (3% NaCl solution) and the output was a stable anodic current density at 0.2 mA/cm 2, which lasted about 10 h under potentiostatic polarization at +0.5 V versus open circuit potential (OCP); the anodic efficiency was indirectly measured to be 100%. With time, a small traces of water diffused through the hydrophobic molten salt, BMI +PF 6-, reached the lithium interface and formed a double layer film (LiH/LiOH). Accordingly, the current density decreased and the anodic efficiency was estimated to be 90%. The hypothesis of small traces of water penetrating the molten salt and reaching the lithium anode—after several hours of operation—is supported by the collected experimental current density and hydrogen evolution, electrochemical impedance spectrum analysis, and non-mechanistic interface film modeling of lithium/BMI +PF 6-.

  6. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  7. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  8. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    NASA Astrophysics Data System (ADS)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which presents opportunities for the new kinds of ex situ and in situ experiments performed in this thesis. Ex situ experiments involved reducing powder samples at SOFC operating temperatures under hydrogen gas and characterizing them via electron microscopy and X-ray diffraction (XRD). For the in situ experiments, powders were heated, then reduced at temperature, and catalyst exsolution was observed in real-time. Pechini-synthesized cerium oxide substituted with 2-5 mol% Pd was studied using in situ X-ray heating experiments at Argonne National Laboratory's Advanced Photon Source. In these experiments, the powder was subjected to several cycles of reduction and oxidation at 800°C, and Pd metal formation was confirmed through the appearance of Pd peaks in the X-ray spectra. Next, Fe- and Ru-substituted lanthanum strontium chromite (LSCrFeRu14) synthesized by solid state reaction was characterized with ex situ and in situ microscopy. Transmission electron microscopy (TEM) in situ heating experiments were conducted to observe Ru nanoparticle evolution under the reducing conditions of the TEM vacuum chamber. LSCrFeRu14 was heated to 750°C and observed over ˜ 90 min at temperature during which time nanoparticle formation, coarsening, and di?usion were observed. Experiments on both materials sought to understand the conditions and timing of nanoparticle formation in the anode, which is not necessarily apparent from electrochemical data. Reducing the operating temperature of SOFCs from the current state-of-the-art range of 700-800°C to ≤ 650°C has many advantages, among them increased long-term stability, reduced balance of plant costs, fewer interconnect/seal material issues, and decreased start-up times. In order to maintain good performance at reduced temperature, these intermediate temperature SOFCs require new materials including highly active alternatives to micron-scale Ni-YSZ composite anodes. The present work focuses on the development of IT-SOFCs with Sr0.8La 0.2TiO3 (SLT) anode supports, thin La1--xSr x Ga0.8Mg0.2O3 (x = 0.1, 0.2) dense electrolytes, and porous LSGM anode functional layers. The SLT support and the LSGM functional layer are infiltrated with nanoscale Ni, creating extensive electrochemically active triple phase boundary area. The scope of the work presented here encompasses every step of cell development including powder synthesis, optimization of firing conditions, and long-term stability testing. Using an optimized fabrication process, cells with power density > 1.2 W cm-2 were fabricated. Dry pressing and colloidal de-position were used to make the first generation of these cells, and once suitable times and temperatures were determined, the process was shifted to tape casting to make larger batches of uniform cells. After obtaining initial results of low anode polarization resistance and high power density, the long-term stability of the Ni-infiltrated anodes was examined. A coarsening model was developed using the data from accelerated degradation tests to predict cell performance over a typical device lifetime. This thesis encompasses a broad range of novel SOFC anode materials, each of which has its own strengths and weaknesses. Presenting several possible avenues for SOFC development provides a complete picture of the ?eld and its current focuses. The wide scope of this work offers multiple solutions for the SOFC community and demonstrates that SOFCs are a strong candidate for meeting the United States' need for energy conversion and storage.

  9. U.sup.+4 generation in HTER

    DOEpatents

    Miller, William E [Naperville, IL; Gay, Eddie C [Park Forest, IL; Tomczuk, Zygmunt [Homer Glen, IL

    2006-03-14

    A improved device and process for recycling spent nuclear fuels, in particular uranium metal, that facilitates the refinement and recovery of uranium metal from spent metallic nuclear fuels. The electrorefiner device comprises two anodes in predetermined spatial relation to a cathode. The anodese have separate current and voltage controls. A much higher voltage than normal for the electrorefining process is applied to the second anode, thereby facilitating oxidization of uranium (III), U.sup.+, to uranium (IV), U.sup.+4. The current path from the second anode to the cathode is physically shorter than the similar current path from the second anode to the spent nuclear fuel contained in a first anode shaped as a basket. The resulting U.sup.+4 oxidizes and solubilizes rough uranium deposited on the surface of the cathode. A softer uranium metal surface is left on the cathode and is more readily removed by a scraper.

  10. Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Ye, Ke; Guo, Fen; Gao, Yinyi; Zhang, Dongming; Cheng, Kui; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2015-12-01

    A novel three-dimensional carbon- and binder-free nickel nanowire arrays (Ni NAs) electrode is successfully fabricated by a facile galvanostatic electrodeposition method using polycarbonate membrane as the template. The Ni NAs electrode achieves a oxidation current density (divided by the electroactive surface areas of Ni) of 25.1 mA cm-2 in 4 mol L-1 KOH and 0.9 mol L-1 H2O2 at 0.2 V (vs. Ag/AgCl) accompanied with a desirable stability, which is significantly higher than the catalytic activity of H2O2 electro-oxidation achieved previously with precious metals as catalysts. The impressive electrocatalytic performance is largely attributed to the superior 3D open structure and high electronic conductivity, which ensures the high utilization of Ni surfaces and makes the electrode have higher electrochemical activity. The apparent activation energy of H2O2 electro-oxidation on the Ni NAs catalyst is 13.59 kJ mol-1. A direct peroxide-peroxide fuel cell using the Ni NAs as anode exhibits a peak power density of 48.7 mW cm-2 at 20 °C. The electrode displays a great promise as the anode of direct peroxide-peroxide fuel cell due to its low cost, high activity and stability.

  11. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes.

    PubMed

    Bae, Kiho; Lee, Sewook; Jang, Dong Young; Kim, Hyun Joong; Lee, Hunhyeong; Shin, Dongwook; Son, Ji-Won; Shim, Joon Hyung

    2016-04-13

    In this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ) (BCZY) with increasing BCZY contents toward the electrolyte-anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 μm thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 °C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.

  12. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material.

    PubMed

    Zhu, Ji-Hua; Zhu, Miaochang; Han, Ningxu; Liu, Wei; Xing, Feng

    2014-07-24

    An investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  13. All-solid-state Al-air batteries with polymer alkaline gel electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Zuo, Chuncheng; Liu, Zihui; Yu, Ying; Zuo, Yuxin; Song, Yu

    2014-04-01

    Aluminum-air (Al-air) battery is one of the most promising candidates for next-generation energy storage systems because of its high capacity and energy density, and abundance. The polyacrylic acid (PAA)-based alkaline gel electrolyte is used in all-solid-state Al-air batteries instead of aqueous electrolytes to prevent leakage. The optimal gel electrolyte exhibits an ionic conductivity of 460 mS cm-1, which is close to that of aqueous electrolytes. The Al-air battery peak capacity and energy density considering only Al can reach 1166 mAh g-1-Al and 1230 mWh g-1-Al, respectively, during constant current discharge. The battery prototype also exhibits a high power density of 91.13 mW cm-2. For the battery is a laminated structure, area densities of 29.2 mAh cm-2 and 30.8 mWh cm-2 are presented to appraise the performance of the whole cell. A novel design to inhibit anodic corrosion is proposed by separating the Al anode from the gel electrolyte when not in use, thereby effectively maintaining the available capacity of the battery.

  14. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  15. The voltammetric behaviour of lead at a microband screen-printed carbon electrode and its determination in acetate leachates from glazed ceramic plates.

    PubMed

    Honeychurch, Kevin C; Al-Berezanchi, Saman; Hart, John P

    2011-05-15

    Microband screen-printed carbon electrodes (μBSPCEs) without further modification have been investigated as disposable sensors for the measurement of lead in acetate leachates from ceramic glazed plates. Cyclic voltammetry was employed to elucidate the electrochemical behaviour of Pb(2+) at these electrodes in a variety of supporting electrolytes. The anodic peaks obtained on the reverse scans, showed that Pb had been deposited as a thin layer on the surface of the μBSPCE. The anodic peak of greatest magnitude was obtained in 0.1M pH 4.1 acetate buffer containing 13 mM Cl(-). The effect of chromium, copper, phosphate, sulphate and tin was examined and under the conditions employed, no significant change in current was found. The μBSPCEs were evaluated by carrying out lead determinations for acetate leachates from glazed ceramic plates. A highly decorated ornamental plate was found to leach 400 μg Pb(2+) (%CV=1.91%). A second plate, designed for dinnerware was found not to leach any detectable levels of Pb(2+). However, once fortified with 2.10 μg of Pb (equivalent to 100 ng/ml in the leachate), a mean recovery of 82.08% (%CV=4.07%) was obtained. The performance characteristics indicate that reliable data has been obtained for this application which could identify potentially toxic sources of lead. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages.

    PubMed

    Ye, Bo; Luo, Haiping; Lu, Yaobin; Liu, Guangli; Zhang, Renduo; Li, Xiao

    2017-11-01

    The aim of this study was to improve performance of the microbial electrolysis desalination and chemical-production cell (MEDCC) using enlarged anode and high applied voltages. MEDCCs with anode lengths of 9 and 48cm (i.e., the 9cm-anode MEDCC and 48cm-anode MEDCC, respectively) were tested under different voltages (1.2-3.0V). Our results demonstrated for the first time that the MEDCC could maintain high performance even under the applied voltage higher than that for water dissociation (i.e., 1.8V). Under the applied voltage of 2.5V, the maximum current density in the 48cm-anode MEDCC reached 32.8±2.6A/m 2 , which is one of the highest current densities reported so far in the bioelectrochemical system (BES). The relative abundance of Geobacter was changed along the anode length. Our results show the great potential of the BES with enlarged anode and high applied voltages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Formation and Entrapment of Tris(8-hydroxyquinoline)aluminum from 8-Hydroxyquinoline in Anodic Porous Alumina

    PubMed Central

    Yamaguchi, Shohei; Matsui, Kazunori

    2016-01-01

    The formation and entrapment of tris(8-hydroxyquinoline)aluminum (Alq3) molecules on the surface of anodic porous alumina (APA) immersed in an ethanol solution of 8-hydroxyquinoline (HQ) were investigated by absorption, fluorescence, and Raman spectroscopies. The effects of the selected APA preparation conditions (galvanostatic or potentiostatic anodization method, anodizing current and voltage values, one- or two-step anodizing process, and sulfuric acid electrolyte concentration) on the adsorption and desorption of Alq3 species were examined. Among the listed parameters, sulfuric acid concentration was the most important factor in determining the Alq3 adsorption characteristics. The Alq3 content measured after desorption under galvanostatic conditions was 2.5 times larger than that obtained under potentiostatic ones, regardless of the adsorbed quantities. The obtained results suggest the existence of at least two types of adsorption sites on the APA surface characterized by different magnitudes of the Alq3 bonding strength. The related fluorescence spectra contained two peaks at wavelengths of 480 and 505 nm, which could be attributed to isolated Alq3 species inside nanovoids and aggregated Alq3 clusters in the pores of APA, respectively. The former species were attached to the adsorption sites with higher binding energies, whereas the latter ones were bound to the APA surface more weakly. Similar results were obtained for the Alq3 species formed from the HQ solution, which quantitatively exceeded the number of the Alq3 species adsorbed from the Alq3 solution. Alq3 molecules were formed in the HQ solution during the reaction of HQ molecules with the Al3+ ions in the oxide dissolution zone near the oxide/electrolyte interface through the cracks and the Al3+ ions adsorbed on surface of pore and cracks. In addition, it was suggested that HQ molecules could penetrate the nanovoids more easily than Alq3 species because of their smaller sizes, which resulted in higher magnitudes of the adsorption. PMID:28773840

  18. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information. Electronic supplementary information (ESI) available: Further details about anodisation profiles, SEM cross-section images, digital pictures, transmission spectra, photonic barcodes and ASCII codes of the different NAA photonic crystals fabricated and analysed in our study. See DOI: 10.1039/c6nr01068g

  19. Self-consistent modeling of self-organized patterns of spots on anodes of DC glow discharges

    NASA Astrophysics Data System (ADS)

    Bieniek, M. S.; Almeida, P. G. C.; Benilov, M. S.

    2018-05-01

    Self-organized patterns of spots on a flat metallic anode in a cylindrical glow discharge tube are simulated. A standard model of glow discharges is used, comprising conservation and transport equations for a single species of ion and electrons, written with the use of the drift-diffusion and local-field approximations, and the Poisson equation. Only processes in the near-anode region are considered and the computation domain is the region between the anode and the discharge column. Multiple solutions, existing in the same range of discharge current and describing modes with and without anode spots, are computed for the first time. A reversal of the local anode current density in the spots was found, i.e. mini-cathodes are formed inside the spots or, as one could say, anode spots operate as a unipolar glow discharge. The solutions do not fit into the conventional pattern of self-organization in bistable nonlinear dissipative systems; In particular, the modes are not joined by bifurcations.

  20. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  1. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  2. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  3. Effects of anodic oxidation parameters on a modified titanium surface.

    PubMed

    Park, Il Song; Lee, Min Ho; Bae, Tae Sung; Seol, Kyeong Won

    2008-02-01

    Anodic oxidation is an electrochemical treatment that can be used to control the thickness of an oxide layer formed on a titanium surface. This procedure has the advantage of allowing the ions contained in an electrolyte to deposit onto the oxide layer. The characteristics of a layer treated with anodic oxidation can vary according to the type and concentration of the electrolytes as well as the processing variables used during anodic oxidation. In this study, the constant electrolyte for anodic oxidation was a mixed solution containing 0.02 M DL-alpha-glycerophosphate disodium salt and 0.2M calcium acetate. Anodic oxidation was carried out at different voltages, current densities, and duration of anodic oxidation. The results showed that the current density and variation in the duration of anodic oxidation did not have a large effect on the change in the characteristics of the layer. On the other hand, the size of the micropores was increased with increasing voltage of anodic oxidation, and anatase and rutile phases were found to co-exist in the porous titanium dioxide layer. In addition, the thickness of the oxide layer on titanium and the characteristic of corrosion resistance increased with increasing voltage. The MTT test showed that the cell viability was increased considerably as a result of anodic oxidation. The anodizing voltage is an important parameter that determines the characteristics of the anodic oxide layer of titanium. (c) 2007 Wiley Periodicals, Inc.

  4. Primate translational vestibuloocular reflexes. III. Effects of bilateral labyrinthine electrical stimulation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.; Dickman, J. D.; Perachio, A. A.

    2000-01-01

    The effects of functional, reversible ablation and potential recruitment of the most irregular otolith afferents on the dynamics and sensitivity of the translational vestibuloocular reflexes (trVORs) were investigated in rhesus monkeys trained to fixate near and far targets. Translational motion stimuli consisted of either steady-state lateral and fore-aft sinusoidal oscillations or short-lasting transient lateral head displacements. Short-duration (usually <2 s) anodal (inhibitory) and cathodal (excitatory) currents (50-100 microA) were delivered bilaterally during motion. In the presence of anodal labyrinthine stimulation, trVOR sensitivity and its dependence on viewing distance were significantly decreased. In addition, anodal currents significantly increased phase lags. During transient motion, anodal stimulation resulted in significantly lower initial eye acceleration and more sluggish responses. Cathodal currents tended to have opposite effects. The main characteristics of these results were simulated by a simple model where both regularly and irregularly discharging afferents contribute to the trVORs. Anodal labyrinthine currents also were found to decrease eye velocity during long-duration, constant velocity rotations, although results were generally more variable compared with those during translational motion.

  5. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  6. EEG-NIRS based assessment of neurovascular coupling during anodal transcranial direct current stimulation--a stroke case series.

    PubMed

    Dutta, Anirban; Jacob, Athira; Chowdhury, Shubhajit Roy; Das, Abhijit; Nitsche, Michael A

    2015-04-01

    A method for electroencephalography (EEG) - near-infrared spectroscopy (NIRS) based assessment of neurovascular coupling (NVC) during anodal transcranial direct current stimulation (tDCS). Anodal tDCS modulates cortical neural activity leading to a hemodynamic response, which was used to identify impaired NVC functionality. In this study, the hemodynamic response was estimated with NIRS. NIRS recorded changes in oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) concentrations during anodal tDCS-induced activation of the cortical region located under the electrode and in-between the light sources and detectors. Anodal tDCS-induced alterations in the underlying neuronal current generators were also captured with EEG. Then, a method for the assessment of NVC underlying the site of anodal tDCS was proposed that leverages the Hilbert-Huang Transform. The case series including four chronic (>6 months) ischemic stroke survivors (3 males, 1 female from age 31 to 76) showed non-stationary effects of anodal tDCS on EEG that correlated with the HbO2 response. Here, the initial dip in HbO2 at the beginning of anodal tDCS corresponded with an increase in the log-transformed mean-power of EEG within 0.5Hz-11.25Hz frequency band. The cross-correlation coefficient changed signs but was comparable across subjects during and after anodal tDCS. The log-transformed mean-power of EEG lagged HbO2 response during tDCS but then led post-tDCS. This case series demonstrated changes in the degree of neurovascular coupling to a 0.526 A/m(2) square-pulse (0-30 s) of anodal tDCS. The initial dip in HbO2 needs to be carefully investigated in a larger cohort, for example in patients with small vessel disease.

  7. Interfacial chemistry of zinc anodes for reinforced concrete structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 tomore » 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.« less

  8. A Glucose Fuel Cell for Implantable Brain–Machine Interfaces

    PubMed Central

    Rapoport, Benjamin I.; Kedzierski, Jakub T.; Sarpeshkar, Rahul

    2012-01-01

    We have developed an implantable fuel cell that generates power through glucose oxidation, producing steady-state power and up to peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain–machine interfaces can thus potentially benefit from having their implanted units powered or recharged by glucose fuel cells. PMID:22719888

  9. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid.

    PubMed

    Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya

    2016-12-01

    Silver-doped hydroxyapatite (Ca10-xAgx(PO4)6(OH)2-x) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X=0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600°C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag(2+) and Ag(+), respectively. However, only about 2% of silver was in the Ag(0) state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO2. HAp and silver doped HAp (X=0.05) are regarded to be hydrophilic due to a large number of -OH groups on the surface. The sample with content of silver (x=0.05) also showed excellent antimicrobial efficacy (>99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    DOEpatents

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  11. Anode power deposition in quasi-steady MPD arcs. [accelerator anode heat flux measurement

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1973-01-01

    The power deposited in the anode of a quasi-steady MPD accelerator has been measured directly by thermocouples attached to the inside surface of a shell anode which provide a local measurement of anode heat flux. The results over a range of arc currents from 5.5 to 44 kiloamperes and argon mass flows from 1 g/sec to 48 g/sec show that the fraction of the total input power deposited in the anode decreases drastically from 50% at an arc power of 200 kW to 10% at 20 MW, and that anode power is not uniformly deposited in the anode. A theoretical model of the anode heat transfer, including effects of anode work function, electron thermal energy, and anode sheath, can be brought into reasonable agreement with the measurements, provided the effective range of the conduction electrons from within the discharge plasma to the anode surface is properly acknowledged.

  12. Automatic control and monitoring equipment for cathodic protection of offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, J.H.

    1979-10-01

    The preferred cathodic-protection systems for offshore structures are (1) the sacrificial-anode form for areas where the anode's weight or wave resistance is not a serious handicap and (2) a combined anode/impressed-current system that reduces the anode mass. Problems associated with controlling and monitoring the equipment are related to the anode locations, suitability of the reference electrodes, instrumentation requirements, interpretation of the measured potentials, and influence of water depth.

  13. Contribution of the backstreaming ions to the Self-Magnetic pinch (SMP) diode current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, Michael G.; Cuneo, Michael E.; Fournier, Sean D.

    2016-08-08

    Summary form only given. The results presented here were obtained with an SMP diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulses of six 1.3 MV inductively insulated cavities. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target to the diode beam current, and second to try to evaluate the energy of those ions and hence the actual Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage addermore » (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. The accelerating voltage quoted in the literature is from estimates based on measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high Z metals in order to produce copious and energetic flash x-rays. The backstreaming currents are a strong fraction of the anode materials and their stage of cleanness and gas adsorption. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatments, such as heating to very high temperatures with DC and pulsed current, with RF plasma cleaning and with both plasma cleaning and heating. Finally, we have also evaluated the A-K gap voltage by ion filtering techniques.« less

  14. Surface characterization in composite and titanium bonding: Carbon fiber surface treatments for improved adhesion to thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1987-01-01

    The effect of anodization in NaOH, H2SO4, and amine salts on the surface chemistry of carbon fibers was examined by X-ray photoelectron spectroscopy (XPS). The surfaces of carbon fibers after anodization in NaOH and H2SO4 were examined by scanning transmission electron microscopy (STEM), angular dependent XPS, UV absorption spectroscopy of the anodization bath, secondary ion mass spectrometry, and polar/dispersive surface energy analysis. Hercules AS-4, Dexter Hysol XAS, and Union Carbide T-300 fibers were examined by STEM, angular dependent XPS, and breaking strength measurement before and after commercial surface treatment. Oxygen and nitrogen were added to the fiber surfaces by anodization in amine salts. Analysis of the plasmon peak in the carbon 1s signal indicated that H2SO4 anodization affected the morphological structure of the carbon fiber surface. The work of adhesion of carbon fibers to thermoplastic resins was calculated using the geometric mean relationship. A correlation was observed between the dispersive component of the work of adhesion and the interfacial adhesion.

  15. Theoretical model and experimental investigation of current density boundary condition for welding arc study

    NASA Astrophysics Data System (ADS)

    Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.

    2011-04-01

    This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.

  16. Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua

    2018-04-01

    The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.

  17. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    PubMed

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Multiday Transcranial Direct Current Stimulation Causes Clinically Insignificant Changes in Childhood Dystonia: A Pilot Study.

    PubMed

    Bhanpuri, Nasir H; Bertucco, Matteo; Young, Scott J; Lee, Annie A; Sanger, Terence D

    2015-10-01

    Abnormal motor cortex activity is common in dystonia. Cathodal transcranial direct current stimulation may alter cortical activity by decreasing excitability while anodal stimulation may increase motor learning. Previous results showed that a single session of cathodal transcranial direct current stimulation can improve symptoms in childhood dystonia. Here we performed a 5-day, sham-controlled, double-blind, crossover study, where we measured tracking and muscle overflow in a myocontrol-based task. We applied cathodal and anodal transcranial direct current stimulation (2 mA, 9 minutes per day). For cathodal transcranial direct current stimulation (7 participants), 3 subjects showed improvements whereas 2 showed worsening in overflow or tracking error. The effect size was small (about 1% of maximum voluntary contraction) and not clinically meaningful. For anodal transcranial direct current stimulation (6 participants), none showed improvement, whereas 5 showed worsening. Thus, multiday cathodal transcranial direct current stimulation reduced symptoms in some children but not to a clinically meaningful extent, whereas anodal transcranial direct current stimulation worsened symptoms. Our results do not support transcranial direct current stimulation as clinically viable for treating childhood dystonia. © The Author(s) 2015.

  19. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.

    PubMed

    Cui, Li-Feng; Hu, Liangbing; Choi, Jang Wook; Cui, Yi

    2010-07-27

    Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of approximately 30 Ohm/sq. It shows a high specific charge storage capacity (approximately 2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers approximately 10 times improvement in specific capacity compared with widely used graphite/copper anode sheets.

  20. Transcranial Direct Current Stimulation Potentiates Improvements in Functional Ability in Patients With Chronic Stroke Receiving Constraint-Induced Movement Therapy.

    PubMed

    Figlewski, Krystian; Blicher, Jakob Udby; Mortensen, Jesper; Severinsen, Kåre Eg; Nielsen, Jørgen Feldbæk; Andersen, Henning

    2017-01-01

    Transcranial direct current stimulation may enhance effect of rehabilitation in patients with chronic stroke. The objective was to evaluate the efficacy of anodal transcranial direct current stimulation combined with constraint-induced movement therapy of the paretic upper limb. A total of 44 patients with stroke were randomly allocated to receive 2 weeks of constraint-induced movement therapy with either anodal or sham transcranial direct current stimulation. The primary outcome measure, Wolf Motor Function Test, was assessed at baseline and after the intervention by blinded investigators. Both groups improved significantly on all Wolf Motor Function Test scores. Group comparison showed improvement on Wolf Motor Function Test in the anodal group compared with the sham group. Anodal transcranial direct current stimulation combined with constraint-induced movement therapy resulted in improvement of functional ability of the paretic upper limb compared with constraint-induced movement therapy alone. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01983319. © 2016 American Heart Association, Inc.

  1. Short-term anomia training and electrical brain stimulation.

    PubMed

    Flöel, Agnes; Meinzer, Marcus; Kirstein, Robert; Nijhof, Sarah; Deppe, Michael; Knecht, Stefan; Breitenstein, Caterina

    2011-07-01

    Language training success in chronic aphasia remains only moderate. Electric brain stimulation may be a viable way to enhance treatment efficacy. In a randomized, double-blind, sham-controlled crossover trial, we assessed if anodal transcranial direct current stimulation compared to cathodal transcranial direct current stimulation and sham stimulation over the right temporo-parietal cortex would improve the success of short-term high-frequency anomia training. Twelve chronic poststroke aphasia patients were studied. Naming outcome was assessed after training and 2 weeks later. All training conditions led to a significant increase in naming ability, which was retained for at least 2 weeks after the end of the training. Application of anodal transcranial direct current stimulation significantly enhanced the overall training effect compared to sham stimulation. Baseline naming ability significantly predicted anodal transcranial direct current stimulation effects. Anodal transcranial direct current stimulation applied over the nonlanguage dominant hemisphere can enhance language training outcome in chronic aphasia. Clinical Trial Registration- URL: www.clinicaltrials.gov/. Unique identifier: NCT00822068.

  2. Combined current collector and electrode separator

    DOEpatents

    Gerenser, R.J.; Littauer, E.L.

    1983-08-23

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.

  3. Combined current collector and electrode separator

    DOEpatents

    Gerenser, Robert J.; Littauer, Ernest L.

    1983-01-01

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  4. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-04-01

    This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06082b

  5. Preliminary Development of Electrodes for an Electric-Arc Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Boldman, Donald R.

    1959-01-01

    Two electrode configurations were tested in an electric-arc wind tunnel at the NASA Lewis Research Center. The results indicated approximately the same heat-loss rate per unit of arc power input for each of the configurations. Measured heat-loss rates were on the order of 40 percent of the arc power input. Nearly all this loss occurred at the anode. The power input and arc current limitations of the electrodes appear to be the critical design factors. Up to now, the maximum power to the stream has been 115 kilowatts with a cooled tungsten cathode and a cooled cylindrical anode incorporating a magnetic field. The maximum power input to this anode could not be established with the cooled tungsten cathode because cathode failures occurred at a gross power level of approximately 175 kilowatts. It was necessary to use a graphite cathode to seek the limitation of the anode. The results indicated that the anode limitation was primarily a function of arc current rather than power input. The anode was successfully operated at a power of 340 kilowatts at 1730 amperes; however, the anode failed with a power input of 324 kilowatts and a current of 2140 amperes. The magnetic flux density at the time of failure was 0.32 weber per square meter, or 3200 gauss. The graphite cathode was used only to establish the anode limitation; further investigation of graphite cathodes was discontinued because of the large amount of stream contamination associated with this type of electrode.

  6. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  7. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes.

    PubMed

    Sul, Y T; Johansson, C B; Jeong, Y; Albrektsson, T

    2001-06-01

    Titanium implants have a thin oxide surface layer. The properties of this oxide layer may explain the good biocompatibility of titanium implants. Anodic oxidation results in a thickening of the oxide film, with possible improved biocompatability of anodized implants. The aim of the present study was twofold: (1) firstly, to characterize the growth behaviour of galvanostatically prepared anodic oxide films on commercially pure (c.p.) titanium and (2) secondly, to establish a better understanding of the electroche0mical growth behaviour of anodic oxide on commercially pure titanium (ASTM grade 1) after changes of the electrochemical parameters in acetic acid, phosphoric acid, calcium hydroxide, and sodium hydroxide under galvanostatic anodizing mode. The oxide thickness was measured by Ar sputter etching in Auger Electron spectroscopy (AES) and the colours were estimated by an L*a*b* system (lightness, hue and saturation) using a spectrophotometer. In the first part of our study, it was demonstrated that the interference colours were useful to identify the thickness of titanium oxide. It was also found that the anodic forming voltages with slope (dV/dt) in acid electrolytes were higher than in alkaline electrolytes. Each of the used electrolytes demonstrates an intrinsically specific growth constant (nm/V) in the range of 1.4--2.78 nm/V. In the second part of our study we found, as a general trend, that an increase of electrolyte concentration and electrolyte temperature respectively decreases the anodic forming voltage, the anodic forming rate (nm/s) and the current efficiency (nm.cm(2)/C), while an increase of the current density and the surface area ratio of the anode to cathode increase the anodic forming voltage, the anodic forming rate and the current efficiency. The effects of electrolyte concentration, electrolyte temperature, and agitation speed were explained on the basis of the model of the electrical double layer.

  8. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOEpatents

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  9. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.

    PubMed

    Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco

    2017-01-26

    Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.

  10. Performance enhancement of molten carbonate-based direct carbon fuel cell (MC-DCFC) via adding mixed ionic-electronic conductors into Ni anode catalyst layer

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Kyung; Park, Shin-Ae; Jung, Hyun-Woo; Kim, Yong-Tae

    2018-05-01

    A high overpotential in the anode of Direct Carbon Fuel Cells (DCFC) is ascribed to the sluggish kinetics of solid fuel oxidation. In this study, we demonstrate a unique approach to enhance the performance of molten-carbonate electrolyte based DCFC (MC-DCFC) by decreasing a serious polarization loss at the anode side; a simple addition of lanthanum strontium cobalt ferrite (LSCF) having a function of mixed ionic-electronic conductors (MIEC) into the Ni anode catalyst layer. Ni:LSCF = 1:1 showed markedly enhanced peak power density of 111 mW/cm2, approximately two-fold higher value than that for the anode using solely Ni and one of the best record in the literature value using carbon black fuel without any contribution of generated syngas oxidation. As can be noted from the electrochemical impedance spectroscopy data, the ohmic and the charge transfer resistance of the anode was markedly decreased owing to the high ionic-electronic conductivity of the MIECs. Furthermore, the enhanced performance can be also attributed to the maximized TPBs (triple phase boundaries) that participate in the carbon oxidation reaction. Based on the results, we suggest that the addition of MIEC materials into the Ni anode catalyst layer is a promising approach to improve the performance of MC-DCFC.

  11. Facile and quantitative electrochemical detection of yeast cell apoptosis

    NASA Astrophysics Data System (ADS)

    Yue, Qiulin; Xiong, Shiquan; Cai, Dongqing; Wu, Zhengyan; Zhang, Xin

    2014-03-01

    An electrochemical method based on square wave anodic stripping voltammetry (SWASV) was developed to detect the apoptosis of yeast cells conveniently and quantitatively through the high affinity between Cu2+ and phosphatidylserine (PS) translocated from the inner to the outer plasma membrane of the apoptotic cells. The combination of negatively charged PS and Cu2+ could decrease the electrochemical response of Cu2+ on the electrode. The results showed that the apoptotic rates of cells could be detected quantitatively through the variations of peak currents of Cu2+ by SWASV, and agreed well with those obtained through traditional flow cytometry detection. This work thus may provide a novel, simple, immediate and accurate detection method for cell apoptosis.

  12. Temporal survey of electron number density and electron temperature in the exhaust of a megawatt MPD-Arc thruster

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Rose, J. R.; Sigman, D. R.

    1971-01-01

    Temporal and radial profiles are obtained 30 cm downstream from the anode for two peak arc currents (11.2 kA and 20 kA) and for various auxiliary magnetic fields (0, 1.0 T, and 2.0T) using the Thomson scattering technique. Average density and temperature are relatively constant for over 100 microseconds with significant fluctuations. Radial profiles obtained are relatively flat for 4 cm from the axis. Compared to earlier 20 cm data, the exhaust density has decreased significantly, the average temperature (4.6 eV) has not changed, and the density hole with an auxiliary magnetic field has enlarged.

  13. Process for producing a high emittance coating and resulting article

    NASA Technical Reports Server (NTRS)

    Le, Huong G. (Inventor); O'Brien, Dudley L. (Inventor)

    1993-01-01

    Process for anodizing aluminum or its alloys to obtain a surface particularly having high infrared emittance by anodizing an aluminum or aluminum alloy substrate surface in an aqueous sulfuric acid solution at elevated temperature and by a step-wise current density procedure, followed by sealing the resulting anodized surface. In a preferred embodiment the aluminum or aluminum alloy substrate is first alkaline cleaned and then chemically brightened in an acid bath The resulting cleaned substrate is anodized in a 15% by weight sulfuric acid bath maintained at a temperature of 30.degree. C. Anodizing is carried out by a step-wise current density procedure at 19 amperes per square ft. (ASF) for 20 minutes, 15 ASF for 20 minutes and 10 ASF for 20 minutes. After anodizing the sample is sealed by immersion in water at 200.degree. F. and then air dried. The resulting coating has a high infrared emissivity of about 0.92 and a solar absorptivity of about 0.2, for a 5657 aluminum alloy, and a relatively thick anodic coating of about 1 mil.

  14. The anodic emitter effect and its inversion demonstrated by temperature measurements at doped and undoped tungsten electrodes

    NASA Astrophysics Data System (ADS)

    Hoebing, T.; Bergner, A.; Hermanns, P.; Mentel, J.; Awakowicz, P.

    2016-04-01

    The admixture of a small amount of emitter oxides, e.g. \\text{Th}{{\\text{O}}2} , \\text{L}{{\\text{a}}2}{{\\text{O}}3} or \\text{C}{{\\text{e}}2}{{\\text{O}}3} to tungsten generates the so-called emitter effect. It reduces the work function of tungsten cathodes, that are applied in high intensity discharge (HID) lamps. After leaving the electrode bulk and moving to the surface, a monolayer of Th, La, or Ce atoms is formed on the surface, which reduces the effective work function ϕ. Depending on the coverage of the electrode, the effective reduction in ϕ is subjected to the thermal desorption of the monolayer from the hot electrode surface. The thermal desorption of emitter atoms from the cathode is compensated not only by the supply from the interior of the electrode and by surface diffusion of the emitter material to its tip, but also to a large extent by a repatriation of the emitter ions from the plasma by the strong electric field in front of the cathode. Yet, an emitter ion current from the arc discharge to the anode may only be present, if the anode is cold enough to refrain from thermionic emission. Therefore, the ability of emitter oxides to reduce the temperature of tungsten anodes is only given for a moderate temperature so that the thermal desorption is low and an additional ion current is present in front of the anode. A higher electrode temperature leads to their evaporation and to an inversion of the emitter effect, which increases the temperature of the respective anodes in comparison with pure tungsten anodes. Within this article, the emitter effect of doped tungsten anodes and the transition to its inversion is investigated for thoriated, lanthanated, and ceriated tungsten electrodes by measurements of the electrode temperature in dependence on the discharge current. It is shown for a lanthanated and a ceriated anode that the emitter effect is sustained by an ion current at anode temperatures at which the thermal evaporation of emitter material is completed.

  15. Humectants to augment current from metallized zinc cathodic protection systems on concrete : final report.

    DOT National Transportation Integrated Search

    2002-12-01

    Cathodic protection (CP) systems using thermal-sprayed zinc anodes are employed to mitigate the corrosion process in reinforced concrete structures. However, the performance of the anodes is improved by moisture at the anode-concrete interface. Resea...

  16. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    NASA Astrophysics Data System (ADS)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  17. Removal of ammonium ion from produced waters in petroleum offshore exploitation by a batch single-stage electrolytic process.

    PubMed

    de Lima, Rosilda Maria Gomes; da Silva Wildhagen, Glória Regina; da Cunha, José Waldemar Silva Dias; Afonso, Julio Carlos

    2009-01-30

    This work describes a batch single-stage electrochemical process to remove quantitatively the ammonium ion from produced waters from petroleum exploration of the Campos' Basin, seeking to fulfil the directories of the National Brazilian Environmental Council. The anode was made out of titanium covered by a layer of RuO(2)+TiO(2) oxides (Dimensionally Stable Anode), whereas the cathode was made out of pure titanium. Anodic and cathodic compartments were separated by a membrane. The applied current varied from 0.3 to 1.5A. As the current increased NH(4)(+) removal was faster and pH was rapidly decreased to 3. The pH of the anodic compartment increased to approximately 10. When the current was 0.92 A chlorine evolution was observed after 40 min or only 15 min when that current was 1.50 A. In this voltage a deposit containing alkali-earth metal hydroxides/sulphates was formed on the membrane surface of the cathode side, thus suggesting a diffusion process from the anodic to the cathodic compartment. The maximum current applied to the cell must not exceed approximately 0.70 A in order to avoid chlorine evolution. Ammonia removal was over 99.9 wt% at 0.68 A in about 75 min.

  18. Fabrication of an Electrochemical Sensor Based on Gold Nanoparticles/Carbon Nanotubes as Nanocomposite Materials: Determination of Myricetin in Some Drinks

    PubMed Central

    Hajian, Reza; Yusof, Nor Azah; Faragi, Tayebe; Shams, Nafiseh

    2014-01-01

    In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L−1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10−8 to 4.0×10−5 mol L−1 with the detection limit of 1.2×10−8 mol L−1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices. PMID:24809346

  19. Finding Platinum-Coating Gaps On Titanium Anodes

    NASA Technical Reports Server (NTRS)

    Bodemeijer, Ronnald; Flowers, Cecil E.

    1990-01-01

    Simple procedure makes gaps visible to eye. New gap-detection method consists of plating thin layer of non-silver-colored metal like copper or gold on anode. Contrast in color between plated metal and bare anode material makes gaps stand out. If anode passes inspection, copper or gold plate removable by reversal of test-plating current. Remains to be determined whether test plating and removal damages anode. New method simpler and more economical than previous attempts to identify gaps in platinum.

  20. Electrochemical determination of estrogenic compound bisphenol F in food packaging using carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode.

    PubMed

    Wang, Xin; Yang, Lijun; Jin, Xudong; Zhang, Lei

    2014-08-15

    A simple and highly sensitive electroanalytical method for the determination of bisphenol F (BPF) was developed, which was carried out on multi-walled carbon nanotubes-COOH (MWCNT-COOH) modified glassy carbon electrode (GCE) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results showed that MWCNT-COOH remarkably enhanced the oxidation of BPF, which improved the anodic peak current of BPF significantly. The mechanism was oxidation of BPF lose electrons on the electrode surface via adsorption-controlled process, electrode reaction is the two electrons/two protons process. Under the optimised conditions, the oxidation peak current was proportional to BPF concentration the range from 0.12 to 6.01 μg mL(-1). The detection limit was 0.11 μg mL(-1) (S/N=3), and the relative standard deviation (R.S.D.) was 3.5% (n=9). Moreover, the MWCNT-COOH/GCE electrode showed good reproducibility, stability and anti-interference. Therefore, the proposed method was successfully applied to determine BPF in food packing and the results were satisfactory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment.

    PubMed

    Wang, Liwei; Cheng, Lianjun; Li, Junru; Zhu, Zhifu; Bai, Shuowei; Cui, Zhongyu

    2018-03-22

    Influence of alternating current (AC) on pitting corrosion and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP) was investigated. Both corrosion and SCC are inhibited by -0.775 V SCE CP without AC interference. With the superimposition of AC current (1-10 mA/cm²), the direct current (DC) potential shifts negatively under the CP of -0.775 V SCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of -0.95 V SCE and -1.2 V SCE , the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6-2 μm in diameter). AC enhances the SCC susceptibility of X70 steel under -0.775 V SCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm² can enhance the SCC susceptibility.

  2. Rotating disk electrode study of borohydride oxidation in a molten eutectic electrolyte and advancements in the intermediate temperature borohydride battery

    NASA Astrophysics Data System (ADS)

    Wang, Andrew; Gyenge, Előd L.

    2017-08-01

    The electrode kinetics of the NaBH4 oxidation reaction (BOR) in a molten NaOH-KOH eutectic mixture is investigated by rotating disk electrode (RDE) voltammetry on electrochemically oxidized Ni at temperatures between 458 K and 503 K. The BH4- diffusion coefficient in the molten alkali eutectic together with the BOR activation energy, exchange current density, transfer coefficient and number of electrons exchanged, are determined. Electrochemically oxidized Ni shows excellent BOR electrocatalytic activity with a maximum of seven electrons exchanged and a transfer coefficient up to one. X-ray photoelectron spectroscopy (XPS) reveals the formation of NiO as the catalytically active species. The high faradaic efficiency and BOR rate on oxidized Ni anode in the molten electrolyte compared to aqueous alkaline electrolytes is advantageous for power sources. A novel molten electrolyte battery design is investigated using dissolved NaBH4 at the anode and immobilized KIO4 at the cathode. This battery produces a stable open-circuit cell potential of 1.04 V, and a peak power density of 130 mW cm-2 corresponding to a superficial current density of 160 mA cm-2 at 458 K. With further improvements and scale-up borohydride molten electrolyte batteries and fuel cells could be integrated with thermal energy storage systems.

  3. Anodic voltammetric behavior and determination of rosiglitazone in pharmaceutical dosage forms and biological fluids on solid electrode.

    PubMed

    Dogan-Topal, Burcu; Tuncel, Secil; Ozkan, Sibel A

    2010-09-01

    The anodic voltammetric behavior and electroanalytical determination of rosiglitazone was studied using cyclic, linear sweep, differential pulse and square wave voltammetric techniques on glassy carbon electrode. The oxidation of rosiglitazone was irreversible and exhibited diffusion controlled process depending on pH. Different parameters were tested to optimize the conditions for the determination of the oxidation mechanism of rosiglitazone. The dependence of current intensities and potentials on pH, concentration, scan rate, nature of the buffer was also investigated. According to the linear relationship between the peak current and the concentration, differential pulse and square wave voltammetric methods for rosiglitazone assay in pharmaceutical dosage forms and biological fluids were developed. A linear response was obtained within the range of 1x10-6M - 6x10-5M in 0.1 M H2SO4 and acetate buffer at pH 5.70 for both voltammetric methods in human serum samples. The practical analytical value of the method is demonstrated by quantitative determination of rosiglitazon in pharmaceutical formulation and human serum, without the need for separation or complex sample preparation, since there was no interference from the excipients and endogenous substances. The methods were fully validated and successfully applied to the high throughput determination of the drug in tablets and human serum with good recoveries.

  4. Supercapacitive microbial fuel cell: Characterization and analysis for improved charge storage/delivery performance.

    PubMed

    Houghton, Jeremiah; Santoro, Carlo; Soavi, Francesca; Serov, Alexey; Ieropoulos, Ioannis; Arbizzani, Catia; Atanassov, Plamen

    2016-10-01

    Supercapacitive microbial fuel cells with various anode and cathode dimensions were investigated in order to determine the effect on cell capacitance and delivered power quality. The cathode size was shown to be the limiting component of the system in contrast to anode size. By doubling the cathode area, the peak power output was improved by roughly 120% for a 10ms pulse discharge and internal resistance of the cell was decreased by ∼47%. A model was constructed in order to predict the performance of a hypothetical cylindrical MFC design with larger relative cathode size. It was found that a small device based on conventional materials with a volume of approximately 21cm(3) would be capable of delivering a peak power output of approximately 25mW at 70mA, corresponding to ∼1300Wm(-3). Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    PubMed

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  6. Pulsed x-ray generator for commercial gas lasers

    NASA Astrophysics Data System (ADS)

    Bollanti, S.; Bonfigli, F.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Murra, D.; Schina, G.; Zheng, C. E.

    2001-10-01

    We have designed and tested a 1-m-long x-ray diode based on innovative plasma cathodes, which exploit commercial spark plugs as electron emitters. Based on the results of a numerical study, we optimized both diode geometry (e.g., the angle between anode and cathode surfaces, the thickness of the Al window) and electrical circuitry (e.g., the capacitance in series to each spark plug, the peak voltage of the anode) of our x-ray generator. The overall result is a simple and efficient circuitry, giving a total diode current in excess of 2.1 kA with a breakdown voltage of 70 kV, which generates a 50 ns rise-time x-ray pulse with a spatially averaged dosage of up to 6×10-4 Gy when using a Pb-wrapped anode. The double-diode x-ray generator was operated for 1.5×106 shots at a repetition rate of up to 30 Hz, and the lifetime test was interrupted without any fault. During the lifetime test, it was not necessary to adjust any working parameter. At the end of the lifetime test, the x-ray emission uniformity was better than 80% along the longitudinal axis. This x-ray generator has a lifetime, reliability, and cost fitting the requirements of industrial users. Among the broad range of potential applications, this x-ray generator is particularly suitable to ionize discharge pumped gas lasers, like TEA CO2 and excimer lasers, including those operated by x-ray triggered discharges.

  7. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    PubMed Central

    Es’haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2013-01-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL−1 for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL−1 and 0.012 ng mL−1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537

  8. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  9. Computational Fluid Dynamics-Population Balance Model Simulation of Effects of Cell Design and Operating Parameters on Gas-Liquid Two-Phase Flows and Bubble Distribution Characteristics in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong

    2018-02-01

    The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.

  10. Electron-irradiated n+-Si as hole injection tunable anode of organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Li, Y. Z.; Wang, Z. L.; Wang, Y. Z.; Luo, H.; Xu, W. J.; Ran, G. Z.; Qin, G. G.

    2013-01-01

    Traditionally, n-type silicon is not regarded as a good anode of organic light emitting diode (OLED) due to the extremely low hole concentration in it; however, when doped with Au element which acts as carrier generation centers, it can be, as shown in our previous work. In this study, we demonstrate a new kind of carrier generation centers in n+-type silicon, which are the defects produced by 5 MeV electron irradiation. The density of carrier generation centers in the irradiated n+-Si anode can be controlled by tuning the electron irradiation time, and thus hole injection current in the OLEDs with the irradiated n+-Si anode can be optimized, leading to their much higher maximum efficiencies than those of the OLEDs with non-irradiated n+-Si anode. For a green phosphorescent OLED with the irradiated n+-Si anode, the current efficiency and power efficiency reach up to 12.1 cd/A and 4.2 lm/W, respectively.

  11. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  12. Aluminum anode for aluminum-air battery - Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution

    NASA Astrophysics Data System (ADS)

    Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu

    2017-07-01

    Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.

  13. Large area organic light emitting diodes with multilayered graphene anodes

    NASA Astrophysics Data System (ADS)

    Moon, Jaehyun; Hwang, Joohyun; Choi, Hong Kyw; Kim, Taek Yong; Choi, Sung-Yool; Joo, Chul Woong; Han, Jun-Han; Shin, Jin-Wook; Lee, Bong Joon; Cho, Doo-Hee; Huh, Jin Woo; Park, Seung Koo; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2012-09-01

    In this work, we demonstrate fully uniform blue fluorescence graphene anode OLEDs, which have an emission area of 10×7 mm2. Catalytically grown multilayered graphene films have been used as the anode material. In order to compensate the current drop, which is due to the graphene's electrical resistance, we have furnished metal bus lines on the support. Processing and optical issues involved in graphene anode OLED fabrications are presented. The fabricated OLEDs with graphene anode showed comparable performances to that of ITO anode OLEDs. Our works shows that metal bus furnished graphene anode can be extended into large area OLED lighting applications in which flexibility and transparency is required.

  14. Corrosion Prevention of Steel Reinforcement in 7.5% NaCl Solution using Pure Magnesium Anode

    NASA Astrophysics Data System (ADS)

    Iyer Murthy, Yogesh; Gandhi, Sumit; Kumar, Abhishek

    2018-03-01

    The current work investigates the performance of pure Magnesium on corrosion prevention of steel reinforcements by way of sacrificial anoding. Two set of six steel reinforcements were tested for half-cell potential, weight loss, anode efficiency and tensile strength for each of the sacrificial anodes in a high chloride atmosphere of 7.5% NaCl in tap water. Significant reduction in weight of anode was observed during the initial 12 days. The reduction in weight of steel reinforcements tied with anodes was found to be negligible, while that of reinforcements without anodes was significantly higher. Five distinct zones of corrosion were observed during the test. The tensile strength of steel cathodically protected by Mg alloy anodes was found less affected. It could be concluded that pure Mg anode provides an effective way of corrosion mitigation.

  15. Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats.

    PubMed

    Jackson, Mark P; Truong, Dennis; Brownlow, Milene L; Wagner, Jessica A; McKinley, R Andy; Bikson, Marom; Jankord, Ryan

    2017-08-01

    A commonly referenced transcranial Direct Current Stimulation (tDCS) safety threshold derives from tDCS lesion studies in the rat and relies on electrode current density (and related electrode charge density) to support clinical guidelines. Concerns about the role of polarity (e.g. anodal tDCS), sub-lesion threshold injury (e.g. neuroinflammatory processes), and role of electrode montage across rodent and human studies support further investigation into animal models of tDCS safety. Thirty-two anesthetized rats received anodal tDCS between 0 and 5mA for 60min through one of three epicranial electrode montages. Tissue damage was evaluated using hemotoxylin and eosin (H&E) staining, Iba-1 immunohistochemistry, and computational brain current density modeling. Brain lesion occurred after anodal tDCS at and above 0.5mA using a 25.0mm 2 electrode (electrode current density: 20.0A/m 2 ). Lesion initially occurred using smaller 10.6mm 2 or 5.3mm 2 electrodes at 0.25mA (23.5A/m 2 ) and 0.5mA (94.2A/m 2 ), respectively. Histological damage was correlated with computational brain current density predictions. Changes in microglial phenotype occurred in higher stimulation groups. Lesions were observed using anodal tDCS at an electrode current density of 20.0A/m 2 , which is below the previously reported safety threshold of 142.9A/m 2 using cathodal tDCS. The lesion area is not simply predicted by electrode current density (and so not by charge density as duration was fixed); rather computational modeling suggests average brain current density as a better predictor for anodal tDCS. Nonetheless, under the assumption that rodent epicranial stimulation is a hypersensitive model, an electrode current density of 20.0A/m 2 represents a conservative threshold for clinical tDCS, which typically uses an electrode current density of 2A/m 2 when electrodes are placed on the skin (resulting in a lower brain current density). Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode.

    PubMed

    Yardım, Yavuz; Keskin, Ertugrul; Şentürk, Zühre

    2013-11-15

    Herein, a boron-doped diamond (BDD) electrode that is anodically pretreated was used for the simultaneous determination of caffeine (CAF) and chlorogenic acid (CGA) by cyclic and adsorptive stripping voltammetry. The dependence of peak current and potential on pH, scan rate, accumulation parameters and other experimental variables were studied. By using square-wave stripping mode after 60 s accumulation under open-circuit voltage, the BDD electrode was able to separate the oxidation peak potentials of CAF and CGA present in binary mixtures by about 0.4V in Britton-Robinson buffer at pH 1.0. The limits of detection were 0.107 µg mL(-1) (5.51×10(-7) M) for CAF, and 0.448 µg mL(-1) (1.26×10(-6) M) for CGA. The practical applicability of this methodology was tested in commercially available beverage samples. © 2013 Elsevier B.V. All rights reserved.

  17. A Novel and Generalized Lithium-Ion-Battery Configuration utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density.

    PubMed

    Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing

    2017-02-01

    A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    PubMed

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  19. Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance.

    PubMed

    Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2011-01-01

    The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass and charge transport limitations by increasing the speed of the forced flow and changing the flow direction through the porous anode. Increase of the flow speed led to a decrease in current density when the flow was directed towards the membrane caused by an increase in anode resistance. Current density increased at higher flow speed when the flow was directed away from the membrane. This was caused by a decrease in transport resistance of ions through the membrane which increased the buffering effect of the system. Furthermore, the increase in flow speed led to an increase of the coulombic efficiency by 306%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    NASA Astrophysics Data System (ADS)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  1. Anodic oxidation of benzoquinone using diamond anode.

    PubMed

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  2. Fabrication of Self-Ordered Nanoporous Alumina with 69-115 nm Interpore Distances in Sulfuric/Oxalic Acid Mixtures by Hard Anodization

    NASA Astrophysics Data System (ADS)

    Almasi Kashi, Mohammad; Ramazani, Abdolali; Mayamai, Yashar; Noormohammadi, Mohammad

    2010-01-01

    Well-ordered nanoporous arrays have been obtained using hard anodization of aluminium in oxalic/sulfuric mixture. Various ordered nanoporous alumina films with pore intervals from 69 to 115 nm were fabricated on aluminum by high current anodization approach with various sulfuric concentrations in the oxalic/sulfuric mixture electrolyte under 36-60 V. The sulfuric acid concentration was changed from 0.06 to 0.2 M. Different configurations of the current-time curve are seen to influence the self-ordering of the nanohole arrays. A current density-time curve with exponential oscillating decay configuration is seen to damage the self-ordered array of the nanopores while those with exponential decay under certain conditions cause ordered nanopore arrays. For each electrolyte mixture, the interpore distance was dependent upon the anodization voltages with proportionality constants of almost 2 nm V-1. The porosity of the samples (about 3.5%) follows the porosity rule of HA. Final anodization and increasing voltage rate (rin) as a function of sulfuric acid concentration are the main sources to influence the self-ordering of the samples.

  3. Results of ultra compact plasma focus operating in repetitive burst-mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, R.; Shyam, A.; Verma, R.

    2014-07-01

    The results of a miniature plasma focus are being presented in this paper which is operated with energy less than or equal to 150 Joules. The miniature plasma focus is driven by a small capacitor bank and the peak current delivered in the focus is 75kA. The deuterium gas is filled with a pressure range of 5-7 mbar inside the plasma focus chamber. The quartz glass is used for generating initial surface breakdown at 4-5 kV discharge which is a typical value for low-voltage plasma focus discharges. The repetitive operation of the device is achieved by a combination of amore » simple and high power (5 kW) power supply with the synchronized triggering of the capacitor bank at the time of isolation between supply and the capacitor bank. As the plasma focus chamber volume is very low, in order to achieve reduced after-shot contamination effects, the gas pressure inside the plasma focus is maintained by continuous pumping which is disallowed at the time of shorts rather having a sealed type plasma focus assembly. The results of such scheme are also discussed in the paper. The diameter of cathode is 25mm and anode diameter is 8-12 mm and both of them are made of stainless steel. The length of anode and gas pressure is adjusted in such a way that the pinching occurs at the time of occurrence of the peak of current. It enhances the neutron emission from the device. The time-of-flight diagnostic is used to distinguish neutron and X-ray emission from the plasma focus. The device can serve the purpose of being a portable and compact repetitive neutron source for various applications as the flux of the radiation is comparable with the bigger devices of same type. The modeling results of plasma focus are also compared with experimental results to give a broader picture of the device. (author)« less

  4. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2015-02-01

    We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.

  5. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer.

    PubMed

    Brown, Patrick R; Lunt, Richard R; Zhao, Ni; Osedach, Timothy P; Wanger, Darcy D; Chang, Liang-Yi; Bawendi, Moungi G; Bulović, Vladimir

    2011-07-13

    The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO(3) interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/anode interface. The incorporation of the high-work-function MoO(3) layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.

  6. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    PubMed

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    EPA Science Inventory

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial communi...

  8. Structured Nanowires for Spectra-Tuned and Spectra-Multiplexed Sensing THZ Generation

    DTIC Science & Technology

    2015-04-08

    anodic aluminum oxide membranes ( AAO ) as templates. We...nanowires were fabricated by direct current electrochemical deposition technique using diameter-modulated anodic aluminum oxide membranes ( AAO ) as...throughout this project was the technique of atomic layer deposition (ALD) into anodized alumina oxide ( AAO ) templates. Aluminum , when

  9. Thin film integrated capacitors with sputtered-anodized niobium pentoxide dielectric for decoupling applications

    NASA Astrophysics Data System (ADS)

    Jacob, Susan

    Electronics system miniaturization is a major driver for high-k materials. High-k materials in capacitors allow for high capacitance, enabling system miniaturization. Ta2O5 (k˜24) has been the dominant high-k material in the electronic industry for decoupling capacitors, filter capacitors, etc. In order to facilitate further system miniaturization, this project has investigated thin film integrated capacitors with Nb2O5 dielectric. Nb2O 5 has k˜41 and is a potential candidate for replacing Ta2O5. But, the presence of suboxides (NbO2 and NbO) in the dielectric deteriorates the electrical properties (leakage current, thermal instability of capacitance, etc.). Also, the high oxygen solubility of niobium results in oxygen diffusion from the dielectric to niobium metal, if any is present. The major purpose of this project was to check the ability of NbN as a diffusion barrier and fabricate thermally stable niobium capacitors. As a first step to produce niobium capacitors, the material characterizations of reactively sputtered Nb2O5 and NbN were done. Thickness and film composition, and crystal structures of the sputtered films were obtained and the deposition parameters for the desired stoichiometry were found. Also, anodized Nb2O5 was characterized for its stoichiometry and thickness. To study the effect of nitrides on capacitance and thermal stability, Ta2O5 capacitors were initially fabricated with and without TaN. The results showed that the nitride does not affect the capacitance, and that capacitors with TaN are stable up to 150°C. In the next step, niobium capacitors were first fabricated with anodized dielectric and the oxygen diffusion issues associated with capacitor processing were studied. Reactively sputtered Nb2O5 was anodized to form complete Nb2O5 (with few oxygen vacancies) and NbN was used to sandwich the dielectric. The capacitor fabrication was not successful due to the difficulties in anodizing the sputtered dielectric. Another method, anodizing reactively sputtered Nb2O5 and a thin layer of sputtered niobium metal yielded high yield (99%) capacitors. Capacitors were fabricated with and without NbN and the results showed 93% decrease in leakage for a capacitor with ˜2000 A dielectric when NbN was present in the structure. These capacitors could withstand 20 V and showed 2.7 muA leakage current at 5 V. These results were obtained after thermal storage at 100°C and 150°C in air for 168 hours at each temperature. Two set of experiments were performed using Ta2O5 dielectric: one to determine the effect of anodization end point on the thickness (capacitance) and the second to determine the effect of boiling the dielectric on functional yield. The anodization end point experiment showed that the final current of anodization along with the anodizing voltage determines the anodic oxide thickness. The lower the current, the thicker the films produced by anodization. Therefore, it was important to specify the final current along with the anodization voltage for oxide growth rate. The capacitors formed with boiled wafers showed better functional yield 3 out of 5 times compared with the unboiled wafer. Niobium anodization was studied for the Nb--->Nb 2O5 conversion ratio and the effect of anodization bath temperature on the oxide film; a color chart was prepared for thicknesses ranging from 1900 A - 5000 A. The niobium metal to oxide conversion ratio was found to change with temperature.

  10. Design of a Double Anode Magnetron Injection Gun for Q-band Gyro-TWT Using Boundary Element Method

    NASA Astrophysics Data System (ADS)

    Li, Zhiliang; Feng, Jinjun; Liu, Bentian

    2018-04-01

    This paper presents a novel design code for double anode magnetron injection guns (MIGs) in gyro-devices based on boundary element method (BEM). The physical and mathematical models were constructed, and then the code using BEM for MIG's calculation was developed. Using the code, a double anode MIG for a Q-band gyrotron traveling-wave tube (gyro-TWT) amplifier operating in the circular TE01 mode at the fundamental cyclotron harmonic was designed. In order to verify the reliability of this code, velocity spread and guiding center radius of the MIG simulated by the BEM code were compared with these from the commonly used EGUN code, showing a reasonable agreement. Then, a Q-band gyro-TWT was fabricated and tested. The testing results show that the device has achieved an average power of 5kW and peak power ≥ 150 kW at a 3% duty cycle within bandwidth of 2 GHz, and maximum output peak power of 220 kW, with a corresponding saturated gain of 50.9 dB and efficiency of 39.8%. This paper demonstrates that the BEM code can be used as an effective approach for analysis of electron optics system in gyro-devices.

  11. Photoluminescence properties of anodic aluminum oxide formed in a mixture of ammonium fluoride and oxalic acid

    NASA Astrophysics Data System (ADS)

    Li, Shou-Yi; Wang, Jian; Li, Yan

    2017-06-01

    Highly ordered anodic aluminum oxide (AAO) membranes are fabricated electrochemically in an electrolyte mixture with various concentrations of C2H2O4 or NH4F. Photoluminescence (PL) properties of AAO membranes have been investigated before and after annealing in the range from 300°C to 650°C. X-ray diffraction reveals the amorphous nature of AAO membranes. Energy dispersive spectroscopy indicates the presence of fluorine species incorporated in oxide membranes during the anodizing. PL measurements show a strong PL band in the wavelength range of 350 to 550 nm. With the increase of the concentration of the NH4F or C2H2O4 in the electrolyte mixture, the peak positions of the PL bands have a blueshift or redshift and the intensities have a maximum value. As indicated by the PL excitation spectra, there are two excitation peaks of 285 and 330 nm, which can account for the PL emission band. We have proposed that the PL originates from optical transitions in two kinds of centers that are related to oxygen vacancies, F+ (285 nm) and F (330 nm). This work is not only beneficial to further understanding of the light-emitting property of AAO membranes but also enlarges the application scope.

  12. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell.

    PubMed

    Mink, Justine E; Rojas, Jhonathan P; Logan, Bruce E; Hussain, Muhammad M

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m(2) of current density and 392 mW/m(3) of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society

  13. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  14. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R [Naperville, IL; Gruen, Dieter M [Downers Grove, IL; Pellin, Michael J [Naperville, IL; Auciello, Orlando [Bolingbrook, IL

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  15. Polarization and Fowler-Nordheim tunneling in anodized Al-Al2O3-Au diodes

    NASA Astrophysics Data System (ADS)

    Hickmott, T. W.

    2000-06-01

    Polarization in anodic Al2O3 films is measured by using quasi-dc current-voltage (I-V) curves of Al-Al2O3-Au diodes. A reproducible polarization state is established by applying a negative voltage to the Au electrode of a rectifying Al-Al2O3-Au diode. The difference between subsequent I-V curves with Au positive is a measure of polarization in the sample. The magnitude of polarization charge in Al2O3 depends on the anodizing electrolyte. Al2O3 films formed in H2O-based electrolytes have approximately ten times the polarization charge of Al2O3 films formed in ethylene glycol-based electrolyte. Anodizing conditions that produce greater polarizing charge in anodic Al2O3 result in voltage-time curves during anodization under galvanostatic conditions that are nonlinear. Anodic films with greater polarizing charge also have a greater apparent interface capacitance which is independent of Al2O3 thickness. I-V curves of Al-Al2O3-Au diodes for increasing voltage are dominated by polarization. I-V curves for decreasing voltage are reproducible and parallel but depend on the maximum current and voltage reached during the measurement. There is no single current corresponding to a given voltage. I-V curves for decreasing voltage are analyzed assuming that the conduction mechanism is Fowler-Nordheim (FN) tunneling. There is a qualitative difference between the FN tunneling parameters for Al2O3 films formed in H2O-based electrolytes and those formed in ethylene glycol-based electrolyte. For the former the value of the exponential term in the FN analysis increases as the value of maximum voltage and current in an I-V characteristic increases, while the value of the pre-exponential term is nearly constant. For the latter, the exponential term is nearly constant as maximum voltage and current increase, but the pre-exponential term decreases by about 5 decades. Thus polarization charge incorporated during formation of anodized Al2O3 strongly affects the formation of the insulating film, the stability of the films under bias, and their conduction characteristics.

  16. Laser pumping of thyristors for fast high current rise-times

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2013-06-11

    An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.

  17. Tests of a low-pressure switch protected by a saturating inductor

    NASA Astrophysics Data System (ADS)

    Lauer, E. J.; Birx, D. L.

    Low pressure switches and magnetic switches were tested as possible replacements for the high pressure switches currently used on Experimental Test Accelerator and Advanced Test Accelerator. When the low pressure switch is used with a low impedance transmission line, runaway electrons form a pinched electron beam which damages the anode. The use of the low pressure switch as the first switch in the pulsed power chain was tested; i.e., the switch would be used to connect a charged capacitor across the primary winding of a step up transformer. An inductor with a saturating core is connected in series so that, initially, there is a large inductive voltage drop. As a result, there is small voltage across the switch. By the time the inductor core saturates, the switch has developed sufficient ionization so that the switch voltage remains small, even with peak current, and an electron beam is not produced.

  18. Performance characteristics according to the radial position of gas distributor holes in a low-power cylindrical Hall thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yuanyuan; Liu, Hui; Hu, Peng

    The effect of radial position of gas holes in the distributor on the performance of cylindrical Hall thruster was investigated. A series of gas distributors with different radial positions (R{sub g}) of holes were designed in the experiment. The results show that the larger R{sub g} leads to the higher ion current and electron current; meanwhile, the beam angle in plume is narrowed. Nevertheless, the peak energy in ion energy distribution function increases, together with the narrowing of ion energy distribution function. As a result, the overall performance is enhanced. It is suggested that the growing of R{sub g} couldmore » lead to the movement of the main ionization region towards anode, which could promote ion velocity and the clearer separation of acceleration region from ionization region. This work can provide some optimal design ideas to improve the performance of the thruster.« less

  19. Origin of microplasma instabilities during DC operation of silicon based microhollow cathode devices

    NASA Astrophysics Data System (ADS)

    Felix, Valentin; Lefaucheux, Philippe; Aubry, Olivier; Golda, Judith; Schulz-von der Gathen, Volker; Overzet, Lawrence J.; Dussart, Rémi

    2016-04-01

    The failure mechanisms of micro hollow cathode discharges (MHCD) in silicon have been investigated using their I-V characteristics, high speed photography and scanning electron microscopy. Experiments were carried out in helium. We observed I-V instabilities in the form of rapid voltage decreases associated with current spikes. The current spikes can reach values more than 100 times greater than the average MHCD current. (The peaks can be more than 1 Ampere for a few 10’s of nanoseconds.) These current spikes are correlated in time with 3-10 μm diameter optical flashes that occur inside the cavities. The SEM characterizations indicated that blister-like structures form on the Si surface during plasma operation. Thin Si layers detach from the surface in localized regions. We theorize that shallow helium implantation occurs and forms the ‘blisters’ whenever the Si is biased as the cathode. These blisters ‘explode’ when the helium pressure inside them becomes too large leading to the transient micro-arcs seen in both the optical emission and the I-V characteristics. We noted that blisters were never found on the metal counter electrode, even when it was biased as the cathode (and the Si as the anode). This observation led to a few suggestions for delaying the failure of Si MHCDs. One may coat the Si cathode (cavities) with blister resistant material; design the MHCD array to operate with the Si as the anode rather than as the cathode; or use a gas additive to prevent surface damage. Regarding the latter, tests using SF6 as the gas additive successfully prevented blister formation through rapid etching. The result was an enhanced MHCD lifetime.

  20. Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/VO2+ couple for vanadium redox battery

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, Z. A.; Wu, X. W.; Yuan, X. H.; Hu, J. P.; Zhou, Q. M.; Liu, Z. H.; Wu, Y. P.

    2015-12-01

    Functional porous carbon (PC) derived from bio-friendly shaddock peel has been firstly explored as catalyst for vanadium redox flow battery (VRB). The prepared PC is micro-mesoporous with high BET surface area of 882.7 m2 g-1, has some surface oxygen-containing functional groups, and is doped with N and P heteroatoms. These three factors greatly favor the electrochemical reactions of VO2+/VO2+ on the PC modified glass carbon (PC-GC). Compared with the naked GC and graphite modified GC, the PC-GC presents a lower peak separation (66 mV), higher anodic current density (17.1 mA cm-2) and cathodic current density (15.0 mA cm-2). The VRB using PC modified graphite felt (GF) as positive electrode demonstrates an enhanced voltage efficiency of 82.7% at the current density of 60 mA cm-2, and a better rate performance than that from the virginal GF.

  1. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T; Bain, TS; Barlett, MA

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electronmore » donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.« less

  2. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  3. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis.

    PubMed

    Imburgio, Michael J; Orr, Joseph M

    2018-05-01

    A meta-analysis of studies using single-session transcranial direct current stimulation (tDCS) to target the dorsolateral prefrontal cortex (DLPFC) was undertaken to examine the effect of stimulation on executive function (EF) in healthy samples. 27 studies were included in analyses, yielding 71 effect sizes. The most relevant measure for each task was determined a priori and used to calculate Hedge's g. Methodological characteristics of each study were examined individually as potential moderators of effect size. Stimulation effects on three domains of EF (inhibition of prepotent responses, mental set shifting, and information updating and monitoring) were analyzed separately. In line with previous work, the current study found no significant effect of anodal unilateral tDCS, cathodal unilateral tDCS, or bilateral tDCS on EF. Further moderator and subgroup analyses were only carried out for anodal unilateral montages due to the small number of studies using other montages. Subgroup analyses revealed a significant effect of anodal unilateral tDCS on updating tasks, but not on inhibition or set-shifting tasks. Cathode location significantly moderated the effect of anodal unilateral tDCS. Extracranial cathodes yielded a significant effect on EF while cranial cathodes yielded no effect. Anode size also significantly moderated effect of anodal unilateral tDCS, with smaller anodes being more effective than larger anodes. In summary, anodal DLPFC stimulation is more effective at improving updating ability than inhibition and set-shifting ability, but anodal stimulation can significantly improve general executive function when extracranial cathodes or small anodes are used. Future meta-analyses may examine how stimulation's effects on specific behavioral tasks, rather than broader domains, might be affected by methodological moderators. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  5. Performance of a Dual Anode Nickel-Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1991-01-01

    Nickel-hydrogen batteries are presently being used for energy storage on satellites in low Earth orbit and in geosynchronous orbit, and have also been selected for use on the proposed Space Station Freedom. Development continues on the cell technology in order to improve the specific energy and lengthen the cycle life. An experimental study was conducted to compare the voltage performance of a nickel-hydrogen cell containing a dual anode with the standard cell design which uses a single hydrogen electrode. Since the principle voltage loss in a nickel-hydrogen cell is attributed to the mass transport and resistive polarization parameters of the nickel electrode, addition of a hydrogen electrode on the other side of the nickel electrode should reduce the electrochemical polarizations by a factor of two. A 3.5 in. diameter boilerplate cell with a single 30 mils thick nickel electrode was cycled under various current conditions to evaluate its performance with a single anode and then with a double anode. A layered separator consisting of one Zircar cloth separator and one radiation-grafted polyethylene separator were used between the electrodes. The electrolyte was 26% KOH, and the tests were done at room temperature. The discharge voltage characteristics were determined as a function of current and depth-of-discharge. At the 4C discharge rate and 50% DOD, the voltage of the dual anode cell was 100 mV higher than the single anode cell. At 75% DOD the dual anode cell voltage was about 130 mV higher than the standard cell design. Resistances of the two c ell designs obtained from the slope of the mid-discharge voltages plotted against various currents indicated that the dual anode cell resistance was one-half of the state-of-the-art cell.

  6. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  7. Detector arrays for photometric measurements at soft X-ray, ultraviolet and visible wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The construction and modes of operation of the Multi-Anode Microchannel Array (MAMA) detectors are described, and the designs of spectrometers utilizing them are outlined. MAMA consists of a curved microchannel array plate, an opaque photocathode (peak quantum efficiency of 19% at 1216 A), and a multi-anode (either discrete- or coincidence-anode) readout array. Designed for use in instruments on spaceborne telescopes, MAMA can be operated in a windowless configuration in extreme-ultraviolet and soft X-ray wavelengths, or in a sealed configuration at UV and visible wavelengths. Advantages of MAMA include low applied potential (less than 3.0 kV), high gain (greater than 10 to the 6th electrons/pulse), low sensitivity to high-energy charged particles, and immunity to external magnetic fields of less than 500 Gauss

  8. Investigations of an Environmentally Induced Long Duration Hall Thruster Start Transient (PREPRINT)

    DTIC Science & Technology

    2006-02-06

    Hall thruster start transient is produced by exposure of the thruster to ambient laboratory atmosphere. This behavior was first observed during operation of a cluster of four 200 W BHT-200 Hall effect thrusters where large anode discharge fluctuations, visible as increased anode current and a diffuse plume structure, occurred in an apparently random manner. During operation of a single thruster, the start transient appears as a quickly rising and later smoothly decaying elevated anode current with a diffuse plume that persists for less than 500 seconds. The start transient

  9. Method of manufacturing carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)

    2004-01-01

    A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.

  10. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode.

    PubMed

    Torres, César I; Marcus, Andrew Kato; Parameswaran, Prathap; Rittmann, Bruce E

    2008-09-01

    Anode-respiring bacteria (ARB) are able to transfer electrons from reduced substrates to a solid electrode. Previously, we developed a biofilm model based on the Nernst-Monod equation to describe the anode potential losses of ARB that transfer electrons through a solid conductive matrix. In this work, we develop an experimental setup to demonstrate how well the Nernst-Monod equation is able to represent anode potential losses in an ARB biofilm. We performed low-scan cyclic voltammetry (LSCV) throughout the growth phase of an ARB biofilm on a graphite electrode growing on acetate in continuous mode. The (j)V response of 9 LSCVs corresponded well to the Nernst-Monod equation, and the half-saturation potential (E(KA)) was -0.425 +/- 0.002 V vs Ag/AgCl at 30 degrees C (-0.155 +/- 0.002 V vs SHE). Anode-potential losses from the potential of acetate reached approximately 0.225 V at current density saturation, and this loss was determined by our microbial community's E(KA) value. The LSCVs at high current densities showed no significant deviation from the Nernst-Monod ideal shape, indicating that the conductivity of the biofilm matrix (kappa(bio)) was high enough (> or = 0.5 mS/cm) that potential loss did not affect the performance of the biofilm anode. Our results confirm the applicability of the Nernst-Monod equation for a conductive biofilm anode and give insights of the processes that dominate anode potential losses in microbial fuel cells.

  11. The aluminum electrode in AlCl3-alkali-halide melts.

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.

  12. Gas injected vacuum switch

    DOEpatents

    Hardin, K. Dan

    1977-01-01

    The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.

  13. Nernst-ping-pong model for evaluating the effects of the substrate concentration and anode potential on the kinetic characteristics of bioanode.

    PubMed

    Peng, Sikan; Liang, Da-Wei; Diao, Peng; Liu, Yanyan; Lan, Fei; Yang, Yuhan; Lu, Shanfu; Xiang, Yan

    2013-05-01

    Understanding the electron-transfer mechanism and kinetic characteristics of bioanodes is greatly significant to enhance the electron-generating efficiencies in bioelectrochemical systems (BESs). A Nernst-ping-pong model is proposed here to investigate the kinetics and biochemical processes of bioanodes in a microbial electrolysis cell. This model can accurately describe the effects of the substrate (including substrate inhibition) and the anode potential on the current of bioanodes. Results show that the half-wave potential positively shifts as the substrate concentration increases, indicating that the rate-determining steps of anodic processes change from substrate oxidation to intracellular electron transport reaction. The anode potential has negligible effects on the enzymatic catalysis of anodic microbes in the range of -0.25 V to +0.1 V vs. a saturated calomel electrode. It turns out that to reduce the anodic energy loss caused by overpotential, higher substrate concentrations are preferred, if the substrate do not significantly and adversely affect the output current. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Graphene/Fe3 O4 Nanocomposites as Efficient Anodes to Boost the Lifetime and Current Output of Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Gai, Pan-Pan; Guo, Dan; Jiang, Li-Ping; Zhang, Qichun; Zhang, Jian-Rong; Zhu, Jun-Jie

    2017-02-01

    The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe 3 O 4 (G/Fe 3 O 4 ) composite, has been designed for Shewanella-inoculated MFCs. Because the Shewanella species could bind to Fe 3 O 4 with high affinity and their growth could be supported by Fe 3 O 4 , the bacterial cells attached quickly onto the anode surface and their long-term activity improved. As a result, MFCs with reduced startup time and improved stability were obtained. Additionally, the introduction of graphene not only provided a large surface area for bacterial attachment, but also offered high electrical conductivity to facilitate extracellular electron transfer (EET). The results showed that the current and power densities of a G/Fe 3 O 4 anode were much higher than those of each individual component as an anode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Single-Wall Carbon Nanotube Production by the Arc Process: A Parametric Study

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Gorelik, Olga; Proft, William J.

    2000-01-01

    Single wall carbon nanotubes are produced using the arc discharge process. Graphite anodes are filled with a mixture of nickel and yttrium metallic powders, then vaporized by creating a high current arc. By varying the current, gap distance, and ambient pressure it is shown that the best yield of single wall carbon nanotubes is obtained within a narrow range of conditions. The relative yield and purity of the product are indicated semi-quantitatively from scanning electric microscopy (SEM) and thermogravimetric analysis (TGA). Two types of anodes have been investigated. The first is hollow and filled with a powder mixture of graphite, nickel and yttrium. The second is filled with a paste made of a mixture of metal nitrates, graphite powder and carbon adhesive, then reduced in an argon atmosphere at high temperature. Product purity and yield will be compared for the two types of anodes. The graphite in the anodes may have hydrogen attached in the pores. To remove this impurity anodes have been baked up to 1400 - 1500 C. The effect of baking the anodes on impurities in the product will be given.

  16. Anodic concentration loss and impedance characteristics in rotating disk electrode microbial fuel cells.

    PubMed

    Shen, Liye; Ma, Jingxing; Song, Pengfei; Lu, Zhihao; Yin, Yao; Liu, Yongdi; Cai, Lankun; Zhang, Lehua

    2016-10-01

    A rotating disk electrode (RDE) was used to investigate the concentration loss and impedance characteristics of anodic biofilms in microbial fuel cells (MFCs). Amperometric time-current analysis revealed that at the rotation rate of 480 rpm, a maximum current density of 168 µA cm(-2) can be achieved, which was 22.2 % higher than when there was no rotation. Linear sweep voltammetry and electrochemical impedance spectroscopy tests showed that when the anodic potential was set to -300 mV vs. Ag/AgCl reference, the power densities could increase by 59.0  %, reaching 1385 mW m(-2), the anodic resistance could reduce by 19  %, and the anodic capacitance could increase by 36 %. These results concur with a more than 85 % decrease of the diffusion layer thickness. Data indicated that concentration loss, diffusion layer thickness, and the mixing velocity play important roles in anodic resistance reduction and power output of MFCs. These findings could be helpful to the design of future industrial-scale MFCs with mixed bacteria biofilms.

  17. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.

    PubMed

    Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi

    2012-11-01

    Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.

  18. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.

    PubMed

    Zeppilli, Marco; Villano, Marianna; Aulenta, Federico; Lampis, Silvia; Vallini, Giovanni; Majone, Mauro

    2015-05-01

    A methane-producing microbial electrolysis cell (MEC) was continuously fed at the anode with a synthetic solution of soluble organic compounds simulating the composition of the soluble fraction of a municipal wastewater. The MEC performance was assessed at different anode potentials in terms of chemical oxygen demand (COD) removal efficiency, methane production, and energy efficiency. As a main result, about 72-80% of the removed substrate was converted into current at the anode, and about 84-86% of the current was converted into methane at the cathode. Moreover, even though both COD removed and methane production slightly decreased as the applied anode potential decreased, the energy efficiency (i.e., the energy recovered as methane with respect to the energy input into the system) increased from 54 to 63%. Denaturing gradient gel electrophoresis (DGGE) analyses revealed a high diversity in the anodic bacterial community with the presence of both fermentative (Proteiniphilum acetatigenes and Petrimonas sulphurifila) and aerobic (Rhodococcus qingshengii) microorganisms, whereas only two microorganisms (Methanobrevibacter arboriphilus and Methanosarcina mazei), both assignable to methanogens, were observed in the cathodic community.

  19. Principles of a multistack electrochemical wastewater treatment design

    NASA Astrophysics Data System (ADS)

    Elsahwi, Essam S.; Dawson, Francis P.; Ruda, Harry E.

    2018-02-01

    Electrolyzer stacks in a bipolar architecture (cells connected in series) are desirable since power provided to a stack can be transferred at high voltages and low currents and thus the losses in the power bus can be reduced. The anode electrodes (active electrodes) considered as part of this study are single sided but there are manufacturing cost advantages to implementing double side anodes in the future. One of the main concerns with a bipolar stack implementation is the existence of leakage currents (bypass currents). The leakage current is associated with current paths that are not between adjacent anode and cathode pairs. This leads to non uniform current density distributions which compromise the electrochemical conversion efficiency of the stack and can also lead to unwanted side reactions. The objective of this paper is to develop modelling tools for a bipolar architecture consisting of two single sided cells that use single sided anodes. It is assumed that chemical reactions are single electron transfer rate limited and that diffusion and convection effects can be ignored. The design process consists of the flowing two steps: development of a large signal model for the stack, and then the extraction of a small signal model from the large signal model. The small signal model facilitates the design of a controller that satisfies current or voltage regulation requirements. A model has been developed for a single cell and two cells in series but can be generalized to more than two cells in series and to incorporate double sided anode configurations in the future. The developed model is able to determine the leakage current and thus provide a quantitative assessment on the performance of the cell.

  20. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise.

    PubMed

    Okano, Alexandre Hideki; Fontes, Eduardo Bodnariuc; Montenegro, Rafael Ayres; Farinatti, Paulo de Tarso Veras; Cyrino, Edilson Serpeloni; Li, Li Min; Bikson, Marom; Noakes, Timothy David

    2015-09-01

    The temporal and insular cortex (TC, IC) have been associated with autonomic nervous system (ANS) control and the awareness of emotional feelings from the body. Evidence shows that the ANS and rating of perceived exertion (RPE) regulate exercise performance. Non-invasive brain stimulation can modulate the cortical area directly beneath the electrode related to ANS and RPE, but it could also affect subcortical areas by connection within the cortico-cortical neural networks. This study evaluated the effects of transcranial direct current stimulation (tDCS) over the TC on the ANS, RPE and performance during a maximal dynamic exercise. Ten trained cyclists participated in this study (33±9 years; 171.5±5.8 cm; 72.8±9.5 kg; 10-11 training years). After 20-min of receiving either anodal tDCS applied over the left TC (T3) or sham stimulation, subjects completed a maximal incremental cycling exercise test. RPE, heart rate (HR) and R-R intervals (as a measure of ANS function) were recorded continuously throughout the tests. Peak power output (PPO) was recorded at the end of the tests. With anodal tDCS, PPO improved by ~4% (anodal tDCS: 313.2±29.9 vs 301.0±19.8 watts: sham tDCS; p=0.043), parasympathetic vagal withdrawal was delayed (anodal tDCS: 147.5±53.3 vs 125.0±35.4 watts: sham tDCS; p=0.041) and HR was reduced at submaximal workloads. RPE also increased more slowly during exercise following anodal tDCS application, but maximal RPE and HR values were not affected by cortical stimulation. The findings suggest that non-invasive brain stimulation over the TC modulates the ANS activity and the sensory perception of effort and exercise performance, indicating that the brain plays a crucial role in the exercise performance regulation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, R.; Larimer, K.T.

    1998-09-22

    A method is described for producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage. 4 figs.

  2. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, Rudolf; Larimer, Kirk T.

    1998-01-01

    A method of producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage.

  3. Anode film formation and control

    DOEpatents

    Koski, Oscar; Marschman, Steven C.

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  4. Anode film formation and control

    DOEpatents

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  5. Performance of a dual anode nickel-hydrogen cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1991-01-01

    An experimental study was conducted to characterize the voltage performance of a nickel hydrogen cell containing a hydrogen electrode on both sides of the nickel electrode. The dual anode cell was compared with a convenient single anode cell using the same nickel electrode. Higher discharge voltages and lower charge voltages were obtained with the dual anode cell during constant current discharges to 10C, pulse discharges to 8C, and polarization measurements at 50 percent of charge.

  6. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries.

    PubMed

    Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-04-28

    This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g(-1) and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.

  7. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.

    PubMed

    Cotillas, Salvador; Llanos, Javier; Cañizares, Pablo; Mateo, Sara; Rodrigo, Manuel A

    2013-04-01

    In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Polarization-Induced Interfacial Reactions between Nickel and Selenium in Ni/Zirconia SOFC Anodes and Comparison with Sulfur Poisoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.

    2011-01-10

    Three distinctly different characteristic responses of a nickel/yttria-stabilized zirconia (Ni/YSZ) cermet anode to the presence of hydrogen selenide in synthetic coal gas were observed, depending on temperature (650-800oC), H2Se concentration (0-40 ppm), and especially on the extent of anodic polarization (0 to ~0.5 V). The first level of response was characterized by a rapid but modest decrease in power density to a new steady state, with no further degradation observed in tests up to 700 hours in duration. Mostly observed at high temperatures, low H2Se concentrations, and low anodic polarizations, this response level was similar to effects caused by themore » presence of H2S, but with slower onset and lower reversibility. Higher anodic polarization at a constant current could trigger a second level of response characterized by oscillatory behavior involving cycles of rapid performance loss followed by rapid recovery. Oscillations at the constant current density were accompanied by the appearance and disappearance of a new feature in the electrochemical impedance spectrum with a summit frequency of ~100 Hz. Oscillatory behavior ceased when the current density was lowered. Such behavior was not observed for cells operated at a constant potential of similar magnitude, though. A third level of response, irreversible cell failure, could be induced by further increases in anodic polarization, additionally favored by low temperature and high H2Se concentration. Post-test analyses of failed cells by electron microscopy revealed the extensive microstructural changes including the appearance of nickel oxide and nickel selenide alteration phases, only at the anode/electrolyte interface. From bulk thermochemical considerations the formation of nickel selenides could not be expected. Local chemical conditions created at the anode/electrolyte interface appear to be of overriding importance with respect to the extent of Ni/YSZ anode interactions with H2Se in coal gas.« less

  9. Cylindrical electron beam diode

    DOEpatents

    Bolduc, Paul E.

    1976-01-01

    A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.

  10. Apparatus and method for electrochemical modification of liquids

    DOEpatents

    James, Patrick I

    2015-04-21

    An apparatus for electrochemical modification of liquid streams employing an electrolytic cell which includes an anode compartment defined by an anode structure where oxidation is effected, containing a liquid electrolyte anolyte, and a cathode compartment defined by a cathode structure where reduction is effected containing a liquid electrolyte catholyte. In addition, the electrolytic cell includes at least one additional compartment arranged at least partially between the anode compartment and the cathode compartment and separated from the anode compartment and the cathode compartment by a separator structure arranged to supports ionic conduction of current between the anode structure and the cathode structure.

  11. Electrochemical Performance Estimation of Anodized AZ31B Magnesium Alloy as Function of Change in the Current Density

    NASA Astrophysics Data System (ADS)

    Girón, L.; Aperador, W.; Tirado, L.; Franco, F.; Caicedo, J. C.

    2017-08-01

    The anodized AZ31B magnesium alloys were synthesized via electrodeposition processes. The aim of this work was to determine the electrochemical behavior of magnesium alloys by using anodized alloys as a protective coating. The anodized alloys were characterized by x-ray diffraction, exhibiting the crystallography orientation for Mg and MgO phases. The x-ray photoelectron spectroscopy was used to determine the chemical composition of anodized magnesium alloys. By using electrochemical impedance spectroscopy and Tafel curves, it was possible to estimate the electrochemical behavior of anodized AZ31B magnesium alloys in Hank's balanced salt solution (HBSS). Scanning electron microscopy was performed to analyze chemical changes and morphological surface changes on anodized Mg alloys due to the reaction in HBSS/anodized magnesium surface interface. Electrochemical behavior in HBSS indicates that the coatings may be a promising material for biomedical industry.

  12. Full color organic light-emitting devices with microcavity structure and color filter.

    PubMed

    Zhang, Weiwei; Liu, Hongyu; Sun, Runguang

    2009-05-11

    This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.

  13. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors

    NASA Astrophysics Data System (ADS)

    Yehezkel, Shani; Auinat, Mahmud; Sezin, Nina; Starosvetsky, David; Ein-Eli, Yair

    2016-04-01

    Carbon nanotubes (CNT) fabrics were studied and evaluated as anode current collectors, replacing the traditional copper foil current collector in Li-ion batteries. Glavanostatic measurements reveal high values of irreversible capacities (as high as 28%), resulted mainly from the formation of the solid electrolyte interphase (SEI) layer at the CNT fabric surface. Various pre-treatments to the CNT fabric prior to active anode material loading have shown that the lowest irreversible capacity is achieved by immersing and washing the CNT fabric with iso-propanol (IPA), which dramatically modified the fabric surface. Additionally, the use of very thin CNT fabrics (5 μm) results in a substantial irreversible capacity minimization. A combination of IPA rinse action and utilization of the thinnest CNT fabric provides the lowest irreversible capacity of 13%. The paper describes innovative and rather simple techniques towards a complete implementation of CNT fabric as an anode current collector in Li-ion batteries, instead of the relatively heavy and expensive copper foil, enabling an improvement in the gravimetric and volumetric energy densities of such advanced batteries.

  14. Electrochemical reduction of UO2 in LiCl-Li2O molten salt using porous and nonporous anode shrouds

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Won, Chan Yeon; Cha, Ju-Sun; Park, Wooshin; Im, Hun Suk; Hong, Sun-Seok; Hur, Jin-Mok

    2014-01-01

    Electrochemical reductions of uranium oxide in a molten LiCl-Li2O electrolyte were carried out using porous and nonporous anode shrouds. The study focused on the effect of the type of anode shroud on the current density by running experiments with six anode shrouds. Dense ceramics, MgO, and MgO (3 wt%) stabilized ZrO2 (ZrO2-MgO) were used as nonporous shrouds. STS 20, 100, and 300 meshes and ZrO2-MgO coated STS 40 mesh were used as porous shrouds. The current densities (0.34-0.40 A cm-2) of the electrolysis runs using the nonporous anode shrouds were much lower than those (0.76-0.79 A cm-2) of the runs using the porous shrouds. The ZrO2-MgO shroud (600-700 MPa at 25 °C) showed better bending strength than that of MgO (170 MPa at 25 °C). The high current densities achieved in the electrolysis runs using the porous anode shrouds were attributed to the transport of O2- ions through the pores in meshes of the shroud wall. ZrO2-MgO coating on STS mesh was chemically unstable in a molten LiCl-Li2O electrolyte containing Li metal. The electrochemical reduction runs using STS 20, 100, and 300 meshes showed similar current densities in spite of their different opening sizes. The STS mesh shrouds which were immersed in a LiCl-Li2O electrolyte were stable without any damage or corrosion.

  15. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    PubMed

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Neutron monitoring and electrode calorimetry experiments in the HIP-1 Hot Ion Plasma

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Layman, R. W.

    1977-01-01

    Results are presented for two diagnostic procedures on HIP-1: neutron diagnostics to determine where neutrons originated within the plasma discharge chamber and electrode calorimetry to measure the steady-state power absorbed by the two anodes and cathodes. Results are also reported for a hot-ion plasma formed with a continuous-cathode rod, one that spans the full length of the test section, in place of the two hollow cathodes. The outboard neutron source strength increased relative to that at the midplane when (1) the cathode tips were moved farther outboard, (2) the anode diameters were increased, and (3) one of the anodes was removed. The distribution of neutron sources within the plasma discharge chamber was insensitive to the division of current between the two cathodes. For the continuous cathode, increasing the discharge current increased the midplane neutron source strength relative to the outboard source strength. Each cathode absorbed from 12 to 15 percent of the input power regardless of the division of current between the cathodes. The anodes absorbed from 20 to 40 percent of the input power. The division of power absorption between the anodes varied with plasma operating conditions and electrode placement.

  17. The performance of 3-D graphite doped anodes in microbial electrolysis cells

    NASA Astrophysics Data System (ADS)

    Yasri, Nael G.; Nakhla, George

    2017-02-01

    This study investigated the use of granular activated carbon (GAC) as high surface area 3-dimensional (3-D) anode in MECs systems. The interfacial anodes' charge transfer resistance of the doped GAC did not impact the overall performance of MECs. Based on our finding, the 3-D anode packed with GAC-doped with nonconductive calcium sulfide (CaS) outperformed the more conductive iron (II) sulfide (FeS), magnetite (Fe3O4), or GAC without doping. The results showed higher current densities for 3-D CaS (40.1 A/m3), as compared with 3-D FeS (34.4 A/m3), 3-D Fe3O4 (29.8 A/m3), and 3-D GAC (23.1 A/m3). The higher current density in the 3-D CaS translated to higher coulombic efficiency (96.7%), hydrogen yield (3.6 mol H2/mol acetate), and attached biomass per anode mass (54.01 mg COD biomass/g GAC). Although the 3-D MEC achieved similar hydrogen yield, hydrogen recovery efficiency, and COD removal rate to a conventional sandwich type MEC, the current density, coulombic efficiency, and overall energy efficiency were higher.

  18. Heat transfer in GTA welding arcs

    NASA Astrophysics Data System (ADS)

    Huft, Nathan J.

    Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

  19. Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes.

    PubMed

    Richter, Hanno; Lanthier, Martin; Nevin, Kelly P; Lovley, Derek R

    2007-08-01

    The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.

  20. Corrosion behavior of binary titanium aluminide intermetallics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saffarian, H.M.; Gan, Q.; Hadkar, R.

    1996-08-01

    The corrosion behavior of arc-melted binary titanium aluminide intermetallics TiAl, Ti{sub 2}Al, and TiAl{sub 3} in aqueous sodium sulfate and sodium chloride solutions was measured and compared to that of pure Ti and Al. Effects of electrolyte composition (e.g., sulfate [0.25 M SO{sub 4}{sup 2}{sup {minus}}], chloride [0.1 to 1.0 M Cl{sup {minus}}], and pH [3 to 10]) were examined. Anodic polarization of titanium aluminides in aqueous SO{sub 4}{sup 2}{sup {minus}} solutions was similar (showing passive behavior), but no pitting or pitting potential (E{sub pit}) was observed. In aqueous NaCl, however, titanium aluminides were susceptible to pitting, and E{sub pit}more » decreased with increasing Al content (i.e., Ti{sub 3}Al had the highest E{sub pit} and, therefore, a greater resistance to pitting, followed by TiAl and TiAl{sub 3}). For TiAl, E{sub pit} was slightly dependent upon pH or Cl{sup {minus}} concentration. Pit morphology and E{sub pit} values were quite different for TiAl compared to Ti{sub 3}Al. TiAl showed numerous small pits, whereas Ti{sub 3}Al exhibited fewer but larger and deeper pits. The larger pit density for TiAl was associated with Al-rich interdendrite regions. One interesting feature of the anodic polarization curves for Ti{sub 3}Al was a small anodic peak frequently observed at {approximately}1.4 V{sub SCE} to 1.8 V{sub SCE}. Results suggested this peak was associated with pit initiation, since pitting initiated concurrently with the peak or immediately afterward.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stygar, W.A.; Spielman, R.B.; Allshouse, G.O.

    The 36-module Z accelerator was designed to drive z-pinch loads for weapon-physics and inertial-confinement-fusion experiments, and to serve as a testing facility for pulsed-power research required to develop higher-current drivers. The authors have designed and tested a 10-nH 1.5-m-radius vacuum section for the Z accelerator. The vacuum section consists of four vacuum flares, four conical 1.3-m-radius magnetically-insulated transmission lines, a 7.6-cm-radius 12-post double-post-hole convolute which connects the four outer MITLs in parallel, and a 5-cm-long inner MITL which connects the output of the convolute to a z-pinch load. IVORY and ELECTRO calculations were performed to minimize the inductance of themore » vacuum flares with the constraint that there be no significant electron emission from the insulator-stack grading rings. Iterative TLCODE calculations were performed to minimize the inductance of the outer MITLs with the constraint that the MITL electron-flow-current fraction be {le} 7% at peak current. The TLCODE simulations assume a 2.5 cm/{micro}s MITL-cathode-plasma expansion velocity. The design limits the electron dose to the outer-MITL anodes to 50 J/g to prevent the formation of an anode plasma. The TLCODE results were confirmed by SCREAMER, TRIFL, TWOQUICK, IVORY, and LASNEX simulations. For the TLCODE, SCREAMER, and TRIFL calculations, the authors assume that after magnetic insulation is established, the electron-flow current launched in the outer MITLs is lost at the convolute. This assumption has been validated by 3-D QUICKSILVER simulations for load impedances {le} 0.36 ohms. LASNEX calculations suggest that ohmic resistance of the pinch and conduction-current-induced energy loss to the MITL electrodes can be neglected in Z power-flow modeling that is accurate to first order. To date, the Z vacuum section has been tested on 100 shots. They have demonstrated they can deliver a 100-ns rise-time 20-MA current pulse to the baseline z-pinch load.« less

  2. Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery.

    PubMed

    Wang, Lei; Wang, Dong; Dong, Zhihui; Zhang, Fengxing; Jin, Jian

    2013-04-10

    From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO2 composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO2-based electrode materials. RGO/SnO2 composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO2 composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.

  3. Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes.

    PubMed

    Vasudevan, Subramanyan; Lakshmi, Jothinathan; Jayaraj, Jeganathan; Sozhan, Ganapathy

    2009-05-30

    The present study provides an electrocoagulation process for the remediation of phosphate-contaminated water using aluminium, aluminium alloy and mild steel as the anodes and stainless steel as the cathode. The various parameters like effect of anode materials, effect of pH, concentration of phosphate, current density, temperature and co-existing ions, and so forth, and the adsorption capacity was evaluated using both Freundlich and Langmuir isotherm models. The adsorption of phosphate preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The results showed that the maximum removal efficiency of 99% was achieved with aluminium alloy anode at a current density of 0.2 A dm(-2), at a pH of 7.0. The adsorption process follows second-order kinetics.

  4. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  5. Inter-cusp Ion and Electron Transport in a Nstar-derivative Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.

  6. Ion and Electron Transport in an Nstar-derivative Ion Thruster. Revised

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.

  7. Cu-Ni-Fe anodes having improved microstructure

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  8. Manipulating Water in High-Performance Hydroxide Exchange Membrane Fuel Cells through Asymmetric Humidification and Wetproofing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, RB; Letterio, MP; Wittkopf, JA

    Hydroxide exchange membrane fuel cells (HEMFCs) are an emerging low-cost alternative to conventional proton exchange membrane fuel cells. In addition to producing water at the anode, HEMFCs consume water at the cathode, leading to distinctive water transport behavior. We report that gas diffusion layer (GDL) wetproofing strictly lowers cell performance, but that the penalty is much higher when the anode side is wetproofed compared to the cathode side. We attribute this penalty primarily to mass transport losses from anode flooding, suggesting that cathode humidification may be more beneficial than anode humidification for this device. GDLs with little or no wetproofingmore » perform best, yielding a competitive peak power density of 737 mW cm(-2). (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, hup://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less

  9. Polymer nanoimprinting using an anodized aluminum mold for structural coloration

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-06-01

    Polymer nanoimprinting of submicrometer-scale dimple arrays with structural coloration was demonstrated. Highly ordered aluminum dimple arrays measuring 530-670 nm in diameter were formed on an aluminum substrate via etidronic acid anodizing at 210-270 V and subsequent anodic oxide dissolution. The nanostructured aluminum surface led to bright structural coloration with a rainbow spectrum, and the reflected wavelength strongly depends on the angle of the specimen and the period of the dimple array. The reflection peak shifts gradually with the dimple diameter toward longer wavelength, reaching 800 nm in wavelength at 670 nm in diameter. The shape of the aluminum dimple arrays were successfully transferred to a mercapto-ester ultra-violet curable polymer via self-assembled monolayer coating and polymer replications using a nanoimprinting technique. The nanostructured polymer surfaces with positively and negatively shaped dimple arrays also exhibited structural coloration based on the periodic nanostructure, and reflected light mostly in the visible region, 400-800 nm. This nanostructuring with structural coloration can be easily realized by simple techniques such as anodizing, SAM coating, and nanoimprinting.

  10. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    PubMed

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition.

    PubMed

    Mooney, Ronan A; Cirillo, John; Byblow, Winston D

    2018-06-01

    Primary motor cortex excitability can be modulated by anodal and cathodal transcranial direct current stimulation (tDCS). These neuromodulatory effects may, in part, be dependent on modulation within gamma-aminobutyric acid (GABA)-mediated inhibitory networks. GABAergic function can be quantified non-invasively using adaptive threshold hunting paired-pulse transcranial magnetic stimulation (TMS). The previous studies have used TMS with posterior-anterior (PA) induced current to assess tDCS effects on inhibition. However, TMS with anterior-posterior (AP) induced current in the brain provides a more robust measure of GABA-mediated inhibition. The aim of the present study was to assess the modulation of corticomotor excitability and inhibition after anodal and cathodal tDCS using TMS with PA- and AP-induced current. In 16 young adults (26 ± 1 years), we investigated the response to anodal, cathodal, and sham tDCS in a repeated-measures double-blinded crossover design. Adaptive threshold hunting paired-pulse TMS with PA- and AP-induced current was used to examine separate interneuronal populations within M1 and their influence on corticomotor excitability and short- and long-interval inhibition (SICI and LICI) for up to 60 min after tDCS. Unexpectedly, cathodal tDCS increased corticomotor excitability assessed with AP (P = 0.047) but not PA stimulation (P = 0.74). SICI AP was reduced after anodal tDCS compared with sham (P = 0.040). Pearson's correlations indicated that SICI AP and LICI AP modulation was associated with corticomotor excitability after anodal (P = 0.027) and cathodal tDCS (P = 0.042). The after-effects of tDCS on corticomotor excitability may depend on the direction of the TMS-induced current used to make assessments, and on modulation within GABA-mediated inhibitory circuits.

  12. Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture.

    PubMed

    Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano

    2014-12-02

    This paper describes the detrimental effect of photosynthetically evolved oxygen on anodic current generation in the presence of riboflavin upon illumination of a mixed phototrophic culture enriched from a freshwater pond at +0.6 V vs standard hydrogen electrode. In the presence of riboflavin, the phototrophic biomass in the anodic compartment produced an electrical current in response to light/dark cycles (12 h/12 h) over 12 months of operation, generating a maximum current density of 17.5 mA x m(-2) during the dark phase, whereas a much lower current of approximately 2 mA x m(-2) was generated during illumination. We found that the low current generation under light exposure was caused by high rates of reoxidation of reduced riboflavin by oxygen produced during photosynthesis. Quantification of biomass by fluorescence in situ hybridization images suggested that green algae were predominant in both the anode-based biofilm (55.1%) and the anolyte suspension (87.9%) with the remaining biovolume accounted for by bacteria. Genus-level sequencing analysis revealed that bacteria were dominated by cyanobacterium Leptolyngbia (∼35%), while the prevailing algae were Dictyosphaerium, Coelastrum, and Auxenochlorella. This study offers a key comprehension of mediator sensitivity to reoxidation by dissolved oxygen for improvement of microbial solar cell performance.

  13. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    NASA Astrophysics Data System (ADS)

    Xu, Shoutao

    Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m2) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m2 generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors. Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to contribute current increase in CNT decorated anode MECs. The up regulated genes encoded to flavin also contribute to current enhancement in CNT decorated anode MECs.

  14. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    NASA Technical Reports Server (NTRS)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  15. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    DOE PAGES

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan; ...

    2017-11-06

    We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cyclemore » causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.« less

  16. Simulative research on the anode plasma dynamics in the high-power electron beam diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Dan; Liu, Lie; Ju, Jin-Chuan

    2015-07-15

    Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anodemore » gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.« less

  17. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries.

    PubMed

    Chen, Renjie; Zhao, Teng; Wu, Weiping; Wu, Feng; Li, Li; Qian, Ji; Xu, Rui; Wu, Huiming; Albishri, Hassan M; Al-Bogami, A S; El-Hady, Deia Abd; Lu, Jun; Amine, Khalil

    2014-10-08

    Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one-dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage, Li-ion batteries, and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type architecture as anode for lithium-ion batteries for the first time. The graphene-based hierarchical architecture plays vital roles in achieving fast electron/ion transfer, thus leading to good electrochemical performance. When evaluated as anode, WS2-NTs/GS hybrid could maintain a capacity of 318.6 mA/g over 500 cycles at a current density of 1A/g. Besides, the hybrid anode does not require any additional polymetric binder, conductive additives, or a separate metal current-collector. The relatively high density of this hybrid is beneficial for high capacity per unit volume. Those characteristics make it a potential anode material for light and high-performance lithium-ion batteries.

  18. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan

    We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cyclemore » causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.« less

  19. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1.

    PubMed

    Kipf, Elena; Koch, Julia; Geiger, Bettina; Erben, Johannes; Richter, Katrin; Gescher, Johannes; Zengerle, Roland; Kerzenmacher, Sven

    2013-10-01

    We present a systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Under anoxic conditions nanoporous activated carbon cloth is a superior anode material in terms of current density normalized to the projected anode area and anode volume (24.0±0.3 μA cm(-2) and 482±7 μA cm(-3) at -0.2 vs. SCE, respectively). The good performance can be attributed to the high specific surface area of the material, which is available for mediated electron transfer through self-secreted flavins. Under aerated conditions no influence of the specific surface area is observed, which we attribute to a shift from primary indirect electron transfer by mediators to direct electron transfer via adherent cells. Furthermore, we show that an aerated initial growth phase enhances the current density under subsequent anoxic conditions fivefold when compared to a similar experiment that was conducted under permanently anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    NASA Astrophysics Data System (ADS)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  1. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials.

    PubMed

    Sun, Xuejiao; Shao, Changzhen; Zhang, Feng; Li, Yi; Wu, Qi-Hui; Yang, Yonggang

    2018-01-01

    The development of high energy lithium-ion batteries (LIBs) has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic β-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g -1 after 250 cycles at a current density of 0.1 A g -1 . It is interesting that a high discharge capacity of 540.1 mAh g -1 was achieved after 500 cycles at an even higher current density of 0.3 A g -1 , which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.

  2. Investigation of residual anode material after electrorefining uranium in molten chloride salt

    NASA Astrophysics Data System (ADS)

    Rose, M. A.; Williamson, M. A.; Willit, J.

    2015-12-01

    A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl3. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U3+ ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl3 or in the case of the eutectic salt for K2UCl5. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K2UCl5 is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.

  3. Internal passivation of Al-based microchannel devices by electrochemical anodization

    NASA Astrophysics Data System (ADS)

    Hymel, Paul J.; Guan, D. S.; Mu, Yang; Meng, W. J.; Meng, Andrew C.

    2015-02-01

    Metal-based microchannel devices have wide-ranging applications. We report here a method to electrochemically anodize the internal surfaces of Al microchannels, with the purpose of forming a uniform and dense anodic aluminum oxide (AAO) layer on microchannel internal surfaces for chemical passivation and corrosion resistance. A pulsed electrolyte flow was utilized to emulate conventional anodization processes while replenishing depleted ionic species within Al microtubes and microchannels. After anodization, the AAO film was sealed in hot water to close the nanopores. Focused ion beam (FIB) sectioning, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were utilized to characterize the AAO morphology and composition. Potentiodynamic polarization corrosion testing of anodized Al microtube half-sections in a NaCl solution showed an order of magnitude decrease in anodic corrosion current when compared to an unanodized tube. The surface passivation process was repeated for Al-based microchannel heat exchangers. A corrosion testing method based on the anodization process showed higher resistance to ion transport through the anodized specimens than unanodized specimens, thus verifying the internal anodization and sealing process as a viable method for surface passivation of Al microchannel devices.

  4. On the mechanisms of cation injection in conducting bridge memories: The case of HfO{sub 2} in contact with noble metal anodes (Au, Cu, Ag)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saadi, M.; CNRS, LTM, F-38000 Grenoble; El Manar University, LMOP, 2092 Tunis

    Resistance switching is studied in HfO{sub 2} as a function of the anode metal (Au, Cu, and Ag) in view of its application to resistive memories (resistive random access memories, RRAM). Current-voltage (I-V) and current-time (I-t) characteristics are presented. For Au anodes, resistance transition is controlled by oxygen vacancies (oxygen-based resistive random access memory, OxRRAM). For Ag anodes, resistance switching is governed by cation injection (Conducting Bridge random access memory, CBRAM). Cu anodes lead to an intermediate case. I-t experiments are shown to be a valuable tool to distinguish between OxRRAM and CBRAM behaviors. A model is proposed to explainmore » the high-to-low resistance transition in CBRAMs. The model is based on the theory of low-temperature oxidation of metals (Cabrera-Mott theory). Upon electron injection, oxygen vacancies and oxygen ions are generated in the oxide. Oxygen ions are drifted to the anode, and an interfacial oxide is formed at the HfO{sub 2}/anode interface. If oxygen ion mobility is low in the interfacial oxide, a negative space charge builds-up at the HfO{sub 2}/oxide interface. This negative space charge is the source of a strong electric field across the interfacial oxide thickness, which pulls out cations from the anode (CBRAM case). Inversely, if oxygen ions migration through the interfacial oxide is important (or if the anode does not oxidize such as Au), bulk oxygen vacancies govern resistance transition (OxRRAM case).« less

  5. Implementation and Initial Validation of a 100-Kilowatt Class Nested-Channel Hall Thruster

    NASA Technical Reports Server (NTRS)

    Hall, Scott J.; Florenz, Roland E.; Gallimore, Alec D.; Kamhawi, Hani; Brown, Daniel L.; Polk, James E.; Goebel, Dan; Hofer, Richard R.

    2014-01-01

    The X3 is a 100-kilowatt class nested-channel Hall thruster developed by the Plasmadynamics and Electric Propulsion Laboratory at the University of Michigan in collaboration with the Air Force Research Laboratory and NASA. The cathode, magnetic circuit, boron nitride channel rings, and anodes all required specific design considerations during thruster development, and thermal modeling was used to properly account for thermal growth in material selection and component design. A number of facility upgrades were required at the University of Michigan to facilitate operation of the X3. These upgrades included a re-worked propellant feed system, a completely redesigned power and telemetry break-out box, and numerous updates to thruster handling equipment. The X3 was tested on xenon propellant at two current densities, 37% and 73% of the nominal design value. It was operated to a maximum steady-state discharge power of 60.8 kilowatts. The tests presented here served as an initial validation of thruster operation. Thruster behavior was monitored with telemetry, photography and high-speed current probes. The photography showed a uniform plume throughout testing. At constant current density, reductions in mass flow rate of 18% and 26% were observed in the three-channel operating configuration as compared to the superposition of each channel running individually. The high-speed current probes showed that the thruster was stable at all operating points and that the channels influence each other when more than one is operating simultaneously. Additionally, the ratio of peak-to-peak AC-coupled discharge current oscillations to mean discharge current did not exceed 51% for any operating points reported here, and did not exceed 17% at the higher current density.

  6. Taguchi Optimization of Pulsed Current GTA Welding Parameters for Improved Corrosion Resistance of 5083 Aluminum Welds

    NASA Astrophysics Data System (ADS)

    Rastkerdar, E.; Shamanian, M.; Saatchi, A.

    2013-04-01

    In this study, the Taguchi method was used as a design of experiment (DOE) technique to optimize the pulsed current gas tungsten arc welding (GTAW) parameters for improved pitting corrosion resistance of AA5083-H18 aluminum alloy welds. A L9 (34) orthogonal array of the Taguchi design was used, which involves nine experiments for four parameters: peak current ( P), base current ( B), percent pulse-on time ( T), and pulse frequency ( F) with three levels was used. Pitting corrosion resistance in 3.5 wt.% NaCl solution was evaluated by anodic polarization tests at room temperature and calculating the width of the passive region (∆ E pit). Analysis of variance (ANOVA) was performed on the measured data and S/ N (signal to noise) ratios. The "bigger is better" was selected as the quality characteristic (QC). The optimum conditions were found as 170 A, 85 A, 40%, and 6 Hz for P, B, T, and F factors, respectively. The study showed that the percent pulse-on time has the highest influence on the pitting corrosion resistance (50.48%) followed by pulse frequency (28.62%), peak current (11.05%) and base current (9.86%). The range of optimum ∆ E pit at optimum conditions with a confidence level of 90% was predicted to be between 174.81 and 177.74 mVSCE. Under optimum conditions, the confirmation test was carried out, and the experimental value of ∆ E pit of 176 mVSCE was in agreement with the predicted value from the Taguchi model. In this regard, the model can be effectively used to predict the ∆ E pit of pulsed current gas tungsten arc welded joints.

  7. Hydrogen and Sulfur from Hydrogen Sulfide. 5. Anodic Oxidation of Sulfur on Activated Glassy Carbon

    DTIC Science & Technology

    1988-12-05

    electrolyses of H S can probably be carried out at high rates with modest cell voltages in the range 1-1.5 V. The variation in anode current densities...of H2S from solutions of NaSH in aqueous NaOH was achieved using suitably ac- tivated glassy carbon anodes. Thus electrolyses of H2S can probably be...passivation by using a basic solvent at 850C. Using an H2S-saturated 6M NaOH solution, they conducted electrolyses for extended periods at current densities

  8. The preparation of high quality alumina defective photonic crystals and their application of photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    An, Yu-Ying; Wang, Jian; Zhou, Wen-Ming; Jin, Hong-Xia; Li, Jian-Feng; Wang, Cheng-Wei

    2018-07-01

    The high quality anodic aluminum oxide (AAO) defective photonic crystals (DPCs) have been successfully prepared by using a modified periodic pulse anodization technique including an effective voltage compensating strategy. The test results confirmed that the AAO DPCs were with a perfect regular layered-structure and had a narrow defective photonic band gap (DPBG) with a high quality defective mode. When the rhodamine B (rhB) was absorbed onto the pore walls of the AAO DPCs, it was found that the DPBG blue edge and localized defective mode inside could significantly enhance the photoluminescence (PL) intensity of rhodamine B (rhB), while they were carefully regulated to match with the emission peak position of rhB respectively. Even more intriguing was that the localized defective peak in DPBG had more notable effect on rhB's photoluminescence, 3.1 times higher than that of the control samples under the same conditions. The corresponding mechanism for photoluminescence enhancement was also discussed in detail.

  9. Hydrogen sulfide-powered solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Man

    2004-12-01

    The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts comprising Co-Mo-S admixed with up to 10% Ag powder were found to have excellent performance and longevity, as well as improved electrical contact when compared with Pt/M-Mo-S anode systems. The highest current density of 450 mA/cm2 and power density of 115 mW/cm2 were achieved with an anode that consisted of 95% (Co-Mo-S) and 5% Ag.

  10. Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries.

    PubMed

    Yu, Xiuhong; Xue, Fanghong; Huang, Hao; Liu, Chunjing; Yu, Jieyi; Sun, Yuejun; Dong, Xinglong; Cao, Guozhong; Jung, Youngguan

    2014-06-21

    Two-dimensional (2D) ultrathin silicon nanosheets (Si NSs) were synthesized by DC arc discharge method and investigated as anode material for Li-ion batteries. The 2D ultrathin characteristics of Si NSs is confirmed by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). The average size of Si NSs is about 20 nm, with thickness less than 2.5 nm. The characteristic Raman peak of Si NSs is found to have an appreciable (20 nm) shift to low frequency, presumably due to the size effect. The synergistic effects of Ar(+) and H(+) lead to 2D growth of Si NSs under high temperature and energy. Electrochemical analyses reveal that Si NSs anode possesses stable cycling performance and fast diffusion of Li-ions with insertion/extraction processes. Such Si NSs might be a promising candidate for anode of Li-ion batteries.

  11. [Simultaneous determination of trace amounts of zinc, cadmium, lead and copper by the method of anodic voltammetry using factor experimental design].

    PubMed

    Koen, E

    1975-01-01

    Using the method of factor planning of the experiment, the author studies and demonstrates the influence exerted by the potential and time of electrolysis, and by the concentration of the background and elements on the heights of anodal peaks upon simultaneous determination of zinc, cadmium, lead and copper microconcentrations. On the ground of statistical elaboration of the results, the optimal condition for polarographic determination through anodal voltamperometry are outlined. According to the cyclic voltametry method, the electrod processes reversibility for zinc, cadmium and lead, as well as the incomplete reversibility for copper are established; the number of electrons participating in the electrochemical reaction are found using the method of gas coulometry. The possibility of simultaneous determination of the four elements' ultramicroconcentrations after the method of voltamperometry with enrichment is proved. The standard deviation is in the range 3.02 to 4.9.

  12. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    NASA Astrophysics Data System (ADS)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  13. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, Frank A.; Townsend, Carl W.

    1989-01-01

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  14. Incorporation of Ca and P on anodized titanium surface: Effect of high current density.

    PubMed

    Laurindo, Carlos A H; Torres, Ricardo D; Mali, Sachin A; Gilbert, Jeremy L; Soares, Paulo

    2014-04-01

    This study systematically evaluated the surface and corrosion characteristics of commercially pure titanium (grade 2) modified by plasma electrolytic oxidation (PEO) with high current density. The anodization process was carried out galvanostatically (constant current density) using a solution containing calcium glycerophosphate (0.02mol/L) and calcium acetate (0.15mol/L). The current densities applied were 400, 700, 1000 and 1200mA/cm(2) for a period of 15s. Composition, crystalline structure, morphology, roughness, wettability and "in-vitro" bioactivity test in SBF of the anodized layer were evaluated by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, profilometry and contact angle measurements. Corrosion properties were evaluated by open circuit potential, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results show that the TiO2 oxide layers present an increase of thickness, porosity, roughness, wettability, Ca/P ratio, and bioactivity, with the applied current density up to 1000mA/cm(2). Corrosion resistance also increases with applied current density. It is observed that for 1200mA/cm(2), there is a degradation of the oxide layer. In general, the results suggest that the anodized TiO2 layer with better properties is formed with an applied current of 1000mA/cm(2). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Aluminum low temperature smelting cell metal collection

    DOEpatents

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  16. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focusmore » of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has been installed twice on a smelter in the US without exposing workers to hazards usually associated with running signal wires in aluminum plants. The results display the early warning of an anode effect that potentially can be used to minimize such anode effects with their excessive GHG emissions. They also point to a possible, but substantial, economic benefit that could result in improved current efficiency by anode adjustment based on individual anode current measurements.« less

  17. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.A. Christini; R.K. Dawless; S.P. Ray

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase andmore » Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.« less

  18. One-step fabrication of nanostructure-covered microstructures using selective aluminum anodization based on non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho

    2016-06-01

    This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.

  19. Current-Voltage Characteristics of Nb2O5 nanoporous via light illumination

    NASA Astrophysics Data System (ADS)

    Samihah Khairir, Nur; Rani, Rozina Abdul; Fazlida Hanim Abdullah, Wan; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.; Sabirin Zoolfakar, Ahmad

    2018-03-01

    This work discussed the effect of light on I-V characteristics of anodized niobium pentoxide (Nb2O5) which formed nanoporous structure film. The structure was synthesized by anodizing niobium foils in glycerol based solution with 10 wt% supplied by two different voltages, 5V and 10V. The anodized foils that contained Nb2O5 film were then annealed to obtain an orthorhombic phase for 30 minutes at 450°C. The metal contact used for I-V testing was platinum (Pt) and it was deposited using thermal evaporator at 30nm thickness. I-V tests were conducted under different condition; dark and illumination to study the effect of light on I-V characteristics of anodized nanoporous Nb2O5. Higher anodization voltage and longer anodization time resulted in higher pore dispersion and larger pore size causing the current to increase. The increase of conductivity in I-V behaviour of Nb2O5 device is also affected by the illumination test as higher light intensity caused space charge region width to increase, thus making it easier for electron transfer between energy band gap.

  20. Anomalous acceleration of ions in a plasma accelerator with an anodic layer

    NASA Astrophysics Data System (ADS)

    V, M. BARDAKOV; S, D. IVANOV; A, V. KAZANTSEV; N, A. STROKIN; A, N. STUPIN; Binhao, JIANG; Zhenyu, WANG

    2018-03-01

    In a plasma accelerator with an anodic layer (PAAL), we discovered experimentally the effect of ‘super-acceleration’ of the bulk of the ions to energies W exceeding the energy equivalent to the discharge voltage V d. The E × B discharge was ignited in an environment of atomic argon and helium and molecular nitrogen. Singly charged argon ions were accelerated most effectively in the case of the largest discharge currents and pressure P of the working gas. Helium ions with W > eV d (e being the electron charge) were only recorded at maximum pressures. Molecular nitrogen was not accelerated to energies W > eV d. Anomalous acceleration is realized in the range of radial magnetic fields on the anode 2.8 × 10 -2 ≤ B rA ≤ 4 × 10 -2 T. It was also found analytically that the cathode of the accelerator can receive anomalously accelerated ions. In this case, the value of the potential in the anodic layer becomes higher than the anode potential, and the anode current exceeds some critical value. Numerical modeling in terms of the developed theory showed qualitative agreement between modeling data and measurements.

  1. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands.

    PubMed

    Cho, Jeong-Hyun; Picraux, S Tom

    2013-01-01

    It is well-known that one-dimensional nanostructures reduce pulverization of silicon (Si)-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nanowire-based structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than ~1000 mA·h/g discharge capacity over 1100 cycles.

  2. Determining localized anode condition to maintain effective corrosion protection.

    DOT National Transportation Integrated Search

    2010-01-01

    Thermal sprayed zinc anodes used for impressed current cathodic protection of reinforced concrete deteriorate over time. : Two different technologies, ultrasound and electrical circuit resistance combined with water permeability, were : investigated ...

  3. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  4. A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Lee, Chan Mi; Kwon, Sun Il; Ko, Guen Bae; Ito, Mikiko; Yoon, Hyun Suk; Lee, Dong Soo; Jong Hong, Seong; Lee, Jae Sung

    2012-01-01

    The position-sensitive multi-anode photomultiplier tube (MA-PMT) is widely used in high-resolution scintillation detectors. However, the anode gain non-uniformity of this device is a limiting factor that degrades the intrinsic performance of the detector module. The aim of this work was to develop a gain compensation method for the MA-PMT and evaluate the resulting enhancement in the performance of the detector. The method employs a circuit that is composed only of resistors and is placed between the MA-PMT and a resistive charge division network (RCN) used for position encoding. The goal of the circuit is to divide the output current from each anode, so the same current flows into the RCN regardless of the anode gain. The current division is controlled by the combination of a fixed-value series resistor with an output impedance that is much larger than the input impedance of the RCN, and a parallel resistor, which detours part of the current to ground. PSpice simulations of the compensation circuit and the RCN were performed to determine optimal values for the compensation resistors when used with Hamamatsu H8500 MA-PMTs. The intrinsic characteristics of a detector module consisting of this MA-PMT and a lutetium-gadolinium-oxyorthosilicate (LGSO) crystal array were tested with and without the gain compensation method. In simulation, the average coefficient of variation and max/min ratio decreased from 15.7% to 2.7% and 2.0 to 1.2, respectively. In the flood map of the LGSO-H8500 detector, the uniformity of the photopeak position for individual crystals and the energy resolution were much improved. The feasibility of the method was shown by applying it to an octagonal prototype positron emission tomography scanner.

  5. Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode.

    PubMed

    Jensen, Ralph J; Rizzo, Joseph F; Ziv, Ofer R; Grumet, Andrew; Wyatt, John

    2003-08-01

    To determine electrical thresholds required for extracellular activation of retinal ganglion cells as part of a project to develop an epiretinal prosthesis. Retinal ganglion cells were recorded extracellularly in retinas isolated from adult New Zealand White rabbits. Electrical current pulses of 100- micro s duration were delivered to the inner surface of the retina from a 5- micro m long electrode. In about half of the cells, the point of lowest threshold was found by searching with anodal current pulses; in the other cells, cathodal current pulses were used. Threshold measurements were obtained near the cell bodies of 20 ganglion cells and near the axons of 19 ganglion cells. Both cathodal and anodal stimuli evoked a neural response in the ganglion cells that consisted of a single action potential of near-constant latency that persisted when retinal synaptic transmission was blocked with cadmium chloride. For cell bodies, but not axons, thresholds for both cathodal and anodal stimulation were dependent on the search method used to find the point of lowest threshold. With search and stimulation of matching polarity, cathodal stimuli evoked a ganglion cell response at lower currents (approximately one seventh to one tenth axonal threshold) than did anodal stimuli for both cell bodies and axons. With cathodal search and stimulation, cell body median thresholds were somewhat lower (approximately one half) than the axonal median thresholds. With anodal search and stimulation, cell body median thresholds were approximately the same as axonal median thresholds. The results suggest that cathodal stimulation should produce lower thresholds, more localized stimulation, and somewhat better selectivity for cell bodies over axons than would anodal stimulation.

  6. Asymmetric battery having a semi-solid cathode and high energy density anode

    DOEpatents

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2017-11-28

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  7. Asymmetric battery having a semi-solid cathode and high energy density anode

    DOEpatents

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2016-09-06

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  8. Method for providing uranium articles with a corrosion resistant anodized coating

    DOEpatents

    Waldrop, Forrest B.; Washington, Charles A.

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  9. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  10. Effects of direct current on dog liver: Possible mechanisms for tumor electrochemical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K.H.; Gu, Y.N.; Xu, B.I.

    1997-03-01

    Mechanisms of tumor electrochemical treatment (ECT) were studied using normal dog liver. Five physical and chemical methods were used. Two platinum electrodes were inserted into an anesthetized dog`s liver at 3 cm separation. A voltage of 8.5 V direct current (DC) at an average current of 30 mA was applied for 69 min; total charge was 124 coulombs. Concentrations of selected ions near the anode and cathode were measured. The concentrations of Na{sup +} and K{sup +} ions were higher around the cathode, whereas the concentration of Cl{sup {minus}} ions was higher around the anode. Water contents and pH weremore » determined near the anode and the cathode at the midpoint between the two electrodes and in an untreated area away from the electrodes. Hydration occurred around the cathode, and dehydration occurred around the anode. The pH values were 2.1 near the anode and 12.9 near the cathode. Spectrophotometric scans of the liver sample extract were obtained, and the released gases were identified by gas chromatography as chlorine at the anode and hydrogen at the cathode. These results indicate that a series of electrochemical reactions take place during ECT. The cell metabolism and its environment are severely disturbed. Both normal and tumor cells are rapidly and completely destroyed in this altered environment. The authors believe that the above reactions are the ECT mechanisms for treating tumors.« less

  11. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    PubMed

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-07

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.

  12. Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia.

    PubMed

    Meinzer, Marcus; Darkow, Robert; Lindenberg, Robert; Flöel, Agnes

    2016-04-01

    Transcranial direct current stimulation has shown promise to improve recovery in patients with post-stroke aphasia, but previous studies have only assessed stimulation effects on impairment parameters, and evidence for long-term maintenance of transcranial direct current stimulation effects from randomized, controlled trials is lacking. Moreover, due to the variability of lesions and functional language network reorganization after stroke, recent studies have used advanced functional imaging or current modelling to determine optimal stimulation sites in individual patients. However, such approaches are expensive, time consuming and may not be feasible outside of specialized research centres, which complicates incorporation of transcranial direct current stimulation in day-to-day clinical practice. Stimulation of an ancillary system that is functionally connected to the residual language network, namely the primary motor system, would be more easily applicable, but effectiveness of such an approach has not been explored systematically. We conducted a randomized, parallel group, sham-controlled, double-blind clinical trial and 26 patients with chronic aphasia received a highly intensive naming therapy over 2 weeks (8 days, 2 × 1.5 h/day). Concurrently, anodal-transcranial direct current stimulation was administered to the left primary motor cortex twice daily at the beginning of each training session. Naming ability for trained items (n = 60 pictures that could not be named during repeated baseline assessments), transfer to untrained items (n = 284 pictures) and generalization to everyday communication were assessed immediately post-intervention and 6 months later. Naming ability for trained items was significantly improved immediately after the end of the intervention in both the anodal (Cohen's d = 3.67) and sham-transcranial direct current stimulation groups (d = 2.10), with a trend for larger gains in the anodal-transcranial direct current stimulation group (d = 0.71). Treatment effects for trained items were significantly better maintained in the anodal-transcranial direct current stimulation group 6 months later (d = 1.19). Transfer to untrained items was significantly larger in the anodal-transcranial direct current stimulation group after the training (d = 1.49) and during the 6 month follow-up assessment (d = 3.12). Transfer effects were only maintained in the anodal-transcranial direct current stimulation group. Functional communication was significantly more improved in the anodal-transcranial direct current stimulation group at both time points compared to patients treated with sham-transcranial direct current stimulation (d = 0.75-0.99). Our results provide the first evidence from a randomized, controlled trial that transcranial direct current stimulation can improve both function and activity-related outcomes in chronic aphasia, with medium to large effect sizes, and that these effects are maintained over extended periods of time. These effects were achieved with an easy-to-implement and thus clinically feasible motor-cortex montage that may represent a promising 'backdoor' approach to improve language recovery after stroke. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  14. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less

  15. Performance comparison of tin oxide anodes to commercially available dimensionally stable anodes.

    PubMed

    Watts, Richard J; Finn, Dennis D; Wyeth, Megan S; Teel, Amy L

    2008-06-01

    Dimensionally stable anodes (DSAs) demonstrate potential for the electrochemical treatment of industrial waste streams and disinfection of effluent. Oxidation by laboratory-prepared tin oxide DSAs was compared with that of commercially available ruthenium oxide, iridium oxide, and mixed metal oxide DSAs, using hexanol as a probe molecule. The performance of the four anodes was similar in two-chamber reactors, in which the anode cell was separated from the cathode cell by a Nafion membrane, which allows transmission of current between the chambers, but not passage of chemical constituents. The anodes were then evaluated in single-cell reactors, which are more representative of potential treatment and disinfection applications. However, in the single-cell reactors, the tin oxide anodes were significantly more effective at oxidation and generated higher quality cyclic voltammograms than the other DSAs. These results suggest that tin oxide anodes have greater potential than the three commercially available DSAs tested for industrial waste stream treatment and effluent disinfection.

  16. Surface treatments for aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  17. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, Bernard S. Jr.; Cramer, Stephen D.; Bullard, Sophie J.

    2002-03-01

    Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of Transportation. The purposes of the research presented in this report were: evaluate the need for preheating concrete to improve the adhesion of the anode; estimate the service life of thermal spray Zn CP anodes; determine the optimum thickness for Zn CP anodes; characterize the anode-concrete interfacial chemistry; and correlate field and laboratory results. Laboratory studies involved accelerated electrochemical aging of thermal sprayed Zn anodesmore » on concrete slabs, some of which were periodically wetted while others were unwetted. Concrete used in the slabs contained either 1.2 or 3 kg NaCl /m3 (2 or 5 lbs NaCl /yd3) as part of the concrete mix design. The Zn anodes were applied to the slabs using the twin wire arc-spray technique. Half of the slabs were preheated to 120-160 C (250-320 F) to improve the initial Zn anode bond strength and the other half were not. Accelerated aging was done at a current density of 0.032 A/m2 (3 mA/ft2), 15 times that used on Oregon DOT Coastal bridges, i.e, . 0.0022 A/m2 (0.2 mA/ft2) Cores from the Cape Creek Bridge (OR), the Richmond San Rafael Bridge (CA), and the East Camino Underpass (CA) were used to study the anode-concrete interfacial chemistry, to relate the chemistry to electrochemical age at the time of sampling, and to compare the chemistry of the field anodes to the chemistry of anodes from the laboratory studies. Cores from a CALTRANS study of a silane sealant used prior to the application of the Zn anodes and cores with galvanized rebar from the Longbird Bridge (Bermuda) were also studied. Aged laboratory and field anodes were characterized by measuring some or all of the following parameters: thickness, bond strength, anode-concrete interfacial chemistry, bulk chemistry, anode resistance, circuit resistance, electrochemical age, and air and water permeability. Models are presented for the operation of periodically-wetted and unwetted thermal spray Zn anodes from the initial energizing of the anode to the end of its service life. The models were developed in terms of bond strength, circuit resistance, anode-concrete interfacial chemistry, electrochemical age, and anode condition. The most significant results of the research are: (1) preheating concrete surfaces prior to coating with Zn is unnecessary; (2) anodes generally fail due to loss of bond strength rather than Zn consumption; (3) Unwetted anodes fail more quickly than periodically-wetted anodes; (4) 0.47-0.60 mm (12-15 mil) anode thickness is adequate for most Oregon DOT coastal impressed current CP (ICCP) installations; (5) based on bond strength, thermal spray Zn ICCP anode service life is approximately 27 years at 0.0022 A/m2 (0.2 mA/ft2); (6) anode reaction products alter the anode-concrete interface by rejecting Ca from the cement paste, by replacing it with Zn, and by the accumulation of a Zn mineral layer that includes chloride and sulfur compounds; (7) CP system circuit resistance provides an effective means for monitoring the condition of Zn ICCP anodes as they age.« less

  18. Spectroscopic and electrochemical studies of the interaction between oleuropein, the major bio-phenol in olives, and salmon sperm DNA

    NASA Astrophysics Data System (ADS)

    Mohamadi, Maryam; Afzali, Daryoush; Esmaeili-Mahani, Saeed; Mostafavi, Ali; Torkzadeh-Mahani, Masoud

    2015-09-01

    Interaction of oleuropein, the major bio-phenol in olive leaf and fruit, with salmon sperm double-stranded DNA was investigated by employing electronic absorption titrations, fluorescence quenching spectroscopy, competitive fluorescence spectroscopy, thermal denaturation and voltammetric studies. Titration of oleuropein with the DNA caused a hypochromism accompanied with a red shift indicating an intercalative mode of interaction. Binding constant of 1.4 × 104 M-1 was obtained for this interaction. From the curves of fluorescence titration of oleuropein with the DNA, binding constant and binding sites were calculated to be 8.61 × 103 M-1 and 1.05, respectively. Competitive studies with ethidium bromide (a well-known DNA intercalator) showed that the bio-phenol could take the place of ethidium bromide in the DNA intercalation sites. The interaction of oleuropein with DNA was also studied electrochemically. In the presence of the DNA, the anodic and cathodic peak currents of oleuropein decreased accompanied with increases in peak-to-peak potential separation and formal potential, indicating the intercalation of oleuropein into the DNA double helix. Moreover, melting temperature of the DNA was found to increase in the presence of oleuropein, indicating the stabilization of the DNA double helix due to an intercalative interaction.

  19. Influence of anodization parameters on the morphology of TiO 2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Omidvar, Hamid; Goodarzi, Saba; Seif, Ahmad; Azadmehr, Amir R.

    2011-07-01

    TiO 2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH 4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO 2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.

  20. Simulator of Non-homogenous Alumina and Current Distribution in an Aluminum Electrolysis Cell to Predict Low-Voltage Anode Effects

    NASA Astrophysics Data System (ADS)

    Dion, Lukas; Kiss, László I.; Poncsák, Sándor; Lagacé, Charles-Luc

    2018-04-01

    Perfluorocarbons are important contributors to aluminum production greenhouse gas inventories. Tetrafluoromethane and hexafluoroethane are produced in the electrolysis process when a harmful event called anode effect occurs in the cell. This incident is strongly related to the lack of alumina and the current distribution in the cell and can be classified into two categories: high-voltage and low-voltage anode effects. The latter is hard to detect during the normal electrolysis process and, therefore, new tools are necessary to predict this event and minimize its occurrence. This paper discusses a new approach to model the alumina distribution behavior in an electrolysis cell by dividing the electrolytic bath into non-homogenous concentration zones using discrete elements. The different mechanisms related to the alumina distribution are discussed in detail. Moreover, with a detailed electrical model, it is possible to calculate the current distribution among the different anodic assemblies. With this information, the model can evaluate if low-voltage emissions are likely to be present under the simulated conditions. Using the simulator will help the understanding of the role of the alumina distribution which, in turn, will improve the cell energy consumption and stability while reducing the occurrence of high- and low-voltage anode effects.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE GERONIMO,G.; VERNON, E.; ACKLEY, K.

    We describe an application specific integrated circuit (ASIC) for 3D position-sensitive detectors. It was optimized for pixelated CZT sensors, and it measures, corresponding to an ionizing event, the energy and timing of signals from 121 anodes and one cathode. Each channel provides low-noise charge amplification, high-order shaping, along with peak- and timing-detection. The cathode's timing can be measured in three different ways: the first is based on multiple thresholds on the charge amplifier's voltage output; the second uses the threshold crossing of a fast-shaped signal; and the third measures the peak amplitude and timing from a bipolar shaper. With itsmore » power of 2 mW per channel the ASIC measures, on a CZT sensor Connected and biased, charges up to 100 fC with an electronic resolution better than 200 e{sup -} rms. Our preliminary spectral measurements applying a simple cathode/mode ratio correction demonstrated a single-pixel resolution of 4.8 keV (0.72 %) at 662 keV, with the electronics and leakage current contributing in total with 2.1 keV.« less

  2. Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes

    NASA Astrophysics Data System (ADS)

    Asai, Kai; Ivandini, Tribidasari A.; Einaga, Yasuaki

    2016-09-01

    The electrochemical detection of oxytocin using boron-doped diamond (BDD) electrodes was studied. Cyclic voltammetry of oxytocin in a phosphate buffer solution exhibits an oxidation peak at +0.7 V (vs. Ag/AgCl), which is attributable to oxidation of the phenolic group in the tyrosyl moiety. Furthermore, the linearity of the current peaks obtained in flow injection analysis (FIA) using BDD microelectrodes over the oxytocin concentration range from 0.1 to 10.0 μM with a detection limit of 50 nM (S/N = 3) was high (R2 = 0.995). Although the voltammograms of oxytocin and vasopressin observed with an as-deposited BDD electrode, as well as with a cathodically-reduced BDD electrode, were similar, a clear distinction was observed with anodically-oxidized BDD electrodes due to the attractive interaction between vasopressin and the oxidized BDD surface. By means of this distinction, selective measurements using chronoamperometry combined with flow injection analysis at an optimized potential were demonstrated, indicating the possibility of making selective in situ or in vivo measurements of oxytocin.

  3. A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment

    PubMed Central

    Yamashita, Takahiro; Ookawa, Natsuki; Ishida, Mitsuyoshi; Kanamori, Hiroyuki; Sasaki, Harumi; Katayose, Yuichi; Yokoyama, Hiroshi

    2016-01-01

    Biochemical oxygen demand (BOD) is a widely used index of water-quality assessment. Since bioelectrochemical BOD biosensors require anaerobic conditions for anodic reactions, they are not directly used in aerobic environments such as aeration tanks. Normally, the BOD biosensors are closed-type, where the anode is packed inside a closed chamber to avoid exposure to oxygen. In this study, a novel bioelectrochemical open-type biosensor was designed for in-situ monitoring of BOD during intermittent aeration. The open-type anode, without any protection against exposure to oxygen, was directly inserted into an intermittently aerated tank filled with livestock wastewater. Anodic potential was controlled using a potentiostat. Interestingly, this novel biosensor generated similar levels of current under both aerating and non-aerating conditions, and showed a logarithmic correlation (R2 > 0.9) of current with BOD concentrations up to 250 mg/L. Suspended solids in the wastewater attached to and covered the whole anode, presumably leading to the production of anaerobic conditions inside the covered anode via biological oxygen removal. Exoelectrogenic anaerobes (Geobacter spp.) were detected inside the covered anode using the 16S-rRNA gene. This biosensor will have various practical applications, such as the automatic control of aeration intensity and the in-situ monitoring of natural water environments. PMID:27917947

  4. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemke, R. W., E-mail: rwlemke@sandia.gov; Dolan, D. H.; Dalton, D. G.

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less

  5. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less

  6. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    DOE PAGES

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; ...

    2016-01-07

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less

  7. Zero Liquid Discharge approach in plating industry: treatment of degreasing effluents by electrocoagulation and anodic oxidation.

    PubMed

    Hermon, S; Grange, D; Pellet, Y; Lloret, G; Oyonarte, S; Bosch, F; Coste, M

    2008-01-01

    Degreasing waste effluents issued from a surface treatment plant were treated by electrochemical techniques in an attempt to reduce COD so that clean water can be returned to the rinse bath. Electrocoagulation, both with iron and aluminium anodes, and anodic oxidation with boron doped diamond (BDD) anodes were tested. In the electrocoagulation tests, the nature of the anodes did not impact significantly the reduction of COD. Electrocoagulation showed good COD removal rates, superior to 80%, but it was not able to reduce COD down to low levels. Anodic oxidation was able to reduce COD down to discharge limits; the oxidation efficiency was superior to 50%. Economical calculations show that anodic oxidation is best used as a polishing step after electrocoagulation. The bulk of the COD would be reduced by electrocoagulation and, then, anodic oxidation would reduce COD below discharge limits. The maximum treatable flow is somewhat hindered by the small sizes of current BDD installation but it would reach 600 m(3)/year if anodic oxidation is coupled with electrocoagulation, the operational cost being 2.90 Euros /m(3). (c) IWA Publishing 2008.

  8. Redox reactions of selenium as catalyzed by magnetite: Lessons learned from using electrochemistry and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Kim, YoungJae; Yuan, Ke; Ellis, Brian R.; Becker, Udo

    2017-02-01

    Although previous studies have demonstrated redox transformations of selenium (Se) in the presence of Fe-bearing minerals, the specific mechanism of magnetite-mediated Se electron transfer reactions are poorly understood. In this study, the redox chemistry of Se on magnetite is investigated over an environmentally relevant range of Eh and pH conditions (+0.85 to -1.0 V vs. Ag/AgCl; pH 4.0-9.5). Se redox peaks are found via cyclic voltammetry (CV) experiments at pH conditions of 4.0-8.0. A broad reduction peak centered at -0.5 V represents a multi-electron transfer process involving the transformation of selenite to Se(0) and Se(-II) and the comproportionation reaction between Se(-II) and Se(IV). Upon anodic scans, the oxidation peak centered at -0.25 V is observed and is attributed to the oxidation of Se(-II) to higher oxidation states. Deposited Se(0) may be oxidized at +0.2 V when pH is below 7.0. Over a pH range of 4.0-8.0, the pH dependence of peak potentials is less pronounced than predicted from equilibrium redox potentials. This is attributed to pH gradients in the microporous media of the cavity where the rate of proton consumption by the selenite reduction is faster relative to mass transfer from the solution. In chronoamperometry measurements at potentials ⩾-0.6 V, the current-time transients show good linearity between the current and time in a log-log scale. In contrast, deviation from the linear trend is observed at more negative potentials. Such a trend is indicative of Se(0) nucleation and growth on the magnetite surface, which can be theoretically explained by the progressive nucleation model. XPS analysis reveals the dominance of elemental selenium at potentials ⩽-0.5 V, in good agreement with the peak assignment on the cyclic voltammograms and the nucleation kinetic results.

  9. Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Sun, Meijia; Li, Baokuan; Li, Linmin; Wang, Qiang; Peng, Jianping; Wang, Yaowu; Cheung, Sherman C. P.

    2017-12-01

    In the aluminum reduction cells, gas bubbles are generated at the bottom of the anode which eventually reduces the effective current contact area and the system efficiency. To encourage the removal of gas bubbles, slotted anode has been proposed and increasingly adopted by some industrial aluminum reduction cells. Nonetheless, the exact gas bubble removal mechanisms are yet to be fully understood. A three-dimensional (3D) transient, multiphase flow mathematical model coupled with magnetohydrodynamics has been developed to investigate the effect of slotted anode on the gas bubble movement. The Eulerian volume of fluid approach is applied to track the electrolyte (bath)-molten aluminum (metal) interface. Meanwhile, the Lagrangian discrete particle model is employed to handle the dynamics of gas bubbles with considerations of the buoyancy force, drag force, virtual mass force, and pressure gradient force. The gas bubble coalescence process is also taken into account based on the O'Rourke's algorithm. The two-way coupling between discrete bubbles and fluids is achieved by the inter-phase momentum exchange. Numerical predictions are validated against the anode current variation in an industrial test. Comparing the results using slotted anode with the traditional one, the time-averaged gas bubble removal rate increases from 36 to 63 pct; confirming that the slotted anode provides more escaping ways and shortens the trajectories for gas bubbles. Furthermore, the slotted anode also reduces gas bubble's residence time and the probability of coalescence. Moreover, the bubble layer thickness in aluminum cell with slotted anode is reduced about 3.5 mm (17.4 pct), so the resistance can be cut down for the sake of energy saving and the metal surface fluctuation amplitude is significantly reduced for the stable operation due to the slighter perturbation with smaller bubbles.

  10. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  11. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals.

    PubMed

    Yang, Gongjun; Wang, Cunxiao; Zhang, Rui; Wang, Chenying; Qu, Qishu; Hu, Xiaoya

    2008-06-01

    Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.

  12. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature.

    PubMed

    Chung, C K; Zhou, R X; Liu, T Y; Chang, W T

    2009-02-04

    Most porous anodic alumina (PAA) or anodic aluminum oxide (AAO) films are fabricated using the potentiostatic method from high-purity (99.999%) aluminum films at a low temperature of approximately 0-10 degrees C to avoid dissolution effects at room temperature (RT). In this study, we have demonstrated the fabrication of PAA film from commercial purity (99%) aluminum at RT using a hybrid pulse technique which combines pulse reverse and pulse voltages for the two-step anodization. The reaction mechanism is investigated by the real-time monitoring of current. A possible mechanism of hybrid pulse anodization is proposed for the formation of pronounced nanoporous film at RT. The structure and morphology of the anodic films were greatly influenced by the duration of anodization and the type of voltage. The best result was obtained by first applying pulse reverse voltage and then pulse voltage. The first pulse reverse anodization step was used to form new small cells and pre-texture concave aluminum as a self-assembled mask while the second pulse anodization step was for the resulting PAA film. The diameter of the nanopores in the arrays could reach 30-60 nm.

  13. Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries.

    PubMed

    Breitung, Ben; Aguiló-Aguayo, Noemí; Bechtold, Thomas; Hahn, Horst; Janek, Jürgen; Brezesinski, Torsten

    2017-10-12

    Si holds great promise as an alloying anode material for Li-ion batteries with improved energy density because of its high theoretical specific capacity and favorable operation voltage range. However, the large volume expansion of Si during electrochemical reaction with Li and the associated adverse effects strongly limit its prospect for application. Here, we report on the use of three-dimensional instead of flat current collectors for high-capacity Si anodes in an attempt to mitigate the loss of electrical contact of active electrode regions as a result of structural disintegration with cycling. The current collectors were produced by technical embroidery and consist of interconnected Cu wires of diameter <150 µm. In comparison to Si/Li cells using a conventional Cu foil current collector, the embroidered microwire network-based cells show much enhanced capacity and reversibility due to a higher degree of tolerance to cycling.

  14. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  15. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS).

    PubMed

    Santos-Pontelli, Taiza E G; Rimoli, Brunna P; Favoretto, Diandra B; Mazin, Suleimy C; Truong, Dennis Q; Leite, Joao P; Pontes-Neto, Octavio M; Babyar, Suzanne R; Reding, Michael; Bikson, Marom; Edwards, Dylan J

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients.

  16. The effect of current reversal on coated titanium electrodes

    NASA Astrophysics Data System (ADS)

    Elnathan, Francis

    Coated titanium electrodes have applications in the electrochemical industry, including water treatment and swimming pool chlorination. Current/polarity reverse electrolysis is a technique used for "self-cleaning" of the coated titanium anodes employed in water disinfection and treatment. However, the literature holds very little information about the effects of polarity reversal on these anodes. The present work appears to be the first to investigate coated titanium anodes in polarity reversal in a systematic method. Two commercial titanium electrodes (RuTi and IrTa) were studied. Polarity reversal was the main electrochemical technique employing a current density of 1200 A/m 2, except when current density was studied. The effects of NO 3-, SO42-, ClO4 -, HPO42-, CO32-, Mg2+ and Ca2+ on electrode lifetime were examined. Analysis of the electrochemical results showed that plateau time (tau p), for gas evolution, is highly important to the lifetime of the coated titanium anodes. The effects of three electrolysis variables on the coated titanium anode life were examined. Current density was observed to have an inverse relationship with anode life while reversal cycle time had a direct relation with lifetime. NaCl concentration had no discernible effect. In general, the RuTi electrode exhibited longer lifetimes than IrTa except for a few specific conditions. The influence of the concentration of five anions (NO3-, SO42-, ClO 4-, HPO42-, and CO3 2-) was determined. Changing the composition and concentration of anions affected the lifetimes of the two electrodes, especially nitrate, hydrogen phosphate and carbonate. The lifetime of IrTa was highest in nitrate, and increased as a function of nitrate concentration. The service life of RuTi was highest in hydrogen phosphate, and increased with increasing hydrogen phosphate concentration. Lifetime of both anodes decreased with increasing carbonate ions. The effects of Mg2+ and Ca2+ on electrode lifetime were examined with three anions (NO3-, HPO42-, ClO4-) electrolytes. While there were numerous effects and interactions between Mg2+ or Ca2+ and anions on lifetime, these effects were found to mainly affect the amount of time the electrodes spent in the charging and discharging reactions. The times related to gas evolution (which is the plateau time, tau p) were found to be strikingly similar. The charging times (tau C) which are related to adsorption and desorption of species were not also any significantly different. Coating dissolution, substrate and/or coating passivation mechanisms were identified as being responsible for coated titanium anode failure in current reverse and hard water electrolysis. IrTa is believed to have failed predominantly by the dissolution mechanism in nitrate, hydrogen phosphate and perchlorate. RuTi failed predominantly by substrate and/or coating passivation in hydrogen phosphate, nitrate and carbonate. Anode failure is believed to be the result of plateau (taup) and charging (tauC)reactions occurring at the coating/electrolyte and/or substrate/coating interface. The tau p and tauC are useful determinants for the process of anode failure.

  17. Simulation of double stage hall thruster with double-peaked magnetic field

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Li, Peng; Sun, Hezhi; Wei, Liqiu; Xu, Yu; Peng, Wuji; Su, Hongbo; Li, Hong; Yu, Daren

    2017-07-01

    This study adopts double permanent magnetic rings and four permanent magnetic rings to form two symmetrical magnetic peaks and two asymmetrical magnetic peaks in the channel of a Hall thruster, and uses a 2D-3V PIC-MCC model to analyze the influence of magnetic strength on the discharge characteristic and performance of Hall thrusters with an intermediate electrode and double-peaked magnetic field. As opposed to the two symmetrical magnetic peaks formed by double permanent magnetic rings, increasing the magnetic peak value deep within the channel can cause propellant ionization to occur; with the increase in the magnetic peak deep in the channel, the propellant utilization, thrust, and anode efficiency of the thruster are significantly improved. Double-peaked magnetic field can realize separate control of ionization and acceleration in a Hall thruster, and provide technical means for further improving thruster performance. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  18. Currents between tethered electrodes in a magnetized laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1989-01-01

    Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.

  19. Ascorbic Acid Determination in Commercial Fruit Juice Samples by Cyclic Voltammetry

    PubMed Central

    Pisoschi, Aurelia Magdalena; Danet, Andrei Florin; Kalinowski, Slawomir

    2008-01-01

    A method was developed for assessing ascorbic acid concentration in commercial fruit juice by cyclic voltammetry. The anodic oxidation peak for ascorbic acid occurs at about 490 mV on a Pt disc working electrode (versus SCE). The influence of the potential sweep speed on the peak height was studied. The obtained calibration graph shows a linear dependence between peak height and ascorbic acid concentration in the domain (0.1–10 mmol·L−1). The equation of the calibration graph was y = 6.391x + 0.1903 (where y represents the value of intensity measured for the anodic peak height, expressed as μA and x the analyte concentration, as mmol·L−1, r2 = 0.9995, r.s.d. = 1.14%, n = 10, Cascorbic acid = 2 mmol·L−1). The developed method was applied to ascorbic acid assessment in fruit juice. The ascorbic acid content determined ranged from 0.83 to 1.67 mmol·L−1 for orange juice, from 0.58 to 1.93 mmol·L−1 for lemon juice, and from 0.46 to 1.84 mmol·L−1 for grapefruit juice. Different ascorbic acid concentrations (from standard solutions) were added to the analysed samples, the degree of recovery being comprised between 94.35% and 104%. Ascorbic acid determination results obtained by cyclic voltammetry were compared with those obtained by the volumetric method with dichlorophenol indophenol. The results obtained by the two methods were in good agreement. PMID:19343183

  20. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    PubMed

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  1. Acetylene Black Induced Heterogeneous Growth of Macroporous CoV2O6 Nanosheet for High-Rate Pseudocapacitive Lithium-Ion Battery Anode.

    PubMed

    Zhang, Lei; Zhao, Kangning; Luo, Yanzhu; Dong, Yifan; Xu, Wangwang; Yan, Mengyu; Ren, Wenhao; Zhou, Liang; Qu, Longbing; Mai, Liqiang

    2016-03-23

    Metal vanadates suffer from fast capacity fading in lithium-ion batteries especially at a high rate. Pseudocapacitance, which is associated with surface or near-surface redox reactions, can provide fast charge/discharge capacity free from diffusion-controlled intercalation processes and is able to address the above issue. In this work, we report the synthesis of macroporous CoV2O6 nanosheets through a facile one-pot method via acetylene black induced heterogeneous growth. When applied as lithium-ion battery anode, the macroporous CoV2O6 nanosheets show typical features of pseudocapacitive behavior: (1) currents that are mostly linearly dependent on sweep rate and (2) redox peaks whose potentials do not shift significantly with sweep rate. The macroporous CoV2O6 nanosheets display a high reversible capacity of 702 mAh g(-1) at 200 mA g(-1), excellent cyclability with a capacity retention of 89% (against the second cycle) after 500 cycles at 500 mA g(-1), and high rate capability of 453 mAh g(-1) at 5000 mA g(-1). We believe that the introduction of pseudocapacitive properties in lithium battery is a promising direction for developing electrode materials with high-rate capability.

  2. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution.

    PubMed

    Zhu, Ji-Hua; Guo, Guanping; Wei, Liangliang; Zhu, Miaochang; Chen, Xianchuan

    2016-02-06

    The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP) were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP) system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.

  3. Method for sensing and measuring a concentration or partial pressure of a reactant used in a redox reaction

    DOEpatents

    Findl, E.

    1984-12-21

    A method for sensing or measuring the partial pressure or concentration of an electroactive species used in conjunction with an electrolyte, the method being characterized by providing a constant current between an anode and a cathode of an electrolyte-containing cell, while measuring changes in voltage that occur between either the anode and cathode or between a reference electrode and one of the main electrodes of the cell, thereby to determine the concentration or partial pressure of the electro-active species as a function of said measured voltage changes. The method of the invention can be practiced using either a cell having only an anode and a cathode, or using a cell having an anode and a cathode in combination with a reference electrode. Accurate measurements of small concentrations or partial pressures of electro-active species are obtainable with the method of the invention, by using constant currents of only a few microamperes between the anode and cathode of the cell, while the concentration-determining voltage is measured.

  4. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution

    PubMed Central

    Zhu, Ji-Hua; Guo, Guanping; Wei, Liangliang; Zhu, Miaochang; Chen, Xianchuan

    2016-01-01

    The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP) were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP) system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities. PMID:28787900

  5. Transcranial direct current stimulation in mild cognitive impairment: Behavioral effects and neural mechanisms.

    PubMed

    Meinzer, Marcus; Lindenberg, Robert; Phan, Mai Thy; Ulm, Lena; Volk, Carina; Flöel, Agnes

    2015-09-01

    The long preclinical phase of Alzheimer's disease provides opportunities for potential disease-modifying interventions in prodromal stages such as mild cognitive impairment (MCI). Anodal transcranial direct current stimulation (anodal-tDCS), with its potential to enhance neuroplasticity, may allow improving cognition in MCI. In a double-blind, cross-over, sham-controlled study, anodal-tDCS was administered to the left inferior frontal cortex during task-related and resting-state functional magnetic resonance imaging (fMRI) to assess its impact on cognition and brain functions in MCI. During sham stimulation, MCI patients produced fewer correct semantic-word-retrieval responses than matched healthy controls, which was associated with hyperactivity in bilateral prefrontal regions. Anodal-tDCS significantly improved performance to the level of controls, reduced task-related prefrontal hyperactivity and resulted in "normalization" of abnormal network configuration during resting-state fMRI. Anodal-tDCS exerts beneficial effects on cognition and brain functions in MCI, thereby providing a framework to test whether repeated stimulation sessions may yield sustained reversal of cognitive deficits. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  6. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  7. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  8. Method for providing uranium articles with a corrosion-resistant anodized coating

    DOEpatents

    Waldrop, F.B.; Washington, C.A.

    1981-01-07

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  9. Heat treatment condition of EN AW-7075 influencing the anodic oxidation process and coating properties

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Scharf, I.; Lampke, T.

    2018-06-01

    The age-hardenable aluminium alloy EN AW-7075 exhibits outstanding specific mechanical properties and therefore offers a high potential for lightweight construction. Anodising in aqueous oxalic acid solutions is suitable to produce a protective oxide ceramic conversion layer on this alloy. This study examines the influence of the precipitation state of the substrate alloy on microstructure and properties of anodic oxide layers. Therefore, EN AW-7075 sheets in the heat treatment conditions T4, T6 and T73 were anodized in 0.8 M oxalic acid solution at constant voltage. The current efficiency was determined on the basis of the electrical charge quantity, coating thickness and coating mass. Instrumented indentation tests were applied in order to evaluate the coating hardness. The microstructure of the anodic oxide layer was illustrated using field emission electron microscopy. It was shown that the current efficiency strongly depends on the heat treatment condition.

  10. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    PubMed

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Laser collisional induced fluorescence electron density measurements as a function of ring bias and the onset of anode spot formation in a ring cusp magnetic field

    NASA Astrophysics Data System (ADS)

    Arthur, N. A.; Foster, J. E.; Barnat, E. V.

    2018-05-01

    Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.

  12. Transcranial Direct Current Stimulation Improves Executive Dysfunctions in ADHD: Implications for Inhibitory Control, Interference Control, Working Memory, and Cognitive Flexibility.

    PubMed

    Nejati, Vahid; Salehinejad, Mohammad Ali; Nitsche, Michael A; Najian, Asal; Javadi, Amir-Homayoun

    2017-09-01

    This study examined effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) on major executive functions (EFs), including response inhibition, executive control, working memory (WM), and cognitive flexibility/task switching in ADHD. ADHD children received (a) left anodal/right cathodal DLPFC tDCS and (b) sham stimulation in Experiment 1 and (a) left anodal DLPFC/right cathodal OFC tDCS, (b) left cathodal DLPFC/right anodal OFC tDCS, and (c) sham stimulation in Experiment 2. The current intensity was 1 mA for 15 min with a 72-hr interval between sessions. Participants underwent Go/No-Go task, N-back test, Wisconsin Card Sorting Test (WCST), and Stroop task after each tDCS condition. Anodal left DLPFC tDCS most clearly affected executive control functions (e.g., WM, interference inhibition), while cathodal left DLPFC tDCS improved inhibitory control. Cognitive flexibility/task switching benefited from combined DLPFC-OFC, but not DLPFC stimulation alone. Task-specific stimulation protocols can improve EFs in ADHD.

  13. Protozoan grazing reduces the current output of microbial fuel cells.

    PubMed

    Holmes, Dawn E; Nevin, Kelly P; Snoeyenbos-West, Oona L; Woodard, Trevor L; Strickland, Justin N; Lovley, Derek R

    2015-10-01

    Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study.

    PubMed

    Benussi, Alberto; Koch, Giacomo; Cotelli, Maria; Padovani, Alessandro; Borroni, Barbara

    2015-10-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebellar circuits using transcranial direct current stimulation. The present study investigated whether a single session of cerebellar anodal transcranial direct current stimulation could improve symptoms in patients with ataxia. Nineteen patients with ataxia underwent a clinical and functional evaluation pre- and post-double-blind, randomized, sham, or anodal transcranial direct current stimulation. There was a significant interaction between treatment and time on the Scale for the Assessment and Rating of Ataxia, on the International Cooperative Ataxia Rating Scale, on the 9-Hole Peg Test, and on the 8-Meter Walking Time (P < 0.001). At the end of the sessions, all performance scores were significantly different in the sham trial, compared to the intervention trial. A single session of anodal cerebellar transcranial direct current stimulation can transiently improve symptoms in patients with ataxia and might represent a promising tool for future rehabilitative approaches. © 2015 International Parkinson and Movement Disorder Society.

  15. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell.

    PubMed

    Hassan, Md Mahamudul; Cheng, Ka Yu; Ho, Goen; Cord-Ruwisch, Ralf

    2017-01-15

    Microbial biofilms are significant ecosystems where the existence of redox gradients drive electron transfer often via soluble electron mediators. This study describes the use of two interfacing working electrodes (WEs) to simulate redox gradients within close proximity (250µm) for the detection and quantification of electron mediators. By using a common counter and reference electrode, the potentials of the two WEs were independently controlled to maintain a suitable "voltage window", which enabled simultaneous oxidation and reduction of electron mediators as evidenced by the concurrent anodic and cathodic currents, respectively. To validate the method, the electrochemical properties of different mediators (hexacyanoferrate, HCF, riboflavin, RF) were characterized by stepwise shifting the "voltage window" (ranging between 25 and 200mV) within a range of potentials after steady equilibrium current of both WEs was established. The resulting differences in electrical currents between the two WEs were recorded across a defined potential spectrum (between -1V and +0.5V vs. Ag/AgCl). Results indicated that the technique enabled identification (by the distinct peak locations at the potential scale) and quantification (by the peak of current) of the mediators for individual species as well as in an aqueous mixture. It enabled a precise determination of mid-potentials of the externally added mediators (HCF, RF) and mediators produced by pyocyanin-producing Pseudomonas aeruginosa (WACC 91) culture. The twin working electrode described is particularly suitable for studying mediator-dependent microbial electron transfer processes or simulating redox gradients as they exist in microbial biofilms. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijun; Deng, Jie; Zhou, Xin

    In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much moremore » significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field B{sub t} and AMF B{sub z} (B{sub t}/B{sub z}). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.« less

  17. Processing Ti-25Ta-5Zr Bioalloy via Anodic Oxidation Procedure at High Voltage

    NASA Astrophysics Data System (ADS)

    Ionita, Daniela; Grecu, Mihaela; Dilea, Mirela; Cojocaru, Vasile Danut; Demetrescu, Ioana

    2011-12-01

    The current paper reports the processing of Ti-25Ta-5Zr bioalloy via anodic oxidation in NH4BF4 solution under constant potentiostatic conditions at high voltage to obtain more suitable properties for biomedical application. The maximum efficiency of the procedure is reached at highest applied voltage, when the corrosion rate in Hank's solution is decreased approxomately six times. The topography of the anodic layer has been studied using atomic force microscopy (AFM), and the results indicated that the anodic oxidation process increases the surface roughness. The AFM images indicated a different porosity for the anodized surfaces as well. After anodizing, the hydrophilic character of Ti-25Ta-5Zr samples has increased. A good correlation between corrosion rate obtained from potentiodynamic curves and corrosion rate from ions release analysis was obtained.

  18. Preparation of Ti/IrO2 Anode with Low Iridium Content by Thermal Decomposition Process: Electrochemical removal of organic pollutants in water

    NASA Astrophysics Data System (ADS)

    Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina

    2018-04-01

    In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.

  19. In situ, simultaneous thermal imaging and infrared molecular emission studies of solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Kirtley, J. D.; Qadri, S. N.; Steinhurst, D. A.; Owrutsky, J. C.

    2016-12-01

    Various in situ probes of solid oxide fuel cells (SOFCs) have advanced recently to provide detailed, real time data regarding materials and chemical processes that relate to device performance and degradation. These techniques offer insights into complex fuel chemistry at the anode in particular, especially in the context of model predictions. However, cell-to-cell variations can hinder mechanistic interpretations of measurements from separate, independent techniques. The present study describes an in situ technique that for the first time simultaneously measures surface temperature changes using near infrared thermal imaging and gas species using Fourier-transform infrared emission spectra at the anodes of operating SOFCs. Electrolyte-supported SOFCs with Ni-based anodes are operated at 700 °C with internal, dry-reformed methane at 75% maximum current and at open circuit voltage (OCV) while electrochemical and optical measurements are collected. At OCV, more cooling is observed coincident with more CO reforming products. Under load, CO decreases while the anode cools less, especially near the current collectors. The extent of cooling is more sensitive to polarization for electrolyte-supported cells because their anodes are thinner relative to anode-supported cells. This study exemplifies how this duplex technique can be a useful probe of electrochemical processes in SOFCs.

  20. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson [Castro Valley, CA

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  1. Microbial fuel cells equipped with an iron-plated carbon-felt anode and Shewanella oneidensis MR-1 with corn steep liquor as a fuel.

    PubMed

    Phansroy, Nichanan; Khawdas, Wichean; Watanabe, Keigo; Aso, Yuji; Ohara, Hitomi

    2018-05-12

    A single chamber type microbial fuel cell (MFC) with 100 mL of chamber volume and 50 cm 2 of air-cathode was developed in this study wherein a developed iron-plated carbon-felt anode and Shewanella oneidensis MR-1 were used. The performance of the iron-plated carbon-felt anode and the possibility of corn steep liquor (CSL) as a fuel, which was the byproduct of corn wet milling and contained lactic acid, was investigated here. MFCs equipped with iron-plated or non-plated carbon-felt anodes exhibited maximum current densities of 443 or 302 mA/m 2 using 10 g/L of reagent-grade lactic acid, respectively. In addition, using centrifuged CSL without insoluble ingredients or non-centrifuged CSL as a fuel, the maximum current densities of the MFCs with iron-plated carbon-felt anode were 321 or 158 mA/m 2 , respectively. This report demonstrated the effect of iron-plated carbon-felt anode for electricity generation of MFC using S. oneidensis MR-1 and the performance of CSL as a fuel. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    PubMed Central

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-01-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834

  3. Mode Transitions in Magnetically Shielded Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.

    2014-01-01

    A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.

  4. Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements

    DOE PAGES

    Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.; ...

    2018-02-09

    An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less

  5. Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.

    An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less

  6. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.

    PubMed

    Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L

    2013-05-01

    Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode

    PubMed Central

    Nguyen, Thuy Thu; Luong, Tha Thanh Thi; Tran, Phuong Hoang Nguyen; Bui, Ha Thi Viet; Nguyen, Huy Quang; Dinh, Hang Thuy; Kim, Byung Hong; Pham, Hai The

    2015-01-01

    In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)-type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm–2 of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe2+ as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm–2 of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation-based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in-situ hybridization results revealed significant increases of neutrophilic iron-oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on-site biodetection of iron and/or manganese in water samples. PMID:25712332

  8. Photoemission experiments of a large area scandate dispenser cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Huang; Liu, Xing-guang; Chen, Yi; Chen, De-biao; Jiang, Xiao-guo; Yang, An-min; Xia, Lian-sheng; Zhang, Kai-zhi; Shi, Jin-shui; Zhang, Lin-wen

    2010-09-01

    A 100-mm-diameter scandate dispenser cathode was tested as a photocathode with a 10 ns Nd:YAG laser (266 nm) on an injector test stand for linear induction accelerators. This thermionic dispenser cathode worked at temperatures ranging from room temperature to 930 °C (below or near the thermionic emission threshold) while the vacuum was better than 4×10 -7 Torr. The laser pulse was synchronized with a 120 ns diode voltage pulse stably and they were in single pulse mode. Emission currents were measured by a Faraday cup. The maximum peak current collected at the anode was about 100 A. The maximum quantum efficiency measured at low laser power was 2.4×10 -4. Poisoning effect due to residual gas was obvious and uninterrupted heating was needed to keep cathode's emission capability. The cathode was exposed to air one time between experiments and recovered after being reconditioned. Photoemission uniformity of the cathode was also explored by changing the laser spot's position.

  9. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries.

    PubMed

    Zhang, Zailei; Wang, Zhong Lin; Lu, Xianmao

    2018-04-24

    Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO 2 , Si 3 N 4 , Ag, Ti, Ta, SnIn 2 O 5 , Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al 2 O 3 , HfO 2 , and TiO 2 ) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H 2 -reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm 2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO 4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.

  10. Modelling the growth process of porous aluminum oxide film during anodization

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  11. Task 1: Modeling Study of CO Effects on Polymer Electrolyte Fuel Cell Anodes Task 2: Study of Ac Impedance as Membrane/Electrode Manufacturing Diagnostic Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas E. Springer

    Carbon monoxide poisoning of polymer electrolyte fuel cell anodes is a key problem to be overcome when operating a polymer electrolyte fuel cell (PEFC) on reformed fuels. CO adsorbs preferentially on the precious metal surface leading to substantial performance losses. Some recent work has explored this problem, primarily using various Pt alloys in attempts to lower the degree of surface deactivation. In their studies of hydrogen oxidation on Pt and Pt alloy (Pt/Sn, Pt/Ru) rotating disk electrodes exposed to H{sub 2}/CO mixtures, Gasteiger et al. showed that a small hydrogen oxidation current is observed well before the onset of majormore » CO oxidative stripping (ca. 0.4 V) on Pt/Ru. However, these workers concluded that such current observed at low anode overpotentials was too low to be of practical value. Nonetheless, MST-11 researchers and others have found experimentally that it is possible to run a PEFC, e.g., with a Pt/Ru anode, in the presence of CO levels in the range 10--100 ppm with little voltage loss. Such experimental results suggest that, in fact, PEFC operation at significant current densities under low anode overpotentials is possible in the presence of such levels of CO, even before resorting to air bleeding into the anode feed stream. The latter approach has been shown to be effective in elimination of Pt anode catalyst poisoning effects at CO levels of 20--50 ppm for cells operating at 80 C with low Pt catalyst loading. The effect of oxygen bleeding is basically to lower P{sub CO} down to extremely low levels in the anode plenum thanks to the catalytic (chemical) oxidation of CO by dioxygen at the anode catalyst. In this modeling work the authors do not include specific description of oxygen bleeding effects and concentrate on the behavior of the anode with feed streams of H{sub 2} or reformate containing low levels of CO. The anode loss is treated in this work as a hydrogen and carbon monoxide electrode kinetics problem, but includes the effects of dilution of the feedstream with significant fractions of carbon dioxide and nitrogen and of mass transport losses in the gas diffusion backing. Not included in the anode model are ionic resistance and diffusion losses in the catalyst layer. They are looking to see if the overall pattern of polarization curves calculated based on such a purely kinetic model indeed mimics the central features of polarization curves observed for PEFCs operating on hydrogen with low levels of CO.« less

  12. Mild cognitive impairment in Parkinson's disease is improved by transcranial direct current stimulation combined with physical therapy.

    PubMed

    Manenti, Rosa; Brambilla, Michela; Benussi, Alberto; Rosini, Sandra; Cobelli, Chiara; Ferrari, Clarissa; Petesi, Michela; Orizio, Italo; Padovani, Alessandro; Borroni, Barbara; Cotelli, Maria

    2016-05-01

    Parkinson's disease (PD) is characterized by both motor and cognitive deficits. In PD, physical exercise has been found to improve physical functioning. Recent studies demonstrated that repeated sessions of transcranial direct current stimulation led to an increased performance in cognitive and motor tasks in patients with PD. The present study investigated the effects of anodal transcranial direct current stimulation applied over the dorsolateral prefrontal cortex and combined with physical therapy in PD patients. A total of 20 patients with PD were assigned to 1 of 2 study groups: group 1, anodal transcranial direct current stimulation plus physical therapy (n = 10) or group 2, placebo transcranial direct current stimulation plus physical therapy (n = 10). The 2 weeks of treatment consisted of daily direct current stimulation application for 25 minutes during physical therapy. Long-term effects of treatment were evaluated on clinical, neuropsychological, and motor task performance at 3-month follow-up. An improvement in motor abilities and a reduction of depressive symptoms were observed in both groups after the end of treatment and at 3-month follow-up. The Parkinson's Disease Cognitive Rating Scale and verbal fluency test performances increased only in the anodal direct current stimulation group with a stable effect at follow-up. The application of anodal transcranial direct current stimulation may be a relevant tool to improve cognitive abilities in PD and might be a novel therapeutic strategy for PD patients with mild cognitive impairment. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  13. A new structural approach for uniform sub-micrometer anode metallization of planar THz Schottky components

    NASA Astrophysics Data System (ADS)

    Cojocari, O.; Mottet, B.; Rodriguez-Girones, M.; Biber, S.; Marchand, L.; Schmidt, L.-P.; Hartnagel, H. L.

    2004-03-01

    This paper presents the evaluation of a Schottky contact technology based on electrochemical metal deposition. The results of a long-term systematic investigation and optimization of the anode formation process to improve the yield and performance of Schottky-based GaAs mixer diodes are detailed. Surface preparation prior to the Schottky-metal deposition and anode metallization as previously optimized for whisker-contacted diodes are successfully transferred to the fabrication of planar structures. This uses an auxiliary honeycomb array of anode-like structures called 'dummy anodes', which are processed simultaneously with the real anodes and then removed in the later technological processes. Consequently, the scattering of planar diodes electrical parameters is significantly reduced and the yield of the fabrication process increases from about 5% up to about 50%. Very good dc characteristics such as series resistance (Rs) below 8 OHgr, ideality factor (eegr) below 1.2 and saturation current (Isat) of the order of 10-17A are achieved for the anode diameter as small as 1 µm. An excellent IF-noise figure of 250 K at 4.8 GHz up to 280 K at 2.1 GHz with current bias up to 3 mA is obtained for non-cooled THz mixer planar diodes. The use of this technological approach has enabled the extraction of statistically significant data which have been used to characterize the criticality of each step of the fabrication process on the device performance.

  14. Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode.

    PubMed

    Song, Yang; Swain, Greg M

    2007-06-12

    An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na2SO3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2+/-2.9 ppb for UV plant influent water and 16.4+/-0.9 ppb for Well 119 water (n=4). These values differed from the specified concentrations by less than 4%.

  15. Polymer membrane based electrolytic cell and process for the direct generation of hydrogen peroxide in liquid streams

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schwartz, Michael (Inventor); Sammells, Anthony F. (Inventor)

    1997-01-01

    An electrolytic cell for generating hydrogen peroxide is provided including a cathode containing a catalyst for the reduction of oxygen, and an anode containing a catalyst for the oxidation of water. A polymer membrane, semipermeable to either protons or hydroxide ions is also included and has a first face interfacing to the cathode and a second face interfacing to the anode so that when a stream of water containing dissolved oxygen or oxygen bubbles is passed over the cathode and a stream of water is passed over the anode, and an electric current is passed between the anode and the cathode, hydrogen peroxide is generated at the cathode and oxygen is generated at the anode.

  16. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.

    PubMed

    Edison, Eldho; Sreejith, Sivaramapanicker; Madhavi, Srinivasan

    2017-11-15

    Owing to the high theoretical sodiation capacities, intermetallic alloy anodes have attracted considerable interest as electrodes for next-generation sodium-ion batteries (SIBs). Here, we demonstrate the fabrication of intermetallic Fe-Sb alloy anode for SIBs via a high-throughput and industrially viable melt-spinning process. The earth-abundant and low-cost Fe-Sb-based alloy anode exhibits excellent cycling stability with nearly 466 mAh g -1 sodiation capacity at a specific current of 50 mA g -1 with 95% capacity retention after 80 cycles. Moreover, the alloy anode displayed outstanding rate performance with ∼300 mAh g -1 sodiation capacity at 1 A g -1 . The crystalline features of the melt-spun fibers aid in the exceptional electrochemical performance of the alloy anode. Further, the feasibility of the alloy anode for real-life applications was demonstrated in a sodium-ion full-cell configuration which could deliver a sodiation capacity of over 300 mAh g -1 (based on anode) at 50 mA g -1 with more than 99% Coulombic efficiency. The results further exhort the prospects of melt-spun alloy anodes to realize fully functional sodium-ion batteries.

  17. Fuel cell CO sensor

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  18. Effect of Applied Current Density on Cavitation-Erosion Characteristics for Anodized Al Alloy.

    PubMed

    Lee, Seung-Jun; Kim, Seong-Jong

    2018-02-01

    Surface finishing is as important as selection of material to achieve durability. Surface finishing is a process to provide surface with the desired performance and features by applying external forces such as thermal energy or stress. This study investigated the optimum supply current density for preventing from cavitation damages by applying to an anodizing technique that artificially forms on the surface an oxide coating that has excellent mechanical characteristics, such as hardness, wear resistance. Result of hardness test, the greater hardness was associated with greater brittleness, resulting in deleterious characteristics. Consequently, under conditions such as the electrolyte concentration of 10 vol.%, the processing time of 40 min, the electrolyte temperature of 10 °C, and the current density of 20 mA/cm2 were considered to be the optimum anodizing conditions for improvement of durability in seawater.

  19. Localized plasmon resonance in boron-doped multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shuba, M. V.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Chigir, G. G.; Pyatlitski, A. N.; Sedelnikova, O. V.; Okotrub, A. V.; Lambin, Ph.

    2018-05-01

    Substitutionally boron-doped multiwalled carbon nanotubes (B-CNTs) with lengths mainly less than 0.5 μ m and diameters 10-30 nm have been obtained by arc-discharge evaporation of the graphite anode containing boron material. The broad peak has been observed in the midinfrared conductivity spectra of the thin film comprising B-CNTs. The peak was suggested to be associated with a phenomenon known as localized plasmon resonance. Theoretical analysis has been done to confirm the possibility of this phenomenon to occur in the B-CNTs.

  20. The Influence of Uncompensated Solution Resistance on the Determination and Standard Electrochemical Rate Constants Using Cyclic Voltammetry, and Some Comparisons with AC Voltammetry.

    DTIC Science & Technology

    1987-09-25

    rate constants, k2r using cyclic voltametry . The res tss are expressed in terms of systematic deviations oP sapparent measured" rate constants, k~b(app...concentration was taken to be lum unless otherwise noted. The voltammetric sweep rate was set at 20 V sŕ unless specified otherwise. The general procedure...peaks for the negative- and positive-going potential sweeps have opposite signs, the measured cathodic-anodic peak separation, AEp, will clearly be

  1. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  2. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode

    NASA Astrophysics Data System (ADS)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.

  3. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couëdel, L., E-mail: lenaic.couedel@univ-amu.fr; Kumar, K. Kishor; Arnas, C.

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particlesmore » of more than a few tens of nanometres in diameter.« less

  4. Anodal transcranial direct current stimulation over the right hemisphere improves auditory comprehension in a case of dementia.

    PubMed

    Costa, Vanessa; Brighina, Filippo; Piccoli, Tommaso; Realmuto, Sabrina; Fierro, Brigida

    2017-01-01

    Noninvasive transcranial stimulation methods have been increasingly employed in order to improve cognitive performance in neurological patients. In previous studies with both stroke patients and healthy subjects, noninvasive stimulation of temporal-parietal regions and their homologue produced an improvement in linguistic tasks. The aim of the current study was to evaluate if anodal transcranial direct current stimulation (tDCS) over Brodmann areas 39/40 (angular and supramarginal gyri) could promote the recovery of linguistic functions, in particular comprehension and naming, in a single patient affected by dementia. Three preliminary explorative single sessions (right-side anodal, left-side anodal and sham tDCS) were carried out (Experiment 1). This procedure allows targeting the more effective site of stimulation for the treatment. Subsequently, we carried out a five-days tDCS treatment on the selected hemisphere (Experiment 2). We report verb comprehension amelioration after 5 days of anodal tDCS over the right BAs 39/40 compared with the placebo tDCS. This result is maintained until two weeks after the end of the 5-days treatment. Our findings provide new evidence for the therapeutic use of tDCS in degenerative diseases, suggesting that an explorative study can be useful for targeting the more appropriate stimulation site, and confirm the involvement of right-sided areas associated with language activities.

  5. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  6. Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai

    2016-02-01

    Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.

  7. Determination of cadmium in sewage sludge by differential pulse anodic stripping voltammetry.

    PubMed

    Pacer, R A; Scott Ellis, C K; Peng, R

    1999-07-12

    A procedure was developed for the determination of cadmium in sewage sludge by differential pulse anodic stripping voltammetry. A sodium peroxide fusion carried out in zirconium crucibles was found to give satisfactory results, based on analysis of standard reference materials. Samples collected from the municipal sludge lagoon in Fort Wayne, Indiana were found to have cadmium abundances ranging from 120 to 250 ppm, with most samples falling in the 120 to 170 ppm range. Interference from zinc is easily eliminated by carrying out the deposition step at -0.95 V vs. Ag/AgCl. Lead-to-cadmium ratios as high as 50:1 (ppm basis) have no effect on the height of the cadmium peak.

  8. A flexible top-emitting organic light-emitting diode on steel foil

    NASA Astrophysics Data System (ADS)

    Xie, Zhiyuan; Hung, Liang-Sun; Zhu, Furong

    2003-11-01

    An efficient flexible top-emitting organic light-emitting diode (FTOLED) was developed on a thin steel foil. The FTOLED was constructed on the spin-on-glass (SOG)-coated steel substrate with an organic stack of NPB/Alq 3 sandwiched by a highly reflective Ag anode and a semitransparent Sm cathode. An ultrathin plasma-polymerized hydrocarbon film (CF X) was interposed between the Ag anode and the NPB layer to enhance hole-injection, and an additional Alq 3 layer was overlaid on the Sm cathode to increase light output. The FTOLED showed a peak efficiency of 4.4 cd/A higher than 3.7 cd/A of a convention NPB/Alq 3-based bottom-emitting OLED.

  9. Repetitive flash x-ray generator having a high-durability diode driven by a two-cable-type line pulser

    NASA Astrophysics Data System (ADS)

    Shikoda, A.; Sato, E.; Sagae, M.; Oizumi, T.; Tamakawa, Y.; Yanagisawa, T.

    1994-04-01

    The fundamental studies of a repetitive soft flash x-ray generator having a high-durability diode for high-speed radiography in biomedical and technological fields are described. This generator consisted of the following essential components: a constant negative high-voltage power supply, a line-type high-voltage pulser with two 10 m coaxial-cable condensers, each with a capacity of 1.0 nF, a thyratron pulser as a trigger device, an oil-diffusion pump, and a flash x-ray tube. The x-ray tube was of a diode type which was evacuated by an oil-diffusion pump with a pressure of approximately 6.7×10-3 Pa and was composed of a planar tungsten anode, a planar ferrite cathode, and a polymethylmethacrylate tube body. The space between the anode and cathode electrodes (AC space) could be regulated from the outside of the tube. The two cable condensers were charged from -40 to -60 kV by a power supply, and the output voltage was about -1.5 times the charged voltage. Both the first peak voltage and current increased according to increases in the charged voltage, and the maximum values of the voltage and current were about 90 kV and 0.72 kA, respectively. The pulse widths had values of less than 100 ns, and the maximum x-ray intensity was approximately 1.1 μC/kg at 0.5 m per pulse. The repetition rate was less than 54 Hz, and the maximum focal spot size was about 2.0×2.5 mm.

  10. Electrochemical treatment of cork boiling wastewater with a boron-doped diamond anode.

    PubMed

    Fernandes, Annabel; Santos, Diana; Pacheco, Maria José; Ciríaco, Lurdes; Simões, Rogério; Gomes, Arlindo C; Lopes, Ana

    2015-01-01

    Anodic oxidation at a boron-doped diamond anode of cork boiling wastewater was successfully used for mineralization and biodegradability enhancement required for effluent discharge or subsequent biological treatment, respectively. The influence of the applied current density (30-70 mA/cm2) and the background electrolyte concentration (0-1.5 g/L Na2SO4) on the performance of the electrochemical oxidation was investigated. The supporting electrolyte was required to achieve conductivities that enabled anodic oxidation at the highest current intensities applied. The results indicated that pollutant removal increased with the applied current density, and after 8 h, reductions greater than 90% were achieved for COD, dissolved organic carbon, total phenols and colour. The biodegradability enhancement was from 0.13 to 0.59 and from 0.23 to 0.72 for the BOD/COD ratios with BOD of 5 and 20 days' incubation period, respectively. The tests without added electrolyte were performed at lower applied electrical charges (15 mA/cm2 or 30 V) with good organic load removal (up to 80%). For an applied current density of 30 mA/cm2, there was a minimum of electric conductivity of 1.9 mS/cm (corresponding to 0.75 g/L of Na2SO4), which minimized the specific energy consumption.

  11. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Santos-Pontelli, Taiza E. G.; Rimoli, Brunna P.; Favoretto, Diandra B.; Mazin, Suleimy C.; Truong, Dennis Q.; Leite, Joao P.; Pontes-Neto, Octavio M.; Babyar, Suzanne R.; Reding, Michael; Bikson, Marom; Edwards, Dylan J.

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients. PMID:27031726

  12. Effects of an NMDA antagonist on the auditory mismatch negativity response to transcranial direct current stimulation.

    PubMed

    Impey, Danielle; de la Salle, Sara; Baddeley, Ashley; Knott, Verner

    2017-05-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a weak constant current to alter cortical excitability and activity temporarily. tDCS-induced increases in neuronal excitability and performance improvements have been observed following anodal stimulation of brain regions associated with visual and motor functions, but relatively little research has been conducted with respect to auditory processing. Recently, pilot study results indicate that anodal tDCS can increase auditory deviance detection, whereas cathodal tDCS decreases auditory processing, as measured by a brain-based event-related potential (ERP), mismatch negativity (MMN). As evidence has shown that tDCS lasting effects may be dependent on N-methyl-D-aspartate (NMDA) receptor activity, the current study investigated the use of dextromethorphan (DMO), an NMDA antagonist, to assess possible modulation of tDCS's effects on both MMN and working memory performance. The study, conducted in 12 healthy volunteers, involved four laboratory test sessions within a randomised, placebo and sham-controlled crossover design that compared pre- and post-anodal tDCS over the auditory cortex (2 mA for 20 minutes to excite cortical activity temporarily and locally) and sham stimulation (i.e. device is turned off) during both DMO (50 mL) and placebo administration. Anodal tDCS increased MMN amplitudes with placebo administration. Significant increases were not seen with sham stimulation or with anodal stimulation during DMO administration. With sham stimulation (i.e. no stimulation), DMO decreased MMN amplitudes. Findings from this study contribute to the understanding of underlying neurobiological mechanisms mediating tDCS sensory and memory improvements.

  13. Effect of anode ring arrangement on the spectroscopic characteristics of the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    The modified Penning discharge in the NASA Lewis Bumpy Torus is normally produced by an anode ring at high voltage in each of the 12 magnetic mirror midplanes. For this investigation, the plasma was run with 12, 6, 3, and 1 anode rings. When 3 anode rings were used, the spectroscopically determined relative electron density and mean ion residence time increased by factors of 10 and 5, respectively, in one mode of operation. The discharge is observed to uniformly fill all bumps around the torus regardless of the anode arrangement and number. A plasma density on axis of 100 billion per cu cm is estimated for the 3-anode case in one mode of operation based on an observed discharge current to ion loss rate correlation and a measured mean ion residence time of .5 msec.

  14. Effect of anode ring arrangement on the spectroscopic characteristics of the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    The modified Penning discharge in the NASA Lewis Bumpy Torus is normally produced by an anode ring at high voltage in each of the 12 magnetic mirror midplanes. For this investigation, the plasma was run with 12, 6, 3, and 1 anode rings. When 3 anode rings were used, the spectroscopically determined relative electron density and mean ion residence time increase by factors of 10 and 5, respectively, in one mode of operation. The discharge is observed to uniformly fill all bumps around the torus regardless of the anode arrangement and number. A plasma density on axis of 10 to the 11th power cm/3 is estimated for the 3 anode case in one mode of operation based on an observed discharge current to ion loss rate correlation and a measured mean ion residence time of .5 msec.

  15. Applications of Carbon Nanotubes for Lithium Ion Battery Anodes

    PubMed Central

    Xiong, Zhili; Yun, Young Soo; Jin, Hyoung-Joon

    2013-01-01

    Carbon nanotubes (CNTs) have displayed great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs. PMID:28809361

  16. New insights into the initial stages of Ta oxide nanotube formation on polycrystalline Ta electrodes.

    PubMed

    El-Sayed, Hany A; Horwood, Corie A; Abhayawardhana, Anusha D; Birss, Viola I

    2013-02-21

    Ta oxide nanotubes (NTs) were formed by the anodization of Ta at 15 V in a solution of concentrated sulfuric acid containing 0.8-1.0 M hydrofluoric acid. To study the initial stages of NT formation, FESEM images of samples anodized for very short times were obtained. The results contradict the existing explanation of the current-time data collected during anodization, which has persisted in the literature for more than two decades. In addition to providing a first-time morphological study of Ta oxide NT formation at very early stages of anodization, we also propose a new interpretation of the i-t response, showing that pores are already present in the first few milliseconds of anodization and that NTs are formed well before present models predict. This behaviour may also extend to the anodization of other valve metals, such as Al, Ti, Zr, W, and Nb.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE GERONIMO,G.; CHEN, W.; FRIED, J.

    We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mmz and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wirebonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltagemore » differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm{sup 2}, dissipates 12 mW cm{sup -2}, and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a {sup 55}Fe source.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, E.; De Geronimo, G.; Ackley, K.

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discriminationmore » with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.« less

  19. Synthesis, optical and electrochemical properties of Zn-porphyrin for dye sensitized solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotteswaran, S.; Pandian, M. Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    2016-05-23

    Zn-Porphyrin dye has been synthesized by the reaction between aldehydes and pyrrole. The dye structure was confirmed by {sup 1}H NMR, {sup 13}C NMR spectrum. The functional group of the dye molecule was confirmed by FTIR spectrum. The UV-Vis-NIR absorption spectrum of Zn-Porphyrin in DMF solution was recorded in spectrophotometer. The UV-Vis NIR spectrum of dye exhibits a strong Soret band and Q-band. Cyclic Voltammograms were obtained with three electrode systems: Pt as counter electrode, saturated calomel used as a reference electrode and glassy carbon as working electrode at a scan rate of 100 mV/s. The curves recorded the oxidation ofmore » 0.5 mM compound Zn-Porphyrin in a dichloromethane solution containing 0.1M TBAP as supporting electrolyte, reveal two successive quasi reversible redox couples with the first anodic and cathodic peak potentials of -0.2 V and -1 V. The second anodic and cathodic peak potentials are 0.82 V and 0.01 V respectively.« less

  20. Observation of reflected waves on the SABRE positive polarity inductive adder MITL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Poukey, J.W.; Mendel, C.W.

    We are studying the coupling of extraction applied-B ion diodes to Magnetically Insulated Transmission Line (MITLs) on the SABRE (Sandia Accelerator and Beam Research Experiment, 6 MV, 300 kA) positive polarity inductive voltage adder. Our goal is to determine conditions under which efficient coupling occurs. The best total power efficiency for an ideal ion diode load (i.e., without parasitic losses) is obtained by maximizing the product of cathode current and gap voltage. MITLs require that the load impedance be undermatched to the self-limited line operating impedance for efficient transfer of power to ion diodes, independent of transit time isolation, andmore » even in the case of multiple cathode system with significant vacuum electron flow. We observe that this undermatched condition results in a reflected wave which decreases the line voltage and gap electron sheath current, and increases the anode and cathode current in a time-dependent way. The MITL diode coupling is determined by the flow impedance at the adder exit. We also show that the flow impedance increases along the extension MITL on SABRE. Experimental measurements of current and peak voltage are compared to analytical models and TWOQUICK 2.5-D PIC code simulations.« less

  1. Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, Eric J.; Yousefi, Hamid R.

    2014-10-15

    Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explainmore » the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.« less

  2. Operando Synchrotron Measurement of Strain Evolution in Individual Alloying Anode Particles within Lithium Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortes, Francisco Javier Quintero; Boebinger, Matthew G.; Xu, Michael

    Alloying anode materials offer high capacity for next-generation batteries, but the performance of these materials often decays rapidly with cycling because of volume changes and associated mechanical degradation or fracture. The direct measurement of crystallographic strain evolution in individual particles has not been reported, however, and this level of insight is critical for designing mechanically resilient materials. Here, we use operando X-ray diffraction to investigate strain evolution in individual germanium microparticles during electrochemical reaction with lithium. The diffraction peak was observed to shift in position and diminish in intensity during reaction because of the disappearance of the crystalline Ge phase.more » The compressive strain along the [111] direction was found to increase monotonically to a value of -0.21%. This finding is in agreement with a mechanical model that considers expansion and plastic deformation during reaction. This new insight into the mechanics of large-volume-change transformations in alloying anodes is important for improving the durability of high-capacity batteries.« less

  3. Fabrication of Ordered Blue Nanostructure by Anodization of an Aluminum Plate

    NASA Astrophysics Data System (ADS)

    Kurashima, Yuichi; Yokota, Yoshihiko; Miyamoto, Iwao; Itatani, Taro

    2007-03-01

    Colors in organisms are created by chemical interactions of molecular pigments and by optical interactions of incident light with biological nanostructures. The latter classes are called structural colors and form an important component of the phenotypes of many animals and even some plants. In this paper, we report on the fabrication of an ordered blue nanostructure by the anodization of an Al plate. In the fabrication of such an ordered nanostructure by the anodization of an Al plate, ordered nanostructures with a pitch and an alumina thickness of approximately 100 nm were produced on the Al plate. The ordered nanostructures on the Al plate showed no colors. However, an ordered nanostructure deposited with a Pt thin film with a thickness of approximately 10 nm showed a blue reflection with a peak reflectivity of approximately 370 nm. We conclude that this blue nanostructure on the Al plate is caused by an interference between the Al surface and the Pt surface.

  4. Uncertainties in cylindrical anode current inferences on pulsed power drivers

    NASA Astrophysics Data System (ADS)

    Porwitzky, Andrew; Brown, Justin

    2018-06-01

    For over a decade, velocimetry based techniques have been used to infer the electrical current delivered to dynamic materials properties experiments on pulsed power drivers such as the Z Machine. Though originally developed for planar load geometries, in recent years, inferring the current delivered to cylindrical coaxial loads has become a valuable diagnostic tool for numerous platforms. Presented is a summary of uncertainties that can propagate through the current inference technique when applied to expanding cylindrical anodes. An equation representing quantitative uncertainty is developed which shows the unfold method to be accurate to a few percent above 10 MA of load current.

  5. Mathematical model of a parallel plate ammonia electrolyzer for combined wastewater remediation and hydrogen production.

    PubMed

    Estejab, Ali; Daramola, Damilola A; Botte, Gerardine G

    2015-06-15

    A mathematical model was developed for the simulation of a parallel plate ammonia electrolyzer to convert ammonia in wastewater to nitrogen and hydrogen under basic conditions. The model consists of fundamental transport equations, the ammonia oxidation kinetics at the anode, and the hydrogen evolution kinetics at the cathode of the electrochemical reactor. The model shows both qualitative and quantitative agreement with experimental measurements at ammonia concentrations found within wastewater (200-1200 mg L(-1)). The optimum electrolyzer performance is dependent on both the applied voltage and the inlet concentrations. Maximum conversion of ammonia to nitrogen at the rates of 0.569 and 0.766 mg L(-1) min(-1) are achieved at low (0.01 M NH4Cl and 0.1 M KOH) and high (0.07 M NH4Cl and 0.15 M KOH) inlet concentrations, respectively. At high and low concentrations, an initial increase in the cell voltage will cause an increase in the system response - current density generated and ammonia converted. These system responses will approach a peak value before they start to decrease due to surface blockage and/or depletion of solvated species at the electrode surface. Furthermore, the model predicts that by increasing the reactant and electrolyte concentrations at a certain voltage, the peak current density will plateau, showing an asymptotic response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Sinusoidal current and stress evolutions in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang

    2016-09-01

    Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.

  7. Increase in the neutron yield from a dense plasma-focus experiment performed with a conical tip placed in the centre of the anode end

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-09-01

    The paper describes the evolution of self-organized structures inside a pinched plasma column during the phase of the effective production of fusion neutrons, as observed in the mega-ampere plasma focus experiment performed with a conical tip placed in the centre of the anode face. In a comparison with the plane anode face configuration, the described anode shape facilitated transformations in the pinch column during the neutron production and increased the neutron yield several times. Simultaneously, it decreased the minimal diameter and the length of the pinched column, and it depressed the first neutron pulse. It also induced shorter pulses of X-rays and neutrons, which enabled the determination of a temporal difference between the emission of electron and deuteron beams. The fast electrons were produced mainly during a disruption of the pinch constriction, while the fast deuterons - during the formation and explosion of plasmoids. The paper also presents the temporal evolution of a current distribution in the plasmoid during the neutron production, as well as the appearance and stable positions of current filaments traces upon the surface of the conical anode tip.

  8. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.

    PubMed

    Ye, Xiaokun; Zhang, Junya; Zhang, Yan; Lv, Yuancai; Dou, Rongni; Wen, Shulong; Li, Lianghao; Chen, Yuancai; Hu, YongYou

    2016-12-01

    The unique electrocoagulator proposed in this study is highly efficient at removing Ni-EDTA, providing a potential remediation option for wastewater containing lower concentrations of Ni-EDTA (Ni ≤ 10 mg L -1 ). In the electrocoagulation (EC) system, cylindrical graphite was used as a cathode, and a packed-bed formed from iron scraps was used as an anode. The results showed that the removal of Ni-EDTA increased with the application of current and favoured acidic conditions. We also found that the iron scrap packed-bed anode was superior in its treatment ability and specific energy consumption (SECS) compared with the iron rod anode. In addition, the packed density and temperature had a large influence on the energy consumption (ECS). Over 94.3% of Ni and 95.8% of TOC were removed when conducting the EC treatment at an applied current of 0.5 A, initial pH of 3, air-purged rate 0.2 L min -1 , anode packed density of 400 kg m -3 temperature of 313 K and time of 30 min. SEM analysis of the iron scraps indicated that the specific area of the anode increased after the EC. The XRD analysis of flocs produced during EC revealed that hematite (α-Fe 2 O 3 ) and magnetite (Fe 3 O 4 ) were the main by-products under aerobic and anoxic conditions, respectively. A kinetic study demonstrated that the removal of Ni-EDTA followed a first-order model with the current parameters. Moreover, the removal efficiency of real wastewater was essentially consistent with that of synthetic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    NASA Astrophysics Data System (ADS)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  10. Uniform Li deposition regulated via three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal anodes.

    PubMed

    Wang, Gang; Xiong, Xunhui; Lin, Zhihua; Zheng, Jie; Fenghua, Zheng; Li, Youpeng; Liu, Yanzhen; Yang, Chenghao; Tang, Yiwei; Liu, Meilin

    2018-05-31

    Lithium metal anodes are considered to be the most promising anode material for next-generation advanced energy storage devices due to their high reversible capacity and extremely low anode potential. Nevertheless, the formation of dendritic Li, induced by the repeated breaking and repairing of solid electrolyte interphase layers, always causes poor cycling performance and low coulombic efficiency, as well as serious safety problems, which have hindered the practical application of Li anodes for a long time. Herein, we design an electrode by covering a polyvinyl alcohol layer with a three-dimensional nanofiber network structure through an electrospinning technique. The polar functional groups on the surface of the polymer nanofibers can restrict the deposition of Li along the fibers and regulate the deposition of Li uniformly in the voids between the nanofibers. Owing to the structural features of the polymer, the modified Li|Cu electrode displays excellent cycle stability, with a high coulombic efficiency of 98.6% after 200 cycles at a current density of 1 mA cm-2 under a deposition capacity of 1 mA h cm-2, whilst the symmetric cell using the polymer modified Li anode shows stable cycling with a low hysteresis voltage of ∼80 mV over 600 h at a current density of 5 mA cm-2.

  11. The Homeostatic Interaction Between Anodal Transcranial Direct Current Stimulation and Motor Learning in Humans is Related to GABAA Activity.

    PubMed

    Amadi, Ugwechi; Allman, Claire; Johansen-Berg, Heidi; Stagg, Charlotte J

    2015-01-01

    The relative timing of plasticity-induction protocols is known to be crucial. For example, anodal transcranial direct current stimulation (tDCS), which increases cortical excitability and typically enhances plasticity, can impair performance if it is applied before a motor learning task. Such timing-dependent effects have been ascribed to homeostatic plasticity, but the specific synaptic site of this interaction remains unknown. We wished to investigate the synaptic substrate, and in particular the role of inhibitory signaling, underpinning the behavioral effects of anodal tDCS in homeostatic interactions between anodal tDCS and motor learning. We used transcranial magnetic stimulation (TMS) to investigate cortical excitability and inhibitory signaling following tDCS and motor learning. Each subject participated in four experimental sessions and data were analyzed using repeated measures ANOVAs and post-hoc t-tests as appropriate. As predicted, we found that anodal tDCS prior to the motor task decreased learning rates. This worsening of learning after tDCS was accompanied by a correlated increase in GABAA activity, as measured by TMS-assessed short interval intra-cortical inhibition (SICI). This provides the first direct demonstration in humans that inhibitory synapses are the likely site for the interaction between anodal tDCS and motor learning, and further, that homeostatic plasticity at GABAA synapses has behavioral relevance in humans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Design, fabrication and testing of an air-breathing micro direct methanol fuel cell with compound anode flow field

    NASA Astrophysics Data System (ADS)

    Wang, Luwen; Zhang, Yufeng; Zhao, Youran; An, Zijiang; Zhou, Zhiping; Liu, Xiaowei

    2011-10-01

    An air-breathing micro direct methanol fuel cell (μDMFC) with a compound anode flow field structure (composed of the parallel flow field and the perforated flow field) is designed, fabricated and tested. To better analyze the effect of the compound anode flow field on the mass transfer of methanol, the compound flow field with different open ratios (ratio of exposure area to total area) and thicknesses of current collectors is modeled and simulated. Micro process technologies are employed to fabricate the end plates and current collectors. The performances of the μDMFC with a compound anode flow field are measured under various operating parameters. Both the modeled and the experimental results show that, comparing the conventional parallel flow field, the compound one can enhance the mass transfer resistance of methanol from the flow field to the anode diffusion layer. The results also indicate that the μDMFC with an anode open ratio of 40% and a thickness of 300 µm has the optimal performance under the 7 M methanol which is three to four times higher than conventional flow fields. Finally, a 2 h stability test of the μDMFC is performed with a methanol concentration of 7 M and a flow velocity of 0.1 ml min-1. The results indicate that the μDMFC can work steadily with high methanol concentration.

  13. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    NASA Astrophysics Data System (ADS)

    Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-04-01

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  14. Design and fabrication of novel anode flow-field for commercial size solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Canavar, Murat; Timurkutluk, Bora

    2017-04-01

    In this study, nickel based woven meshes are tested as not only anode current collecting meshes but also anode flow fields instead of the conventional gas channels fabricated by machining. For this purpose, short stacks with different anode flow fields are designed and built by using different number of meshes with various wire diameters and widths of opening. A short stack with classical machined flow channels is also constructed. Performance and impedance measurements of the short stacks with commercial size cells of 81 cm2 active area are performed and compared. The results reveal that it is possible to create solid oxide fuel cell anode flow fields with woven meshes and obtain acceptable power with a proper selection of the mesh number, type and orientation.

  15. Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.

  16. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    NASA Astrophysics Data System (ADS)

    Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.

    2011-08-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  17. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    PubMed Central

    Abdel-Hamid, Refat; Newair, Emad F.

    2015-01-01

    A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA). The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV) and characterized using CV and scanning electron microscope (SEM). The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3). The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality. PMID:28347090

  18. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    PubMed Central

    Li, Di; Yang, Xiao-Lu; Xiao, Bao-Lin; Geng, Fang-Yong; Hong, Jun; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2017-01-01

    A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR), transmission electron microscopy (TEM), and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G) and adenine (A). The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA. PMID:28718793

  19. Graphite nanocomposites sensor for multiplex detection of antioxidants in food.

    PubMed

    Ng, Khan Loon; Tan, Guan Huat; Khor, Sook Mei

    2017-12-15

    Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and tert-butylhydroquinone (TBHQ) are synthetic antioxidants used in the food industry. Herein, we describe the development of a novel graphite nanocomposite-based electrochemical sensor for the multiplex detection and measurement of BHA, BHT, and TBHQ levels in complex food samples using a linear sweep voltammetry technique. Moreover, our newly established analytical method exhibited good sensitivity, limit of detection, limit of quantitation, and selectivity. The accuracy and reliability of analytical results were challenged by method validation and comparison with the results of the liquid chromatography method, where a linear correlation of more than 0.99 was achieved. The addition of sodium dodecyl sulfate as supporting additive further enhanced the LSV response (anodic peak current, I pa ) of BHA and BHT by 2- and 20-times, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pulsed electromagnetic gas accelleration. [incorporation of hollow cathode in plasma discharge and suitability determination of MPD discharge as plasmadynamic laser source

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.

    1973-01-01

    Direct measurement with thermocouples of the power deposited in the anode of a multi-megawatt magnetoplasmadynamic discharge has shown the fractional anode power to decrease from 50% at 200 kW to 10% at 20 MW. Using local measurements of current density, electric potential, and electron temperature, the traditional model for heat conduction to the anode is found to be inadequate. Other experiments in which the voltage-current characteristics and exhaust velocities of MPD arcs using Plexiglas and boron nitride chamber insulators and various mass injection configurations show that ablation can affect nominal accelerator operation in several distinct ways. The incorporation of a hollow cathode in a 7 kA plasma discharge has shown that a stable current attachment can be realized in the cavity without the aid of cathode heaters, keeper electrodes, or emissive coatings.

  1. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    DOEpatents

    Lovley, Derek R; Nevin, Kelly

    2015-11-03

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.

  2. The correlation of blue shift of photoluminescence and morphology of silicon nanoporous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Jumaili, Batool E. B., E-mail: batooleneaze@gmail.com; Department of Physics, Anbar University; Talib, Zainal A.

    Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65 mA/cm{sup 2}.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at themore » superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.« less

  3. Fabrication of large area Si cylindric drift detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W.; Kraner, H.W.; Li, Z.

    1993-04-01

    Advanced Si drift detector, a large area cylindrical drift detector (CDD), processing steps, with the exception of the ion implantation, were carried out in the BNL class 100 cleanroom. The double-side planer process technique was developed for the fabrication of CDD. Important improvements of the double-side planer process in this fabrication are the introduction of Al implantation protection mask and the remaining of a 1000 Angstroms oxide layer in the p-window during the implantation. Another important design of the CDD is the structure called ``river,`` which ,allows the current generated on Si-SiO{sub 2} interface to ``flow`` into the guard anode,more » and thus can minimize the leakage current at the signed anode. The test result showed that most of the signal anodes have the leakage current about 0.3 nA/cm{sup 2} for the best detector.« less

  4. Free standing Cu2Te, new anode material for sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Sarkar, Ananta; Mallick, Md. Mofasser; Panda, Manas Ranjan; Vitta, Satish; Mitra, Sagar

    2018-05-01

    Sodium-ion battery is the most popular alternative to lithium-ion energy storage system due to its low cost and huge abundant resources throughout the world. Although recent literature showed cathode materials for sodium ion battery performs almost equivalent to lithium-ion counterpart but the anode of this sodium-ion battery is in premature state. Here, we introduced free-standing copper telluride (Cu2Te), a new anode materials for sodium-ion battery. For making the electrode we did not use any conductive carbon or current collector which increase the volumetric density as well as reduce the cost of the cell. This metallic Cu2Te alloy exhibited a high reversible capacity of ˜275 mAh g-1 at 50 mA g-1 current density and ˜200 mAh g-1 at higher current density of 100 mA g-1, operating between 0.1 to 2.0 V.

  5. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.; Nevin, Kelly P.

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to freemore » molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.« less

  6. Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Breitling, Carolin; Zaehle, Tino; Dannhauer, Moritz; Bonath, Björn; Tegelbeckers, Jana; Flechtner, Hans-Henning; Krauel, Kerstin

    2016-01-01

    The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13–17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD. PMID:27147964

  7. Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS).

    PubMed

    Breitling, Carolin; Zaehle, Tino; Dannhauer, Moritz; Bonath, Björn; Tegelbeckers, Jana; Flechtner, Hans-Henning; Krauel, Kerstin

    2016-01-01

    The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13-17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD.

  8. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.

    PubMed

    Yang, Yonggang; Sun, Guoping; Guo, Jun; Xu, Meiying

    2011-07-01

    Biofilms formation capacities of Shewanella species in microbial fuel cells (MFCs) and their roles in current generation have been documented to be species-dependent. Understandings of the biofilms growth and metabolism are essential to optimize the current generation of MFCs. Shewanella decolorationis S12 was used in both closed-circuit and open-circuit MFCs in this study. The anodic S. decolorationis S12 biofilms could generate fivefold more current than the planktonic cells, playing a dominant role in current generation. Anodic biofilms viability was sustained at 98 ± 1.2% in closed-circuit while biofilms viability in open-circuit decreased to 72 ± 7% within 96 h. The unviable domain in open-circuit MFCs biofilms majorly located at the inner layer of biofilm. The decreased biofilms viability in open-circuit MFCs could be recovered by switching into closed-circuit, indicating that the current-generating anode in MFCs could serve as a favorable electron acceptor and provide sufficient energy to support cell growth and metabolism inside biofilms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Effiectiveness and safety of transcranial direct current stimulation in fibromyalgia: A systematic review and meta-analysis.

    PubMed

    Zhu, Chang-E; Yu, Bo; Zhang, Wen; Chen, Wen-Hua; Qi, Qi; Miao, Yun

    2017-01-19

    To evaluate the effectiveness and safety of transcranial direct current stimulation for fibro-myalgia. Databases, conference records and registered trials were searched for articles published from the date of establishment of the database through to October 2015. Six randomized controlled trials (n=192) of transcranial direct current stimulation for fibromyalgia were included in the current study. Two researchers independently screened the literature, assessed methodological quality using the Cochrane Collaboration's tool, and extracted data. Studies were divided into 3 groups for meta-analysis according to stimulation site and polarity. Significant improvement in pain and general fibromyalgia-related function was seen with anodal transcranial direct current stimulation over the primary motor cortex (p<0.05). However, the pressure pain threshold did not improve (p>0.05). Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex did not significantly reduce pain or improve general fibromyalgia-related function compared with sham stimulation (p>0.05). Cathodal transcranial direct current stimulation over the primary motor cortex did not improve the pressure pain threshold compared with sham stimulation (p>0.05). No significant adverse effects were seen. Anodal transcranial direct current stimulation over the primary motor cortex is more likely than sham transcranial direct current stimulation to relieve pain and improve general fibromyalgia-related function.

  10. Effect of anode-cathode geometry on performance of the HIP-1 hot ion plasma. [magnetic mirrors

    NASA Technical Reports Server (NTRS)

    Lauver, M. R.

    1978-01-01

    Hot-ion hydrogen plasma experiments were conducted in the NASA Lewis HIP-1 magnetic mirror facility to determine how the ion temperature was influenced by the axial position of the cathode tips relative to the anodes. A steady-state EXB plasma was formed by applying a strong radially inward dc electric field near the throats of the magnetic mirrors. The dc electric field was created between hollow cathode rods inside hollow anode cylinders, both concentric with the magnetic axis. The highest ion temperatures, 900 eV, were attained when the tip of each cathode was in the same plane as the end of its anode. These temperatures were reached with 22 kV applied to the electrodes in a field of 1.1 tesla. Scaling relations were empirically determined for ion temperature and the product of ion density and neutral particle density as a function of cathode voltage, discharge current, and electrode positions. Plasma discharge current vs voltage (I-V) characteristics were determined.

  11. Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells.

    PubMed

    Chen, Wei; Feng, Huajun; Shen, Dongsheng; Jia, Yufeng; Li, Na; Ying, Xianbin; Chen, Ting; Zhou, Yuyang; Guo, Jiayun; Zhou, Mengjiao

    2018-03-15

    In this study, carbonized waste tires were directly used as a high-performance anode material in microbial fuel cells (MFCs). The effect of the pyrolysis temperature used for waste tire carbonization on the current output performance was investigated to determine the optimal pyrolysis temperature. Thermal gravimetric analysis/differential scanning calorimetry showed that tire carbonization started at 200°C and ended at about 500°C; the weight loss was about 64%. When used in an MFC, the electrode obtained from waste tires carbonized at 800°C gave a current density of 23.1±1.4Am -2 , which is much higher than that achieved with traditional graphite felt anodes (5.5±0.1Am -2 ). The results of this study will be useful in optimizing the design of carbonized waste tire anodes for enhancing MFC performances and will alleviate the environmental problems caused by waste tires. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The multipole discharge chamber of an electrostatic ion thruster is discussed. No reductions in discharge losses were obtained, despite repeated demonstration of anode potentials more positive than the bulk of the discharge plasma. The penalty associated with biased anode operation was reduced as the magnetic integral above the biased anodes was increased. The hollow cathode is discussed. The experimental configuration of the Hall current thruster had a uniform field throughout the ion generation and acceleration regions. To obtain reliable ion generation, it was necessary to reduce the magnetic field strength, to the point where excessive electron backflow was required to establish ion acceleration. The theoretical study of ion acceleration with closed electron drift paths resulted in two classes of solutions. One class has the continuous potential variation in the acceleration region that is normally associated with a Hall current accelerator. The other class has an almost discontinuous potential step near the anode end of the acceleration region. This step includes a significant fraction of the total acceleration potential difference.

  13. Investigation of porous silicon obtained under different conditions by the contact angle method

    NASA Astrophysics Data System (ADS)

    Belorus, A. O.; Bukina, Y. V.; Pastukhov, A. I.; Stebko, D. S.; Spivak, Yu M.; Moshnikov, V. A.

    2017-11-01

    This paper investigates a hydrophobicity/hydrophilicity of porous silicon by the contact angle method. Porous silicon series were obtained by electrochemical anodic etching of n-Si (100) and (111) under the current anodization density range of 5-120 mA/cm2. For this purpose the original laboratory installation and the software «Measurement of contact angle» were developed. It is shown that, the contact angle can vary significantly (up to 80 degrees for (100)) depending on the current anodization Discussion of the results is carried out taking in account the composition of the functional groups and of surface morphology of the porous silicon. These results are important for developing porous silicon particles as nanocontainers in the targeted drug delivery.

  14. Electrochemical Treatment of Textile Dye Wastewater by Mild Steel Anode.

    PubMed

    Bhavya, J G; Rekha, H B; Murthy, Usha N

    2014-04-01

    This paper presents the results of the treatment of textile dye wastewater generated from a textile processing industry by electrochemical method. Experiments were conducted at current densities of 12, 24 and 48 A/m2 using mild steel as anode and cathode. During the various stages of electrolysis, parameters such as COD, color and BOD5 were determined in order to know the feasibility of electrochemical treatment. It was observed that increasing the electrolysis time and increased current density bring down the concentration of pollutants. Also COD removal rate and energy consumption during the electrolysis were calculated and presented in this paper. The present study proves the effectiveness of electrochemical treatment using MS as anode for TDW oxidation.

  15. Benzene oxidation at diamond electrodes: comparison of microcrystalline and nanocrystalline diamonds.

    PubMed

    Pleskov, Yu V; Krotova, M D; Elkin, V V; Varnin, V P; Teremetskaya, I G; Saveliev, A V; Ralchenko, V G

    2012-08-27

    A comparative study of benzene oxidation at boron-doped diamond (BDD) and nitrogenated nanocrystalline diamond (NCD) anodes in 0.5 M K(2)SO(4) aqueous solution is conducted by using cyclic voltammetry and electrochemical impedance spectroscopy. It is shown by measurements of differential capacitance and anodic current that during the benzene oxidation at the BDD electrode, adsorption of a reaction intermediate occurs, which partially blocks the electrode surface and lowers the anodic current. At the NCD electrode, benzene is oxidized concurrently with oxygen evolution, a (quinoid) intermediate being adsorbed at the electrode. The adsorption and the electrode surface blocking are reflected in the impedance-frequency and impedance-potential complex-plane plots. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication of Self-Ordered Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid

    NASA Astrophysics Data System (ADS)

    Ma, Yingjun; Wen, Yihao; Li, Juan; Li, Yuxin; Zhang, Zhiying; Feng, Chenchen; Sun, Runguang

    2016-12-01

    Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named “Janus anodization” (JA) to controllably fabricate self-ordered PAA with large Dint at high voltage of 350-400 V. JA naturally occurs as anodizing Al foils in citric acid solution, which possessing both the characteristics of MA and HA. The process can be divided into two stages: I, slow pore nucleation stage similar to MA; II, unequilibrium self-organization process similar to HA. The as-prepared films had the highest modulus (7.0 GPa) and hardness (127.2 GPa) values compared with the alumina obtained by MA and HA. The optical studies showed that the black films have low reflectance (<10 %) in the wavelength range of 250-1500 nm and photoluminescence property. Dint can be tuned between 645-884 nm by controlling citric acid concentration or anodization voltage. JA is a potential technology to efficiently and controllably fabricate microstructured or hybrid micro- and nanostructured materials with novel properties.

  17. Fabrication of Self-Ordered Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid

    PubMed Central

    Ma, Yingjun; Wen, Yihao; Li, Juan; Li, Yuxin; Zhang, Zhiying; Feng, Chenchen; Sun, Runguang

    2016-01-01

    Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named “Janus anodization” (JA) to controllably fabricate self-ordered PAA with large Dint at high voltage of 350–400 V. JA naturally occurs as anodizing Al foils in citric acid solution, which possessing both the characteristics of MA and HA. The process can be divided into two stages: I, slow pore nucleation stage similar to MA; II, unequilibrium self-organization process similar to HA. The as-prepared films had the highest modulus (7.0 GPa) and hardness (127.2 GPa) values compared with the alumina obtained by MA and HA. The optical studies showed that the black films have low reflectance (<10 %) in the wavelength range of 250–1500 nm and photoluminescence property. Dint can be tuned between 645–884 nm by controlling citric acid concentration or anodization voltage. JA is a potential technology to efficiently and controllably fabricate microstructured or hybrid micro- and nanostructured materials with novel properties. PMID:27958365

  18. Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Maryam, W.; Ahmad, M. A.; Bououdina, M.

    2015-12-01

    Highly-ordered and hexagonal-shaped nanoporous anodic aluminum oxide (AAO) of 1 μm thickness of Al pre-deposited onto Si substrate using two-step anodization was successfully fabricated. The growth mechanism of the porous AAO film was investigated by anodization current-time behavior for different anodizing voltages and by visualizing the microstructural procedure of the fabrication of AAO film by two-step anodization using cross-sectional and top view of FESEM imaging. Optimum conditions of the process variables such as annealing time of the as-deposited Al thin film and pore widening time of porous AAO film were experimentally determined to obtain AAO films with uniformly distributed and vertically aligned porous microstructure. Pores with diameter ranging from 50 nm to 110 nm and thicknesses between 250 nm and 1400 nm, were obtained by controlling two main influential anodization parameters: the anodizing voltage and time of the second-step anodization. X-ray diffraction analysis reveals amorphous-to-crystalline phase transformation after annealing at temperatures above 800 °C. AFM images show optimum ordering of the porous AAO film anodized under low voltage condition. AAO films may be exploited as templates with desired size distribution for the fabrication of CuO nanorod arrays. Such nanostructured materials exhibit unique properties and hold high potential for nanotechnology devices.

  19. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong

    2009-03-01

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.

  20. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications

    PubMed Central

    Ferré-Borrull, Josep; Pallarès, Josep; Macías, Gerard; Marsal, Lluis F.

    2014-01-01

    Modifying the diameter of the pores in nanoporous anodic alumina opens new possibilities in the application of this material. In this work, we review the different nanoengineering methods by classifying them into two kinds: in situ and ex situ. Ex situ methods imply the interruption of the anodization process and the addition of intermediate steps, while in situ methods aim at realizing the in-depth pore modulation by continuous changes in the anodization conditions. Ex situ methods permit a greater versatility in the pore geometry, while in situ methods are simpler and adequate for repeated cycles. As an example of ex situ methods, we analyze the effect of changing drastically one of the anodization parameters (anodization voltage, electrolyte composition or concentration). We also introduce in situ methods to obtain distributed Bragg reflectors or rugate filters in nanoporous anodic alumina with cyclic anodization voltage or current. This nanopore engineering permits us to propose new applications in the field of biosensing: using the unique reflectance or photoluminescence properties of the material to obtain photonic barcodes, applying a gold-coated double-layer nanoporous alumina to design a self-referencing protein sensor or giving a proof-of-concept of the refractive index sensing capabilities of nanoporous rugate filters. PMID:28788127

Top